

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden

email: <u>cehaden@ncdot.gov</u>

Reference: Preliminary Site Assessment Report NCDOT Project I-5986B, WBS Element 47532.1.3 Parcel 13-Speedy Auto & Alignment 691 Long Branch Road Dunn, Harnett County, North Carolina S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
13	Barbara Bass	(Speedy Auto & Alignment)
		691 Long Branch Road, Dunn, NC

The PSA included a geophysical survey, subsequent limited soil sampling (ten soil borings up to 10 feet below ground surface (ft.-bgs.) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (Troxler Geologic, Inc.) was also used to locate and mark underground utilities.

Geophysical Survey

On September 11, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 13. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper[®] Systems Geode[™] sub-meter GPS as positioning support. The presence of vehicles, ditches, dense agricultural crops, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer[®] program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR[®] 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "*Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation*" to further characterize anomalies/features identified during the TDEM survey.

A total of eleven GPR profiles (Lines 1 through 11) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan[®] 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential petroleum UST were not identified in the geophysical data sets collected at the site. However, two anomalous features were identified in the geophysical data sets (Anomalies A and B; **Figures 5 through 7**). Anomaly A is an approximate seven feet by seven feet feature characterized by TDEM response value greater than about 500 mV and high amplitude GPR responses at about one to two ft-bgs. Anomaly A is consistent with a possible buried septic tank. Anomaly B is characterized by relatively high TDEM values (greater than about 200 mV) and high amplitude GPR responses located within the upper two feet. Anomaly B is approximately three feet by three feet in size and likely related to a buried isolated metallic target or debris. Anomalies were also marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 and 9**.

Soil Sampling

On October 2, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance ten soil borings (B-1 through B-10) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 13. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I**. S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four to 7.2 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II**.

Petroleum odors and elevated PID readings were noted within the collected soil samples. The highest concentration of elevated PID readings and petroleum odors were noted within soil borings B-2, near the former pump island in front of the building. Therefore, various soil samples at varying depth intervals were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of 20 soil samples were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH were reported at concentrations exceeding the North Carolina TPH Action Levels at soil boring B-2 (near the former pump island) at the zero to four foot depth intervals and eight to ten foot depth interval and soil borings B-7 (southeast side of

the building) and B-8 through B-10 (west side of the building) at the four to six foot depth intervals. Groundwater at B-2 was encountered at a depth of 7.2 ft.-bgs. The highest concentration of TPH GRO was reported at soil boring B-2 (near the former pump island) at the two to four foot depth interval at a concentration of 342 milligrams per kilograms (mg/kg), which exceeds its North Carolina TPH Action Level of 50 mg/kg. The highest concentration of TPH-DRO was reported at soil boring B-8 (west side of building) at the four to six foot depth interval at a concentration of 1,010 mg/kg, which exceeds it North Carolina TPH Action Level of 100 mg/kg. Groundwater was encountered at B-8 at a depth of six ft.-bgs.

TPH-GRO and TPH-DRO were reported at the remaining soil borings at concentrations below the North Carolina TPH Action Levels. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four to 7.2 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on the analytical results of soil samples (elevated GRO and DRO detections), soil boring B-2 located near the former pump island was selected for collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-2 to a depth of approximately ten ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a 10 foot section of 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at soil boring B-2 was measured at 7.2 ft.-bgs. Groundwater from the temporary well was purged until relatively clear using disposable tubing attached to a peristaltic pump. A slight petroleum sheen was noted on the surface of the water. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 Parcel 13, and placed in an insulated cooler with ice for transport to Con-Test Laboratories for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves and tubing were bagged and disposed off-site.

Groundwater Analytical Results

Based upon analytical results of groundwater samples analyzed by Con-Test Laboratories, numerous petroleum related target constituents were reported at concentrations exceeding their 15A NCAC 2L Groundwater Quality Standard (2L Standard). Benzene was reported at a concentration of 4,000 micrograms per liter (μ g/L), which is near its Gross Contamination Level of 5,000 μ g/L. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test Laboratories is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified two anomalous features (Anomaly A and B). Anomaly A is a possible buried septic tank located at the northwest corner of the building. Anomaly B is likely related to a buried isolated metallic target or debris located west of the building. Responses indicative of a potential petroleum UST were not identified in the geophysical data sets collected at the site.

S&ME advanced ten soil borings (B-1 through B-10) to a depth of approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted within the collected soil samples, particularly near the former pump island in front of the building. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. TPH-GRO and TPH-DRO were reported in the soil samples at concentrations exceeding the North Carolina TPH Action Levels. During the soil boring advancement, groundwater was encountered at depths ranging from approximately four to 7.2 ft.-bgs. One temporary well (TW-1) was installed at soil boring B-2 located near the former pump island in front of the building. Groundwater at TW-1 was measured at 7.2 ft.-bgs and analyzed by Con-Test Laboratories for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. A slight petroleum sheen was noted on the surface of the water. Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards. Benzene was reported at a concentration near its GCL.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil and groundwater impacted with petroleum at the site. Petroleum impacted soil may be encountered within the vicinity of soil borings B-2, B-7 and B-8 through B-10. Assuming that a section of petroleum impacted soil approximately four feet thick, 40 feet wide and 40 feet long at a depth of zero to four ft.-bgs may be impacted; up to 240 cubic yards of soil near boring B-2 may be impacted. Assuming that a section of petroleum impacted soil approximately two feet thick, twenty feet in diameter at a depth of four to six ft.-bgs, which is near the groundwater table, may be impacted. Assuming that a section of petroleum impacted soil approximately two feet thick, twenty feet in diameter at a depth of four to six ft.-bgs, which is near the groundwater table, may be impacted. Assuming that a section of petroleum impacted within the vicinity of soil boring B-7; up to 30 cubic yards of soil near boring B-7 may be impacted. Assuming that a section of petroleum impacted within the vicinity of soil borings B-8 through B-10; up to 225 cubic yards of soil near borings b-8 through B-10 may be impacted. Therefore, a total of approximately 500 cubic yards of petroleum impacted soil may be encountered during construction to depths of approximately four to six ft.-bgs below ground surface; it should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than four to six ft.-bgs. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and

recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

1	-	&
-		_

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

Tables

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B Parcel 13 - (Speedy Auto & Alignment) 691 Long Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175

An	alytical Metho	d→	Range Organics (GR Organics (DRO) by Ul	carbons (TPH) Gasoline CO) and Diesel Range traviolet Fluorescence ectrometry
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO
Deres 42 D 4	10/2/2010	0 to 2	<0.22	0.82
Parcel 13 B-1	10/2/2018	2 to 4	4	0.6
		0 to 2	61.1	3.2
Parcel 13 B-2	10/2/2018	2 to 4	342	515.6
Parcer 13 B-2	10/2/2018	4 to 6	17.7	37.8
		8 to10	99.7	162.6
Parcel 13 B-3	10/2/2018	2 to 4	1.7	0.72
		0 to 2	<0.54	0.91
Parcel 13 B-4	10/2/2018	2 to 4	<0.46	<0.46
		4 to 6	39.6	5.5
		0 to 2	5.6	11.3
Parcel 13 B-5	10/2/2018	2 to 4	<0.5	1.2
		4 to 6	<0.46	6
Parcel 13 B-6	10/2/2018	0 to 2	<0.59	2.1
Faicer 13 B-0	10/2/2018	2 to 4	<0.44	0.54
Parcel 13 B-7	10/2/2018	4 to 6	120.1	27.4
Parcel 13 B-8	10/2/2018	2 to 4	<0.56	13.6
	10/2/2010	4 to 6	331.8	1,010
Parcel 13 B-9	10/2/2018	4 to 6	29.8	330.5
Parcel 13 B-10	10/2/2018	4 to 6	29.3	211.6
Notos:	orth Carolina T	PH Action Levels	50	100

Notes:

1. UVF analysis performed by RED Lab, LLC

2. Concentrations are reported in milligrams per kilogram (mg/Kg).

3. ft.-bgs:- feet below ground surface.

4. Concentrations exceeding the laboratory's reporting limits are shown in BOLD fields.

Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and **BOLD** fields.

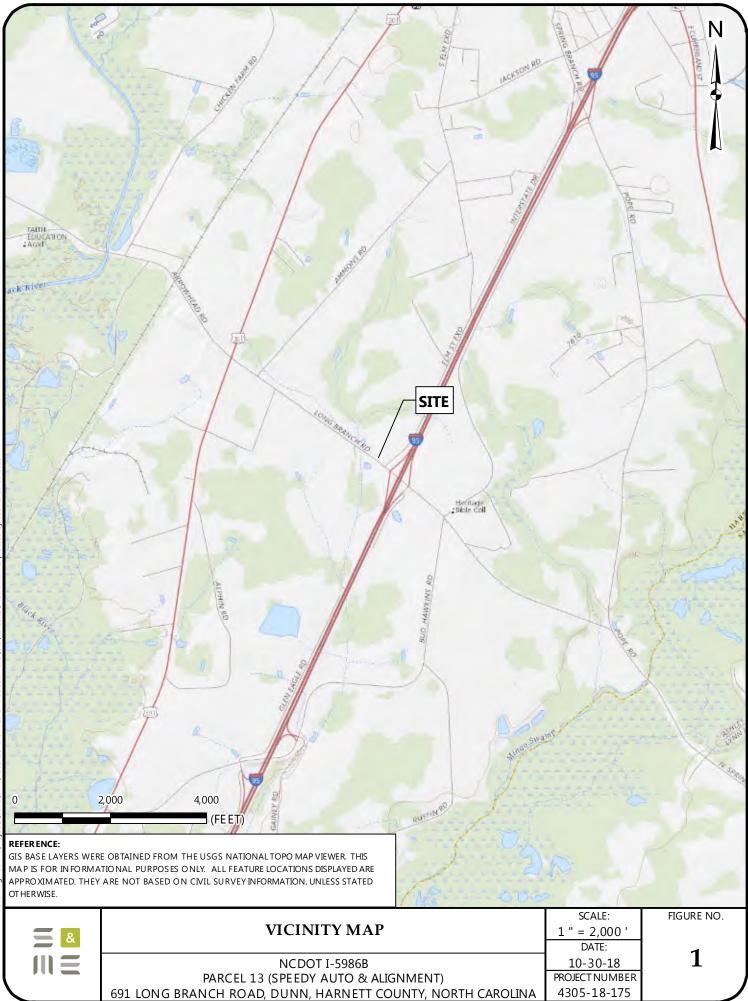
TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5986B Parcel 13 - (Speedy Auto & Alignment) 691 Long Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175

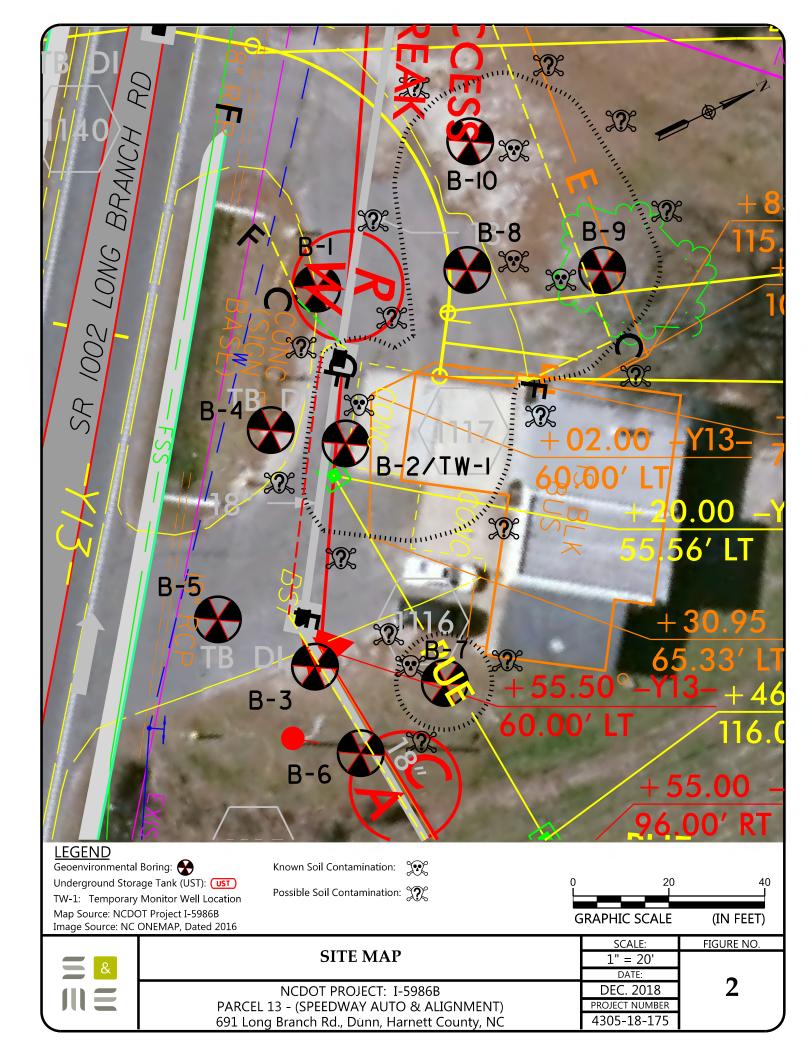
Analytical I	Method→			v	olatile	Organi	c Comj	oounds I	by EPA	Method 8	260			Con	lycyclio pound PA Met	s (PAF	ls) by
Sample ID	Contaminant of Concern→ Date		Ethylbenzene	lsopropylbenzene	Naphthalene	n-Butylbenzene	sec-Butylbenzene	n-Propylbenzene	p-lsopropyltoluene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Acenaphthene	Naphthalene	Phenanthrene	2- Methylnaphthalene
TW-1 Parcel 13 10/2/2018		4,000	11,000	1,000	3,800	2,000	390	3,600	240	36,000	21,000	6,100	44,000	0.46	530	0.59	240
2L Standard (µg/L)		1	600	70	6	70	70	70	25	600	400	400	500	80	6	200	30
GCL (µg/L)		5,000	84,500	25,000	6,000	6,900	8,500	30,000	11,700	260,000	28,500	25,000	85,500	2,120	6,000	410	12,500

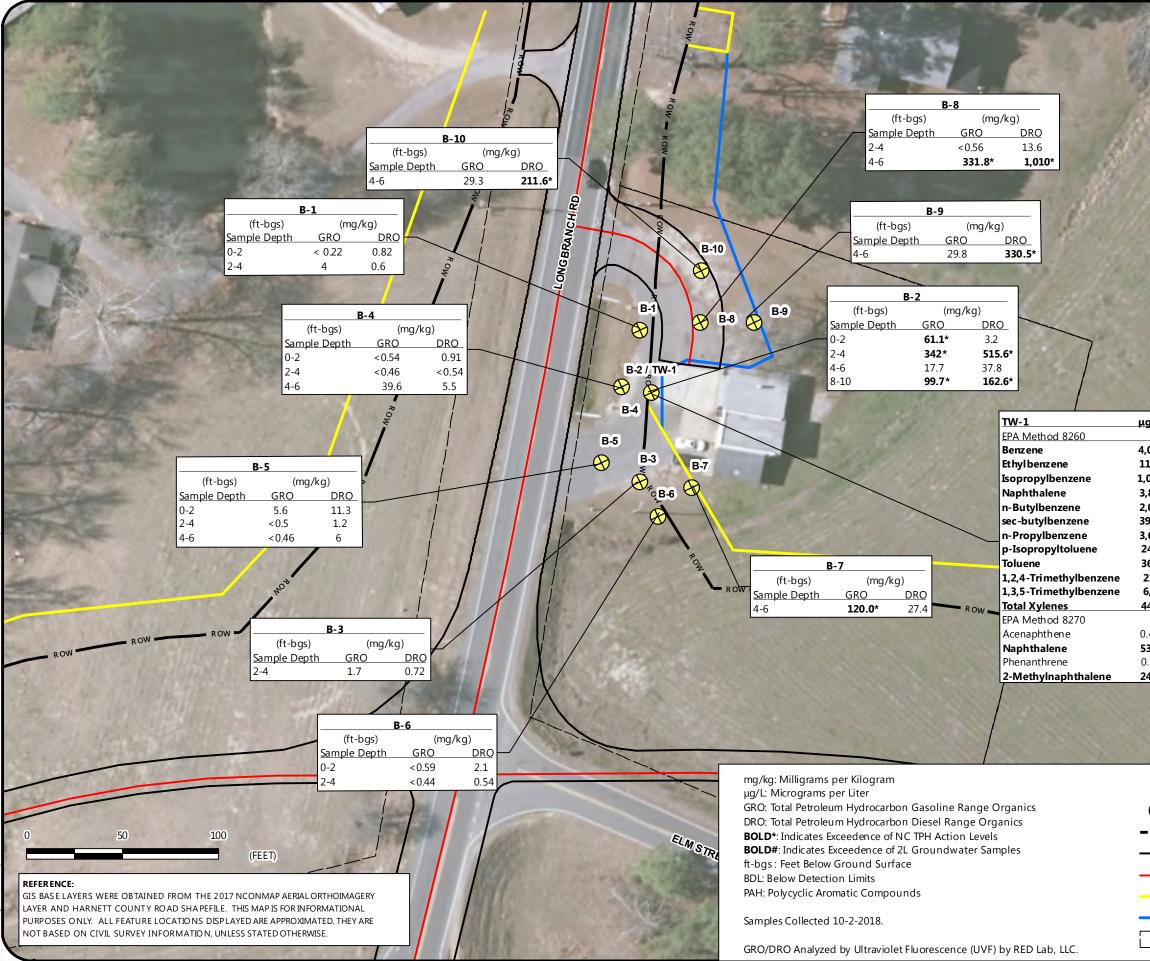
Notes:

1. Analytes that are not shown for the method were not detected.

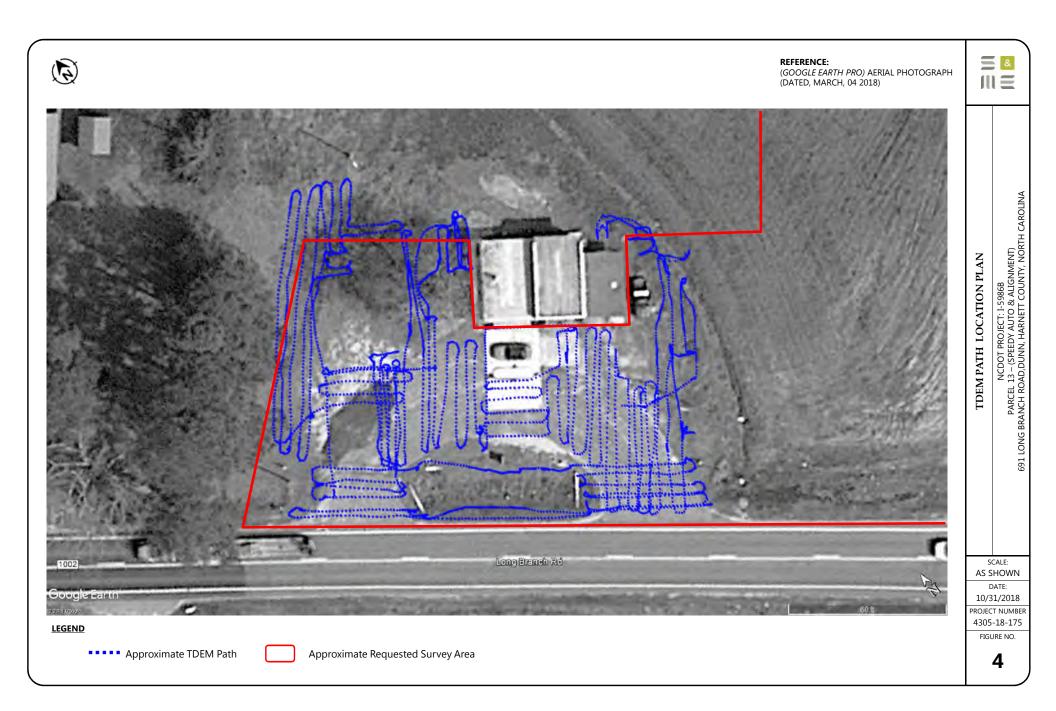
2. Concentrations are reported in micrograms per liter (µg/L).

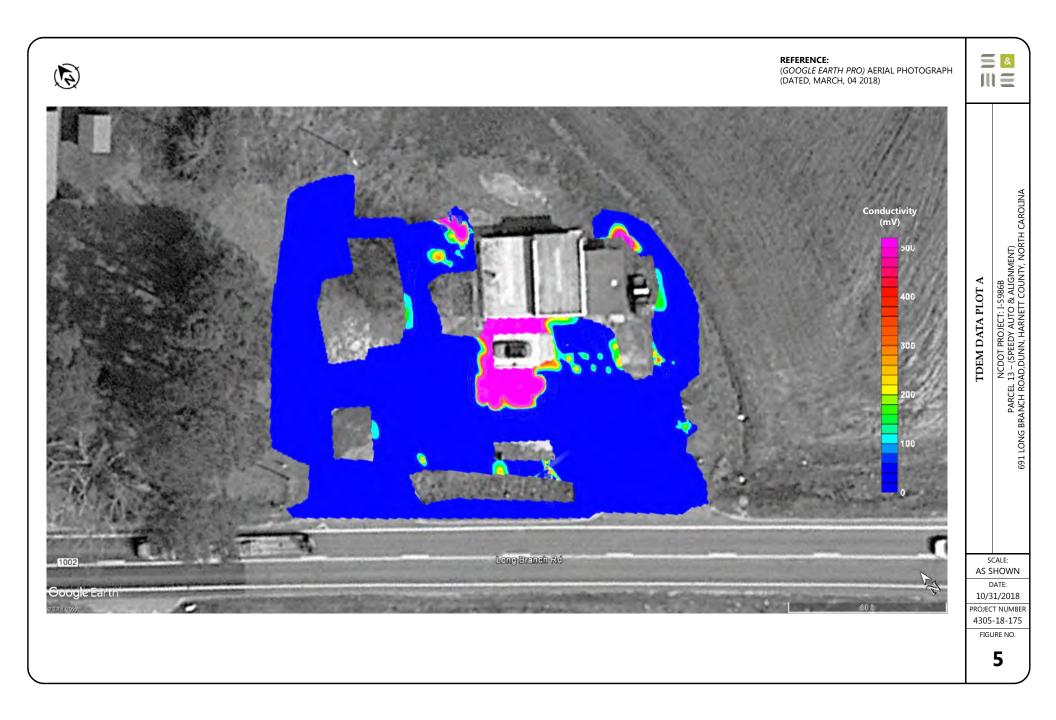

3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202

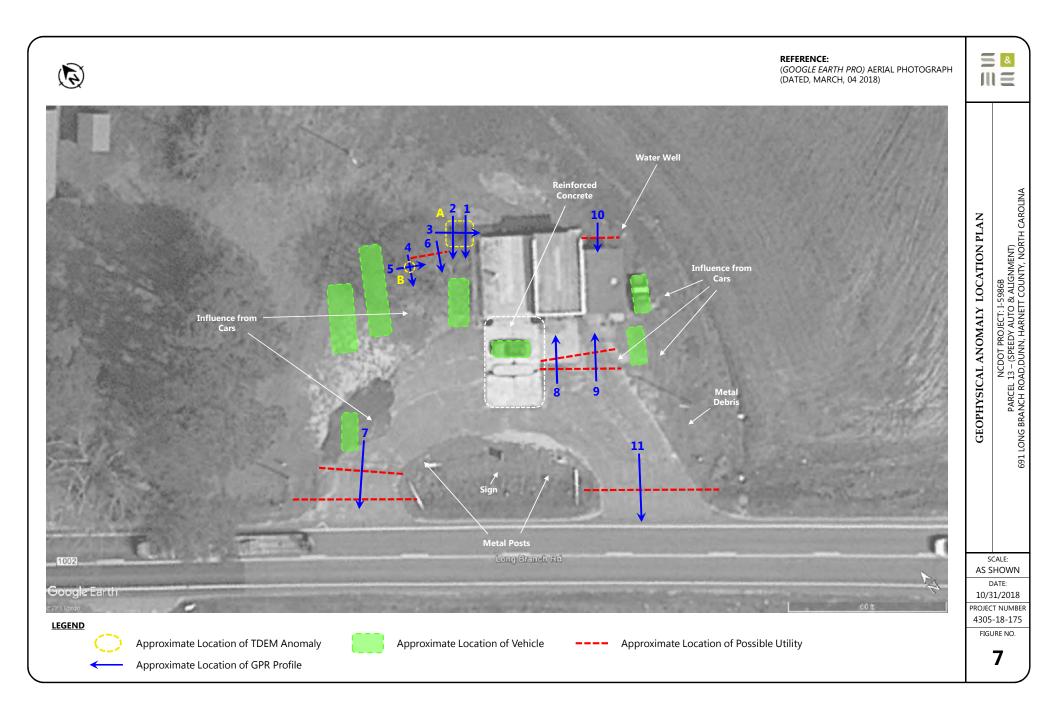

4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.

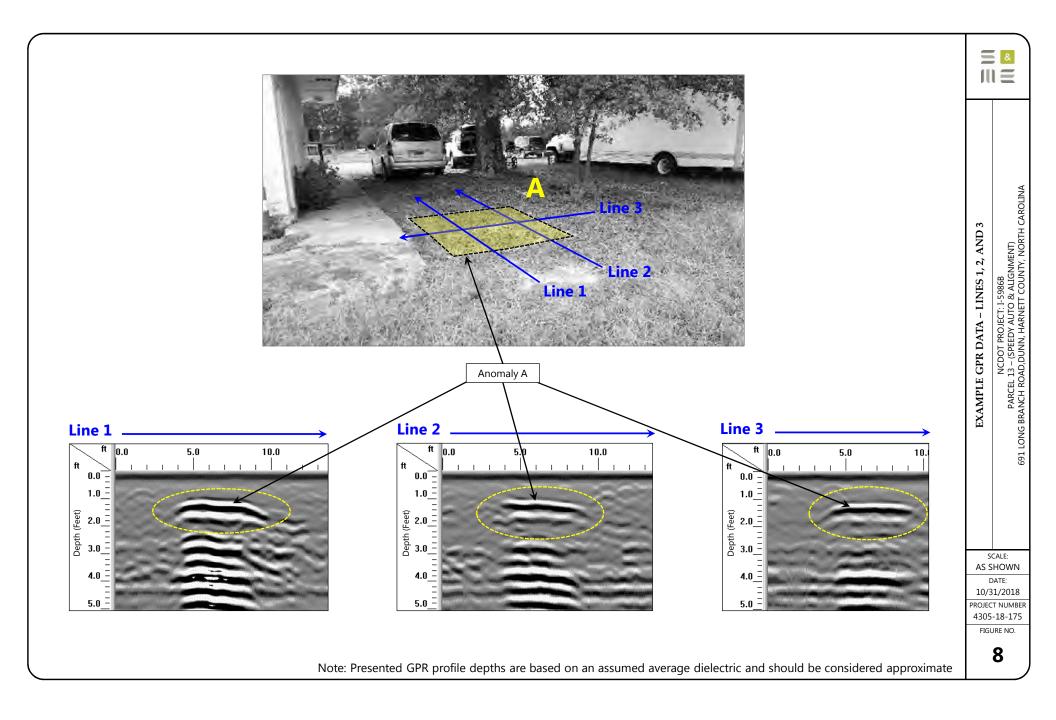

5. Concentrations exceeding the 2L Standards are shown in Shaded and BOLD fields.

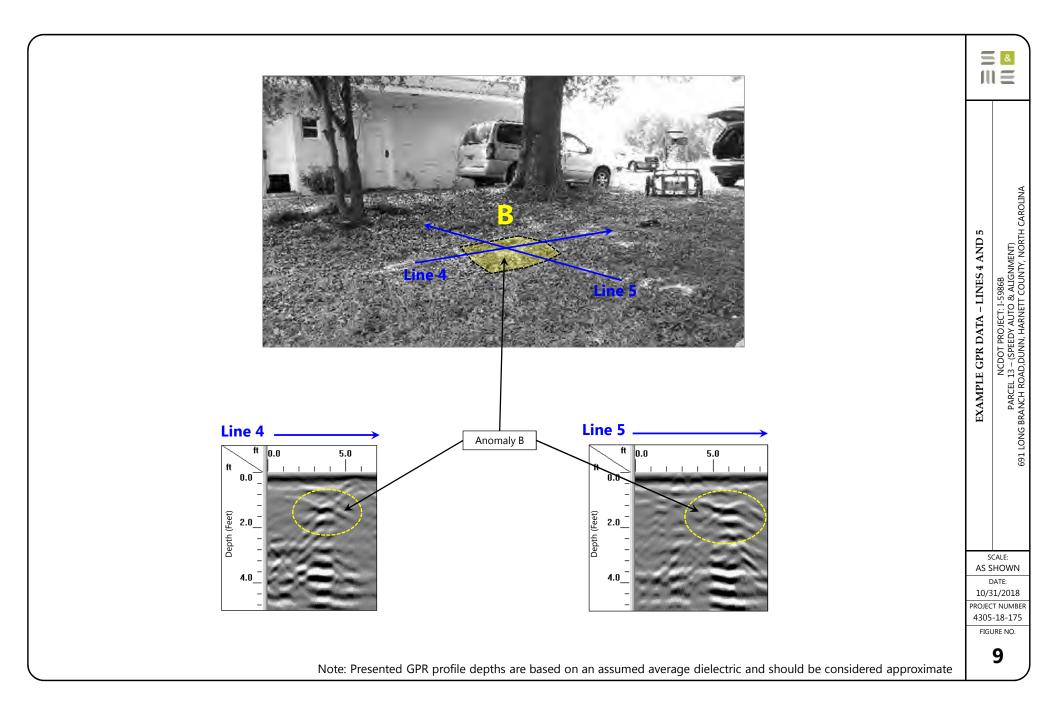
6. GCL: Gross Contamination Level.

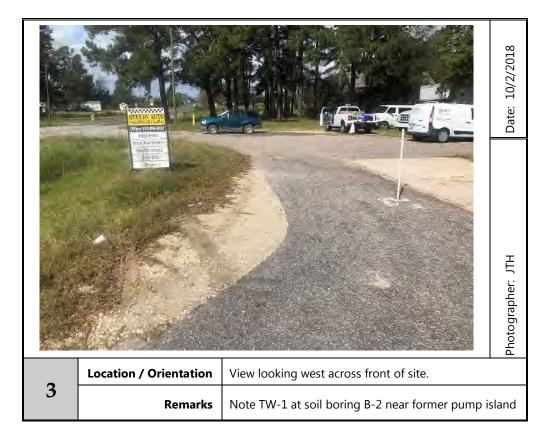

Figures






2		&
Ag/L Ag00# 11,000# 10,000# 38,00# 20,000# 36,000# 21,000# 21,000# 40,000# 21,000#	SOIL AND GROUNDWATER CONSTITUENT MAP	NCDOT I-5986B PARCEL 13 (SPEEDY AUTO & ALIGNMENT) 691 LONG BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA
•	1 " =	ALE: = 50 '
Sample Collection		0-18
Edge of Pavement		NUMBER 18-175
Centerline Proposed Permanent Utility Easement	FIGUR	
Proposed Construction Easement		3
Tax Parcels		




Appendix I – Photographs

Appendix II – Boring Logs

PROJECT	:		NCDOT I-5986B Parcel 13-691 Long Branch Rd, Dunn, N	IC			BORIN	NG LOG:	B-1			
			S&ME Project No. 4305-18-175				Donai					
DATE DRILL	LED:		Tuesday, October 02, 2018	BORING DEPTH (FT):	10							
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER T	TYPE:		Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METHOD:		Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:		Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	Tana	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
 5		Sand	y Clay, Tan, Orange,		▼		39.0 601.0	Yes Yes				
 10			y Sand, Tan, Orange, g Terminated at 10 Ft-BGS									
20 — —	-											
 25												
<u>-</u>												
 30												

PROJECT	:		NCDOT I-5986B Parcel 13-691 Long Branch Rd, Dunn, N				PODIA		P 2/	T\A/ 1	1	
			S&ME Project No. 4305-18-175				DUKIN	IG LOG:	D-2/	1 44 1	L	
DATE DRILL	LED:		Tuesday, October 02, 2018	BORING DEPTH (FT):	10							
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:		icable						
HAMMER T	TYPE-		Not Applicable	LOGGED BY:								
SAMPLING			Macro-Core Sampler	NORTHING:		utt						
DRILLING N			Macro-Core Sampler (3-in. OD)	EASTING:								
	[2.01.10.								
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	-	Asph Sand	alt, Gravel, Black, Fine, Petroleum Odors									
							483.0	Yes				
	-	Sand	/ Clay, Tan, Orange, Petroleum Odors				2282	Yes				
5							1796	Yes				
					▼		1103	No				
	-	Claye	y Sand, Tan, Orange, Petroleum Odors									
10 —		Borin	g Terminated at 10 Ft-BGS				999.0	Yes				
	-											
	-											
45												
15 —												
	-											
	-											
	-											
20 —												
25 —	-											
	-											
	-											
	-											
	-											
30 —		1					1		1	1	L	

PROJECT:	:	NCDOT I-5986B Parcel 13-691 Long Branch Rd, Dunn, N	с			BORI	NG LOG:	B-3			
		S&ME Project No. 4305-18-175									
DATE DRILL	ED:	Tuesday, October 02, 2018	BORING DEPTH (FT):	10							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:								
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not App	licable						
HAMMER T	YPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING N	IETHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		el, , Tan, Brown, Fine, Slight Petroleum Odors				Σ 1.1 10.0	No Yes				
30 —											

PROJECT:	NCDOT I-5986B									
	Parcel 13-691 Long Branch Rd, Dunn,	, NC			BORIN	IG LOG	B-4			
	S&ME Project No. 4305-18-175		10							
	Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:		· I. I .						
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		Г			1		1	
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Si	opsoil, and, Brown, Tan, Fine,				1.3	Yes				
S	andy Clay, Tan, Orange,									
5	lauru Canad Rad Oranges Slight Detrolouru Odere				2.0	Yes				
	layey Sand, Red, Orange, Slight Petroleum Odors		▼		400.0	Yes				
10										
В	oring Terminated at 10 Ft-BGS									
15 —										
20 —										
25 —										
30				L			L			I

PROJECT:	NCDOT I-5986B				PODIA	IG LOG:	DE			
	Parcel 13-691 Long Branch Rd, Dunn, N S&ME Project No. 4305-18-175	NC .			BORI	IG LUG	в-5			
DATE DRILLED:	Tuesday, October 02, 2018	BORING DEPTH (FT):	10							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:		icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:								
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION	•	WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Sand	alt, Gravel, , Black, Brown, Fine,				62.0 24.0	Yes Yes				
5 — Claye	ey Sand, Tan, Orange,				6.0	Yes				
	rg Terminated at 10 Ft-BGS									

PROJECT:			NCDOT I-5986B Parcel 13-691 Long Branch Rd, Dunn, N	IC			BORIN	NG LOG:	B-6			
			S&ME Project No. 4305-18-175									
DATE DRILLEI	D:		Tuesday, October 02, 2018	BORING DEPTH (FT):								
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:	4							
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not App	licable						
HAMMER TYP	PE:		Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING M			Macro-Core Sampler	NORTHING:								
DRILLING ME	THOD:		Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	Tana	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
 5			Orange, Brown, Fine,		•		1.9	Yes				
		Claye	y Sand, Orange, Brown, Medium,									
10 <u> </u>		Borin	g Terminated at 10 Ft-BGS									
15 — — —												
20												
25 — — —												
30												

PROJECT:	:		NCDOT I-5986B Parcel 13-691 Long Branch Rd, Dunn,	NC			PODIN	IG LOG:	P.7			
			S&ME Project No. 4305-18-175	NC .			DUKIN		D-1			
DATE DRILL	ED:		Tuesday, October 02, 2018	BORING DEPTH (FT):	10							
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER T	YPE:		Not Applicable	LOGGED BY:								
SAMPLING			Macro-Core Sampler	NORTHING:	,							
DRILLING M			Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Tops Sand	oil, y Clay, Orange, Brown,				1.2	No				
 5							2.4	No				
		Sand	y Clay, Orange, Red,		▼		280.0	Yes				
10 —		Borir	ig Terminated at 10 Ft-BGS									
15 —												
20 —												
25 —												
30 —												

PROJECT	:	NCDOT I-5986B	BODING LOC: P. 9														
			Parcel 13-691 Long Branch Rd, Dunn,	BORING LOG: B-8													
DATE DRILL	FD:		S&ME Project No. 4305-18-175 Tuesday, October 02, 2018	BORING DEPTH (FT):	10												
DATE DRILL			Geoprobe 54DT	WATER LEVEL:													
							Not Applicable										
HAMMER TYPE: Not Applicable LOGGED BY: SAMPLING METHOD: Macro-Core Sampler NORTHING:																	
	MPLING METHOD: Macro-Core Sampler NORTHING: RILLING METHOD: Macro-Core Sampler (3-in. OD) EASTING:																
DIGLEING	METHOD.	1		LASTING.													
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE					
		Asph	alt, Gravel, y Sand, Orange,			2.2											
			ry Sand, Brown,				8.3	No									
5 —			y Sand, Orange,				20.0	Yes									
					▼		860.0	Yes									
10 —		Borir	g Terminated at 10 Ft-BGS														
15 —																	
20 —																	
25 —																	
30 —												[

PROJECT:	NCDOT I-5986B	BORING LOG: B-9											
	Parcel 13-691 Long Branch Rd, Dunn, N S&ME Project No. 4305-18-175	NC .			BORI	NG LOG:	в-9						
DATE DRILLED:	Tuesday, October 02, 2018	BORING DEPTH (FT):	10										
DRILL RIG:	WATER LEVEL:												
DRILLER:	Geoprobe 54DT Troxler Geologic, Inc.		-IN DEPTH: Not Applicable										
HAMMER TYPE:	Not Applicable	LOGGED BY:											
SAMPLING METHOD:	Macro-Core Sampler	NORTHING:											
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:											
DEPTH (feet) GRAPHIC LOG	MATERIAL DESCRIPTION	•	WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE			
Тор	soil,		3		Id	2 '	Sa						
	d, Brown, Tan,												
					1.7	No							
Clay	ey Sand, Tan, Orange,				1.0	No							
5 <u>San</u>	dy Clay, Orange, Red,		•		80.0	Yes							
_			·										
10 <u>Bori</u>	ng Terminated at 10 Ft-BGS												
_													
15 —													
20 —													
25 —													
30													

PROJEC [®]	T:	NCDOT I-5986B													
		Parcel 13-691 Long Branch Rd, Dunn, N	BORING LOG: B-10												
		S&ME Project No. 4305-18-175													
DATE DRII	LED:	Tuesday, October 02, 2018	BORING DEPTH (FT):	10											
DRILL RIG		Geoprobe 54DT	WATER LEVEL:												
DRILLER:	•	Troxler Geologic, Inc.													
HAMMER				PTH: Not Applicable											
			Not Applicable LOGGED BY: J.												
	G METHOD:	Macro-Core Sampler	NORTHING:												
DRILLING	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		- <u>r</u>	1	1			1					
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION	MATERIAL DESCRIPTION												
		Sand, Brown,													
 5		Sandy Clay, Tan,			5.9	No									
-	-	Sandy Clay, Red, Orange,		T	394.0	Yes									
10 — —	-	Boring Terminated at 10 Ft-BGS													
 15	-														
	-														
 20	-														
	-														
 25															
	-														
_	-														
30 —															

Appendix III – Laboratory Analytical Reports and Chain of Custody

Q	ED												QROS
				Hydroca	arbon An	alysis R	esults						
Client: Address:	•								Tuesday, October 02, 2018 Tuesday, October 02, 2018 Tuesday, October 02, 2018				
Contact:	JAMIE HONEYCUTT									Оре	erator		MAX MOYER
Project:	PARCEL 13 - PROJ 4305-18-175												
													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	% Ratios			HC Fingerprint Match
							. ,			C5 - C10	C10 - C18	C18	
S	PARCEL 13 B-3 (2'-4')	19.7	<0.49	1.7	0.72	2.42	0.54	<0.16	<0.02	78.8	14.2	7	V.Deg.PHC 84.8%,(FCM)
S	PARCEL 13 B-2 (2'-4')	63.6	<1.6	342	515.6	857.6	43	1.7	<0.064	99.8	0.2	0	Deg.Kerosene 88.7%,(FCM)
S	PARCEL 13 B-2 (8'-10')	49.1	<1.2	99.7	162.6	262.3	11.5	<0.39	<0.049	99.7	0.3	0	Deg.Kerosene 90.6%,(FCM)
s	PARCEL 13 B-2 (0'-2')	17.2	<0.43	61.1	3.2	64.3	1.8	<0.14	<0.017	97.4	2	0.6	Deg.PHC 82.6%,(FCM)
S	PARCEL 13 B-1 (0'-2')	8.6	<0.22	<0.22	0.82	0.82	0.43	<0.07	<0.009	0	74.4	25.6	V.Deg.PHC 90.7%,(FCM),(BO)
s	PARCEL 13 B-1 (2'-4')	6.3	<0.16	4	0.6	4.6	0.58	<0.05	<0.006	98	1.6	0.4	No Match found

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

0.91

< 0.46

5.5

0.91

< 0.46

45.1

0.65

3.7

< 0.09

<0.17

<0.15

< 0.2

< 0.022

< 0.018

< 0.025

0 66.6

0

Final FCM QC Check OK

99.3

0

0.6

33.4 V.Deg.PHC 75.8%,(FCM)

0.1 Deg.Gas 80.2%,(FCM)

93.7 %

100 Residual HC,(BO)

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

< 0.54

< 0.46

39.6

OK

% Ratios estimated aromatic carbon number proportions : HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only. Data generated by HC-1 Analyser

21.7

18.3

25.0

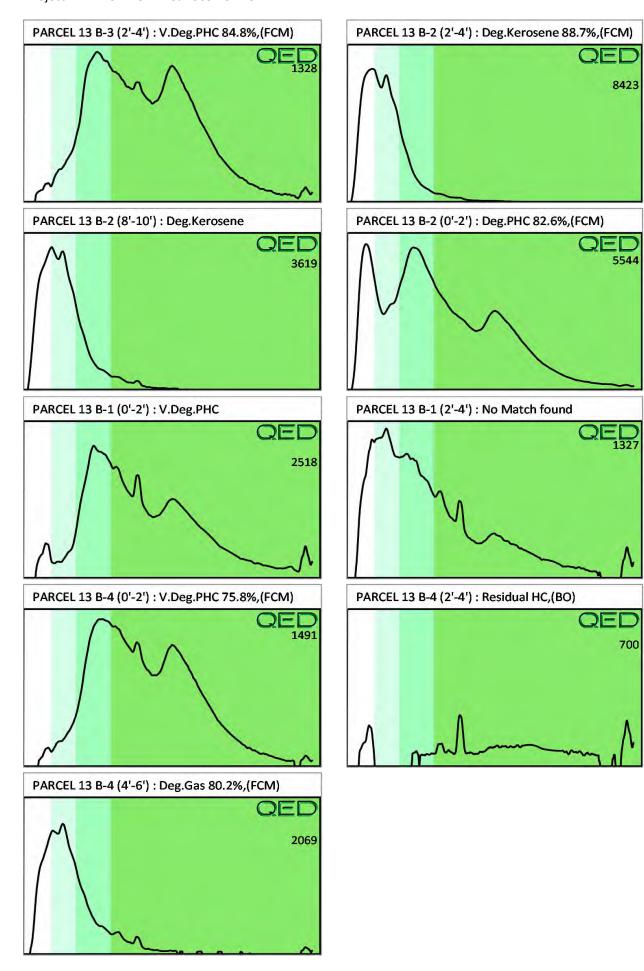
Initial Calibrator QC check

< 0.54

< 0.46

6.8

PARCEL 13 B-4 (0'-2')


PARCEL 13 B-4 (2'-4')

PARCEL 13 B-4 (4'-6')

s

s

s

Q	ED												<u>QROS</u>
				Hydroca	ardon An	alysis R	esuits						
Client: Address:	S&ME :								Sa Sample Sampl		acted		Tuesday, October 02, 2018 Tuesday, October 02, 2018 Tuesday, October 02, 2018
Contact:	JAMIE HONEYCUTT									Ор	erator		MAX MOYER
Project:	PARCEL 13 - PROJ 4305-18-175	i											
													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Q	% Ratios	5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	PARCEL 13 B-2 (4'-6')	20.6	<0.52	17.7	37.8	55.5	2.9	<0.17	<0.021	99.2	0.7	0.1	Deg.Kerosene 87.8%,(FCM)
s	PARCEL 13 B-5 (0'-2')	19.5	<0.49	5.6	11.3	16.9	4.1	0.26	<0.02	70.9	26.4	2.8	Deg.PHC 80.4%,(FCM)
S	PARCEL 13 B-5 (2'-4')	20.2	<0.5	<0.5	1.2	1.2	0.61	<0.16	<0.02	94.5	4.3	1.2	Deg.PHC 75.3%,(FCM),(P)
S	PARCEL 13 B-5 (4'-6')	18.4	<0.46	<0.46	6	6	3.6	0.2	<0.018	0	88.4	11.6	Deg.Fuel 74.3%,(FCM)
S	PARCEL 13 B-6 (0'-2')	23.6	<0.59	<0.59	2.1	2.1	2	<0.19	<0.024	0	64.3	35.7	V.Deg.PHC 73.6%,(FCM),(P)

0.37

20.1

376.7

4.3

<0.14

0.79

< 0.18

13.9

< 0.018

< 0.015

< 0.022

< 0.33

0

99.3

60.1

90

Final FCM QC Check OK

68.2

0.6

39.3

9.7

31.8 V.Deg.PHC 75.3%,(FCM)

0.1 Deg.Gas 82.8%,(FCM)

0.7 Deg.Diesel 82.8%,(FCM)

0.3 Deg.Diesel 81.1%,(FCM)

106.8 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

0.54

27.4

13.6

1010

0.54

147.5

13.6

1342

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

<0.44

120.1

<0.56

331.8

OK

% Ratios estimated aromatic carbon number proportions : HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only. Data generated by HC-1 Analyser

17.6

15.3

22.2

331.0

Initial Calibrator QC check

<0.44

42.6

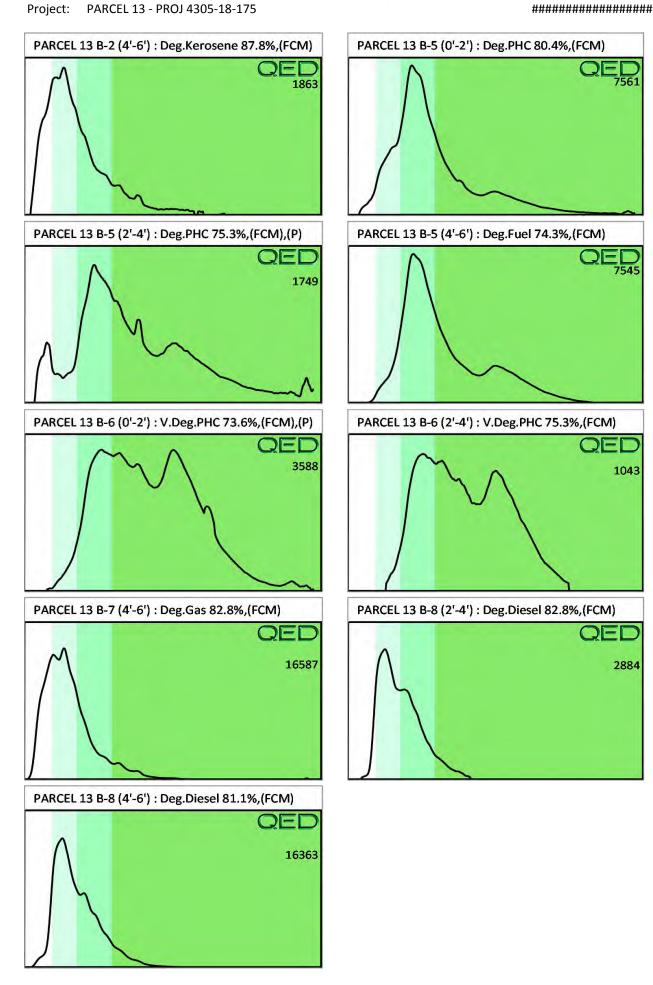
< 0.56

118.1

PARCEL 13 B-6 (2'-4')

PARCEL 13 B-7 (4'-6')

PARCEL 13 B-8 (2'-4')


PARCEL 13 B-8 (4'-6')

s

s

s

s

Q	ED											\int	<u>QROS</u>
				Hydroca	arbon An	alysis R	esults						
Client: Address:	S&ME								Sar Sample Sampl	es extr			Tuesday, October 02, 2018 Tuesday, October 02, 2018 Tuesday, October 02, 2018
Contact:	JAMIE HONEYCUTT									Op	erator		MAX MOYER
Project:	PARCEL 13 - PROJ 4305-18-175									-			
													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Q	% Ratios	5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
s	PARCEL 13 B-9 (4'-6')	202.0	<5.1	29.8	330.5	360.3	134.4	5	<0.2	70.6	28.3	1.1	Deg.Diesel 85.8%,(FCM)
S	PARCEL 13 B-10 (4'-6')	66.7	<1.7	29.3	211.6	240.9	76.5	2.8	<0.067	78.4	21	0.6	Deg.Diesel 87.3%,(FCM)
	Initial C	alibrator	QC check	OK					Final FC	CM QC	Check	OK	92.8 %
Abbreviatior B = Blank D	on values in mg/kg for soil samples and mg ns :- FCM = Results calculated using Fund rift : (SBS)/(LBS) = Site Specific or Library timated aromatic carbon number proportior	amental Cali Background	bration Mod Subtraction	le : % = confid applied to res	dence of hydro sult : (BO) = B	ocarbon identi Background Oi	fication : (PFM) = Poor Fir ed : (OCR) :	ngerprint Ma	tch : (T) I range :	= Turbid : (M) = M	: (P) = I	Particulate detected

Project: PARCEL 13 - PROJ 4305-18-175

PARCEL 13 B-9 (4'-6') : D	Deg.Diesel 85.8%,(FCM)
\bigwedge	9773

PARCEL 13 B-10 (4'-6') : D	eg.Diesel 87.3%,(FCM)
\wedge	1770

October 15, 2018

Michael Pfeifer S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: NC DOT I-5986B Parcel 13 Client Job Number: Project Number: 4305-18-175 Laboratory Work Order Number: 18J0293

Enclosed are results of analyses for samples received by the laboratory on October 4, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Beny K. Millee

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
18J0293-01	6
Sample Preparation Information	9
QC Data	10
Volatile Organic Compounds by GC/MS	10
B214429	10
Semivolatile Organic Compounds by GC/MS	15
B214244	15
Flag/Qualifier Summary	17
Certifications	18
Chain of Custody/Sample Receipt	21

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Michael Pfeifer

REPORT DATE: 10/15/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175

ANALYTICAL SUMMARY

SAMPLE DESCRIPTION

WORK ORDER NUMBER: 18J0293

TEST

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

MATRIX

PROJECT LOCATION: NC DOT I-5986B Parcel 13

FIELD SAMPLE # TW-1- Parcel 13

18J0293-01 Ground Water

LAB ID:

and in this report.

SUB LAB

SW-846 8260B SW-846 8270D

EXECUTIVE SUMMARY

Client ID:	TW-1- Parcel 13
Chem ID.	1 W-1- 1 al CCI 15

Lab ID: 18J0293-01

Analyte	Results/Qual	DL	RL	Units	Method
1,2,4-Trimethylbenzene	21000	36	200	μg/L	SW-846 8260B
1,3,5-Trimethylbenzene	6100	26	200	μg/L	SW-846 8260B
Benzene	4000	24	200	$\mu g/L$	SW-846 8260B
Ethylbenzene	11000	26	200	$\mu g/L$	SW-846 8260B
Isopropylbenzene (Cumene)	1000	24	200	$\mu g/L$	SW-846 8260B
m+p Xylene	32000	51	400	$\mu g/L$	SW-846 8260B
Naphthalene	3800	24	400	$\mu g/L$	SW-846 8260B
n-Butylbenzene	2000	30	200	$\mu g/L$	SW-846 8260B
n-Propylbenzene	3600	26	200	$\mu g/L$	SW-846 8260B
o-Xylene	12000	26	200	μg/L	SW-846 8260B
p-Isopropyltoluene (p-Cymene)	240	30	200	μg/L	SW-846 8260B
sec-Butylbenzene	390	26	200	$\mu g/L$	SW-846 8260B
Toluene	36000	34	200	$\mu g/L$	SW-846 8260B
2-Methylnaphthalene (SIM)	240	11	140	$\mu g/L$	SW-846 8270D
Acenaphthene (SIM)	0.46	0.086	0.43	$\mu g/L$	SW-846 8270D
Naphthalene (SIM)	530	10	140	μg/L	SW-846 8270D
Phenanthrene (SIM)	0.59	0.057	0.071	μg/L	SW-846 8270D

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report. For method 8270, only PAHs were requested and reported.

For method 8270 PAH(SIM), sample 18J0293-01 was run at a dilution due to high concentration target compounds

For method 8260B elevated reporting limit for sample 18J0293-01 due to high concentrations of target compounds.

SW-846 8260B

Qualifications:

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

18J0293-01[TW-1- Parcel 13]

SW-846 8270D

Qualifications:

I-02

Result not attainable due to sample matrix interferences (a chemical or physical interference which could not be eliminated).

Analyte & Samples(s) Qualified:

Naphthalene-d8

18J0293-01[TW-1- Parcel 13]

Naphthalene-d8 (SIM)

18J0293-01[TW-1- Parcel 13]

S-02

The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the

sample extract. Analyte & Samples(s) Qualified:

Nitrobenzene-d5

18J0293-01[TW-1- Parcel 13]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Kappenl

Tod E. Kopyscinski Laboratory Director

Page 5 of 23

Work Order: 18J0293

Project Location: NC DOT I-5986B Parcel 13 Date Received: 10/4/2018

Field Sample #: TW-1- Parcel 13

Sample ID: 18J0293-01

Sample Matrix: Ground Water

Sampled: 10/2/2018 12:45

Sample Description:

Sample Matrix: Ground Water Sample Flags: RL-11			Volatile	Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10000	1900	μg/L	200	Tiag/Quai	SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Acrylonitrile	ND	10000	120	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
tert-Amyl Methyl Ether (TAME)	ND	100	21	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Benzene	4000	200	24	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromobenzene	ND	200	30	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromochloromethane	ND	200	45	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromodichloromethane	ND	100	59	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromoform	ND	400	42	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Bromomethane	ND	400	190	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
2-Butanone (MEK)	ND	4000	470	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
tert-Butyl Alcohol (TBA)	ND	4000	430	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
n-Butylbenzene	2000	200	30	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
sec-Butylbenzene	390	200	26	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
tert-Butylbenzene	ND	200	24	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	100	19	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Carbon Disulfide	ND	800	200	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Carbon Tetrachloride	ND	1000	49	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chlorobenzene	ND	200	32	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chlorodibromomethane	ND	100	21	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chloroethane	ND	400	56	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chloroform	ND	400	44	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Chloromethane	ND	400	110	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
2-Chlorotoluene	ND	200	24	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
4-Chlorotoluene	ND	200	28	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	1000	74	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dibromoethane (EDB)	ND	100	30	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Dibromomethane	ND	200	32	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dichlorobenzene	ND	200	34	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,3-Dichlorobenzene	ND	200	34	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,4-Dichlorobenzene	ND	200	30	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
trans-1,4-Dichloro-2-butene	ND	400	62	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Dichlorodifluoromethane (Freon 12)	ND	400	57	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1-Dichloroethane	ND	200	32	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dichloroethane	ND	200	39	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1-Dichloroethylene	ND	200	42	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
cis-1,2-Dichloroethylene	ND	200	29	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
trans-1,2-Dichloroethylene	ND	200	30	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2-Dichloropropane	ND	200	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,3-Dichloropropane	ND	100	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
2,2-Dichloropropane	ND	200	43	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1-Dichloropropene	ND	400	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
cis-1,3-Dichloropropene	ND	100	24	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
trans-1,3-Dichloropropene	ND	100	22	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Diethyl Ether	ND	400	44	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH

Page 6 of 23

Work Order: 18J0293

Table of Contents

Project Location	n: NC DOT I-5986B Parcel 13
Date Received:	10/4/2018

Field Sample #: TW-1- Parcel 13

Sample ID: 18J0293-01

Sampled:	10/2/2018	12:45

Sample Description:

97.8

70-130

Sample Flags: RL-11			Vola	tile Organic Comp	ounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Diisopropyl Ether (DIPE)	ND	100	36	μg/L	200	0 -	SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,4-Dioxane	ND	10000	5300	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Ethylbenzene	11000	200	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Hexachlorobutadiene	ND	120	120	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
2-Hexanone (MBK)	ND	2000	300	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Isopropylbenzene (Cumene)	1000	200	24	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
p-Isopropyltoluene (p-Cymene)	240	200	30	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Methyl tert-Butyl Ether (MTBE)	ND	200	18	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Methylene Chloride	ND	1000	640	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
4-Methyl-2-pentanone (MIBK)	ND	2000	290	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Naphthalene	3800	400	24	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
n-Propylbenzene	3600	200	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Styrene	ND	200	30	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1,1,2-Tetrachloroethane	ND	200	24	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1,2,2-Tetrachloroethane	ND	100	32	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Tetrachloroethylene	ND	200	54	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Tetrahydrofuran	ND	2000	210	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Toluene	36000	200	34	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2,3-Trichlorobenzene	ND	1000	28	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2,4-Trichlorobenzene	ND	200	38	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,3,5-Trichlorobenzene	ND	200	34	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1,1-Trichloroethane	ND	200	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1,2-Trichloroethane	ND	200	47	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Trichloroethylene	ND	200	40	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Trichlorofluoromethane (Freon 11)	ND	400	29	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2,3-Trichloropropane	ND	400	43	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	200	39	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,2,4-Trimethylbenzene	21000	200	36	µg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
1,3,5-Trimethylbenzene	6100	200	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Vinyl Chloride	ND	400	27	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
m+p Xylene	32000	400	51	$\mu g/L$	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
o-Xylene	12000	200	26	μg/L	200		SW-846 8260B	10/10/18	10/11/18 12:23	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		79.2		70-130					10/11/18 12:23	
Toluene-d8		101		70-130					10/11/18 12:23	

4-Bromofluorobenzene

10/11/18 12:23

Work Order: 18J0293

Table of Contents

Project Location: NC DOT I-5986B Parcel 13 Date Received: 10/4/2018

Field Sample #: TW-1- Parcel 13

Sample ID: 18J0293-01

2-Fluorobiphenyl

p-Terphenyl-d14

p-Terphenyl-d14

Sample Matrix: Ground Water

Sampled: 10/2/2018 12:45

Sample Description:

54.1

57.0

44.5

		Semi	volatile Organic C	ompounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene (SIM)	0.46	0.43	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Acenaphthylene (SIM)	ND	0.29	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Anthracene (SIM)	ND	0.29	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(a)anthracene (SIM)	ND	0.071	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(a)pyrene (SIM)	ND	0.14	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(b)fluoranthene (SIM)	ND	0.071	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(g,h,i)perylene (SIM)	ND	0.71	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Benzo(k)fluoranthene (SIM)	ND	0.29	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Chrysene (SIM)	ND	0.29	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.14	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Fluoranthene (SIM)	ND	0.71	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Fluorene (SIM)	ND	1.4	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.14	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
2-Methylnaphthalene (SIM)	240	140	μg/L	100		SW-846 8270D	10/6/18	10/10/18 8:47	IMR
Naphthalene (SIM)	530	140	μg/L	100		SW-846 8270D	10/6/18	10/10/18 8:47	IMR
Phenanthrene (SIM)	0.59	0.071	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Pyrene (SIM)	ND	1.4	μg/L	1		SW-846 8270D	10/6/18	10/9/18 17:18	IMR
Surrogates		% Recovery	Recovery Limit	ts	Flag/Qual				
Nitrobenzene-d5		*	30-130		S-02			10/9/18 17:18	
Nitrobenzene-d5		50.4	30-130					10/10/18 8:47	
2-Fluorobiphenyl		62.0	30-130					10/9/18 17:18	

30-130

30-130

30-130

10/10/18 8:47

10/9/18 17:18

10/10/18 8:47

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18J0293-01 [TW-1- Parcel 13]	B214429	0.025	5.00	10/10/18	
Prep Method: SW-846 3510C-SW-846 8270D					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18J0293-01 [TW-1- Parcel 13]	B214244	700	1.00	10/06/18	
18J0293-01RE1 [TW-1- Parcel 13]	B214244	700	1.00	10/06/18	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Kesuit	Linit	Units	LEVEI	result	JUNEU	LIIIIIIS	ΛſIJ	LIIIII	notes
Batch B214429 - SW-846 5030B					104-					
Blank (B214429-BLK1)				Prepared: 10	0/10/18 Analy	yzed: 10/11/1	8			
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L π							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
romodichloromethane	ND	0.50	μg/L π							
romoform	ND	1.0	μg/L							
Promomethane	ND	2.0	μg/L							
Butanone (MEK)	ND	20	μg/L							
ert-Butyl Alcohol (TBA)	ND	20	μg/L							
Butylbenzene	ND	1.0	μg/L							
ec-Butylbenzene	ND	1.0	μg/L							
rt-Butylbenzene	ND	1.0	μg/L							
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
arbon Disulfide	ND	4.0	μg/L							
arbon Tetrachloride	ND	5.0	μg/L							
hlorobenzene	ND	1.0	μg/L							
hlorodibromomethane	ND	0.50	μg/L							
hloroethane	ND	2.0	μg/L							
hloroform	ND	2.0	μg/L							
hloromethane	ND	2.0	μg/L							
Chlorotoluene	ND	1.0	μg/L							
Chlorotoluene	ND	1.0	μg/L							
2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
2-Dibromoethane (EDB)	ND	0.50	μg/L							
ibromomethane	ND	1.0	μg/L							
2-Dichlorobenzene	ND	1.0	μg/L							
3-Dichlorobenzene	ND	1.0	μg/L							
4-Dichlorobenzene	ND	1.0	μg/L							
ans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
ichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1-Dichloroethane	ND	1.0	μg/L							
2-Dichloroethane	ND	1.0	μg/L							
1-Dichloroethylene	ND	1.0	μg/L							
s-1,2-Dichloroethylene	ND	1.0	μg/L							
ans-1,2-Dichloroethylene	ND	1.0	μg/L							
2-Dichloropropane	ND	1.0	μg/L							
3-Dichloropropane	ND	0.50	μg/L							
2-Dichloropropane	ND	1.0	μg/L							
1-Dichloropropene	ND	2.0	μg/L							
s-1,3-Dichloropropene	ND	0.50	μg/L							
ans-1,3-Dichloropropene	ND	0.50	μg/L							
iethyl Ether	ND	2.0	μg/L							
isopropyl Ether (DIPE)	ND	0.50	μg/L							
4-Dioxane	ND	50	μg/L							
hylbenzene	ND	1.0	μg/L							
exachlorobutadiene	ND	0.60	μg/L							
Hexanone (MBK)	ND	10	μg/L							
opropylbenzene (Cumene)	ND ND	1.0	μg/L μg/L							
Isopropyltoluene (p-Cymene)		1.0	μg/L μg/L							
lethyl tert-Butyl Ether (MTBE)	ND ND	1.0	μg/L μg/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214429 - SW-846 5030B										
Blank (B214429-BLK1)				Prepared: 10	0/10/18 Anal	yzed: 10/11/	18			
Methylene Chloride	ND	5.0	μg/L							
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
Naphthalene	ND	2.0	μg/L							
n-Propylbenzene	ND	1.0	μg/L							
Styrene	ND	1.0	μg/L							
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
Tetrachloroethylene	ND	1.0	μg/L							
Tetrahydrofuran	ND	10	μg/L							
Toluene	ND	1.0	μg/L							
1,2,3-Trichlorobenzene	ND	5.0	μg/L							
1,2,4-Trichlorobenzene	ND	1.0	μg/L							
1,3,5-Trichlorobenzene	ND	1.0	μg/L							
1,1,1-Trichloroethane	ND	1.0	μg/L							
1,1,2-Trichloroethane	ND	1.0	μg/L							
Trichloroethylene	ND	1.0	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
1,2,3-Trichloropropane	ND	2.0	μg/L							
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
1,2,4-Trimethylbenzene	ND	1.0	μg/L							
1,3,5-Trimethylbenzene	ND	1.0	μg/L							
Vinyl Chloride	ND	2.0	μg/L							
m+p Xylene	ND	2.0	μg/L							
o-Xylene	ND	1.0	μg/L							
-				25.0		01.0	70.120			
Surrogate: 1,2-Dichloroethane-d4	20.2		μg/L	25.0		81.0	70-130			
Surrogate: Toluene-d8	25.3		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	24.5		μg/L	25.0		98.1	70-130			
LCS (B214429-BS1)			/1	•	0/10/18 Anal					
Acetone	110	50	μg/L	100		110	70-160			
Acrylonitrile	10.0	5.0	μg/L ug/I	10.0		100	70-130			
tert-Amyl Methyl Ether (TAME)	9.69	0.50	μg/L	10.0		96.9	70-130			
Benzene	9.91	1.0	μg/L ug/I	10.0		99.1	70-130			
Bromobenzene	10.7	1.0	μg/L	10.0		107	70-130			
Bromochloromethane	11.1	1.0	μg/L	10.0		111	70-130			
Bromodichloromethane	9.68	0.50	μg/L π	10.0		96.8	70-130			
Bromoform	11.2	1.0	μg/L	10.0		112	70-130			
Bromomethane	8.79	2.0	μg/L π	10.0		87.9	40-160			
2-Butanone (MEK)	101	20	μg/L α	100		101	40-160			
tert-Butyl Alcohol (TBA)	98.5	20	μg/L α	100		98.5	40-160			
n-Butylbenzene	11.3	1.0	μg/L	10.0		113	70-130			
sec-Butylbenzene	11.5	1.0	μg/L	10.0		115	70-130			
tert-Butylbenzene	11.5	1.0	μg/L	10.0		115	70-130			
tert-Butyl Ethyl Ether (TBEE)	9.65	0.50	μg/L	10.0		96.5	70-130			
Carbon Disulfide	10.8	4.0	μg/L	10.0		108	70-130			
Carbon Tetrachloride	8.57	5.0	μg/L	10.0		85.7	70-130			
Chlorobenzene	11.0	1.0	μg/L	10.0		110	70-130			
Chlorodibromomethane	10.7	0.50	μg/L	10.0		107	70-130			
Chloroethane	8.75	2.0	μg/L	10.0		87.5	70-130			
Chloroform	9.29	2.0	μg/L	10.0		92.9	70-130			
Chloromethane	9.26	2.0	μg/L	10.0		92.6	40-160			
2-Chlorotoluene	11.1	1.0	μg/L	10.0		111	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214429 - SW-846 5030B										
LCS (B214429-BS1)				Prepared: 10)/10/18 Anal	yzed: 10/11/1	8			
4-Chlorotoluene	10.6	1.0	μg/L	10.0		106	70-130			
,2-Dibromo-3-chloropropane (DBCP)	10.4	5.0	μg/L	10.0		104	70-130			
,2-Dibromoethane (EDB)	10.2	0.50	μg/L	10.0		102	70-130			
Dibromomethane	10.1	1.0	μg/L	10.0		101	70-130			
,2-Dichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130			
,3-Dichlorobenzene	11.3	1.0	μg/L	10.0		113	70-130			
,4-Dichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130			
ans-1,4-Dichloro-2-butene	10.8	2.0	μg/L	10.0		108	70-130			
Dichlorodifluoromethane (Freon 12)	7.09	2.0	μg/L	10.0		70.9	40-160			
1-Dichloroethane	10.1	1.0	μg/L	10.0		101	70-130			
2-Dichloroethane	8.69	1.0	μg/L	10.0		86.9	70-130			
,1-Dichloroethylene	9.28	1.0	μg/L	10.0		92.8	70-130			
is-1,2-Dichloroethylene	9.56	1.0	μg/L	10.0		95.6	70-130			
ans-1,2-Dichloroethylene	10.0	1.0	μg/L	10.0		100	70-130			
2-Dichloropropane	11.5	1.0	μg/L	10.0		115	70-130			
,3-Dichloropropane	9.78	0.50	μg/L	10.0		97.8	70-130			
,2-Dichloropropane	10.4	1.0	μg/L	10.0		104	40-130			
1-Dichloropropene	9.29	2.0	μg/L	10.0		92.9	70-130			
s-1,3-Dichloropropene	10.6	0.50	μg/L	10.0		106	70-130			
ans-1,3-Dichloropropene	10.8	0.50	μg/L	10.0		108	70-130			
iethyl Ether	10.4	2.0	μg/L	10.0		104	70-130			
isopropyl Ether (DIPE)	9.93	0.50	μg/L	10.0		99.3	70-130			
4-Dioxane	108	50	μg/L	100		108	40-130			
hylbenzene	11.4	1.0	μg/L	10.0		114	70-130			
exachlorobutadiene	13.0	0.60	μg/L	10.0		130	70-130			
Hexanone (MBK)	102	10	μg/L	100		102	70-160			
opropylbenzene (Cumene)	102	1.0	μg/L	10.0		102	70-130			
-Isopropyltoluene (p-Cymene)	11.7	1.0	μg/L	10.0		117	70-130			
Iethyl tert-Butyl Ether (MTBE)	9.84	1.0	μg/L μg/L	10.0		98.4	70-130			
lethylene Chloride		5.0	μg/L	10.0		90.1	70-130			
-Methyl-2-pentanone (MIBK)	9.01	10	μg/L μg/L							
aphthalene	100	2.0	μg/L μg/L	100		100	70-160			
	10.7			10.0		107	40-130			
Propylbenzene	10.8	1.0	μg/L ug/I	10.0		108	70-130			
tyrene	11.4	1.0	μg/L uα/I	10.0		114	70-130			
1,1,2-Tetrachloroethane	11.4	1.0	μg/L	10.0		114	70-130			
1,2,2-Tetrachloroethane	11.1	0.50	μg/L α/I	10.0		111	70-130			
etrachloroethylene	11.6	1.0	μg/L	10.0		116	70-130			
etrahydrofuran	9.64	10	μg/L	10.0		96.4	70-130			J
	10.7	1.0	μg/L	10.0		107	70-130			
2,3-Trichlorobenzene	10.9	5.0	μg/L	10.0		109	70-130			
2,4-Trichlorobenzene	11.0	1.0	μg/L	10.0		110	70-130			
3,5-Trichlorobenzene	11.4	1.0	μg/L	10.0		114	70-130			
1,1-Trichloroethane	9.39	1.0	μg/L	10.0		93.9	70-130			
1,2-Trichloroethane	10.9	1.0	μg/L	10.0		109	70-130			
richloroethylene	10.7	1.0	μg/L	10.0		107	70-130			
richlorofluoromethane (Freon 11)	8.03	2.0	μg/L	10.0		80.3	70-130			
2,3-Trichloropropane	10.2	2.0	μg/L	10.0		102	70-130			
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	10.4	1.0	μg/L	10.0		104	70-130			
2,4-Trimethylbenzene	10.6	1.0	μg/L	10.0		106	70-130			
,3,5-Trimethylbenzene	10.7	1.0	μg/L	10.0		107	70-130			
/inyl Chloride	9.45	2.0	μg/L	10.0		94.5	40-160			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214429 - SW-846 5030B										
LCS (B214429-BS1)				Prepared: 1	0/10/18 Anal	yzed: 10/11/	18			
m+p Xylene	21.9	2.0	μg/L	20.0		109	70-130			
o-Xylene	10.8	1.0	μg/L	10.0		108	70-130			
Surrogate: 1,2-Dichloroethane-d4	19.8		μg/L	25.0		79.0	70-130			
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.2		μg/L	25.0		101	70-130			
LCS Dup (B214429-BSD1)				Prepared: 1	0/10/18 Anal	yzed: 10/11/	18			
Acetone	106	50	μg/L	100		106	70-160	3.55	25	
Acrylonitrile	9.63	5.0	μg/L	10.0		96.3	70-130	4.07	25	
tert-Amyl Methyl Ether (TAME)	9.83	0.50	μg/L	10.0		98.3	70-130	1.43	25	
Benzene	9.76	1.0	μg/L	10.0		97.6	70-130	1.53	25	
Bromobenzene	10.4	1.0	μg/L	10.0		104	70-130	3.04	25	
Bromochloromethane	11.0	1.0	μg/L	10.0		110	70-130	0.816	25	
Bromodichloromethane	9.46	0.50	μg/L	10.0		94.6	70-130	2.30	25	
Bromoform	10.6	1.0	μg/L	10.0		106	70-130	5.40	25	
Bromomethane	9.56	2.0	μg/L	10.0		95.6	40-160	8.39	25	
2-Butanone (MEK)	98.3	20	μg/L	100		98.3	40-160	3.17	25	
tert-Butyl Alcohol (TBA)	93.1	20	μg/L	100		93.1	40-160	5.67	25	
n-Butylbenzene	11.0	1.0	μg/L	10.0		110	70-130	2.77	25	
sec-Butylbenzene	11.3	1.0	μg/L	10.0		113	70-130	1.32	25	
tert-Butylbenzene	11.1	1.0	μg/L	10.0		111	70-130	3.28	25	
tert-Butyl Ethyl Ether (TBEE)	9.70	0.50	μg/L	10.0		97.0	70-130	0.517	25	
Carbon Disulfide	10.3	4.0	μg/L	10.0		103	70-130	4.63	25	
Carbon Tetrachloride	8.13	5.0	μg/L	10.0		81.3	70-130	5.27	25	
Chlorobenzene	10.8	1.0	μg/L	10.0		108	70-130	1.92	25	
Chlorodibromomethane	10.6	0.50	μg/L	10.0		106	70-130	0.842	25	
Chloroethane	8.49	2.0	μg/L	10.0		84.9	70-130	3.02	25	
Chloroform	9.25	2.0	μg/L	10.0		92.5	70-130	0.431	25	
Chloromethane	9.15	2.0	μg/L	10.0		91.5	40-160	1.20	25	
2-Chlorotoluene	10.3	1.0	μg/L	10.0		103	70-130	7.39	25	
4-Chlorotoluene	10.1	1.0	μg/L	10.0		101	70-130	5.10	25	
1,2-Dibromo-3-chloropropane (DBCP)	9.59	5.0	μg/L	10.0		95.9	70-130	8.49	25	
1,2-Dibromoethane (EDB)	10.2	0.50	μg/L	10.0		102	70-130	0.195	25	
Dibromomethane	10.2	1.0	μg/L	10.0		101	70-130	0.0993	25	
1,2-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	1.10	25	
1,3-Dichlorobenzene	11.1	1.0	μg/L	10.0		111	70-130	1.61	25	
1,4-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	1.34	25	
trans-1,4-Dichloro-2-butene	10.4	2.0	μg/L	10.0		103	70-130	5.03	25	
Dichlorodifluoromethane (Freon 12)	6.71	2.0	μg/L	10.0		67.1	40-160	5.51	25	
1,1-Dichloroethane	10.0	1.0	μg/L	10.0		100	70-130	1.39	25	
1,2-Dichloroethane	8.70	1.0	μg/L	10.0		87.0	70-130	0.115	25	
1,1-Dichloroethylene	8.94	1.0	μg/L μg/L	10.0		89.4	70-130	3.73	25	
cis-1,2-Dichloroethylene	9.55	1.0	μg/L	10.0		95.5	70-130	0.105	25	
trans-1,2-Dichloroethylene	9.93	1.0	μg/L	10.0		99.4	70-130	0.802	25	
1,2-Dichloropropane	11.4	1.0	μg/L	10.0		114	70-130	0.523	25	
1,3-Dichloropropane	9.88	0.50	μg/L	10.0		98.8	70-130	1.02	25	
2,2-Dichloropropane	9.88	1.0	μg/L μg/L	10.0		100	40-130	3.91	25	
1,1-Dichloropropene	9.40	2.0	μg/L μg/L	10.0		94.0	70-130	1.18	25	
cis-1,3-Dichloropropene	9.40 10.5	0.50	μg/L μg/L	10.0		105	70-130	1.23	25	
trans-1,3-Dichloropropene	10.5	0.50	μg/L μg/L	10.0		103	70-130	0.927	23 25	
Diethyl Ether	9.97	2.0	μg/L μg/L	10.0		99.7	70-130	3.74	23 25	
Disopropyl Ether (DIPE)		0.50	μg/L μg/L	10.0			70-130		23 25	
Disopropyi Buier (DIFE)	9.84	0.50	μg/L	10.0		98.4	/0-130	0.910	25	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B214429 - SW-846 5030B											
LCS Dup (B214429-BSD1)				Prepared: 10	/10/18 Anal	yzed: 10/11/1	8				
1,4-Dioxane	101	50	μg/L	100		101	40-130	6.81	50		† :
Ethylbenzene	10.8	1.0	μg/L	10.0		108	70-130	5.23	25		
Hexachlorobutadiene	12.8	0.60	μg/L	10.0		128	70-130	2.17	25		
2-Hexanone (MBK)	98.3	10	μg/L	100		98.3	70-160	3.51	25		Ť
Isopropylbenzene (Cumene)	11.5	1.0	μg/L	10.0		115	70-130	2.41	25		
p-Isopropyltoluene (p-Cymene)	11.3	1.0	μg/L	10.0		113	70-130	0.791	25		
Methyl tert-Butyl Ether (MTBE)	9.80	1.0	μg/L	10.0		98.0	70-130	0.407	25		
Methylene Chloride	8.97	5.0	μg/L	10.0		89.7	70-130	0.445	25		
4-Methyl-2-pentanone (MIBK)	97.6	10	μg/L	100		97.6	70-160	2.93	25		Ť
Naphthalene	10.2	2.0	μg/L	10.0		102	40-130	4.11	25		Ť
n-Propylbenzene	10.3	1.0	μg/L	10.0		103	70-130	4.73	25		
Styrene	10.8	1.0	μg/L	10.0		108	70-130	5.39	25		
1,1,1,2-Tetrachloroethane	11.2	1.0	μg/L	10.0		112	70-130	2.21	25		
1,1,2,2-Tetrachloroethane	10.7	0.50	μg/L	10.0		107	70-130	3.03	25		
Tetrachloroethylene	11.3	1.0	μg/L	10.0		113	70-130	3.14	25		
Tetrahydrofuran	9.82	10	μg/L	10.0		98.2	70-130	1.85	25	J	
Toluene	10.6	1.0	μg/L	10.0		106	70-130	0.470	25		
1,2,3-Trichlorobenzene	10.8	5.0	μg/L	10.0		108	70-130	0.368	25		
1,2,4-Trichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130	3.42	25		
1,3,5-Trichlorobenzene	11.4	1.0	μg/L	10.0		114	70-130	0.00	25		
1,1,1-Trichloroethane	9.16	1.0	μg/L	10.0		91.6	70-130	2.48	25		
1,1,2-Trichloroethane	10.6	1.0	μg/L	10.0		106	70-130	3.45	25		
Trichloroethylene	10.3	1.0	μg/L	10.0		103	70-130	3.81	25		
Trichlorofluoromethane (Freon 11)	7.89	2.0	μg/L	10.0		78.9	70-130	1.76	25		
1,2,3-Trichloropropane	8.56	2.0	μg/L	10.0		85.6	70-130	17.8	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.85	1.0	μg/L	10.0		98.5	70-130	5.91	25		
1,2,4-Trimethylbenzene	10.5	1.0	μg/L	10.0		105	70-130	0.951	25		
1,3,5-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130	3.04	25		
Vinyl Chloride	8.87	2.0	μg/L	10.0		88.7	40-160	6.33	25		Ť
m+p Xylene	21.2	2.0	μg/L	20.0		106	70-130	3.25	25		
o-Xylene	10.6	1.0	μg/L	10.0		106	70-130	2.52	25		
Surrogate: 1,2-Dichloroethane-d4	20.2		μg/L	25.0		80.9	70-130				
Surrogate: Toluene-d8	25.2		μg/L	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	24.2		μg/L	25.0		96.9	70-130				

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214244 - SW-846 3510C										
Blank (B214244-BLK1)				Prepared: 10)/06/18 Anal	yzed: 10/08/1	8			
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	μg/L							
Anthracene (SIM)	ND	0.20	μg/L							
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	μg/L							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(g,h,i)perylene (SIM)	ND	0.50	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L							
Fluoranthene (SIM)	ND	0.50	μg/L							
Fluorene (SIM)	ND	1.0	μg/L							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L							
2-Methylnaphthalene (SIM)	ND	1.0	μg/L							
Japhthalene (SIM)	ND	1.0	μg/L							
Phenanthrene (SIM)	ND	0.050	μg/L							
yrene (SIM)	ND	1.0	μg/L							
urrogate: Nitrobenzene-d5	74.2		μg/L	100		74.2	30-130			
urrogate: 2-Fluorobiphenyl	78.7		μg/L	100		78.7	30-130			
Surrogate: p-Terphenyl-d14	80.5		μg/L	100		80.5	30-130			
LCS (B214244-BS1)				Prepared: 10)/06/18 Anal	yzed: 10/08/1	8			
Acenaphthene (SIM)	39.6	7.5	μg/L	50.0		79.1	40-140			
Acenaphthylene (SIM)	41.0	5.0	μg/L	50.0		82.0	40-140			
Anthracene (SIM)	42.4	5.0	μg/L	50.0		84.9	40-140			
Benzo(a)anthracene (SIM)	40.9	1.2	μg/L	50.0		81.8	40-140			
Benzo(a)pyrene (SIM)	43.4	2.5	μg/L	50.0		86.9	40-140			
Benzo(b)fluoranthene (SIM)	44.4	1.2	μg/L	50.0		88.7	40-140			
Benzo(g,h,i)perylene (SIM)	41.4	12	μg/L	50.0		82.8	40-140			
Benzo(k)fluoranthene (SIM)	42.2	5.0	μg/L	50.0		84.3	40-140			
Chrysene (SIM)	40.3	5.0	μg/L	50.0		80.6	40-140			
Dibenz(a,h)anthracene (SIM)	42.4	2.5	μg/L	50.0		84.9	40-140			
Fluoranthene (SIM)	41.9	12	μg/L	50.0		83.8	40-140			
Fluorene (SIM)	41.0	25	μg/L	50.0		82.1	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	43.0	2.5	μg/L	50.0		86.0	40-140			
2-Methylnaphthalene (SIM)	39.7	25	μg/L	50.0		79.4	40-140			
Naphthalene (SIM)	36.6	25	μg/L	50.0		73.3	40-140			
Phenanthrene (SIM)	40.2	1.2	μg/L	50.0		80.5	40-140			
Pyrene (SIM)	38.7	25	μg/L	50.0		77.4	40-140			
Surrogate: Nitrobenzene-d5	54.6		μg/L	100		54.6	30-130			
Surrogate: 2-Fluorobiphenyl	71.5		μg/L	100		71.5	30-130			
Surrogate: p-Terphenyl-d14	57.2		μg/L	100		57.2	30-130			

‡

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B214244 - SW-846 3510C										
LCS Dup (B214244-BSD1)				Prepared: 10)/06/18 Anal	yzed: 10/08/	18			
Acenaphthene (SIM)	40.4	7.5	μg/L	50.0		80.8	40-140	2.13	20	
Acenaphthylene (SIM)	41.8	5.0	μg/L	50.0		83.5	40-140	1.81	20	
Anthracene (SIM)	44.0	5.0	μg/L	50.0		88.1	40-140	3.70	20	
Benzo(a)anthracene (SIM)	44.4	1.2	μg/L	50.0		88.8	40-140	8.09	20	
Benzo(a)pyrene (SIM)	45.6	2.5	μg/L	50.0		91.2	40-140	4.88	20	
Benzo(b)fluoranthene (SIM)	46.8	1.2	μg/L	50.0		93.6	40-140	5.43	20	
Benzo(g,h,i)perylene (SIM)	43.6	12	μg/L	50.0		87.3	40-140	5.29	20	
Benzo(k)fluoranthene (SIM)	44.6	5.0	μg/L	50.0		89.2	40-140	5.59	20	
Chrysene (SIM)	42.6	5.0	μg/L	50.0		85.3	40-140	5.73	20	
Dibenz(a,h)anthracene (SIM)	44.9	2.5	μg/L	50.0		89.8	40-140	5.61	20	
Fluoranthene (SIM)	43.3	12	μg/L	50.0		86.6	40-140	3.34	20	
Fluorene (SIM)	41.8	25	μg/L	50.0		83.6	40-140	1.81	20	
Indeno(1,2,3-cd)pyrene (SIM)	45.4	2.5	μg/L	50.0		90.8	40-140	5.37	20	
2-Methylnaphthalene (SIM)	40.2	25	μg/L	50.0		80.4	40-140	1.38	20	
Naphthalene (SIM)	37.1	25	μg/L	50.0		74.2	40-140	1.29	20	
Phenanthrene (SIM)	41.8	1.2	μg/L	50.0		83.6	40-140	3.84	20	
Pyrene (SIM)	40.8	25	$\mu g/L$	50.0		81.5	40-140	5.10	20	
Surrogate: Nitrobenzene-d5	54.9		μg/L	100		54.9	30-130			
Surrogate: 2-Fluorobiphenyl	71.1		μg/L	100		71.1	30-130			
Surrogate: p-Terphenyl-d14	57.9		μg/L	100		57.9	30-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 FLAG/QUALIFIER SUMMARY

- * QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

- I-02 Result not attainable due to sample matrix interferences (a chemical or physical interference which could not be eliminated).
- J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
- RL-11 Elevated reporting limit due to high concentration of target compounds.
- S-02 The surrogate recovery for this sample cannot be accurately quantified due to interference from coeluting organic compounds present in the sample extract.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260B in Water		_
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	

CERTIFICATIONS

Certified Analyses included in this Report

eer uneu Anaryses menudeu in tins Report	
Analyte	Certifications
SW-846 8260B in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
СТ	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

	ž
S	502
Ų.	C.
1 1	1.48
Ċ	X
ō	41-X-T-IC
Ŭ	NN.
	ľ

\ { \ ∪ L 9 \ 525-2332 Email: info@contestlabs.com Fax: 413-525-6405

CHAIN OF CUSTODY RECORD (North Carolina)

dues es faranta da 10-Day

Due Date:

7-Day

http://www.contestlabs.com

Doc # 379 Rev 1_03242017

•	reet	

	M
39 Spruce Street	East Longmeadow.

д

Page___

01028

ł

٤

¹ Matrix Codes: GW = Ground Water WW = Wate Water

or diophesphate. I ample

Field Filtered Lab to Filter

Htd

8360

¹Matrix Code

Grab

Composite

Ending Date/Time

Beginning Date/Time

Client Sample ID / Description

Mike Pfeifer

Sampled By: TRAILE HALLEN

Work Orders Con-Test

Mille DEcifica

Con-Test Quote Name/Number:

Project Manager: Project Number:

Invoice Recipient:

4305-18-175

Fax To #

C C C 88 >

>

7

G-W

lation

8-2-01

3

- Harrel

TW-I

0288

mail To: OCH MOFCIFERES MCINC

CLP Like Data Pkg Required:

Dissolved (hige its Sa

ANALYSIS REQUESTED

3-Day 4-Day

o-Day

Parcel 13

I-598/0B

Project Location: NCOQT

I-Day

Paleit , NC

Sprine Funct Rd

STA- 2662 3201

Phone: &

No al

Address:

EXCEL

₽DF

ormat:

Other:

Field Filtered

Lab to Filter

^c Preservation Code

of Containers

Container Code

DW = Drinking Water SL = Sludge SOL = Solid

S = Soil A = Air

0 = Other (please

² Preservation Codes:

= Iced H = HCL X = Sodium Hydroxide

0 = Other (please

define)

Please use the following codes to indicate possible sample concentration

Wife The of the collected in Sano PAH, well about to rechange

comments:

within the Conc Code column above

H - High; M - Medium; L - Low; C - Clean; U - Unknown

Thiosulfate = Sodium

S = Sulfuric Acid B = Sodium Bisulfate

N = Nitric Acid

M = Methanol

Table of Contents

Non Soxhlet

Chromatogram

 $\Box\Box$

Municipality Brownfield

 $\Box\Box$

Government

Project Entity

Date/Time:

nquished by: (signature)

eived by: (signature)

Page 21 of 23

Date/Time:

Federal

 $D \Box d$

Date/Time:

City

School

Other

AIHA-LAP, LLC

PCB ONLY Soxhlet

AIHA-LAP, LLC Accredited

NELAC and

S = Summa Canister

ST = Sterile

V = Viał

P = Plastic

UST/Trust Fund

DSCA

Program Information

True Corolina Deleve

GWPC

7

13×0000

ic/uls

Date/Time:

(PK 4

5

5

(eccived by: (sighature)

d by: (signature)

Relinquished by

ALL P

Date/Time:

SWSL

838

Relinquished by: (signature)

eived by: signature)

MSCC **HSB**

REC

IHSB Orphaned Landfill

State Lead

Other:

SWS Landfill

T = Tedlar Bag 0 = Other (please

define)

³ Container Codes:

A = Amber Glass G = Glass

define)

ĽX.

公②

Sign In

TRACK ANOTHER SHIPMENT

783089843299 🖄

Delivered Friday 10/05/2018 at 8:58 am

DELIVERED

Signed for by: P.BLAKE

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

RALEIGH, NC US

TO

EAST LONGMEADOW, MA US

Travel History

10/05/2018 - Friday

10/04/2018 - Thursday

8:58 am

1:52 pm

Shipment Facts

Delivered

EAST LONGMEADOW, MA

Expand History 🗸

Shipment information sent to FedEx

About FedEx FedEx Blog Our Portfolio Corporate R Investor Relations Newsroom Careers Contact Us

Corporate Responsibility Newsroom Contact Us FedEx Compatible Developer Resource Center FedEx Cross Border

MORE FROM FEDEX

LANGUAGE

Change Country

English

FOLLOW FEDEX

OUR COMPANY

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False										
Olfant	ST MI		fit to the at	cention of t						
Client Receive		- RAP	<u></u>	Date	10/5	115	Time	828		
How were the		In Cooler		No Cooler		On Ice	T	No Ice		
receive								Melted Ice		
		Direct from Samp	-	····		Actual Temp	o- 3,9	-		
Were sampl	les within			557		-			-	
Temperatur	e? 2-6°C	T	By Blank #	Actual Temp					-	
Was	Custody Se	eal Intact?	<u>Nn</u>	Were Samples Tampered with?					-	
Was COC Relinquished ?			·丁·	Does Chain Agree With Samples?					-	
Are there broken/leaking/loose caps on any samples?										
Is COC in ink	k/ Legible?	T	-		nples rece	ived within ho			-	
Did COC in	nclude all	Client		Analysis		<u>, </u>	er Name		_	
pertinent Info	ormation?	Project	Ť	ID's	- 	_ Collection	Dates/Times		-	
Are Sample	labels filled	d out and legible?	<u> </u>	-						
Are there Lat	o to Filters?	?	F	-		as notified?			-	
Are there Ru	shes?		<u> </u>	Who was notified?				-		
Are there She	ort Holds?			Who was notified?					_	
Is there enou	igh Volume	e?	T	-		0				
Is there Headspace where applicable?		<u> </u>	-	MS/MSD'			\cap			
Proper Media/Containers Used?		T	Is splitting samples required?							
Were trip blanks received?		<u> </u>	On COC? <u>F</u>							
Do all sample	es have the	e proper pH?	N/I	J Acid			Base		-	
Vials	#	Containers:	#			#			#	
Unp-		1 Liter Amb.	1	1	Plastic			z Amb.		
HCL-	3	500 mL Amb.		the second se	Plastic			nb/Clear		
Meoh-		250 mL Amb.			Plastic		1	nb/Clear		
Bisulfate-		Col./Bacteria			npoint			nb/Clear		
DI-		Other Plastic			Glass			ncore		
Thiosulfate-		SOC Kit			ic Bag		Frozen:			
Sulfuric-		Perchlorate			lock		1			
Unused Media										
Vials	#	Containers:	#		<u></u>	#	16.0	- Amb	#	
Unp-		1 Liter Amb.			Plastic	_	and the second se	<u>z Amb.</u> mb/Clear		
HCL-		500 mL Amb.			L Plastic			mb/Clear		
Meoh-		250 mL Amb.			Plastic			mb/Clear		
Bisulfate-		Col./Bacteria	<u> </u>		hpoint			ncore		
DI-		Other Plastic			r Glass		Frozen:		1	
Thiosulfate-	L	SOC Kit			tic Bag		IT IOZGII.			
Sulfuric-		Perchlorate			olock	1				
Comments:										