

Culvert Foundation Recommendation Letter Box Culvert @ -Y33- Sta. 35+91 over Driving Branch Johnston County, North Carolina TIP No. I-5986B S&ME Project No. 6235-17-048

PREPARED FOR

Michael Baker International 8000 Regency Parkway, Suite 600 Cary, North Carolina 27518

PREPARED BY:

S&ME, Inc. 9751 Southern Pine Boulevard Charlotte, North Carolina 28273

March 10, 2020

March 10, 2020

Michael Baker International 8000 Regency Parkway, Suite 600 Cary, North Carolina 27518

Attention: Mr. Dwain Hathaway, P.E.

Reference: Culvert Foundation Recommendation Letter

Box Culvert @ -Y33- Sta. 35+91 over Driving Branch

Johnston County, North Carolina

NCDOT TIP No. I-5986B

S&ME Project No. 6235-17-048 NC PE Firm License No. F-0176

Dear Mr. Hathaway:

S&ME, Inc. (S&ME) has completed the authorized foundation recommendation report for the above-referenced project as part of the I-95 Widening project. Our services were performed in general accordance with the *Exhibit A - Task Order#6* of the Master Subcontract Agreement between Michael Baker International (MBI) and S&ME executed on March 24, 2017. Culvert design information was provided via the Culvert Survey & Hydraulic Design Report prepared by Sungate Design Group, P.A., dated January 13, 2020.

Project and Recommendations

We understand that the proposed culvert will consist of an approximately 62.5 feet long, 21 @ 6-foot x 9-foot RCBC with centerline bed elevation of 163.5 feet and slope of 0.3% at Station 35+91 -Y33- alignment. Based on our subsurface exploration, the box culvert is planned to bear in alluvial soils. The RCBC should be installed to bear on a minimum of 12 inches of foundation conditioning material in accordance with NCDOT Standard Specifications Section 414 due to the variability of alluvial soils. A total of 79 tons of foundation conditioning material is anticipated.

Total settlement along the proposed culvert alignment is anticipated to be less than 1 inch with differential settlement of approximately ½ inches, if constructed on suitable soils.

Culvert Foundation Recommendation Letter Box Culvert @ -Y33- Sta. 35+91 over Driving Branch

NCDOT TIP No. I-5986B S&ME Project No. 6235-17-048

S&ME appreciates the opportunity to provide our services on this project. Please contact us if you have any questions regarding this report or if we may be of further assistance.

Sincerely,

S&ME, Inc.

State Mitchell

BBC611B64F19458...

Stacie E. Mitchell, P.E.

Project Manager

Senior Review By: Kristen H. Hill, P.E., P.G.

Docusigned by:

SEAL

046061

840D60E56C0C46C...

Alyson K. Aarons, P.E.

(née Yetman)

Project Engineer

NC Registration No. 046061

Attachments

Structure Subsurface Inventory Report Culvert Survey & Hydraulic Design Report FCM Quantity Calculations Settlement Calculations

March 10, 2020 2

5986B REFERENCE **CONTENTS**

DESCRIPTION

LEGEND (SOIL & ROCK)

TITLE SHEET

SITE PLAN

PROFILE(S) BORE LOG(S)

SHEET NO.

4

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY JOHNSTON

PROJECT DESCRIPTION <u>I-95 WIDENING FROM SR</u> 1811 (BUD HAWKINS RD.) (EXIT 70) TO I-40 (EXIT 81) -WIDEN TO EIGHT LANES

SITE DESCRIPTION CULVERT ON -Y33- OVER DRIVING **BRANCH**

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	I-5986B	1	5

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (919) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (INP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS THE ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS, AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE SUBSURFACE INFORMATIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

	H. CAMP
	T. MILLER
INVESTIGATED	BY S&ME, Inc.
DRAWN BY	J. SWARTLEY
	S. MITCHELL
SUBMITTED BY	S. MITCHELL
DATE MA.	RCH 2020

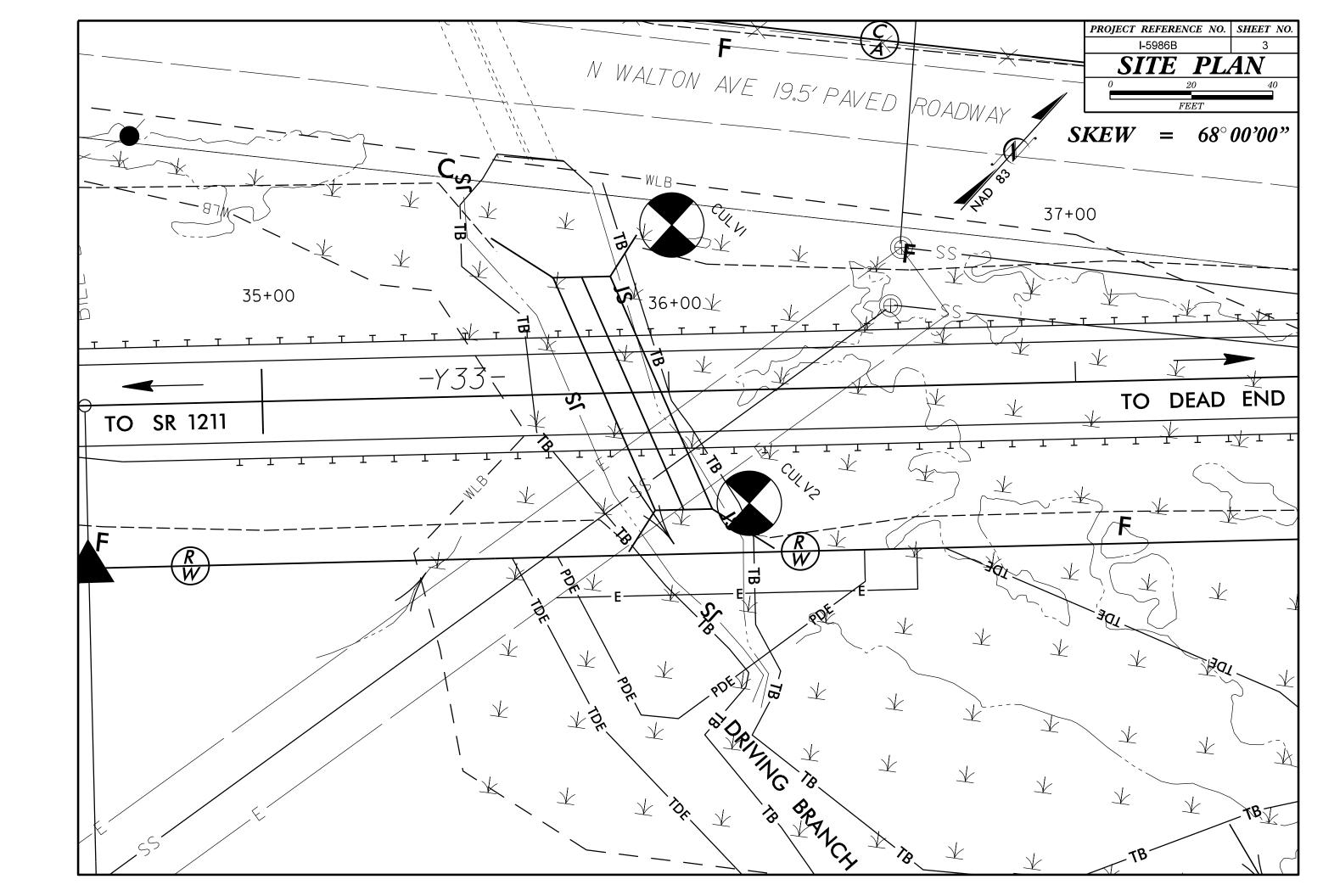
DEDCUMNET

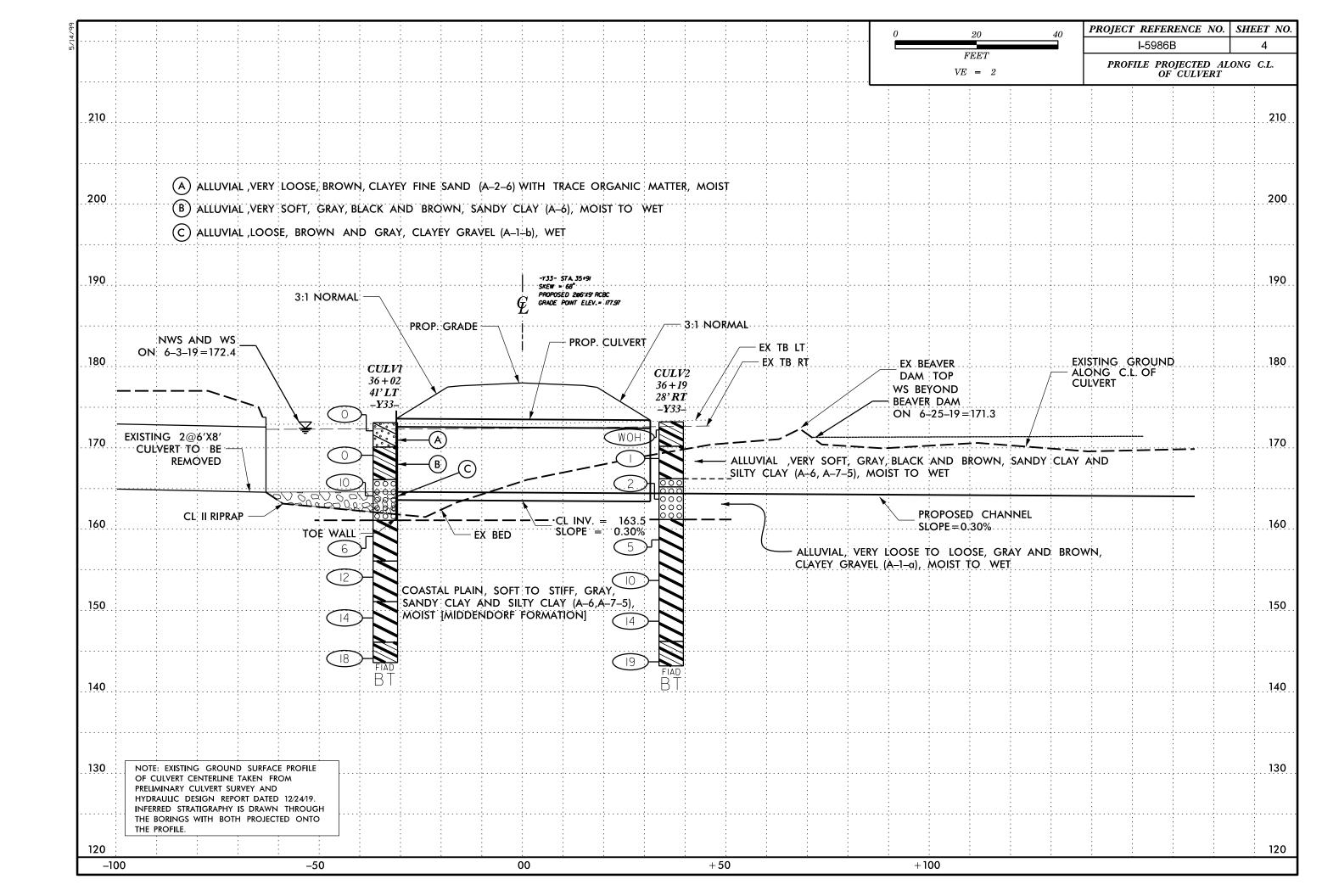
9751 SOUTHERN PINE BLVD CHARLOTTE, NC 28273 (704) 523-4726

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

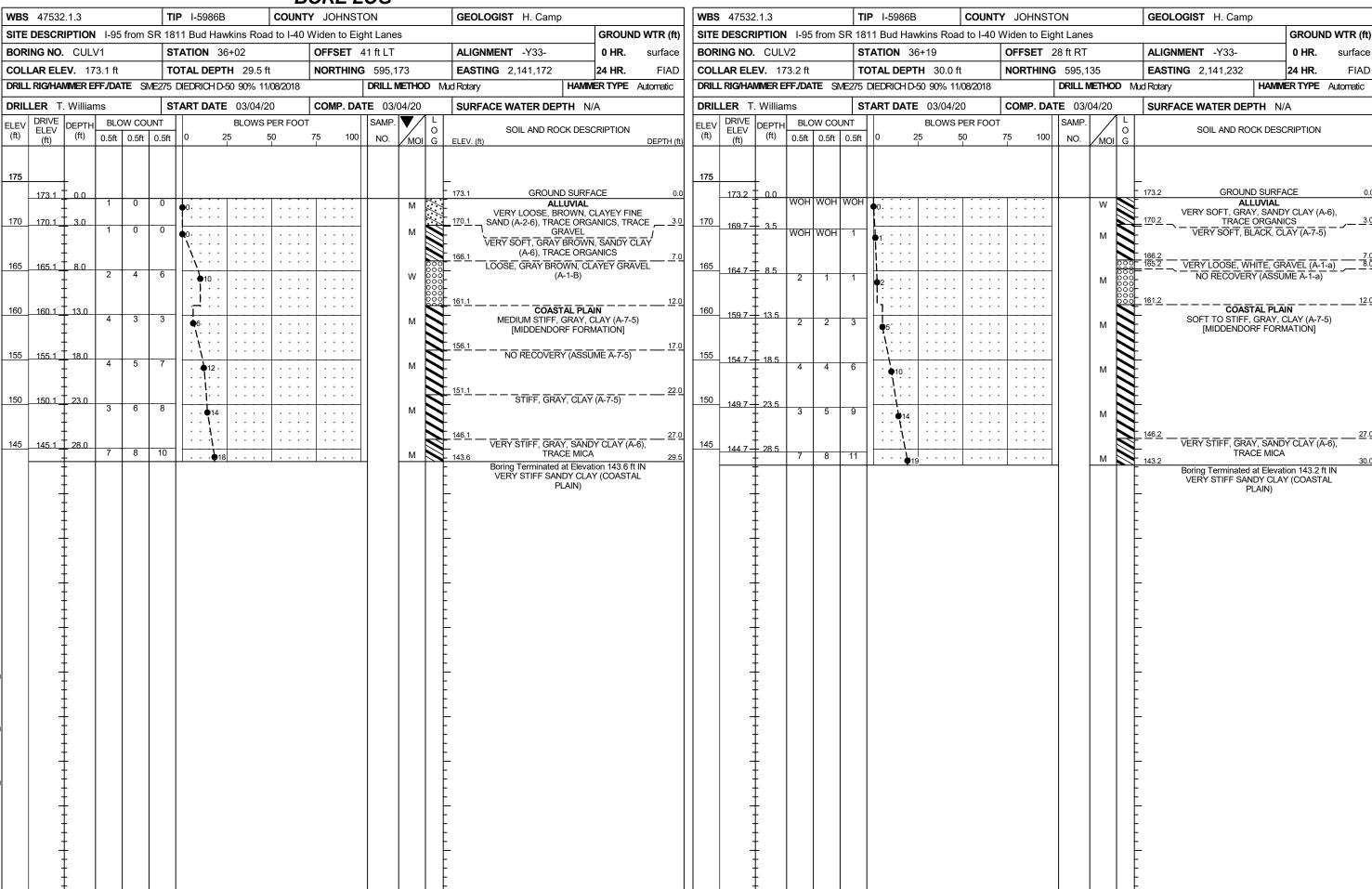
PROJECT REFERENCE NO. SHEET NO.

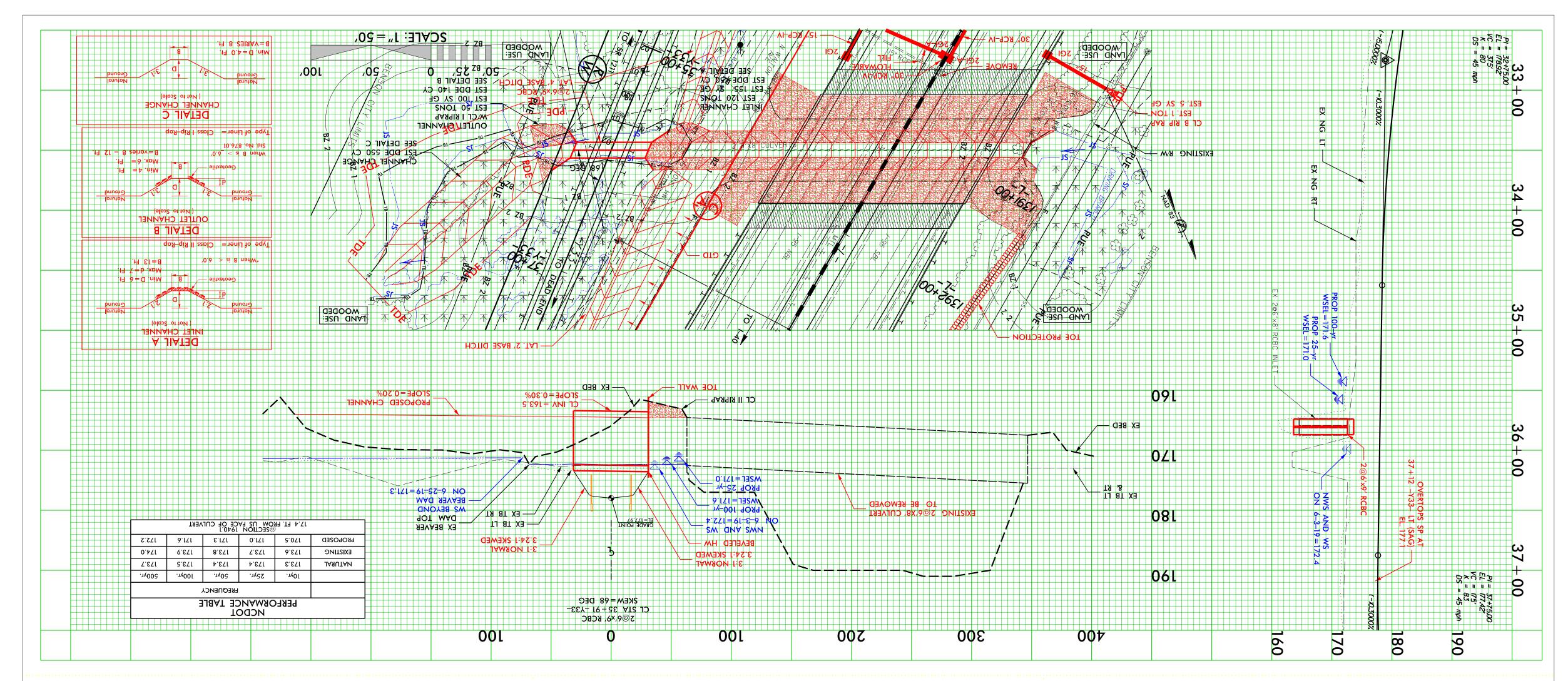
I—5986B


2


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION


SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CONSIDER MATERIALS	MINERALOGICAL COMPOSITION	THE TO COARSE CRAIN ICNEOUS AND METAMORPHIC ROCK THAT	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLASS. (≤ 35% PASSING #200) (> 35% PASSING #200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE,	SURFACE.
GROUP A-I A-3 A-2 A-4 A-5 A-6 A-7 A-I, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	SINE TO COASE COAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-7-5 A-7-6 A-7-7	COMPRESSIBILITY	NON-LAYSTALLINE SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS. ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX GRANULAR GRANULAR GRANULAR GLAY PEAT SOILS GRANULAR GRANULAR GRANULAR GLAY PEAT	PERCENTAGE OF MATERIAL	WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN 36 MN	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3%, 3 - 5%, TRACE 1 - 10%, LITTLE ORGANIC MATTER 3 - 5%, 5 - 12%, LITTLE 10 - 20%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
PASSING *40	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 1	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOLIS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER		(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
OF MAJOR GRAYEL, AND MATERIALS SAND GRAYEL AND SAND SOILS SOILS	▼ STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
CEN PATING	<u>▽Pw</u> PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30; PI OF A-7-6 SUBGROUP IS > LL - 30		MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR COMPACTNESS OR CONSISTENCY CONSISTENCY COMPACTNESS OR CONSISTENCY COMPACTNESS OR COMPACTNESS	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
(IV-VHLUE) (TUNS/FT)	☐ WITH SOIL DESCRIPTION ☐ OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE 4 TO 10	SOIL SYMBOL SOIL SYMBOL SUPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
MATERIAL MEDIUM DENSE 10 TO 30 N/A	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETRUMETER	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	── INFERRED SOIL BOUNDARY - CORE BORING ■ SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5	INFERRED ROCK LINE MONITORING WELL TEST BORING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 TO 15 1 TO 2	WITH CURE	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER INSTALLATION SPT N-VALUE	ALSO AN EXAMPLE.	RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	- ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNCLASSIFIED EXCAVATION - TOTAL UNCLASSIFIED EXCAVATION -	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT UNSUITABLE WASTE UNSUITABLE WASTE UNSUITABLE WASTE UNSUITABLE WASTE UNSUITABLE WASTE UNSUITABLE WASTE USED IN THE TOP 3 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO DR GREATER THAN 4 INCHES DIVIDED BY
LL LIQUID LIMIT	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
PLASTIC SEMISOLID; REQUIRES DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CRR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	
(PI) PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS	IERM SPACING IERM THICKNESS	BENCH MARK: •SEE NOTE
	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID: AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	
SL _ SHRINKAGE LIMIT	CME-45C X CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	6° CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	•ELEVATIONS DERIVED FROM GEOPAK AND .TIN FILE '15986b_2_Is_tin.tin' DATED 10/9/18
PLASTICITY	CORE -55	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC Ø-5 VERY LOW	TUNGCARBIDE INSERTS	RUBBING WITH FINGER FREES NUMEROUS GRAINS;	
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST CASING W/ ADVANCER HAND TOOLS:	GENILE BLUW BY HAMMER DISINIEGRATES SAMPLE.	
HIGHLY PLASTIC 26 OR MORE HIGH	POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNG,-CARB, SQUINGING POD	CRAINC ARE DIFFICH I TO CERARATE WITH CIFEL PROPE.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	X D-50 CORE BIT VANE SHEAR TEST	INDURATED DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	THING STIGHT (EST	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	0475 0 15 14
1		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

GEOTECHNICAL BORING REPORT BORE LOG

ADDITIONAL INFORMATION AND COMPUTATIONS .DRAINAGE.AREA. = .. 811 ACRES. (1.27. SQ. Ml.). IMPERVIOUS AREA .% . = . .34.8% . (FROM . FUTURE .LAND . USE .MAPS) . . 24-HR, 50-YR MAX. PRECIPITATION = 7.64 IN USGS SIR 2014-5030 REGION 4, 0.10 SQ. MI < DA < 53.5 SQ. MI. SAY $Q_{10} = 51.8(1.27)^{0.6004}10^{0.0101*34.8}10^{0.0666*7.64}$ =434 CFS 430 CFS $Q_{25} = 67.1(1.27)^{0.6067}10^{0.0075*34.8}10^{0.0708*7.64}$ =492 CFS 490 CFS $Q_{50} = 78.4(1.27)^{0.6111} 10^{0.0058*34.8} 10^{0.0738*7.64}$ =529 CFS 530 CFS $Q_{100} = 90.5(1.27)^{0.6154}10^{0.0043*34.8}10^{0.0762*7.64}$ =565 CFS 570 CFS $Q_{500} = 119(1.27)^{0.6261} 10^{0.0012*34.8} 10^{0.0813*7.64}$ =638 CFS 650 CFS -BED MATERIALS: SAND, SILT, GRAVEL -NO UPSTREAM OR DOWNSTREAM STRUCTURES THAT WERE IN PLACE AT THE TIME THIS PROJECT WAS DESIGNED WILL BE ADVERSELY IMPACTED BY THIS CULVERT PROJECT

			<u>SI</u>	TE DAT	<u>A</u>		
Drainage Area	1.27 S	Q. MI.	S	ource		Q	L2 LiDAR
River Basin	NEUSE			Character		RESIDE	NTIAL; AGRICULTURAL
Stream Classification	(Such as	Trout, Hiç	gh Quali	ity Water,	etc.)		C; NSW
Data on Existing Struc	ture				2@6′X8′ F	RCBC	
				'aterway (Opening	Below 10	00yr. WS EL
Debris Potential: Low□ Data on Structures Up		•	U/S	6: BRIDGE			; TO CROWN
odia on shociores op	dia bo	WII SIICUI					
Sage Station No	N/A						N/A ,
							•
Nax. Discharge orical Flood Infor			.s L	Oate	!*^		FrequencyNA
NOT OT IN HURRICAN Pate Elev NOT OT IN HURRICAN Pate Elev	ft.Est. IE MATTHE ft.Est	Freq W(10/2016) Freq	yr. So /FLORENG yr. So	ource CE(09/2018 ource	DIV. 4) NEIL G BRIDGE	ODWIN - MAINT. S	NGINEER Knowledge 28 y DIV. 4 Period of SUPERVISOR Knowledge 23 y
Allowable HW Elev. *Š	175.6 (1.5′ P @ 37+	BELOW :	SP*) LT (SAG)		ft. Nor	mal Wate	r Surface Elev. 172.4
lanning's n : Left O.B	3. 0.12	Chan	nel045	Right	O.B	O	btained From FIELD RECON
lood Study/Status			N/A			Flo	oodway Established? ^{N/A}
flood Study 100 yr. Dis	scharge	A c	.f.s. ; WS	Elev.: Flo	With oodway	N/A	Without N⁄A ft. Floodway
					-		,
				IGN D			
lydrological Method	USG	S SIR 201	4–5030 (REGION	4, 34.8%	IMPERVIO	US AREA)
lydraulic Design Meth	od	HEC-R	AS 5.0.6	(I-5986B	DRIVIING	BRANCH	I–95)
Design Tailwater : Q,	5.0.	ft.; G	,5.4	ft.; G	0 ₅₀ NA.	ft.;Q ₁₀₀ .	
INV. IN EL. = 163.6, IN'						100	300
SIZE & TYPE: 2@6' X 9					7 // LIPST	REAM OF	CULVERT.
512L & 111L. 2@0 X 7	Kebe	Ī	Inlet Contro		П	Control	
FREQUENCY	Q (cfs)	HW/D	H.W.	WSEL	H.W.	WSEL	Remarks
10 YR	430	0.64	5.1	169.7	5.9	170.5	OUTLET CONTROL
25 YR	490	0.70	5.6	170.2	6.4	171.0	OUTLET CONTROL
100 YR	570	0.78	6.2	170.8	7.0	171.6	OUTLET CONTROL
500 YR	650	0.85	6.8	171.4	7.6	172.2	OUTLET CONTROL
s a Floodway Revisior	n Required	1s	N/A		Total Prop	osed Wa	iterway Opening96
							(V ₁₀)5.0
Required Outlet Prote							
	INFOR	MATION VS EL. Tal	ken @	BE SHO	<u> WN</u> ion 1940	<u>un PL</u> .1	ANS
Design: Discharg	ge490	c.f.s	s. Fre	quency	25	yr.	Elev. 171.0
Base Flood: Discharg	ge 530	c.f.s	s. Free	quency	100) yr.	Elev. 171.6
Overtopping: Discharç	ge135	0 c.f.s	s. Fre	quency	500).+yr.	Elev. 177.1*
				•		,	*SP @ 37+12 -Y33- L1

NEUSE RIVER BASIN NON FEMA STUDY AREA CULVERT SURVEY & HYDRAULIC DESIGN REPORT N. C. DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS HYDRAULICS UNIT RALEIGH, N. C. 35 + 91 -Y33-I.D. No. . . I-5986B 47532.1.3 Stru. No. C01 JOHNSTON DRIVING BRANCH County . On Highway SR1219 (N. WALTON AVE.) Between DEAD END 2@6'X9' RCBC W/6" BEVELED HW (BURIED 1' BELOW STREAM BED) 30' SP-SP (NORMAL) Skew 68 DEGREES Recommended Width of Roadway. Recommended Location is (Up, At, (Down) Stream from Existing Crossing. 35.38440 -078.52650 Latitude 占 Statewide Tier 🛛 Sub-Regional Tier BM#7: BENCH TIE IN 17" POPULAR TREE, STA 1391 + 89 -L-, 187' RT Bench Mark is N 595120 E 2141144 Elev. 175.42 ft. Datum: NAVD 88 Temporary Crossing N/A (PROPOSED BOX CULVERT IS DOWNSTREAM OF EXISTING CROSSING) Jostus G Delitor WILL HINES, P.E. 1/23/2020 Assisted by: D. TALBERT, J. HARVEY, M. EDWARDS, F. REESE

JOSHUA G. DALTON, P.E.

. Matthew J. York, P.E

Project Engineer

Reviewed by:

2697 I

SUNGATE DESIGN GROUP, P.A.

905 JONES FINALLINA 27000 NC COA No. C-0890

Culvert Undercut Quantities Box Culvert over Driving Branch Creek

Portland Concrete Box Culvert (2 @ 6 ft x 9 ft)

Foundation Conditioning Material	
Beneath Culvert Footprint	
Single Culvert Inside Width	6
Number of Culverts	2
Number of Culvert Outside Walls	2
Number of Culvert Internal Divisions	1
Thickness of Walls & Divisions	2.00
Total Culvert(s) Outside Width	14.00
Culvert(s) Length (ft)	62.5
Per Structure Memo, UC to Outer + 4 feet	
UC Outside Width (ft)	18.00
UC depth (ft)	1
volume beneath culvert (ft^3)	1125
volume beneath culvert (cy)	41.67
Reqd. Foundation Conditioning Material for Culvert(s) (tons)	79.3
Reqd. Foundation Conditioning Material for Culvert(s) (tons)	<i>79</i>
Per Structure Memo, 1.904 tons/cy	1.904

Per Structure Memo, do not include FCM quantity for standard turned-back wings

Project: I-95 Widening (I-5986B)

Proj. #: 6235-17-048 Date: 3/6/2020

Embankment & Culvert Calculations for Settle3D

Embankment Inputs

Slope: 3.0 (H):1(V) Skew: 68 deg
Angle: 17.15 deg. Skewed Slope: 3.24 (H):1(V)

Height: 5 ft (If culvert is not skewed, leave S8 blank & sheet will Top Length: 36.8 ft calculate as if it is perpendicular (90 deg skew))

Base Length: 69.2 ft

Equivalent Culvert & Embankment Load Inputs

Culvert

Unit Weight: 150 pcf Full Outside Width: 14.0 ft

Number: 2

Inside Width: 6 ft Equivalent Volume: 2291.7 ft^3
Inside Height: 9 ft Equivalent Weight: 343.8 kips

Length: 62.5 ft

Assumed Wall Thickness: 0.67 ft Equiv. Pressure: 0.393 ksf

Embankment

Unit Weight: 120 pcf Equivalent Volume: 2780.4 ft^3
Top Length: 36.8 ft Equivalent Weight: 333.6 kips

Bottom Length: 62.5 ft

Avg. Height: 4 ft Equiv. Pressure: 0.381 ksf

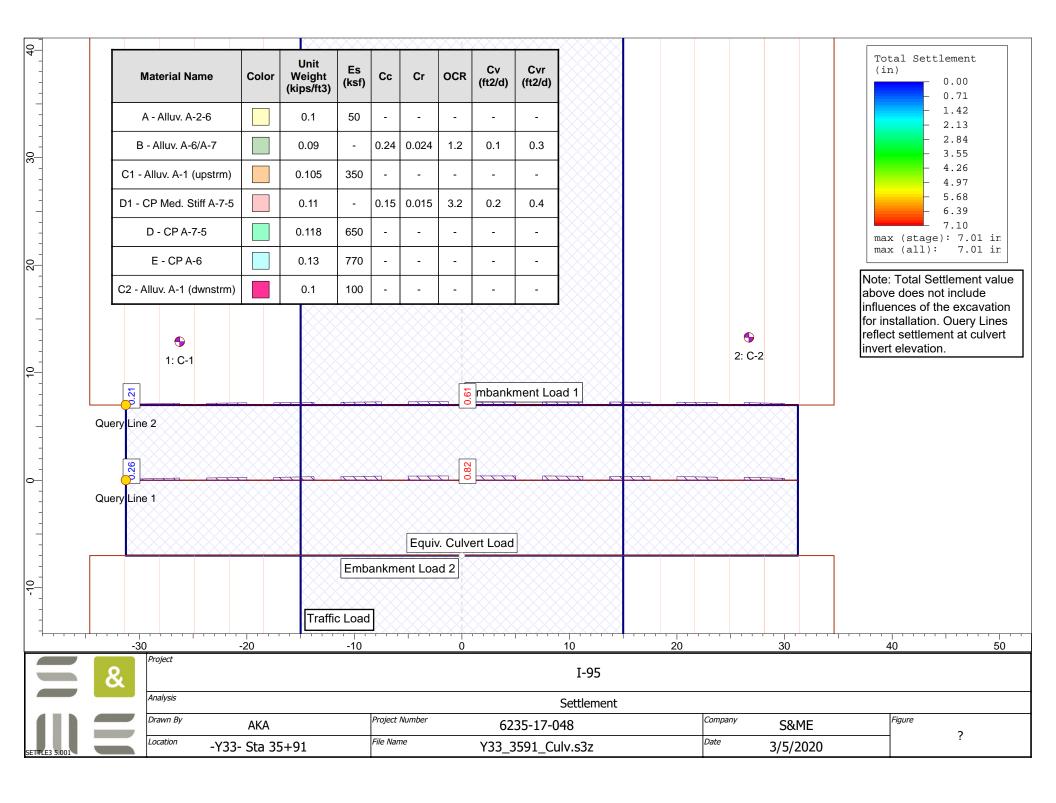
Total Equivalent Pressure: 0.774 ksf

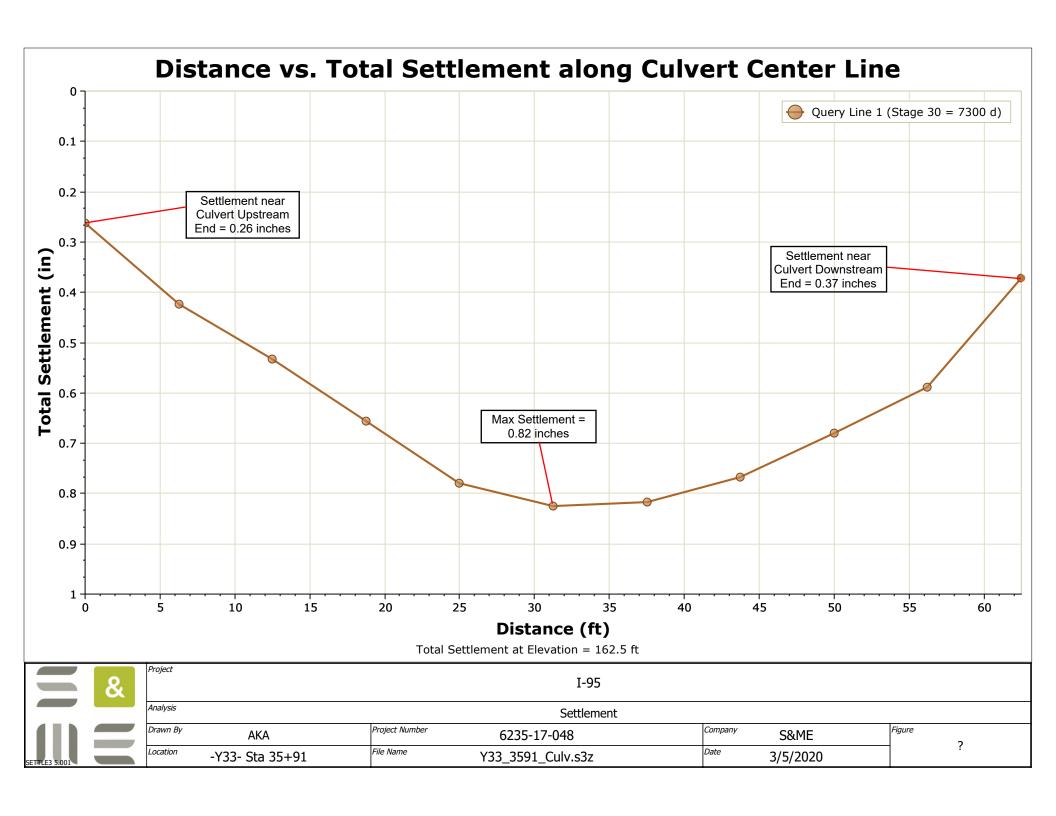
<u>Traffic Loading:</u> 240 psf

0.240 ksf

Width: 30 ft

Parameters:


Parameters are based upon soil type, N-value, and lab testing correlations, where applicable. Where lab testings is not applicable, parameters are based on similar soils tested in the project and/or previous knowledge from the geology.


Cc/Cr - Terzaghi & Peck (1967); Cv/Cvr - NAVFAC DM 7.01 Ch. 3 Fig. 4

Es - AASHTO LRFD Table C10.4.6.3-1

Blue Values are inputs

Black Values are calculations/references

Y33_3591_Culv.s3z S&ME 3/6/2019, 3:30:56 PM

Settle3 Analysis Information I-95

Project Settings

Document Name Y33_3591_Culv.s3z

Project Title I-95
Analysis Settlement
Author AKA
Company S $_{\&}$ ME

Date Created 3/6/2019, 3:30:56 PM

Comments

?

6235-17-048 -Y33- Sta 35+91 New Culvert

Stress Computation Method Boussinesq

Time-dependent Consolidation Analysis

Time Units days
Permeability Units feet/day
Minimum settlement ratio for subgrade modulus 0.9

Include buoyancy effect when material settles below water table

Use average properties to calculate layered stresses

Improve consolidation accuracy

Ignore negative effective stresses in settlement calculations

Stage Settings

Stage #	Name	Time [days]
1	Stage 1	0
2	Stage 2	1
3	Stage 3	2 3
4	Stage 4	
5	Stage 5	4
6	Stage 6	5
7	Stage 7	6
8	Stage 8	7
9	Stage 9	14
10	Stage 10	21
11	Stage 11	30
12	Stage 12	60
13	Stage 13	90
14	Stage 14	120
15	Stage 15	150
16	Stage 16	180
17	Stage 17	210
18	Stage 18	240
19	Stage 19	270
20	Stage 20	300
21	Stage 21	330
22	Stage 22	365
23	Stage 23	730
24	Stage 24	1095
25	Stage 25	1460
26	Stage 26	1825
27	Stage 27	2920
28	Stage 28	3650
29	Stage 29	5475
30	Stage 30	7300

Results

Time taken to compute: 0 seconds

Stage: Stage 1 = 0 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	0
Total Consolidation Settlement [in]	0	0
Virgin Consolidation Settlement [in]	0	0
Recompression Consolidation Settlement [in]	0	0
Immediate Settlement [in]	0	0
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	0
Loading Stress XX [ksf]	0	0
Loading Stress YY [ksf]	0	0
Effective Stress ZZ [ksf]	0	1.43788
Effective Stress XX [ksf]	0	1.43788
Effective Stress YY [ksf]	0	1.43788
Total Stress ZZ [ksf]	0	3.30364
Total Stress XX [ksf]	0	3.30364
Total Stress YY [ksf]	0	3.30364
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	0
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	0	0
Pore Water Pressure [ksf]	0	1.86576
Excess Pore Water Pressure [ksf]	0	0
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [ksf]	0.00054	2.21208
Over-consolidation Ratio	1	3.8
Void Ratio	0	0.841
Permeability [ft/d]	0	0.235789
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0

Stage: Stage 2 = 1 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.375895
Total Consolidation Settlement [in]	-0.0133037	0
Virgin Consolidation Settlement [in]	0	0
Recompression Consolidation Settlement [in]	-0.0133037	0
Immediate Settlement [in]	0	0.376109
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	0.774
Loading Stress XX [ksf]	-0.00381059	0.45236
Loading Stress YY [ksf]	0	0.708851
Effective Stress ZZ [ksf]	0	1.43788
Effective Stress XX [ksf]	0	1.45381
Effective Stress YY [ksf]	0	1.45452
Total Stress ZZ [ksf]	0	3.57494
Total Stress XX [ksf]	0	3.57268
Total Stress YY [ksf]	0	3.59666
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	59.8087
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	57.0329
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.000911934	0.00774
Pore Water Pressure [ksf]	0	2.15895
Excess Pore Water Pressure [ksf]	0	0.774
Degree of Consolidation [%]	0	0
Pre-consolidation Stress [ksf]	0.00054	2.21208
Over-consolidation Ratio	1	3.83599
Void Ratio	0	0.842714
Permeability [ft/d]	0	0.235789
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0

Stage: Stage 3 = 2 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.451371
Total Consolidation Settlement [in]	-0.00142163	0.199712
Virgin Consolidation Settlement [in]	0	0.190957
Recompression Consolidation Settlement [in]	-0.00142163	0.0439599
Immediate Settlement [in]	0	0.407825
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0	0.809594
Loading Stress XX [ksf]	-0.052422	0.532211
Loading Stress YY [ksf]	0.0225721	0.824725
Effective Stress ZZ [ksf]	0	1.37804
Effective Stress XX [ksf]	-0.052422	1.61969
Effective Stress YY [ksf]	0.0225721	1.89891
Total Stress ZZ [ksf]	0	3.64433
Total Stress XX [ksf]	-0.052422	3.75445
Total Stress YY [ksf]	0.0225721	3.81494
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	44.1258
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	52.1269
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	330.087
Total Strain	-0.00111148	0.276194
Pore Water Pressure [ksf]	0	2.55654
Excess Pore Water Pressure [ksf]	0	0.7263
Degree of Consolidation [%]	0	23.102
Pre-consolidation Stress [ksf]	0.00054	2.21208
Over-consolidation Ratio	1	3.84331
Void Ratio	0	0.843089
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-1.30104e-018	0.0387355

Stage: Stage 4 = 3 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	0.886579
Total Consolidation Settlement [in]	-0.00197142	0.708272
Virgin Consolidation Settlement [in]	0	0.666041
Recompression Consolidation Settlement [in]	-0.00197142	0.0698696
Immediate Settlement [in]	0	0.440664
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	5.58541e-005	0.852317
Loading Stress XX [ksf]	-0.0824862	0.609377
Loading Stress YY [ksf]	0.0469876	0.944868
Effective Stress ZZ [ksf]	5.58541e-005	1.38156
Effective Stress XX [ksf]	-0.0824862	1.72346
Effective Stress YY [ksf]	0.0469876	2.05043
Total Stress ZZ [ksf]	5.58541e-005	3.71055
Total Stress XX [ksf]	-0.0824862	3.93831
Total Stress YY [ksf]	0.0469876	4.02979
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	38.8815
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	48.3304
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	184.762
Total Strain	-0.0012438	0.281503
Pore Water Pressure [ksf]	0	2.62029
Excess Pore Water Pressure [ksf]	0	0.761446
Degree of Consolidation [%]	0	30.4928
Pre-consolidation Stress [ksf]	0.00054	2.21208
Over-consolidation Ratio	1	3.60659
Void Ratio	0	0.843338
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0400098

Stage: Stage 5 = 4 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	1.24064
Total Consolidation Settlement [in]	-0.0014357	0.918477
Virgin Consolidation Settlement [in]	0	0.837593
Recompression Consolidation Settlement [in]	-0.0014357	0.0986428
Immediate Settlement [in]	0	0.473941
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.000273412	0.898506
Loading Stress XX [ksf]	-0.0906459	0.661412
Loading Stress YY [ksf]	0.058274	1.06792
Effective Stress ZZ [ksf]	0.000273412	1.38847
Effective Stress XX [ksf]	-0.0906459	1.80651
Effective Stress YY [ksf]	0.0608746	2.20964
Total Stress ZZ [ksf]	0.000273412	3.7727
Total Stress XX [ksf]	-0.0906459	4.12341
Total Stress YY [ksf]	0.0610746	4.23464
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	34.4088
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	45.4215
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	148.854
Total Strain	-0.00126446	0.282196
Pore Water Pressure [ksf]	0	2.67802
Excess Pore Water Pressure [ksf]	0	0.812898
Degree of Consolidation [%]	0	38.6631
Pre-consolidation Stress [ksf]	0.000725822	2.21208
Over-consolidation Ratio	1	3.4458
Void Ratio	0	0.843376
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0412628

Stage: Stage 6 = 5 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	1.62874
Total Consolidation Settlement [in]	-0.00125618	1.28114
Virgin Consolidation Settlement [in]	0	1.17441
Recompression Consolidation Settlement [in]	-0.00125618	0.114063
Immediate Settlement [in]	0	0.50677
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.000626371	0.948061
Loading Stress XX [ksf]	-0.0796754	0.739658
Loading Stress YY [ksf]	0.0521195	1.19173
Effective Stress ZZ [ksf]	0.000626371	1.39861
Effective Stress XX [ksf]	-0.0790157	1.93747
Effective Stress YY [ksf]	0.0547692	2.37334
Total Stress ZZ [ksf]	0.000626371	3.83102
Total Stress XX [ksf]	-0.0790157	4.30925
Total Stress YY [ksf]	0.0549692	4.42558
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	18.0238
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	43.2099
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	114.448
Total Strain	-0.000948924	0.282339
Pore Water Pressure [ksf]	0	2.72777
Excess Pore Water Pressure [ksf]	0	0.863634
Degree of Consolidation [%]	0	47.7373
Pre-consolidation Stress [ksf]	0.00108046	2.21208
Over-consolidation Ratio	1	3.42145
Void Ratio	0	0.842782
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0565032

Stage: Stage 7 = 6 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	1.928
Total Consolidation Settlement [in]	-0.000925932	1.56141
Virgin Consolidation Settlement [in]	0	1.43732
Recompression Consolidation Settlement [in]	-0.000925932	0.128303
Immediate Settlement [in]	0	0.540567
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00106005	0.997669
Loading Stress XX [ksf]	-0.0933493	0.81937
Loading Stress YY [ksf]	0.0469083	1.31291
Effective Stress ZZ [ksf]	0.00106005	1.41123
Effective Stress XX [ksf]	-0.0926679	2.0905
Effective Stress YY [ksf]	0.0495852	2.53719
Total Stress ZZ [ksf]	0.00106005	3.88379
Total Stress XX [ksf]	-0.0926679	4.49553
Total Stress YY [ksf]	0.0497852	4.59807
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	14.3725
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	40.0077
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0
Total Strain	-0.000691943	0.282335
Pore Water Pressure [ksf]	0	2.76858
Excess Pore Water Pressure [ksf]	0	0.905872
Degree of Consolidation [%]	0	53.9604
Pre-consolidation Stress [ksf]	0.00151567	2.21208
Over-consolidation Ratio	1	3.37271
Void Ratio	0	0.842274
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.058917

Stage: Stage 8 = 7 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	2.19735
Total Consolidation Settlement [in]	-0.000400691	1.78684
Virgin Consolidation Settlement [in]	0	1.64746
Recompression Consolidation Settlement [in]	-0.000400691	0.149148
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	1.42543
Effective Stress XX [ksf]	-0.0762268	2.18101
Effective Stress YY [ksf]	0.0663101	2.61928
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.63068
Total Stress YY [ksf]	0.0665101	4.72433
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	3.23238
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	10.6433
Total Strain	-0.000494192	0.282765
Pore Water Pressure [ksf]	0	2.87109
Excess Pore Water Pressure [ksf]	0	1.05099
Degree of Consolidation [%]	0	55.5245
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.29467
Void Ratio	0	0.84191
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0622389

Stage: Stage 9 = 14 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	4.07088
Total Consolidation Settlement [in]	0	3.39003
Virgin Consolidation Settlement [in]	0	3.18481
Recompression Consolidation Settlement [in]	0	0.242987
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	1.60463
Effective Stress XX [ksf]	-0.0762268	2.35523
Effective Stress YY [ksf]	0.0663101	2.82075
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.62194
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	1.11568
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	1.44988
Total Strain	4.67194e-005	0.282606
Pore Water Pressure [ksf]	-2.31299e-005	2.68822
Excess Pore Water Pressure [ksf]	-0.000200629	0.831203
Degree of Consolidation [%]	0	78.3383
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.0556
Void Ratio	0	0.840873
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	-5.44848e-005	0.0691228

Stage: Stage 10 = 21 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	4.85416
Total Consolidation Settlement [in]	0	4.17332
Virgin Consolidation Settlement [in]	0	3.94092
Recompression Consolidation Settlement [in]	0	0.272425
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	1.60766
Effective Stress XX [ksf]	-0.0762268	2.35523
Effective Stress YY [ksf]	0.0663101	2.82075
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.6187
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.909318
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	1.16595
Total Strain	-3.62789e-005	0.282514
Pore Water Pressure [ksf]	-2.84238e-005	2.43337
Excess Pore Water Pressure [ksf]	-0.00118287	0.579586
Degree of Consolidation [%]	0	85.4925
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05644
Void Ratio	0	0.841067
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691228

Stage: Stage 11 = 30 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	5.45219
Total Consolidation Settlement [in]	0	4.81728
Virgin Consolidation Settlement [in]	0	4.56568
Recompression Consolidation Settlement [in]	0	0.294969
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	1.82825
Effective Stress XX [ksf]	-0.0762268	2.44357
Effective Stress YY [ksf]	0.0663101	2.82075
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61616
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.822339
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.982844
Total Strain	-0.000134145	0.282428
Pore Water Pressure [ksf]	-3.13943e-005	2.20373
Excess Pore Water Pressure [ksf]	0	0.337968
Degree of Consolidation [%]	0	90.8851
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05713
Void Ratio	0	0.841247
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691228

Stage: Stage 12 = 60 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.38239
Total Consolidation Settlement [in]	0	5.77051
Virgin Consolidation Settlement [in]	0	5.49374
Recompression Consolidation Settlement [in]	0	0.314742
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.12202
Effective Stress XX [ksf]	-0.0762268	2.73382
Effective Stress YY [ksf]	0.0663101	2.82747
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61263
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.699234
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.816282
Total Strain	-0.000263605	0.282272
Pore Water Pressure [ksf]	-3.43938e-005	1.94977
Excess Pore Water Pressure [ksf]	-0.00106	0.12163
Degree of Consolidation [%]	0	98.8333
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05805
Void Ratio	0	0.841485
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691228

Stage: Stage 13 = 90 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.75415
Total Consolidation Settlement [in]	0	6.14226
Virgin Consolidation Settlement [in]	0	5.85955
Recompression Consolidation Settlement [in]	0	0.316787
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15017
Effective Stress XX [ksf]	-0.0762268	2.7609
Effective Stress YY [ksf]	0.0663101	2.85455
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61157
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.672658
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.786948
Total Strain	-0.000290392	0.282199
Pore Water Pressure [ksf]	-3.52083e-005	1.88664
Excess Pore Water Pressure [ksf]	-0.00251507	0.054006
Degree of Consolidation [%]	0	99.8677
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05827
Void Ratio	0	0.841535
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691228

Stage: Stage 14 = 120 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.90273
Total Consolidation Settlement [in]	0	6.29084
Virgin Consolidation Settlement [in]	0	6.00675
Recompression Consolidation Settlement [in]	0	0.317028
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15398
Effective Stress XX [ksf]	-0.0762268	2.76436
Effective Stress YY [ksf]	0.0663101	2.858
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61121
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.665111
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.779868
Total Strain	-0.000299798	0.282165
Pore Water Pressure [ksf]	-3.55e-005	1.87095
Excess Pore Water Pressure [ksf]	-0.00562164	0.0231892
Degree of Consolidation [%]	0	99.9845
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05833
Void Ratio	0	0.841552
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691626

Stage: Stage 15 = 150 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.96467
Total Consolidation Settlement [in]	0	6.35278
Virgin Consolidation Settlement [in]	0	6.06834
Recompression Consolidation Settlement [in]	0	0.317066
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15459
Effective Stress XX [ksf]	-0.0762268	2.76484
Effective Stress YY [ksf]	0.0663101	2.85849
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61109
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.662816
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.778034
Total Strain	-0.00030356	0.282149
Pore Water Pressure [ksf]	-3.56276e-005	1.86705
Excess Pore Water Pressure [ksf]	-0.00258401	0.00994969
Degree of Consolidation [%]	0	99.9982
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841559
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691735

Stage: Stage 16 = 180 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	6.99108
Total Consolidation Settlement [in]	0	6.37919
Virgin Consolidation Settlement [in]	0	6.09466
Recompression Consolidation Settlement [in]	0	0.317076
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.1547
Effective Stress XX [ksf]	-0.0762268	2.76491
Effective Stress YY [ksf]	0.0663101	2.85856
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61104
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.662105
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.77755
Total Strain	-0.00030519	0.28214
Pore Water Pressure [ksf]	-3.80176e-005	1.86608
Excess Pore Water Pressure [ksf]	-0.00561128	0.00421342
Degree of Consolidation [%]	0	99.9999
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841562
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.069175

Stage: Stage 17 = 210 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00199
Total Consolidation Settlement [in]	0	6.3901
Virgin Consolidation Settlement [in]	0	6.10554
Recompression Consolidation Settlement [in]	0	0.317079
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15473
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61103
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661883
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777422
Total Strain	-0.000306001	0.282136
Pore Water Pressure [ksf]	-3.91476e-005	1.86584
Excess Pore Water Pressure [ksf]	-0.00269724	0.00556153
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841563
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 18 = 240 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00653
Total Consolidation Settlement [in]	0	6.39464
Virgin Consolidation Settlement [in]	0	6.11009
Recompression Consolidation Settlement [in]	0	0.31708
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661814
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777388
Total Strain	-0.000306697	0.282134
Pore Water Pressure [ksf]	-3.96047e-005	1.86578
Excess Pore Water Pressure [ksf]	-0.00538007	0.00270954
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841565
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 19 = 270 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.0085
Total Consolidation Settlement [in]	0	6.39661
Virgin Consolidation Settlement [in]	0	6.11205
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661792
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777379
Total Strain	-0.000307032	0.282133
Pore Water Pressure [ksf]	-3.97897e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00267732	0.00525408
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841565
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 20 = 300 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00934
Total Consolidation Settlement [in]	0	6.39745
Virgin Consolidation Settlement [in]	0	6.11289
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661786
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777376
Total Strain	-0.000307194	0.282133
Pore Water Pressure [ksf]	-3.98646e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00510218	0.00236932
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 21 = 330 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.0097
Total Consolidation Settlement [in]	0	6.39782
Virgin Consolidation Settlement [in]	0	6.11325
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661783
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777376
Total Strain	-0.000307272	0.282133
Pore Water Pressure [ksf]	-3.98949e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00264463	0.00496218
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 22 = 365 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00988
Total Consolidation Settlement [in]	0	6.39799
Virgin Consolidation Settlement [in]	0	6.11342
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661783
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307314	0.282133
Pore Water Pressure [ksf]	-3.99081e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.0048043	0.00227044
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 23 = 730 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00998
Total Consolidation Settlement [in]	0	6.39809
Virgin Consolidation Settlement [in]	0	6.11352
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661782
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307346	0.282133
Pore Water Pressure [ksf]	-3.99155e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00436792	0.00212855
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 24 = 1095 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00998
Total Consolidation Settlement [in]	0	6.39809
Virgin Consolidation Settlement [in]	0	6.11352
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661782
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307346	0.282133
Pore Water Pressure [ksf]	-3.99155e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00257931	0.00428378
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 25 = 1460 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00998
Total Consolidation Settlement [in]	0	6.39809
Virgin Consolidation Settlement [in]	0	6.11352
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661782
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307346	0.282133
Pore Water Pressure [ksf]	-3.99155e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00424207	0.00211264
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 26 = 1825 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00997
Total Consolidation Settlement [in]	0	6.39808
Virgin Consolidation Settlement [in]	0	6.11352
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661782
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307346	0.282133
Pore Water Pressure [ksf]	-3.99155e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00210818	0.00422129
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 27 = 2920 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00997
Total Consolidation Settlement [in]	0	6.39808
Virgin Consolidation Settlement [in]	0	6.11352
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661782
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307346	0.282133
Pore Water Pressure [ksf]	-3.99155e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.0041866	0.0025737
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 28 = 3650 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00998
Total Consolidation Settlement [in]	0	6.39809
Virgin Consolidation Settlement [in]	0	6.11352
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661782
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307346	0.282133
Pore Water Pressure [ksf]	-3.99155e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00418063	0.00209615
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Stage: Stage 29 = 5475 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00997
Total Consolidation Settlement [in]	0	6.39808
Virgin Consolidation Settlement [in]	0	6.11352
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661782
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307346	0.282133
Pore Water Pressure [ksf]	-3.99155e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00209073	0.00417003
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Y33_3591_Culv.s3z S&ME 3/6/2019, 3:30:56 PM

Stage: Stage 30 = 7300 d

Data Type	Minimum	Maximum
Total Settlement [in]	0	7.00998
Total Consolidation Settlement [in]	0	6.39809
Virgin Consolidation Settlement [in]	0	6.11352
Recompression Consolidation Settlement [in]	0	0.317081
Immediate Settlement [in]	0	0.714042
Secondary Settlement [in]	0	0
Loading Stress ZZ [ksf]	0.00232683	1.18714
Loading Stress XX [ksf]	-0.0768665	0.877028
Loading Stress YY [ksf]	0.0636749	1.35085
Effective Stress ZZ [ksf]	0.00232683	2.15474
Effective Stress XX [ksf]	-0.0762268	2.76492
Effective Stress YY [ksf]	0.0663101	2.85857
Total Stress ZZ [ksf]	0.00232683	4.00084
Total Stress XX [ksf]	-0.0762268	4.61102
Total Stress YY [ksf]	0.0665101	4.71811
Modulus of Subgrade Reaction (Total) [ksf/ft]	0	0.661782
Modulus of Subgrade Reaction (Immediate) [ksf/ft]	0	38.7603
Modulus of Subgrade Reaction (Consolidation) [ksf/ft]	0	0.777375
Total Strain	-0.000307346	0.282133
Pore Water Pressure [ksf]	-3.99155e-005	1.86576
Excess Pore Water Pressure [ksf]	-0.00257012	0.00416455
Degree of Consolidation [%]	0	100
Pre-consolidation Stress [ksf]	0.00278597	2.21208
Over-consolidation Ratio	1	3.05834
Void Ratio	0	0.841566
Permeability [ft/d]	0	0.785962
Coefficient of Consolidation [ft^2/d]	0	0.4
Hydroconsolidation Settlement [in]	0	0
Average Degree of Consolidation [%]	0	0
Undrained Shear Strength	0	0.0691753

Loads

1. Rectangular Load: "Traffic Load"

Length 30 ft
Width 300 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 9000 ft²
Load 0.24 ksf
Depth -177.5 ft
Installation Stage 8 = 7 d

Coordinates

Y [ft]
-150
-150
150
150

Y33_3591_Culv.s3z S&ME 3/6/2019, 3:30:56 PM

2. Rectangular Load: "Equiv. Culvert Load"

Length 62.5 ft
Width 14 ft
Rotation angle 0 degrees
Load Type Flexible
Area of Load 875 ft²
Load 0.774 ksf
Depth -163.5 ft
Installation Stage 2 = 1 d

Coordinates

X [ft]	Y [ft]
-31.25	-7
31.25	-7
31.25	7
-31.25	7

Embankments

1. Embankment: "Embankment Load 1"

Label Embankment Load 1
Center Line (0, 7) to (0, 149)
Near End Angle 90 degrees
Far End Angle 90 degrees

Number of Layers 5 Base Width 69.2

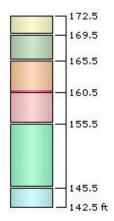
Layer	Stage	Left Bench Width (ft)	Left Angle (deg)	Height (ft)	Unit Weight (kips/ft ³)	Right Angle (deg)	Right Bench Width (ft)
1	Stage 3 = 2 d	0	17.17	1	0.12	17.17	0
2	Stage 4 = 3 d	0	17.17	1	0.12	17.17	0
3	Stage 5 = 4 d	0	17.17	1	0.12	17.17	0
4	Stage 6 = 5 d	0	17.17	1	0.12	17.17	0
5	Stage 7 = 6 d	0	17.17	1	0.12	17.17	0

2. Embankment: "Embankment Load 2"

Label Embankment Load 2 Center Line (0, -7) to (0, -149)

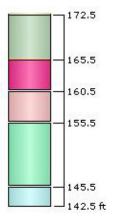
Near End Angle 90 degrees Far End Angle 90 degrees

Number of Layers 5 Base Width 69.2


Layer	Stage	Left Bench Width (ft)	Left Angle (deg)	Height (ft)	Unit Weight (kips/ft ³)	Right Angle (deg)	Right Bench Width (ft)
1	Stage 3 = 2 d	0	17.17	1	0.12	17.17	0
2	Stage 4 = 3 d	0	17.17	1	0.12	17.17	0
3	Stage 5 = 4 d	0	17.17	1	0.12	17.17	0
4	Stage 6 = 5 d	0	17.17	1	0.12	17.17	0
5	Stage 7 = 6 d	0	17.17	1	0.12	17.17	0

Soil Layers

Ground Surface Drained: Yes


C-1: (-26.235, 12.88)

Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	A - Alluv. A-2-6	3	-172.5	No
2	B - Alluv. A-6/A-7	4	-169.5	Yes
3	C1 - Alluv. A-1 (upstrm)	5	-165.5	No
4	C2 - Alluv. A-1 (dwnstrm)	0	-160.5	No
5	D1 - CP Med. Stiff A-7-5	5	-160.5	No
6	D - CP A-7-5	10	-155.5	No
7	E - CP A-6	3	-145.5	No

C-2: (26.711, 13.27)

Layer #	Туре	Thickness [ft]	Depth [ft]	Drained at Bottom
1	A - Alluv. A-2-6	0	-172.5	No
2	B - Alluv. A-6/A-7	7	-172.5	Yes
3	C1 - Alluv. A-1 (upstrm)	0	-165.5	No
4	C2 - Alluv. A-1 (dwnstrm)	5	-165.5	No
5	D1 - CP Med. Stiff A-7-5	5	-160.5	No
6	D - CP A-7-5	10	-155.5	No
7	E - CP A-6	3	-145.5	No

Soil Properties

Property	A - Alluv. A-2-6	B - Alluv. A-6/A-7	C1 - Alluv. A-1 (upstrm)	D1 - CP Med. Stiff A-7-5
Color				
Unit Weight [kips/ft ³]	0.1	0.09	0.105	0.11
Saturated Unit Weight [kips/ft ³]	0.1	0.09	0.105	0.11
К0	1	1	1	1
Immediate Settlement	Enabled	Disabled	Enabled	Disabled
Es [ksf]	50	-	350	-
Esur [ksf]	50	-	350	-
Primary Consolidation	Disabled	Enabled	Disabled	Enabled
Material Type		Non-Linear		Non-Linear
Cc	-	0.24	-	0.15
Cr	-	0.024	-	0.015
e0	-	0.841	-	0.7805
OCR	-	1.2	-	3.2
Cv [ft ² /d]	-	0.1	-	0.2
Cvr [ft ² /d]	-	0.3	-	0.4
B-bar	-	1	-	1
Undrained Su A [kips/ft2]	0	0	0	0
Undrained Su S	0.2	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8	0.8
Piezo Line ID	1	1	1	1

Property	D - CP A-7-5	E - CP A-6	C2 - Alluv. A-1 (dwnstrm)
Color			
Unit Weight [kips/ft ³]	0.118	0.13	0.1
Saturated Unit Weight [kips/ft ³]	0.118	0.13	0.1
K0	1	1	1
Immediate Settlement	Enabled	Enabled	Enabled
Es [ksf]	650	770	100
Esur [ksf]	650	770	100
B-bar	-	-	-
Undrained Su A [kips/ft2]	0	0	0
Undrained Su S	0.2	0.2	0.2
Undrained Su m	0.8	0.8	0.8
Piezo Line ID	1	1	1

Groundwater

Groundwater method Piezometric Lines Water Unit Weight 0.0624 kips/ft³

Piezometric Line Entities

ID Depth (ft) 1 -172.4 ft

Query Lines

Line #	Query Line Name	Start Location	End Location	Horizontal Divisions	Vertical Divisions
1	Query Line 1	-31.25, 0	31.25, 0	10	Auto: 77
2	Query Line 2	-31.25, 7	31.25, 7	10	Auto: 77