

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden

email: <u>cehaden@ncdot.gov</u>

Reference: Preliminary Site Assessment Report NCDOT Project I-5986B, WBS Element 47532.1.3 Parcel 21-Paul Williams Trucking 2981 Bud Hawkins Road Dunn, Harnett County, North Carolina S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
21	Paul and Tammy Williams	(Paul Williams Trucking)
		2981 Bud Hawkins Road, Dunn, NC

The PSA included a geophysical survey, subsequent limited soil sampling (four soil borings up to 10 feet below ground surface (ft.-bgs.) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On September 11, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 21. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper[®] Systems Geode[™] sub-meter GPS as positioning support. The presence of vehicles, ditches, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer[®] program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR[®] 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "*Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation*" to further characterize anomalies/features identified during the TDEM survey.

A total of three (3) GPR profiles (Lines 1 through 3) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan[®] 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, one anomalous feature (Anomaly A) was identified in both the TDEM and GPR data sets (**Figures 5 through 7**). Anomaly A is characterized by relatively higher TDEM values (greater than about 100 mV) and a high amplitude GPR response at about three feet below ground surface (bgs). Anomaly A is likely related to a buried isolated metallic target. The identified anomaly was also marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**.

Soil Sampling

On October 2, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance four soil borings (B-1 through B-4) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 21. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I**. S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at a depth of approximately six ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II**.

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, two soil samples (two to four foot depth interval and four to six foot depth interval) were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of eight soil samples (two per boring) were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered within approximately 10 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Due to the lack of evidence of a release, soil boring B-2 was selected at random for the collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-2 to a depth of approximately eight ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a five foot section of 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at soil boring B-2 was measured at 4.9 ft.-bgs. Groundwater from the temporary well was purged until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 Parcel 21, and placed in an insulated cooler with ice for transport to Con-Test Laboratories for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves and tubing were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of groundwater samples analyzed by Con-Test Laboratories, no target constituents were reported at concentrations exceeding the laboratory method reporting limits. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test Laboratories is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomaly (Anomaly A) which is likely related to a buried isolated metallic target. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced four soil borings (B-1 through B-4) to a depth of approximately 10 ft.-bgs at the site. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-GRO and TPH-DRO were not reported in the soil samples at concentrations exceeding the laboratory method reporting limits. During the soil boring advancement, groundwater was encountered at a depth of approximately six ft.-bgs. One temporary well (TW-1) was installed at soil boring B-2. Groundwater at TW-1 was measured at 4.9 ft.-bgs and analyzed by Con-Test Laboratories for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. No target constituents were reported in the groundwater sample at concentrations exceeding the laboratory method reporting limits.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, no recommendations are provided.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Jamie T Honeycutt Environmental Professional jhoneycutt@smeinc.com	Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com
Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com	SEAL FAL
Attachments: 1/22/2019	18760
Table 1: Summary of Soil Sampling Results Table 2: Summary of Groundwater Sampling Results	GINEER OF
Figure 1: Vicinity Map	
Figure 2: Site Map	
Figure 4: TDEM Path Location Plan	
Figure 5: TDEM Data Plot A	
Figure 6: TDEM Data Plot B	
Figure 8: Example GPR Data – Lines 2 and 3	
Appendix I: Photographs	
Appendix II: Boring Logs	
Appendix III: Laboratory Analytical Reports and Chain of Custody	

Tables

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B Parcel 21 - (Paul Williams Trucking) 2981 Bud Hawkins Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175

Ar	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasolin Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry					
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO				
Parcel 21 B-1	10/2/2018	2 to 4	<0.58	<0.58				
	10/2/2010	4 to 6	<0.63	<0.63				
Parcel 21 B-2	10/2/2018	2 to 4	<0.47	<0.47				
	10/2/2010	4 to 6	<0.56	<0.56				
Parcol 21 B 2	10/2/2018	2 to 4	<0.43	<0.43				
Faicei 21 B-3	10/2/2018	4 to 6	<0.24	<0.24				
Parcol 21 B 4	10/2/2018	2 to 4	<0.31	<0.31				
Faicei 21 D-4	10/2/2010	4 to 6	<0.19	<0.19				
No	orth Carolina T	PH Action Levels	50	100				

Notes:

2. Concentrations are reported in milligrams per kilogram (mg/Kg).

3. ft.-bgs:- feet below ground surface.

4. Concentrations exceeding the laboratory's reporting limits are shown in BOLD fields.

5. Concentrations exceeding the North Carolina TPH Action Levels are shown

in Shaded and BOLD fields.

^{1.} UVF analysis performed by RED Lab, LLC

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5986B Parcel 21 - (Paul Williams Trucking) 2981 Bud Hawkins Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175

Analytica	Il Method→	Volatile Organic Compounds by EPA Method 8260	Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270
Sample ID Contaminant of Concern→		Constituent Specific	Constituent Specific
	Date		
TW-1 Parcel 21	10/2/2018	Below laboratory method reporting limits	Below laboratory method reporting limits
2L Standard (μg/L)		Not Applicable	Not Applicable

Notes:

1. Analytes that are not shown for the method were not detected.

2. Concentrations are reported in micrograms per liter (µg/L).

3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202

4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.

5. Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.

Figures

- Z		
	SOIL AND GROUNDWATER CONSTITUENT MAP NCDOT 1-59868	PARCEL 21 (PAUL WILLIAMS I KUCKING) 2981 BUD HAWKINS ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA
	SCALE: 1 " = 100	ı
Sample Location	DATE:	
Edge of Pavement	PROJECT NUME	BER
Centerline	4305-18-17	'5
Proposed Permanent Utility Easement Proposed Construction Easement Tax Parcels	-igoke NO.	

Appendix I – Photographs

Appendix II – Boring Logs

PRC	JECT	:	NCD	OT I-5986B									
			Parcel 21-2981 Bu	BORING LOG: B-1									
			S&ME Proje	ct No. 4305-18-175									
DATE	DRILL	ED:	Tuesday, October 02, 2018		BORING DEPTH (FT):	10							
DRILI	RIG:		Geoprobe 54DT	WATER LEVEL: 6									
DRILI	ER:		Troxler Geologic, Inc.		CAVE-IN DEPTH:	Not App	icable						
HAM	MER T	YPE:	Not Applicable	LOGGED BY:	J. Honey	cutt							
SAMI	PLING	METHOD:	Macro-Core Sampler		NORTHING:	-							
DRILI	ING N	AETHOD:	Macro-Core Sampler (3-in. OD)		EASTING:								
DEPTH	(feet)	GRAPHIC LOG	MATERIAL	WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE		
			Gravel, Silty Sand, Tan, Brown, Fine				2.2						
			silty Sand, Tan, Brown, Fine,					0.7	No				
5								1.2	Yes				
I								1.5	Yes				
			Sand, Tan, Orange, Medium, Wet,			▼							
10			Poring Terminated at 10 Et PCS										
			sonng reminated at 10 Ft-bGS										
15													
I													
20													
I	_												
I													
I													
I													
I													
I													
25													
I	_												
I													
30													

PROJECT	Γ:		NCDOT I-5986B									
			Parcel 21-2981 Bud Hawkins Rd, Dunn, I	NC			BORIN	IG LOG	B-2/	TW-1		
			S&ME Project No. 4305-18-175									
DATE DRIL	LED:		Tuesday, October 02, 2018	BORING DEPTH (ET)	10							
			Geoprohe 54DT	WATER EVEL:	19							
					Not App	licablo						
			Net Applicable		Ног Арр	incable						
	ITPE.			LOGGED BY:	л. попеу	cull						
SAMPLING	METHOD:		Macro-Core Sampler	NORTHING:								
DRILLING	METHOD:	1	Macro-Core Sampler (3-In. OD)	EASTING:			1	1	1	1	1	1
DEPTH (feet)	GRAPHIC LOG	_	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Tops	vil, Black,									
	-	Silty S	and, Tan, Brown, Fine,				1.6	No				
5 —	-				•		1.9	Yes				
		L					2.1	Yes				
		Sand,	Tan, Orange, Medium, Wet,									
	-											
	_											
	-											
10 —		Borin	n Terminated at 10 Ft-BGS		-							
		20111										
	-											
15 —	-											
	_											
	_											
20 —	-											
	1											
	1											
	-											
_												
25 —	-											
	1											
— —	-											
30 —	I	I			I				<u> </u>	L	I	I

PRC	JECT	:		NCDOT I-5986B											
	PROJECT: NCDOT I-5986B Parcel 21-2981 Bud Hawkins Rd, Dunn, NC								IG LOG:	B-3					
				S&ME Project No. 4305-18-175											
DATE	DRILL	ED:		Tuesday, October 02, 2018	BORING DEPTH (FT):	10									
DRIL	L RIG:			Geoprobe 54DT WATER LEVEL: 6											
DRIL	LER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:	H: Not Applicable									
HAM	MER T	YPE:		Not Applicable	LOGGED BY:	Y: J. Honeycutt									
SAM	PLING	METHOD:		Macro-Core Sampler	NORTHING:										
DRIL	LING N	/ETHOD:		Macro-Core Sampler (3-in. OD)	EASTING:										
										~					
DEPTH	(feet)	GRAPHIC LOG	-	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE		
			Topso Silty 9	oil, Black,			11								
		•	Slity	and, Tan, Fine,				1.3	No						
5								2.2	Yes						
						•		7.7	Yes						
			Sand,	Orange, Medium, Wet,											
10	-		Borin	n Terminated at 10 Ft-BGS		-									
				· · · · · · · · · · · · · · · · · · ·											
15															
20															
20															
I															
I															
I	·														
25															
20															
I	·														
I															
I															
I															
I															
30		1					1					•	•		

PRO.	IECT	:		NCDOT I-5986B											
PROJECT: NCDOT I-5986B Parcel 21-2981 Bud Hawkins Rd, Dunn, NC								BORIN	IG LOG:	B-4					
				S&ME Project No. 4305-18-175											
DATE	DRILL	.ED:		Tuesday, October 02, 2018	BORING DEPTH (FT):	10									
DRILL	RIG:			Geoprobe 54DT WATER LEVEL: 6											
DRILL	ER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:	ł: Not Applicable									
HAMN	/ER T	YPE:		Not Applicable	LOGGED BY:	J. Honey	cutt								
SAMP	LING	METHOD:		Macro-Core Sampler	NORTHING:										
DRILL	ING N	1ethod:		Macro-Core Sampler (3-in. OD)	EASTING:										
										~					
DEPTH	(feet)	GRAPHIC LOG	-	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE		
			Topso Silty 9	oil, Black,			2.2								
			Slity	and, Tan, Fine,				0.3	No						
5								1.2	Yes						
						•		0.8	Yes						
			Sand,	Tan, Medium, Wet,											
10			Borin	g Terminated at 10 Ft-BGS											
15															
20															
.															
•															
.															
25															
Ι.															
·															
.															
30			•								•		•		

Appendix III – Laboratory Analytical Reports and Chain of Custody

Q	ED											\int	<u>QROS</u>		
	Hydrocarbon Analysis Results														
Client: Address:	Client: S&ME Samples Address: Samples extr Samples ana										Samples takenTuesday, October (Samples extractedTuesday, October (Samples analysedTuesday, October (
Contact: Project:	JAMIE HONEYCUTT PARCEL 21 - PROJ 4305-18-175									Op	erator		MAX MOYER		
													U00904		
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics	16 EPA PAHs	BaP	% Ratios			HC Fingerprint Match		
						` '	(C10-C35)								
						、 ,	(C10-C35)			C5 - C10	C10 - C18	C18			
s	PARCEL 21 B-1 (2'-4')	23.2	<0.58	<0.58	<0.58	<0.58	(C10-C35) <0.12	<0.19	<0.023	C5 - C10	C10 - C18	C18	PHC not detected		
S S	PARCEL 21 B-1 (2'-4') PARCEL 21 B-1 (4'-6')	23.2 25.2	<0.58 <0.63	<0.58 <0.63	<0.58 <0.63	<0.58 <0.63	(C10-C35) <0.12 <0.13	<0.19 <0.2	<0.023 <0.025	C5 - C10 0	C10 - C18 0	C18 0	PHC not detected PHC not detected		
S S S	PARCEL 21 B-1 (2'-4') PARCEL 21 B-1 (4'-6') PARCEL 21 B-2 (2'-4')	23.2 25.2 19.0	<0.58 <0.63 <0.47	<0.58 <0.63 <0.47	<0.58 <0.63 <0.47	<0.58 <0.63 <0.47	<pre>(C10-C35) </pre> <0.12 <0.13 <0.09	<0.19 <0.2 <0.15	<0.023 <0.025 <0.019	C5 - C10 0 0	C10 - C18 0 0	C18 0 0	PHC not detected PHC not detected PHC not detected		
S S S S	PARCEL 21 B-1 (2'-4') PARCEL 21 B-1 (4'-6') PARCEL 21 B-2 (2'-4') PARCEL 21 B-2 (4'-6')	23.2 25.2 19.0 22.2	<0.58 <0.63 <0.47 <0.56	<0.58 <0.63 <0.47 <0.56	<0.58 <0.63 <0.47 <0.56	<0.58 <0.63 <0.47 <0.56	<pre>(C10-C35) </pre> <0.12 <0.13 <0.09 <0.11	<0.19 <0.2 <0.15 <0.18	<0.023 <0.025 <0.019 <0.022	C5 - C10 0 0 0 0	C10 - C18 0 0 0 0	C18 0 0 0	PHC not detected PHC not detected PHC not detected PHC not detected		
S S S S S	PARCEL 21 B-1 (2'-4') PARCEL 21 B-1 (4'-6') PARCEL 21 B-2 (2'-4') PARCEL 21 B-2 (4'-6') PARCEL 21 B-3 (2'-4')	23.2 25.2 19.0 22.2 17.3	<0.58 <0.63 <0.47 <0.56 <0.43	<0.58 <0.63 <0.47 <0.56 <0.43	<0.58 <0.63 <0.47 <0.56 <0.43	<0.58 <0.63 <0.47 <0.56 <0.43	<pre>(C10-C35) </pre> <0.12 <0.13 <0.09 <0.11 <0.09	<0.19 <0.2 <0.15 <0.18 <0.14	<0.023 <0.025 <0.019 <0.022 <0.017	C5 - C10 0 0 0 0 0 0	C10 - C18 0 0 0 0 0 0	C18 0 0 0 0 0	PHC not detected PHC not detected PHC not detected PHC not detected PHC not detected		
S S S S S	PARCEL 21 B-1 (2'-4') PARCEL 21 B-1 (4'-6') PARCEL 21 B-2 (2'-4') PARCEL 21 B-2 (4'-6') PARCEL 21 B-3 (2'-4') PARCEL 21 B-3 (4'-6') PARCEL 21 B-3 (4'-6')	23.2 25.2 19.0 22.2 17.3 9.8	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24	<pre>(C10-C35) </pre> <0.12 <0.13 <0.09 <0.11 <0.09 <0.05	<0.19 <0.2 <0.15 <0.18 <0.14 <0.08	<0.023 <0.025 <0.019 <0.022 <0.017 <0.01	C5 - C10 0 0 0 0 0 0 0	C10- C18 0 0 0 0 0 0 0	C18 0 0 0 0 0 0	PHC not detected PHC not detected PHC not detected PHC not detected PHC not detected PHC not detected ,(FCM)		
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	PARCEL 21 B-1 (2'-4') PARCEL 21 B-1 (4'-6') PARCEL 21 B-2 (2'-4') PARCEL 21 B-2 (4'-6') PARCEL 21 B-3 (2'-4') PARCEL 21 B-3 (4'-6') PARCEL 21 B-4 (2'-4') PARCEL 21 B-4 (2'-4')	23.2 25.2 19.0 22.2 17.3 9.8 12.3	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24 <0.31	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24 <0.31	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24 <0.31	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24 <0.31	<pre>(C10-C35) </pre> <0.12 <0.13 <0.09 <0.011 <0.09 <0.05 <0.06	<0.19 <0.2 <0.15 <0.18 <0.14 <0.08 <0.1	<0.023 <0.025 <0.019 <0.022 <0.017 <0.017 <0.012	C5 - C10 0 0 0 0 0 0 0 0 0	C10- C18 0 0 0 0 0 0 0 0 0	C18 0 0 0 0 0 0 0 0	PHC not detected PHC not detected PHC not detected PHC not detected PHC not detected ,(FCM) ,(FCM)		
S S S S S S S S	PARCEL 21 B-1 (2'-4') PARCEL 21 B-1 (4'-6') PARCEL 21 B-2 (2'-4') PARCEL 21 B-2 (4'-6') PARCEL 21 B-3 (2'-4') PARCEL 21 B-3 (4'-6') PARCEL 21 B-4 (2'-4') PARCEL 21 B-4 (4'-6')	23.2 25.2 19.0 22.2 17.3 9.8 12.3 7.5	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24 <0.31 <0.19	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24 <0.31 <0.19	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24 <0.31 <0.19	<0.58 <0.63 <0.47 <0.56 <0.43 <0.24 <0.31 <0.19	<pre>(C10-C35) </pre> <0.12 <0.13 <0.09 <0.11 <0.09 <0.05 <0.06 <0.04	<0.19 <0.2 <0.15 <0.18 <0.14 <0.08 <0.1 <0.06	<0.023 <0.025 <0.019 <0.022 <0.017 <0.01 <0.012 <0.007	C5 - C10 0 0 0 0 0 0 0 0 0 0 0	C10 - C18 0 0 0 0 0 0 0 0 0 0 0	C18 0 0 0 0 0 0 0 0 0 0	PHC not detected PHC not detected PHC not detected PHC not detected PHC not detected ,(FCM) ,(FCM) ,(FCM)		

Initial Calibrator QC check OK

Final FCM QC Check OK

104 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions : HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only. Data generated by HC-1 Analyser

October 12, 2018

Michael Pfeifer S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: NCDOT I5986B- Parcel 21 Client Job Number: Project Number: 4305-18-175 Laboratory Work Order Number: 18J0298

Enclosed are results of analyses for samples received by the laboratory on October 4, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Beny K. Millee

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
18J0298-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B214298	10
Semivolatile Organic Compounds by GC/MS	15
B214244	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	21

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Michael Pfeifer

REPORT DATE: 10/12/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175

ANALYTICAL SUMMARY

SAMPLE DESCRIPTION

WORK ORDER NUMBER: 18J0298

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

MATRIX

PROJECT LOCATION: NCDOT 15986B- Parcel 21

FIELD SAMPLE # TW-1 Parcel 21

18J0298-01 Ground Water

LAB ID:

TEST

SUB LAB

SW-846 8260B SW-846 8270D

EXECUTIVE SUMMARY

Client ID: TW-1 Parcel 21

Lab ID: 18J0298-01

No Results Detected

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8270, only PAHs were requested and reported.

SW-846 8260B

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Vinyl Acetate

B214298-BLK1, B214298-BS1, B214298-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Ana Watthington

Lisa A. Worthington Project Manager

Work Order: 18J0298

Project Location: NCDOT I5986B- Parcel 21 Date Received: 10/4/2018

Field Sample #: TW-1 Parcel 21

Sample ID: 18J0298-01

1,1-Dichloropropene

Diethyl Ether

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

ND

ND

ND

ND

2.0

0.50

0.50

2.0

0.13

0.12

0.11

0.22

Sampled: 10/2/2018 17:00

Sample Description:

Anayle Real R. De De Page/and Page/and <		Volatile Organic Compounds by GC/MS												
Access ND 50 9.7 μ gL 1 SW-4662206 10.9118 10.1018 2.59 EEH Acrystenitic ND 50 0.58 μ gL 1 SW-4662068 10.9118 10.1018 3.59 EEH Acrystenitic ND 1.0 0.12 μ gL 1 SW-4662068 10.9118 10.1018 3.59 EEH Beronchloromethane ND 1.0 0.12 μ gL 1 SW-4662068 10.9118 10.1018 3.59 EEH Beronchloromethane ND 0.0 0.20 μ gL 1 SW-4662068 10.9118 10.1018 3.59 EEH Beronchloromethane ND 2.0 0.21 μ gL 1 SW-4662068 10.9118 10.1018 3.59 EEH Beronchloromethane ND 1.0 0.15 μ gL 1 SW-4662088 10.9118 10.1018 3.59 EEH Carbor trachinde ND 1.0 0.15 <th>Analyte</th> <th>Results</th> <th>RL</th> <th>DL</th> <th>Units</th> <th>Dilution</th> <th>Flag/Qual</th> <th>Method</th> <th>Date Prepared</th> <th>Date/Time Analyzed</th> <th>Analyst</th>	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst			
ArybanikiNDSDSDSDugl1SNA4632081001810101823.9EFItert.Ampl Moly Liber (TAMP)ND0002ugl1SNA4632081001810101850101BronnecND0002ugl1SNA46320810018101018101011010	Acetone	ND	50	9.7	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
net-Amyl Medyl Eher (TAME)ND0.500.11upt I1SW-46 6206110.91310.01815.9EHBranoshuzancND1.00.12upt INSW-46 6206110.91810.01815.9EHBranoshuzanchND1.00.22upt I1SW-46 6206110.91810.01815.9EHBranoshuzanchND0.01.011.02upt I1SW-46 6206110.91810.01815.9EHBranoshuzanchND2.00.21upt I1SW-46 6206110.91810.01815.9EHBranoshuzanchND2.00.21upt I1SW-46 6206110.91810.01815.9EHBranoshuzanchND1.00.12upt I1SW-46 6206110.91810.01815.9EHBranoshuzanchND1.00.12upt I1SW-46 6206110.91810.01815.9EHBranoshuzanchND1.00.12upt I1SW-46 6206110.91810.01815.9EHBranoshuzanchND0.00.02upt I1.01SW-46 6206110.91810.01815.9EHBranshufferdrND0.00.02upt I1.01SW-46 6206110.91810.01815.9EHBranshufferdrND0.00.02upt I1.01SW-46 6206110.91810.01815.9EHBranshufferdr<	Acrylonitrile	ND	5.0	0.58	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
InverseN01.00.120.911SW 4642600.930.9015.951.11BonocklorenethareN01.00.200.91<	tert-Amyl Methyl Ether (TAME)	ND	0.50	0.11	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
BennobencoreN0101010110210110101	Benzene	ND	1.0	0.12	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
BronschloromehaneND1.00.22µgf.1SW-46 820010.0180.01018.10FHBronsofernND0.500.30µgf.1SW-46 820010.0180.01018.50FHBronsofernND2.00.41µgf.1SW-46 820010.0180.01018.50FH2-BernonechaneND2.00.42µgf.1SW-46 820010.0180.01018.50FH2-BernonechaneND1.00.15µgf.1SW-46 820010.0180.10188.50FHn-BuylhenzneND1.00.15µgf.1SW-46 820010.01810.0188.50FHn-BuylhenzneND0.00.05µgf.1SW-46 820010.01810.0188.50FHch-Buyl Elder (TEE)ND0.500.02µgf.1SW-46 820010.01810.0188.50FHCuborbareND5.00.02µgf.1SW-46 820010.01810.0185.0FHCuborbareND5.00.02µgf.1SW-46 820010.01810.0185.0FHCuborbareND5.00.02µgf.1SW-46 820010.01810.0185.0FHCuborbareND0.00.01µgf.1SW-46 820010.01810.0185.0FHCuborbareND0.00.01µgf.1SW-46 8200<	Bromobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Brownschikuromethane ND 0.50 0.30 µgL 1 SW-46 8260 10.918 10.918 5.91 EH Bromonchane ND 2.0 0.21 µgL 1 SW-46 8260 10.918 10.108 5.91 EH 2-Bannone (MEK) ND 2.0 2.4 µgL 1 SW-46 8260 10.91 10.108 5.91 EH 1-Burylhacene ND 1.0 0.1 µgL 1 SW-46 8260 10.91 10.108 5.91 EH tert-Burylhacene ND 1.0 0.12 µgL 1 SW-46 8260 10.91 10.108 5.91 EH tert-Burylhacene ND 0.0 0.10 µgL 1 SW-46 8208 10.918 10.1018 5.91 EH Chroho Buriffer ND 0.0 0.92 µgL 1 SW-46 8208 10.918 10.1018 5.91 EH Chroho Buriffer ND 0.0 0.2 µgL <	Bromochloromethane	ND	1.0	0.22	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
BrownformND2.00.21µg.11SW-366 226810.91810.101 3.59FEHBrownethameND2.00.94µg.11SW-366 226810.91810.101 3.59EEH2-Bunnon (KEK)ND1.00.15µg.11SW-366 226810.91810.101 3.59EEHtert-Buryl Alcohol (TBA)ND1.00.15µg.11SW-366 226810.91810.101 3.59EEHsex-Buryl BernereND1.00.12µg.11SW-366 226810.91810.101 3.59EEHtert-Buryl Ethyl Ether (TBEE)ND0.500.95µg.11SW-366 226810.91810.101 8.59EEHCarbon TransfordND4.01.00.12µg.11SW-366 226810.91810.101 8.59EEHChoroshandeND4.01.0µg.11SW-366 226810.91810.101 8.59EEHChoroshandeND4.01.0µg.11SW-366 226810.91810.101 8.59EEHChoroshancND0.00.10µg.11SW-366 226810.91810.101 8.59EEHChoroshancND0.00.10µg.11SW-366 226810.91810.101 8.59EEHChoroshancND0.00.12µg.11SW-366 226810.91810.101 8.59EEHChoroshancND0.00.12µg.11SW-366 226810.91810.101	Bromodichloromethane	ND	0.50	0.30	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Brownershane ND 2.0 0.94 µg/L 1 SW-846 82081 10/18 15.9 EEH 2-Bunnone (MFK) ND 2.0 2.2 µg/L 1 SW-846 82081 10/018 5.9 EEH tert-Burj (Alcohol (TDA) ND 2.0 2.2 µg/L 1 SW-846 82081 10/018 10.1 5.9 EEH abruj Menzone ND 1.0 0.15 µg/L 1 SW-846 82081 10/018 3.9 EEH tert-burj Ebh Ebher (TEEE) ND 0.0 0.05 µg/L 1 SW-846 82081 10/018 3.9 EEH Curbon Disalfde ND 5.0 0.25 µg/L 1 SW-846 82081 10/018 10/018 3.9 EEH Curbon Disalfde ND 5.0 0.25 µg/L 1 SW-846 82081 10/018 10/018 3.9 EEH Curbon Disalfde ND 1.0 0.10 µg/L 1 SW-846 82081 10/018 <td>Bromoform</td> <td>ND</td> <td>2.0</td> <td>0.21</td> <td>μg/L</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>10/9/18</td> <td>10/10/18 3:59</td> <td>EEH</td>	Bromoform	ND	2.0	0.21	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
2-batanone (MEK) ND 20 2.4 µg/L 1 SNR-86 82608 10.918 1.0118 2.59 EEH n-Butylhachol (TBA) ND 2.0 µg/L 1 SNR-86 82608 10.918 10.1018 3.59 EEH n-Butylhenzene ND 1.0 0.15 µg/L 1 SNR-86 82608 10.918 10.018 3.59 EEH sec-butylhenzene ND 1.0 0.12 µg/L 1 SNR-86 82608 10.918 10.018 3.59 EEH tert-butylhenzene ND 0.0 0.05 µg/L 1 SNR-86 82608 10.918 10.018 3.59 EEH Carbon Ienaldioride ND 0.0 0.10 µg/L 1 SNR-86 82608 10.918 10.018 3.59 EEH Chloroberne ND 0.0 0.10 µg/L 1 SNR-86 82608 10.918 10.018 3.59 EEH Chloroberne ND 0.0 0.10 µg/L <td>Bromomethane</td> <td>ND</td> <td>2.0</td> <td>0.94</td> <td>μg/L</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>10/9/18</td> <td>10/10/18 3:59</td> <td>EEH</td>	Bromomethane	ND	2.0	0.94	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
iert-Bayl Alcohol (TBA) ND 20 2.2 µg/L 1 SNR-86 82608 10.918 1.018 2.59 EII n-Buythbrazen ND 1.0 0.15 µg/L 1 SNR-86 82608 10.918 10.018 2.59 EII sec-Buythbrazen ND 1.0 0.13 µg/L 1 SNR-86 82608 10.918 10.018 3.59 EII tert-Buytherzenc ND 0.0 0.095 µg/L 1 SNR-86 82608 10.918 10.018 3.59 EII Carbon Tobulfde ND 0.50 0.25 µg/L 1 SNR-86 82608 10.918 10.018 3.59 EII Chlorodhromomethanc ND 0.0 0.10 µg/L 1 SNR-46 82608 10.918 10.018 3.59 EII Chlorodhromomethanc ND 0.0 0.20 0.22 µg/L 1 SNR-46 82608 10.918 10.018 3.59 EII Chlorodhromomethanc ND	2-Butanone (MEK)	ND	20	2.4	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
n-Butylbenzene ND 1.0 0.15 µg1. 1 SW-846 82608 109/18 10/18 3.5 EEH sec-Butylbenzene ND 1.0 0.12 µg1. 1 SW-846 82608 109/18 10/10/18 3.5 EEH tert-Butylbenzene ND 0.50 0.905 µg1. 1 SW-846 82608 109/18 10/10/18 3.5 EEH Carbon Disulfde ND 0.50 0.905 µg1. 1 SW-846 82608 109/18 10/10/18 3.5 EEH Carbon Disulfde ND 0.50 0.25 µg1. 1 SW-846 82608 109/18 10/10/18 3.5 EEH Chlorodhromonethane ND 0.50 0.25 µg1. 1 SW-846 82608 109/18 10/10/18 3.5 EEH Chlorodhromonethane ND 2.0 0.25 µg1. 1 SW-846 82608 109/18 10/10/18 3.5 EEH Chlorodhromonethane ND 1.0 0.12 µg1. 1 SW-846 82608 109/18	tert-Butyl Alcohol (TBA)	ND	20	2.2	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
sec-Buildenzene ND 1.0 0.13 µg/L 1 SW-846 8260B 109/18 101018 3.59 EEH tert-Buildenzene ND 0.00 0.005 µg/L 1 SW-846 8260B 109/18 101018 3.59 EEH Carbon Disulfide ND 0.00 0.005 µg/L 1 SW-846 8260B 109/18 101018 3.59 EEH Carbon Tertalbidide ND 0.00 1.0 µg/L 1 SW-846 8260B 109/18 101018 3.59 EEH Chlorodbronomethane ND 0.00 0.01 µg/L 1 SW-846 8260B 109/18 101018 3.59 EEH Chlorodbrano ND 0.02 µg/L 1 SW-846 8260B 109/18 101018 3.59 EEH Chlorodenae ND 0.0 0.20 µg/L 1 SW-846 8260B 109/18 101018 3.59 EEH Chlorodenae ND 0.0 0.20 µg/L 1 SW-846 8260B 109/18 101018 3.59	n-Butylbenzene	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
tert-Butylenzene ND 1.0 0.12 µg/L 1 SW-846 8260B 1.09/18 1.01/18 2.59 EEH tert-Butyl Ehyl Eher (TBEF) ND 0.50 0.09 µg/L 1 SW-846 8260B 1.09/18 1.01/18 2.59 EEH Carbon Ertachloride ND 0.10 0.25 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.59 EEH Chlorochrace ND 0.10 0.16 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.59 EEH Chlorochrane ND 0.20 0.28 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.59 EEH Chlorochrane ND 0.20 0.22 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.59 EEH Chlorochrane ND 0.0 0.55 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.59 EEH 2-Chlorotoluene ND 1.0 <td>sec-Butylbenzene</td> <td>ND</td> <td>1.0</td> <td>0.13</td> <td>μg/L</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>10/9/18</td> <td>10/10/18 3:59</td> <td>EEH</td>	sec-Butylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
tert-Buryl Ethyl Ethyr (TBEE) ND 0.50 0.905 µg/L 1 SW-846 8260B 1.01/18 1.50 EEH Carbon Disulfde ND 4.0 1.0 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.50 EEH Carbon Disulfde ND 5.0 0.25 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.50 EEH Chlorodhrononethane ND 0.50 0.10 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.50 EEH Chlorodhrononethane ND 0.20 0.22 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.50 EEH Chlorodhronethane ND 2.0 0.55 µg/L 1 SW-846 8260B 1.09/18 1.01/18 3.50 EEH Chlorodhrone ND 1.0 0.12 µg/L 1 SW-846 8260B 1.09/18 3.50 EEH 12-Dichorobenzene ND 1.0 0.12 <t< td=""><td>tert-Butylbenzene</td><td>ND</td><td>1.0</td><td>0.12</td><td>μg/L</td><td>1</td><td></td><td>SW-846 8260B</td><td>10/9/18</td><td>10/10/18 3:59</td><td>EEH</td></t<>	tert-Butylbenzene	ND	1.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Carbon DisulfideND4.01.0 $\mu g L$ 1SW-846 8260B1.09/181.010/18 3.59EEHCarbon TetrachlorideND5.00.25 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEHChlorobarzeneND1.00.16 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEHChlorobarzeneND0.500.10 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEHChlorobarzeneND0.200.22 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEHChlorobarzeneND2.00.22 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEHChlorobarzeneND2.00.55 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEHChlorobarzeneND1.00.12 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEH2.ChlorobarzeneND5.00.37 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEH1.2-Dibronochane (FDB)ND0.00.37 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEH1.2-Dibronochane (FDB)ND0.00.37 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEH1.2-Dibronochane (FDB)ND1.00.17 $\mu g L$ 1SW-846 8260B10.971810.10/18 3.59EEH1.3-Dibronochane (FDB	tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.095	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Carbon TetrachlorideND 5.0 0.25 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEHChlorodharceneND 0.0 0.10 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEHChlorodharonomethaneND 0.50 0.10 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEHChlorodhaneND 2.0 0.28 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEHChlorodhaneND 2.0 0.25 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEHChlorodhaneND 2.0 0.55 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEHChlorodhaneND 1.0 0.12 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEH2.ChlorodhaneND 1.0 0.12 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEH1.2-Dibromo-3-chloropopane (DBCP)ND 5.0 0.37 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEH1.2-Dibromo-thaneND 1.0 0.17 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEH1.2-Dibromo-thane (FBCP)ND 1.0 0.17 $\mu g/L$ 1SW-846 8260B $109/18$ $1010/18 3.59$ EEH1.3-DichlorobenzeneND 1.0 0.17 $\mu g/L$ 1SW-846 8260B	Carbon Disulfide	ND	4.0	1.0	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
ChlorobenzeneND1.00.16 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEHChlorodibromomethaneND0.500.10 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEHChlorodibromomethaneND2.00.22 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEHChlorodibraneND2.00.22 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEHChlorodibraneND2.00.55 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEH2-ChlorodibareND1.00.12 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEH1.2-Dibromo-3-chloropopane (DBCP)ND5.00.37 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEH1.2-Dibromo-3-chloropopane (DBCP)ND5.00.37 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEH1.2-DichlorobenzeneND1.00.16 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEH1.3-DichlorobenzeneND1.00.17 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEH1.4-Dichloro-2-buteneND1.00.17 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEH1.4-Dichloro-2-buteneND2.00.28 μ g/L1SW-846 8260B10/9/1810/10/18 3.59EEH </td <td>Carbon Tetrachloride</td> <td>ND</td> <td>5.0</td> <td>0.25</td> <td>μg/L</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>10/9/18</td> <td>10/10/18 3:59</td> <td>EEH</td>	Carbon Tetrachloride	ND	5.0	0.25	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Chlorodibromomethane ND 0.50 0.10 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH Chlorodihane ND 2.0 0.22 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH Chlorodihane ND 2.0 0.55 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH Chlorodihane ND 2.0 0.55 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 2-Chlorodihane ND 1.0 0.12 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 2-Chlorodihane ND 1.0 0.14 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 1.2-Dibromo-3-chloropropane (DBCP) ND 0.50 0.15 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 1.2-Dibromo-3-chloropropane (DBCP) ND 0.0 0.17 µg/L 1 SW-846 8260	Chlorobenzene	ND	1.0	0.16	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Chloroethane ND 2.0 0.28 µg/L 1 SW-846 820B 109/18 101/18 3-59 EEH Chloroform ND 2.0 0.22 µg/L 1 SW-846 820B 109/18 101/18 3-59 EEH Chloromethane ND 2.0 0.55 µg/L 1 SW-846 820B 109/18 101/18 3-59 EEH 2-Chlorotohuene ND 1.0 0.12 µg/L 1 SW-846 820B 109/18 101/18 3-59 EEH 1_2-Dibromo-3-chloropropane (DBCP) ND 5.0 0.37 µg/L 1 SW-846 820B 109/18 101/18 3-59 EEH 1_2-Dibromo-5-chloropropane (DBCP) ND 5.0 0.37 µg/L 1 SW-846 820B 109/18 101/18 3-59 EEH 1_2-Dibromo-5-chloropropane (DBCP) ND 1.0 0.16 µg/L 1 SW-846 820B 109/18 101/18 3-59 EEH 1_2-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 820B	Chlorodibromomethane	ND	0.50	0.10	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Chloroform ND 2.0 0.22 µg/L 1 SW-846 8260B 109/18 101/18 3:59 EEH Chloromethane ND 2.0 0.55 µg/L 1 SW-846 8260B 109/18 101/18 3:59 EEH 2-Chloronethane ND 1.0 0.12 µg/L 1 SW-846 8260B 109/18 101/18 3:59 EEH 2-Chloronethane ND 1.0 0.14 µg/L 1 SW-846 8260B 109/18 101/18 3:59 EEH 1.2-Dibrome-3-chloropropane (DBCP) ND 5.0 0.37 µg/L 1 SW-846 8260B 109/18 101/18 3:59 EEH 1.2-Dibrome-thane (EDB) ND 0.0 0.15 µg/L 1 SW-846 8260B 109/18 101/18 3:59 EEH 1.2-Dichlorobenzene ND 1.0 0.15 µg/L 1 SW-846 8260B 109/18 101/18 3:59 EEH 1.3-Dichlorobenzene ND 1.0 0.15 µg/L 1 SW-846 8260B 109/18 </td <td>Chloroethane</td> <td>ND</td> <td>2.0</td> <td>0.28</td> <td>μg/L</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>10/9/18</td> <td>10/10/18 3:59</td> <td>EEH</td>	Chloroethane	ND	2.0	0.28	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Chloromethane ND 2.0 0.55 µg/L 1 SW-846 8260B 10/9/18 10/0/18 3:59 EEH 2-Chlorotoluene ND 1.0 0.12 µg/L 1 SW-846 8260B 10/9/18 10/0/18 3:59 EEH 4-Chlorotoluene ND 1.0 0.14 µg/L 1 SW-846 8260B 10/9/18 10/1/18 3:59 EEH 1,2-Dibromo-3-chloropropane (DBCP) ND 5.0 0.37 µg/L 1 SW-846 8260B 10/9/18 10/1/18 3:59 EEH 1,2-Dibromo-3-chloropropane (DBCP) ND 0.50 0.15 µg/L 1 SW-846 8260B 10/9/18 10/1/18 3:59 EEH 1,2-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/1/18 3:59 EEH 1,3-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/1/18 3:59 EEH 1,4-Dichlorochenzene	Chloroform	ND	2.0	0.22	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
2-ChlorotolueneND1.00.12 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH4-ChlorotolueneND1.00.14 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.2-Dibromo-3-chloropropane (DBCP)ND5.00.37 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.2-Dibromoethane (EDB)ND0.500.15 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.2-DichlorobenzeneND1.00.16 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.3-DichlorobenzeneND1.00.17 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.4-DichlorobenzeneND1.00.17 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.4-DichlorobenzeneND1.00.17 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.4-DichlorochaneND1.00.15 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.1-DichloroethaneND1.00.16 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.1-DichloroethyleneND1.00.16 $\mu g/L$ 1SW-846 8260B1.09/181.01/183.59EEH1.2-DichloroethyleneND1.00.16 $\mu g/L$	Chloromethane	ND	2.0	0.55	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
4-ChlorotolueneND1.00.14 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,2-Dibrono-3-chloropropane (DBCP)ND5.00.37 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,2-Dibronoethane (EDB)ND0.500.15 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,2-DichlorobenzeneND1.00.16 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,3-DichlorobenzeneND1.00.17 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,4-DichlorobenzeneND1.00.15 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,4-DichlorobenzeneND2.00.31 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,1-DichlorochaneND2.00.28 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,1-DichloroethaneND1.00.16 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,1-DichloroethyleneND1.00.19 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,1-DichloroethyleneND1.00.15 $\mu g/L$ 1SW-846 8260B10/9/1810/0/183.59EH1,2-DichloroethyleneND1.00.15 $\mu g/L$ <	2-Chlorotoluene	ND	1.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1,2-Dibrono-3-chloropropane (DBCP) ND 5.0 0.37 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EH 1,2-Dibronoethane (EDB) ND 0.50 0.15 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EH Dibronomethane ND 1.0 0.16 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EH 1,2-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/118 3:59 EH 1,4-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/118 3:59 EH 1,4-Dichlorobenzene ND 1.0 0.15 µg/L 1 SW-846 8260B 10/9/18 10/118 3:59 EH 1,4-Dichlorobenzene ND 2.0 0.31 µg/L 1 SW-846 8260B 10/9/18 10/118 3:59 EH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260B 10/9/18 10	4-Chlorotoluene	ND	1.0	0.14	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1.2-Dibromoethane (EDB) ND 0.50 0.15 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH Dibromoethane ND 1.0 0.16 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 1,2-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 1,3-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 1,4-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 1,4-Dichlorobenzene ND 1.0 0.15 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH trans-1,4-Dichloro-2-butene ND 2.0 0.28 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3.59 EEH 1,1-Dichloroethylene <	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.37	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Dibromomethane ND 1.0 0.16 µg/L 1 SW-846 8260B 1.0/9/18 1.0/10/18 3:59 EEH 1,2-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,3-Dichlorobenzene ND 1.0 0.17 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,4-Dichlorobenzene ND 1.0 0.15 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,4-Dichlorobenzene ND 2.0 0.31 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH trans-1,4-Dichloro-2-butene ND 2.0 0.31 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,2-Dichloroethylene ND 1.0 0.19 µg/L 1 SW-846 8	1,2-Dibromoethane (EDB)	ND	0.50	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1,2-DichlorobenzeneND1.00.17µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,3-DichlorobenzeneND1.00.17µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,4-DichlorobenzeneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHtrans-1,4-Dichloro-2-buteneND2.00.31µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHDichlorodifluoromethane (Freon 12)ND2.00.28µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethaneND1.00.16µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.19µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloropropaneND0.00.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH <td< td=""><td>Dibromomethane</td><td>ND</td><td>1.0</td><td>0.16</td><td>μg/L</td><td>1</td><td></td><td>SW-846 8260B</td><td>10/9/18</td><td>10/10/18 3:59</td><td>EEH</td></td<>	Dibromomethane	ND	1.0	0.16	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1,3-DichlorobenzeneND1.00.17µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,4-DichlorobenzeneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHtrans-1,4-Dichloro-2-buteneND2.00.31µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHDichlorodifluoromethane (Freon 12)ND2.00.28µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethaneND1.00.16µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethaneND1.00.19µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethyleneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloropropaneND0.00.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH	1,2-Dichlorobenzene	ND	1.0	0.17	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1,4-DichlorobenzeneND1,00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHtrans-1,4-Dichloro-2-buteneND2.00.31µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHDichlorodifluoromethane (Freon 12)ND2.00.28µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethaneND1.00.16µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethaneND1.00.19µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethyleneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHtrans-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,3-DichloropropaneND0.500.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH2,2-DichloropropaneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH<	1,3-Dichlorobenzene	ND	1.0	0.17	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
trans-1,4-Dichloro-2-buteneND2.00.31µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHDichlorodifluoromethane (Freon 12)ND2.00.28µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethaneND1.00.16µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethaneND1.00.19µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethyleneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHcis-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHtrans-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloropropaneND0.500.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,3-DichloropropaneND0.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH2,2-DichloropropaneND0.00.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH </td <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>1.0</td> <td>0.15</td> <td>μg/L</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>10/9/18</td> <td>10/10/18 3:59</td> <td>EEH</td>	1,4-Dichlorobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
Dichlorodifluoromethane (Freon 12)ND2.00.28µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethaneND1.00.16µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethaneND1.00.19µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethyleneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHicis-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHtrans-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloropropaneND0.00.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,3-DichloropropaneND0.500.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH2,2-DichloropropaneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH2,2-DichloropropaneND0.000.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH2,2-DichloropropaneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH <td>trans-1,4-Dichloro-2-butene</td> <td>ND</td> <td>2.0</td> <td>0.31</td> <td>μg/L</td> <td>1</td> <td></td> <td>SW-846 8260B</td> <td>10/9/18</td> <td>10/10/18 3:59</td> <td>EEH</td>	trans-1,4-Dichloro-2-butene	ND	2.0	0.31	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1,1-DichloroethaneND1.00.16µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethaneND1.00.19µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,1-DichloroethyleneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHcis-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEHtrans-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloroethyleneND1.00.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,2-DichloropropaneND0.00.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH1,3-DichloropropaneND0.500.13µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH2,2-DichloropropaneND1.00.21µg/L1SW-846 8260B10/9/1810/10/18 3:59EEH	Dichlorodifluoromethane (Freon 12)	ND	2.0	0.28	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1,2-DichloroethaneND1.00.19µg/L1SW-846 8260B10/9/1810/10/183:59EEH1,1-DichloroethyleneND1.00.21µg/L1SW-846 8260B10/9/1810/10/183:59EEHcis-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/183:59EEHtrans-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/183:59EEH1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/183:59EEH1,2-DichloropropaneND1.00.13µg/L1SW-846 8260B10/9/1810/10/183:59EEH1,3-DichloropropaneND0.500.13µg/L1SW-846 8260B10/9/1810/10/183:59EEH2,2-DichloropropaneND1.00.21µg/L1SW-846 8260B10/9/1810/10/183:59EEH	1,1-Dichloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1,1-DichloroethyleneND1.00.21µg/L1SW-846 8260B10/9/1810/10/183:59EEHcis-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/183:59EEHtrans-1,2-DichloroethyleneND1.00.15µg/L1SW-846 8260B10/9/1810/10/183:59EEH1,2-DichloropropaneND1.00.13µg/L1SW-846 8260B10/9/1810/10/183:59EEH1,3-DichloropropaneND0.500.13µg/L1SW-846 8260B10/9/1810/10/183:59EEH2,2-DichloropropaneND1.00.21µg/L1SW-846 8260B10/9/1810/10/183:59EEH	1,2-Dichloroethane	ND	1.0	0.19	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
cis-1,2-Dichloroethylene ND 1.0 0.15 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH trans-1,2-Dichloroethylene ND 1.0 0.15 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,2-Dichloropropane ND 1.0 0.13 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,3-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 2,2-Dichloropropane ND 1.0 0.21 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH	1,1-Dichloroethylene	ND	1.0	0.21	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
trans-1,2-Dichloroethylene ND 1.0 0.15 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,2-Dichloropropane ND 1.0 0.13 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,3-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 2,2-Dichloropropane ND 1.0 0.21 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH	cis-1,2-Dichloroethylene	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
ND 1.0 0.13 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 1,3-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 2,2-Dichloropropane ND 1.0 0.21 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH	trans-1,2-Dichloroethylene	ND	1.0	0.15	.ε μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
1,3-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH 2,2-Dichloropropane ND 1.0 0.21 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH	1,2-Dichloropropane	ND	1.0	0.13	.ε μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
2,2-Dichloropropane ND 1.0 0.21 µg/L 1 SW-846 8260B 10/9/18 10/10/18 3:59 EEH	1,3-Dichloropropane	ND	0.50	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			
	2,2-Dichloropropane	ND	1.0	0.21	.ε μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH			

1

1

1

1

μg/L

μg/L

μg/L

μg/L

SW-846 8260B

SW-846 8260B

SW-846 8260B

SW-846 8260B

10/9/18

10/9/18

10/9/18

10/9/18

10/10/18 3:59

10/10/18 3:59

10/10/18 3:59

10/10/18 3:59

Page 6 of 23

EEH

EEH

EEH

EEH

Work Order: 18J0298

Project Location: NCDOT I5986B- Parcel 21 Date Received: 10/4/2018 Field Sample #: TW-1 Parcel 21

0

Sample ID: 18J0298-01

Sample Matrix: Ground Water

S	Sampled:	10/2/2018	17:00

Sample Description:

			Vola	tile Organic Com	pounds by G	C/MS				
	D k	DI	DI	T T •4	D'1 ('		M (I)	Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1.4 Discorrege	ND	0.50	0.18	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
	ND	50	26	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Einyibenzene	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
	ND	0.60	0.59	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
2-Hexanone (MBK)	ND	10	1.5	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
	ND	1.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
p-isopropylioluene (p-Cymene)	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Methyl tert-Butyl Ether (MIBE)	ND	1.0	0.090	μg/L	I		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
	ND	5.0	3.2	μg/L	I		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	1.5	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Naphthalene	ND	2.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
n-Propylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Styrene	ND	1.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.12	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.16	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Tetrachloroethylene	ND	1.0	0.27	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Tetrahydrofuran	ND	10	1.1	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Toluene	ND	1.0	0.17	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.14	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2,4-Trichlorobenzene	ND	1.0	0.19	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,1-Trichloroethane	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,2-Trichloroethane	ND	1.0	0.24	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Trichloroethylene	ND	1.0	0.20	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2,3-Trichloropropane	ND	2.0	0.22	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.20	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,2,4-Trimethylbenzene	ND	1.0	0.18	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
1,3,5-Trimethylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Vinyl Chloride	ND	2.0	0.13	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
m+p Xylene	ND	2.0	0.26	μg/L	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
o-Xylene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260B	10/9/18	10/10/18 3:59	EEH
Surrogates		% Reco	very	Recovery Limits	8	Flag/Qual				
1,2-Dichloroethane-d4		80.4		70-130					10/10/18 3:59	
Toluene-d8		100		70-130					10/10/18 3:59	
4-Bromofluorobenzene		98.0		/0-130					10/10/18 3:59	

Work Order: 18J0298

Project Location: NCDOT I5986B- Parcel 21 Date Received: 10/4/2018

Field Sample #: TW-1 Parcel 21

Sample ID: 18J0298-01 Sample Matrix: Ground Water Sampled: 10/2/2018 17:00

Sample Description:

Semivolatile Organic Compounds by GC/MS												
							Date	Date/Time				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst			
Acenaphthene (SIM)	ND	0.30	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Acenaphthylene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Anthracene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Benzo(a)anthracene (SIM)	ND	0.050	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Benzo(a)pyrene (SIM)	ND	0.10	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Chrysene (SIM)	ND	0.20	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Fluoranthene (SIM)	ND	0.50	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Fluorene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
2-Methylnaphthalene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Naphthalene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Phenanthrene (SIM)	ND	0.050	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Pyrene (SIM)	ND	1.0	μg/L	1		SW-846 8270D	10/6/18	10/9/18 18:44	IMR			
Surrogates		% Recovery	Recovery Limits		Flag/Qual							
Nitrobenzene-d5		65.2	30-130					10/9/18 18:44				
2-Fluorobiphenyl		68.0	30-130					10/9/18 18:44				
p-Terphenyl-d14		61.6	30-130					10/9/18 18:44				

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18J0298-01 [TW-1 Parcel 21]	B214298	5	5.00	10/09/18	
Prep Method: SW-846 3510C-SW-846 8270D					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18J0298-01 [TW-1 Parcel 21]	B214244	1000	1.00	10/06/18	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214298 - SW-846 5030B										
Blank (B214298-BLK1)				Prepared: 10	0/09/18 Anal	yzed: 10/10/	18			
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	μg/L							
2-Butanone (MEK)	ND	20	μg/L							
tert-Butyl Alcohol (TBA)	ND	20	μg/L							
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
Carbon Disulfide	ND	4.0	μg/L							
Carbon Tetrachloride	ND	5.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chlorotorm	ND	2.0	μg/L							
2 Chlorotoluono	ND	2.0	µg/L							
4 Chlorotoluono	ND	1.0	µg/L							
1.2 Dibromo 2 obloromromono (DDCD)	ND	1.0	µg/L							
1.2 Dibromoethane (EDP)	ND	0.50	µg/L							
Dibromomethane	ND	1.0	μg/L ug/I							
1.2-Dichlorobenzene	ND	1.0	μg/L μg/I							
1 3-Dichlorobenzene	ND	1.0	μg/L μg/L							
1 4-Dichlorobenzene	ND	1.0	μ <u>σ</u> /L							
trans-1 4-Dichloro-2-butene	ND	2.0	µ9/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μ <u>σ</u> /L							
1 1-Dichloroethane	ND	1.0	не/L							
1 2-Dichloroethane	ND	1.0	μg/L							
1.1-Dichloroethylene	ND	1.0	не/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							
1,4-Dioxane	ND	50	μg/L							
Ethylbenzene	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.60	μg/L							
2-Hexanone (MBK)	ND	10	μg/L							
Isopropylbenzene (Cumene)	ND	1.0	μg/L							
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							

QUALITY CONTROL

		D		a .:			A/855		DES	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214298 - SW-846 5030B										
Blank (B214298-BLK1)				Prepared: 10	0/09/18 Anal	yzed: 10/10/	18			
Methylene Chloride	ND	5.0	μg/L							
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
Naphthalene	ND	2.0	μg/L							
n-Propylbenzene	ND	1.0	μg/L							
Styrene	ND	1.0	μg/L							
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
Tetrachloroethylene	ND	0.50	μg/L							
Tetrahydrofuran	ND	10	$\mu g/L$							
Toluene	ND	1.0	$\mu g/L$							
1,2,3-Trichlorobenzene	ND	5.0	μg/L							
1,2,4-Trichlorobenzene	ND	1.0	μg/L							
1,3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1,1-Trichloroethane	ND	1.0	μg/L							
1,1,2-Trichloroethane	ND	1.0	μg/L							
Trichloroethylene	ND	1.0	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
1,2,3-Trichloropropane	ND	2.0	μg/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$							
1,2,4-Trimethylbenzene	ND	1.0	μg/L							
1,3,5-Trimethylbenzene	ND	1.0	μg/L							
Vinyl Acetate	ND	20	μg/L							L-04
Vinyl Chloride	ND	2.0	μg/L							
m+p Xylene	ND	2.0	μg/L							
o-Xylene	ND	1.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	19.7		μg/L	25.0		78.9	70-130			
Surrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.6	70-130			
Surrogate: 4-Bromofluorobenzene	24.4		$\mu g/L$	25.0		97.8	70-130			
LCS (B214298-BS1)				Prepared: 10	0/09/18 Anal	yzed: 10/10/	18			
Acetone	80.9	50	μg/L	100		80.9	70-160			
Acrylonitrile	9.78	5.0	μg/L	10.0		97.8	70-130			
tert-Amyl Methyl Ether (TAME)	9.61	0.50	μg/L	10.0		96.1	70-130			
Benzene	9.41	1.0	μg/L	10.0		94.1	70-130			
Bromobenzene	10.3	1.0	μg/L	10.0		103	70-130			
Bromochloromethane	10.7	1.0	μg/L	10.0		107	70-130			
Bromodichloromethane	9.52	0.50	μg/L	10.0		95.2	70-130			
Bromoform	10.7	1.0	μg/L	10.0		107	70-130			
Bromomethane	8.50	2.0	μg/L	10.0		85.0	40-160			
2-Butanone (MEK)	85.4	20	μg/L	100		85.4	40-160			
tert-Butyl Alcohol (TBA)	87.4	20	μg/L	100		87.4	40-160			
n-Butylbenzene	10.8	1.0	μg/L	10.0		108	70-130			
sec-Butylbenzene	11.3	1.0	μg/L	10.0		113	70-130			
tert-Butylbenzene	11.2	1.0	μg/L	10.0		112	70-130			
tert-Butyl Ethyl Ether (TBEE)	9.61	0.50	μg/L	10.0		96.1	70-130			
Carbon Disulfide	10.4	4.0	μg/L	10.0		104	70-130			
Carbon Tetrachloride	8.26	5.0	μg/L	10.0		82.6	70-130			
Chlorobenzene	10.5	1.0	μg/L	10.0		105	70-130			
Chlorodibromomethane	10.1	0.50	μg/L	10.0		101	70-130			
Chloroethane	8.88	2.0	μg/L	10.0		88.8	70-130			
Chloroform	8.89	2.0	μg/L	10.0		88.9	70-130			
Chloromethane	9.04	2.0	. c ug/L	10.0		90.4	40-160			

QUALITY CONTROL

		р:		с ''			N/DEC		DDD		
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B214298 - SW-846 5030B											
LCS (B214298-BS1)				Prepared: 10)/09/18 Analyzed	1: 10/10/1	8				
2-Chlorotoluene	10.6	1.0	μg/L	10.0]	106	70-130				
4-Chlorotoluene	10.3	1.0	μg/L	10.0	1	103	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	9.39	5.0	μg/L	10.0	9	93.9	70-130				
1,2-Dibromoethane (EDB)	9.90	0.50	μg/L	10.0	9	9.0	70-130				
Dibromomethane	9.76	1.0	μg/L	10.0	9	97.6	70-130				
1,2-Dichlorobenzene	10.7	1.0	μg/L	10.0	1	107	70-130				
1,3-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130				
1,4-Dichlorobenzene	10.5	1.0	μg/L	10.0	1	105	70-130				
trans-1,4-Dichloro-2-butene	9.07	2.0	μg/L	10.0	9	0.7	70-130				
Dichlorodifluoromethane (Freon 12)	7.05	2.0	μg/L	10.0	7	70.5	40-160				
1,1-Dichloroethane	10.1	1.0	μg/L	10.0	1	101	70-130				
1,2-Dichloroethane	8.59	1.0	μg/L	10.0	8	35.9	70-130				
1,1-Dichloroethylene	8.84	1.0	μg/L	10.0	8	38.4	70-130				
cis-1,2-Dichloroethylene	9.21	1.0	μg/L	10.0	ç	2.1	70-130				
trans-1,2-Dichloroethylene	9.92	1.0	μg/L	10.0	ç	9.2	70-130				
1,2-Dichloropropane	11.1	1.0	μg/L	10.0		111	70-130				
1,3-Dichloropropane	9.53	0.50	μg/L	10.0	ç	05.3	70-130				
2.2-Dichloropropane	8.50	1.0	ug/L	10.0	Ś	85.0	40-130				
1.1-Dichloropropene	9.18	2.0	ug/L	10.0	ç	01.8	70-130				
cis-1 3-Dichloropropene	10.2	0.50	ug/L	10.0	1	102	70-130				
trans-1.3-Dichloropropene	10.2	0.50	ug/L	10.0	1	102	70-130				
Diethyl Ether	0.82	2.0	ug/L	10.0	ç	08 2	70-130				
Diisopropyl Ether (DIPE)	9.62	0.50	ug/L	10.0	ç)5 7	70-130				
1 4-Dioxane	93.6	50	ug/L	100	ç	3.6	40-130				
Ethylbenzene	10.8	1.0	ug/L	10.0	1	108	70-130				
Hexachlorobutadiene	10.8	0.60	и <u>я/</u> Г.	10.0	1	124	70-130				
2-Hexanone (MBK)	02.2	10	µg/L	100	C	12 1 127	70 160				
Isopropylbenzene (Cumene)	92.2	10	μg/L	10.0	-	114	70-130				
n-Isopropyltoluene (n-Cymene)	11.4	1.0	μg/L	10.0		117	70 130				
Methyl tert-Butyl Ether (MTBE)	0.42	1.0	μg/L	10.0	C	0/3	70 130				
Methylene Chloride	9.43	5.0	μg/L μg/Ι	10.0	, ,	7 4	70 120				
4 Methyl 2 pentanone (MIBK)	8.74	10	μg/L μα/Ι	10.0	c	07. 4	70-150				
Nanhthalene	94.2	2.0	μg/L μg/I	10.0	2	104	/0-100				
n Propylhenzene	10.4	1.0	μg/L μα/Ι	10.0	1	104	70 120				
Styrana	10.3	1.0	μg/L μg/I	10.0	1	105	70-130				
1 1 1 2 Tetrachloroethane	10.8	1.0	μg/L μg/I	10.0	1	112	70-130				
1 1 2 2 Tetrachloroethane	11.2	0.50	μg/L μg/I	10.0		106	70-130				
Tetrachloroethylene	10.6	0.50	μg/L μα/Ι	10.0	1	106	70-130				
Tetrahydrofuran	10.6	10	μg/L μα/Ι	10.0		111	70-130			т	
Toluene	9.11	10	μg/L μα/Ι	10.0	5	71.1 104	70-130			J	
1.2.3. Trichlorobenzene	10.4	1.0	μg/L μα/Ι	10.0		104	70-130				
1.2.4 Trichlorobonzono	10.6	1.0	µg/L	10.0	1	100	70-130				
1.3.5 Trichlorobenzene	10.8	1.0	μg/L μα/Ι	10.0		111	70-130				
1.1.1 Trichloroethane	11.1	1.0	μg/L μα/Ι	10.0		111	70-130				
1.1.2-Trichloroethane	8.88	1.0	μg/L μα/Ι	10.0	8	00.0 105	70-130				
Trichloroethylene	10.5	1.0	μg/L μα/Ι	10.0		103	70-130				
Trichlorofluoromothano (Ercor 11)	10.3	1.0	µg/L	10.0		103	70-130				
1.2.3 Trichloropropage	7.72	2.0	µg/L 	10.0	7	1.2	70-130				
1.2.5- Inchorophopalle	9.81	2.0	μg/L	10.0	9	0.1 5 0	70-130				
1,1,2-111011010-1,2,2-111110070etnane (Freon 113)	9.58	1.0	μg/L	10.0	9	105	70-130				
1.2.5 Trimethylbonzere	10.5	1.0	μg/L 	10.0		105	70-130				
1,5,5-11IIIeuryibenzene	10.5	1.0	µg/L	10.0		105	/0-130				

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B214298 - SW-846 5030B										
LCS (B214298-BS1)				Prepared: 10	0/09/18 Anal	yzed: 10/10/	18			
Vinyl Acetate	60.7	20	μg/L	100		60.7 *	70-130			L-04
Vinyl Chloride	8.89	2.0	μg/L	10.0		88.9	40-160			
m+p Xylene	21.0	2.0	μg/L	20.0		105	70-130			
o-Xylene	10.6	1.0	μg/L	10.0		106	70-130			
Surrogate: 1,2-Dichloroethane-d4	19.7		μg/L	25.0		78.6	70-130			
Surrogate: Toluene-d8	24.9		$\mu g/L$	25.0		99.5	70-130			
Surrogate: 4-Bromofluorobenzene	24.4		$\mu g/L$	25.0		97.6	70-130			
LCS Dup (B214298-BSD1)				Prepared: 10	0/09/18 Anal	yzed: 10/10/	18			
Acetone	103	50	μg/L	100		103	70-160	23.8	25	
Acrylonitrile	9.74	5.0	μg/L	10.0		97.4	70-130	0.410	25	
tert-Amyl Methyl Ether (TAME)	9.63	0.50	μg/L	10.0		96.3	70-130	0.208	25	
Benzene	9.53	1.0	μg/L	10.0		95.3	70-130	1.27	25	
Bromobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.973	25	
Bromochloromethane	10.7	1.0	μg/L	10.0		107	70-130	0.373	25	
Bromodichloromethane	9.34	0.50	μg/L	10.0		93.4	70-130	1.91	25	
Bromoform	10.8	1.0	μg/L	10.0		108	70-130	0.747	25	
Bromomethane	9.41	2.0	μg/L	10.0		94.1	40-160	10.2	25	
2-Butanone (MEK)	94.8	20	μg/L	100		94.8	40-160	10.4	25	
tert-Butyl Alcohol (TBA)	89.8	20	μg/L	100		89.8	40-160	2.72	25	
n-Butylbenzene	10.9	1.0	μg/L	10.0		109	70-130	0.277	25	
sec-Butylbenzene	11.0	1.0	μg/L	10.0		110	70-130	2.15	25	
tert-Butylbenzene	11.1	1.0	μg/L	10.0		111	70-130	1.26	25	
tert-Butyl Ethyl Ether (TBEE)	9.46	0.50	μg/L	10.0		94.6	70-130	1.57	25	
Carbon Disulfide	9.77	4.0	μg/L	10.0		97.7	70-130	6.53	25	
Carbon Tetrachloride	8.35	5.0	μg/L	10.0		83.5	70-130	1.08	25	
Chlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	0.575	25	
Chlorodibromomethane	10.1	0.50	μg/L	10.0		101	70-130	0.00	25	
Chloroethane	8.46	2.0	μg/L	10.0		84.6	70-130	4.84	25	
Chloroform	8.98	2.0	μg/L	10.0		89.8	70-130	1.01	25	
Chloromethane	9.05	2.0	μg/L	10.0		90.5	40-160	0.111	25	
2-Chlorotoluene	9.97	1.0	μg/L	10.0		99.7	70-130	5.65	25	
4-Chlorotoluene	9.89	1.0	μg/L	10.0		98.9	70-130	3.96	25	
1,2-Dibromo-3-chloropropane (DBCP)	9.73	5.0	μg/L	10.0		97.3	70-130	3.56	25	
1,2-Dibromoethane (EDB)	10.2	0.50	μg/L	10.0		102	70-130	2.49	25	
Dibromomethane	10.0	1.0	μg/L	10.0		100	70-130	2.53	25	
1,2-Dichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130	1.41	25	
1,3-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	0.914	25	
1,4-Dichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	4.07	25	
trans-1,4-Dichloro-2-butene	9.25	2.0	μg/L	10.0		92.5	70-130	1.97	25	
Dichlorodifluoromethane (Freon 12)	6.84	2.0	μg/L	10.0		68.4	40-160	3.02	25	
1,1-Dichloroethane	9.65	1.0	μg/L	10.0		96.5	70-130	4.26	25	
1,2-Dichloroethane	8.46	1.0	μg/L	10.0		84.6	70-130	1.52	25	
1,1-Dichloroethylene	8.82	1.0	μg/L	10.0		88.2	70-130	0.227	25	
cis-1,2-Dichloroethylene	8.90	1.0	μg/L	10.0		89.0	70-130	3.42	25	
trans-1,2-Dichloroethylene	9.80	1.0	μg/L	10.0		98.0	70-130	1.22	25	
1,2-Dichloropropane	11.2	1.0	μg/L	10.0		112	70-130	0.809	25	
1,3-Dichloropropane	9.64	0.50	μg/L	10.0		96.4	70-130	1.15	25	
2,2-Dichloropropane	8.04	1.0	μg/L	10.0		80.4	40-130	5.56	25	
1,1-Dichloropropene	8.96	2.0	μg/L	10.0		89.6	70-130	2.43	25	
cis-1,3-Dichloropropene	10.2	0.50	μg/L	10.0		102	70-130	0.589	25	
trans-1,3-Dichloropropene	9.82	0.50	μg/L	10.0		98.2	70-130	3.70	25	

QUALITY CONTROL

Angleta	Degult	Reporting	Unita	Spike	Source	0/DEC	%REC	רותם	RPD Limit	Notas	
Analyte	Kesult	Limit	Units	Level	Result	%REC	Limits	KPD	Limit	Notes	
Batch B214298 - SW-846 5030B											
LCS Dup (B214298-BSD1)				Prepared: 10	0/09/18 Anal	yzed: 10/10/	18				
Diethyl Ether	9.94	2.0	μg/L	10.0		99.4	70-130	1.21	25		
Diisopropyl Ether (DIPE)	9.44	0.50	μg/L	10.0		94.4	70-130	1.37	25		
1,4-Dioxane	99.5	50	μg/L	100		99.5	40-130	6.08	50		†‡
Ethylbenzene	10.6	1.0	μg/L	10.0		106	70-130	2.24	25		
Hexachlorobutadiene	12.2	0.60	μg/L	10.0		122	70-130	2.19	25		
2-Hexanone (MBK)	95.5	10	μg/L	100		95.5	70-160	3.57	25		†
Isopropylbenzene (Cumene)	11.2	1.0	μg/L	10.0		112	70-130	1.94	25		
p-Isopropyltoluene (p-Cymene)	11.1	1.0	μg/L	10.0		111	70-130	0.810	25		
Methyl tert-Butyl Ether (MTBE)	9.61	1.0	μg/L	10.0		96.1	70-130	1.89	25		
Methylene Chloride	9.05	5.0	μg/L	10.0		90.5	70-130	3.49	25		
4-Methyl-2-pentanone (MIBK)	96.0	10	μg/L	100		96.0	70-160	1.93	25		Ť
Naphthalene	10.4	2.0	μg/L	10.0		104	40-130	0.193	25		Ť
n-Propylbenzene	10.1	1.0	μg/L	10.0		101	70-130	1.86	25		
Styrene	11.0	1.0	μg/L	10.0		110	70-130	2.02	25		
1,1,1,2-Tetrachloroethane	10.9	1.0	μg/L	10.0		109	70-130	3.08	25		
1,1,2,2-Tetrachloroethane	10.6	0.50	μg/L	10.0		106	70-130	0.472	25		
Tetrachloroethylene	11.1	0.50	μg/L	10.0		111	70-130	4.25	25		
Tetrahydrofuran	9.51	10	μg/L	10.0		95.1	70-130	4.30	25	J	
Toluene	10.2	1.0	μg/L	10.0		102	70-130	1.46	25		
1,2,3-Trichlorobenzene	10.7	5.0	μg/L	10.0		107	70-130	0.564	25		
1,2,4-Trichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130	1.03	25		
1,3,5-Trichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	1.36	25		
1,1,1-Trichloroethane	8.69	1.0	μg/L	10.0		86.9	70-130	2.16	25		
1,1,2-Trichloroethane	10.3	1.0	μg/L	10.0		103	70-130	2.12	25		
Trichloroethylene	10.1	1.0	μg/L	10.0		101	70-130	1.87	25		
Trichlorofluoromethane (Freon 11)	7.53	2.0	μg/L	10.0		75.3	70-130	2.49	25		
1,2,3-Trichloropropane	9.66	2.0	μg/L	10.0		96.6	70-130	1.54	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.42	1.0	μg/L	10.0		94.2	70-130	1.68	25		
1,2,4-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130	1.82	25		
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0		102	70-130	2.70	25		
Vinyl Acetate	58.2	20	μg/L	100		58.2 *	70-130	4.14	25	L-04	
Vinyl Chloride	8.65	2.0	μg/L	10.0		86.5	40-160	2.74	25		Ť
m+p Xylene	20.6	2.0	μg/L	20.0		103	70-130	1.68	25		
o-Xylene	10.4	1.0	μg/L	10.0		104	70-130	1.61	25		
Surrogate: 1,2-Dichloroethane-d4	19.7		μg/L	25.0		78.8	70-130				
Surrogate: Toluene-d8	25.1		μg/L	25.0		100	70-130				
Surrogate: 4-Bromofluorobenzene	24.5		μg/L	25.0		98.0	70-130				

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B214244 - SW-846 3510C										
Blank (B214244-BLK1)				Prepared: 10)/06/18 Anal	yzed: 10/08/1	.8			
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	μg/L							
Anthracene (SIM)	ND	0.20	μg/L							
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L							
Fluoranthene (SIM)	ND	0.50	μg/L							
Fluorene (SIM)	ND	1.0	μg/L							
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L							
2-Methylnaphthalene (SIM)	ND	1.0	μg/L							
Naphthalene (SIM)	ND	1.0	μg/L							
Phenanthrene (SIM)	ND	0.050	μg/L							
Pyrene (SIM)	ND	1.0	μg/L							
Surrogate: Nitrobenzene-d5	74.2		μg/L	100		74.2	30-130			
Surrogate: 2-Fluorobiphenyl	78.7		μg/L	100		78.7	30-130			
Surrogate: p-Terphenyl-d14	80.5		μg/L	100		80.5	30-130			
LCS (B214244-BS1)				Prepared: 10)/06/18 Anal	yzed: 10/08/1	8			
Acenaphthene (SIM)	39.6	7.5	μg/L	50.0		79.1	40-140			
Acenaphthylene (SIM)	41.0	5.0	μg/L	50.0		82.0	40-140			
Anthracene (SIM)	42.4	5.0	μg/L	50.0		84.9	40-140			
Benzo(a)anthracene (SIM)	40.9	1.2	μg/L	50.0		81.8	40-140			
Benzo(a)pyrene (SIM)	43.4	2.5	μg/L	50.0		86.9	40-140			
Benzo(b)fluoranthene (SIM)	44.4	1.2	μg/L	50.0		88.7	40-140			
Benzo(g,h,i)perylene (SIM)	41.4	12	μg/L	50.0		82.8	40-140			
Benzo(k)fluoranthene (SIM)	42.2	5.0	μg/L	50.0		84.3	40-140			
Chrysene (SIM)	40.3	5.0	μg/L	50.0		80.6	40-140			
Dibenz(a,h)anthracene (SIM)	42.4	2.5	μg/L	50.0		84.9	40-140			
Fluoranthene (SIM)	41.9	12	μg/L	50.0		83.8	40-140			
Fluorene (SIM)	41.0	25	μg/L	50.0		82.1	40-140			
Indeno(1,2,3-cd)pyrene (SIM)	43.0	2.5	μg/L	50.0		86.0	40-140			
2-Methylnaphthalene (SIM)	39.7	25	μg/L	50.0		79.4	40-140			
Naphthalene (SIM)	36.6	25	μg/L	50.0		73.3	40-140			
Phenanthrene (SIM)	40.2	1.2	μg/L	50.0		80.5	40-140			
Pyrene (SIM)	38.7	25	μg/L	50.0		77.4	40-140			
Surrogate: Nitrobenzene-d5	54.6		μg/L	100		54.6	30-130			
Surrogate: 2-Fluorobiphenyl	71.5		μg/L	100		71.5	30-130			
Surrogate: p-Terphenyl-d14	57.2		μg/L	100		57.2	30-130			

‡

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B214244 - SW-846 3510C										
LCS Dup (B214244-BSD1)				Prepared: 10)/06/18 Anal	yzed: 10/08/	18			
Acenaphthene (SIM)	40.4	7.5	μg/L	50.0		80.8	40-140	2.13	20	
Acenaphthylene (SIM)	41.8	5.0	μg/L	50.0		83.5	40-140	1.81	20	
Anthracene (SIM)	44.0	5.0	μg/L	50.0		88.1	40-140	3.70	20	
Benzo(a)anthracene (SIM)	44.4	1.2	μg/L	50.0		88.8	40-140	8.09	20	
Benzo(a)pyrene (SIM)	45.6	2.5	μg/L	50.0		91.2	40-140	4.88	20	
Benzo(b)fluoranthene (SIM)	46.8	1.2	μg/L	50.0		93.6	40-140	5.43	20	
Benzo(g,h,i)perylene (SIM)	43.6	12	μg/L	50.0		87.3	40-140	5.29	20	
Benzo(k)fluoranthene (SIM)	44.6	5.0	μg/L	50.0		89.2	40-140	5.59	20	
Chrysene (SIM)	42.6	5.0	μg/L	50.0		85.3	40-140	5.73	20	
Dibenz(a,h)anthracene (SIM)	44.9	2.5	μg/L	50.0		89.8	40-140	5.61	20	
Fluoranthene (SIM)	43.3	12	μg/L	50.0		86.6	40-140	3.34	20	
Fluorene (SIM)	41.8	25	μg/L	50.0		83.6	40-140	1.81	20	
Indeno(1,2,3-cd)pyrene (SIM)	45.4	2.5	μg/L	50.0		90.8	40-140	5.37	20	
2-Methylnaphthalene (SIM)	40.2	25	μg/L	50.0		80.4	40-140	1.38	20	
Naphthalene (SIM)	37.1	25	μg/L	50.0		74.2	40-140	1.29	20	
Phenanthrene (SIM)	41.8	1.2	μg/L	50.0		83.6	40-140	3.84	20	
Pyrene (SIM)	40.8	25	μg/L	50.0		81.5	40-140	5.10	20	
Surrogate: Nitrobenzene-d5	54.9		μg/L	100		54.9	30-130			
Surrogate: 2-Fluorobiphenyl	71.1		μg/L	100		71.1	30-130			
Surrogate: p-Terphenyl-d14	57.9		μg/L	100		57.9	30-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

- J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
- L-04 Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260B in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Dusopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NU	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260B in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
СТ	Connecticut Department of Public Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

KSS ⁴
O
╡

http://www.contestlabs.com	NN DE CUSTODY RECORD (North Care	Requested Tumaround Time
\sim	(11)	
20	Ì	
\bigcirc	>	
	332 (
8	13-525-2	-525-6405

Doc # 379 Rev 1_03242017

()) con-test	: 413-525-2332	CHAIN OF CUSTODY RECORD	(North Carolina)		39 Spruce 5 Eact Lonner	street warhow MA 01	028 P	age L of L	
HILL ANALYTICAL LABORATORY FAX: 4	13-525-6405	Requested Turnarol	und vitrale		n				
Email:	info@contestlabs.com	7-Day 🗌 10-Da					#	of Containers	
Сопрелу Манне.		Due Date:					2 2	Preservation Code	
Address: SAME 3301 SAMME FORCEF	-Re Robert NC	Rush-Approval Re	outred				3	Container Code	
Phone: Gra &73- 3660	~	1-Day 🗌 3-Day			INALYSIS REQU	JESTED		Dissolved Metals Samples	
Project Name.		2-Day 🗌 4-Day						Field Filtered	
Project Location: NCLOT I 508613	5 Parcel al	Data Deliven	у					Lab to Filter	
Project Number: 43.05-18-175		Format: PDF C EXCEI	<u>}</u>	C					
Project Manager: Mike Proiser		Other:		22				Orthophosphate Samples	
Con-Test Quote Name/Number:		CLP Like Data Pkg Required:		23				Field Filtered	
Invoice Recipient:		Email To: MERCIPCO S	MCINCICON	ວ ວ				Lab to Filter	
Sampled By: Jamie T. Hunerut		Fax To #:		H					
Con-Test V Work Octant	tple ID / Description Date (Tune	Ending Composite Grab	Matrix Conc	11 8-8-				1 Matrix Codes:	
								GW = Ground Water While Water Water	
1 TW-I PO	urced 21 10-2-48	Sixon /						DW = Drinking Water	
								A = Air c = Chil	
								SL = Sludge	
								SUL = Solid O = Other (please	
								define)	
								² Preservation Codes: 1 - Ired	
								H = HCL	
								M = Methanol	
								N = Nitric Acid S = Sulfuric Acid	
								B = Sodium Bisulfate	
								X = Sodium Hydroxide	
								Thiosulfate	
Comments:			Diama and the fe	Howing codes	to indicate porei	blo comolo co	accatration	0 = Other (please	
				within the C	onc Code column	above:			
			н - Нідћ;	M - Medium;	L - Low; C - Clei	an; U - Unkno	umo	³ Container Codes:	
								A = Amber Glass	
Keypourshed by (signature)		LIGHTER CONTREME DECEMBER 1018	rekorestatiostation		FFOGFATH W DSCA		rr 1/Trust Fund	e = Glass P = Plastic	
Received by: (signature)	Date/Time:	GWPC			SWS Landfill)	REC	ST = Sterile V = Vial	
ha the		TSMS			IHSB Orphaned L	andfill		S = Summa Canister	
Relinquished by: (signature)	Date/Time:	IHSB MSCC	A A A		State Lead			I = lediar bag O = Other (please	
ceived bv: (signature)	Date/Time: 0////2020	0000						define)	
Pa					NELAC and Alba	-LAP, LLC AC	credited		Tah
6 Ainquished by: (signature) 2	Date/Time: Project E	ntity Government	cipality		Other	Chromat	oqram	PCB ONLY Soxhlet	ام م
d ceived by: (signature)	Date/Time:	Federal Brow City Scho	unfield ol			AIHA-LA	P,LLC		Cont
3						··· ·			ante

EX.

Table of Contents

会 ③

Sign by

TRACK ANOTHER SHIPMENT

783089843299 📎

Delivered Friday 10/05/2018 at 8:58 am

DELIVERED

Signed for by: P.BLAKE

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

RALEIGH, NC US **TO** EAST LONGMEADOW, MA US

Travel History

Shipment Facts

10/05/2018 - Friday

10/04/2018 - Thursday

8:58 am

1:52 pm

Delivered EAST LONGMEADOW, MA

Expand History 🗸

Shipment information sent to FedEx

About FedEx Our Portfolio Investor Relations Careers

f edEx Blog Corporate Responsibility Newsroom Contact Us MORE FROM FEDEX FedEx Compatible Developer Resource Center FedEx Cross Border LANGUAGE

Change Country

English

FOLLOW FEDEX

OUR COMPANY

l Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples			Con-test ANALYTICAL LABORATORY Doc# 277 Rev 5 2017						
Login S	ample Red	ceipt Checklist - ((Rejection (Criteria List	ing - Usir	ng Acceptan	ce Policy) A	ny False	
	Statem	nent will be broug	ght to the a	ttention of	the Client	- State True	or Faise		
Client	SrM	IE							
Receive	d By	RAP		Date	10 5	118	Time	858	
How were the	e samples	In Cooler	Τ	No Cooler		On Ice	<u> </u>	No Ice	
receive	ed?	Direct from Samp	ling			Ambient		Melted Ice	
			By Gun #	557		Actual Tem	p= 3.9		
Were samp	les within		Du Blook #			Actual Tem	n .	······································	-
Temperatur	e? 2-6°C		$\Delta V \Delta$	\ <u>\</u> \	ro Somole		with?	NA	~
Was Custody Seal Intact?			10/16	- VVE - Door	re Sample c Chain Ar	ree With Sa	moles?	+	-
Was	COC Relin	iquisned ?			C C C C	giee with ou	inpico.		<u></u>
Are the	re broken/l	eaking/loose caps	on any san	Wore cor	nnles rece		olding time?	-	
Is COC in inf	(/ Legible /	<u>1</u>	· _	Analysis	-1000 -1	Samol	er Name		
Did COC in	ICIUDE all	Broject				_ Collection	Dates/Times	5 T	-
pertinent inte	onnauon?		<u> </u>	_ 100	3				-
Are Sample	labels fille		-	Who w	as notified?				
Are there Lab to Filters?					Who we	as notified?			-
Are there Ru	snes (<u> </u>		Who we	as notified?			-
Are there She	ort Holds ?	. ^	<u>+</u>		VVIIO VV	as notified:			-
Is there enou	ign volume	ere explicable?				2 P			
Is there Head	space who	ere applicable?			le solitting		- nuired?	F	
Proper Media	a/Containe	rs Usea ?			On COC	2 C	441.04	<u></u>	-
Were trip bla	nks receiv	90 / 		- Acid	011000	:	- Base		
Do all sample	es nave the	e proper pri ?	NIH	Auiu			2400		-
Vials	#	Containers:	#			#			<u> </u>
Unp-		1 Liter Amb.	2	1 Liter	Plastic		160	z AMD.	
HCL-	<u> </u>	500 mL Amb.		500 mL	Plastic		802 AI	nb/Clear	
Meoh-		250 mL Amb.		250 mL			402 A	mb/Clear	
Bisulfate-		Col./Bacteria		Flasi Othor	Gloss		202 A		-
DI-				Diner	Glass in Ban		Frozen ⁻		
Thiosultate-		Boroblorate		Zin	lock				
Sulturic-		Perchiorate	1	<u> </u>					
			n	Unused	Media				1 #
Vials	#	Containers:	#	11.000	Diantic	7	16 0	z Amb	
Unp-		End and Amb			Plastic		807 A	mb/Clear	1
HCL-		250 mL Amb		250 ml	Plastic		407 A	mb/Clear	1
Nieon-		Col /Rectaria		Flae	hpoint		2oz A	mb/Clear	
DISUIIALE-		Other Plastic		Other	r Glass		Ei	ncore	
DI-		SOC Kit		Plast	tic Bao	-	Frozen:		
Sulfuric-		Perchlorate		Zir	olock				
Commente						<u>t</u>			
Symmetrics.									