

January 9, 2020

North Carolina Department of Transportation Geotechnical Unit Mail Service Center 1592 Raleigh, North Carolina 27699-1592

Attention: Mr. Craig Haden email: cehaden@ncdot.gov

Reference: Preliminary Site Assessment Report

NCDOT Project I-5878, WBS Element 53078.1.1

Parcel 71-Former Phillips 66

Vacant Lot SE Corner E. Cumberland St and I-95

Dunn, Harnett County, North Carolina

S&ME Project 4305-19-161

Dear Mr. Haden:

S&ME, Inc. (S&ME) is submitting this Preliminary Site Assessment (PSA) Report to the North Carolina Department of Transportation (NCDOT). This report presents the background/project information, field activities, findings, conclusions, and recommendations. These services were performed in general accordance with S&ME Proposal No. 43-1900576 REV-01 dated August 9, 2019, and Contract Number 7000018853 dated April 12, 2018 between NCDOT and S&ME, Inc., authorized by NCDOT in its September 5,2019 Notice to Proceed Letter.

♦ Background/Project Information

Based on NCDOT's July 24, 2019, Request for Technical and Cost Proposal, the PSA was conducted within the NCDOT right-of-way (ROW) and/or easement as indicated on the preliminary plan sheets provided by NCDOT at the following property:

NCDOT Parcel No.	Property Owner	Site Address
71	Susan E. Tart	(Former Phillips 66),
		Vacant Lot SE Corner of E. Cumberland St and I-95
		Dunn, NC

The property was previously developed with a gasoline/service station identified as Phillips 66. At the time of our field activities, the majority of the property was a grassy vacant lot. A small, open, metal shed, which is used for the sale of produce, is located on the property. The former gasoline/service station building had been razed. The petroleum underground storage tanks (USTs) that the Phillips 66 operated were previously removed. Information regarding the former UST system is provided in the following table:

UST Facility ID No. Not Provided

Number of Tanks	Contents	Capacity (gallons)	Date Installed	Date Removed
1	Gasoline	8,000	Not Provided	March 1988
2	Gasoline	8,000		
3	Gasoline	3,000		
4	Diesel	2,000		
5	Kerosene	1,000		
6	Heating Oil	1,000		

The property is listed with one North Carolina Department of Environmental Quality (NCDEQ) Incident (Incident #3626- Susan Tart Property-Former Phillips 66) associated with petroleum releases discovered during the removal of USTs in 1988. A groundwater treatment system was previously operated at the site. Numerous monitor wells, which have been abandoned, were located on the property. Groundwater at the site is reported to flow primarily to the south-southeast (*Fourth Quarter 1997 Groundwater Sampling Report* prepared by RUST dated January 27,1998 and *Site Closure Request* prepared by RUST dated March 1998). Copies of pertinent information obtained from the above referenced reports are included in **Appendix I.**

The PSA included a geophysical survey, subsequent limited soil sampling (18 soil borings up to 10 feet below ground surface (ft.-bgs)) and limited groundwater sampling (one groundwater sample), within accessible areas of the proposed ROW/easement in preparation for construction activities. **Figure 1** shows the vicinity and site location, and **Figure 2** shows the site and boring locations. Soil and groundwater sampling results are shown on **Figure 3**.

Field Services

Prior to field activities, a site specific Health and Safety Plan was prepared as required by the Occupational Health and Safety Act (OSHA). Underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator (East Coast Underground, LLC) was also used to locate and mark underground utilities.

Geophysical Survey

On July 25, 2019, S&ME completed Time Domain Electromagnetic (TDEM) and Ground Penetrating Radar (GPR) surveys within accessible areas of the proposed ROW/easement at Parcel 71. Brief descriptions of these complementary geophysical techniques are presented in the following paragraphs.

Time Domain Electromagnetics (TDEM)

TDEM measures the electrical conductivity of subsurface materials and discriminates between moderately conductive earth materials and very conductive metallic targets within the shallow subsurface. The conductivity is determined by transmitting a time-varying magnetic pulse into the subsurface and measuring the amplitude and phase shift of the secondary magnetic field. The secondary magnetic field is created when the conductive materials become an inductor as the primary magnetic field is passed through them. TDEM data are acquired continuously at a walking pace typically along a series of parallel or perpendicular lines. The system generates audible and visual indications when metallic targets are encountered. These measurements can also be supported with a global positioning system (GPS) which is output directly into the TDEM data file.

We used a Geonics Limited EM-61 MK2 TDEM system in general accordance with ASTM D6820 "Standard Guide for Use of the Time Domain Electromagnetic Method for Subsurface Investigation." Data was collected along lines spaced at approximately five feet using a Juniper® Systems GeodeTM sub-meter GPS as positioning support. The presence of heavy vegetation within the survey area, however, prevented TDEM data collection north of an existing fence. The approximate TDEM data collection paths are presented in **Figure 4.** Golden Software's Surfer® program was used to grid and plot the data (**Figures 5 and 6**). The TDEM data has been presented as Plots A and B in order to provide both opaque and semi-transparent views, respectively.

Ground Penetrating Radar (GPR)

GPR transmits electromagnetic waves into the subsurface from an antenna at a specific frequency and measures the time for wave reflections to be received by interfaces between materials with differing material properties (e.g. soil/metal, etc.). The intensity of the reflected GPR wave is a function of the contrast in the material properties (i.e. dielectric permittivity) at the interface, the conductivity of the material that the wave is traveling through, and the frequency of the signal.

We used a Geophysical Survey Systems, Inc. (GSSI) SIR® 4000 GPR system equipped with a 350 MHz antenna in general accordance with ASTM D6432 "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation" to further characterize anomalies/features identified during the TDEM survey.

A total of 19 GPR profiles (Lines 1 through 19) were collected for documentation (**Figure 7**). The data was post-processed using the GSSI Radan® 7 GPR software program for additional analysis.

Geophysical Findings

Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site. Four anomalous features unrelated to known surficial targets were identified in the geophysical data sets (Anomalies A through D; **Figures 6 and 7**). Each of the identified anomalies are characterized by high amplitude GPR responses located within the upper one ft.-bgs and may be related to relatively small, isolated buried metallic objects. Anomalies were marked in the field using white spray paint. Example GPR profiles are presented in **Figures 8 through 11.**

Soil Sampling

On October 17, 2019, Troxler Geologic, Inc. (Troxler's) drill crew utilized a track mounted Geoprobe® rig to advance 18 soil borings (B-1 through B-18) and to collect soil samples within accessible areas of the proposed ROW/easement at Parcel 71. The approximate location of the soil borings are shown in **Figure 2**. A photographic log is included in **Appendix II**. Troxler's drill crew advanced the Geoprobe® borings up to a depth of approximately 10 ft.-bgs. During the advancement of the soil borings, groundwater was encountered at depths ranging from five to 6.7 ft.-bgs. Soil samples were continuously collected in four-foot long disposable acetate-plastic sleeves that line the hollow stainless-steel sample probes. Soil recovered from the sleeves was classified on-site by S&ME personnel and screened with a Photoionization Detector (PID) at approximately two foot depth intervals to measure relative headspace concentrations of volatile organic compounds (VOCs).

VOC headspace readings were obtained from an aliquot of each soil sample that was placed in a re-sealable bag. Another portion of the sample was placed in a separate re-sealable bag and stored in an insulated container with ice for possible laboratory analyses. After waiting approximately 15 minutes to allow the sample to reach ambient temperature and headspace equilibrium, the PID probe was inserted into the bag to obtain a headspace reading. A summary of the PID readings and logs of the soil borings are included in **Appendix III.**

Petroleum odors and elevated PID readings were noted at borings B-1, B-2, B-5, B-14, B-15 and B-16 starting at a depth of approximately three ft.-bgs at borings B-15 and B-16, four ft.-bgs at borings B-1, B-2 and B-5 and six ft.-bgs at boring B-14 and extending to boring termination at eight to 10 ft-bgs. Petroleum staining was noted at boring B-1. Groundwater was encountered within these borings at a depth of approximately six ft.-bgs. Groundwater was encountered across the site at depths ranging from five to 6.7 ft.-bgs. Therefore, a soil sample was selected from borings B-1, B-2, B-5 and B-14 at the four to six foot depth interval and the two to four foot depth interval at boings B-15 and B-16. Various soil samples at varying depth intervals were selected from the remaining borings. The soil samples were placed into laboratory supplied containers and transported to RED Lab, LLC (Red Lab) in an insulated cooler with ice for analysis. A total of 18 soil samples (one soil sample per boring) were analyzed by RED Lab for TPH-GRO and TPH-DRO using ultra-violet fluorescence (UVF) spectroscopy with product (fuel) identification.

Soil Analytical Results

Based upon analytical results of soil samples analyzed by RED Lab using UVP spectroscopy, TPH-GRO and TPH-DRO were reported at concentrations exceeding their respective North Carolina TPH Action Levels in borings B-1, B-2 and B-15. TPH-GRO was reported at a concentration exceeding its North Carolina TPH Action Level in boring B-5. The highest concentrations were reported in boring B-2 at the four to six foot depth interval. TPH-GRO was reported in boring B-2 at a concentration of 212.2 milligrams per kilograms (mg/kg) which exceeds its North Carolina TPH Action Level of 50 mg/kg. TPH DRO was reported in boring B-2 at a concentration of 737.9 mg/kg which exceeds its North Carolina TPH Action Level of 100 mg/kg. TPH-DRO was also reported in each of the additional borings, at concentrations above the laboratory reporting limits but below its North Carolina TPH Action Level. TPH-GRO was also reported in borings B-3, B-4 and B-8 at concentrations above the laboratory reporting limits but below its North Carolina TPH Action Level. TPH-GRO was not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples. A summary of the soil analytical results is presented in **Table 1** and shown on **Figure 3.** A copy of the laboratory analytical report provided by RED Lab is presented in **Appendix IV.**

Groundwater Sampling

During the advancement of the soil borings, groundwater was encountered at depths ranging from approximately five to 6.7 ft.-bgs. On October 18, 2019, the Geoprobe® was used to advance one of the soil borings into the groundwater table for the collection of a groundwater sample. Based on the elevated PID readings and observed staining, soil boring B-1 was selected for collection of a groundwater sample. A temporary monitor well (TW-1) was installed at soil boring B-1 to a depth of approximately ten ft.-bgs using a ten foot section of one-inch diameter, Schedule 40 PVC, 0.01-inch slotted screen that intersected the groundwater table. Groundwater within the temporary monitor well at soil boring B-1 was measured at 6.7 ft.-bgs. Groundwater from the temporary well was purged until relatively clear using disposable tubing attached to a peristaltic pump. A petroleum odor was noted during purging. The flow rate was reduced and laboratory supplied containers were filled directly from the tubing, labeled as TW-1, and placed in an insulated cooler with ice for transport to Con-Test Laboratories (Con-Test) for analysis of VOCs by EPA Method 8260 and polycyclic aromatic compounds (PAHs) by EPA Method 8270.

Upon completion of the soil and groundwater sampling, the well materials were removed and the soil borings backfilled with bentonite pellets and soil cuttings. Investigative derived wastes (IDW), such as soil cuttings generated during the soil boring advancement and decontamination water, were spread on the ground in accordance with the procedures specified by NCDEQ. Used gloves and tubing were bagged and disposed offsite.

Groundwater Sampling Results

Based upon analytical results of the groundwater sample analyzed by Con-Test, several petroleum related target constituents were reported at concentrations exceeding their 15A NCAC 2L Groundwater Quality Standards (2L Standards). Benzene was the highest constituent reported above its 2L Standard at a concentration of 510 micrograms per liter (μ g/L), which exceeds its 2L Standard of 1 μ g/L. A summary of the groundwater analytical results is presented in **Table 2** and shown on **Figure 3**. A copy of the laboratory analytical report provided by Con-Test is presented in **Appendix IV**.

Conclusion and Recommendations

The geophysical survey identified four anomalies (Anomalies A through D) which may be related to relatively small, isolated buried metallic objects. Responses indicative of a potential UST were not identified in the geophysical data sets collected at the site.

S&ME advanced 18 soil borings (B-1 through B-18) to a depth of up to approximately 10 ft.-bgs at the site. Petroleum odors and elevated PID readings were noted at borings B-1, B-2, B-5, B-14, B-15 and B-16 starting at a depth of approximately three ft.-bgs at borings B-15 and B-16, four ft.-bgs at borings B-1, B-2 and B-5 and six ft.-bgs at boring B-14 and extending to boring termination at eight to ten ft-bgs. Petroleum staining was noted at boring B-1. Selected soil samples from the soil borings were analyzed for TPH-GRO and TPH-DRO using UVF spectroscopy.

TPH-GRO and TPH-DRO were reported at concentrations exceeding their respective North Carolina TPH Action Levels in borings B-1, B-2 and B-15. TPH-GRO was reported at a concentration exceeding its North Carolina TPH Action Level in boring B-5. The highest concentrations were reported in boring B-2 at the four to six foot depth

interval. TPH-GRO was reported in boring B-2 at a concentration of 212.2 mg/kg which exceeds its North Carolina TPH Action Level of 50 mg/kg. TPH DRO was reported in boring B-2 at a concentration of 737.9 mg/kg which exceeds its North Carolina TPH Action Level of 100 mg/kg. TPH-DRO was also reported in each of the additional borings, at concentrations above the laboratory reporting limits but below its North Carolina TPH Action Level. TPH-GRO was also reported in borings B-3, B-4 and B-8 at concentrations above the laboratory reporting limits but below its North Carolina TPH Action Level. TPH-GRO was not reported at concentrations exceeding the laboratory method reporting limits at the remaining soil samples.

During the soil boring advancement, groundwater was encountered across the site at depth ranging from approximately five to 6.7 ft.-bgs. One temporary well (TW-1) was installed at soil boring B-1. Groundwater at TW-1 was measured at 6.7 ft.-bgs and analyzed by Con-Test for VOCs by EPA Method 8260 and PAHs by EPA Method 8270. Several petroleum related target constituents were reported at concentrations exceeding their 2L Standards.

Based on the findings of the geophysical survey and the analytical results of soil and groundwater samples, it is likely that during construction, NCDOT may encounter soil and groundwater impacted with petroleum at the site. Petroleum impacted soil at concentrations exceeding the North Carolina TPH Action Levels may be encountered within the vicinity of borings B-1, B-2, B-5 and B-15. Assuming that a section of petroleum impacted soil approximately two feet thick, 30 feet in diameter at a depth of four to six ft.-bgs (groundwater was encountered at a depth of six ft.-bgs at boring B-5); up to 53 cubic yards of soil at boring B-5 may be impacted. Assuming that another section of petroleum impacted soil approximately three feet thick, 60 feet wide and 100 feet long at a depth of three to six ft.-bgs; up to 670 cubic yards of soil may be impacted within the vicinity of borings B-1, B-2 and B-15. Therefore, a total of approximately 725 cubic yards of petroleum impacted soil may be encountered during construction to depths of approximately three to six ft.-bgs.

It should also be assumed that saturated petroleum impacted soil will be encountered if construction excavations extend deeper than five to six ft.-bgs on the site. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

If petroleum stained or odorous soils are encountered during construction, these soils should be properly handled and disposed at a licensed facility. If construction dewatering is required, petroleum impacted groundwater must be properly disposed or treated at a licensed facility.

S&ME recommends maintaining an awareness level for the presence of petroleum in the soil and groundwater at the site for the safety of workers and the public.

Limitations

The results of this preliminary investigation are limited to the boring locations presented herein. The results of this Preliminary Site Assessment are not all inclusive and may not represent existing conditions across the entire property. These results only reflect the current conditions at the locations sampled on the date this Preliminary Site Assessment was performed. This report has been prepared in accordance with generally accepted environmental engineering and geophysical practice for specific application to this project. The conclusions and recommendations contained in this report are based upon applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The geophysical methods used for this survey have inherent limitations. Site metallic features (e.g., reinforced concrete, utilities, etc.) and overhead transmission lines can produce a false electromagnetic response and may mask subsurface features. The depth of exploration of the GPR signal is highly site specific and is greatly limited by signal attenuation (absorption) of the subsurface materials. Signal attenuation is dependent upon the electrical conductivity of the subsurface materials. Signal attenuation is greatest in materials with relatively high electrical conductivities such as clay soils, and lowest in relatively low conductivity materials such as unsaturated sand. For this project location, the GPR data sets appear to have a maximum depth of penetration of about 7.5 ft.-bgs.

Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of potential buried features is based on our review of the provided information and of the geophysical survey. Under no circumstances does S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

This Preliminary Site Assessment was performed solely for NCDOT regarding the above-referenced site and assessment area. This report is provided for the sole use of NCDOT. Use of this report by any other parties will be at such party's sole risk. S&ME disclaims liability for any such use or reliance by third parties. The observations presented in this report are indicative of conditions during the time of the assessment and of the specific areas referenced.

Closing

S&ME appreciates the opportunity to provide these services to you. If you have any questions or comments regarding this report, please contact us at your convenience.

Sincerely,

S&ME, Inc.

DocuSigned by:

Danie Honeycutt -4C890EAEC25F488...

Jamie T Honeycutt Environmental Professional <u>jhoneycutt@smeinc.com</u>

DocuSigned by:

Tom Raymond

D4B9FB5F636F4BB....

1/27/2020

Thomas P. Raymond, P.E., P.M.P. Senior Consultant traymond@smeinc.com

Docusigned by:
Michael Pfeifer
861E52DDEFAF4C7...

Michael W. Pfeifer Senior Project Manager mpfeifer@smeinc.com

Attachments:

Table 1: Summary of Soil Sampling Results

Table 2: Summary of Groundwater Sampling Results

Figure 1: Vicinity Map **Figure 2:** Site Map

Figure 3: Soil and Groundwater Constituent Map

Figure 4: TDEM Path Location Plan

Figure 5: TDEM Data Plot A **Figure 6:** TDEM Data Plot B

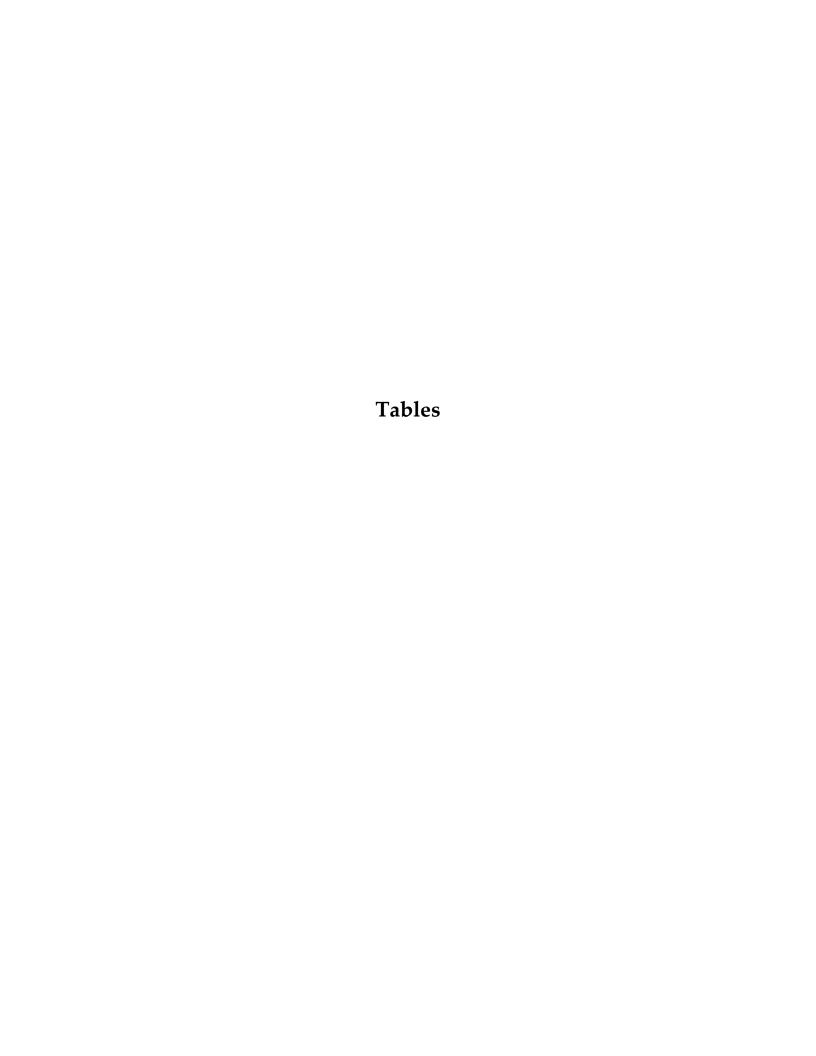

Figure 7: Geophysical Anomaly Location Plan **Figure 8:** Example GPR Data – Lines 5 and 6

Figure 9: Example GPR Data - Line 3

Figure 10: Example GPR Data – Lines 16 and 17 Figure 11: Example GPR Data – Lines 9 and 10

Appendix II: NCDEQ File Review
Appendix III: Photographs
Appendix IIII: Boring Logs

Appendix IV: Laboratory Analytical Reports and Chain of Custody

TABLE 1 SUMMARY OF SOIL SAMPLING RESULTS NCDOT Project I-5878

Parcel 71 - (Former Phillips 66)

Vacant Lot SE Corner E. Cumberland St. and I-95 Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161

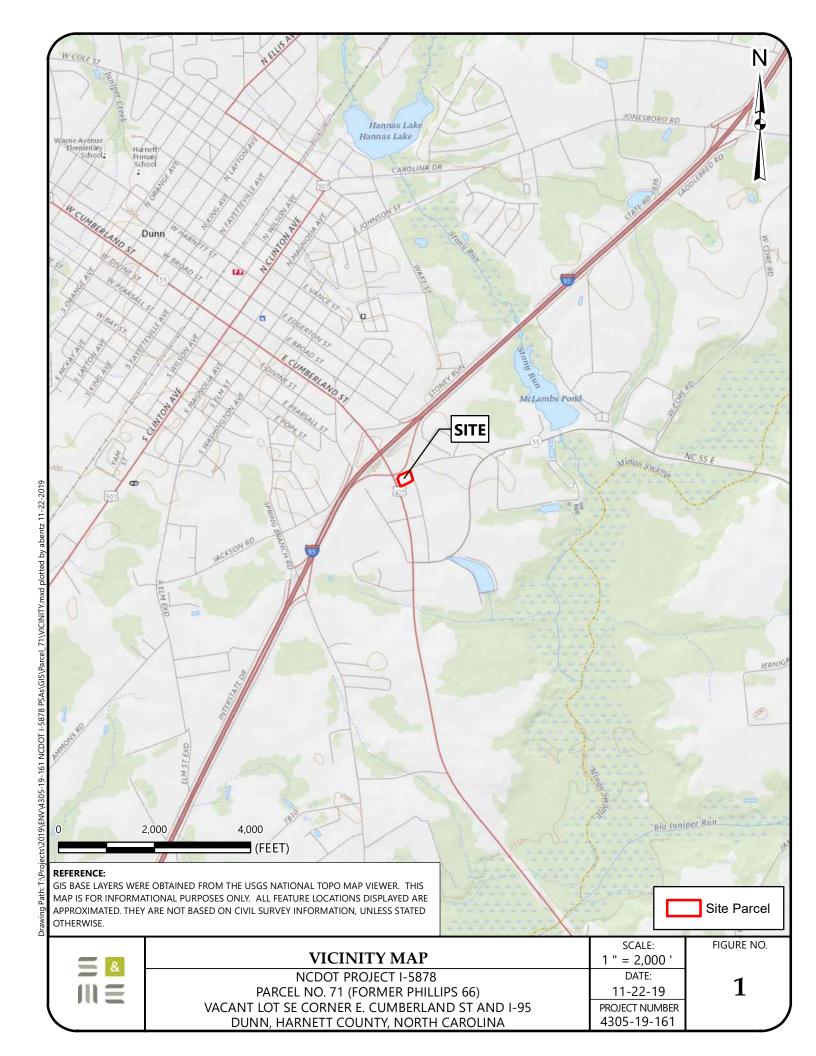
Aı	nalytical Metho	d→	Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) and Diesel Range Organics (DRO) by Ultraviolet Fluorescence (UVF) Spectrometry						
Sample ID	Date	Contaminant of Concern→ Sample Depth (ftbgs)	TPH-GRO	TPH-DRO					
B-1	10/17/2019	4 to 6	84.8	137.9					
B-2	10/17/2019	4 to 6	212.2	737.9					
B-3	10/17/2019	4 to 6	21	8.4					
B-4	10/17/2019	4 to 6	6	21.6					
B-5	10/17/2019	4 to 6	90.1	29.7					
B-6	10/17/2019	2 to 4	<0.48	1.5					
B-7	10/17/2019	4 to 6	<0.52	2.3					
B-8	10/17/2019	4 to 6	2.7	0.71					
B-9	10/17/2019	4 to 6	<0.55	0.69					
B-10	10/17/2019	4 to 6	<0.54	1.4					
B-11	10/17/2019	2 to 4	<0.51	5.8					
B-12	10/17/2019	2 to 4	<0.51	3.1					
B-13	10/17/2019	4 to 6	<0.54	4.5					
B-14	10/17/2019	4 to 6	17.4	4.5					
B-15	10/17/2019	2 to 4	156.1	544.9					
B-16	10/17/2019	2 to 4	17.2	8					
B-17	10/17/2019	2 to 4	<0.25	0.5					
B-18	10/17/2019	4 to 6	<0.52	1.2					
No	orth Carolina T	PH Action Levels	50	100					

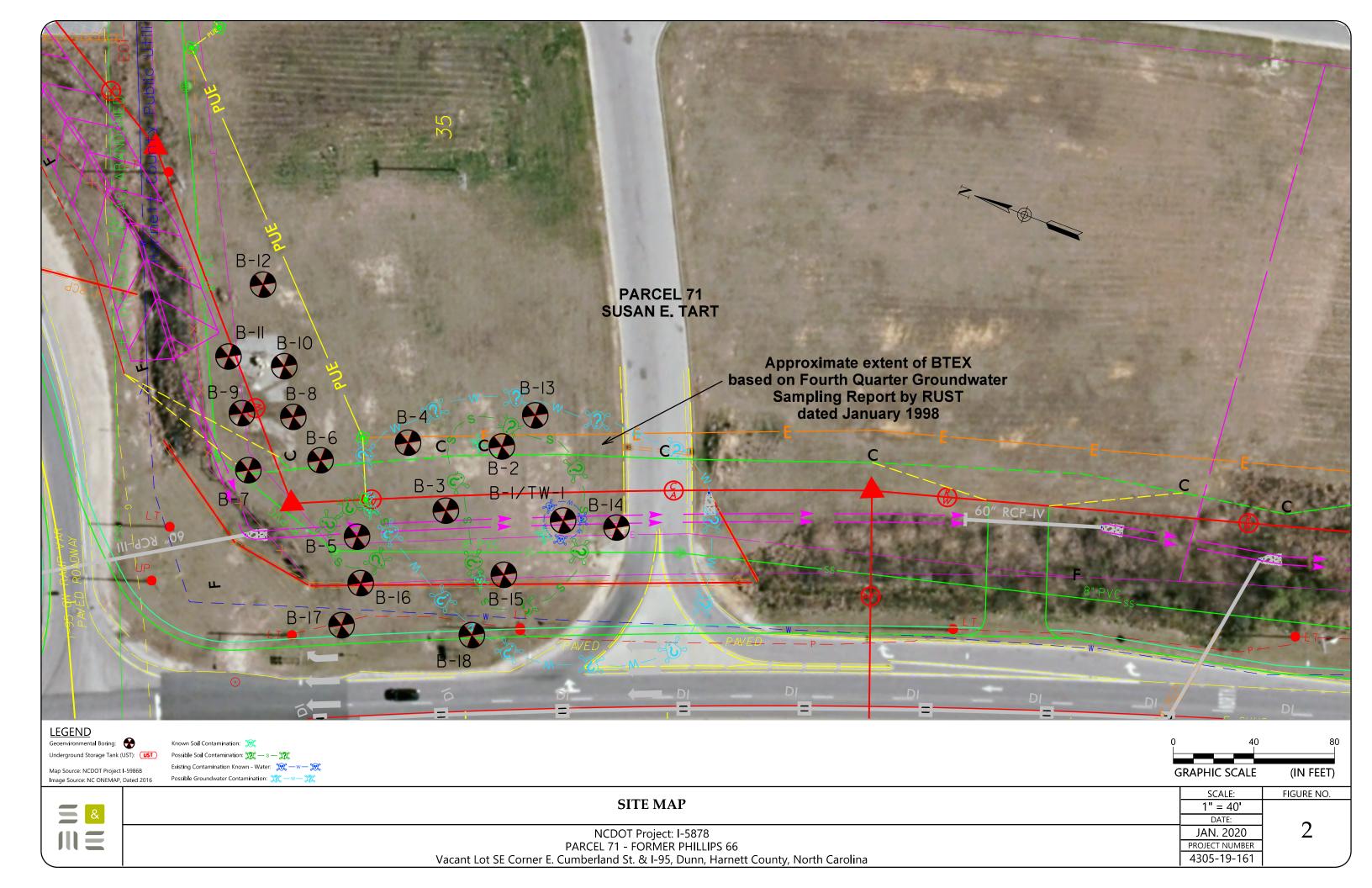
Notes:

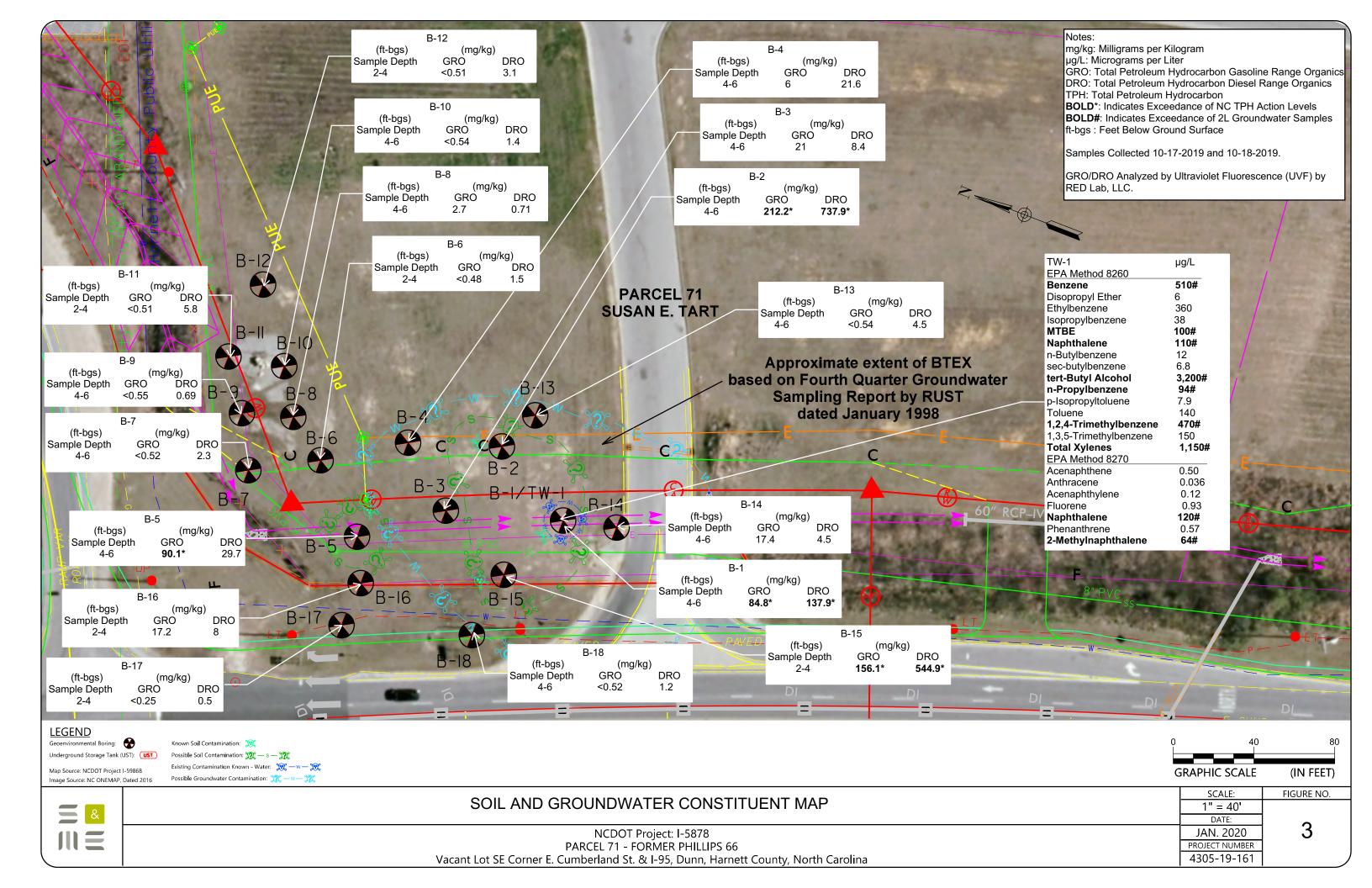
- 1. UVF analysis performed by RED Lab, LLC
- 2. Concentrations are reported in milligrams per kilogram (mg/Kg).
- 3. ft.-bgs:- feet below ground surface.
- 4. Concentrations exceeding the laboratory's reporting limits are shown in BOLD fields.
- Concentrations exceeding the North Carolina TPH Action Levels are shown in Shaded and BOLD fields.

TABLE 2 SUMMARY OF GROUNDWATER SAMPLING RESULTS NCDOT Project I-5878

Parcel 71 - (Former Phillips 66)


Vacant Lot SE Corner E. Cumberland St. and I-95 Dunn, Harnett County, North Carolina S&ME Project No. 4305-19-161


Analytical	Method→	Volatile Organic Compounds by EPA Method 8260 Polycyclic Aromatic Compounds (PAHs) Method 8270											PAHs)	by EPA									
Sample ID	Contaminant of Concern→	Benzene	Diisopropyl Ether	Ethylbenzene	Isopropylbenzene	МТВЕ	Naphthalene	n-Butylbenzene	sec-Butylbenzene	tert-Butyl Alcohol	n-Propylbenzene	p-Isopropyltoluene	Toluene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Total Xylenes	Acenaphthene	Anthracene	Acenaphthylene	Fluorene	Naphthalene	Phenanthrene	2-Methylnaphthalene
B-1/TW-1	10/18/2019	510	6	360	38	100	110	12	6.8	3,200	94	7.9	140	470	150	1,150	0.50	0.036 J	0.12 J	0.93 J	120	0.57	64
2L S	Standard (µg/L)	1	70	600	70	20	6	70	70	10	70	25	600	400	400	500	80	2,000	200	300	6	200	30
	GCL (µg/L)	5,000	70,000	84,500	25,000	20,000	6,000	6,900	8,500	10,000	30,000	11,700	260,000	28,500	25,000	85,500	2,120	2,000	1,965	990	6,000	410	12,500


Notes

- 1. Analytes that are not shown for the method were not detected.
- 2. Concentrations are reported in micrograms per liter (µg/L).
- 3. 2L Standard: North Carolina Groundwater Quality Standards: 15A NCAC 2L.0202
- 4. Concentrations exceeding the laboratory's reporting limits are shown in **BOLD** fields.
- 5. Concentrations exceeding the 2L Standards are shown in Shaded and **BOLD** fields.
- 6. GCL: Gross Contamination Level.
- 7. J: Estimated concentration detected below the reporting limit.

--- Approximate TDEM Path

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

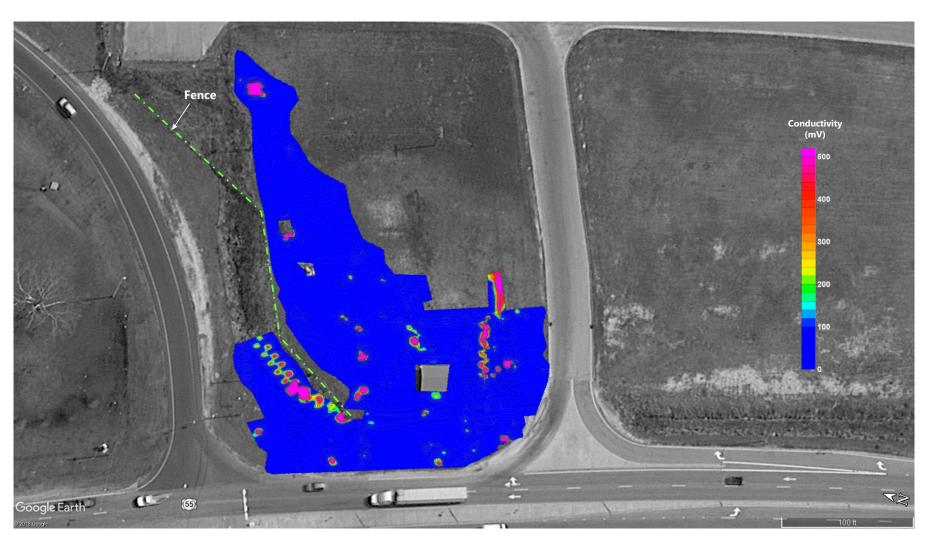
NCDOT PROJECT: 1-5878 PARCEL #71 - (FORMER PHILLIPS 66) VACANT LOT SE CORNER CUMBERLAND STREET AND 1-95, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM PATH LOCATION PLAN

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161


FIGURE NO.

Approximate Requested Survey Area

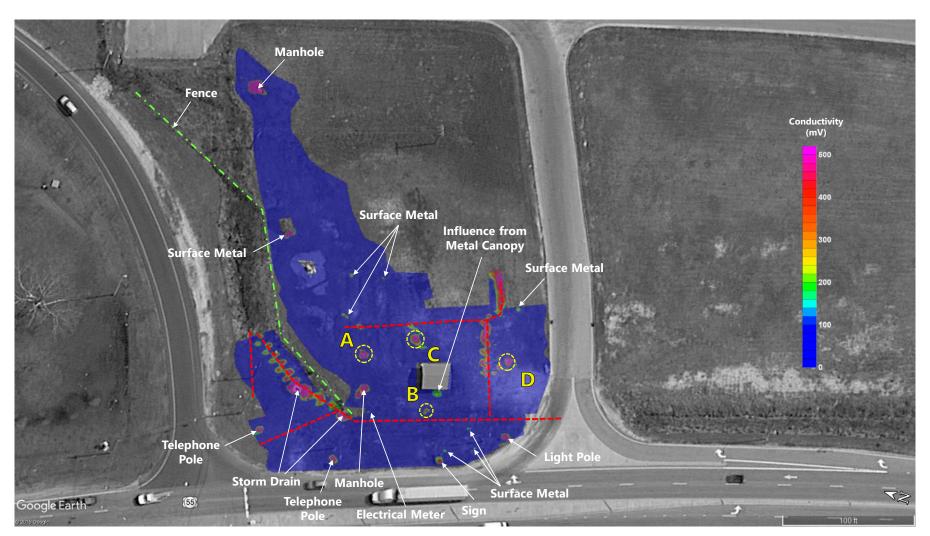
REFERENCE: GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

NCDOT PROJECT: I-5878 PARCEL #71 - (FORMER PHILLIPS 66) VACANT LOT SE CORNER CUMBERLAND STREET AND I-95, DUNN, HARNETT COUNTY, NORTH CAROLINA TDEM DATA PLOT A

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161


FIGURE NO.

5

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

LEGEND

 \bigcirc

Approximate Location of Geophysical Anomaly

--- Approximate Location of Possible Utility

NCDOT PROJECT: 1-5878 PARCEL #71 - (FORMER PHILLIPS 66) VACANT LOT SE CORNER CUMBERLAND STREET AND 1-95, DUNN, HARNETT COUNTY, NORTH CAROLINA

TDEM DATA PLOT B

SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

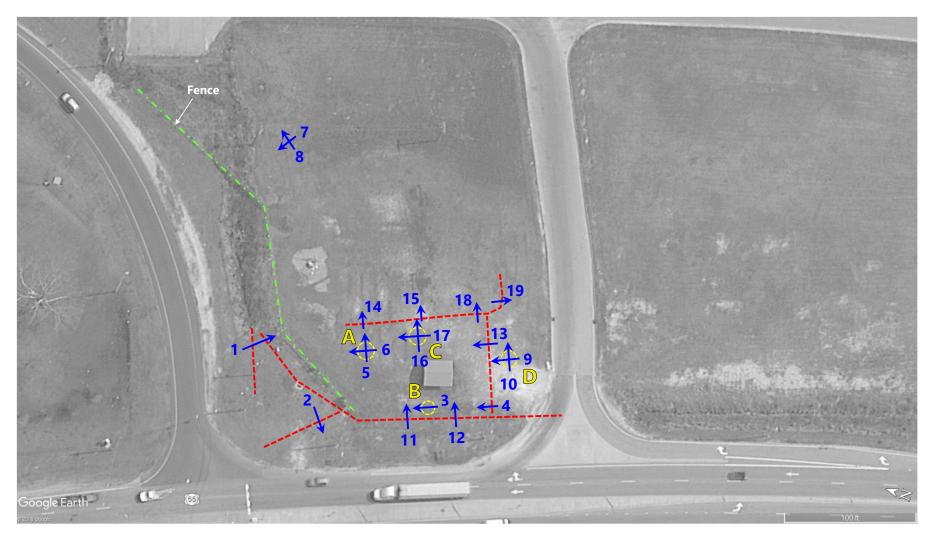
FIGURE NO.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED MARCH 4, 2018)

M≡

GEOPHYSICAL ANOMALY LOCATION PLAN

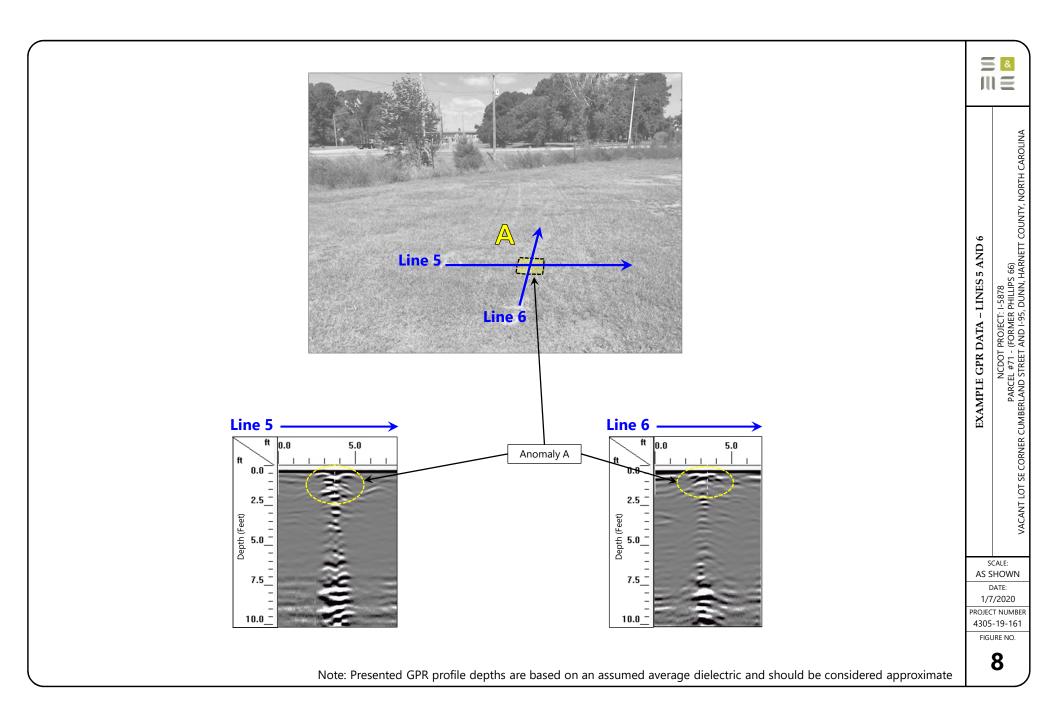

NCDOT PROJECT: 1-5878 PARCEL #71 - (FORMER PHILLIPS 66) VACANT LOT SE CORNER CUMBERLAND STREET AND 1-95, DUNN, HARNETT COUNTY, NORTH CAROLINA

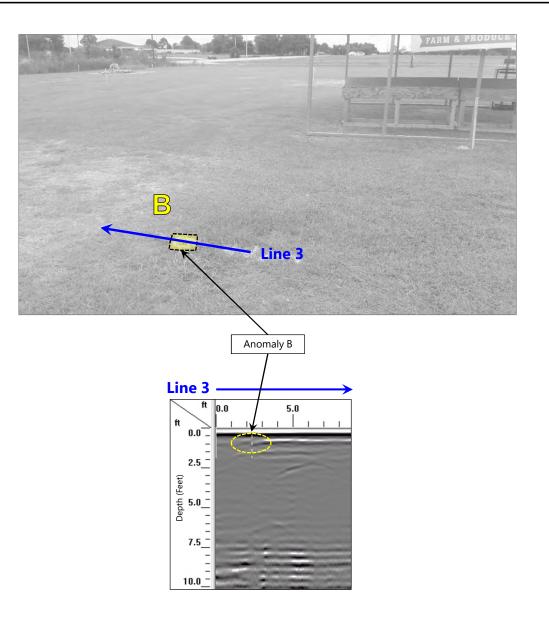
SCALE: AS SHOWN

DATE: 1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.


LEGEND

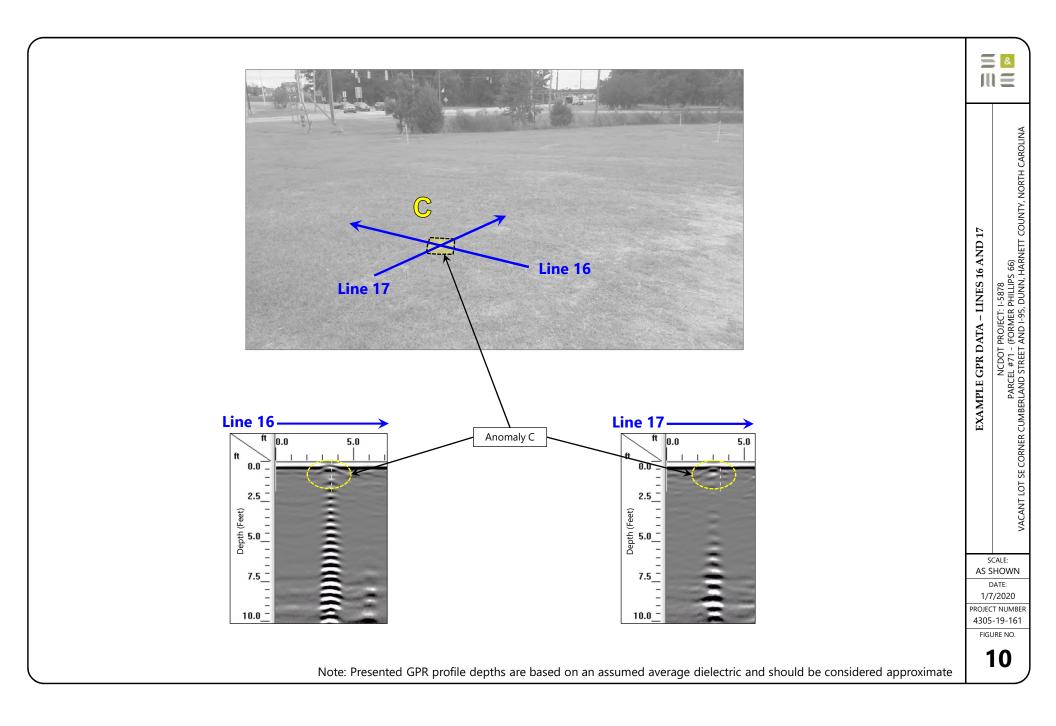

Approximate Location of Geophysical Anomaly

Approximate Location of Possible Utility

Approximate Location of GPR Profile

NCDOT PROJECT: 1-5878 PARCEL #71 - (FORMER PHILLIPS 66) VACANT LOT SE CORNER CUMBERLAND STREET AND 1-95, DUNN, HARNETT COUNTY, NORTH CAROLINA EXAMPLE GPR DATA - LINE 3

SCALE: AS SHOWN


DATE: 1/7/2020

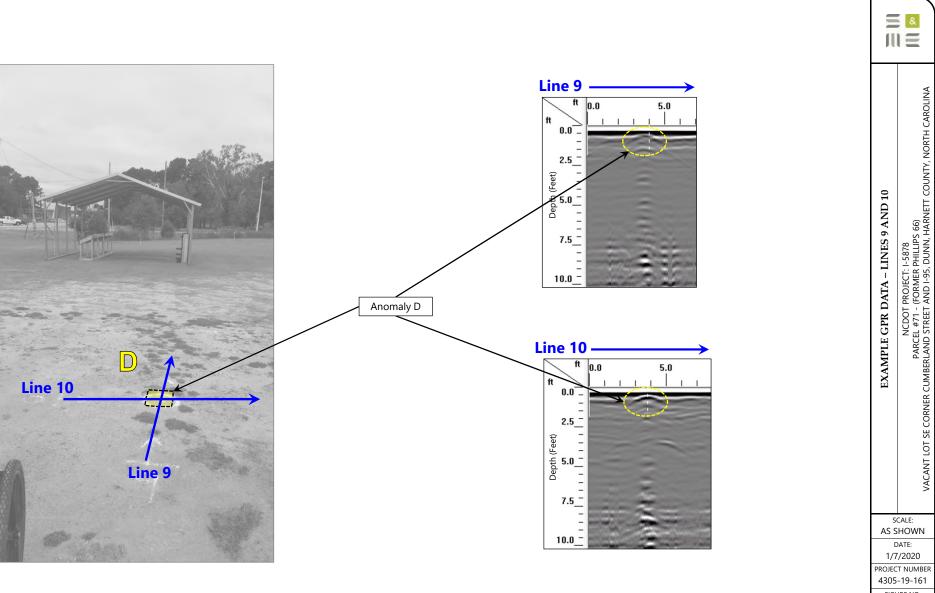
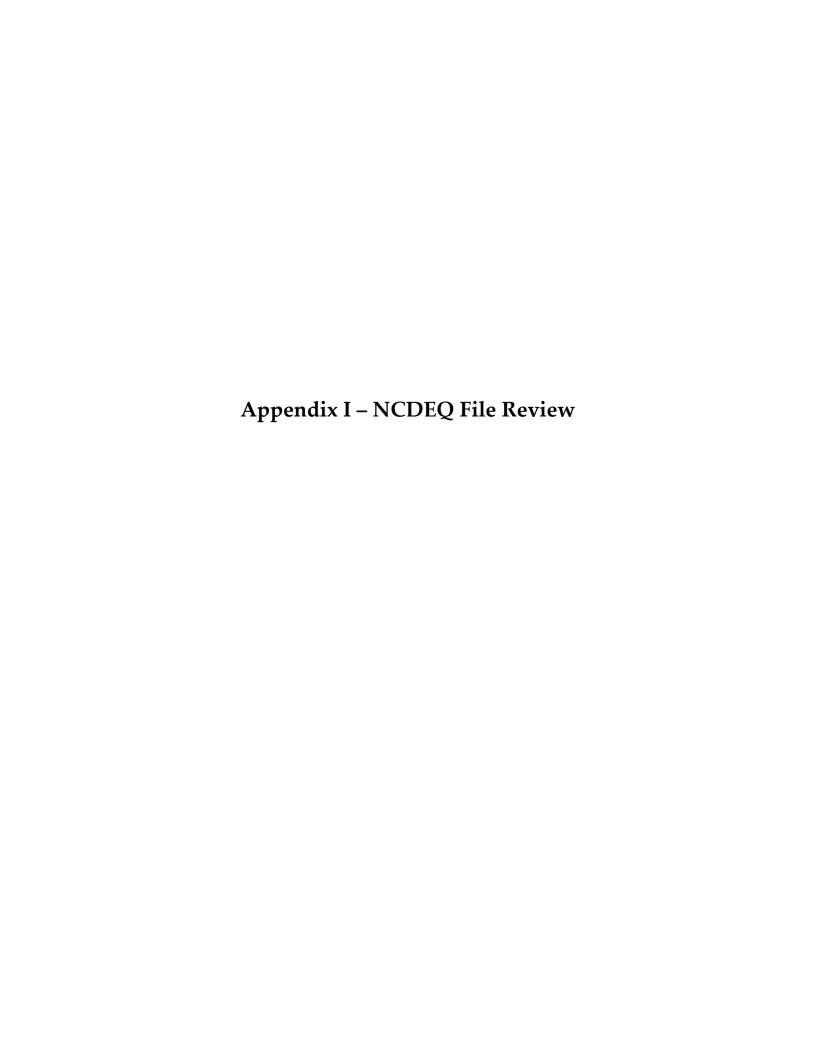

PROJECT NUMBER 4305-19-161

FIGURE NO.

9

Note: Presented GPR profile depths are based on an assumed average dielectric and should be considered approximate

Note: Presented GPR profile depths are based on an assumed average dielectric and should be considered approximate


 $M \equiv$

SCALE: AS SHOWN

1/7/2020

PROJECT NUMBER 4305-19-161

FIGURE NO.

RECEIVED

JAN 30 1998

FAYETTEVILLE REG. OFFICE

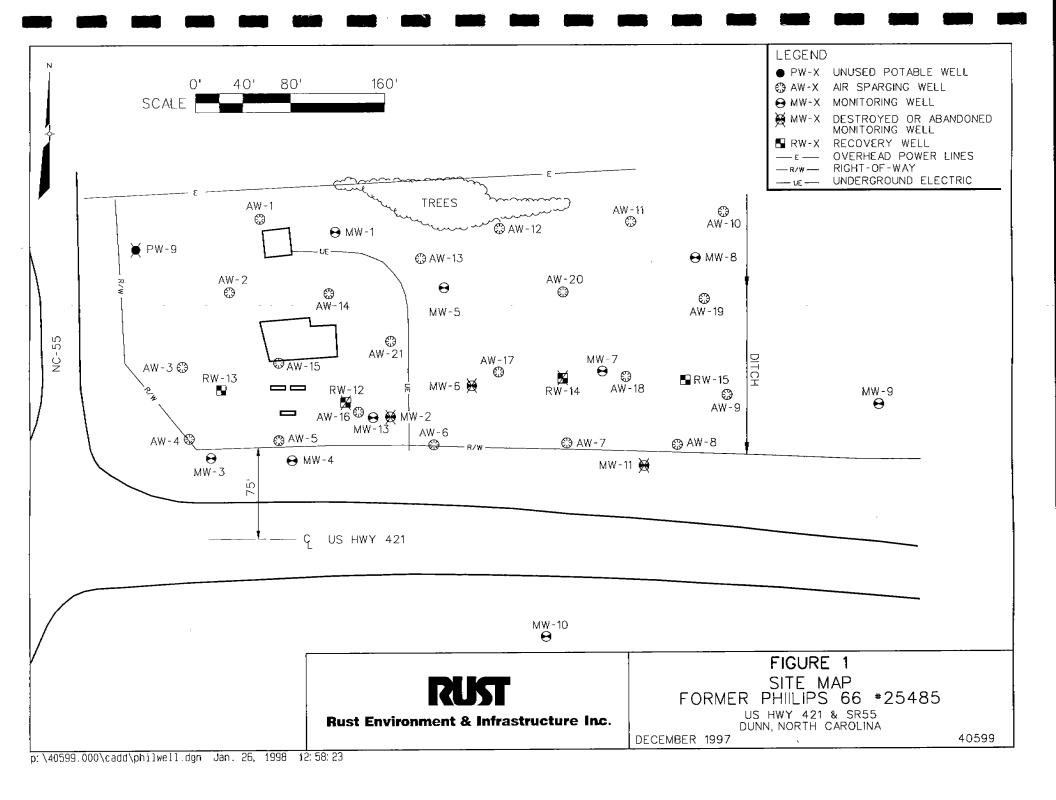
FOURTH QUARTER 1997 GROUNDWATER SAMPLING REPORT FORMER PHILLIPS 66 STATION #25485 HIGHWAY 421 AND 55 DUNN, NORTH CAROLINA INCIDENT NO. 3626 RUST PROJECT NO. 40599

Prepared for:

Phillips Petroleum Company 13 Phillips Building Post Office Box 2400 Bartlesville, Oklahoma 74004

Prepared By:

Rust Environment & Infrastructure 5510 Six Forks Road, Suite 200 Raleigh, North Carolina 27609


Michael W. Branson, L.G.

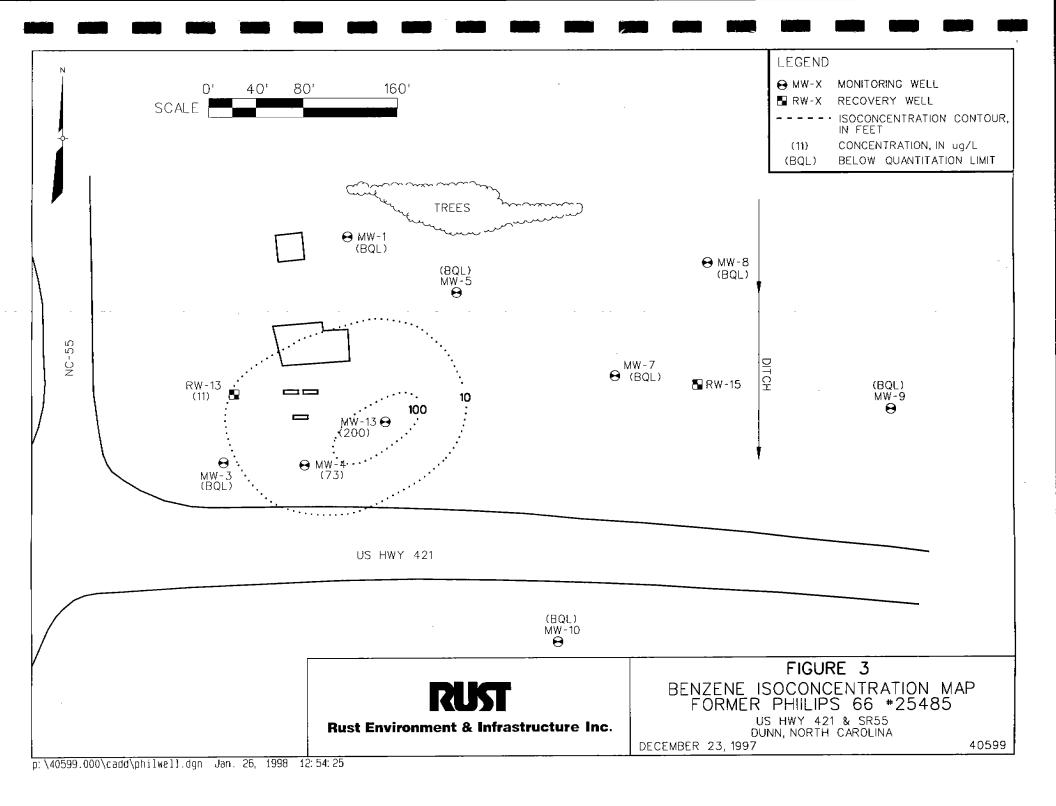

January 1998

TABLE 2 GROUNDWATER QUALITY DATA (1) FORMER PHILLIPS 66 STATION # 25485 HIGHWAY 421 & HIGHWAY 55, DUNN, NORTH CAROLINA

PARAMETERS	NCAC 15A 2L GROUNDWATER STANDARD	Date	MW-1	MW-2	мw-з	MW-4	MW-5	MW-7	MW-8	MW-9	MW-10	MW-13	RW-12	RW-13	RW-14	RW-15
BENZENE	1	12/7/94 5/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	17.2 17.2 9.0 BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL	1160 104 310 302 BDL 9 50 NS NS NS NS	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL BQL	495 472 NS 600 BDL NS 315 520 NS NS NS	412 86.4 3 2 BDL 48 8 5 NS NS NS NS BQL	91.1 591 21.5 7.2 8 9 NS NS NS NS BQL	23.9 10.2 9.0 BDL BDL BDL BQL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL BQL	885 960 NS NS NS	NS 3330 NS 2 2 170 90 800 NS NS NS	110 19.6 NS 1800 720 472 390 2 NS NS NS NS	703 419 NS 630 20 43 10 4 NS NS NS NS	237 NS NS NS 72 BDL 230 57 1 NS NS NS NS
TOLUENE	1000	12/7/94 6/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	<0.5 0.776 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL BQL	3340 163 450 450 3 BDL 11 90 NS NS	<0.5 0.75 BDL BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL BQL BQL	2.12 2.79 NS 10 BDL NS 10 14 NS NS NS	<0.5 0.794 BDL BDL BDL BDL BDL BOL ROL NS NS NS BQL	2.84 56.4 4 1 21 BDL BDL BQL NS NS NS BQL	<0.5 0.78 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL BQL BQL	<0.5 0.805 BDL BDL BDL BDL BOL BQL BQL BQL BQL BQL BQL BQL BQL	<0.5 0.742 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	1480 2400 NS NS NS NS	NS 6310 NS 5 3 260 57 360 NS NS NS	153 11.5 NS 5400 1220 630 420 4 NS NS NS	41 44.3 NS 60 4 1 BDL BQL NS NS NS	1.75 NS NS 5 BDL 2 BOL BQL NS NS NS
THYLBENZENE	29	12/07//94 5/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 9/4/97 9/4/97	<0.5 <0.5 BDL BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	387 21.2 10 20 BDL BDL 2 12 NS NS NS	Q0.5 Q0.5 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	24.7 45.7 NS 70 BDL NS 25 130 NS NS NS NS	<0.5 <0.5 BDL BDL BDL BDL BDL BDL BOL NS NS NS BQL	23.8 4 4 66 4 BDL BOL NS NS NS BOL	<0.5 <0.5 BDL BDL BDL BDL BDL BOL BQL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	135 260 NS NS NS	NS 688 NS 1 BDL 10 4 50 NS NS NS	26.2 3.15 NS 450 90 158 BDL BQL NS NS NS BQL	111 40.8 NS 70 5 14 BDL BOL NS NS NS	1.77 NS NS 12 BDL 15 4 BOL NS NS NS
TOTAL XYLENE	530	12/7/94 5/11/96 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	<0.5 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL	1850 144 110 250 15 BDL 13 152 NS NS NS	<0.5 <0.5 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	9.12 22.8 NS 90 BDL 30 120 NS NS NS	<pre><0.5 <0.5 BDL BDL BDL BDL BDL BDL BOL BOL NS NS NS BQL NS</pre>	6,28 269 8 3 74 BDL BDL BOL NS NS NS	<0.5 <0.5 BDL BDL BDL BDL BDL BOL BOL BQL BQL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BDL BOL BOL BQL BQL BQL BQL	<0.5 <0.5 BDL BDL BDL BDL BDL BOL BOL BOL BQL BQL BQL BQL BQL	2160 4100 NS NS NS	NS 3990 NS 16 3 490 123 298 NS NS NS	202 29.8 NS 11700 2120 765 240 5 NS NS NS	69.9 258 NS 120 7 6 BDL BQL NS NS NS	19.2 NS NS 12 BDL 4 BDL BQL NS NS NS
TOTAL BTEX		12/7/94 5/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 6/12/97 9/4/97 12/23/97	17.2 18 9 BDL BDL BDL BQL BQL BQL BQL BQL BQL	6730 431 88 1020 20 BDL 35 304 NS NS	<0.5 0.75 BDL BDL BDL BDL BQL BQL BQL BQL BQL	470 543 NS 770 BDL NS 380 784 NS NS NS	41.2 87.2 3.0 2 BDL 48 18 5 NS NS NS BQL	124 1050 37 23 232 25 8 9 NS NS NS	23.9 10.9 9.0 BDL BDL BDL BQL BQL BQL BQL BQL BQL	<0.5 0.805 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL	<0.5 0.742 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	4630 7710 NS NS NS	NS 14300 NS 24 8 930 214 1308 NS NS NS	492 64.1 NS 19350 4150 2025 1050 11 NS NS NS	925 763 NS 980 36 64 10 4 NS NS	260 NS NS 121 BDL, 251 61 1 NS NS
МТВЕ	200	12/7/94 5/11/95 9/29/95 12/20/95 3/14/96 6/27/96 10/16/96 12/27/96 3/21/97 9/4/97 12/23/97	53.2 50.6 65 61 46 35 70 29 11 21 21 83	<.5.00 3.41 BDL BDL BDL 1 BQL NS NS NS	1.98 <0.5 BDL BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL	<0.5 2.92 NS BOL BOL NS 7 BQL NS NS NS NS NS	69.5 1111 80 85 81 243 138 57 NS NS NS	101 470 108 420 1000 450 160 260 NS NS NS NS 32	172 143 49 46 42 34 20 20 12 12 19	11.2 13.7 12 BDL BDL 2 BDL 3 BQL BQL BQL BQL	1.61 3.87 BDL BDL BDL BDL BQL BQL BQL BQL BQL BQL BQL BQL	BDL BQL NS NS NS BQL	NS <5.00 NS BDL 200 BDL BQL NS NS NS NS	43.4 35.6 NS BDL 585 BDL 10 12 NS NS NS	528 514 NS 860 44 270 90 100 NS NS NS	371 NS NS 136 11 240 105 36 NS NS NS

NS- Not Sampled
L - Below Quantitation Limits
L - Below Detection Limits
aded areas denote concentration above NCAC 15A 2L groundwater quality standard
All concentrations reported in ug/L
(1) All data prior to 12/27/96 was obtained from Handex of the Carolinas Third Quarterly Report 1996

HEALTH, ENVIRONMENT AND SAFETY

March 31, 1998

APR 0 p 1998

Profession and Control of Control

Mr. Stephen A. Barnhardt Fayetteville Regional Office NC DEHNR 225 West Green Street Fayetteville, NC 28301

RE:

Soil Cleanup Report with Site Closure Request

Former Phillips 66 Station #25485

Highway 421 and 55

0-017649

Dunn, Harnett County, North Carolina

Groundwater Incident No. 3626

Dear Mr. Barnhardt:

We are submitting the above referenced report for your review.

The site specific criteria indicates that this is a low-risk site and we are requesting a letter of no further action.

At this time we are not scheduling any groundwater sampling; however, the remediation system will continue to operate until we hear from you.

If you have any questions, please feel free to call me at (918) 661-0185.

Sincerely,

Cindy L. Smith

Environmental Scientist

Property Risk Management Division

13 B1 PB

Bartlesville, OK 74004

Phone (918) 661-0185

Fax (918) 661-5664

Enclosure

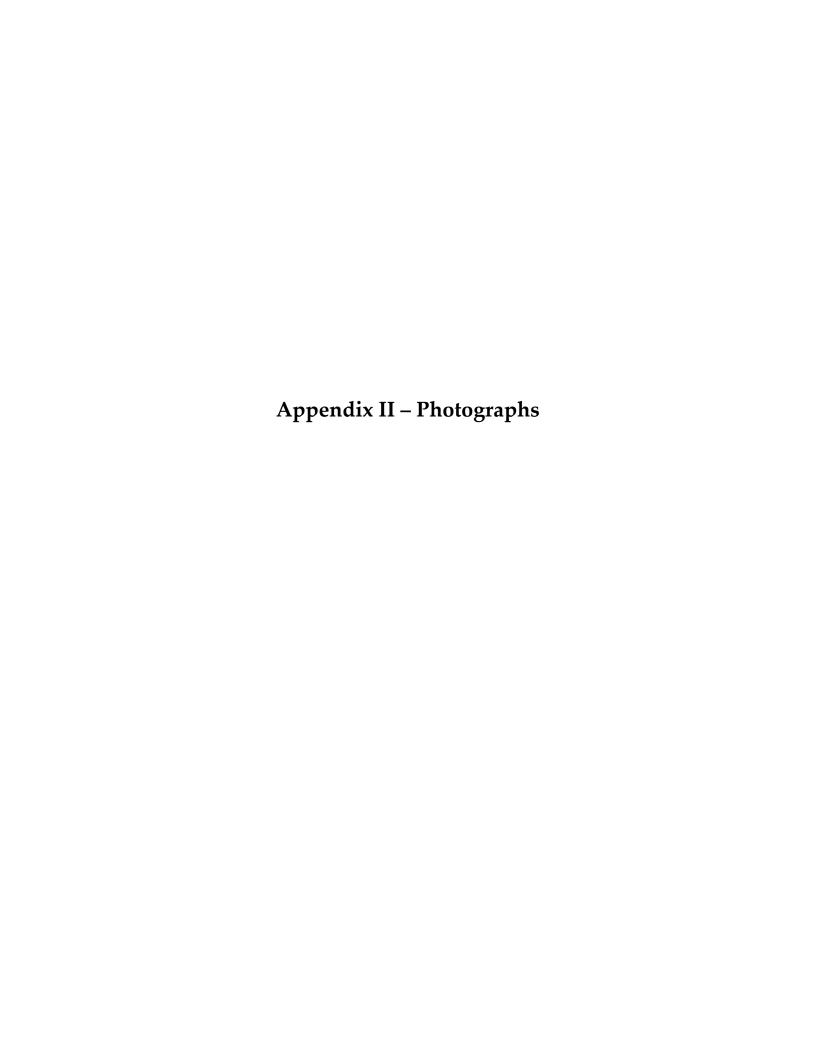
CLS:ceh

cc:

Michael Branson (w/o enclosure)

Gale Tart (w/enclosure)

EXECUTIVE SUMMARY


The former Phillips Petroleum Company Station #25485 is located at the intersection of Highway 421 and Highway 55 in Dunn, Harnett County, North Carolina. Six underground storage tanks were removed from the site. The tanks included two 8,000-gallon gasoline, one 3,000-gallon gasoline, one 2,000-gallon diesel, one 1,000-gallon kerosene, and one 1,000-gallon heating fuel tank. Contamination was confirmed by the presence of free product in the excavation and was reported to the on-site Division of Environmental Management representative. Only the gasoline tanks appear to have contributed to the release. No quantities of released product were estimated at the time of the discovery in 1988. Based on soil analyses performed from June 1992 to October 1993, an estimated 2,500 cubic yards of soil contained petroleum contamination above the State action level for gasoline range organics.

Two remediation systems have been in place for the site during the course of the soil and groundwater cleanup. From 1991 to 1995, the remediation consisted of groundwater removal, treatment, and disposal on-site through recharge trenches. The groundwater treatment also included addition of microorganisms to enhance degradation. The recharge trenches were placed such that the treated and enhanced water would be in contact with, and percolate through, the petroleum contaminated soil. Soil sampling and analysis in 1995, following a period of remediation, indicated that soil contamination ranged from less than 1 milligram per kilogram (mg/kg) to 8,200 mg/kg. The second remedial technology, implemented from 1995 to present, included air sparging the contaminated groundwater. No soil vapor extraction system was constructed in conjunction with this system. However, air injected into the groundwater was anticipated to provide enhanced microbial growth and assist with clean up the soil. No confirmatory soil samples were collected for the air sparging treatment to determine changes in the petroleum concentrations during the course of sparging.

Based on a review of site specific criteria, the site is a low-risk site with respect to groundwater and should be classified as commercial/industrial with respect to soil. As a low-risk site, no additional

groundwater cleanup is warranted. As a commercial/industrial site, the Maximum Soil Contaminant Concentration (MSCC) for total petroleum hydrocarbons is 12,264 mg/kg. None of the soil analyses performed on soil at the Phillips site contained concentrations above this maximum acceptable concentration. Although the last soil analyses were performed in 1993, the continued remediation effort would likely result in lower soil TPH concentrations. As a result, Phillips requests that the Division of Water Quality issue a No Further Action letter and close the site.

Because the soil concentrations are above the soil-to-groundwater MSCC and the residential MSCC, public notice will be issued. Public notice will be sent by certified mail within 30 days of receipt of the No Further Action Letter. Proof of notification will be submitted to the DWQ within 60 days of the receipt of the notice for no further action.

PROJECT	:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former	· Philling 66) Dunn NC			RODIN	IG LOG:	R_1/	T\\/_1		
				S&ME Project No. 4305-19-161	Phillips 66), Dunin, NC			DUKIN	NG LOG:	D-1/	I VV- I		
DATE DRILL	FD:			Thursday, October 17, 2019	BORING DEPTH (FT):	10							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
							Para la La						
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:								
HAMMER T				Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING	METH	HOD:		Macro-Core Sampler	NORTHING:								
DRILLING N	ИЕТНО	OD:		Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC			MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 — 10 — 15 — 20 — 20 —			Silty	Sand, Orange, Tan, Sand, Tan, Gray, Stained with Petroleum Odors The gray Terminated at 10 Ft-BGS		.₩		15.0 30.0 5743	No No Yes	1000			2
25 —													

PRO	JECT	:		NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Form	ner Phillips 66). Dunn. NC			BORIN	IG LOG	B-2			
				S&ME Project No. 4305-19-161				50 14					
DATE	DRILL	.ED:		Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL				Geoprobe 54DT	WATER LEVEL:								
DRILL				Troxler Geologic, Inc.	CAVE-IN DEPTH:		licablo						
		\/DE											
	MER T			Not Applicable	LOGGED BY:	J. Honey	cutt						
	PLING			Macro-Core Sampler	NORTHING:								
DRILL	ING N	/IETH	OD:	Macro-Core Sampler (3-in. OD)	EASTING:								
DEРТН	(feet)	GRAPHIC	907	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				y Sand, Orange, Tan,				9.0	No				
5		Ħ	Ħ	y Sand, Tan, Gray, Petroleum Odors			ł	13.0	No				
			$\ $			•		573.0	Yes	1015			
			Н	ring Terminated at 8 Ft-BGS									
10													
15	-												
20													
	_												
25													
25													
30													

PRO.	JECT:	:			NCDOT I-5878	DI III CO D NG			2021	16.1.06				
					Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former S&ME Project No. 4305-19-161	r Phillips 66), Dunn, NC			BORIN	NG LOG	B-3			
DATE	DRILL	ED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL					Geoprobe 54DT	WATER LEVEL:								
DRILL					Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMN		YPF.			Not Applicable	LOGGED BY:								
SAMP			HOD.		Macro-Core Sampler	NORTHING:	J. 11011cy							
DRILL					Macro-Core Sampler (3-in. OD)	EASTING:								
DIVILLE	II VO IV	ILIII	OD.	1	Macro Core Sampler (5 III. OD)	LASTING.			I				l	
DEPTH	(feet)	GRAPHIC	907		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				Silty	Sand, Orange, Tan,			I	0.6	No				
		Ц	$\prod_{i=1}^{n}$	Silty	Sand, Tan, Gray,			ł	0.5	No				
5							•		46.0	Yes	1030			
				Borii	ng Terminated at 8 Ft-BGS									
10														
15														
15														
20														
25														
30														

PROJECT	:			NCDOT I-5878									
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Form S&ME Project No. 4305-19-161	er Phillips 66), Dunn, NC			BORIN	NG LOG	B-4			
DATE DRILL	LED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER T	VDE.			Not Applicable	LOGGED BY:								
		100				л. попеу	cutt						
SAMPLING				Macro-Core Sampler	NORTHING:								
DRILLING N	ИЕТН	OD:		Macro-Core Sampler (3-in. OD)	EASTING:			1	1	,			
DEPTH (feet)	GRAPHIC	907		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 —			Silty	Sand, Orange, Tan, Sand, Tan, Gray, ng Terminated at 8 Ft-BGS		•		0.9 0.5 42.0	No No Yes	1045			
15 —													
20 —													

PROJECT	•			NCDOT I-5878	71 III 60 7 116								
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Form S&ME Project No. 4305-19-161	er Phillips 66), Dunn, NC			BORIN	NG LOG	B-5			
DATE DRILL	LED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER T	LADE.			Not Applicable	LOGGED BY:								
SAMPLING				Macro-Core Sampler	NORTHING:	J. Honey	cutt						
DRILLING N					EASTING:								
DRILLING N	VIETH	IUD:	1	Macro-Core Sampler (3-in. OD)	EASTING:			I	ı				
DEPTH (feet)	GRAPHIC	507		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				r Sand, Orange, Tan, r Sand, Tan, Gray, Petroleum Odors				45.0 1661	No No				
5 —— ——						•		4485	Yes	1100			
			Bori	ing Terminated at 8 Ft-BGS									
10 —													
	-												
15 —													
20 —													
25 —													
30 —			1				1	İ	l .	1		1	

PROJECT	:		NCDOT I-5878									
			Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 S&ME Project No. 4305-19-				BORIN	NG LOG	B-6			
DATE DRILL	ED:		Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:			Geoprobe 54DT	WATER LEVEL:								
DRILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER T	VDE.		Not Applicable	LOGGED BY:								
SAMPLING		HOD:	Macro-Core Sampler	NORTHING:	J. Honey	cutt						
DRILLING N			Macro-Core Sampler Macro-Core Sampler (3-in. OD)	NORTHING: EASTING:								
DRILLING N	/IETH	OD:	Macro-Core Sampler (3-In. OD)	EASTING:		1	I	ı	1			
DEPTH (feet)	GRAPHIC	907	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
			ty Sand, Orange, Tan, ty Sand, Tan, Gray,				1.7 6.0	No Yes	1145			
5 —					•	Н	4.9	No				
_		<u> </u>	ring Terminated at 8 Ft-BGS									
10 —												
15 —												
20 —												
25 —												
30												
30 —	•				1					1		

PROJECT	:			NCDOT I-5878									
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former S&ME Project No. 4305-19-161	r Phillips 66), Dunn, NC			BORIN	NG LOG	B-7			
DATE DRILL	LED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER T	VPF.			Not Applicable	LOGGED BY:								
SAMPLING		HOD:		Macro-Core Sampler	NORTHING:	J. Honey	cutt						
DRILLING N	VIETH	OD:		Macro-Core Sampler (3-in. OD)	EASTING:		T	ı	ı	1			
DEPTH (feet)	GRAPHIC	907		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 —			Silty	Sand, Orange, Tan, Sand, Tan, Gray, ng Terminated at 8 Ft-BGS		•		0.0	No No Yes	1150			
15													
25 —													

PRC	JECT	:			NCDOT I-5878	nor Phillips 66) Dunn MC			PODIA	10.100	. В о			
				ŀ	Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Forr S&ME Project No. 4305-19-161	nei Phinips 66), Dunn, NC			DUKII	NG LOG	D-Ö			
DATE	DRILL	.ED:		-	Thursday, October 17, 2019	BORING DEPTH (FT):	8							
	RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILI					Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
	MER T	VDE-			Not Applicable	LOGGED BY:								
	PLING		10D.		Macro-Core Sampler	NORTHING:	J. Honey	Cutt						
	LING N				Macro-Core Sampler (3-in. OD)	EASTING:								
DIVILL	LIIVOIV	'ILIII	OD.		iviacio core samplei (5 ili. 66)	LASTING.		1	I				l	
DEPTH	(feet)	GRAPHIC	907		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				Silty S	Sand, Orange, Tan,			ł	0.0	No				
			\prod	Silty S	Sand, Tan, Gray,			ŧ	0.0	No				
5			$\ $				•	Ħ	3.9	Yes	1155			
				Boring	g Terminated at 8 Ft-BGS									
10														
15														
20														
25	-													
	-													
30	_													

PROJECT:	:			NCDOT I-5878									
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/l-95 (Former S&ME Project No. 4305-19-161	Phillips 66), Dunn, NC			BORIN	NG LOG:	B-9			
DATE DRILL	.ED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
	VDE.												
HAMMER T				Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING				Macro-Core Sampler	NORTHING:								
DRILLING N	/IETH(OD:		Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC	907		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 — 10 — 20 — 25 — 25 —			Silty	Sand, Orange, Tan, Sand, Tan, Gray, Ing Terminated at 8 Ft-BGS		► MAI		0.0	No No Yes	1200			
30													

PRO	JECT	:			NCDOT I-5878	r Dhilling 66) Dunn MC			PODIA	10.100	D 10			
					Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former S&ME Project No. 4305-19-161	טס בעוווווף, איט Dunn, NC			DUKI	NG LOG	р-10			
DATE	DRILL	.ED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILI					Geoprobe 54DT	WATER LEVEL:								
DRILI					Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
	MER T	VDE.			Not Applicable	LOGGED BY:								
			IOD:				э. попеу	Cutt						
	PLING				Macro-Core Sampler	NORTHING:								
DRILL	LING N	/IETH	OD:	l	Macro-Core Sampler (3-in. OD)	EASTING:		1	Ι	Ι			ı	
DEPTH	(feet)	GRAPHIC	907		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
				Silty	Sand, Orange, Tan,			ŧ	0.0	No				
			$\prod_{i=1}^{n}$	Silty	Sand, Tan, Gray,			ł	0.0	No				
5							•	H	0.5	Yes	1215			
				Borii	ng Terminated at 8 Ft-BGS									
10														
45														
15														
20														
25														
30														

S&ME Project No. 4305-19-161 DATE DRILLED: Thursday, October 17, 2019 BORING DEPTH (FT): 8 DRILL RIG: Geoprobe 54DT WATER LEVEL: 5 DRILLER: Troxler Geologic, Inc. CAVE-IN DEPTH: Not Applicable HAMMER TYPE: Not Applicable LOGGED BY: J. Honeycutt SAMPLING METHOD: Macro-Core Sampler NORTHING: DRILLING METHOD: Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION Silty Sand, Orange, Tan,								
DATE DRILLED: Thurday, October 17, 2019 BORING DEPTH, (FT): 8 FORMEL RIG: Geoprobe 54DT SAMPLING MCTHOD: Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Not Applicable Nord Geologic, Inc. SAMPLING MCTHOD: Macro-Core Sampler (3-in. OD) Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION Silty Sand, Orange, Tan, Silty Sand, Tan, Gray, Soring Terminated at 8 Ft-BGS 10 15 16 17 18 BORING DEPTH, (Not Applicable LOGGED BY 3. Honey-ut- Macro-Core Sampler (3-in. OD) MATERIAL DESCRIPTION MATERIAL DESCRIPT	E		BORI	ING LOG	i: B-11	1		
RRILL RIG: Geoprobe SADT WATER LEVEL STORE		3						
DRILLER: Troler Geologic, Inc. CAVE IN DEPTH Not Applicable ILLOGGED BY J. Honeycutt AMAZIMA METHOD: Mocro-Core Sampler DRILLING METHOD: Macro-Core Sampler (3-in. OD) FASTING MATERIAL DESCRIPTION MATERIAL DESCRIPTION Boring Terminated at 8 Ft-BGS 10 Boring Terminated at 8 Ft-BGS								
HAMMER TYPE: Not Applicable LOGGED BY: J. Honeycutt SAMPLING METHOD: Macro-Core Sampler NORTHING DRILLING METHOD: Macro-Core Sampler (3-in, OD) MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION Boring Terminated at 8 Ft-BGS 10 15 15 16 17 18 19 19 19 19 19 19 19 19 19	licable		ıle					
SAMPLING METHOD: Macro-Core Sampler (3-in. OD) Had O								
DRILLING METHOD: Macro-Core Sampler (3-in. OD) EASTING:	- Lutt	. Honeycutt						
Hud 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
Silty Sand, Orange, Tan, Silty Sand, Tan, Gray, Boring Terminated at 8 Pt-BGS 10 — 15 — 15 — 15 — 16 — 16 — 16 — 16 — 16	$\overline{}$	1		1				1
Silty Sand, Tan, Gray, Boring Terminated at 8 Ft-BGS 10 — 15 — 16 —	SAMPLE	WATER LEVEL	SAMPLE PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
25 —			0.0	No Yes	1230			

			NCDOT I-5878									
			Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Form S&ME Project No. 4305-19-161	er Phillips 66), Dunn, NC			BORIN	NG LOG	B-12			
DATE DRILLED:):		Thursday, October 17, 2019	BORING DEPTH (FT):	8							
ORILL RIG:			Geoprobe 54DT	WATER LEVEL:								
ORILLER:			Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER TYPE	F.		Not Applicable	LOGGED BY:								
SAMPLING ME			Macro-Core Sampler	NORTHING:	J. Honey	cutt						
ORILLING METH	HOD:	1	Macro-Core Sampler (3-in. OD)	EASTING:		T	1	1	1	1		
DEPTH (feet)	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
5 — 10 — 15 — 20 — 25 — — 25 — —		Silty	r Sand, Orange, Tan, r Sand, Tan, Gray, Ing Terminated at 8 Ft-BGS		•		0.0	No	1240			

PROJEC	T:			NCDOT I-5878	Phillips CC) Days MC			DODIA	16.1.06	D 43			
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Forme S&ME Project No. 4305-19-161	r Phillips 66), Dunn, NC			BOKIN	NG LOG	В-13			
DATE DRII	LLED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:		licable						
HAMMER	TYPE			Not Applicable	LOGGED BY:								
SAMPLING			D·	Macro-Core Sampler	NORTHING:	J. 11011cy							
DRILLING				Macro-Core Sampler (3-in. OD)	EASTING:								
DIVIDENTO	T	100	·	Macro Core Sampler (S. III. OD)	LASTING.								
DEPTH (feet)	JIHavas	GRAPHIC LOG		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
_			Sil	ty Sand, Orange, Tan,				21.0	No				
_ _	-		Sil	ty Sand, Tan, Gray,			I	2.2	No				
5 — —	-					•		3.0	Yes	1500			
_ _	Ш		Вс	ring Terminated at 8 Ft-BGS									
_													
10 —													
_													
15 —													
_													
_													
20 —	-												
-													
	-												
	1												
25 — —													
	-												
_													
30 —													

PROJ	IECT:	:		NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phillips 66), Dunn	ı, NC			BORIN	NG LOG	: B-14			
				S&ME Project No. 4305-19-161									
DATE [ED:		Thursday, October 17, 2019 BORING DEPTH	I (FT):	8							
DRILL	RIG:			Geoprobe 54DT WATER L	EVEL:	6							
DRILLE	ER:			Troxler Geologic, Inc. CAVE-IN DI	EPTH:	Not App	licable						
HAMN	/IER Τ	YPE:				J. Honey							
SAMPL			HOD.	Macro-Core Sampler NORTH		,							
DRILLI					TING:								
DRILLI	ING IV	ILITIC	JD.	Macro-core sampler (3-iii. OD)	TIING.			1	1				ı -
DEPTH	(feet)	GRAPHIC	901	MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
-				ilty Sand, Orange, Tan,			ł	4.6	No				
-			$\prod_{i=1}^{n}$	ilty Sand, Tan, Gray,			ł	10.4	No				
5 -			\prod	ilty Sand, Tan, Gray, Slight Petroleum Odors		V	ł	403.0	Yes	1515			
-				inty Sand, Fan, Gray, Siight Petroleum Guois		·							
-				foring Terminated at 8 Ft-BGS									
10 -													
-													
-													
15 -													
-													
-													
20 -													
-													
-													
25 -													
-													
-													
30 -													

PROJEC	Т:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former	· Phillips 66), Dunn, NC			BORIN	IG LOG:	B-15			
				S&ME Project No. 4305-19-161	•								
DATE DRIL	LED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:	Not Appl	licable						
HAMMER	TYPE:			Not Applicable	LOGGED BY:								
SAMPLING				Macro-Core Sampler	NORTHING:								
DRILLING				Macro-Core Sampler (3-in. OD)	EASTING:								
DIVIDENTO	1	OD.		macro core sampler (5 m. 65)	LASTING.		1			1			
DEPTH (feet)	GRAPHIC	901		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
_			Silty	r Sand, Orange, Tan,			İ	17.9	No				
	$\ $	I	Silty	r Sand, Tan, Gray, Strong Petroleum Odors			I	1452	Yes	1530			
5 —						•	H	603.0	No				
_	Н	Ш	Bori	ing Terminated at 8 Ft-BGS									
10 —													
_	-												
15 —	-												
<u> </u>													
20 —													
_													
25 —													
30 —													

PROJEC	CT:			NCDOT I-5878 Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phillips 66), Dunn	. NC			BORIN	NG LOG	B-16			
				S&ME Project No. 4305-19-161				1111					
DATE DR	RILLED):		Thursday, October 17, 2019 BORING DEPTH	(FT):	8							
DRILL RIC				Geoprobe 54DT WATER LI									
DRILLER:				Troxler Geologic, Inc. CAVE-IN DE			licable						
HAMMEI		E.				J. Honey							
SAMPLIN)D·	Macro-Core Sampler NORTH		J. Honey	cutt						
DRILLING													
DKILLING	J IVIEI	ПОІ). 	Macro-Core Sampler (3-in. OD) EAST	IING:		1		1				
DEPTH (feet)		GRAPHIC		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
_ 				Silty Sand, Orange, Tan,			ł	2.6	No				
_ 5 _				Silty Sand, Tan, Gray, Strong Petroleum Odors			ŧ	908.0	Yes	1600			
						•	11	546.0	No				
_	+		_	Boring Terminated at 8 Ft-BGS									
10 —													
	_												
15 —													
_	_												
_	\exists												
20 —													
_	\dashv												
_													
_	-												
25 — —													
_													
30 —													

PROJECT	T:			NCDOT I-5878									
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Forme S&ME Project No. 4305-19-161	r Phillips 66), Dunn, NC			BORIN	NG LOG	B-17			
DATE DRIL	LED:			Thursday, October 17, 2019	BORING DEPTH (FT):	8							
DRILL RIG:				Geoprobe 54DT	WATER LEVEL:								
DRILLER:				Troxler Geologic, Inc.	CAVE-IN DEPTH:		licablo						
	T) (D.E.												
HAMMER				Not Applicable	LOGGED BY:	J. Honey	cutt						
SAMPLING				Macro-Core Sampler	NORTHING:								
DRILLING	METH	OD:		Macro-Core Sampler (3-in. OD)	EASTING:								
DEPTH (feet)	GRAPHIC	907		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
10 —			Silty	r Sand, Orange, Tan, r Sand, Tan, Gray, Ing Terminated at 8 Ft-BGS		▼		5.1	No	1615			

PROJ	JECT:			NCDOT I-5878	- NC			PODU	16.106	D 10			
				Parcel 71-Vacant Lot SE Corner E.Cumberland St/I-95 (Former Phillips 66), Dun S&ME Project No. 4305-19-161	n, NC			BOKII	NG LOG	В-18			
DATE I	DRILL	ED:		Thursday, October 17, 2019 BORING DEPT	H (FT):	8							
DRILL				Geoprobe 54DT WATER									
DRILLE				Troxler Geologic, Inc. CAVE-IN I			licable						
HAMN		YPF.				J. Honey							
SAMPI			HOD.		THING:	J. 11011cy							
DRILLI					STING:								
DIVILLI	IIVO IV	ILIIIN	JD.	Macro Core Sampler (S. III. OD)	JIING.		1						l
DEPTH	(feet)	GRAPHIC		MATERIAL DESCRIPTION		WATER LEVEL	SAMPLE	PID READING (PPM)	LABORATORY ANALYSES	Sample Time / 1st 6in	2nd 6in	3rd 6in	N VALUE
-				ilty Sand, Orange, Tan,			I	4.3	No				
-			Ц	ilty Sand, Tan, Gray,			ł	5.3	No				
5 -						•	ł	5.4	No	1630			
-				oring Terminated at 8 Ft-BGS									
-													
10 -													
-													
-													
15 -													
-													
-													
20 -													
-													
-													
2F													
25 - -													
-													
- -													
30 -													

Appendix IV – Laboratory Analytical Reports and Chain of Custody

Hydrocarbon Analysis Results

Client: S&ME Address: 3201 SPRING FOREST RD

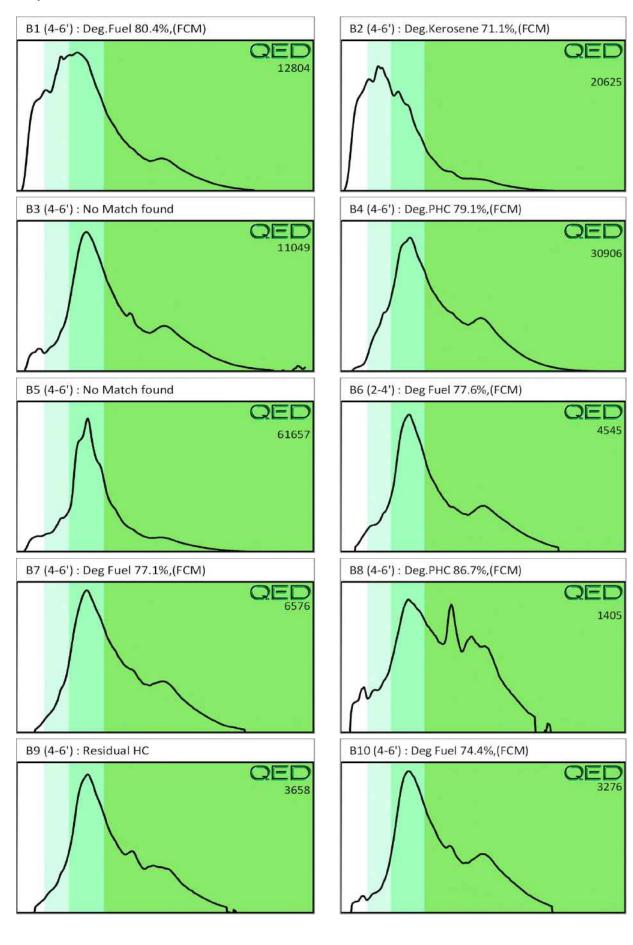
RALEIGH NC

Samples taken
Samples extracted
Samples analysed

Thursday, October 17, 2019 Thursday, October 17, 2019 Wednesday, October 23, 2019

Contact: JAMIE HONEYCUTT Operator CAROLINE STEVENS

Project: NCDOT I-5878 / PARCEL 71


													F03640				
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios		Ratios		Ratios			HC Fingerprint Match
										% light	% mid	% heavy					
S	B1 (4-6')	17.8	<0.45	84.8	137.9	222.7	15.8	0.62	<0.018	97.7	2	0.3	Deg.Fuel 80.4%,(FCM)				
S	B2 (4-6')	19.4	< 0.49	212.2	737.9	950.1	41.2	1.5	<0.019	98.9	1	0.1	Deg.Kerosene 71.1%,(FCM)				
s	B3 (4-6')	20.6	<0.52	21	8.4	29.4	4.3	0.21	<0.021	90.2	8	1.8	No Match found				
S	B4 (4-6')	19.8	<0.5	6	21.6	27.6	11	0.53	< 0.02	40.6	49.7	9.7	Deg.PHC 79.1%,(FCM)				
S	B5 (4-6')	18.2	<0.45	90.1	29.7	119.8	20.5	0.98	<0.018	86.2	12.6	1.1	No Match found				
S	B6 (2-4')	19.3	<0.48	<0.48	1.5	1.5	1.3	<0.15	<0.019	0	80.1	19.9	Deg Fuel 77.6%,(FCM)				
S	B7 (4-6')	20.8	<0.52	<0.52	2.3	2.3	2.2	<0.17	<0.021	0	81	19	Deg Fuel 77.1%,(FCM)				
S	B8 (4-6')	21.0	<0.52	2.7	0.71	3.41	0.35	<0.17	<0.021	91	6.4	2.5	Deg.PHC 86.7%,(FCM)				
S	B9 (4-6')	22.0	<0.55	<0.55	0.69	0.69	0.68	<0.18	<0.022	0	81.9	18.1	Residual HC				
S	B10 (4-6')	21.7	<0.54	<0.54	1.4	1.4	1	<0.17	<0.022	3.3	75.5	21.2	Deg Fuel 74.4%,(FCM)				
	Initial Ca	alibrator (QC check	OK					Final FO	CM QC	Check	OK	107.8 %				

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: NCDOT I-5878 / PARCEL 71

Hydrocarbon Analysis Results

Client: S&ME Address: 3201 SPRING FOREST RD

RALEIGH NC

Contact: JAMIE HONEYCUTT

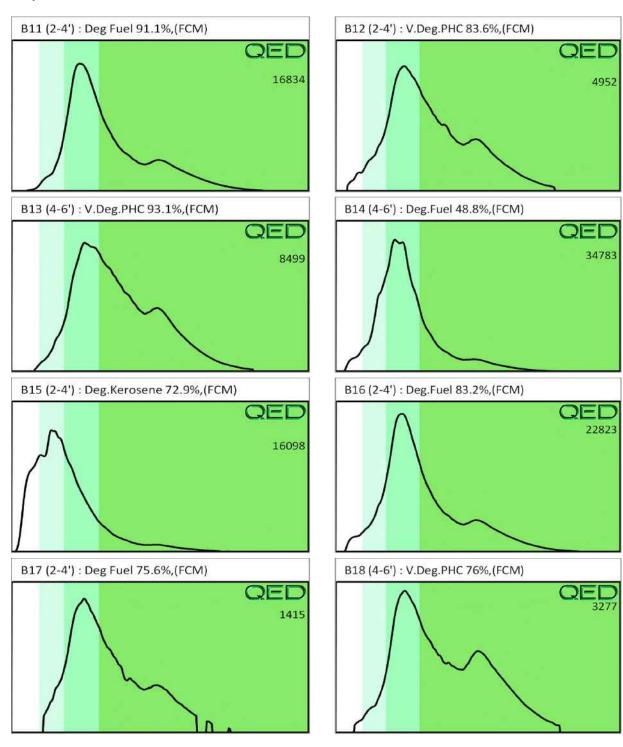
Samples taken Samples extracted Samples analysed

Thursday, October 17, 2019 Thursday, October 17, 2019 Wednesday, October 23, 2019

Operator **CAROLINE STEVENS**

Project: NCDOT I-5878 / PARCEL 71

													F03640		
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios		Ratios			HC Fingerprint Match
										% light	% mid	% heavy			
S	B11 (2-4')	20.5	<0.51	<0.51	5.8	5.8	5.2	0.26	<0.02	0	86	14	Deg Fuel 91.1%,(FCM)		
S	B12 (2-4')	20.3	<0.51	<0.51	3.1	3.1	1.3	<0.16	< 0.02	29.1	55.1	15.9	V.Deg.PHC 83.6%,(FCM)		
s	B13 (4-6')	21.7	< 0.54	< 0.54	4.5	4.5	2.2	<0.17	<0.022	0	75.9	24.1	V.Deg.PHC 93.1%,(FCM)		
S	B14 (4-6')	11.7	<0.29	17.4	4.5	21.9	4.2	0.26	<0.012	81.3	17.6	1.1	Deg.Fuel 48.8%,(FCM)		
s	B15 (2-4')	19.3	23.3	156.1	544.9	701	27.1	1	<0.019	99.5	0.5	0	Deg.Kerosene 72.9%,(FCM)		
S	B16 (2-4')	18.8	<0.47	17.2	8	25.2	7	0.35	<0.019	80	17.5	2.5	Deg.Fuel 83.2%,(FCM)		
s	B17 (2-4')	10.1	< 0.25	< 0.25	0.5	0.5	0.21	<0.08	<0.01	0	82.3	17.7	Deg Fuel 75.6%,(FCM)		
S	B18 (4-6')	21.0	<0.52	<0.52	1.2	1.2	0.72	<0.17	<0.021	0	72.2	27.8	V.Deg.PHC 76%,(FCM)		
			·												
				014								014	00.004		


Initial Calibrator QC check

Final FCM QC Check OK

99.6 %

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library (SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate present

Project: NCDOT I-5878 / PARCEL 71

Client Name:	SINE		_ ^		MAD	AT- I 5878	0 0 11	RED Lab, L	.LC	
Address:	3201 Sp	ring Fores	H TYU		(OL)	CT- I5878 Dunninc	Parcale 71	5598 Mar	vin K Moss	Lane
Address:	Raleigh	, NC	e	100	-	00/10/10	TM	MARBION	C Bldg, Sui	te 2003
Contact:	Janie	Horaya	th					Wilmingto	on, NC 284	09
Project Ref.:			Parcel 71					Each UVF sa	mple will be	analyzed for
Email:	shore you	& @ SMeir	CCM					1		PH, PAH total
Phone #:	410 977			RAPI	D ENVIR	CONMENTAL DI	AGNOSTICS		nd BaP. Stand for BTEX an	d Chlorinated
		Honeycoth						Solvents: VC	, 1,1 DCE, 1,2	2 cis DCE, 1,2
Collected by:	JIMIE	neciacycou	CHAIN	OE CH	STODY	AND ANALYT	ICAL REQUEST FORM			Specify target vided below.
Complete College					31001	ANDANALII	ICAL REQUEST FORM	analytes in t	ne space pro	vided below.
Sample Collection		```````	Analys	GC	Initials		Sample ID	Total Wt.	Tare Wt.	Sample Wt.
Date/Time	24 Hour	48 Hour	UVF	GC	-51.1	(District install	7.1	584	tie o	14.6
10-17-19/100		7	1		:JTH	DOCEMO. BI	4.6.		43.8	
1101		 			 	32	4.6	57.9	44.5	13.4
1030						33	4-6	57,5	449	
	1075					B.4	4.6'	56.9	43.8	13.1
1110						3.5	4.6	59.0	44.7	
110						B.6	2-4.	57.7	प्प् व	13.5
1 115						3.7	4-6	57.5	45.0	12.5
[115			100			3.8	4'-6-	57.Z	44.8	12.4
lac				W)			4'-6"	56.7	44.9	11 8
131)					3-10		56.6	44.6	12.0
123						3-11	<u> ઢ</u> ાપ	56.8	44.1	12.7
1124	0					3-12		57.8	450	12.8
1 150	3					B-13	4-6-	55.9	43,9	12.0
151						# 14	4-6	57.0	45.0	12.0
1 15	:O					3.15	254-	58.1	44.6	13.5
1 (16)	٥					B-llo	2:4-	58.5	44.7	13.8
116	5					3-17	2-4-	58.8	45.0	13.8
163						B 18	4-6	57.6	45.2	124
COMMENTS/RE	QUESTS:					TARGET GC/UVF A	NALYTES: 6'RO/ORO			
							0110/ 0110			
Reli	quished by	<u></u>			Accep	oted by	Date/Time	RE	D Lab USE	QNLY
James Henry Co	}		1021-19/	iam	MM	1220	10/22/19	1	1	
	quished by		100117	1100		oted by	Date/Time	1		0
	•				<u> </u>	· · · · · · · · · · · · · · · · · · ·	·	Ref. No	L. Is	[1710]
		VVE	<u> </u>					1	Ç	14-

October 30, 2019

Jamie Honeycutt S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616

Project Location: Cumberland St/I-95; SE Corner

Client Job Number:

Project Number: 4305-19-161

Laboratory Work Order Number: 19J1316

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 21, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Hits Only Report	4
Case Narrative	5
Sample Results	7
19J1316-01	7
Sample Preparation Information	10
QC Data	11
Volatile Organic Compounds by GC/MS	11
B244182	11
Semivolatile Organic Compounds by GC/MS	16
B244108	16
Flag/Qualifier Summary	18
Certifications	19
Chain of Custody/Sample Receipt	22

S&ME, Inc - Raleigh, NC 3201 Spring Forest Rd. Raleigh, NC 27616 ATTN: Jamie Honeycutt

REPORT DATE: 10/30/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 4305-19-161

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19J1316

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Cumberland St/I-95; SE Corner

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

TW-1 19J1316-01 Ground Water SW-846 8260D
SW-846 8270E

EXECUTIVE SUMMARY

Client ID: TW-1 Lab ID: 19J1316-01

Analyte	Results/Qua	ıl	DL	RL	Units	Method
1,2,4-Trimethylbenzene	470		0.90	5.0	$\mu g/L$	SW-846 8260D
1,3,5-Trimethylbenzene	150		0.70	5.0	$\mu g/L$	SW-846 8260D
Benzene	510		0.90	5.0	$\mu g/L$	SW-846 8260D
Diisopropyl Ether (DIPE)	6.0	V-05	0.85	2.5	$\mu g/L$	SW-846 8260D
Ethylbenzene	360		0.65	5.0	$\mu g/L$	SW-846 8260D
Isopropylbenzene (Cumene)	38		0.85	5.0	$\mu g/L$	SW-846 8260D
m+p Xylene	870		1.5	10	$\mu g/L$	SW-846 8260D
Methyl tert-Butyl Ether (MTBE)	100		1.2	5.0	$\mu g/L$	SW-846 8260D
Naphthalene	110		1.6	25	$\mu g/L$	SW-846 8260D
n-Butylbenzene	12		1.0	5.0	$\mu g/L$	SW-846 8260D
n-Propylbenzene	94		0.65	5.0	$\mu g/L$	SW-846 8260D
o-Xylene	280		0.85	5.0	$\mu g/L$	SW-846 8260D
p-Isopropyltoluene (p-Cymene)	7.9		1.0	5.0	$\mu g/L$	SW-846 8260D
sec-Butylbenzene	6.8		0.80	5.0	$\mu g/L$	SW-846 8260D
tert-Butyl Alcohol (TBA)	3200		21	100	$\mu g/L$	SW-846 8260D
Toluene	140		0.70	5.0	$\mu g/L$	SW-846 8260D
2-Methylnaphthalene (SIM)	64		1.2	20	$\mu \text{g}/L$	SW-846 8270E
Acenaphthene (SIM)	0.50		0.032	0.29	$\mu g/L$	SW-846 8270E
Acenaphthylene (SIM)	0.12	J	0.034	0.20	$\mu g/L$	SW-846 8270E
Anthracene (SIM)	0.036	J	0.031	0.20	$\mu g/L$	SW-846 8270E
Fluorene (SIM)	0.93	J	0.033	0.98	$\mu g/L$	SW-846 8270E
Naphthalene (SIM)	120		5.0	20	$\mu g/L$	SW-846 8270E
Phenanthrene (SIM)	0.57		0.029	0.049	$\mu g/L$	SW-846 8270E

Con-Test does not accept liability for the consequences of any actions taken solely on the basis of the information provided in the Executive Summary section of this report. Users must review this report in its entirety to determine data usability and assessment.

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

For method 8260D, Sample 19J1316-01 was run at a dilution as concentration of target compounds exceeded calibration curve limits. For method 8270, only PAHs were requested and reported.

SW-846 8260D

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

19J1316-01[TW-1], B244182-BS1, B244182-BSD1

Vinyl Chloride

19J1316-01[TW-1], B244182-BS1, B244182-BSD1

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19J1316-01[TW-1]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2-Butanone (MEK)

19J1316-01[TW-1], B244182-BLK1, B244182-BS1, B244182-BSD1, S041864-CCV1

Diisopropyl Ether (DIPE)

19J1316-01[TW-1], B244182-BLK1, B244182-BS1, B244182-BSD1, S041864-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

19J1316-01[TW-1], B244182-BS1, B244182-BSD1, S041864-CCV1

Trichlorofluoromethane (Freon 11)

19J1316-01[TW-1], B244182-BS1, B244182-BSD1, S041864-CCV1

Vinyl Chloride

19J1316-01[TW-1], B244182-BS1, B244182-BSD1, S041864-CCV1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: Cumberland St/I-95; SE Corner Sample Description: Work Order: 19J1316

Date Received: 10/21/2019

Field Sample #: TW-1 Sampled: 10/18/2019 10:20

Sample ID: 19J1316-01
Sample Matrix: Ground Water

Sample Flags: RL-11 Volatile Organic Compounds by GC/MS

Sample Flags: RL-11			Volatile	Organic Co	mpounds by G	C/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	250	19	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Acrylonitrile	ND	25	2.6	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
tert-Amyl Methyl Ether (TAME)	ND	5.0	0.70	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Benzene	510	5.0	0.90	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromobenzene	ND	5.0	0.75	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromochloromethane	ND	5.0	1.6	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromodichloromethane	ND	2.5	0.80	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromoform	ND	5.0	2.3	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Bromomethane	ND	10	3.9	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
2-Butanone (MEK)	ND	100	9.7	$\mu g/L$	5	V-05	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
tert-Butyl Alcohol (TBA)	3200	100	21	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
n-Butylbenzene	12	5.0	1.0	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
sec-Butylbenzene	6.8	5.0	0.80	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
tert-Butylbenzene	ND	5.0	0.85	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	2.5	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Carbon Disulfide	ND	25	22	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Carbon Tetrachloride	ND	5.0	0.55	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chlorobenzene	ND	5.0	0.75	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chlorodibromomethane	ND	2.5	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chloroethane	ND	10	1.8	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chloroform	ND	10	0.85	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Chloromethane	ND	10	2.2	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
2-Chlorotoluene	ND	5.0	0.60	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
4-Chlorotoluene	ND	5.0	0.70	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	25	2.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dibromoethane (EDB)	ND	2.5	0.95	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Dibromomethane	ND	5.0	1.8	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dichlorobenzene	ND	5.0	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,3-Dichlorobenzene	ND	5.0	0.60	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,4-Dichlorobenzene	ND	5.0	0.65	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
trans-1,4-Dichloro-2-butene	ND	10	1.6	μg/L	5	L-02, V-20	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Dichlorodifluoromethane (Freon 12)	ND	10	1.3	μg/L	5	,	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1-Dichloroethane	ND	5.0	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dichloroethane	ND	5.0	2.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1-Dichloroethylene	ND	5.0	1.6	μg/L μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
cis-1,2-Dichloroethylene	ND	5.0	0.65	μg/L μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
trans-1,2-Dichloroethylene	ND	5.0	1.6	μg/L μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2-Dichloropropane	ND	5.0	1.0	μg/L μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,3-Dichloropropane	ND ND	2.5	0.55	μg/L μg/L	5		SW-846 8260D SW-846 8260D	10/25/19	10/25/19 19:50	EEH
2,2-Dichloropropane										
1,1-Dichloropropene	ND ND	5.0	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
	ND ND	10	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
cis-1,3-Dichloropropene	ND	2.5	0.65	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
trans-1,3-Dichloropropene	ND	2.5	1.2	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Diethyl Ether	ND	10	1.7	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50 Page 7 o	EEH

Page 7 of 24

Project Location: Cumberland St/I-95; SE Corner Sample Description: Work Order: 19J1316

Date Received: 10/21/2019

Field Sample #: TW-1 Sampled: 10/18/2019 10:20

Sample ID: 19J1316-01
Sample Matrix: Ground Water

Sample Flags: RL-11

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Diisopropyl Ether (DIPE)			0.85	μg/L	5	V-05	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,4-Dioxane	ND	2.5 250	110	μg/L μg/L	5	V-03	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Ethylbenzene	360	5.0	0.65	μg/L μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Hexachlorobutadiene	ND	3.0	2.4	μg/L μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
2-Hexanone (MBK)	ND	50	7.6	μg/L μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Isopropylbenzene (Cumene)	38	5.0	0.85	μg/L μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
p-Isopropyltoluene (p-Cymene)	7.9	5.0	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Methyl tert-Butyl Ether (MTBE)	100	5.0	1.2	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Methylene Chloride	ND	25	1.7	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
4-Methyl-2-pentanone (MIBK)	ND	50	8.4	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Naphthalene	110	25	1.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
n-Propylbenzene	94	5.0	0.65	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Styrene	ND	5.0	0.55	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,2-Tetrachloroethane	ND	5.0	1.4	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,2,2-Tetrachloroethane	ND	2.5	1.1	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Tetrachloroethylene	ND	5.0	0.90	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Tetrahydrofuran	ND	50	2.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Toluene	140	5.0	0.70	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2,3-Trichlorobenzene	ND	25	2.8	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2,4-Trichlorobenzene	ND	5.0	2.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,3,5-Trichlorobenzene	ND	5.0	1.5	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,1-Trichloroethane	ND	5.0	1.0	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,2-Trichloroethane	ND	5.0	0.80	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Trichloroethylene	ND	5.0	1.2	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Trichlorofluoromethane (Freon 11)	ND	10	1.6	$\mu g/L$	5	V-20	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2,3-Trichloropropane	ND	10	1.2	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	5.0	1.6	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,2,4-Trimethylbenzene	470	5.0	0.90	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
1,3,5-Trimethylbenzene	150	5.0	0.70	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Vinyl Chloride	ND	10	2.2	$\mu g/L$	5	L-02, V-20	SW-846 8260D	10/25/19	10/25/19 19:50	EEH
m+p Xylene	870	10	1.5	$\mu g/L$	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
o-Xylene	280	5.0	0.85	μg/L	5		SW-846 8260D	10/25/19	10/25/19 19:50	EEH
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		90.3		70-130					10/25/19 19:50	
Toluene-d8		96.9 103		70-130 70-130					10/25/19 19:50	

Project Location: Cumberland St/I-95; SE Corner Sample Description: Work Order: 19J1316

Date Received: 10/21/2019

Field Sample #: TW-1 Sampled: 10/18/2019 10:20

Sample ID: 19J1316-01
Sample Matrix: Ground Water

p-Terphenyl-d14

Semivolatile Organic	Compounds by GC/MS
----------------------	--------------------

			Semivo	natne Organic Co	mpounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM)	0.50	0.29	0.032	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Acenaphthylene (SIM)	0.12	0.20	0.034	μg/L	1	J	SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Anthracene (SIM)	0.036	0.20	0.031	$\mu g/L$	1	J	SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(a)anthracene (SIM)	ND	0.049	0.016	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(a)pyrene (SIM)	ND	0.098	0.012	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(b)fluoranthene (SIM)	ND	0.049	0.015	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(g,h,i)perylene (SIM)	ND	0.49	0.018	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Benzo(k)fluoranthene (SIM)	ND	0.20	0.012	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Chrysene (SIM)	ND	0.20	0.015	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Dibenz(a,h)anthracene (SIM)	ND	0.098	0.017	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Fluoranthene (SIM)	ND	0.49	0.025	μg/L	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Fluorene (SIM)	0.93	0.98	0.033	$\mu g/L$	1	J	SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.098	0.018	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
2-Methylnaphthalene (SIM)	64	20	1.2	$\mu g/L$	20		SW-846 8270E	10/24/19	10/29/19 10:27	CLA
Naphthalene (SIM)	120	20	5.0	$\mu g/L$	20		SW-846 8270E	10/24/19	10/29/19 10:27	CLA
Phenanthrene (SIM)	0.57	0.049	0.029	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Pyrene (SIM)	ND	0.98	0.023	$\mu g/L$	1		SW-846 8270E	10/24/19	10/28/19 21:26	CLA
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
Nitrobenzene-d5		75.6		30-130					10/28/19 21:26	
Nitrobenzene-d5		74.6		30-130					10/29/19 10:27	
2-Fluorobiphenyl		45.7		30-130					10/28/19 21:26	
2-Fluorobiphenyl		56.1		30-130					10/29/19 10:27	
p-Terphenyl-d14		62.1		30-130					10/28/19 21:26	

30-130

56.8

10/29/19 10:27

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1316-01 [TW-1]	B244182	1	5.00	10/25/19

Prep Method: SW-846 3510C-SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1316-01 [TW-1]	B244108	1020	1.00	10/24/19
19J1316-01RE1 [TW-1]	B244108	1020	1.00	10/24/19

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B244182 - SW-846 5030B										
Blank (B244182-BLK1)				Prepared & A	Analyzed: 10/	/25/19				
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	0.50	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	μg/L							
2-Butanone (MEK)	ND	20	μg/L							V-05
tert-Butyl Alcohol (TBA)	ND	20	μg/L							
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
Carbon Disulfide	ND	5.0	μg/L							
Carbon Tetrachloride	ND	1.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
4-Chlorotoluene	ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L μα/Ι							
1,2-Dichloroethylene	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L μg/I							
1,2-Dichloropropane	ND	1.0	μg/L μg/I							
1,3-Dichloropropane	ND	0.50	μg/L μg/L							
2,2-Dichloropropane	ND	1.0	μg/L μg/I							
1,1-Dichloropropene	ND	2.0	μg/L μg/I							
cis-1,3-Dichloropropene	ND	0.50	μg/L μg/I							
trans-1,3-Dichloropropene Diethyl Ether	ND	0.50 2.0	μg/L μg/L							
Dietnyl Ether Diisopropyl Ether (DIPE)	ND ND	0.50	μg/L μg/L							V-05
Disopropyl Etner (DIPE) 1,4-Dioxane	ND ND	50	μg/L μg/L							v-U3
1,4-Dioxane Ethylbenzene	ND ND	1.0								
Etnylbenzene Hexachlorobutadiene	ND	0.60	μg/L μg/L							
Hexachlorobutadiene 2-Hexanone (MBK)	ND		μg/L μg/L							
	ND ND	10 1.0	μg/L ug/L							
Isopropylbenzene (Cumene) p-Isopropyltoluene (p-Cymene)	ND ND	1.0 1.0	μg/L μg/L							
	ND									
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

atch B244182 - SW-846 5030B lank (B244182-BLK1)								 <u></u>	<u></u>
lank (B244182-BLK1)									
,				Prepared & A	Analyzed: 10	/25/19			
lethylene Chloride	ND	5.0	$\mu g/L$						
Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$						
aphthalene	ND	2.0	$\mu g/L$						
Propylbenzene	ND	1.0	$\mu g/L$						
yrene	ND	1.0	$\mu g/L$						
1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$						
1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$						
etrachloroethylene	ND	1.0	$\mu g/L$						
etrahydrofuran	ND	10	$\mu g/L$						
luene	ND	1.0	$\mu g/L$						
2,3-Trichlorobenzene	ND	5.0	$\mu g/L$						
2,4-Trichlorobenzene	ND	1.0	$\mu g/L$						
3,5-Trichlorobenzene	ND	1.0	μg/L						
1,1-Trichloroethane	ND	1.0	μg/L						
1,2-Trichloroethane	ND	1.0	μg/L						
ichloroethylene	ND	1.0	μg/L						
ichlorofluoromethane (Freon 11)	ND	2.0	μg/L						
2,3-Trichloropropane	ND	2.0	μg/L						
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	ND	1.0	μg/L						
2,4-Trimethylbenzene	ND	1.0	$\mu g/L$						
3,5-Trimethylbenzene	ND	1.0	$\mu g/L$						
nyl Chloride	ND	2.0	$\mu g/L$						
+p Xylene	ND	2.0	$\mu g/L$						
Xylene	ND	1.0	$\mu g/L$						
urrogate: 1,2-Dichloroethane-d4	21.9		μg/L	25.0		87.7	70-130		
rrogate: Toluene-d8	24.0		μg/L	25.0		95.9	70-130		
irrogate: 4-Bromofluorobenzene	24.3		μg/L	25.0		97.2	70-130		
CS (B244182-BS1)				Prepared & A	Analyzed: 10	/25/19			
cetone	135	50	$\mu g/L$	100		135	70-160		
crylonitrile	10.8	5.0	$\mu g/L$	10.0		108	70-130		
rt-Amyl Methyl Ether (TAME)	7.10	0.50	$\mu g/L$	10.0		71.0	70-130		
enzene	7.21	1.0	$\mu g/L$	10.0		72.1	70-130		
romobenzene	9.60	1.0	$\mu g/L$	10.0		96.0	70-130		
romochloromethane	7.25	1.0	$\mu g/L$	10.0		72.5	70-130		
romodichloromethane	9.33	0.50	$\mu g/L$	10.0		93.3	70-130		
romoform	12.1	1.0	$\mu g/L$	10.0		121	70-130		
romomethane	6.47	2.0	$\mu g/L$	10.0		64.7	40-160		
Butanone (MEK)	76.8	20	μg/L	100		76.8	40-160		V-05
rt-Butyl Alcohol (TBA)	86.2	20	μg/L	100		86.2	40-160		
Butylbenzene	10.4	1.0	μg/L	10.0		104	70-130		
c-Butylbenzene	10.5	1.0	μg/L	10.0		105	70-130		
rt-Butylbenzene	10.5	1.0	μg/L	10.0		105	70-130		
rt-Butyl Ethyl Ether (TBEE)	7.22	0.50	μg/L	10.0		72.2	70-130		
arbon Disulfide	10.3	5.0	μg/L	10.0		103	70-130		
arbon Tetrachloride	9.65	1.0	μg/L	10.0		96.5	70-130		
hlorobenzene	10.4	1.0	μg/L	10.0		104	70-130		
hlorodibromomethane	10.4	0.50	μg/L	10.0		101	70-130		
hloroethane	9.64	2.0	μg/L	10.0		96.4	70-130		
hloroform	7.80	2.0	μg/L μg/L	10.0		78.0	70-130		
	7.00	5	r-0, -	10.0		70.0	10 150		
hloromethane	6.51	2.0	μg/L	10.0		65.1	40-160		

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244182 - SW-846 5030B											_
LCS (B244182-BS1)				Prepared & A	Analyzed: 10	/25/19					
4-Chlorotoluene	10.7	1.0	$\mu g/L$	10.0		107	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	9.89	5.0	$\mu g/L$	10.0		98.9	70-130				
1,2-Dibromoethane (EDB)	10.0	0.50	$\mu g/L$	10.0		100	70-130				
Dibromomethane	9.46	1.0	$\mu g/L$	10.0		94.6	70-130				
1,2-Dichlorobenzene	10.8	1.0	$\mu g/L$	10.0		108	70-130				
1,3-Dichlorobenzene	10.9	1.0	$\mu g/L$	10.0		109	70-130				
1,4-Dichlorobenzene	10.6	1.0	$\mu g/L$	10.0		106	70-130				
trans-1,4-Dichloro-2-butene	13.2	2.0	$\mu g/L$	10.0		132 *	70-130			L-02, V-20	
Dichlorodifluoromethane (Freon 12)	7.01	2.0	$\mu g/L$	10.0		70.1	40-160				†
1,1-Dichloroethane	7.80	1.0	$\mu g/L$	10.0		78.0	70-130				
1,2-Dichloroethane	9.64	1.0	$\mu g/L$	10.0		96.4	70-130				
1,1-Dichloroethylene	11.0	1.0	$\mu g/L$	10.0		110	70-130				
cis-1,2-Dichloroethylene	7.73	1.0	$\mu g/L$	10.0		77.3	70-130				
trans-1,2-Dichloroethylene	7.93	1.0	$\mu g/L$	10.0		79.3	70-130				
1,2-Dichloropropane	7.94	1.0	$\mu g/L$	10.0		79.4	70-130				
1,3-Dichloropropane	8.59	0.50	$\mu g/L$	10.0		85.9	70-130				
2,2-Dichloropropane	8.94	1.0	$\mu g/L$	10.0		89.4	40-130				†
1,1-Dichloropropene	8.09	2.0	μg/L	10.0		80.9	70-130				
cis-1,3-Dichloropropene	8.68	0.50	μg/L	10.0		86.8	70-130				
trans-1,3-Dichloropropene	9.09	0.50	μg/L	10.0		90.9	70-130				
Diethyl Ether	9.88	2.0	μg/L	10.0		98.8	70-130				
Diisopropyl Ether (DIPE)	7.51	0.50	μg/L	10.0		75.1	70-130			V-05	
1,4-Dioxane	103	50	μg/L	100		103	40-130				†
Ethylbenzene	10.4	1.0	μg/L	10.0		104	70-130				
Hexachlorobutadiene	11.1	0.60	μg/L	10.0		111	70-130				
2-Hexanone (MBK)	96.7	10	μg/L	100		96.7	70-160				†
Isopropylbenzene (Cumene)	11.2	1.0	μg/L	10.0		112	70-130				·
p-Isopropyltoluene (p-Cymene)	10.6	1.0	μg/L	10.0		106	70-130				
Methyl tert-Butyl Ether (MTBE)	8.67	1.0	μg/L	10.0		86.7	70-130				
Methylene Chloride	9.78	5.0	μg/L	10.0		97.8	70-130				
4-Methyl-2-pentanone (MIBK)	97.6	10	μg/L	100		97.6	70-160				†
Naphthalene	10.0	2.0	μg/L	10.0		100	40-130				†
n-Propylbenzene	10.9	1.0	μg/L	10.0		109	70-130				'
Styrene	10.3	1.0	μg/L	10.0		103	70-130				
1,1,1,2-Tetrachloroethane	11.8	1.0	μg/L	10.0		118	70-130				
1,1,2,2-Tetrachloroethane	10.9	0.50	μg/L	10.0		109	70-130				
Tetrachloroethylene	10.8	1.0	μg/L	10.0		108	70-130				
Tetrahydrofuran	8.01	10	μg/L	10.0		80.1	70-130			J	
Toluene	9.32	1.0	μg/L	10.0		93.2	70-130			•	
1,2,3-Trichlorobenzene	9.36	5.0	μg/L	10.0		93.6	70-130				
1,2,4-Trichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130				
1,3,5-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130				
1,1,1-Trichloroethane	9.23	1.0	μg/L μg/L	10.0		92.3	70-130				
1,1,2-Trichloroethane	9.23 9.49	1.0	μg/L μg/L	10.0		94.9	70-130				
Trichloroethylene	9.49 9.17	1.0	μg/L μg/L	10.0		91.7	70-130				
Trichlorofluoromethane (Freon 11)	10.8	2.0	μg/L μg/L	10.0		108	70-130			V-20	
1,2,3-Trichloropropane		2.0	μg/L μg/L	10.0			70-130			V-2U	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.5 11.3	1.0	μg/L μg/L	10.0		105 113	70-130				
113)											
1,2,4-Trimethylbenzene	9.96	1.0	μg/L	10.0		99.6	70-130				
1,3,5-Trimethylbenzene	11.1	1.0	μg/L	10.0		111	70-130				
Vinyl Chloride	35.8	2.0	$\mu g/L$	10.0		358 *	40-160			V-20, L-02	†

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B244182 - SW-846 5030B											
LCS (B244182-BS1)				Prepared &	Analyzed: 10	/25/19					
m+p Xylene	21.5	2.0	μg/L	20.0		108	70-130				
o-Xylene	10.9	1.0	$\mu g/L$	10.0		109	70-130				
Surrogate: 1,2-Dichloroethane-d4	22.1		μg/L	25.0		88.4	70-130				_
Surrogate: Toluene-d8	23.8		μg/L	25.0		95.3	70-130				
Surrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		100	70-130				
LCS Dup (B244182-BSD1)				Prepared &	Analyzed: 10	/25/19					
Acetone	126	50	μg/L	100		126	70-160	7.24	25		_
Acrylonitrile	10.6	5.0	μg/L	10.0		106	70-130	2.34	25		
tert-Amyl Methyl Ether (TAME)	7.05	0.50	μg/L	10.0		70.5	70-130	0.707	25		
Benzene	7.31	1.0	μg/L	10.0		73.1	70-130	1.38	25		
Bromobenzene	9.86	1.0	μg/L	10.0		98.6	70-130	2.67	25		
Bromochloromethane	7.34	1.0	μg/L	10.0		73.4	70-130	1.23	25		
Bromodichloromethane	9.91	0.50	μg/L	10.0		99.1	70-130	6.03	25		
Bromoform	12.3	1.0	μg/L	10.0		123	70-130	1.48	25		
Bromomethane	7.35	2.0	μg/L	10.0		73.5	40-160	12.7	25		
2-Butanone (MEK)	72.8	20	μg/L	100		72.8	40-160	5.37	25	V-05	
tert-Butyl Alcohol (TBA)	81.5	20	μg/L	100		81.5	40-160	5.54	25		
n-Butylbenzene	10.1	1.0	μg/L	10.0		101	70-130	2.63	25		
sec-Butylbenzene	10.2	1.0	μg/L	10.0		102	70-130	3.47	25		
ert-Butylbenzene	10.1	1.0	μg/L	10.0		101	70-130	3.97	25		
ert-Butyl Ethyl Ether (TBEE)	7.04	0.50	μg/L	10.0		70.4	70-130	2.52	25		
Carbon Disulfide	9.70	5.0	μg/L	10.0		97.0	70-130	5.90	25		
Carbon Tetrachloride	9.23	1.0	μg/L	10.0		92.3	70-130	4.45	25		
Chlorobenzene	10.7	1.0	μg/L	10.0		107	70-130	2.93	25		
Chlorodibromomethane	10.2	0.50	μg/L	10.0		102	70-130	0.394	25		
Chloroethane	9.59	2.0	μg/L	10.0		95.9	70-130	0.520	25		
Chloroform	7.73	2.0	μg/L	10.0		77.3	70-130	0.901	25		
Chloromethane	6.18	2.0	μg/L	10.0		61.8	40-160	5.20	25		
2-Chlorotoluene	9.90	1.0	μg/L	10.0		99.0	70-130	2.97	25		
4-Chlorotoluene	10.8	1.0	μg/L	10.0		108	70-130	0.838	25		
1,2-Dibromo-3-chloropropane (DBCP)	10.0	5.0	μg/L	10.0		100	70-130	1.21	25		
1,2-Dibromoethane (EDB)	10.0	0.50	μg/L	10.0		100	70-130	0.399	25		
Dibromomethane	9.13	1.0	μg/L	10.0		91.3	70-130	3.55	25		
1,2-Dichlorobenzene	10.6	1.0	μg/L	10.0		106	70-130	1.31	25		
1,3-Dichlorobenzene	10.9	1.0	μg/L	10.0		109	70-130	0.00	25		
1,4-Dichlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	1.81	25		
trans-1,4-Dichloro-2-butene	13.3	2.0	μg/L	10.0		133 *	70-130	1.06	25	L-02, V-20	,
Dichlorodifluoromethane (Freon 12)	6.72	2.0	μg/L	10.0		67.2	40-160	4.22	25		
1,1-Dichloroethane	7.57	1.0	μg/L	10.0		75.7	70-130	2.99	25		
1,2-Dichloroethane	9.78	1.0	μg/L	10.0		97.8	70-130	1.44	25		
1,1-Dichloroethylene	10.7	1.0	μg/L	10.0		107	70-130	3.22	25		
cis-1,2-Dichloroethylene	7.73	1.0	μg/L	10.0		77.3	70-130	0.00	25		
rans-1,2-Dichloroethylene	7.77	1.0	μg/L	10.0		77.7	70-130	2.04	25		
,2-Dichloropropane	7.81	1.0	μg/L	10.0		78.1	70-130	1.65	25		
1,3-Dichloropropane	8.59	0.50	μg/L	10.0		85.9	70-130	0.00	25		
2,2-Dichloropropane	8.89	1.0	μg/L	10.0		88.9	40-130	0.561	25		
1,1-Dichloropropene	7.79	2.0	μg/L	10.0		77.9	70-130	3.78	25		
cis-1,3-Dichloropropene	8.97	0.50	μg/L	10.0		89.7	70-130	3.29	25		
trans-1,3-Dichloropropene	9.24	0.50	μg/L	10.0		92.4	70-130	1.64	25		
Diethyl Ether	9.56	2.0	μg/L	10.0		95.6	70-130	3.29	25		
Diisopropyl Ether (DIPE)	7.19	0.50	μg/L	10.0		71.9	70-130	4.35	25	V-05	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B244182 - SW-846 5030B											
LCS Dup (B244182-BSD1)				Prepared & A	Analyzed: 10/2	25/19					
1,4-Dioxane	99.1	50	μg/L	100		99.1	40-130	3.74	50		 † ‡
Ethylbenzene	10.4	1.0	$\mu g/L$	10.0		104	70-130	0.288	25		
Hexachlorobutadiene	10.4	0.60	$\mu g/L$	10.0		104	70-130	6.13	25		
2-Hexanone (MBK)	92.4	10	$\mu g/L$	100		92.4	70-160	4.50	25		†
Isopropylbenzene (Cumene)	11.0	1.0	$\mu g/L$	10.0		110	70-130	1.53	25		
p-Isopropyltoluene (p-Cymene)	10.2	1.0	$\mu g/L$	10.0		102	70-130	4.24	25		
Methyl tert-Butyl Ether (MTBE)	8.57	1.0	$\mu g/L$	10.0		85.7	70-130	1.16	25		
Methylene Chloride	9.48	5.0	$\mu g/L$	10.0		94.8	70-130	3.12	25		
4-Methyl-2-pentanone (MIBK)	96.5	10	$\mu g/L$	100		96.5	70-160	1.07	25		†
Naphthalene	9.94	2.0	$\mu g/L$	10.0		99.4	40-130	0.602	25		†
n-Propylbenzene	10.6	1.0	μg/L	10.0		106	70-130	2.79	25		
Styrene	10.3	1.0	$\mu g/L$	10.0		103	70-130	0.292	25		
1,1,1,2-Tetrachloroethane	11.7	1.0	$\mu g/L$	10.0		117	70-130	1.02	25		
1,1,2,2-Tetrachloroethane	11.0	0.50	μg/L	10.0		110	70-130	0.548	25		
Tetrachloroethylene	10.4	1.0	$\mu g/L$	10.0		104	70-130	2.83	25		
Tetrahydrofuran	8.09	10	$\mu g/L$	10.0		80.9	70-130	0.994	25	J	
Toluene	9.20	1.0	$\mu g/L$	10.0		92.0	70-130	1.30	25		
1,2,3-Trichlorobenzene	9.47	5.0	μg/L	10.0		94.7	70-130	1.17	25		
1,2,4-Trichlorobenzene	10.7	1.0	$\mu g/L$	10.0		107	70-130	0.846	25		
1,3,5-Trichlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	0.477	25		
1,1,1-Trichloroethane	9.00	1.0	μg/L	10.0		90.0	70-130	2.52	25		
1,1,2-Trichloroethane	9.52	1.0	μg/L	10.0		95.2	70-130	0.316	25		
Trichloroethylene	9.36	1.0	$\mu g/L$	10.0		93.6	70-130	2.05	25		
Trichlorofluoromethane (Freon 11)	10.2	2.0	$\mu g/L$	10.0		102	70-130	6.39	25	V-20	
1,2,3-Trichloropropane	10.5	2.0	μg/L	10.0		105	70-130	0.191	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.6	1.0	μg/L	10.0		106	70-130	6.66	25		
1,2,4-Trimethylbenzene	9.78	1.0	$\mu g/L$	10.0		97.8	70-130	1.82	25		
1,3,5-Trimethylbenzene	11.0	1.0	$\mu g/L$	10.0		110	70-130	0.994	25		
Vinyl Chloride	37.6	2.0	$\mu g/L$	10.0		376 *	40-160	4.82	25	L-02, V-20	†
m+p Xylene	21.5	2.0	$\mu g/L$	20.0		107	70-130	0.0931	25		
o-Xylene	10.9	1.0	$\mu g/L$	10.0		109	70-130	0.275	25		
Surrogate: 1,2-Dichloroethane-d4	22.4		μg/L	25.0		89.5	70-130				_
Surrogate: Toluene-d8	24.3		$\mu g/L$	25.0		97.1	70-130				
Surrogate: 4-Bromofluorobenzene	25.3		$\mu g/L$	25.0		101	70-130				

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244108 - SW-846 3510C										
Blank (B244108-BLK1)				Prepared: 10)/24/19 Analy	yzed: 10/28/1	19			
Acenaphthene (SIM)	ND	0.30	$\mu g/L$							
Acenaphthylene (SIM)	ND	0.20	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
Fluoranthene (SIM)	ND	0.50	$\mu g/L$							
Fluorene (SIM)	ND	1.0	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
-Methylnaphthalene (SIM)	ND	1.0	$\mu g/L$							
Japhthalene (SIM)	ND	1.0	$\mu g/L$							
Phenanthrene (SIM)	ND	0.050	$\mu g/L$							
Pyrene (SIM)	ND	1.0	$\mu g/L$							
Surrogate: Nitrobenzene-d5	77.3		μg/L	100		77.3	30-130			
urrogate: 2-Fluorobiphenyl	46.9		μg/L	100		46.9	30-130			
Surrogate: p-Terphenyl-d14	64.5		μg/L	100		64.5	30-130			
LCS (B244108-BS1)				Prepared: 10	0/24/19 Analy	yzed: 10/28/1	19			
Acenaphthene (SIM)	33.9	6.0	μg/L	50.0		67.8	40-140			
Acenaphthylene (SIM)	34.9	4.0	$\mu g/L$	50.0		69.7	40-140			
Anthracene (SIM)	38.0	4.0	$\mu g/L$	50.0		76.0	40-140			
Benzo(a)anthracene (SIM)	40.4	1.0	$\mu g/L$	50.0		80.8	40-140			
Benzo(a)pyrene (SIM)	37.1	2.0	$\mu g/L$	50.0		74.2	40-140			
Benzo(b)fluoranthene (SIM)	39.9	1.0	$\mu g/L$	50.0		79.8	40-140			
Benzo(g,h,i)perylene (SIM)	39.2	10	$\mu g/L$	50.0		78.3	40-140			
Benzo(k)fluoranthene (SIM)	40.1	4.0	$\mu g/L$	50.0		80.2	40-140			
Chrysene (SIM)	32.2	4.0	$\mu g/L$	50.0		64.3	40-140			
Dibenz(a,h)anthracene (SIM)	44.1	2.0	$\mu g/L$	50.0		88.2	40-140			
luoranthene (SIM)	35.1	10	μg/L	50.0		70.2	40-140			
Fluorene (SIM)	34.6	20	$\mu g/L$	50.0		69.3	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	49.6	2.0	μg/L	50.0		99.2	40-140			
-Methylnaphthalene (SIM)	34.7	20	$\mu g/L$	50.0		69.3	40-140			
Naphthalene (SIM)	32.5	20	μg/L	50.0		65.0	40-140			
Phenanthrene (SIM)	34.7	1.0	μg/L	50.0		69.4	40-140			
Pyrene (SIM)	34.2	20	μg/L	50.0		68.4	40-140			
Surrogate: Nitrobenzene-d5	74.0		μg/L	100		74.0	30-130			
Surrogate: 2-Fluorobiphenyl	50.1		μg/L	100		50.1	30-130			
Surrogate: p-Terphenyl-d14	51.0		μg/L	100		51.0	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244108 - SW-846 3510C	Result	Limit	Omts	Level	Result	70KEC	Lillits	KI D	Limit	Notes
LCS Dup (B244108-BSD1)				Prepared: 10	0/24/19 Anal	yzed: 10/28/	19			
Acenaphthene (SIM)	34.2	6.0	μg/L	50.0		68.4	40-140	0.940	20	
Acenaphthylene (SIM)	35.2	4.0	$\mu g/L$	50.0		70.3	40-140	0.857	20	
Anthracene (SIM)	39.3	4.0	$\mu g/L$	50.0		78.7	40-140	3.47	20	
Benzo(a)anthracene (SIM)	41.2	1.0	$\mu g/L$	50.0		82.5	40-140	2.01	20	
Benzo(a)pyrene (SIM)	37.6	2.0	$\mu g/L$	50.0		75.2	40-140	1.34	20	
Benzo(b)fluoranthene (SIM)	41.8	1.0	$\mu g/L$	50.0		83.6	40-140	4.60	20	
Benzo(g,h,i)perylene (SIM)	39.3	10	$\mu g/L$	50.0		78.5	40-140	0.255	20	
Benzo(k)fluoranthene (SIM)	42.0	4.0	$\mu g/L$	50.0		84.0	40-140	4.63	20	
Chrysene (SIM)	32.8	4.0	$\mu g/L$	50.0		65.5	40-140	1.85	20	
Dibenz(a,h)anthracene (SIM)	44.4	2.0	$\mu g/L$	50.0		88.7	40-140	0.588	20	
Fluoranthene (SIM)	37.7	10	$\mu g/L$	50.0		75.5	40-140	7.25	20	
Fluorene (SIM)	35.7	20	$\mu g/L$	50.0		71.4	40-140	2.96	20	
Indeno(1,2,3-cd)pyrene (SIM)	49.9	2.0	$\mu g/L$	50.0		99.8	40-140	0.563	20	
2-Methylnaphthalene (SIM)	35.1	20	$\mu g/L$	50.0		70.3	40-140	1.38	20	
Naphthalene (SIM)	32.5	20	$\mu g/L$	50.0		65.0	40-140	0.123	20	
Phenanthrene (SIM)	36.0	1.0	$\mu g/L$	50.0		72.1	40-140	3.73	20	
Pyrene (SIM)	33.5	20	$\mu g/L$	50.0		67.0	40-140	2.01	20	
Surrogate: Nitrobenzene-d5	73.2		μg/L	100		73.2	30-130			
Surrogate: 2-Fluorobiphenyl	51.8		$\mu g/L$	100		51.8	30-130			
Surrogate: p-Terphenyl-d14	51.2		$\mu g/L$	100		51.2	30-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-02	Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.
RL-11	Elevated reporting limit due to high concentration of target compounds.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
W-846 8260D in Water	
Acetone	NC
Acrylonitrile	NC
tert-Amyl Methyl Ether (TAME)	NC
Benzene	NC
Bromobenzene	NC
Bromochloromethane	NC
Bromodichloromethane	NC
Bromoform	NC
Bromomethane	NC
2-Butanone (MEK)	NC
tert-Butyl Alcohol (TBA)	NC
n-Butylbenzene	NC
sec-Butylbenzene	NC
tert-Butylbenzene	NC
tert-Butyl Ethyl Ether (TBEE)	NC
Carbon Disulfide	NC
Carbon Tetrachloride	NC
Chlorobenzene	NC
Chlorodibromomethane	NC
Chloroethane	NC
Chloroform	NC
Chloromethane	NC
2-Chlorotoluene	NC
4-Chlorotoluene	NC
1,2-Dibromo-3-chloropropane (DBCP)	NC
1,2-Dibromoethane (EDB)	NC
Dibromomethane	NC
1,2-Dichlorobenzene	NC
1,3-Dichlorobenzene	NC
1,4-Dichlorobenzene	NC
trans-1,4-Dichloro-2-butene	NC
Dichlorodifluoromethane (Freon 12)	NC
1,1-Dichloroethane	NC
1,2-Dichloroethane	NC
1,1-Dichloroethylene	NC
cis-1,2-Dichloroethylene	NC
trans-1,2-Dichloroethylene	NC
1,2-Dichloropropane	NC
1,3-Dichloropropane	NC
2,2-Dichloropropane	NC
1,1-Dichloropropene	NC
cis-1,3-Dichloropropene	NC
trans-1,3-Dichloropropene	NC
Diethyl Ether	NC
Diisopropyl Ether (DIPE)	NC
1,4-Dioxane	NC
Ethylbenzene	NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	NC
2-Hexanone (MBK)	NC
Isopropylbenzene (Cumene)	NC
p-Isopropyltoluene (p-Cymene)	NC
Methyl tert-Butyl Ether (MTBE)	NC
Methylene Chloride	NC
4-Methyl-2-pentanone (MIBK)	NC
Naphthalene	NC
n-Propylbenzene	NC
Styrene	NC
1,1,1,2-Tetrachloroethane	NC
1,1,2,2-Tetrachloroethane	NC
Tetrachloroethylene	NC
Tetrahydrofuran	NC
Toluene	NC
1,2,3-Trichlorobenzene	NC
1,2,4-Trichlorobenzene	NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	NC
1,1,2-Trichloroethane	NC
Trichloroethylene	NC
Trichlorofluoromethane (Freon 11)	NC
1,2,3-Trichloropropane	NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NC
1,3,5-Trimethylbenzene	NC
Vinyl Chloride	NC
m+p Xylene	NC
o-Xylene	NC

 $The \ CON-TEST\ Environmental\ Laboratory\ operates\ under\ the\ following\ certifications\ and\ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

	_	<u> </u>		5	NAV			28				V ()							14. 1								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		ς Ν.		1			Tab	ole of	Conte
Page Cof	# of Containers	² Preservation Code	³ Container Code	saldnes dietal) saulessiū	Field Filtered	Lab to Filter		eliqines əreilosotlatina	Field Filtered	Lab to Filter		1 Matrix Codes:	GW = Ground Water WW = Waste Water	DW = Drinking Water	A = Air	SL = Sludge	SOL = Solid O = Other (please	define)		2 Preservation Codes:	H = HCL	N = Nitric Acid	B = Sodium Bisulfate	A = Sodium T = Sodium	hiosulfate Other (please	define)	3 Container Codes:	A = Amber Glass	G = Glass P = Plastic	ST = Sterile V = Vial	S = Summa Canister	T = Tedlar Bag O = Other (please	define)		PCB ONLY	Non Soxhlet
pruce Street : Longmeadow, MA 01028	No.			ANALYSIS REQUESTED																						Please use the following codes to indicate possible sample concentration	H - High; M - Medium; L - Low; C - Clean; U - Unknown		Program Information DSCA 11ST/Trust Fund	andfill	IHSB Orphaned Landfill	State Lead	Other:	MELAC and AIHA-LAR, LLC Accredited	Other	AIHA-LAP, LLC
http://www.contestiabs.com Doc # 379 Rev 1_03242017 F CUSTODY RECORD (North Carolina) 39 S East	10-Day		Rush Approval Required	3-Day	U 4-Day	Date: Bellvery	Excer C	(8	CLP Like Data Pkg Required:	There we the Sittemice	7.9 Way	Composite Grab)												Please use the following codes	H - High; M - Medium;		Hasallows water in Acceleration.						Menicipality	
CHAIN D	com 7-Day	Due Date:		1-Day	2-Day	MaA	Format:	Other	CLP Like	Email To:	Fax To#:	Beginning Ending	2552	0501 PI-81-01											·				To Z		SWSL SWSL	HSB HSB	(A) WSCC		Project Entity	Federal City
101316 Pribne: 413-525-2332 Fax: 413-525-6405	Email: info@contestlabs.com		Spring Forcet Re Maiss & DC		1 שבינה - ניונונו	1 St 1795, SE COUNDER	ોળો	majoral	,	Loncortos	The state of the s	Glient Sample ID / Description												**************************************						1	0 22 16	Date/Time:	Date/Time:		Date/Time:	Date/Time:
CON-KESK®		Sompany kama	Address: 3301 Spring Force	Phone: GLO 917-7614		Project Location: Cimpleral	ŀ	Project Manager: Jamie T Hana Cit	8	Invoice Recipient: Jamie T Honzaras	Sampled By: (Townie T Llawer)	Con-Test													Comments:			D 211	kelindashed by: (signature)	signature)	Ś	Refinquisfed by: (signature)	seived by: (signature)		inquished by: (signature)	Seived by: (signature)

Delivered Tuesday 10/22/2019 at 8:54 am

DELIVERED

Signed for by: B.BECCA

GET STATUS UPDATES OBTAIN PROOF OF DELIVERY

FROM

Autryville, NC US

TO

East Longmeadow, MA US

Shipment Facts

TRACKING NUMBER

411359783335

SERVICE

FedEx Priority Overnight

WEIGHT

30.1 lbs / 13.65 kgs

DIMENSIONS

23x14x14 in.

DELIVERED TO

Shipping/Receiving

TOTAL PIECES

1

TOTAL SHIPMENT WEIGHT

30.1 lbs / 13.65 kgs

RETURN REASON

TERMS

Third Party

PACKAGING

Your Packaging

SPECIAL HANDLING SECTION

Deliver Weekday, Additional Handling

Surcharge

10/22/2019 by 10:30 am

STANDARD TRANSIT

SHIP DATE

(1)

Mon 10/21/2019

ACTUAL DELIVERY

Tue 10/22/2019 8:54 am

Travel History

Local Scan Time

Tuesday , 10/22/2019

8:54 am

East Longmeadow, MA

Delivered

7:41 am

WINDSOR LOCKS, CT

On FedEx vehicle for delivery

7:31 am

WINDSOR LOCKS, CT

At local FedEx facility

Page 23 of 24

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

	^								
Client		ME		D-46			Time o	70.50	······································
Receiv	-	- Map		Date	10 2	2/19	Time	854	
How were the	•	In Cooler		No Cooler		On Ice		_ No Ice	
recei	ved?	Direct from Samp	oling			Ambient		Melted Ice	
Were sam	alae within		By Gun #	5		Actual Tem	ip - 29		
Temperatu		T	By Blank #			Actual Tem	·		-
•	Custody S	eal Intact?	. Ay Diank #	We	re Samples	s Tampered	·		•
	COC Relir		<u></u>	,	-	ree With Sa		- <u> </u>	•
		eaking/loose caps	on any sam	•	E		,,,,b,,,,,,,		•
Is COC in in				•	nples recei	ved within h	olding time?		
Did COC i	•	Client	-	Analysis	7		er Name		•
pertinent In	formation?	Project	T	ID's	-	•	Dates/Times	3 —	
Are Sample	labels filled	d out and legible?	1	-					•
Are there La		-	Ŧ		Who was	s notified?			
Are there Ru	ushes?		-r		Who was	s notified?			•
Are there Sh	ort Holds?		-		Who was	s notified?		······································	•
Is there enor	ugh Volume	?							•
	-	ere applicable?	Ė		MS/MSD?	Ç		_	
Proper Medi	•	• •	T		ls splitting	samples rec	quired?	4	
Were trip bla	anks receive	∍d?	Ŧ		On COC?	· (•	-	•
•		e proper pH?	M	Acid		•	Base		
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.	2	1 Liter	Plastic		16 o:	z Amb.	
HCL-	3	500 mL Amb.		500 mL	Plastic		8oz Ar	nb/Clear	
Meoh-		250 mL Amb.		250 mL			4oz Ar	nb/Clear	
Bisulfate-		Flashpoint		Col./Ba				nb/Clear	
DI-		Other Glass		Other F				core	
							C-0 -0 -0 -1		
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Thiosulfate- Sulfuric-				Plastic Ziplo			Frozen.		
Sulfuric-		SOC Kit			ock		rrozen.		
Sulfuric- Vials	#	SOC Kit Perchlorate Containers:	***	Ziple Unused N	ock Nedia	#			#
Sulfuric- Vials Unp-	#	SOC Kit Perchlorate Containers: 1 Liter Amb.	#	Ziplo Unused M 1 Liter I	ock /ledia Plastic	#	16 oz	z Amb.	#
Sulfuric- Vials Unp- HCL-	#	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.	#	Ziplo Unused N 1 Liter I 500 mL	Media Plastic Plastic	#	16 o: 8oz Ar	nb/Clear	#
Sulfuric- Vials Unp- HCL- Meoh-	#	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.		Ziple Unused M 1 Liter I 500 mL 250 mL	Media Plastic Plastic Plastic Plastic	#	16 o: 8oz Ar 4oz Ar	nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate-	#	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria	#	Ziple Unused N 1 Liter I 500 mL 250 mL Flash	Media Plastic Plastic Plastic Plastic point	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI-	#	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic point Glass	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear	# }
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	#	SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	#	2iple Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic Plastic Plastic Glass Bag	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic Plastic Plastic Glass Bag	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		2iple Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic Plastic Plastic Glass Bag	J	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		2iple Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic Plastic Plastic Glass Bag	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	*
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit	#	2iple Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic Plastic Plastic Glass Bag	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		2iple Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic Plastic Plastic Glass Bag	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		2iple Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic Plastic Plastic Glass Bag	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	#
Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric-		SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		2iple Unused M 1 Liter I 500 mL 250 mL Flash Other	Plastic Plastic Plastic Plastic Plastic Plastic Glass Bag	#	16 o: 8oz Ar 4oz Ar 2oz Ar	nb/Clear nb/Clear nb/Clear	