

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 84-Building and Earth

610 Spring Branch Road

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
84	KAM Leasing, LLC	(Building and Earth)
		610 Spring Branch (aka Pope Road), Dunn, NC

The property is developed with a commercial building that is currently occupied by Building and Earth which is a geotechnical, environmental and material testing firm. The building is reported to have previously been occupied by a textile sewing facility. The property is not listed with registered petroleum underground storage tanks (USTs) (active or closed). The property is not listed with North Carolina Department of Environmental Quality (NCDEQ) Incidents associated with petroleum releases from USTs or aboveground storage tanks.

The PSA included a geophysical survey, subsequent limited soil sampling (six soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 84. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of vehicles and thick vegetation within the survey area, prevented TDEM data collection in several locations. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of six GPR profiles (Lines 1 through 6) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. One anomalous feature unrelated to known surficial targets was identified in the geophysical data sets (Anomaly A; **Figures 6 and 7**). Anomaly A is characterized by high amplitude GPR responses located less than about one foot below ground surface (bgs) and may be related to a relatively small isolated buried metallic object. The anomaly was marked in the field using white spray paint. Example GPR profiles are presented in **Figure 8**

Soil Sampling

On October 29, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance six soil borings (B-1 through B-6) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 84. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix I.** Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four to 9.7 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix II.**

Petroleum odors and elevated PID readings were not noted in the collected soil samples. Therefore, a soil sample was selected from each boring at varying depth intervals. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of six soil

samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-DRO was reported in borings B-2 and B-3 at the four to six foot depth interval, at concentrations ranging from 0.96 milligram per kilograms (mg/kg) to 1.2 mg/kg, which is slightly above the laboratory method reporting limits but well below its North Carolina TPH Action Level of 100 mg/kg. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3**. A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix III**.

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately four to 9.7 ft.-bgs. Therefore, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Due to the lack of petroleum odors or elevated PID readings, boring B-4 was selected at random for collection of a groundwater sample. A temporary monitor well (TW-1) was installed at boring B-4 to a depth of approximately five ft.-bgs using a five foot section of one-inch diameter, Schedule 40 PVC, 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at boring B-4 was measured at four ft.-bgs. Groundwater was purged from the temporary well until relatively clear using disposable tubing attached to a peristaltic pump. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1 and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed offsite.

Groundwater Analytical Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, one target constituent was reported at a concentration slightly above the laboratory method reporting limits and below its 15A NCAC 2L Groundwater Quality Standards (2L Standards). Tetrachloroethylene (PCE), which is a chlorinated solvent, was reported in the groundwater sample at a concentration of 0.43 microgram per liter (μ g/L) which is below its 2L Standard of 0.7 μ g/L. No other target constituent was reported in the groundwater sample at a concentration exceeding the laboratory method reporting limits. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix III**.

Conclusion and Recommendations

The geophysical survey identified one anomaly (Anomaly A) which may be related to a relatively small isolated buried metallic object. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced six soil borings (B-1 through B-6) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were not noted in soil samples collected at the borings. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were not reported at concentrations exceeding their respective North Carolina TPH Action Levels. TPH-DRO was reported in borings B-2 and B-3 at the four to six foot depth interval at concentrations slightly above the laboratory method reporting limits but well below its North Carolina TPH Action Level. TPH-GRO and TPH-DRO were not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

During the soil boring advancement, groundwater was encountered at depths ranging from four to 9.7 ft.-bgs. One temporary well (TW-1) was installed at soil boring B-4. Groundwater at TW-1 was measured at four ft.-bgs and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Tetrachloroethylene (PCE), which is a chlorinated solvent, was reported in the groundwater sample at a concentration of 0.43 μ g/L which is below its 2L Standard of 0.7 μ g/L. No other target constituent was reported in the groundwater sample at a concentration exceeding the laboratory method reporting limits.

Based on the findings of the geophysical survey and analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil marginally impacted with petroleum (below TPH Action Levels) and groundwater marginally impacted with Tetrachloroethylene a chlorinated solvent (below 2L Standards).

It should also be assumed that saturated petroleum and solvent impacted soil will be encountered if construction excavations extend deeper than four ft.-bgs on the site. If construction dewatering is required, impacted groundwater must be properly disposed or treated at a licensed facility. If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of marginally impacted petroleum and solvents in the soil and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

January 9, 2020

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., surficial debris, reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about six ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

DocuSigned by:

Danie Honercutt


4C890EAEC25F488...

Jamie T Honeycutt Environmental Professional

jhoneycutt@smeinc.com

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map

Figure 2: Site Map

Figure 3: Soil and Groundwater Constituent Map

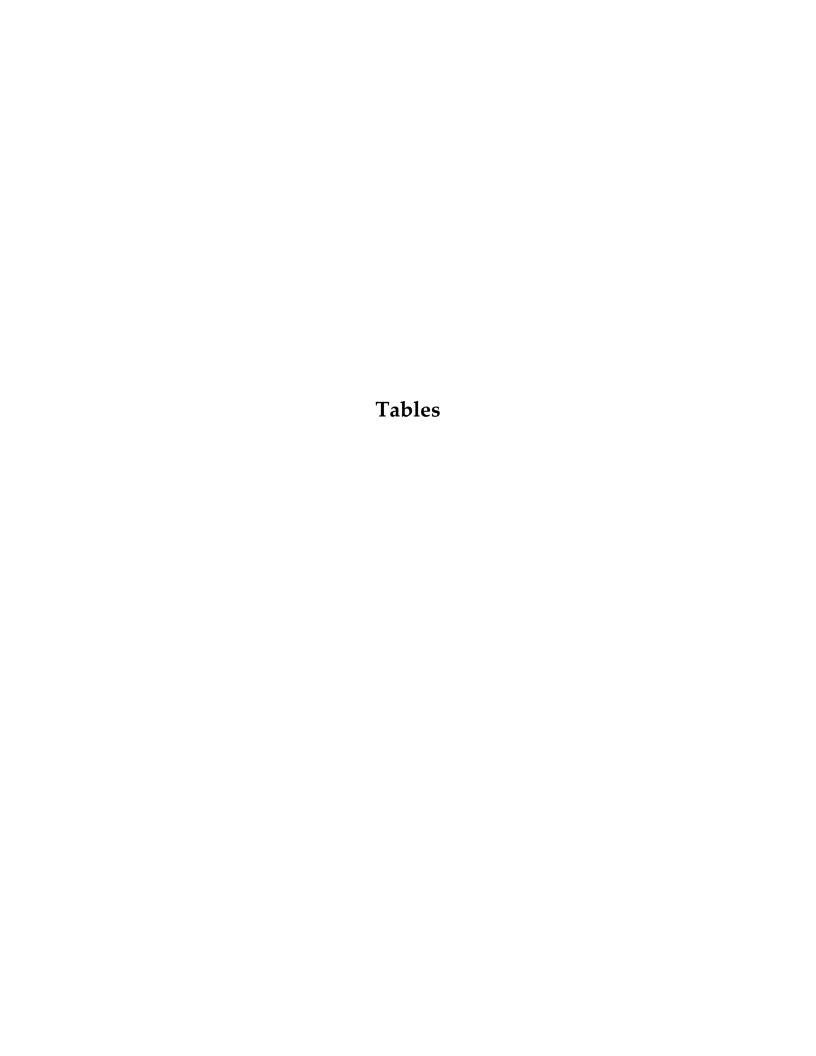

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A Figure 6: TDEM Data Plot B

Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 5 and 6

Appendix I: Photographs **Appendix II:** Boring Logs

Appendix III: Laboratory Analytical Reports and Chain of Custody

TABLE 1

SUMMARY OF SOIL SAMPLING RESULTS

S&ME Project No. 4305-19-161

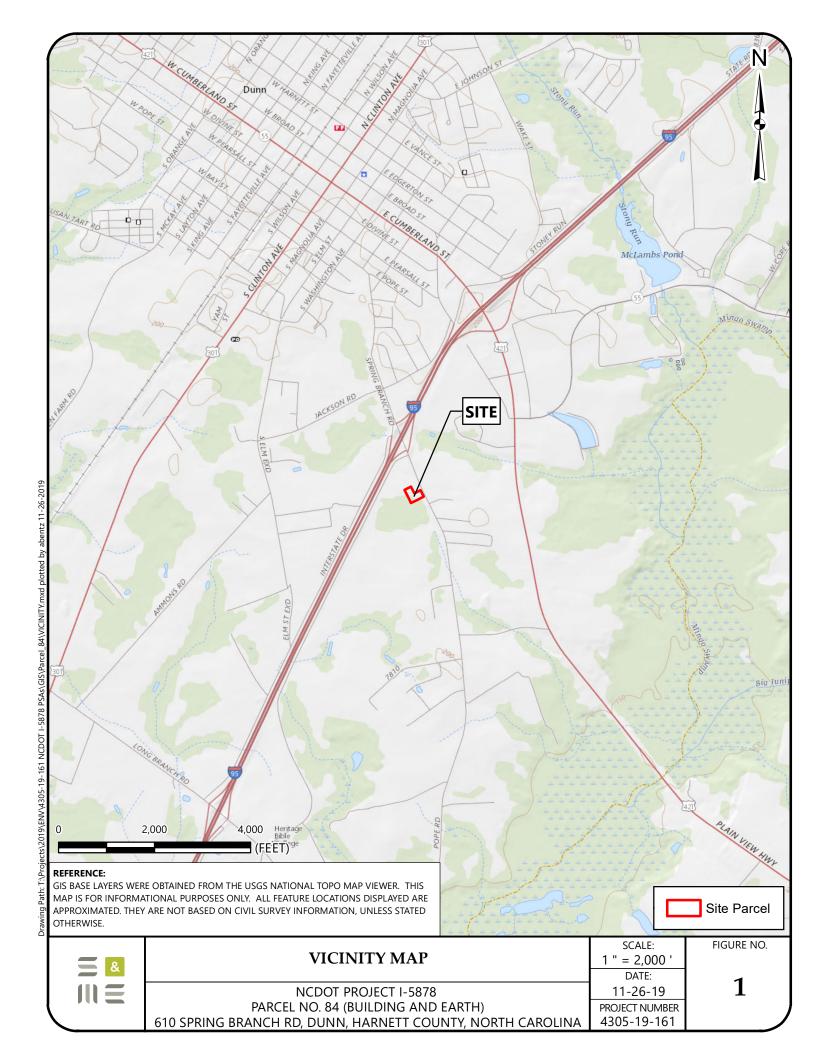
Ar	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gaso Range Organics (GRO) and Diesel Rango Organics (DRO) by Ultraviolet Fluorescen (UVF) Spectrometry					
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO				
B-1	10/29/2019	6 to 8	<0.53	<0.53				
B-2	10/29/2019	4 to 6	<0.5	0.96				
B-3	10/29/2019	4 to 6	<0.48	1.2				
B-4	10/29/2019	4 to 6	<0.5	<0.5				
B-5	10/29/2019	6 to 8	<0.26	<0.26				
B-6	10/29/2019	6 to 8	<0.51	<0.51				
No	orth Carolina T	PH Action Levels	50	100				

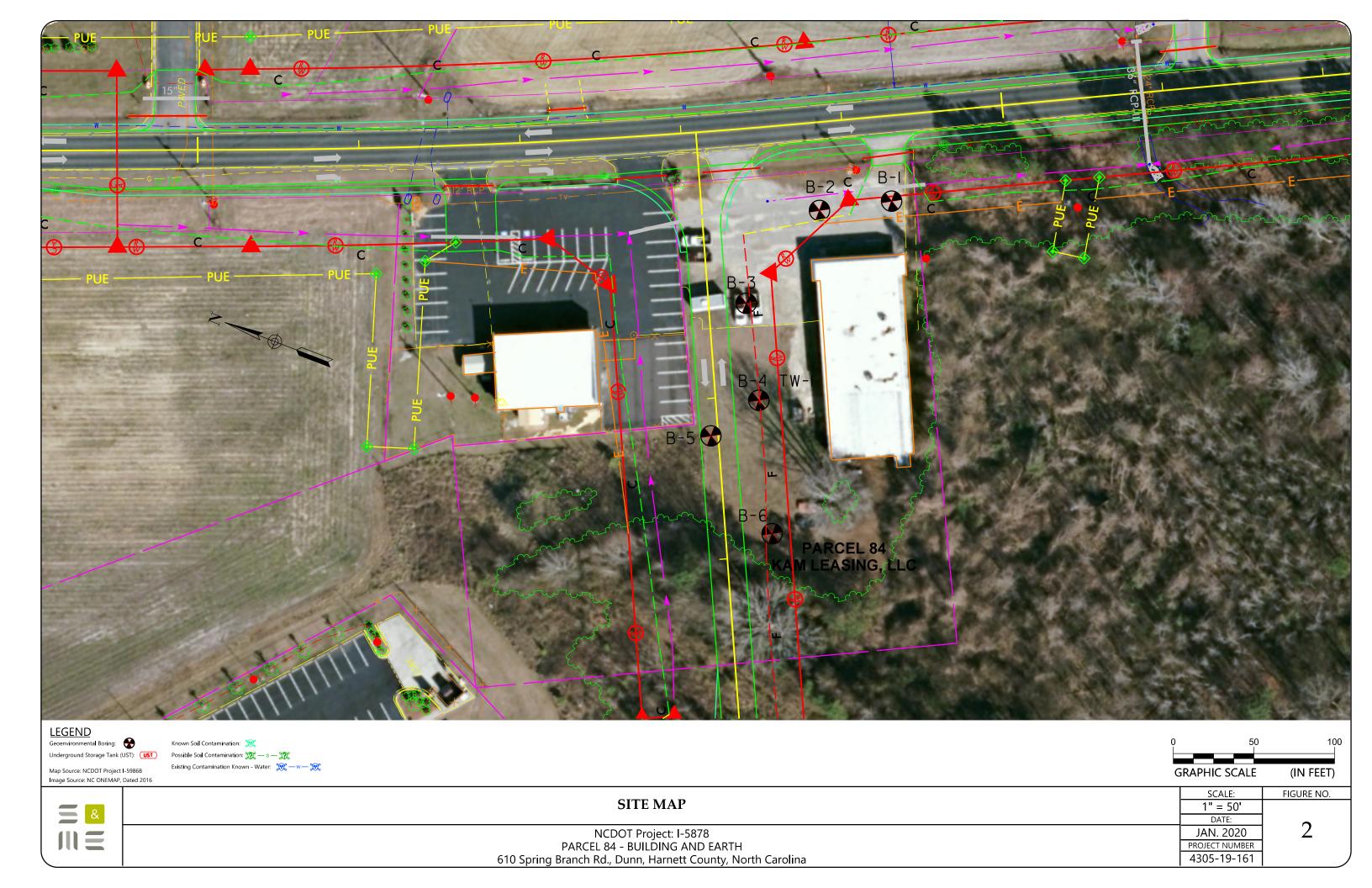
Notes:

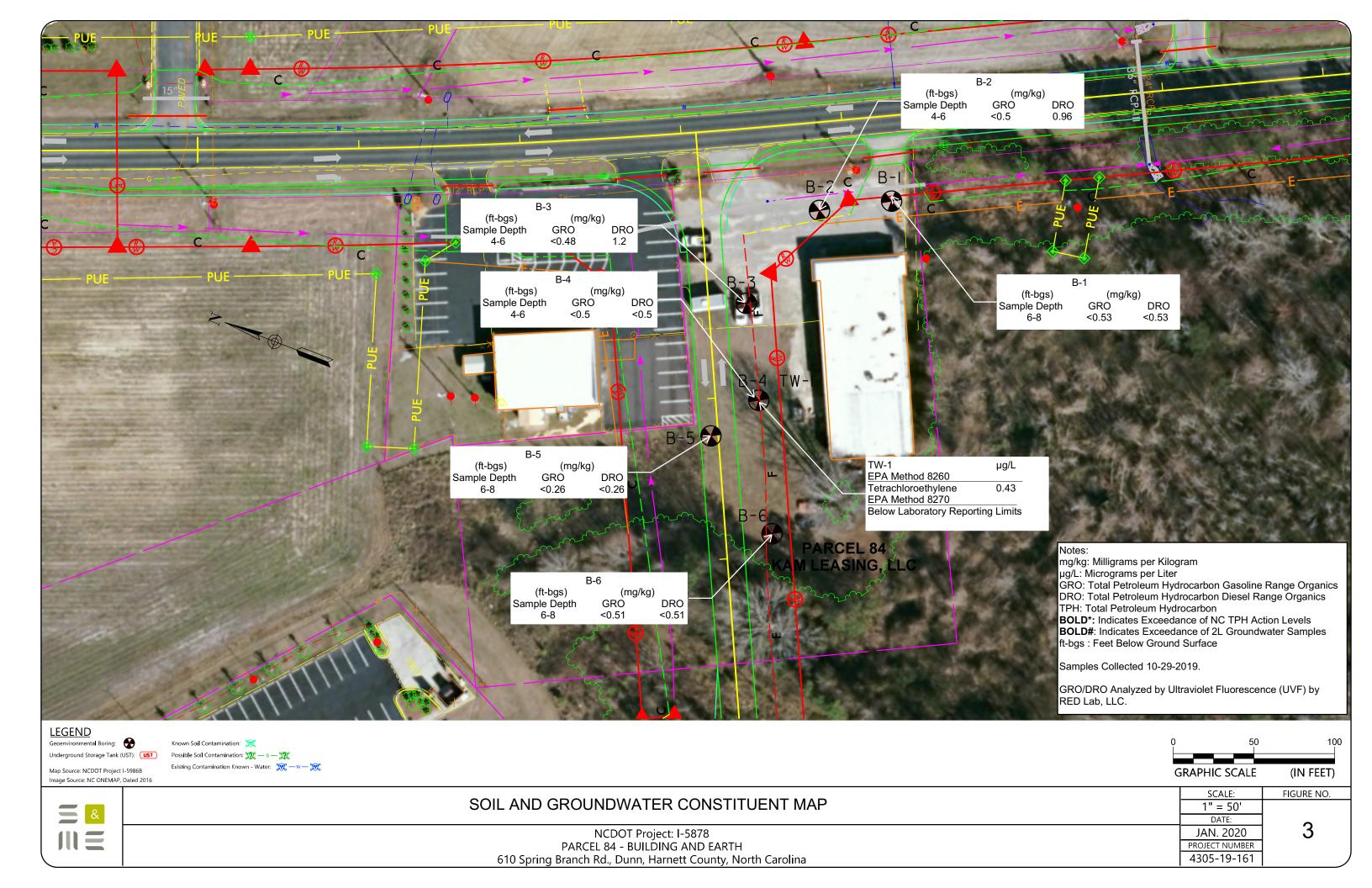
- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and **BOLD** fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS

NCDOT Project I-5878


Parcel 84 - (Building and Earth) 610 Spring Branch Road Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161


Analytical	Method→	Volatile Organic Compounds by EPA Method 8260	Polycyclic Aromatic Compounds (PAHs) by EPA Method 8270
Sample ID	Contaminant of Concern→	etrachloroethylene	onstituent Specific
	Date	Ľ	ပ
B-4/TW-1	10/29/2019	0.43 J	Below Laboratory Reporting Limits
2L S	standard (μg/L)	0.7	Not Applicable
	GCL (µg/L)	700	Not Applicable


Notes:

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter ($\mu g/L$).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in ${\bf BOLD}$ fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

Approximate TDEM Path

Approximate Requested Survey Area

Location of Vehicles

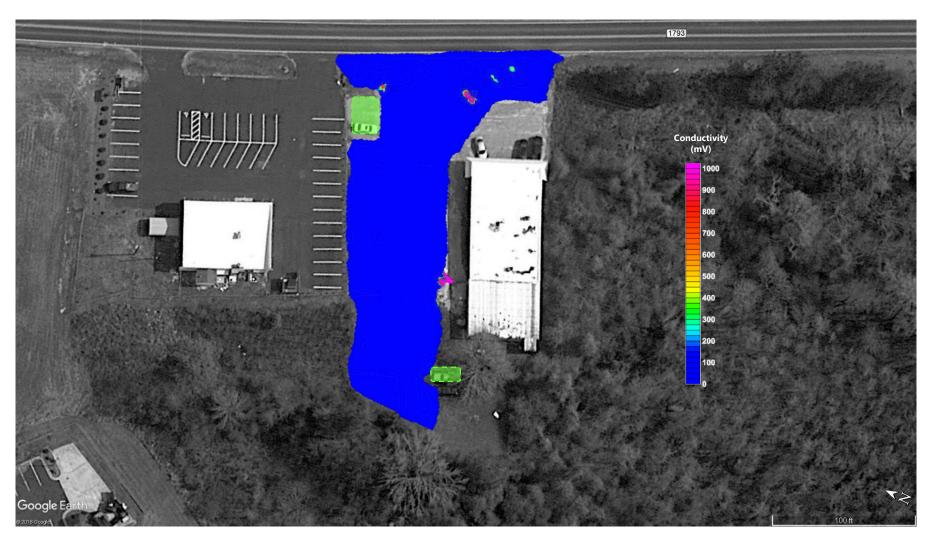
TDEM PATH LOCATION PLAN

NCDOT PROJECT: I-5878
PARCEL #84 – (BUILDING AND EARTH)
610 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161


FIGURE NO.

4

REFERENCE:GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

Location of Vehicles

SCALE: AS SHOWN

NCDOT PROJECT: 1-5878
PARCEL #84 – (BUILDING AND EARTH)
610 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT A

DATE: 1/7/2020

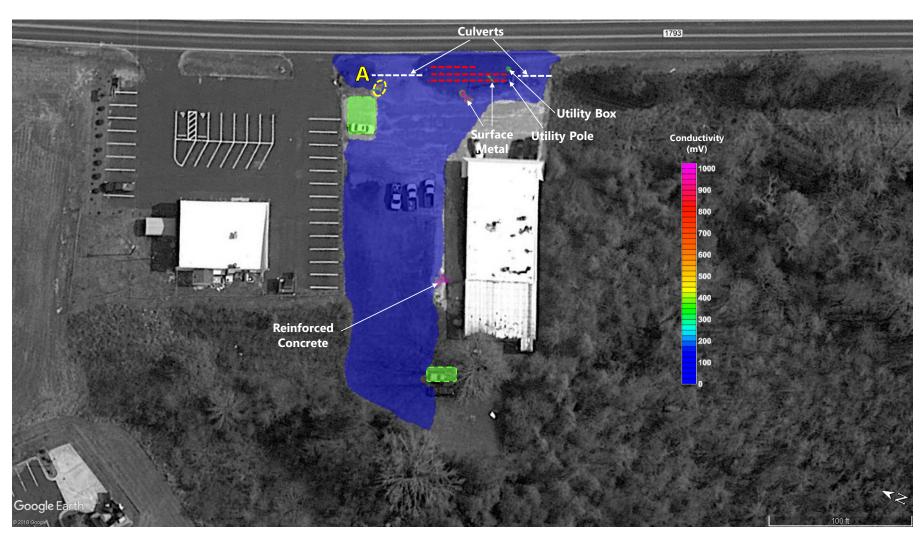

PROJECT NUMBER 4305-19-161

FIGURE NO.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

 \bigcirc

Approximate Location of Geophysical Anomaly

Approximate Location of Possible Utility

Location of Vehicles

TDEM DATA PLOT B

NCDOT PROJECT: I-5878
PARCEL #84 – (BUILDING AND EARTH)
610 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

GEOPHYSICAL ANOMALY LOCATION PLAN

PARCEL #84 – (BUILDING AND EARTH) 610 SPRING BRANCH ROAD, DUNN, HARNETT COUNTY, NORTH CAROLINA

SCALE: AS SHOWN

DATE: 1/7/2020

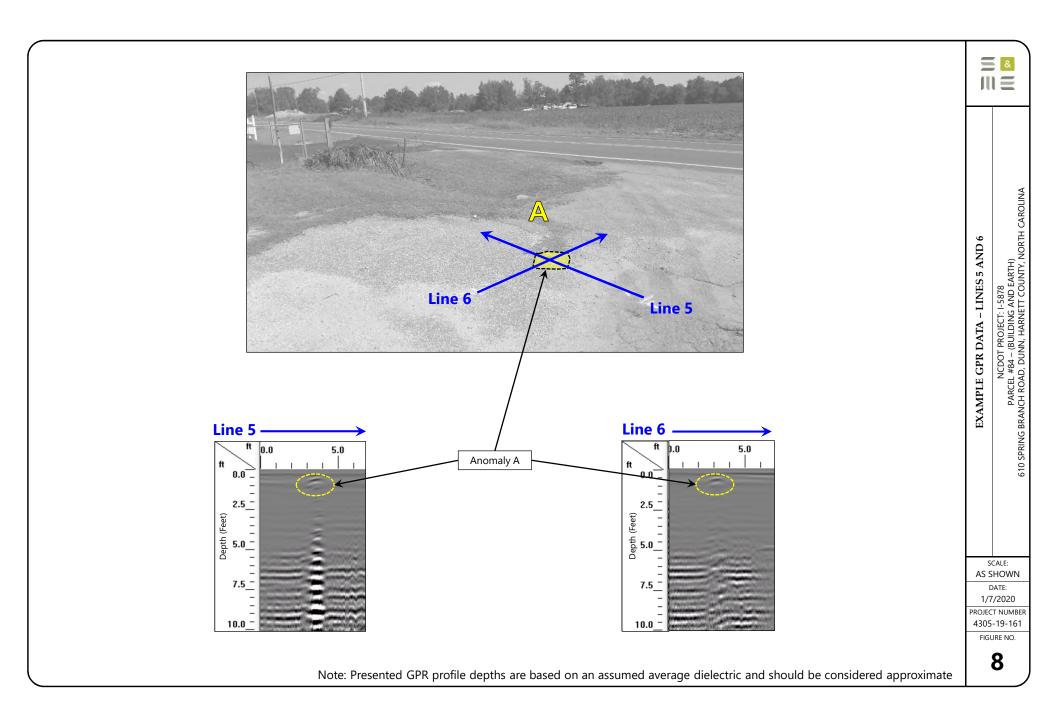
PROJECT NUMBER 4305-19-161

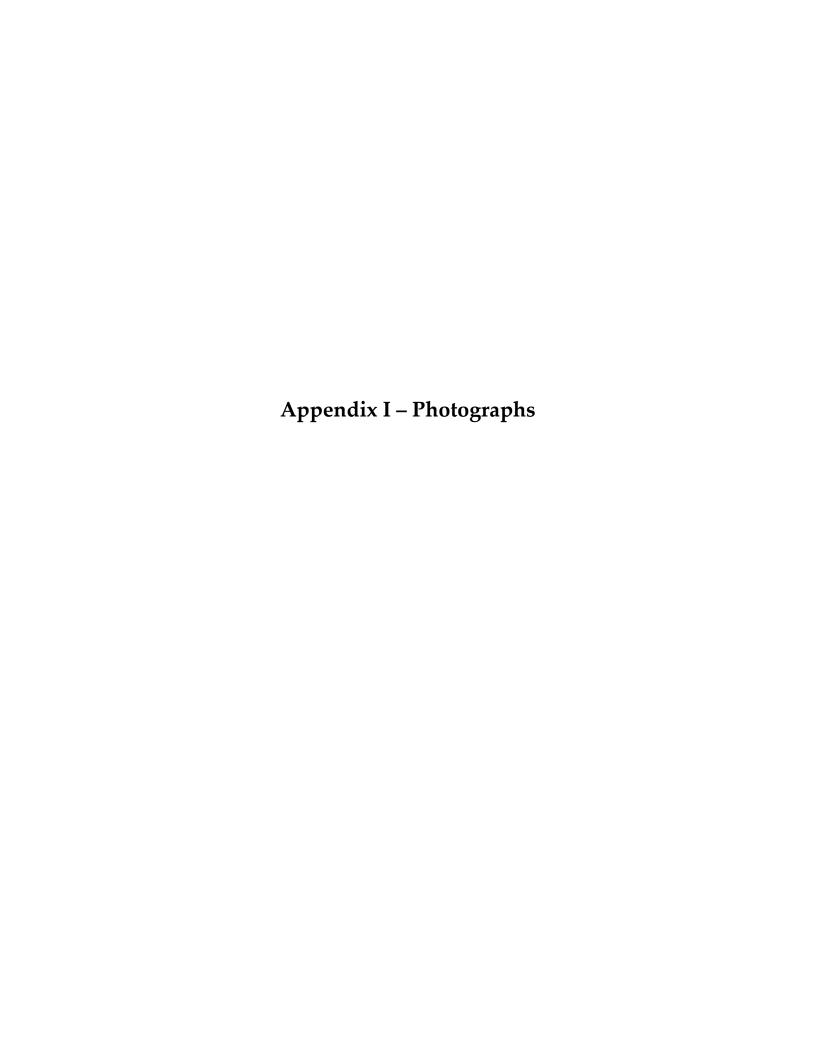
FIGURE NO.

7

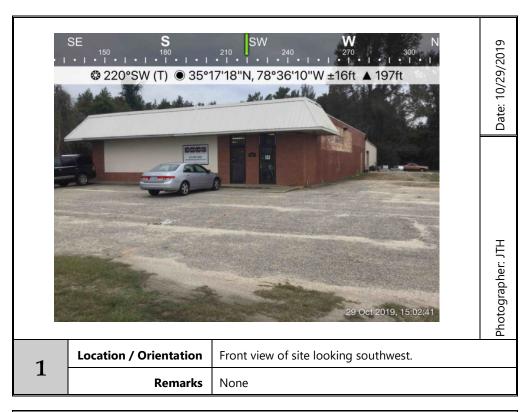
LEGEND

Approximate Location of Geophysical Anomaly


Approximate Location of Possible Utility

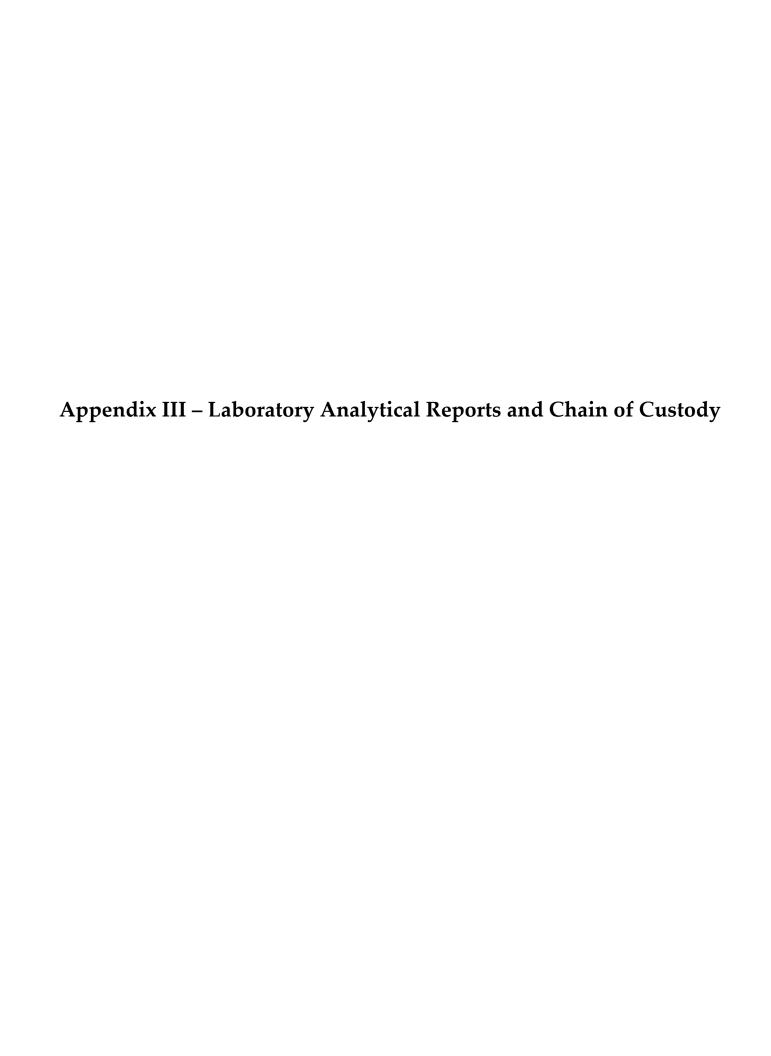


Location of Vehicles



Approximate Location of GPR Profile

PROJECT:	NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and E				BORII	NG LOG	: B-1			
0.475.0004.50	S&ME Project No. 4305-19-161									
DATE DRILLED:	Tuesday, October 29, 2019	BORING DEPTH (FT):								
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	icable						
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeyo	utt						
SAMPLING METHOD	Macro-Core Sampler	NORTHING:								
DRILLING METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet) GRAPHIC COG	MATERIAL DESCRIPTION Asphalt, Gravel,		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Sandy Clay, Tan, Orange, Red, Sandy Clay, Tan, Orange, Red, Sandy Clay, Tan, Orange, Red, Sandy Clay, Tan, Orange, Red,			I	0.0	No No				
5	· · ·			I	0.0	No				
1//	Clayey Sand, Tan, Orange, Red, Boring Terminated at 8 Ft-BGS		•	H	0.0	Yes	1500			
10 —										
15 —										
20 —										
25 —										


PROJECT:		NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and Ea			BORIN	NG LOG	B-2				
DATE DRILLE	FD.	S&ME Project No. 4305-19-161 Tuesday, October 29, 2019	DODING DEDTIL (FT)	0							
	ED.		BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:	7.2							
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TY		Not Applicable	LOGGED BY:	J. Honey							
SAMPLING N	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING ME	ETHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	San	dy Clay, Tan, Orange, Red,			I	0.0	No				
5 —						0.4	No	1510			
	Cla	yey Sand, Tan, Orange, Red,		•	I	0.8 1.4	Yes No	1510			
	Bor	ing Terminated at 8 Ft-BGS				1.4	NO				
10 —											
15 —											
20 —											
25 —											
30											

PROJECT:	NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and Eart		ı	BORIN	IG LOG:	B-3				
	S&ME Project No. 4305-19-161									
DATE DRILLED:	Tuesday, October 29, 2019	BORING DEPTH (FT):	8							
DRILL RIG:	Geoprobe 54DT	WATER LEVEL:								
DRILLER:	Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER TYPE:	Not Applicable	LOGGED BY:	J. Honeycu	ıtt						
SAMPLING METHO		NORTHING:								
DRILLING METHOD		EASTING:								
		27.07.170.								
DEPTH (feet) GRAPHIC			WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
	Asphalt, Gravel, Sandy Clay, Tan, Orange, Red,		- - -	I	0.0	No				
5 —				H	0.3	No				
	Clayey Sand, Tan, Orange, Red,		-	Ĭ	0.6	Yes	1520			
	Boring Terminated at 8 Ft-BGS			т.	0.6	No				
10 —										
15 —										
20 —										
25 —										
30										

PROJECT	:	NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and	Earth), Dunn, NC			BORIN	NG LOG:	B-4/	TW-1		
		S&ME Project No. 4305-19-16									
DATE DRILL	LED:	Tuesday, October 29, 2019	BORING DEPTH (FT):	13							
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:	4							
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T	ГҮРЕ:	Not Applicable		J. Honeyo	cutt						
SAMPLING		Macro-Core Sampler	NORTHING:	,							
DRILLING N		Macro-Core Sampler (3-in. OD)	EASTING:								
	T		2.01110.					L			
DEPTH (feet)	GRAPHIC	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		opson, iandy Clay, Tan, Orange, Red,			ł	0.0	No				
5 —				•	ŧ	0.2	No				
					İ	0.2	Yes	1530			
		Elayey Sand, Orange, Red, Gray,			11	0.7	No				
10 —		and, Red,									
	E	Boring Terminated at 13 Ft-BGS									
15 —											
20 —											
25 —											
30 —											

PROJECT	Γ:	NCDOT I-5878 Parcel 84-610 Spring Branch Rd (Building and E	arth), Dunn, NC			BORII	NG LOG	: B-5			
DATE DRIL	I ED:	S&ME Project No. 4305-19-161 Tuesday, October 29, 2019	DODING DEDTIL (ET).	10							
			BORING DEPTH (FT):								
DRILL RIG:		Geoprobe 54DT	WATER LEVEL:	9.7							
DRILLER:		Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER 1	TYPE:	Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METHOD:	Macro-Core Sampler	NORTHING:								
DRILLING N	METHOD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC LOG	MATERIAL DESCRIPTION Topsoil,		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
		Sandy Clay, Tan, Orange, Red,				0.1	No				
5 —						0.0	No				
_					ľ	0.8	No				
_		Clayey Sand, Orange, Red, Gray,				1.5	Yes	1545			
10 —		Boring Terminated at 10 Ft-BGS		▼							
15 —											
30 —	-										

DRILL RIG: Geogle DRILLER: Troxi HAMMER TYPE: Not . SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla	Parcel 84-610 Spring Branch Rd (Building and Earth S&ME Project No. 4305-19-161 sday, October 29, 2019 oprobe 54DT xler Geologic, Inc. t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION ay, Tan, Orange, Red,	BORING DEPTH (FT): WATER LEVEL: CAVE-IN DEPTH:	J. Honeycutt	SAMPLE	O.O (PPM)	O LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
DRILL RIG: Geogle DRILLER: Troxi HAMMER TYPE: Not. SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla	esday, October 29, 2019 Oprobe 54DT xxler Geologic, Inc. t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	WATER LEVEL: CAVE-IN DEPTH: LOGGED BY: NORTHING:	J. Honeycutt	SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
DRILL RIG: Geogle DRILLER: Troxi HAMMER TYPE: Not. SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla	pprobe 54DT xler Geologic, Inc. t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	WATER LEVEL: CAVE-IN DEPTH: LOGGED BY: NORTHING:	J. Honeycutt	SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
DRILLER: Troxi HAMMER TYPE: Not. SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla	xler Geologic, Inc. t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	CAVE-IN DEPTH: LOGGED BY: NORTHING:	J. Honeycutt	SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
HAMMER TYPE: Not. SAMPLING METHOD: Macri DRILLING METHOD: Macri Topsoil, Sandy Cla Clayey Sai	t Applicable cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	LOGGED BY: NORTHING:		SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
SAMPLING METHOD: Maci	cro-Core Sampler cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION	NORTHING:		SAMPLE			Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
DRILLING METHOD: Macci	cro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION		WATER LEVEL				Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Topsoil, Sandy Cla Clayey Sai	MATERIAL DESCRIPTION	LASTING	WATER LEVEL				Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
Topsoil, Sandy Cla			WATER LEVEL				Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 — Clayey Sai	ay, Tan, Orange, Red,				0.0	No				
Clayey Sai				_	1.0	No				
L ₁₀ V///				H	0.0	No				
				ŀ	0.3	Yes	1600			
10 Boring Tel	and, Orange, Red, Gray,		_							
	erminated at 10 Ft-BGS		· •							
20 —										

Hydrocarbon Analysis Results

Client: S&ME

Address: 3201 SPRING FOREST RD

RALEIGH NC

Contact: JAMIE HONEYCUTT

Samples taken Samples extracted Tuesday, October 29, 2019

Samples analysed

Tuesday, October 29, 2019 Friday, November 1, 2019

MAX MOYER

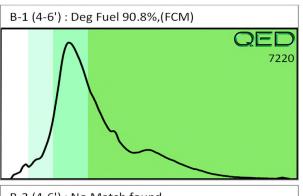
Operator

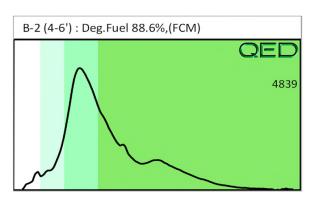
Project: NCDOT I-5878 PARCEL 84

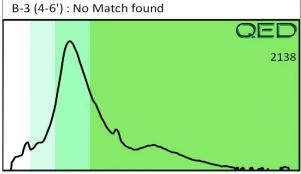
													U00902
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	(% Ratios	s	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	B-1 (6-8')	21.1	<0.53	<0.53	<0.53	<0.53	<0.11	<0.17	<0.021	0	0	0	PHC not detected,(P)
S	B-2 (4-6')	20.0	<0.5	<0.5	0.96	0.96	0.5	<0.16	< 0.02	0	77.9	22.1	Deg Fuel 81%,(FCM)
S	B-3 (4-6')	19.3	<0.48	<0.48	1.2	1.2	0.69	<0.15	<0.019	0	78.9	21.1	Deg Fuel 76.7%,(FCM)
S	B-4 (4-6')	20.0	<0.5	<0.5	<0.5	<0.5	<0.1	<0.16	< 0.02	0	0	0	PHC not detected,(BO)
S	B-5 (6-8')	10.4	<0.26	<0.26	<0.26	<0.26	< 0.05	<0.08	<0.01	0	0	0	,(FCM)
S	B-6 (6-8')	10.5	<0.51	<0.51	<0.51	<0.51	<0.1	<0.16	< 0.02	0	0	0	PHC not detected
				01/					Fi . F			Olí	

Initial Calibrator QC check OK Final FCM QC Check OK

101%


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result. % Ratios estimated aromatic carbon number proportions : HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only.

Data generated by HC-1 Analyser

Project: NCDOT I-5878 PARCEL 87

NCDOT - I-58-18

Parcel 84

			NOGINE CIGAG		CHAIN OF CUST	REO
Syme Forest	3201 Spin Broad 20	Tarming T Harvar II	ACOUT - I-5878 Polese 84	(hange able sine in a com	माग्यर पर्	the result Tainer
Client Name:	Address:	Contact:	Project Ref.:	Email:	Phone #:	Collected by:

Surve DC	
	K

D ENVIRONMENTAL DIAGNOSTICS
IN OF CUSTODY AND ANALYTICAL
REQUEST FORM

RED Lab, LLC 5598 Marvin K Moss Lane MARBIONC Bldg, Suite 2003 Wilmington, NC 28409

B143

Each sample will be analyzed for BTEX, GRO, DRO, TPH, PAH total aromatics and BaP

Sample Collection	TAT Re	TAT Requested			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		T-4-114/4	7.11	777
Date/Time	24 Hour	48 Hour	Similar		on aldilles		lotal Wt.	lare wt.	sample wt.
10,29-19 1500		-	コナア	B-1 681			57.4	1.52.1	12:3
1510				3			57.7	7.75	13.0
1530						ar .	57.7	44-2	13.5
(530							5.7.5	44.5	13.0
1545				3-5 6-8			583	8.44	13.5
↓ I Leoco			>	3-6 las			57.7	45.0	17.7
								= 1	
							e		
	18								
									2
Comments:							RE	RED Lab USE ONLY	ONLY
Reling	Relinquished by		Date/Time		Accepted by	Date/Time		9	
Sen Whyle			10/31/Pm 1500		MM 11/1/19	1150		2	
Rélinqu	Rélinquished by		Ďate/Time		Accepted by	Date/Time			
							-		

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

November 26, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Dunn, NC

Client Job Number:

Project Number: 4305-19-161

Laboratory Work Order Number: 19K0024

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 31, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	8
19K0024-01	8
Sample Preparation Information	11
QC Data	12
Volatile Organic Compounds by GC/MS	12
B245276	12
Semivolatile Organic Compounds by GC/MS	17
B245268	17
Flag/Qualifier Summary	19
Certifications	20
Chain of Custody/Sample Receipt	23

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 11/26/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-19-161

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19K0024

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Dunn, NC

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

TW-1 19K0024-01 Ground Water SW-846 8260D

SW-846 8270E

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

EXECUTIVE SUMMARY

Client ID: TW-1 Lab ID: 19K0024-01

Analyte	Results/Qual	DL	\mathbf{RL}	Units	Method
Tetrachloroethylene	0.43 J	0.18	1.0	μg/L	SW-846 8260D

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 11-25-19: Due to a labeling error the results for method 8270 have been revised with the correct results.

REVISED REPORT 11-19-19: Due to a labeling error the results for method 8260 have been revised with the correct results.

For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side. Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

B245276-BS1, B245276-BSD1

Vinyl Chloride

B245276-BS1, B245276-BSD1

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

tert-Amyl Methyl Ether (TAME)

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1

tert-Butyl Ethyl Ether (TBEE)

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. **Analyte & Samples(s) Qualified:**

Acetone

B245276-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.
Analyte & Samples(s) Qualified:

Acetone

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

tert-Amyl Methyl Ether (TAME)

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1, S042406-CCV1

tert-Butyl Ethyl Ether (TBEE)

19K0024-01[TW-1], B245276-BLK1, B245276-BS1, B245276-BSD1, S042406-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Acetone

B245276-BS1, B245276-BSD1, S042406-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

2-Hexanone (MBK)

B245276-BS1, B245276-BSD1, S042406-CCV1

4-Methyl-2-pentanone (MIBK)

B245276-BS1, B245276-BSD1, S042406-CCV1

trans-1,4-Dichloro-2-butene

B245276-BS1, B245276-BSD1, S042406-CCV1

B245276-BS1, B245276-BSD1, S042406-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: Dunn, NC Sample Description: Work Order: 19K0024

Date Received: 10/31/2019
Field Sample #: TW-1

Sampled: 10/29/2019 16:30

Sample ID: 19K0024-01
Sample Matrix: Ground Water

Volatile	Organic	Compounds	by GC/M	S
----------	---------	-----------	---------	---

change Key Very Very Series Region Agency				Volatile	Organic Co	mpounds by G	SC/MS				
December No	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method			Analyst
December	· · · · · · · · · · · · · · · · · · ·										
Part	Acrylonitrile					1					
Reace	tert-Amyl Methyl Ether (TAME)						V-05, L-04				
Bounchications	Benzene	ND	1.0			1	,		11/6/19		
Bemodefinementanger 10	Bromobenzene	ND	1.0	0.15		1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Beneficial Penerian Part	Bromochloromethane	ND	1.0	0.32		1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Brownenthane No	Bromodichloromethane	ND	0.50	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Patterner (MEK)	Bromoform	ND	1.0	0.46	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
February Petrus	Bromomethane	ND	2.0	0.78	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Partylbenzene No 10 0.21 μg/L 1 SW-446 82600 116/19 117/19 19.56 EBH	2-Butanone (MEK)	ND	20	1.9	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
See Burylbenzene No	tert-Butyl Alcohol (TBA)	ND	20	4.2	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Ent-Burylbenzene	n-Butylbenzene	ND	1.0	0.21	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Extra Day Ether TBEE ND 0.50 0.16 pg.	sec-Butylbenzene	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Curbon Dissilfide ND 5.0 4.4 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EB H Curbon Tetachloride ND 1.0 0.11 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorochenzene ND 0.50 0.21 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorochenae ND 2.0 0.35 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorochenae ND 2.0 0.45 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorocheme ND 2.0 0.45 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH Chlorocheme ND 1.0 0.45 μg/L 1 SW-846 8260D 11/619 11/719 19:56 EBH 1.2-Dibromochane (DBCP) ND 1.0 0.1 0.2 1 μg/L 1 SW-846 8260D	tert-Butylbenzene	ND	1.0	0.17	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Curbon Tetrachloride ND 1.0 0.11 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chlorobenzene ND 1.0 0.15 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chlorodibromomethane ND 2.0 0.21 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chloroform ND 2.0 0.17 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chloroform ND 2.0 0.17 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH Chloroformane ND 1.0 0.12 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH 2-Chlorodoluene ND 1.0 0.12 pgL 1 SW-846 82600 11/619 11/719 19:56 EBH 1-2-Dichoromoethane (EDB) ND 5.0 0.3 pgL 1 SW-846 82600 11/619 11/719 1	tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.16	μg/L	1	V-05, L-04	SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chlorobenzene	Carbon Disulfide	ND	5.0	4.4	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chlorodibromomethane ND 0.50 0.21 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chlorocthane ND 2.0 0.35 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chlorocthane ND 2.0 0.47 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chloromethane ND 2.0 0.48 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chloromethane ND 1.0 0.12 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII Chloromethane ND 1.0 0.14 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-3-chloropropane (DBCP) ND 5.0 0.53 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 5.0 0.53 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 5.0 0.53 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.50 0.19 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.50 0.19 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.16 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.14 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 12-Dibromo-4-chloropropane (DBCP) ND 0.10 0.14 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 11-Dibromo-4-chloropropane (DBCP) ND 0.10 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 11-Dibromo-4-chloropropane (DBCP) ND 0.10 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 11-Dibromo-4-chloropropane (DBCP) ND 0.10 0.13 pg/L 1 SW-846 8260D 11/619 11/719 19.56 EII 11-Dibromo-4-chloropropane (DBCP) ND 0.10 0.13 pg/L 1 SW-846	Carbon Tetrachloride	ND	1.0	0.11	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chlorocthane ND 20 0.35 mg/L 1 SW-846 8260D 11/619 11/719 19:56 EEH	Chlorobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chloroform ND 2.0 0.17	Chlorodibromomethane	ND	0.50	0.21	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Chloromethane ND 2.0 0.45	Chloroethane	ND	2.0	0.35	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
2-Chlorotoluene ND 1.0 0.12	Chloroform	ND	2.0	0.17	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
4-Chlorotoluene ND 1.0 0.14 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dibromo-s-chloropropane (DBCP) ND 5.0 0.53 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dibromoethane (EDB) ND 0.50 0.19 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dibromoethane (EDB) ND 1.0 0.37 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorobenzene ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichlorobenzene ND 1.0 0.12 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 2.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 2.0 0.36 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.33 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorobenzene ND 1.0 0.30 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19	Chloromethane	ND	2.0	0.45	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1.2-Dibromo-3-chloropropane (DBCP)	2-Chlorotoluene	ND	1.0	0.12	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2-Dibromoethane (EDB) ND 0,50 0,19 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorobenzene ND 1,0 0,16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichlorobenzene ND 1,0 0,12 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1,0 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1,0 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichloroc-2-butene ND 2,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorocthane (Freon 12) ND 2,0 0,26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorocthane ND 1,0 0,16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorocthane ND 1,0 0,41 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorocthylene ND 1,0 0,32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorocthylene ND 1,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorocthylene ND 1,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0,50 0,11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropa	4-Chlorotoluene	ND	1.0	0.14	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Dibromomethane ND 1.0 0.37 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichlorobenzene ND 1.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichlorobenzene ND 1.0 0.12 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1.0 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichloro-2-butene ND 2.0 0.31 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.31 μg/L 1	1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.53	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2-Dichlorobenzene ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichlorobenzene ND 1.0 0.12 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichloro-2-butene ND 2.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropr	1,2-Dibromoethane (EDB)	ND	0.50	0.19	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,4-Dichlorobenzene ND 1,0 0,12 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichlorobenzene ND 1,0 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,4-Dichloro-2-butene ND 2,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH Dichlorodifluoromethane (Fron 12) ND 2,0 0,26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1,0 0,16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1,0 0,32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1,0 0,32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1,0 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1,0 0,31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 0,50 0,11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0,50 0,16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0,50 0,23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropr	Dibromomethane	ND	1.0	0.37	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,4-Dichlorobenzene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,4-Dichloro-2-butene ND 2.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethane ND 1.0 0.41 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroptopane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Di	1,2-Dichlorobenzene	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
trans-1,4-Dichloro-2-butene ND 2.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH Dichlorodifluoromethane (Fron 12) ND 2.0 0.26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethane ND 1.0 0.41 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene	1,3-Dichlorobenzene	ND	1.0	0.12	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethane ND 1.0 0.41 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,2-Dichloroethylene ND 1.0 0.33 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1	1,4-Dichlorobenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Dichlorodifluoromethane (Freon 12) ND 2.0 0.26 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethane ND 1.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethane ND 1.0 0.41 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH tcs-1,2-Dichloroethylene ND 1.0 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroethylene ND 1.0 0.31 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 1.0 0.20 μg/L 1	trans-1,4-Dichloro-2-butene	ND	2.0	0.31	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2-Dichloroethane ND 1.0 0.41 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroethylene ND 1.0 0.32 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,2-Dichloroethylene ND 1.0 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroethylene ND 1.0 0.31 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 0.50 0.11 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene	Dichlorodifluoromethane (Freon 12)	ND	2.0	0.26		1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1-Dichloroethylene ND 1.0 0.32 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,2-Dichloroethylene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 2.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene	1,1-Dichloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
cis-1,2-Dichloroethylene ND 1.0 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,2-Dichloropthylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloroptopane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloroptopane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloroptopane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroptopane ND 2.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloroptopene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloroptopene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloroptopene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	1,2-Dichloroethane	ND	1.0	0.41	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
trans-1,2-Dichloroethylene ND 1.0 0.31 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropane ND 2.0 0.16 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene	1,1-Dichloroethylene	ND	1.0	0.32	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,3-Dichloropropane ND 0.50 0.11 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	cis-1,2-Dichloroethylene	ND	1.0	0.13	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,3-Dichloropropane ND 0.50 0.11 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 2,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	trans-1,2-Dichloroethylene	ND	1.0	0.31	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
2,2-Dichloropropane ND 1.0 0.20 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH 1,1-Dichloropropene ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	1,2-Dichloropropane	ND	1.0	0.20	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1-Dichloropropene ND 2.0 0.16 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH cis-1,3-Dichloropropene ND 0.50 0.13 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	1,3-Dichloropropane	ND	0.50	0.11	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
cis-1,3-Dichloropropene ND 0.50 0.13 $\mu g/L$ 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH trans-1,3-Dichloropropene ND 0.50 0.23 $\mu g/L$ 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	2,2-Dichloropropane	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
trans-1,3-Dichloropropene ND 0.50 0.23 µg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 EEH	1,1-Dichloropropene	ND	2.0	0.16	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
	cis-1,3-Dichloropropene	ND	0.50	0.13		1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Diethyl Ether ND 2.0 0.34 μg/L 1 SW-846 8260D 11/6/19 11/7/19 19:56 ΕΕΗ	trans-1,3-Dichloropropene	ND	0.50	0.23	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
	Diethyl Ether	ND	2.0	0.34	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH

Page 8 of 25

Project Location: Dunn, NC Work Order: 19K0024 Sample Description:

Date Received: 10/31/2019 Field Sample #: TW-1

Sampled: 10/29/2019 16:30

Sample ID: 19K0024-01 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	0.17	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,4-Dioxane	ND	50	22	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Ethylbenzene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Hexachlorobutadiene	ND	0.60	0.47	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
2-Hexanone (MBK)	ND	10	1.5	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Isopropylbenzene (Cumene)	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	0.20	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.25	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Methylene Chloride	ND	5.0	0.34	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	1.7	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Naphthalene	ND	2.0	0.31	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
n-Propylbenzene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Styrene	ND	1.0	0.11	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.27	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.22	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Tetrachloroethylene	0.43	1.0	0.18	μg/L	1	J	SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Tetrahydrofuran	ND	10	0.51	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Toluene	ND	1.0	0.14	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.57	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2,4-Trichlorobenzene	ND	1.0	0.40	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.30	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,1-Trichloroethane	ND	1.0	0.20	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,2-Trichloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Trichloroethylene	ND	1.0	0.24	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.33	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2,3-Trichloropropane	ND	2.0	0.25	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.32	μg/L	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,2,4-Trimethylbenzene	ND	1.0	0.18	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
1,3,5-Trimethylbenzene	ND	1.0	0.14	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Vinyl Chloride	ND	2.0	0.45	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
m+p Xylene	ND	2.0	0.30	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
o-Xylene	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260D	11/6/19	11/7/19 19:56	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4 Toluene-d8		104 100		70-130 70-130					11/7/19 19:56 11/7/19 19:56	

Project Location: Dunn, NC Sample Description: Work Order: 19K0024

Date Received: 10/31/2019
Field Sample #: TW-1

Sampled: 10/29/2019 16:30

Sample ID: 19K0024-01
Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM)	ND	0.30	0.033	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Acenaphthylene (SIM)	ND	0.20	0.035	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Anthracene (SIM)	ND	0.20	0.032	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(a)anthracene (SIM)	ND	0.050	0.016	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(a)pyrene (SIM)	ND	0.10	0.012	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(b)fluoranthene (SIM)	ND	0.050	0.015	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.50	0.018	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Chrysene (SIM)	ND	0.20	0.015	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.10	0.017	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Fluoranthene (SIM)	ND	0.50	0.025	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Fluorene (SIM)	ND	1.0	0.034	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	0.018	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
2-Methylnaphthalene (SIM)	ND	1.0	0.062	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Naphthalene (SIM)	ND	1.0	0.26	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Phenanthrene (SIM)	ND	0.050	0.030	μg/L	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Pyrene (SIM)	ND	1.0	0.023	$\mu g/L$	1		SW-846 8270E	11/5/19	11/6/19 18:47	CLA
Surrogates		% Reco	very	Recovery Limits	3	Flag/Qual				
Nitrobenzene-d5		73.1		30-130					11/6/19 18:47	
2-Fluorobiphenyl		47.6		30-130					11/6/19 18:47	
p-Terphenyl-d14		62.8		30-130					11/6/19 18:47	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0024-01 [TW-1]	B245276	5	5.00	11/06/19

Prep Method: SW-846 3510C-SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19K0024-01 [TW-1]	B245268	1000	1.00	11/05/19

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245276 - SW-846 5030B										
Blank (B245276-BLK1)				Prepared: 11	/06/19 Anal	yzed: 11/07/1	9			
Acetone	ND	50	μg/L							R-05
Acrylonitrile	ND	5.0	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							L-04, V-05
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	0.50	$\mu g/L$							
Bromoform	ND	1.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
2-Butanone (MEK)	ND	20	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							
n-Butylbenzene	ND	1.0	$\mu g/L$							
sec-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butylbenzene	ND	1.0	$\mu g/L$							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							L-04, V-05
Carbon Disulfide	ND	5.0	$\mu g/L$							
Carbon Tetrachloride	ND	1.0	$\mu g/L$							
Chlorobenzene	ND	1.0	$\mu g/L$							
Chlorodibromomethane	ND	0.50	$\mu g/L$							
Chloroethane	ND	2.0	$\mu g/L$							
Chloroform	ND	2.0	$\mu g/L$							
Chloromethane	ND	2.0	$\mu g/L$							
2-Chlorotoluene	ND	1.0	$\mu g/L$							
4-Chlorotoluene	ND	1.0	$\mu g/L$							
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$							
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$							
Dibromomethane	ND	1.0	$\mu g/L$							
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$							
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$							
trans-1,4-Dichloro-2-butene	ND	2.0	$\mu g/L$							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	$\mu g/L$							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L							
1,4-Dioxane	ND	50	μg/L							
Ethylbenzene	ND	1.0	μg/L							
Hexachlorobutadiene	ND	0.60	μg/L							
2-Hexanone (MBK)	ND	10	μg/L							
Isopropylbenzene (Cumene)	ND	1.0	μg/L							
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245276 - SW-846 5030B										
Blank (B245276-BLK1)				Prepared: 11	/06/19 Analy	zed: 11/07/1	9			
Methylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	$\mu g/L$							
etrahydrofuran	ND	10	$\mu g/L$							
oluene	ND	1.0	$\mu g/L$							
2,3-Trichlorobenzene	ND	5.0	$\mu g/L$							
2,4-Trichlorobenzene	ND	1.0	$\mu g/L$							
3,5-Trichlorobenzene	ND	1.0	$\mu g \! / \! L$							
1,1-Trichloroethane	ND	1.0	$\mu g \! / \! L$							
1,2-Trichloroethane	ND	1.0	$\mu g/L$							
richloroethylene	ND	1.0	$\mu g/L$							
richlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$							
2,3-Trichloropropane	ND	2.0	$\mu g/L$							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	$\mu g/L$							
13)										
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	$\mu g/L$							
Xylene	ND	1.0	$\mu g/L$							
urrogate: 1,2-Dichloroethane-d4	26.3		μg/L	25.0		105	70-130			
urrogate: Toluene-d8	25.0		μg/L	25.0		100	70-130			
urrogate: 4-Bromofluorobenzene	23.4		μg/L	25.0		93.6	70-130			
CS (B245276-BS1)				Prepared: 11	/06/19 Analy	zed: 11/07/1	9			
cetone	181	50	μg/L	100		181 *	70-160			V-06, R-05, L-07A
crylonitrile	11.1	5.0	$\mu g/L$	10.0		111	70-130			
ert-Amyl Methyl Ether (TAME)	5.69	0.50	$\mu g/L$	10.0		56.9 *	70-130			V-05, L-04
enzene	8.91	1.0	$\mu g/L$	10.0		89.1	70-130			
romobenzene	10.3	1.0	μg/L	10.0		103	70-130			
romochloromethane	10.1	1.0	μg/L	10.0		101	70-130			
romodichloromethane	10.4	0.50	μg/L	10.0		104	70-130			
romoform	9.95	1.0	μg/L	10.0		99.5	70-130			
romomethane	5.49	2.0	μg/L	10.0		54.9	40-160			
-Butanone (MEK)	118	20	μg/L	100		118	40-160			
rt-Butyl Alcohol (TBA)	80.3	20	μg/L	100		80.3	40-160			
Butylbenzene	11.4	1.0	μg/L	10.0		114	70-130			
cc-Butylbenzene	11.4	1.0	μg/L	10.0		114	70-130			
rt-Butylbenzene	10.9	1.0	μg/L	10.0		109	70-130			
rt-Butyl Ethyl Ether (TBEE)	6.44	0.50	μg/L	10.0		64.4 *	70-130			V-05, L-04
arbon Disulfide	10.6	5.0	μg/L μg/L	10.0		106	70-130			. 00, 11 01
arbon Tetrachloride	10.0	1.0	μg/L μg/L	10.0		102	70-130			
hlorobenzene	10.2	1.0	μg/L μg/L	10.0		102	70-130			
hlorodibromomethane	9.54	0.50	μg/L μg/L	10.0		95.4	70-130			
hloroethane		2.0	μg/L μg/L	10.0		97.5	70-130			
hloroform	9.75	2.0	μg/L μg/L				70-130			
hloromethane	8.97	2.0	μg/L μg/L	10.0 10.0		89.7 82.0	70-130 40-160			
moromediane	8.20	2.0	μg/L	10.0		6Z.U	40-100			
-Chlorotoluene	10.0	1.0	μg/L	10.0		100	70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245276 - SW-846 5030B											_
LCS (B245276-BS1)				Prepared: 11	/06/19 Anal	yzed: 11/07/1	9				
4-Chlorotoluene	10.6	1.0	μg/L	10.0		106	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	10.3	5.0	$\mu g/L$	10.0		103	70-130				
1,2-Dibromoethane (EDB)	9.70	0.50	$\mu g\!/\!L$	10.0		97.0	70-130				
Dibromomethane	9.89	1.0	μg/L	10.0		98.9	70-130				
1,2-Dichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130				
1,3-Dichlorobenzene	11.1	1.0	μg/L	10.0		111	70-130				
1,4-Dichlorobenzene	10.7	1.0	μg/L	10.0		107	70-130				
trans-1,4-Dichloro-2-butene	13.3	2.0	μg/L	10.0		133 *	70-130			L-02, V-20	
Dichlorodifluoromethane (Freon 12)	7.67	2.0	μg/L	10.0		76.7	40-160				†
1,1-Dichloroethane	9.88	1.0	μg/L	10.0		98.8	70-130				
1,2-Dichloroethane	10.9	1.0	μg/L	10.0		109	70-130				
1,1-Dichloroethylene	10.9	1.0	μg/L	10.0		109	70-130				
cis-1,2-Dichloroethylene	9.83	1.0	μg/L	10.0		98.3	70-130				
trans-1,2-Dichloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130				
1,2-Dichloropropane	9.80	1.0	$\mu g/L$	10.0		98.0	70-130				
1,3-Dichloropropane	9.84	0.50	μg/L	10.0		98.4	70-130				
2,2-Dichloropropane	10.1	1.0	μg/L	10.0		101	40-130				†
1,1-Dichloropropene	9.78	2.0	μg/L	10.0		97.8	70-130				
cis-1,3-Dichloropropene	10.1	0.50	μg/L	10.0		101	70-130				
trans-1,3-Dichloropropene	9.66	0.50	μg/L	10.0		96.6	70-130				
Diethyl Ether	10.0	2.0	μg/L	10.0		100	70-130				
Diisopropyl Ether (DIPE)	10.7	0.50	μg/L	10.0		107	70-130				
1,4-Dioxane	102	50	μg/L	100		102	40-130				†
Ethylbenzene	10.6	1.0	μg/L	10.0		106	70-130				
Hexachlorobutadiene	11.6	0.60	μg/L	10.0		116	70-130				
2-Hexanone (MBK)	125	10	μg/L	100		125	70-160			V-20	†
Isopropylbenzene (Cumene)	10.6	1.0	μg/L	10.0		106	70-130				
p-Isopropyltoluene (p-Cymene)	10.6	1.0	μg/L	10.0		106	70-130				
Methyl tert-Butyl Ether (MTBE)	8.54	1.0	μg/L	10.0		85.4	70-130				
Methylene Chloride	10.3	5.0	μg/L	10.0		103	70-130				
4-Methyl-2-pentanone (MIBK)	125	10	μg/L	100		125	70-160			V-20	†
Naphthalene	9.21	2.0	μg/L	10.0		92.1	40-130				†
n-Propylbenzene	10.6	1.0	μg/L	10.0		106	70-130				
Styrene	9.03	1.0	μg/L	10.0		90.3	70-130				
1,1,1,2-Tetrachloroethane	10.7	1.0	μg/L	10.0		107	70-130				
1,1,2,2-Tetrachloroethane	10.6	0.50	μg/L	10.0		106	70-130				
Tetrachloroethylene	10.5	1.0	μg/L	10.0		105	70-130				
Tetrahydrofuran	9.62	10	μg/L	10.0		96.2	70-130			J	
Toluene	9.89	1.0	μg/L	10.0		98.9	70-130				
1,2,3-Trichlorobenzene	8.77	5.0	μg/L	10.0		87.7	70-130				
1,2,4-Trichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130				
1,3,5-Trichlorobenzene	10.3	1.0	μg/L	10.0		103	70-130				
1,1,1-Trichloroethane	10.0	1.0	μg/L	10.0		100	70-130				
1,1,2-Trichloroethane	9.62	1.0	μg/L	10.0		96.2	70-130				
Trichloroethylene	10.3	1.0	μg/L	10.0		103	70-130				
Trichlorofluoromethane (Freon 11)	9.52	2.0	μg/L	10.0		95.2	70-130				
1,2,3-Trichloropropane	10.7	2.0	μg/L	10.0		107	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.0	1.0	μg/L	10.0		100	70-130				
1,2,4-Trimethylbenzene	9.71	1.0	$\mu g \! / \! L$	10.0		97.1	70-130				
1,3,5-Trimethylbenzene	10.2	1.0	μg/L	10.0		102	70-130				
Vinyl Chloride	22.9	2.0	μg/L	10.0		229 *	40-160			L-02, V-20	†

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245276 - SW-846 5030B										
LCS (B245276-BS1)				Prepared: 11	/06/19 Analyzed: 11/07	/19				_
m+p Xylene	21.2	2.0	μg/L	20.0	106	70-130				_
o-Xylene	10.8	1.0	μg/L	10.0	108	70-130				
Surrogate: 1,2-Dichloroethane-d4	26.0			25.0	104	70-130				
Surrogate: Toluene-d8	25.2		μg/L μg/L	25.0	101	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		μg/L μg/L	25.0	98.5	70-130				
_	21.0		μg/L							
LCS Dup (B245276-BSD1)		50	/T		/06/19 Analyzed: 11/07		22.1	* 25	D 05 1/06	—,
Acetone	129	50	μg/L	100	129	70-160	33.1	23	R-05, V-06	Ť
Acrylonitrile	10.9	5.0	μg/L	10.0	109	70-130	2.09	25	1 04 1/05	
tert-Amyl Methyl Ether (TAME)	5.76	0.50	μg/L	10.0		* 70-130	1.22	25	L-04, V-05	
Benzene	8.96	1.0	μg/L	10.0	89.6	70-130	0.560	25		
Bromoehlaramathana	9.94	1.0	μg/L	10.0	99.4	70-130	3.75	25		
Bromochloromethane	10.3	1.0	μg/L	10.0	103	70-130	1.57	25		
Bromodichloromethane	9.92	0.50	μg/L	10.0	99.2	70-130	4.44	25		
Bromoform	9.75	1.0	μg/L	10.0	97.5	70-130	2.03	25		
Bromomethane	6.80	2.0	μg/L	10.0	68.0	40-160	21.3	25		Ť.
2-Butanone (MEK)	107	20	μg/L	100	107	40-160	9.53	25		†
tert-Butyl Alcohol (TBA)	78.4	20	μg/L	100	78.4	40-160	2.38	25		Ť
n-Butylbenzene	11.6	1.0	μg/L	10.0	116	70-130	1.04	25		
sec-Butylbenzene	11.4	1.0	μg/L	10.0	114	70-130	0.175	25		
tert-Butylbenzene	10.9	1.0	μg/L	10.0	109	70-130	0.366	25		
tert-Butyl Ethyl Ether (TBEE)	6.40	0.50	μg/L	10.0		* 70-130	0.623	25	L-04, V-05	
Carbon Disulfide	10.3	5.0	μg/L	10.0	103	70-130	2.88	25		
Carbon Tetrachloride	10.2	1.0	μg/L	10.0	102	70-130	0.196	25		
Chlorobenzene	9.80	1.0	μg/L	10.0	98.0	70-130	3.51	25		
Chlorodibromomethane	9.48	0.50	μg/L	10.0	94.8	70-130	0.631	25		
Chloroethane	9.49	2.0	μg/L	10.0	94.9	70-130	2.70	25		
Chloroform	8.90	2.0	μg/L	10.0	89.0	70-130	0.783	25		
Chloromethane	8.58	2.0	μg/L	10.0	85.8	40-160	4.53	25		†
2-Chlorotoluene	9.72	1.0	μg/L	10.0	97.2	70-130	2.84	25		
4-Chlorotoluene	10.3	1.0	μg/L	10.0	103	70-130	2.68	25		
1,2-Dibromo-3-chloropropane (DBCP)	11.1	5.0	μg/L	10.0	111	70-130	6.82	25		
1,2-Dibromoethane (EDB)	9.78	0.50	μg/L	10.0	97.8	70-130	0.821	25		
Dibromomethane	9.69	1.0	μg/L	10.0	96.9	70-130	2.04	25		
1,2-Dichlorobenzene	10.6	1.0	$\mu \text{g/L}$	10.0	106	70-130	0.284	25		
1,3-Dichlorobenzene	10.9	1.0	μg/L	10.0	109	70-130	1.73	25		
1,4-Dichlorobenzene	10.6	1.0	μg/L	10.0	106	70-130	0.848	25		
trans-1,4-Dichloro-2-butene	13.2	2.0	$\mu \text{g/L}$	10.0	132	* 70-130	0.754	25	L-02, V-20	
Dichlorodifluoromethane (Freon 12)	7.56	2.0	μg/L	10.0	75.6	40-160	1.44	25		†
1,1-Dichloroethane	10.0	1.0	$\mu \text{g/L}$	10.0	100	70-130	1.71	25		
1,2-Dichloroethane	10.8	1.0	$\mu \text{g/L}$	10.0	108	70-130	0.920	25		
1,1-Dichloroethylene	10.9	1.0	$\mu \text{g/L}$	10.0	109	70-130	0.275	25		
cis-1,2-Dichloroethylene	10.0	1.0	$\mu \text{g/L}$	10.0	100	70-130	1.81	25		
trans-1,2-Dichloroethylene	10.1	1.0	$\mu \text{g/L}$	10.0	101	70-130	0.689	25		
1,2-Dichloropropane	9.61	1.0	$\mu g/L$	10.0	96.1	70-130	1.96	25		
1,3-Dichloropropane	9.71	0.50	$\mu g/L$	10.0	97.1	70-130	1.33	25		
2,2-Dichloropropane	9.99	1.0	$\mu g/L$	10.0	99.9	40-130	1.19	25		Ť
1,1-Dichloropropene	9.54	2.0	$\mu g/L$	10.0	95.4	70-130	2.48	25		
cis-1,3-Dichloropropene	9.81	0.50	$\mu g \! / \! L$	10.0	98.1	70-130	3.21	25		
trans-1,3-Dichloropropene	9.94	0.50	μg/L	10.0	99.4	70-130	2.86	25		
Diethyl Ether	10.1	2.0	$\mu g/L$	10.0	101	70-130	0.795	25		
Diisopropyl Ether (DIPE)	11.0	0.50	μg/L	10.0	110	70-130	2.49	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B245276 - SW-846 5030B											
LCS Dup (B245276-BSD1)				Prepared: 11	/06/19 Anal	yzed: 11/07/1	19				
1,4-Dioxane	112	50	μg/L	100		112	40-130	9.05	50		 † ‡
Ethylbenzene	10.2	1.0	$\mu g/L$	10.0		102	70-130	4.14	25		
Hexachlorobutadiene	11.7	0.60	$\mu g/L$	10.0		117	70-130	1.20	25		
2-Hexanone (MBK)	124	10	$\mu g/L$	100		124	70-160	1.16	25	V-20	†
Isopropylbenzene (Cumene)	10.4	1.0	$\mu g/L$	10.0		104	70-130	1.90	25		
p-Isopropyltoluene (p-Cymene)	10.7	1.0	$\mu g/L$	10.0		107	70-130	1.22	25		
Methyl tert-Butyl Ether (MTBE)	8.44	1.0	$\mu g/L$	10.0		84.4	70-130	1.18	25		
Methylene Chloride	10.3	5.0	$\mu g/L$	10.0		103	70-130	0.388	25		
4-Methyl-2-pentanone (MIBK)	127	10	$\mu g/L$	100		127	70-160	1.65	25	V-20	†
Naphthalene	9.61	2.0	$\mu g/L$	10.0		96.1	40-130	4.25	25		†
n-Propylbenzene	10.4	1.0	$\mu g/L$	10.0		104	70-130	2.09	25		
Styrene	8.78	1.0	μg/L	10.0		87.8	70-130	2.81	25		
1,1,1,2-Tetrachloroethane	10.4	1.0	μg/L	10.0		104	70-130	2.66	25		
1,1,2,2-Tetrachloroethane	10.9	0.50	$\mu g/L$	10.0		109	70-130	2.71	25		
Tetrachloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130	2.90	25		
Tetrahydrofuran	11.0	10	μg/L	10.0		110	70-130	13.8	25		
Toluene	9.64	1.0	$\mu g/L$	10.0		96.4	70-130	2.56	25		
1,2,3-Trichlorobenzene	9.14	5.0	μg/L	10.0		91.4	70-130	4.13	25		
1,2,4-Trichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	1.74	25		
1,3,5-Trichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.978	25		
1,1,1-Trichloroethane	10.2	1.0	μg/L	10.0		102	70-130	1.49	25		
1,1,2-Trichloroethane	9.72	1.0	μg/L	10.0		97.2	70-130	1.03	25		
Trichloroethylene	9.58	1.0	μg/L	10.0		95.8	70-130	7.24	25		
Trichlorofluoromethane (Freon 11)	9.61	2.0	μg/L	10.0		96.1	70-130	0.941	25		
1,2,3-Trichloropropane	10.7	2.0	μg/L	10.0		107	70-130	0.187	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.99	1.0	μg/L	10.0		99.9	70-130	0.599	25		
1,2,4-Trimethylbenzene	9.62	1.0	$\mu g/L$	10.0		96.2	70-130	0.931	25		
1,3,5-Trimethylbenzene	10.0	1.0	$\mu g/L$	10.0		100	70-130	1.97	25		
Vinyl Chloride	23.6	2.0	$\mu g/L$	10.0		236 *	40-160	3.05	25	L-02, V-20	†
m+p Xylene	20.4	2.0	$\mu g/L$	20.0		102	70-130	3.84	25		
o-Xylene	10.5	1.0	$\mu g/L$	10.0		105	70-130	3.29	25		
Surrogate: 1,2-Dichloroethane-d4	26.5		μg/L	25.0		106	70-130				_
Surrogate: Toluene-d8	24.9		$\mu g/L$	25.0		99.8	70-130				
Surrogate: 4-Bromofluorobenzene	23.9		$\mu g/L$	25.0		95.6	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
Blank (B245268-BLK1)				Prepared &	Analyzed: 11/	/06/19				
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
Fluoranthene (SIM)	ND	0.50	$\mu \text{g/L}$							
Fluorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$							
Naphthalene (SIM)	ND	1.0	$\mu g/L$							
Phenanthrene (SIM)	ND	0.050	$\mu g/L$							
Pyrene (SIM)	ND	1.0	$\mu g/L$							
Surrogate: Nitrobenzene-d5	73.7		μg/L	100		73.7	30-130			
Surrogate: 2-Fluorobiphenyl	51.1		μg/L	100		51.1	30-130			
urrogate: p-Terphenyl-d14	65.3		μg/L	100		65.3	30-130			
LCS (B245268-BS1)				Prepared &	Analyzed: 11/	/06/19				
Acenaphthene (SIM)	35.2	6.0	μg/L	50.0		70.4	40-140			
Acenaphthylene (SIM)	35.7	4.0	$\mu g/L$	50.0		71.4	40-140			
Anthracene (SIM)	38.2	4.0	$\mu g/L$	50.0		76.3	40-140			
Benzo(a)anthracene (SIM)	37.0	1.0	$\mu g/L$	50.0		74.1	40-140			
Benzo(a)pyrene (SIM)	37.4	2.0	$\mu g/L$	50.0		74.8	40-140			
Benzo(b)fluoranthene (SIM)	39.6	1.0	$\mu g/L$	50.0		79.2	40-140			
Benzo(g,h,i)perylene (SIM)	40.1	10	$\mu g/L$	50.0		80.2	40-140			
Benzo(k)fluoranthene (SIM)	39.8	4.0	$\mu g/L$	50.0		79.6	40-140			
Chrysene (SIM)	35.8	4.0	μg/L	50.0		71.7	40-140			
Dibenz(a,h)anthracene (SIM)	42.6	2.0	$\mu g/L$	50.0		85.2	40-140			
Fluoranthene (SIM)	37.3	10	μg/L	50.0		74.7	40-140			
Fluorene (SIM)	36.3	20	μg/L	50.0		72.6	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	42.8	2.0	μg/L	50.0		85.6	40-140			
-Methylnaphthalene (SIM)	34.3	20	μg/L	50.0		68.7	40-140			
Naphthalene (SIM)	32.7	20	μg/L	50.0		65.4	40-140			
Phenanthrene (SIM)	35.9	1.0	μg/L	50.0		71.8	40-140			
Pyrene (SIM)	36.4	20	μg/L	50.0		72.7	40-140			
Surrogate: Nitrobenzene-d5	74.9		μg/L	100		74.9	30-130			
Surrogate: 2-Fluorobiphenyl	56.8		$\mu g/L$	100		56.8	30-130			
Surrogate: p-Terphenyl-d14	59.6		μg/L	100		59.6	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245268 - SW-846 3510C										
LCS Dup (B245268-BSD1)				Prepared &	Analyzed: 11	/06/19				
Acenaphthene (SIM)	36.1	6.0	μg/L	50.0		72.2	40-140	2.47	20	
Acenaphthylene (SIM)	36.5	4.0	μg/L	50.0		73.0	40-140	2.22	20	
Anthracene (SIM)	39.5	4.0	μg/L	50.0		79.0	40-140	3.40	20	
Benzo(a)anthracene (SIM)	38.1	1.0	μg/L	50.0		76.2	40-140	2.82	20	
Benzo(a)pyrene (SIM)	38.7	2.0	μg/L	50.0		77.4	40-140	3.47	20	
Benzo(b)fluoranthene (SIM)	41.0	1.0	μg/L	50.0		82.0	40-140	3.43	20	
Benzo(g,h,i)perylene (SIM)	41.6	10	$\mu g\!/\!L$	50.0		83.3	40-140	3.82	20	
Benzo(k)fluoranthene (SIM)	41.8	4.0	μg/L	50.0		83.6	40-140	4.80	20	
Chrysene (SIM)	37.1	4.0	$\mu g\!/\!L$	50.0		74.1	40-140	3.35	20	
Dibenz(a,h)anthracene (SIM)	44.3	2.0	$\mu g\!/\!L$	50.0		88.5	40-140	3.78	20	
Fluoranthene (SIM)	38.4	10	$\mu g\!/\!L$	50.0		76.8	40-140	2.80	20	
Fluorene (SIM)	37.1	20	$\mu g\!/\!L$	50.0		74.2	40-140	2.23	20	
Indeno(1,2,3-cd)pyrene (SIM)	44.5	2.0	μg/L	50.0		88.9	40-140	3.76	20	
2-Methylnaphthalene (SIM)	35.8	20	$\mu g\!/\!L$	50.0		71.7	40-140	4.27	20	
Naphthalene (SIM)	33.0	20	$\mu g\!/\!L$	50.0		66.0	40-140	1.04	20	
Phenanthrene (SIM)	37.1	1.0	μg/L	50.0		74.2	40-140	3.18	20	
Pyrene (SIM)	37.4	20	$\mu g/L$	50.0		74.7	40-140	2.71	20	
Surrogate: Nitrobenzene-d5	77.8		μg/L	100		77.8	30-130			
Surrogate: 2-Fluorobiphenyl	59.4		$\mu g/L$	100		59.4	30-130			
Surrogate: p-Terphenyl-d14	60.7		$\mu g/L$	100		60.7	30-130			

FLAG/QUALIFIER SUMMARY

*	OC result is outside of established limits.
†	· ·
Ť	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260D in Water		
Acetone	NC	
Acrylonitrile	NC	
tert-Amyl Methyl Ether (TAME)	NC	
Benzene	NC	
Bromobenzene	NC	
Bromochloromethane	NC	
Bromodichloromethane	NC	
Bromoform	NC	
Bromomethane	NC	
2-Butanone (MEK)	NC	
tert-Butyl Alcohol (TBA)	NC	
n-Butylbenzene	NC	
sec-Butylbenzene	NC	
tert-Butylbenzene	NC	
tert-Butyl Ethyl Ether (TBEE)	NC	
Carbon Disulfide	NC	
Carbon Tetrachloride	NC	
Chlorobenzene	NC	
Chlorodibromomethane	NC	
Chloroethane	NC	
Chloroform	NC	
Chloromethane	NC	
2-Chlorotoluene	NC	
4-Chlorotoluene	NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NC	
1,2-Dichlorobenzene	NC	
1,3-Dichlorobenzene	NC	
1,4-Dichlorobenzene	NC	
trans-1,4-Dichloro-2-butene	NC	
Dichlorodifluoromethane (Freon 12)	NC	
1,1-Dichloroethane	NC	
1,2-Dichloroethane	NC	
1,1-Dichloroethylene	NC	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	NC	
1,2-Dichloropropane	NC	
1,3-Dichloropropane	NC	
2,2-Dichloropropane	NC	
1,1-Dichloropropene	NC	
cis-1,3-Dichloropropene	NC	
trans-1,3-Dichloropropene	NC	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NC	
1,4-Dioxane	NC	
Ethylbenzene	NC	
		_

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publile Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

The content of the	AMALYTICAL (ABORATORY	Fax: 412 FOE 640E	•		(Darlie 196 In 1971) with the second			East Lo	East Longmeadow, MA 01028	Lage 1 of 1	
1979 1974	Fma	Fax: 413-525-6405 Fmail: info@contectlabs com		paysantaay	Turnarani	Julie I	-				
		ari. mroe contestiabs.com		/-Day	10-Day					# of Containers	
The control of the		1, 1,0		9						² Preservation Code	
100 100	1	KONEICH			aumbey leads		1			³ Container Code	
The part 1.001-11-1	-		I-Day	3-Day			ANALYSIS RE	QUESTED	TES STREET WELLS SELL	seles	
Committee Comm		rancel		z-uay	4-Day					Field Filtered	
Common C	ָרְבָּיבְ בַּיבְיבָ	-			Memberry	Z				Lab to Filter	
The contract The		24			EXCE!						
The court House House Court House House Court House	ame/Ni	Anal		Other:			C			megy =) (2) (2) (2) (2) (3) (3) (4)	(3.2
This continue This continu	100000000000000000000000000000000000000			G)	equired:					Field Filtered	
Third Third The control The control Third	TO SELLEN	TE .		ö :	Jans smein	NC. 120				Lab to Filter	
Third Thir	2			ax to #:			<u>ئ</u>				
Third Total Tota		ample ID / Description	Begirming Date/Arme		Grab		7 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1) 1)			1 Matrix Codes:	
Date Trime Date			مالعرافا	17.77		8				GW = Ground Water	
A		À No.	-		3	\$				DW = Drinking Wate	
Comparison Com										S = Soil	ja (1)
									***********	SL = Sludge	
Content Cont										O = Other (please	
Content of the cont										define)	
1										***************************************	
										2 Preservation Code	12.
Mainting Acid Mainting Aci										= 1 = 1Ceq	j Nj
S = Sulfruir Acid										M = Methanol N = Nitric Acid	
Date/Time: Date/Date/Time: Date/Date/Time: Date/Date/Date/Date/Date/Date/Date/Date/										S = Sulfuric Acid	
Please use the following codes to indicate possible sample concentration within the Conc Code column above: H - High: M - Medium: L - Low; C - Clean; U - Unknown 3 Container Codes; H - High: M - Medium: L - Low; C - Clean; U - Unknown 3 Container Codes; A = Amber Glass									X = Sodium Bisuitate		
Date/Time: Project Entity Date/Time: Project Entity Date/Time: Project Entity Date/Time: Date										T = Sodium	
Date/Time: Other Date/Ti										- Phiosulfate	
Program Information Contained Codes: H - High; M - Medium; L - Low; C - Clean; U - Unknown Container Codes: A - Anther Glass A - Anther Glass A - Anther Glass C - Glan; U - Unknown C - Glass					Pie	ase use the fo	Howing code	es to indicate pos	sible sample concentration		
Date/Time: Date/Time: Cotries Date/Time: Date/T						H - High.	M - Medium	i; L - Low; C - Cl	lean; U - Unknown		
Montopality	W. (signature)	Date/Time:								A = Amber Glass	
Color Colo	thank					Ulrements		Program	Information		
	signature) (]		WPC				DSCA SMC 1 and 611	UST/Trust Fu		
Date/Time: IHSB			S	WSL			JE	HVB Orohonod		V = Vial	
Date/Time:	y: (signature)	Date/Time:		1SB				Ctato Lood	Lation	T - Todiar Ban	
Date/Time: Other Project Entity Date/Time: Federal Brownfield Brownfi				ISCC		NORTH CAROLINA		other:		0 = Other (please	
Life Date/Time: Project Entity Municipality Municipality Other PCB ONLY Date/Time: Federal Brownfield Brownfield Non Soxhlet	signature)	Date/Time:	0.000							define)	
Date/ Time: Project Entity Chromatogram Chromatogram Soxhlet Date/ Time: Federal Brownfield Non Soxhlet				Annual Control				MELAC and All-	A-LAP, LLC Accredited		Tab
Date/Time: Federal Brownfield Chromatogram Soxhlet Non Soxhlet	y. (signature)	Jate/Ime:	Project Entit	y Overnment	Minimin			Oth	Г	PCB ONLY	le c
	signature)	Date/Time:) [ederal	Brownfield				Chromatogram AIHA-LAP, LLC	Soxhlet Non Soxhlet	of Co

IMPORTANT!

The wildfires are causing hazardous conditions in California. Learn More

Delivered Friday 11/01/2019 at 9:02 am

DELIVERED

Signed for by: R.PETRIAS

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Autryville, NC US

TO

East Longmeadow, MA US

Shipment Facts

TRACKING NUMBER

411359783302

SERVICE

FedEx Priority Overnight

WEIGHT

53.4 lbs / 24.22 kgs

DELIVERED TO Shipping/Receiving

TOTAL PIECES

RETURN REASON

TOTAL SHIPMENT WEIGHT

53.4 lbs / 24.22 kgs

TERMS Third Party

PACKAGING

Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday

STANDARD TRANSIT

11/01/2019 by 10:30 am

Thu 10/31/2019

ACTUAL DELIVERY

Fri 11/01/2019 9:02 am

Travel History

Local Scan Time

Friday, 11/01/2019

9:02 am 7:45 am

East Longmeadow, MA

Delivered

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

6:27 am

EAST GRANBY, CT

At destination sort facility

Page 24 of 25

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

P ~ ~ ~ ~ ~ ~			*******************************						
I/ACAL.	ved By	Mp		Date	11/1	19	Time	902	***
	the samples	In Cooler		No Cooler		On Ice	7	No Ice	
rece	ived?	Direct from Sam	pling	•		Ambient	****	— Melted ice	
Were sam	ples within		By Gun#			Actual Tem	nn - U.	*************************************	
	ure? 2-6°C		By Blank #	······································		Actual Ten		***************************************	-
	s Custody S	eal Intact?	- 100 Dia 111 11 11 11 11 11 11 11 11 11 11 11 1	We	re Sample	s Tampered			-
	s COC Relir					ree With Sa		<u> </u>	-
		eaking/loose caps	on any sami	oles?	/ / / ·		·		-
	nk/ Legible?			·	noles recei	ved within h	olding time?	, (-	
Did COC		Client	_	Analysis	T		ler Name		-
ertinent In	formation?	Project	T	ID's			Dates/Time	es 7	-
ire Sample	e labels filled	d out and legible?	7	_				<u> </u>	-
	ab to Filters?	?			Who was	s notified?			
re there Ru			_F			s notified?			=
	nort Holds?		<u>E</u>		Who was	s notified?		***************************************	•
	ugh Volume						**************************************		-
41	dspace whe	ere applicable?	K		MS/MSD?	F			
	-	• •		ş	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			<i>[</i>	
roper Medi	ia/Container	s Used?				samples red	- quired?	F	
roper Medi /ere trip bla	ia/Container anks receive	s Used? ed?		1		samples red	- quired?	<u> </u>	
roper Medi /ere trip bla	ia/Container anks receive	s Used?	F	1	ls splitting s	samples red	- quired? - Base		
roper Medi /ere trip bla o all sampl ials	ia/Container anks receive	s Used? ed? proper pH? Containers:	E M	ļ (ls splitting s	samples red	, n	<u></u>	
roper Medi /ere trip bla o all sampl ials np-	ia/Container anks receive	s Used? ed? proper pH? Containers: 1 Liter Amb.		ļ (ls splitting s	F	Base	oz Amb.	#
roper Medi /ere trip bla o all sampl ials np- CL-	ia/Container anks receive	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb.	#	Acid 1 Liter F 500 mL I	Is splitting some concept of the con	F	Base	oz Amb. mb/Clear	#
roper Medi /ere trip bla o all sampl ials np- CL- eoh-	ia/Container anks receive	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.	#	Acid	Is splitting s On COC? Plastic Plastic Plastic	F	Base 16 o 8oz A		#
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate-	ia/Container anks receive	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint	#	Acid 1 Liter F 500 mL I 250 mL I Col./Ba	Is splitting s On COC? Plastic Plastic Plastic Cteria	F	Base 16 o 8oz A 4oz A 2oz A	mb/Clear mb/Clear mb/Clear	***
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate-	ia/Container anks receive	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	#	Acid	Plastic Plastic Plastic Plastic Plastic Plastic Plastic	F	Base 16 c 8oz A 4oz A 2oz A Er	mb/Clear mb/Clear	#
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate- l- niosulfate-	ia/Container anks receive	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	#	Acid 1 Liter F 500 mL I 250 mL I Col./Bac Other P Plastic	Plastic Plastic Plastic Plastic Plastic Cteria Plastic Bag	F	Base 16 o 8oz A 4oz A 2oz A	mb/Clear mb/Clear mb/Clear	
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate- l- niosulfate-	ia/Container anks receive	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	#	Acid 1 Liter F 500 mL I 250 mL I Col./Bac Other P Plastic Ziplo	Plastic Plastic Plastic Plastic Plastic Cteria Plastic Bag	F	Base 16 c 8oz A 4oz A 2oz A Er	mb/Clear mb/Clear mb/Clear	4
roper Medi fere trip bla o all sampl als np- CL- eoh- sulfate- niosulfate- ulfuric-	a/Container anks receive les have the	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate	#	Acid 1 Liter F 500 mL I 250 mL I Col./Bac Other P Plastic	Plastic Plastic Plastic Plastic Plastic Cteria Plastic Bag	F	Base 16 c 8oz A 4oz A 2oz A Er	mb/Clear mb/Clear mb/Clear	#
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate- iniosulfate- ulfuric-	a/Container anks receive les have the	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers:	#	Acid 1 Liter F 500 mL I 250 mL I Col./Bac Other P Plastic Ziplo	Plastic Plastic Plastic Cteria Plastic Bag ck	F	Base 16 c 8oz A 4oz A 2oz A Frozen:	mb/Clear mb/Clear mb/Clear ncore	***
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate- niosulfate- ulfuric-	a/Container anks receive les have the	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb.	#	Acid 1 Liter F 500 mL I 250 mL I Col./Bar Other P Plastic Ziplo Unused M	Plastic Plastic Plastic Plastic Plastic Bag pck Plastic	F	Base 16 o 8oz A 4oz A 2oz A Er Frozen:	mb/Clear mb/Clear mb/Clear ncore	1
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate- iniosulfate- ulfuric- als	a/Container anks receive les have the	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	#	Acid 1 Liter F 500 mL I 250 mL I Col./Bar Other P Plastic Ziplo Unused M 1 Liter P 500 mL F	Plastic Plastic Plastic Plastic Bag Bag Back Plastic Plastic	F	Base 16 c 8oz Ai 4oz Ai 2oz Ai Er Frozen:	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear	#
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate- l- niosulfate- ulfuric- als np- CL- eoh-	a/Container anks receive les have the	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	#	Acid 1 Liter F 500 mL I 250 mL I Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F	Plastic Plastic Plastic Bag Bock Plastic Plastic Bag Bock Plastic Plastic Plastic Plastic Plastic	F	Base 16 c 80z A 40z A 20z A Er Frozen:	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear	#
roper Medi /ere trip bla o all sampl ials np- CL- eoh- sulfate- l- niosulfate- ulfuric- CL- eoh- sulfuric-	a/Container anks receive les have the	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	#	Acid Acid 1 Liter F 500 mL I 250 mL F Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F 250 mL F Flashp	Plastic	F	Base 16 o 8oz A 4oz A 2oz A Frozen: 16 o 8oz Ar 4oz Ar 2oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear mb/Clear	
roper Medi /ere trip bla o all sampl ials np- CL- leoh- isulfate- l- hiosulfate- ulfuric- als np- CL- eoh- sulfate- ulfuric-	a/Container anks receive les have the	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic	#	Acid Acid 1 Liter F 500 mL I 250 mL I Col./Bai Other P Plastic Ziplo Unused M 1 Liter P 500 mL F 500 mL F Flashp Other G	Plastic Plastic Plastic Plastic Plastic Cteria Plastic Bag ock Plastic Plastic Plastic Cteria	F	Base 16 o 8oz A 4oz A 2oz A Frozen: 16 o 8oz Ar 4oz Ar 2oz Ar En	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear	***
roper Medi fere trip bla o all sampl rals np- CL- eoh- sulfate- inosulfate- ulfuric- CL- eoh- sulfate- sulfate- sulfate- sulfate-	a/Container anks receive les have the	s Used? ed? proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	#	Acid Acid 1 Liter F 500 mL I 250 mL F Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F 250 mL F Flashp	Plastic	F	Base 16 o 8oz A 4oz A 2oz A Frozen: 16 o 8oz Ar 4oz Ar 2oz Ar 2oz Ar	mb/Clear mb/Clear mb/Clear ncore z Amb. mb/Clear mb/Clear mb/Clear	1