

December 14, 2018

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: **Preliminary Site Assessment Report**

NCDOT Project I-5986B, WBS Element 47532.1.3

Parcel 11-Copart

Copart Lane

Dunn, Harnett County, North Carolina

S&ME Project 4305-18-175

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1800583 REV-02 dated August 16, 2018, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its August 20, 2018 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 30, 2018, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
11	Copart of Connecticut	(Copart)
		Copart Lane, Dunn, NC

The PSA included a geophysical survey, subsequent limited soil sampling (three soil borings up to 10 feet below ground surface (ft.-bgs.) and attempted groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC.) was also used to locate and mark underground utilities.

Geophysical Survey

On October 16, 2018, S&ME personnel performed a geophysical survey within accessible areas of the proposed ROW/easement at Parcel 11. S&ME used a combination of the Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) methods to explore for buried subsurface features at the site such as underground storage tanks (USTs) and other possible buried obstructions. Brief descriptions of the proposed complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820-02 (2007) "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles, metal equipment, thickly wooded areas, ditches, and other surficial obstructions within the requested survey area however prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4**. Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 3000 GPR system equipped with a 400 MHz antenna in general accordance with ASTM D6432-11 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of six (6) GPR profiles (Lines 1 through 6) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan[®] 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. However, one anomalous feature (Anomaly A) was identified in both the TDEM and GPR data sets (**Figures 5 through 7**). Anomaly A is characterized by relatively high TDEM values (greater than about 200 mV) and an isolated high amplitude GPR response located within the upper one foot. As such, Anomaly A is likely related to a small buried isolated metallic target. The identified anomaly was also marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**.

Soil Sampling

On October 22, 2018, S&ME's drill crew utilized a track mounted Geoprobe® rig to advance three soil borings (B-1 through B-3) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 11. Soil boring B-1 was located on top of a soil berm outside the automotive salvage yard, east of two existing onsite stormwater ponds. Soil borings B-2 and B-3 were located within the northeastern portion of the automotive salvage yard. An attempt was made to advance an additional soil boring (B-4) located east of the stormwater ponds. However, due to existing fencing, thick wooded area and a steep slope, S&ME was unable to access the area of soil boring B-4. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** S&ME's drill crew advanced the Geoprobe® borings to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at soil boring B-3 at a depth of 6.5 ft.-bgs. Groundwater was not encountered within ten feet at soil borings B-1 or B-2. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II**.

No petroleum odors, staining or elevated PID readings were noted within the collected soil samples. Therefore, soil samples from varying depth intervals were selected from each boring and provided to RED Lab, LLC (Red Lab) for on-site analysis. A total of five soil samples were analyzed by RED Lab for Total Petroleum Hydrocarbons (TPH)-Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification. Due to the site's use as an automotive salvage yard, one soil sample was also selected from each boring, placed in an insulated cooler with ice for transport to Con-Test Analytical for analysis of total lead, arsenic and chromium by EPA Method 6020.

Soil Analytical Results

TPH-GRO and TPH-DRO were not reported at concentrations exceeding the North Carolina TPH Action Levels. TPH-DRO was reported at borings B-3 (two to four foot depth interval) at a concentration of 0.24 milligrams per kilograms (mg/kg), which is below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits for the remaining soil samples.

Total chromium was reported in each of the soil samples at concentrations ranging from 7.2 mg/kg to 21 mg/kg.

For chromium, there are screening levels for three different valent states of chromium. Total chromium, chromium III, and chromium VI. North Carolina conservatively considers laboratory results for total chromium, which is a combination of chromium III (most common isotopic state) and chromium VI, only as chromium VI. The NCDEQ, Inactive Hazardous Sites Branch (IHSB) has established Preliminary Soil Remediation Goals (PSRG) of Residential Health Based (0.31 milligrams per kilograms (mg/kg)), Industrial/Commercial Health Based (6.5 mg/kg) and Protection of Groundwater (3.8 mg/kg) for total chromium and chromium VI. Chromium III has a Residential Health Based PSRG of 23,000 mg/kg, an Industrial/Commercial Health Based PSRG of 350,000 mg/kg and Protection of Groundwater PSRG of 360,000 mg/kg. Chromium concentrations in the three soil samples are comparable, suggesting that chromium is naturally occurring and not indicative of a release of chromium. S&ME assumes that total chromium as reported by the laboratory is in the trivalent state (chromium III). Therefore, the total chromium results are considered to be well below the PSRGs. If required, speciated laboratory analysis and calculations will confirm whether the total chromium is comprised of trivalent and/or hexavalent chromium.

Total lead was reported in each of the soil samples at concentrations below the PSRGs and at comparable concentrations suggesting that they are naturally occurring and not indicative of a release. Total lead was reported at concentrations ranging from 3.2 mg/kg to 7.7 mg/kg.

Total arsenic was reported at boring B-2 (zero to two foot depth interval) at a concentration of 0.95 mg/kg, which marginally exceeds its Residential PSRG of 0.68 mg/kg but not its Industrial/Commercial or Protection of Groundwater PSRGs. Total arsenic was also reported in the soil samples from borings B-1 and B-3 at concentrations of 0.19 mg/kg and 0.4 mg/kg, respectively, which are below the PSRGs. The arsenic concentrations are comparable and most likely naturally occurring and not indicative of a release.

A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at boring B-3 at a depth of approximately 6.5 ft.-bgs. Groundwater was not encountered at borings B-1 or B-2 within 10 ft.bgs. Therefore, the Geoprobe® was used to advance boring B-3 into the groundwater table for the collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-3 using a five foot section of one-inch diameter, Schedule 40 PVC well riser attached to a ten foot section of 0.01-inch slotted screen. Due to the sandy soil condition, the temporary well was unable to be installed deeper than 10 ft.-bgs. Groundwater within the

temporary monitor well at soil boring B-3 was measured at 6.5 ft.-bgs. The temporary well was purged until dry and did not recover. Therefore, a groundwater sample was not obtained.

Upon completion of the soil and attempted groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by North Carolina Department of Environmental Quality (NCDEQ). Used gloves and tubing were bagged and disposed off-site.

Conclusion and Recommendations

The geophysical survey identified one anomalous feature (Anomaly A). Anomaly A is likely related to a small buried isolated metallic target Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced three soil borings (B-1 through B-3) to a depth of approximately 10 ft.-bgs at the site. An attempt was made to advance an additional soil boring (B-4). However, due to existing fencing, thick wooded area and a steep slope, S&ME was unable to access the area of soil boring B-4. No petroleum odors, staining or elevated PID readings were noted within soil samples collected from the soil borings. Selected soil samples from the soil borings were analyzed onsite for TPH-GRO and TPH-DRO using UVF spectroscopy. One soil sample from each boring was also analyzed for total chromium, total lead and total arsenic by Con-Test Laboratories.

TPH-DRO was reported at one soil boring at a depth of approximately two to four ft.-bgs at a concentration below its North Carolina TPH Action Level.

The chromium detections in soil are likely naturally occurring and in the trivalent state. The reported chromium detections in soil are well below the PSRGs for trivalent chromium. If required, speciated laboratory analysis and calculations will confirm whether the total chromium is comprised of trivalent and/or hexavalent chromium. Total lead detections in the soil were reported at levels below the PSRGs and are likely naturally occurring. Total arsenic was detected in one soil sample at a concentration marginally above the Residential PSRG. However, the total arsenic detections in soil are likely naturally occurring.

During the soil boring advancement, groundwater was encountered at one soil boring (B-3) at a depth of approximately 6.5 ft.-bgs. Groundwater was not encountered at borings B-1 or B-2. One temporary well (TW-1) was installed at soil boring B-3. However, the well purged dry and did not recover. Therefore, a groundwater sample was not collected.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum in soil (below TPH Action Levels) at the site for the safety of workers and the public. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire

property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., buildings, reinforced concrete, vehicles, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific, and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of approximately about five feet below ground surface.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

DocuSigned by:

Jamie Honeycutt 4C890EAEC25F488...

Jamie T Honeycutt

Environmental Professional

jhoneycutt@smeinc.com

Michael W. Pfeifer Senior Project Manager

mpfeifer@smeinc.com

— Bocusigned by:

Michael Pfeifer

861E52DDEFAF4C7...

Thomas P. Raymond, P.E., P.M.P.

Senior Consultant

traymond@smeinc.com

1/22/2019

Docusigned by:

Attachments:

Table 1: Summary of Soil Sampling Results

Figure 1: Vicinity Map

Figure 2: Site Map

Figure 3: Soil Constituent Map

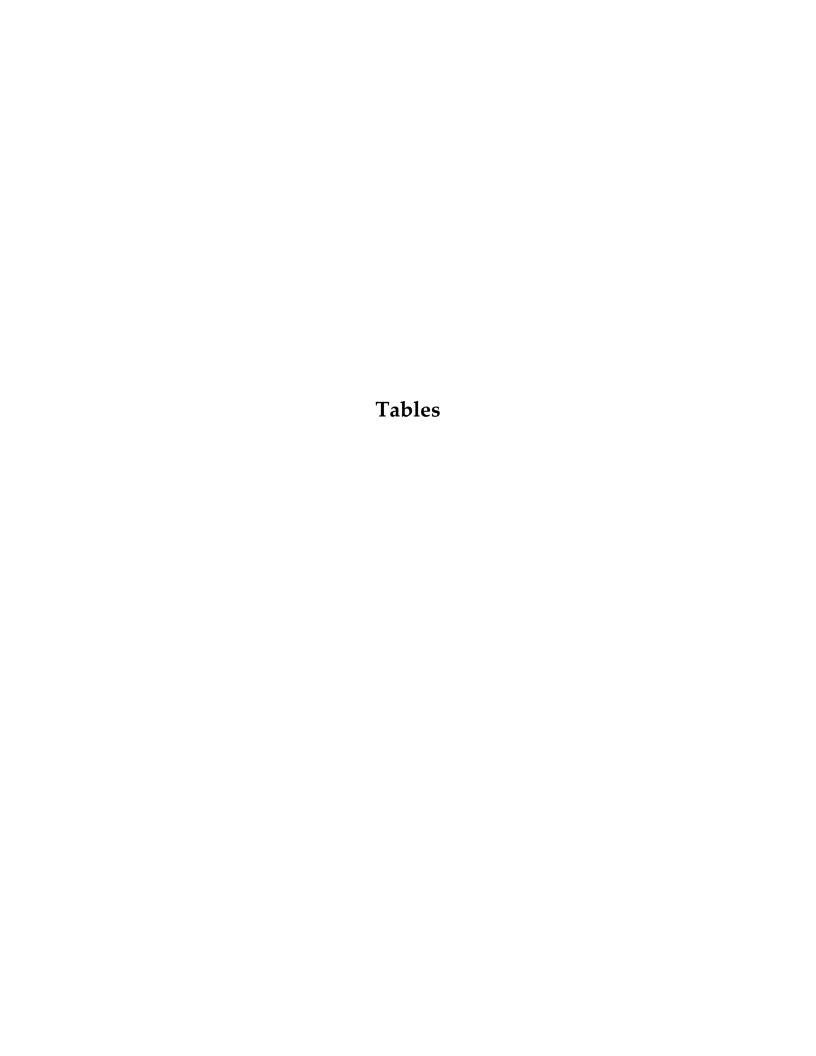
Figure 4: TDEM Path Location Plan **Figure 5:** TDEM Data Plot A

Figure 6: TDEM Data Plot B

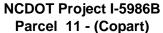
Figure 7: TDEM Data Plot B-Detail

Figure 8: Geophysical Anomaly Location Plan

Figure 9: Geophysical Anomaly Location Plan-Detail


Figure 10: Example GPR Data – Lines 7, 8 and 9

Appendix I: Photographs **Appendix II:** Boring Logs

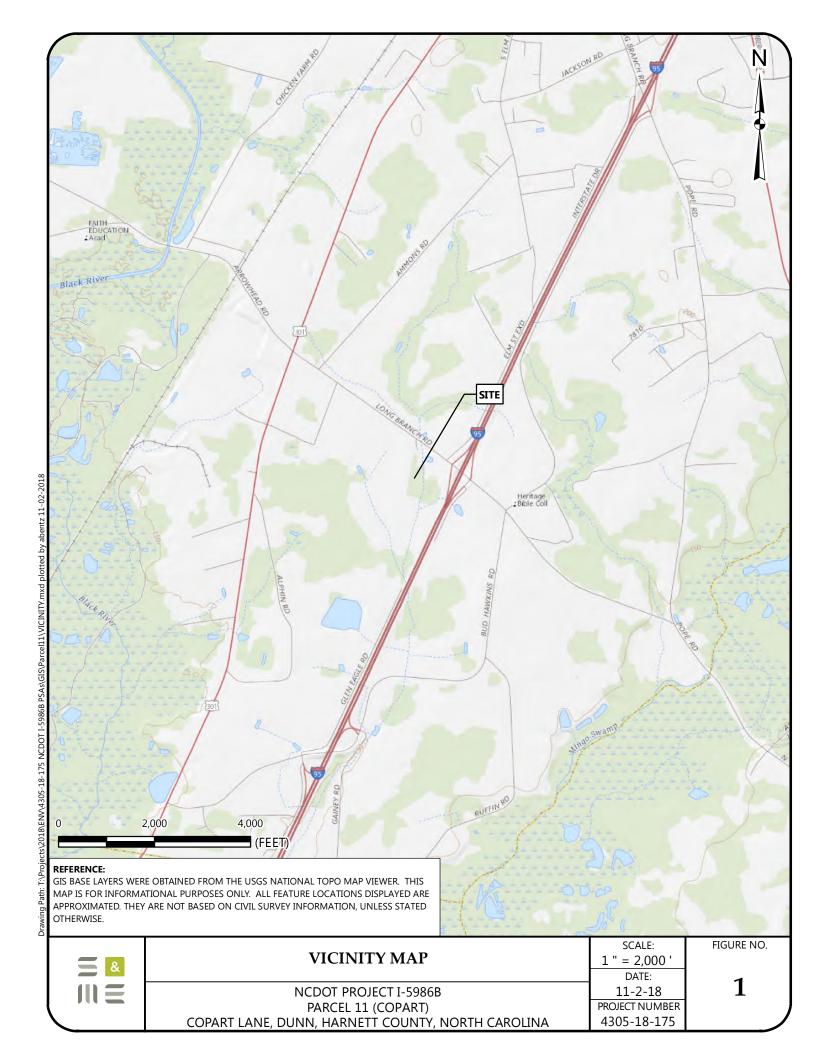

Appendix III: Laboratory Analytical Reports and Chain of Custody

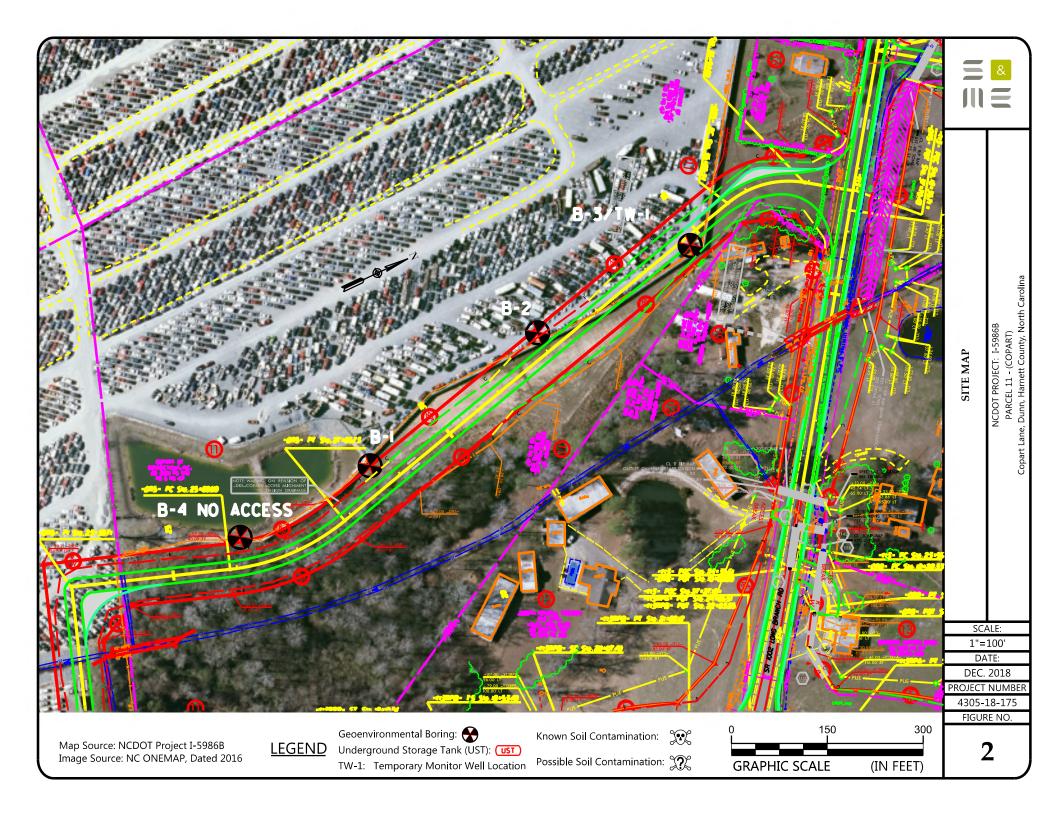
December 14, 2018

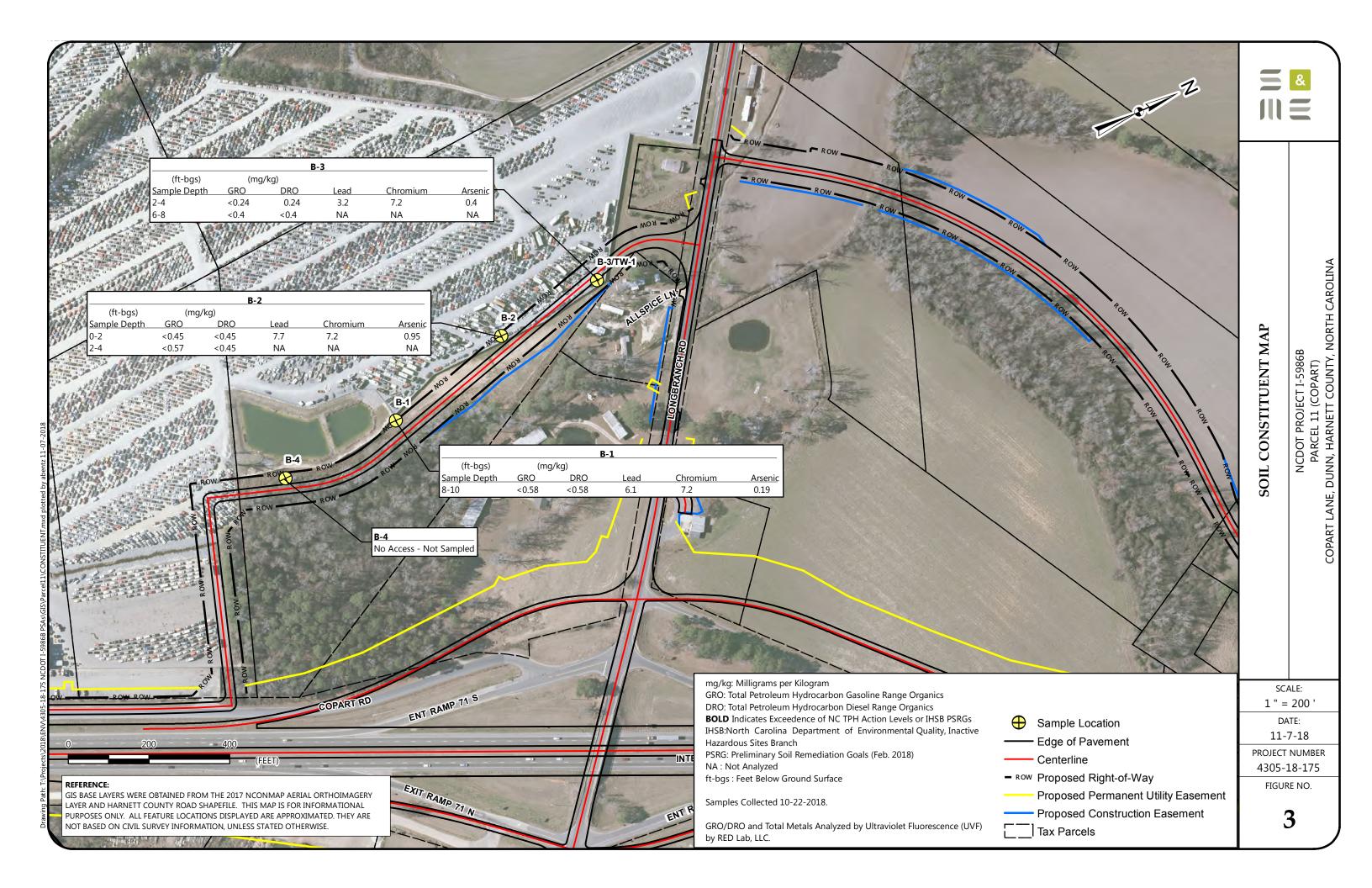
7

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5986B

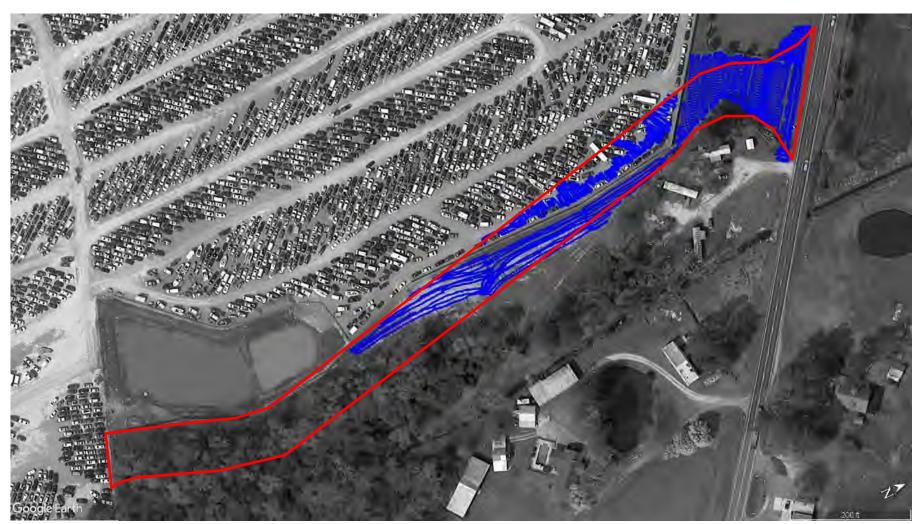
Copart Lane


Dunn, Harnett County, North Carolina S&ME Project No. 4305-18-175


Analytical Method→			Range Organics (GR	carbons (TPH) Gasoline O) and Diesel Range traviolet Fluorescence ectrometry	Total Metals by EPA Method 6020				
Sample ID	_	Contaminant of Concern→							
	Date	Sample Depth (ftbgs)	·		Lead	Chromium*	Arsenic		
Parcel 11 B-1	10/22/2018	8 to 10	<0.58	<0.58	6.1	7.2	0.19 J		
Parcel 11 B-2	10/22/2018	0 to 2	<0.45	<0.45	7.7	21	0.95**		
Paicei II B-2	10/22/2010	10/22/2010	10/22/2010	2 to 4	<0.57	<0.57	NA	NA	NA
Parcel 11 B-3	10/22/2018	2 to 4	<0.24	0.24	3.2	7.2	0.4		
Paicei II B-3	10/22/2016	6 to 8	<0.4	<0.4	NA	NA	NA		
North Car	North Carolina TPH Action Levels		50	100		Not Applicable			
IHSB Residential Health Based PSRG		Not App	olicable	400	23,000	0.68			
	ndustrial/Cor alth Based P		Not App	800	350,000	3.0			
IHSB Protection of Groundwater PSRG			Not App	olicable	270	360,000	5.8		


Notes:

- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in BOLD fields.
- 5. NA: Not Analyzed
- 6. Total Metals analyzed by Con-Test Laboratories.
- 7. J: Estimated concentration detected below the laboratory method reporting limit.
- 8. IHSB: North Carolina Department of Environmental Quality, Inactive Hazardous Sites Branch
- 9. PSRG: Preliminary Soil Remediation Goals (Feb. 2018)
- 10. Concentrations exceeding the North Carolina TPH Action Levels or IHSB PSRGs are shown in Shaded and BOLD fields.
- 11. *: Assumes chromium in the trivalent state (chromium III)
- 12. **: Arsenic was reported at a concentration exceeding the PSRG. However, arsenic appears to be naturally occurring.



(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

•••• Approximate TDEM Path

Approximate Requested Survey Area

TDEM PATH LOCATION PLAN

NCDOT PROJECT: 1-59868 PARCEL 11 – (COPART) COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/1/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

4

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

--- Approximate Location of Fence

TDEM DATA PLOT A

NCDOT PROJECT: 1-5986B PARCEL 11 – (COPART) COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 11/1/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

5

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

SCALE: AS SHOWN

NCDOT PROJECT: 1-5986B PARCEL 11 – (COPART) COPART LANE, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT B

DATE: 11/1/2018

PROJECT NUMBER 4305-18-175

FIGURE NO.

6

--- Approximate Location of Fence

Approximate Location of TDEM Anomaly

(GOOGLE EARTH PRO) AERIAL PHOTOGRAPH (DATED, MARCH, 04 2018)

LEGEND

--- Approximate Location of Fence

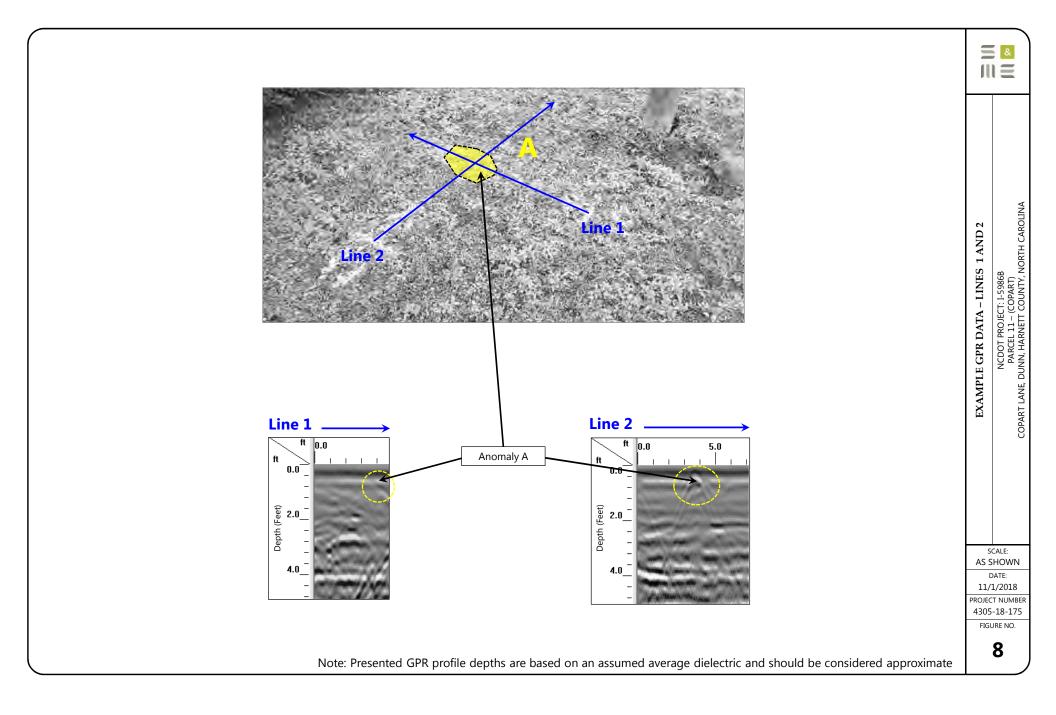
Approximate Location of TDEM Anomaly

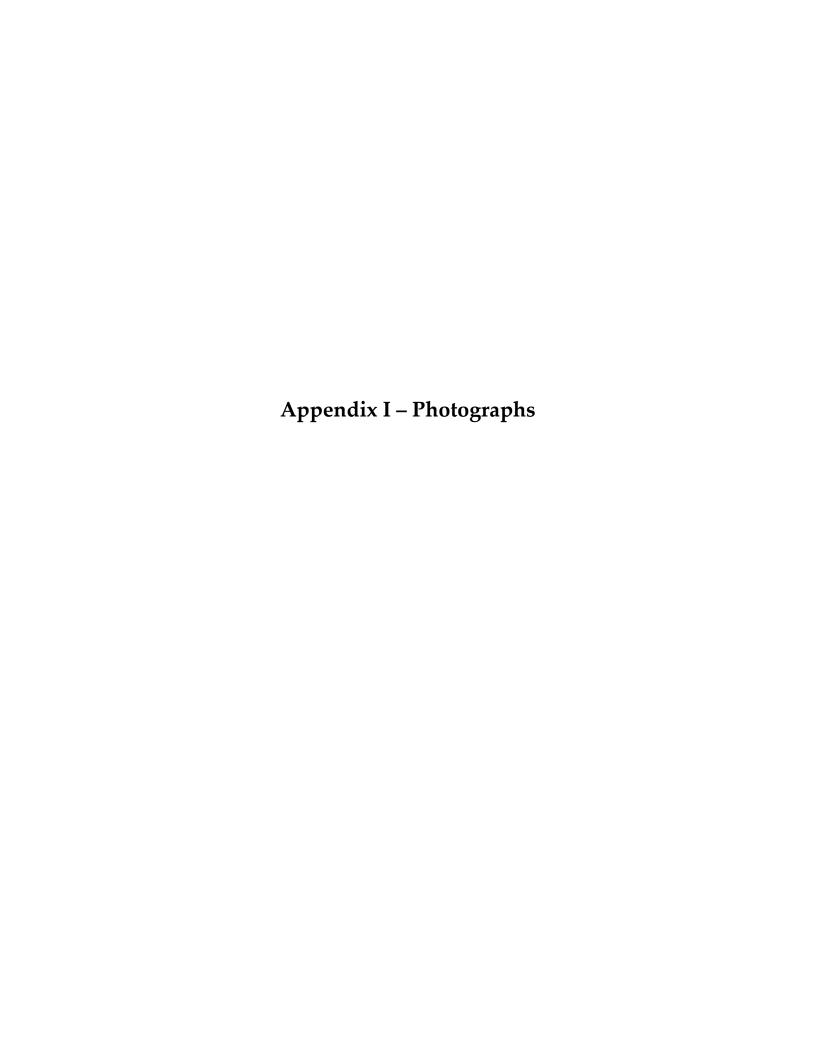
Approximate Location of GPR Profile

GEOPHYSICAL ANOMALY LOCATION PLAN

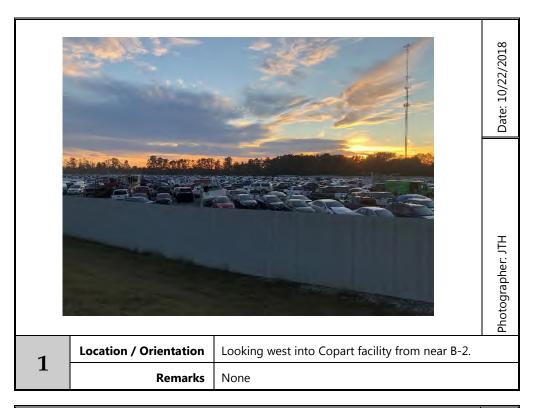
COUNTY, NORTH CAROLINA

NCDOT PROJEC PARCEL 11 – (COPART LANE, DUNN, HARNETT

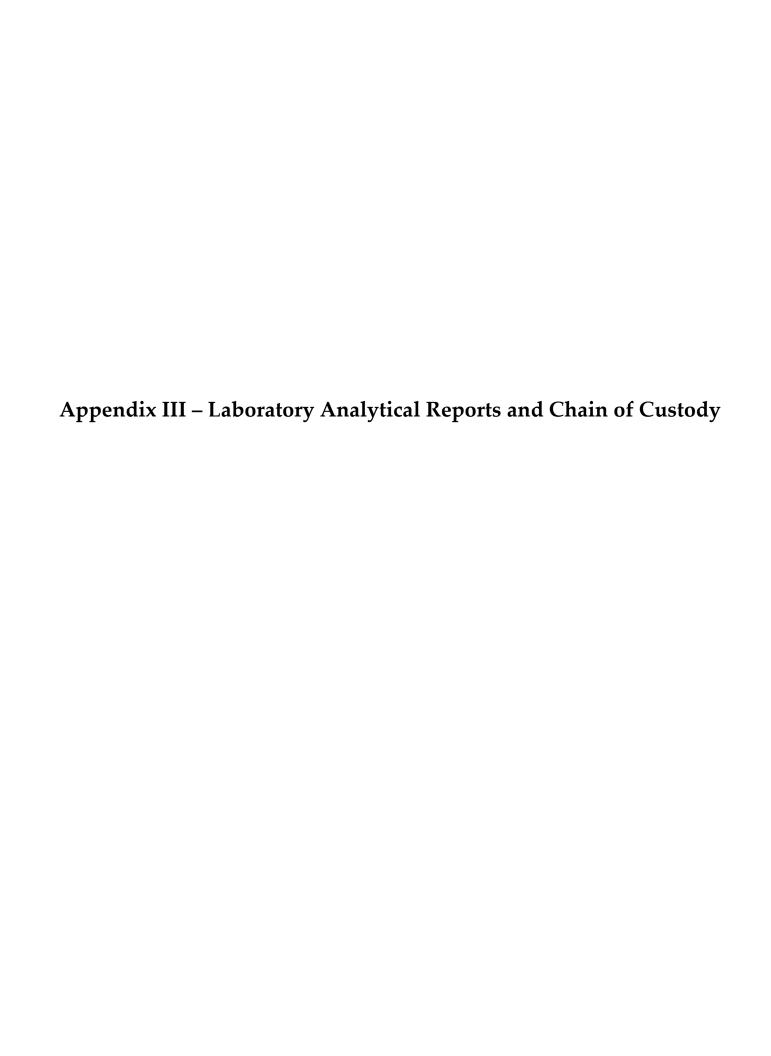

SCALE: AS SHOWN


DATE: 11/1/2018

PROJECT NUMBER 4305-18-175


FIGURE NO.

7



PROJECT	:	NCDOT I-5986B										
		Parcel 11-Copart Lane, Dunn, NC				BORIN	NG LOG	B-1				
		S&ME Project No. 4305-18-175										
DATE DRILL	LED:	Monday, October 22, 2018	BORING DEPTH (FT):									
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:									
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:									
HAMMER T		Not Applicable	LOGGED BY:	J. Honeyo	utt							
SAMPLING		Macro-Core Sampler	NORTHING:									
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:				1					
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE	
		Sand, Tan, Brown,				0.8	No					
		Clayey Sand, Tan, Orange,			ł							
5 —					ŧ	0.5	No					
		Sile Seed Dec			I	0.6	No					
		Silty Sand, Brown,			ł	1.1	No					
10 —		Boring Terminated at 10 Ft-BGS			Н	2.0	Yes					
	-											
	_											
15 —												
	-											
20 —												
25 —												
_												
	·											
30 —												

PROJECT	:	NCDOT I-5986B	BORING LOG: B-2									
		Parcel 11-Copart Lane, Dunn, NC				BORIN	NG LOG	B-2				
		S&ME Project No. 4305-18-175										
DATE DRILL	LED:	Monday, October 22, 2018	BORING DEPTH (FT):									
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:									
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:									
HAMMER T		Not Applicable	LOGGED BY:		utt							
SAMPLING		Macro-Core Sampler	NORTHING:									
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	1			1		
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION										
		Gravel, Sandy Clay, Tan,										
		Sandy Clay, Red, Tan,			ł	0.8	Yes					
 5					ł	1.2	Yes					
					ł	1.8	No					
_					ł	1.4	No					
10 —— —— ——		Boring Terminated at 10 Ft-BGS				2.0	No					
15												
20												
25 —												

PROJECT	:	NCDOT I-5986B									
		Parcel 11-Copart Lane, Dunn, NC				BORI	NG LOG	B-3/	TW-1	L	
		S&ME Project No. 4305-18-175									
DATE DRILL	LED:		ORING DEPTH (FT):								
DRILL RIG:		Geoprobe 7730 DT	WATER LEVEL:								
DRILLER:		S&ME, Inc.	CAVE-IN DEPTH:								
HAMMER T		Not Applicable	LOGGED BY:		cutt						
SAMPLING		Macro-Core Sampler	NORTHING:	1							
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:		1	1	1	1			
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Gravel, Silty Sand, Tan,			İ	0.4	Yes				
5 —		Sand, Tan,		-	I	0.5	Yes				
_				•	ł	0.3	No				
						0.8	No				
10 —— —— ——		Boring Terminated at 10 Ft-BGS									
15 —											
20											
25 —— ——											
30 —											

Hydrocarbon Analysis Results

Client: S&ME Address: 310 COPART ROAD

DUNN NC 28334

Samples taken Samples extracted Samples analysed

Final FCM QC Check OK

Monday, October 22, 2018 Monday, October 22, 2018

96 %

Monday, October 22, 2018

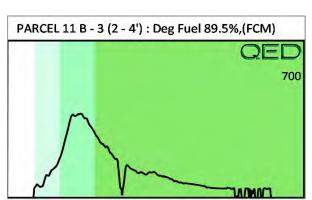
Contact: JAMIE HONEYCUTT JENN RYAN

Project: 4305-18-175

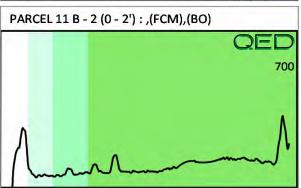
UC Fingerprint Metab
HC Fingerprint Match
39.5%,(FCM)
etected,(BO)
HC,(BO)
etected,(P)
e H

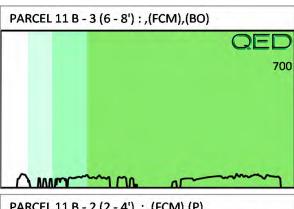
Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

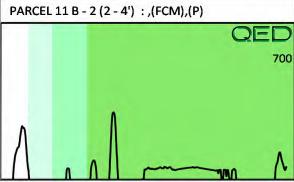
Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.


Data generated by HC-1 Analyser


OK


Initial Calibrator QC check

Project: 4305-18-175

November 1, 2018

Michael Pfeifer S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Parcel 11 Client Job Number:

Project Number: 4305-18-175

Laboratory Work Order Number: 18J1181

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 23, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	6
18J1181-01	6
18J1181-02	8
18J1181-03	10
Sample Preparation Information	12
QC Data	13
Metals Analyses (Total)	13
B216002	13
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	16

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Michael Pfeifer

REPORT DATE: 11/1/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-18-175

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18J1181

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Parcel 11

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Parcel 11 B-3 2-4'	18J1181-01	Soil		SM 2540G	
				SW-846 6020B	
Parcel 11 B-2 0-2'	18J1181-02	Soil		SM 2540G	
				SW-846 6020B	
Parcel 11 B-1 8-10'	18J1181-03	Soil		SM 2540G	
				SW-846 6020B	

EXECUTIVE SUMMARY

Client ID: Parcel 11 B-3 2-4' Lab ID: 18J1181-01

Analyte	Results/Qual	DL	RL	Units	Method
Arsenic	0.40	0.030	0.18	mg/Kg dry	SW-846 6020B
Chromium	7.2	0.16	4.6	mg/Kg dry	SW-846 6020B
Lead	3.2	0.060	1.8	mg/Kg dry	SW-846 6020B
% Solids	88.5			% Wt	SM 2540G
Client ID: Parcel 11 B-2 0-2'	Lab ID:	18J1181-02			
Analyte	Results/Qual	DL	RL	Units	Method
Arsenic	0.95	0.035	0.21	mg/Kg dry	SW-846 6020B
Chromium	21	0.19	5.3	mg/Kg dry	SW-846 6020B
Lead	7.7	0.069	2.1	mg/Kg dry	SW-846 6020B
% Solids	78.1			% Wt	SM 2540G
Client ID: Parcel 11 B-1 8-10'	Lab ID:	18J1181-03			
Analyte	Results/Qual	DL	RL	Units	Method
Arsenic	0.19 J	0.032	0.19	mg/Kg dry	SW-846 6020B
Chromium	7.2	0.17	4.8	mg/Kg dry	SW-846 6020B
Lead	6.1	0.064	1.9	mg/Kg dry	SW-846 6020B
% Solids	83.5			% Wt	SM 2540G

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 6020, all dilutions were performed as per standard operating procedure.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-3 2-4'

Sampled: 10/22/2018 16:30

Sample ID: 18J1181-01
Sample Matrix: Soil

Metals Analyses (To	otal)
---------------------	-------

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.40	0.18	0.030	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:12	МЈН
Chromium		7.2	4.6	0.16	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:12	MJH
Lead		3.2	1.8	0.060	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:12	MJH

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-3 2-4'

Sample ID: 18J1181-01
Sample Matrix: Soil

Sampled: 10/22/2018 16:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		88.5		% Wt	1		SM 2540G	10/29/18	10/30/18 10:43	JFC

10/30/18 10/31/18 13:16 MJH

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-2 0-2'

Sampled: 10/22/2018 17:00

7.7

2.1

0.069

mg/Kg dry

Sample ID: 18J1181-02
Sample Matrix: Soil

Arsenic Chromium Lead

			Metals Analy	ses (Total)					
							Date	Date/Time	
Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
0.95	0.21	0.035	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:16	MJH
21	5.3	0.19	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:16	MJH

SW-846 6020B

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-2 0-2'

Sample ID: 18J1181-02
Sample Matrix: Soil

Sampled: 10/22/2018 17:00

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		78.1		% Wt	1		SM 2540G	10/29/18	10/30/18 10:43	JFC

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-1 8-10'

Sampled: 10/22/2018 18:45

Sample ID: 18J1181-03
Sample Matrix: Soil

Metals Analyses (Total)	
-------------------------	--

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Arsenic		0.19	0.19	0.032	mg/Kg dry	5	J	SW-846 6020B	10/30/18	10/31/18 13:26	MJH
Chromium		7.2	4.8	0.17	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:26	MJH
Lead		6.1	1.9	0.064	mg/Kg dry	5		SW-846 6020B	10/30/18	10/31/18 13:26	MJH

Project Location: Parcel 11 Sample Description: Work Order: 18J1181

Date Received: 10/23/2018

Field Sample #: Parcel 11 B-1 8-10'

Sample ID: 18J1181-03
Sample Matrix: Soil

Sampled: 10/22/2018 18:45

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		83.5		% Wt	1		SM 2540G	10/29/18	10/30/18 10:43	JFC

Sample Extraction Data

Prep Method: % Solids-SM 2540G

Lab Number [Field ID]	Batch	Date
18J1181-01 [Parcel 11 B-3 2-4']	B215886	10/29/18
18J1181-02 [Parcel 11 B-2 0-2']	B215886	10/29/18
18J1181-03 [Parcel 11 B-1 8-10']	B215886	10/29/18

Prep Method: SW-846 3050B-SW-846 6020B

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
18J1181-01 [Parcel 11 B-3 2-4']	B216002	1.54	50.0	10/30/18
18J1181-02 [Parcel 11 B-2 0-2']	B216002	1.52	50.0	10/30/18
18J1181-03 [Parcel 11 B-1 8-10']	B216002	1.54	50.0	10/30/18

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B216002 - SW-846 3050B										
Blank (B216002-BLK1)				Prepared: 10	0/30/18 Anal	yzed: 10/31	/18			
Arsenic	ND	0.17	mg/Kg wet							
Chromium	ND	4.2	mg/Kg wet							
Lead	ND	1.7	mg/Kg wet							
LCS (B216002-BS1)				Prepared: 10	0/30/18 Anal	yzed: 10/31	/18			
Arsenic	166	2.0	mg/Kg wet	161		103	83.2-116.8			
Chromium	146	50	mg/Kg wet	136		107	82.4-117.6			
Lead	110	20	mg/Kg wet	111		99.1	83-117.1			
LCS Dup (B216002-BSD1)				Prepared: 10	0/30/18 Anal	yzed: 10/31	/18			
Arsenic	177	2.0	mg/Kg wet	161		110	83.2-116.8	6.55	30	
Chromium	152	49	mg/Kg wet	136		111	82.4-117.6	3.76	30	
Lead	119	20	mg/Kg wet	111		108	83-117.1	8.23	30	

FLAG/QUALIFIER SUMMARY

- QC result is outside of established limits.
- Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

J Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated

concentration (CLP J-Flag).

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SW-846 6020B in Soil

Arsenic NY,VA,NH,NC,ME

Chromium NY,NC,ME Lead NY,NC,ME

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

	Γ	Т-	Т				4.54				য়েন্ড	4407	3 8 14 6 2 4 2	(KUN)	14357	and gr	- 1 <u>1</u> N		V 14-1	14.15.1	YN, 1951	jesti			શ્રુપ્ય	1,				٦ .	abl	e of	Conte	nts
Page	# of Containers	² Preservation Code	³ Container Code	solution steady they seems	Field Filtered	Lab to Filter		Setting the species of the setting of	Field Filtered	Lab to Filter		Matrix Codes:	WW = Waste Water	Dw = Urinking water A = Air	SL = Sludge	SOL = Solid 0 = Other (please	define)	2 Preservation Codes:	D= Iced	= Methano = Nitric Acid		X = Sodium Hydroxide T = Sodium	Thiosulfate 0 = Other (please	define)	3 Container Codes:	·	P = Plastic ST = Sterile	V = Vial S = Summa Canister		define)		PCB ONLY	Soxniet Non Soxhlet	THE PARTY OF THE P
Doc # 379 Rev 1_03242017 39 Spruce Street East Longmeadow, MA 01028				ANALYSIS REQUESTED		1.7		TA -																Please use the following codes to indicate possible sample concentration within the Conc Code column above:	H - High; M - Medium; L - Low; C - Clean; U - Unknown	gram Informa		SWS Landfill REC	State Lead	Uther:	WELAC and AIHA-LAP, LLC Accredited	Other	AIHA-LAP,LLC	TOTAL
http://www.contestlabs.com Doc#3: CHAIN OF CUSTODY RECORD (North Carolina) Recilicated Authority firms	7-Day 10-Day	Due Date:	Rush-Approval Required	1-Day 3-Day	2-Day	Date Daliveny	Format: PDF Z EXCEL Z	Other:		Email To: The week STOS MCING. CAM	Fax To #:	Ending Composite Grab Wetrix Conc Code	1,630 / 5 11 / 5	1700	Sept 18 18 18 18 18 18 18 18 18 18 18 18 18	18 /2 / S / S / S / S / S / S / S / S / S								Please use the followin withi	H - High; M - M	North Carolina Detection Limit Requirements	21.	SWSL	IHSB MCCC	DOCAL CONTRACTOR OF THE PROPERTY OF THE PROPER	The state of the s	tity Government Municipality		
	Email: info@contestlabs.com	1	FORCET DD ROLETIC NC	3,60	NCOOT	1	<u>ال</u>	Psister			اللاريم علايا	Client Sample ID / Description Beginning Date/Lime	Exect 1 3 3 3-4 10.72	B-2 0.21	地	Queed 113-1 8-10/ V		THE STATE OF THE S	TO THE PARTY OF TH								10 - 12 1400	10/23/8 (336)	Date/Fime: 12.13 1/2 3/3	` ,	<u>-</u> - 2	Date/ lime: Project Entity	Date/Time:	
CON-KESK®		Composity Mentics	S. 3201 Spring	916, W		Poved	205H	Project Manager:	Con-Test Quote Name/Number:	pient:	という	Con-Test Work Order#	g.	2 Pa	*	3 m							Comments:			Relinquished by: (signature)	Bereined by (signature) A	Bury Karly	Relinguished by: (signature)	eived by: (signature)	J	ge 1	eived by: (signature)	3

Delivered Wednesday 10/24/2018 at 9:24 am

DELIVERED

Signed for by: P.BLAKE

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM Raleigh, NC US TO

EAST LONGMEADOW, MA US

Shipment Facts

TRACKING NUMBER

773547745711

SERVICE

FedEx Priority Overnight

WEIGHT

45.3 lbs / 20.55 kgs

DIMENSIONS

24x14x13 in.

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

TOTAL SHIPMENT WEIGHT

45.3 lbs / 20 55 kgs

TERMS

SHIPPER REFERENCE

Third Party

PACKAGING

Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday, Additional Handling

Surcharge

STANDARD TRANSIT

10/24/2018 by 10:30 am

SHIP DATE

Tue 10/23/2018

ACTUAL DELIVERY

Wed 10/24/2018 9:24 am

Travel History

Local Scan Time

Wednesday, 10/24/2018

9:24 am EAST LONGMEADOW, MA Delivered

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:52 am

WINDSOR LOCKS, CT

At local FedEx facility

6:58 am

8:03 am

EAST GRANBY, CT

At destination sort facility

5:13 am

INDIANAPOLIS, IN

12:19 am

INDIANAPOLIS, IN

Departed FedEx location Arrived at FedEx location

https://www.fedex.com/apps/fedextrack/?action=track&tracknumbers=773547745711&locale=en_US&cntry_code=us

Page 17 of 18

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client 5 t f								
Received By	12Ap		Date	10/3	M18	Time	924	
How were the samples	In Cooler	T	No Cooler		On Ice		_ No Ice	
received?	Direct from Samp	ling			Ambient		Melted Ice	
Were samples within		By Gun#	557		Actual Temp	o- 7.2	-	
Temperature? 2-6°C	T	By Blank #			Actual Temp		4	
Was Custody S	eal Intact?	NA	 	re Sample:	s Tampered		NA	
Was COC Relin					ree With San		7	
Are there broken/le	•	on any sam	-	f		•		
Is COC in ink/ Legible?	T		Were sam	iples recei	ved within ho	Iding time?		
Did COC include all	Client	T	Analysis	<u> </u>	Sample		T	
pertinent Information?	Project	T	ID's	-	Collection I	Dates/Times		
Are Sample labels filled	-		•					
Are there Lab to Filters?	-				s notified?		· · · · · · · · · · · · · · · · · · ·	
Are there Rushes?		<u>t</u>	-		s notified?			
Are there Short Holds?			•	Who was	s notified?			
Is there enough Volume	-		•	MS/MSD?			_	
Is there Headspace who Proper Media/Container	•		-		samples requ	iirod?		
Were trip blanks receive	-		~	On COC?	1 -,	an eu r		
Do all samples have the		MA	Acid	On OOO:		Base		
Vials #	Containers:	#	-		# 1			# 1
Unp-	1 Liter Amb.	•	1 Liter F	Plastic	*	16 oz	z Amb.	,
HCL-	500 mL Amb.		500 mL				nb/Clear	
Meoh-	250 mL Amb.		250 mL	Plastic			nb)/Clear	3
Bisulfate-	Col./Bacteria		Flash				า์b/Clear	
DI-	Other Plastic		Other (······			core	
Thiosulfate- Sulfuric-	SOC Kit Perchlorate		Plastic			Frozen:		
Guilane-	1 erchlorate		Ziplo					
		44	Unused N	ledia				
Vials # Unp-	Containers: 1 Liter Amb.	#	1 Liter F	Diantia	#	16.55	: Amb.	#
HCL-	500 mL Amb.		500 mL				nb/Clear	
Meoh-	250 mL Amb.		250 mL			· ·	nb/Clear	
Bisulfate-	Col./Bacteria		Flash	·····			nb/Clear	
DI-	Other Plastic		Other (core	
Thiosulfate-	SOC Kit		Plastic	Bag		rozen:		
Sulfuric-	Perchlorate		Ziplo	ock				
Comments:				***************************************				
								I
								i