Prepared for: North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Initial Abatement Action Report

Edith S. Smith Property Parcel # 15 1710 N. William Street Goldsboro, Wayne County, North Carolina US 117 Alternate from US 70 Bypass to Belfast TIP Number: U-2714 WBS Element: 38979.1.2

(dba Apex Engineering, PC) 10610 Metromont Parkway, Suite 206 Charlotte, North Carolina, 28269

Prepared by:

Apchul

Troy L. Holzschuh Assistant Project Manager

Reviewed by:

Yathleen a Rouse

Kathleen Roush, L.G. RSM Division Manager NC Geologist License No. 1353

ACCOUNTER STREET

September 13, 2018

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1
2.0	SITE I	NFORMATION	1
3.0	RELEA	ASE INFORMATION	2
4.0	FIELD	ACTIVITIES	2
	4.1	UST Removal and Soil Excavation Activities	3
	4.2	Soil Sampling	3
	4.3	Groundwater Sampling	4
5.0	ANAL	YTICAL RESULTS	4
	5.1	Soil Analytical Results	4
	5.2	Groundwater Analytical Results	4
6.0	CONC	LUSIONS	4
7.0	CERTI	FICATION	5

FIGURES

Figure 1	Site Location Map
Figure 2	Site Map with UST and Sample Locations
Figure 3	Site Map with Analytical Results
Figure 4	Site Map with Estimated Area of Groundwater Contamination

TABLES

Table 1	UVF Onsight Hydrocarbon Analytical Soil Data from March 2017
Table 2	Soil Analytical Results
Table 3	Groundwater Analytical Data

APPENDICES

- Appendix A UST Section Notification Forms
- Appendix BPhoto LogAppendix CManifests and Disposal Certificates
- Appendix D Excavation Log
- Appendix E Laboratory Analytical Report and Chain of Custody Records

1.0 INTRODUCTION

This Initial Abatement Action Report (IAAR) prepared by Apex Companies, LLC (Apex) (dba Apex Engineering, PC) presents the results of the underground storage tank (UST) and soil disposal activities conducted on behalf of the North Carolina Department of Transportation (NCDOT). The subject property is located at 1710 North William Street, Goldsboro, Wayne County, North Carolina and is identified as Parcel 15, Edith S. Smith Property (Site), within the NCDOT U-2714 design project. The property is located at the northeast corner of the intersection of North William Street and Woodrow Street in Goldsboro, Wayne County, North Carolina, as shown in the attached Site Location Map (**Figure 1**). The subject site will be affected by the widening of the US Highway 117 from US Highway 70 to Belfast Road.

According to information provided within the RFP and the July 2017 preliminary site assessment (PSA), the parcel located at 1710 North William Street had three probable underground storage tanks (USTs). An access agreement has been obtained to remove and dispose of the three USTs. Two of the USTs were located on the west side of the existing building within the right of way (ROW) and one UST was located on the east side of the existing building.

On April 23, 2018, NCDOT contracted Apex to perform UST closure activities within the proposed right-of-way (ROW) and/or easement due to the potential presence of contaminated soil at the site and on-going excavation and grading occurring within the area. The scope of work included the disposal of three unregulated USTs and its contents, as well as collecting soil samples from the sidewalls and base of the UST excavation. If groundwater was encountered in the excavation that showed signs of petroleum impact, temporary monitoring wells would be installed as needed to evaluate groundwater quality.

The following report summarizes the disposal of two unregulated 500-gallon capacity and one 300-gallon capacity USTs, its contents, and approximately 6.99 tons of petroleum contaminated soil. The report includes the field screening results, as well as field and laboratory analysis of confirmatory samples.

2.0 SITE INFORMATION

1 Site Identification

	Date of Report: September 5, 2018
	Facility I.D.: Not Applicable UST Incident Number: Not Applicable
	Site Name: Parcel 15 – Edith S. Smith Property
	Site Street Address: <u>1710 North William Street</u>
	City/Town: GoldsboroZip Code: 27530County: Wayne
	Description of Geographical Data Point: Not Applicable
	Location Method (GPS, topographical map, other): Google Maps
	Latitude (decimal degrees): <u>35.40328</u> Longitude (decimal degrees): <u>-77.9837</u>
_	
2.	Information about Contacts Associated with the Leaking UST System (Addresses must
	include street, city, state, zip code and mailing address, if different)
	UST/AST Owner: Edith S. Smith
	Address: PO Box 54, Mount Olive, NC 28365 Tel. Unknown
	UST/AST Operator: <u>Edith S. Smith</u>
	Address: 1710 N. William St., Goldsboro, NC 27530 Tel. Unknown

Property Owner: <u>Edith S. Smith</u>	_
Address: PO Box 54, Mount Olive, NC 28365	_Tel. <u>Unknown</u> _
Property Occupant:_Not Applicable	_
Consultant/Contractor: Apex Companies, LLC	
Address: 10610 Metromont Pkwy, Charlotte, NC 28	269_Tel:_ <u>704-799-6390</u>
Analytical Laboratory: <u>Pace Analytical</u>	_State Certification No40
Address: 9800 Kincey Ave, Huntersville, NC 28078	Tel: <u>_704-875-9092</u>

Information about Release
 Date Discovered: <u>6-12-2018</u>
 Estimated Quantity of Release: <u>Unknown</u>
 Cause of Release: <u>Unknown - UST was damaged prior to removal</u>
 Source of Release (e.g., Dispenser/Piping/UST): <u>UST</u>
 Sizes and Contents of Tanks or Other Containment from which the Release occurred: <u>Two 500-gallon and one 300-gallon capacity USTs</u>

3.0 RELEASE INFORMATION

During PSA activities for the U-2714 highway improvement project, three probable USTs were identified by Pyramid Geophysical Services (Pyramid) with electromagnetic (EM) induction and ground penetrating radar (GPR) surveys. The contents of the USTs were unknown prior to the onset of work. The first two probable USTs identified during the PSA activities were located in the northwestern portion of the parcel. The third probable UST was located in the northeastern portion of the parcel. When removed, it was discovered that the first two USTs (UST-1 and UST-2) located near the northwestern portion of the parcel were rusted and pitted with small holes present at the base of the UST. The third probable UST was actually a buried 55-gallon drum filled with miscellaneous debris. However, Apex subsequently identified a third vent line and traced the vent line back to a previously unidentified UST (UST-3). UST-3 was located adjacent to USTs 1 and 2. UST-3 was rusted and pitted with small holes at the base of the UST. UST locations are presented in **Figure 2**.

Apex made the required notifications to the NCDEQ UST Section. A 24-Hour Release Notification (UST-61 Form) was submitted to the UST Section once the release was identified. Additionally, a Site Investigation Report for Permanent Closure or Change-in-Service of Unregistered UST (UST-2B) form for the closure of the UST is included in **Appendix A**.

4.0 FIELD ACTIVITIES

Prior to commencing field activities at the Site, several tasks were accomplished in preparation for the UST Closure. A Health and Safety Plan (HASP) was prepared to include the Site-specific health and safety information necessary for the field activities. North Carolina-One Call was contacted on June 6, 2018 to report the proposed excavation activities and notify affected utilities. Apex subcontracted ESP Associates (ESP) of Greensboro, North Carolina to locate private subsurface utilities. Evo Corporation (Evo) of Winston Salem, North Carolina was retained by Apex to perform the excavation and removal of the USTs and its contents and Carolina Soil Investigations, LLC (CSI) of Olin, North Carolina was retained by Apex to install and abandon two temporary monitoring wells. Apex provided oversight and direction during UST closure activities, which were performed on June 12th and 13th of 2018 as well as oversight

and direction for the temporary well installation and abandonment which took place on June 18, 2018. A Photolog of the site activities is included as **Appendix B**.

4.1 UST Removal and Soil Excavation Activities

UST closure activities commenced with a vacuum truck extracting the contents of the UST. A total of 440 gallons of a mixture of water, gasoline and #2 fuel oil were evacuated from the USTs. Dry ice was used to inert each tank. The lower explosive limit (LEL) within the tank was then checked with a Four Gas Meter and a Photoionizing detector (PID) to verify safe removal. The tanks were then completely uncovered and removed from the ground. Once uncovered the capacities and overall condition of the USTs were confirmed. Two 500-gallon capacity USTs and one 300-gallon capacity UST were removed. Each UST was slightly rusted and pitted, having small diameter holes located near the bottom.

Impacted soils were not observed in the tank bed above the smear zone. However, the groundwater was encountered within the tank beds at five to 5.5 feet below ground surface (bgs). Sidewall samples were collected above the water table from four sidewalls of each excavation. A sheen was noted in the groundwater located in the base of each excavation. Therefore, Apex personnel directed Evo to excavate soils located at and below the USTs until the impacted soil was removed. The actual quantity of soil removed for disposal was 6.99 tons or approximately 4.66 cubic yards. The soils were transported to the Evo permitted facility located at 1703 Vargrave Street, in Winston-Salem, NC for treatment in accordance with local, state, and federal requirements.

Groundwater was encountered at approximately five to 5.5 feet bgs within the excavation. Bedrock was not encountered within the excavation. The final excavation was rectangular and irregular in depth. The maximum depth of the excavation was six feet bgs. Excavated soil consisted of tan sandy silt to a yellow/orange marbled clayey silt. The UST location and excavation layout are shown on **Figure 2**.

The USTs were transported to OmniSource Southeast in Winston-Salem, North Carolina for proper disposal and recycling. Certificates of disposal are included in **Appendix C** for the USTs and their evacuated fluids. An excavation log is presented in **Appendix D**. The excavation was subsequently backfilled with a foot of 57 stone, followed by native material which was placed in the excavation in 12-inch lifts and compacted by a walk behind remote compactor and topped with ABC stone.

4.2 Soil Sampling

Excavation limits were determined through visual, olfactory, and field screening techniques with a photoionization detector/flame ionization detector (PID/FID). PID/FID readings are presented in **Table 1.** Soil sampling activities were conducted in accordance with the UST Section Guidance Document entitled Guidelines for Site Checks, Tank Closure, and Initial Abatement for UST Releases (December 2013). Because of the shallow water table, the UST samples were collected from directly above the water table at approximately 4.5 feet bgs. Sample locations are shown on **Figure 2**.

Soil samples were analyzed for the presence of total petroleum hydrocarbons (TPH) as diesel range organics (DRO) and gasoline range organics (GRO) in accordance with EPA Method 8015M.

4.3 Groundwater Sampling

Apex personnel returned to the site June 18, 2018 to install a temporary monitoring well in each of the excavation areas. TW-1 was installed in the center of the UST-1 and UST-2 excavation and TW-2 was installed in the center of the UST-3 excavation. Samples were analyzed for volatile organic compounds (VOCs) by US EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and volatile petroleum hydrocarbons (VPH) and extractable petroleum hydrocarbons (EPH) by the Massachusetts Department of Environmental Protection Methods (MADEP).

5.0 ANALYTICAL RESULTS

5.1 Soil Analytical Results

Soil sample analytical results are presented in **Table 2**, and confirmation soil sample locations and detections are shown in **Figure 3**. **Appendix E** includes a copy of the complete laboratory analytical results for soil samples, which were analyzed for TPH-GRO and TPH-DRO. None of the sidewall samples analyzed from the two tank pits contained any TPH constituents at concentrations at or exceeding laboratory practical quantitation limits.

5.2 Groundwater Analytical Results

Groundwater was encountered at 6.13 feet bgs in TW-1 and at 6.28 feet bgs in TW-2. Groundwater obtained from TW-1 and TW-2 contained VOCs, SVOCs, VPH and EPH compounds at concentrations exceeding North Carolina 2L Groundwater Quality Standards. Concentrations of benzene and 1-methylnaphthalene exceeded their respective gross contaminant levels (GCLs) in TW-1. Groundwater sample analytical results are presented in **Appendix E** and **Table 3**.

In accordance with the NCDOT approved scope of work, Apex has provided an estimated area of groundwater impact for the purposes of construction activities. The estimated area of groundwater impact in the western portion of parcel 15 is approximately 783 square feet in size and is shown on **Figure 4**. Impacted groundwater will likely be encountered during construction activities. The horizontal extent of groundwater shown on Figure 4 is an estimate only, and not to be used in lieu of additional assessment activities required by NCDEQ or the responsible party for site assessment, remedial, or closure requirements.

6.0 CONCLUSIONS

Apex has completed contracted activities for the removal of the three unregulated USTs at the property located at 1710 N. William Street, Goldsboro, Wayne County, North Carolina. Field activities included the removal and off-site disposal of 440 gallons of a mixture of water, gasoline and #2 fuel oil; the excavation and proper disposal of one 300-gallon capacity UST and two 500-gallon capacity USTs; and the excavation and proper disposal of 6.99 tons of petroleum impacted soils. Soil samples collected from the excavation sidewalls did not contain TPH-DRO or TPH-GRO at concentrations exceeding laboratory practical quantitation limits.

Groundwater was present in each of the two tank pits. A petroleum sheen could be observed in each tank pit. Therefore, Apex installed two temporary groundwater monitoring wells to evaluate

the groundwater impact. Groundwater samples contained petroleum related compounds at concentrations exceeding North Carolina 2L Standards and UST Section GCLs.

The subject parcel is designed as a fill area for the NCDOT U-2714 design project. Drainage features will be installed in the southcentral portion of Parcel 15. Groundwater contamination was noted in the northwestern portion of the parcel and based on surface topography, groundwater appears to flow from north to south. Therefore, the drainage features may be in the area of contamination. Groundwater could be encountered as shallow as five feet bgs. NCDOT should be prepared to dewater and containerize contaminated groundwater if encountered during construction activities.

7.0 CERTIFICATION

I, Kathleen Roush, L.G, for Apex Companies, LLC., do certify that the information contained in this report is correct and accurate to the best of my knowledge.

TABLES

Table 1 PID Readings U-2714, Parcel 15 Edith S. Smith Property Goldsboro, North Carolina

Date	PID Location	PID Reading (PPM)	FID Reading (PPM)
6/12/2018	Comp 1 (1')	0.0	0.0
6/12/2018	Comp 2 (1')	1.1	0.0
6/12/2018	Comp 3 (1')	0.0	0.0
6/12/2018	Comp 4 (1')	0.0	0.0
6/12/2018	Comp 5 (2')	1.8	0.0
6/12/2018	Comp 6 (2')	3.2	0.0
6/12/2018	Comp 7 (2')	2.3	0.0
6/12/2018	Comp 8 (2')	3.1	0.0
6/12/2018	Inside Drum	0.0	0.0
6/12/2018	UST 1 and 2 SW-1 (4.5)	4.9	0.0
6/12/2018	UST 1 and 2 SW-2 (4.5)	6.7	0.0
6/12/2018	UST 1 and 2 SW-3 (4.5)	8.1	0.0
6/12/2018	UST 1 and 2 SW-4 (4.5)	7.2	0.0
6/12/2018	UST 1 floor	202.0	25.6
6/12/2018	UST 2 floor	58.0	16.9
6/12/2018	UST 3 floor	37.3	10.2
6/12/2018	UST-3 SW-1 (4.5)	3.3	0.0
6/12/2018	UST-3 SW-2 (4.5)	1.9	0.0
6/12/2018	UST-3 SW-3 (4.5)	4.2	0.0
6/12/2018	UST-3 SW-4 (4.5)	1.7	0.0

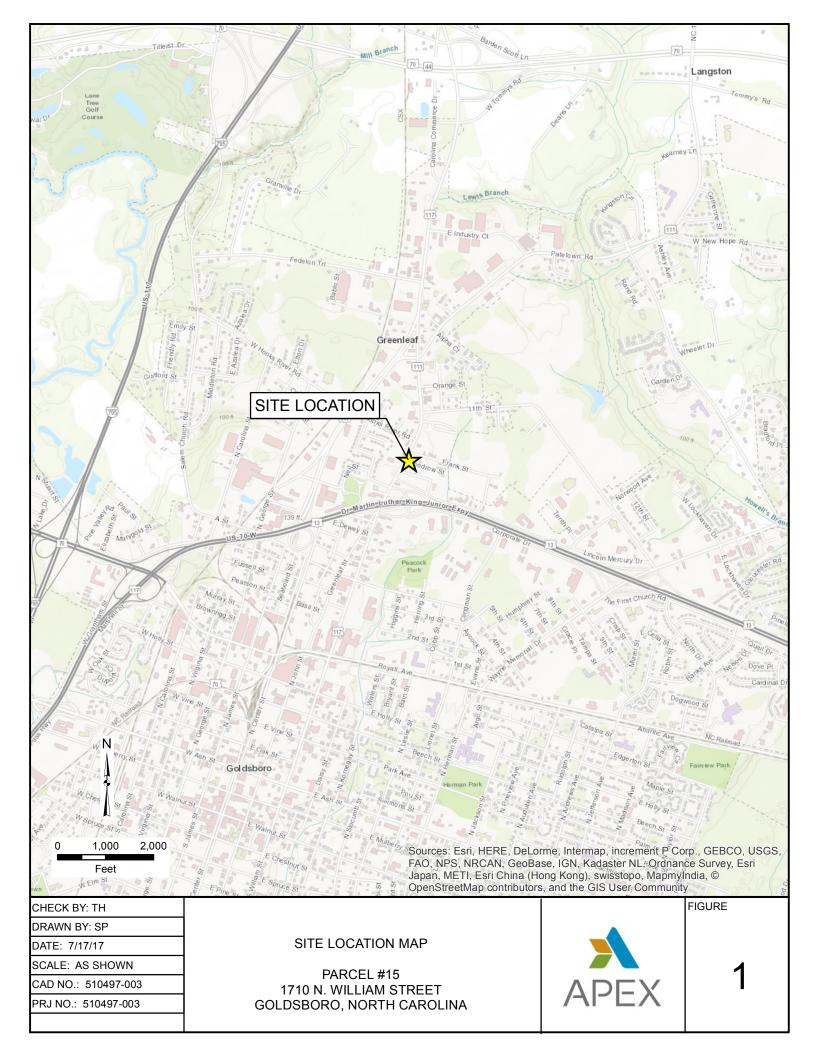
*Note:

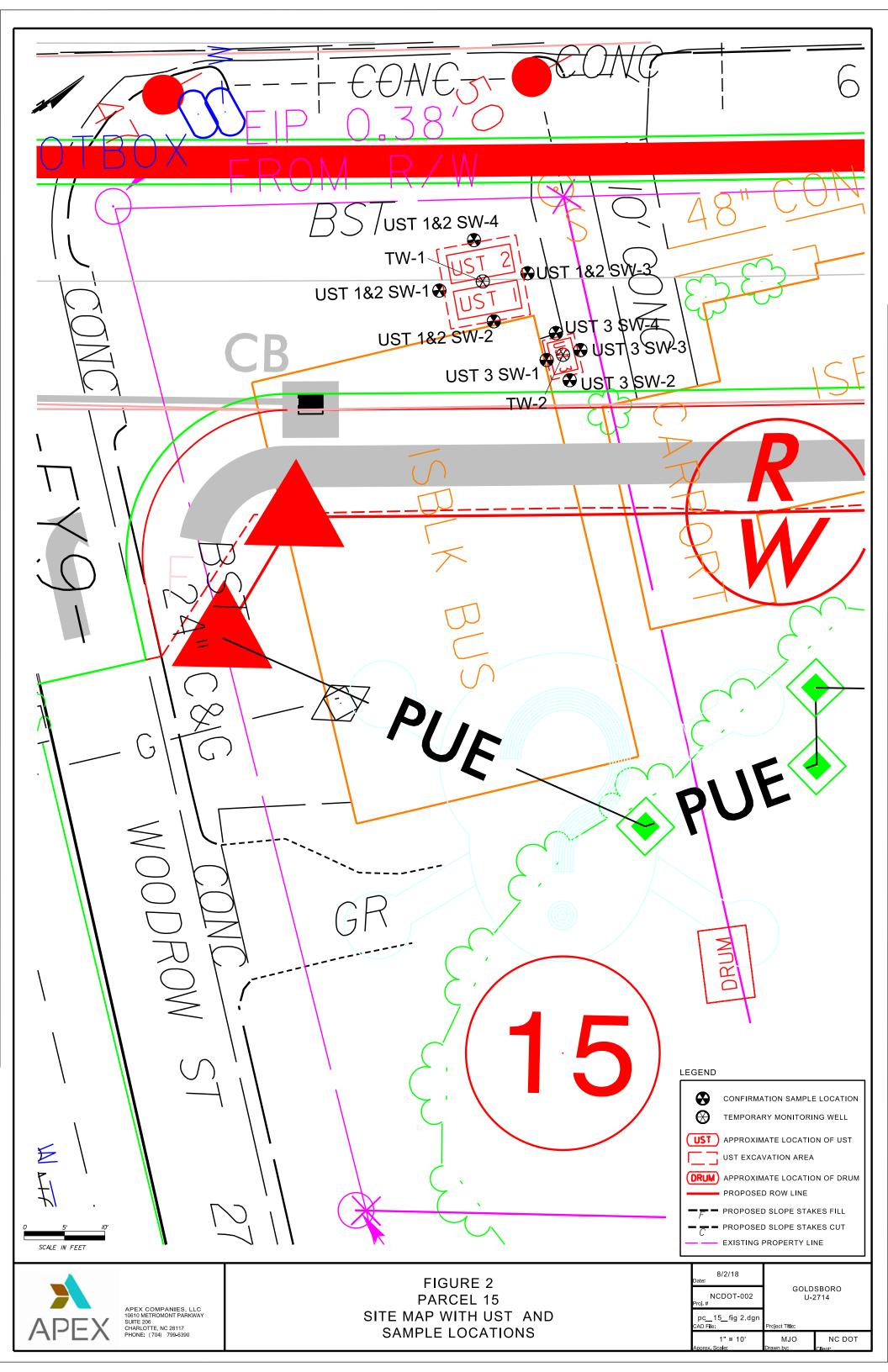
PID = Photoionization Detector

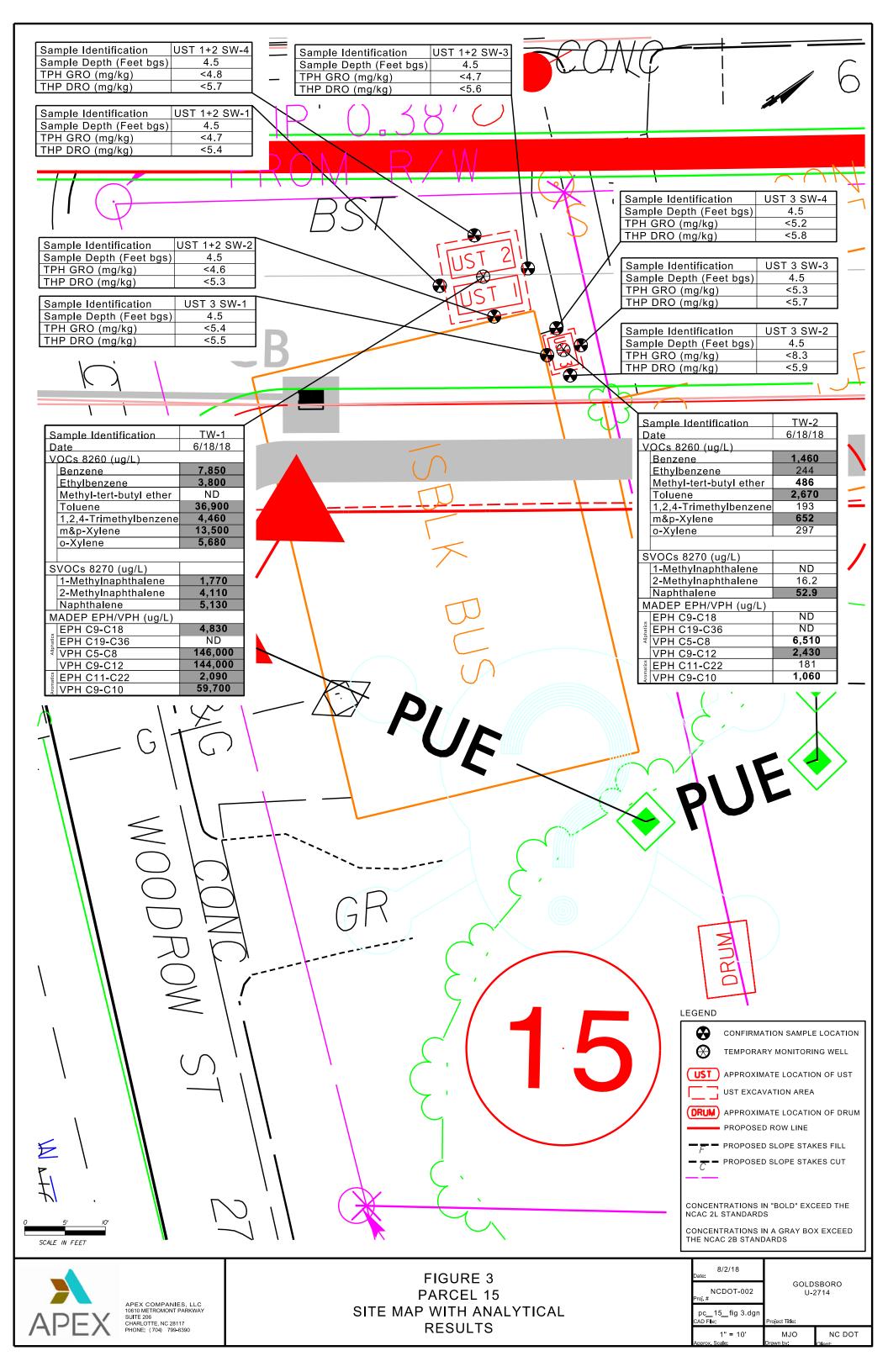
PPM = Parts Per Million

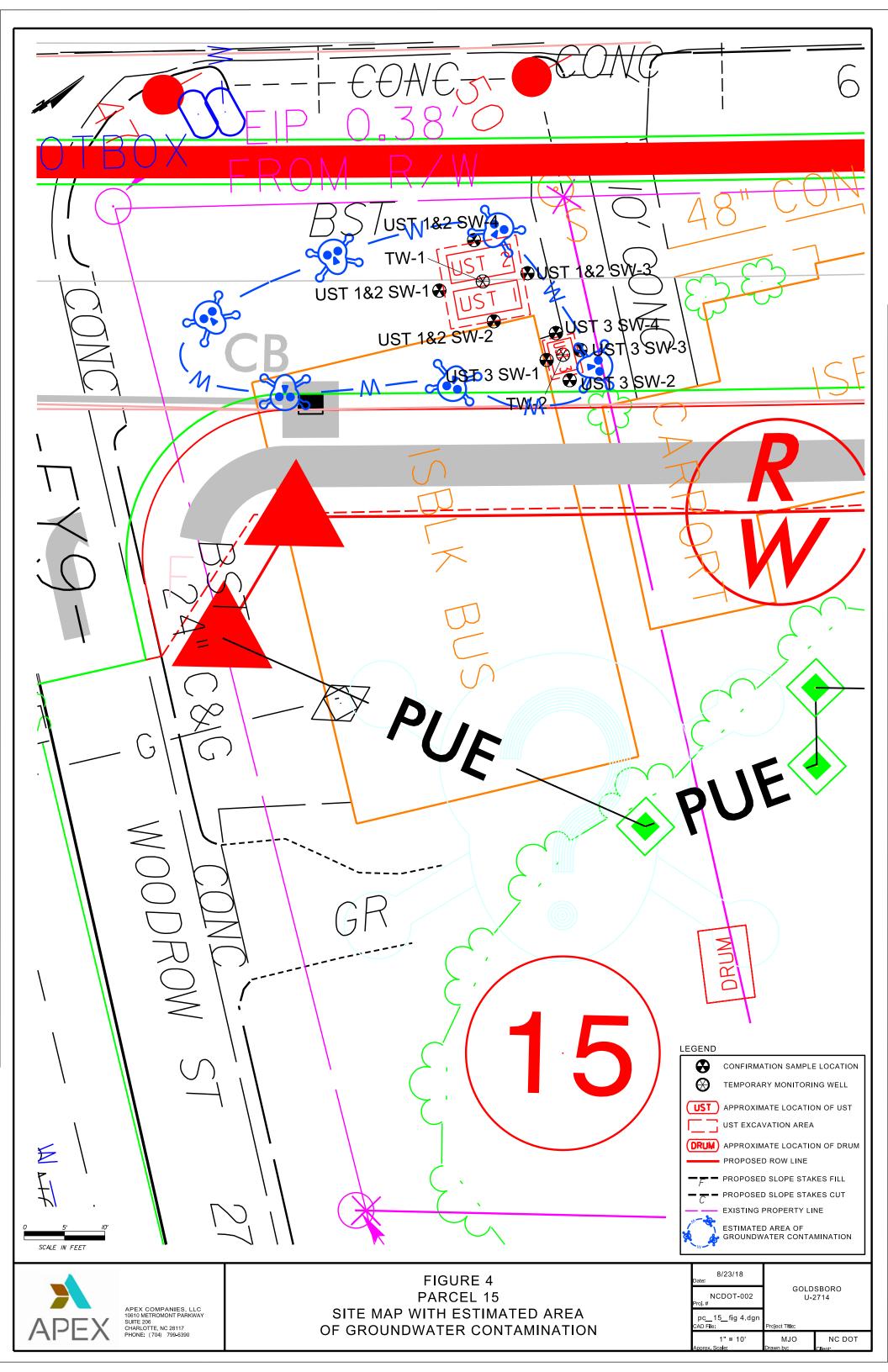
Table 2 Soil Analytical Results U-2714, Parcel 62, Edith Smith Property Goldsboro, Wayne County, North Carolina

Sample ID Number	Sample Date	Sample Depth (ft bgs)	GRO (mg/kg) (C5-C10)	DRO (mg/kg) (C10-C35)					
SOIL									
NCDEQ Action Level in	mg/kg		50	100					
UST 1+2 SW-1 (4.5')	6/12/2018	4.5'	<4.7	<5.4					
UST 1+2 SW-2 (4.5')	6/12/2018	4.5'	<4.6	<5.3					
UST 1+2 SW-3 (4.5')	6/12/2018	4.5'	<4.7	<5.6					
UST 1+2 SW-4 (4.5')	6/12/2018	4.5'	<4.8	<5.7					
UST 3 SW-1 (4.5')	6/12/2018	4.5'	<5.4	<5.5					
UST 3 SW-2 (4.5')	6/12/2018	4.5'	<8.3	<5.9					
UST 3 SW-3 (4.5')	6/12/2018	4.5'	<5.3	<5.7					
UST 3 SW-4 (4.5')	6/12/2018	4.5'	<5.2	<5.8					
NOTES: (mg/kg) = Milligrams per kilogram GRO = Gasoline Range Organics DRO = Diesel Range Organics ft bgs = feet below ground surface									


TPH - GRO values in exceedance of NCDEQ Action Level of 50 mg/kg are shown in Bold TPH - DRO values in exceedance of NCDEQ Action Level of 100 mg/kg are shown in Bold


Table 3Groundwater Analtyical DataU2714, Parcel 15, Edith S. Smith PropertyGoldsboro, Wayne County, North Carolina


Sample ID Sample Number Date		Aliphatic (C09-C18)	Aliphatic (C19-C36)	Aromatic (C11-C22)	Aliphatic (C05-C08)	Aliphatic (C09-C12)	Aromatic (C09-C10)	
			Ground	water				
Gross Contamir for Groun		NE	NE	NE	NE	NE	NE	
15A NCAC Groundwater µg/l	Standards	700	10,000	200	400	700	200	
TW-1	6/18/2018	4,830	ND	2,090	146,000	144,000	59,700	
TW-2	6/18/2018	ND	ND	181	6,510	2,430	1,060	
NOTES: µgl micrograms per liter MADEP EPH/VPH - Petroleum Hydrocarbon Fractions J - Estimated concentration above adjusted method detection limit and below adjusted reporting limit ND - Below laboratory practical quantitative limits NCAC - North Carolina Administrative Code Concentrations in BOLD exceed the NCAC 2L Standards Concentrations in Concentrations in exceed the Gross Contamination Levels for Groundwater * - Value based on limited available data								


FIGURES

APPENDIX A UST SECTION NOTIFICATION FORMS

UST-61	24 Hour R	elease	and UST Le	ak Rep	ontiln	g Form.		
For Releases This form s an underg	hould be completed an round storage tank (U	nd submitted to IST) system. Th	the UST Section's region is form is required to be s suspected release	al office follow submitted with	ring a known in 24 hours (or suspected release from of discovery of a known or		
(DWM USE ONL ¹ Incident # Risk (H,I,L, Received On Received E Reported by (<i>circle one</i>): Phone, Fa Region	Ú) Iy	Confirmed GV Confirmed Soi	ntamination? (Y/N) V Contamination? (Y/N) _ Il Contamination ?(Y/N) n?(Y/N) If Yes, Sta		Facility ID Date Leak Comm/Nor Reg/Non-r	Discovered		
		NCIDENT	DESCRIPTION			,		
Incident Name: Paccel	15 Edit	h 5.50	nith Proper	ty (For	mer Ge	s Station?/Flower		
	V man 21	Zip Code: 7	Regional	Office (circle o	ne): Ashevi	le, Mooresville, Fayetteville, /inston-Salem		
		de (decimal degrees	$\frac{1}{2}$	201	C	btained by:		
Latitude (decimal degrees): <u>75,40</u> Briefly describe suspected or confirm	ned release: (including	y but not limited	to: nature of release, date	of release, a	mount 🗌	GPS		
of release, amount of free product p			$\sum \alpha$	· • • · · ·	[Topographic map		
Removed 3 unregulated	<u>US IS (500g 5</u>	$\frac{OO_{g}}{r}$	1 Tran Kapaser	<u>+ IVC(D)</u>	_KDW_	GIS Address matching		
Shallow Water Table	collected Soil S	<u>amples ab</u>	<u>Sve Water Table~</u>	Llean Ne	SULLS -	Other Congle Maps		
Back Filled Excavation w	/ Clean till,	490 gallon	ot Non hazarda	us conte ii		Unknown		
water was ever nated.	tion Tanks.	Went Back	to install & te	emp wells	tor			
water samples I in ear	ch excavation	n, Water	Samples were	contamin	ated, 2	Describe location: Orner of N. William + & E. Woodcow St		
	HOW RELEASE WAS DISCOVERED (Release Code) (NE Corner)							
Release Detection Equipment o During UST Closure/Removal Property Transfer	r Methods	Visual/Od Water in 1 Water Su			🔲 🛄 Surfac	dwater Contamination e Water Contamination (specify)		
	SOL	JRCE OF	CONTAMINATIO	N				
Source of Release (Check one to indicate primary source)	Cause of Ra (Check one to india cau		<u>Type of Release</u> (Check one)	E (Check	one to indic	ype Released ate primary product type leased)		
Tank	🖵 Spill		Petroleum		ine/ Diesel/	Diesel/Veg. Oil		
			Non-Petroleum	Keros		Blend Vegetable Oil 100%		
Dispenser	Corrosion		🗅 Both	I —	Petroleum	E10 - E20		
Submersible Turbine Pump	Physical or Mec Damage	hanical	Location	D Metals		🖸 E21 – E84		
Delivery Problem	Install Problem		(Check one)		Inorganics	E85 – E99		
Other	Cther		G Facility	U Other	Organics	Ethanol 100% E01 – E09		
Definitions presented on reverse	Unknown Definitions presented	d on reverse	Contraction Residence					
Ownership 1. Municipal 2. Military 3. Unkr				<u>1.</u>				
Operation Type 1. Public Service 2. Agricultural 3. Residential 4. Education/Relig. 5. Industrial 6. Commercial 7. Mining								
UST Form 61 (02/08)						Page 1 of 2		

IMPACT ON DRINKING WATER SUPPLIES							
Water Supply Wells Affected? 1. Yes	2. No 3. Unknown						
Number of Water Supply Wells Affected							
Water Supply Wells Contaminated: (Include Us	ers Names, Addresses and Phon	e Numbers. Attach additional sheet	t if necessary)				
1. 2. NA 3.							
	UST SYSTEM	OWNER					
UST Owner/Company Edith 5.2	Smith (Forme	er Gas Station/FI	ower Creation)				
Point of Contact		Address PO BOX	54				
City Mount Dlive	State NC	Zip Code 28365	Telephone Number				
Edith S.	UST SYSTEM O	PERATOR					
UST Operator/Company		Address Box	54				
City Mount Olive	State NC	Zip Code 28365	Telephone Number				
LAN	DOWNER AT LOCATIO	ON OF UST INCIDENT					
Landowner Edith 55	Śmith	Address PO Box	54				
Edith 55 City Mount Olive	State NL	Zip Code 28365	Telephone Number				
Draw Sketch of Area (showing two major road intersections) or Attach Map							
Person Reporting Incident	Company Apex Com	anies.	Telephone Number 704 7996392				
<u>/15</u>	Address 10610 Metro	mont Pkury	Date 8-1-18				
UST Form 61 (02/08)		(Page 2 of 2				

Definitions of Sources

Tank: means the tank that stores the product and is part of the underground storage tank system

Piping: means the piping and connectors running from the tank or submersible turbine pump to the dispenser or other end-use equipment (Vent, vapor recovery, or fill lines are excluded.)

Dispenser: includes the dispenser and the equipment used to connect the dispenser to the piping (e.g., a release from a suction pump or from components located above the shear valve)

Submersible Turbine Pump (STP) Area includes the submersible turbine pump head (typically located in the tank sump), the line leak detector, and the piping that connects the submersible turbine pump to the tank

Delivery Problem: identifies releases that occurred during product delivery to the tank. (Typical causes associated with this source are spills and overfills.) Other: serves as the option to use when the release source is known but does not fit into one of the preceding categories (e.g., for releases from vent lines, vapor

recovery lines, and fill lines) Unknown: identifies releases for which the source has not been determined

Definitions of Causes

Spill: use this cause when a spill occurs (e.g., when the delivery hose is disconnected from the tank fill pipe or when the nozzle is removed from the dispenser) Overfill: use when an overfill occurs (e.g., overfills may occur from the fill pipe at the tank or when the nozzle fails to shut off at the dispenser)

Physical or Mechanical Damage: use for all types of physical or mechanical damage, except corrosion (e.g., puncture of tank or piping, loose fittings, broken components, and components that have changed dimension)

Corrosion: use when a metal tank, piping, or other component has a release due to corrosion (e.g., for steel, corrosion takes the form of rust)

Installation Problem: use when the problem is determined to have occurred specifically because the UST system was not installed properly

Other: use this option when the cause is known but does not fit into one of the preceding categories (e.g., putting regulated substances into monitoring wells) Unknown: use when the cause has not been determined

	ST-28	B	Site Inv	vestigation		or Perm Service		losure or (Change-in-
							RED US	Γ	Envo
Return con	npleted form					T T			TE USE ONLY:
	-	1646		/ UST SECTION /ICE CENTER 7699-1646	4	Fá	acility ID #		
		ATTI	N: REGISTR	ATION & PER	WITTING	D	ate Receive	d	
phone	(919) 7 07-81	71 fax (91	9) 715- 11 17	http://www.wa	astenotnc.org/				
	TIONS (RE							· · · · · · · · · · · · · · · · · · ·	
Clos	ure and initia	al Respons	e and Abate	ervice must be c ement. The gui and-storage-tan	idelines can b	accordanc e obtaine	e with the la d at <u>http://d</u>	eg.nc.gov/abou	the Guidelines for Site Che tt/divisions/waste-managem
				s of this form.					
II, III,	, ĪV, and VI.		-					ce to a non-regi	ulated substance, complete
		-	-	ems, attach add					
	Registered L SISTERED U	_	-	o unpaid fees a	and late pena	ities.			
	SHIP OF T		ini oor-za.				ATION OF	TANKS	
			al, Public Ag	gency, or Other	Entity)		Name or Co		+11/101
E2 Street Addr	<u>th 5.</u>	Smith Boy [4			Facility	ID # (If knov	vin) N/A	W LOT (tormerly creatie
City Mo	unt l	Dive		ounty Way	inc	Street A	Address /	710 N	William St.
State	21	Circl	4	ip Code 20	1215	City /	Saldch	ACA	County Zip Co
Phone Num	Der	Caron	na			Phone	Vumber	$\mathcal{O}(\mathcal{O})$	~~
μ	ACT PERS	۸				И	nknow	N	
		ONNEL			· · · · · ·		Job Title:		Phone #:
Contact for	Facility.	46 5	Sm 4h				Propert	to Damo	1 Daknown
Closure Co	ntractor Nam		Closure Cor	ntractor Compar	ıy:		Address: /	703 Vargra	Phone #
<u>lony</u>	Nisher nsultant Nam	-	Evo	Sultant Compai	ation		Winstow Address:	Jaken NC	<u> </u>
· · · · · ·	Holzschi	4	Anex	(BM Man)	יץ. הביג		ICGIN A	latomant 1	1 WW 704-799.
1			- J~- `				Charlott	ENC 2820	1
	IFORMATI EGISTERED			TERED UST S	SYSTEMS				V. EXCAVATION CO
ĸ	EGIƏTEREL	USIS USE	FORT US 1-2	2 A .		n janat Najara			
Tank ID	Size in	Last	Last	Permanent	Method of			Change-in-	
N	Galions	Contents	Use Date	Close Date	Indicate RE materia	MOVED of as		Service Date	Water in excavation Free product
No.	1								
NO.					cor	icrete/ sar			Yes No Yes No
NO.	500			1-17-10	Cor Doma	icrete/ sar			
NO.		unknow	8		Reno	ved			
NO.		Kuknown	unknow	6-12-12	Aemos Aemos	ved			
NO.		Kuknown	8	6-12-12	Remo Remo Remo	ved Ved Ved	. <u></u>		
NO.		Kuknown	unknow	6-12-12	Remo Remo Remo	ved Ved Ved			
No.		Kuknown	unknow	6-12-12	Remo Remo Remo	ved led			
No.		Kuknown	unknow	6-12-12	Remo Remo Remo	ved Ved Ved			
1		unknow	unknow	6-12-12	Remo Remo Remo	ved ved led			
/ 2 3 VI. CERTI	SOO 300 IFICATION der penalty o ny inquiry of	Kukmenun Lun Knower	Anknow	6-12-18 6-12-18	Remon Remon	ved ved led	information	submitted in this	
/ 2 3 VI. CERTI I certify und based on n and completion	IFICATION der penalty of ny inquiry of tete.	Kuknewo Kuknewo f law that I those indivi	Anknow 444 444 444 446 400 400 400 400	6-12-18 6-12-18	Remon Remon	ved ved led	information	submitted in this	Image: Control of the second state
/ 2 3 VI. CERTI I certify und based on n and completion	IFICATION der penalty of ny inquiry of tete.	Kukucuun Kukucuun f law that I those indivi	And Marsure A 44 Known have person duals immed	ally examined a diately responsil	Ag mon Remon nd am familia ble for obtainir resentative	ved ved led	information	submitted in this	Image: Control of the second state
/ 2 3 VI. CERTI I certify und based on n and completion	IFICATION der penalty of ny inquiry of tete.	Kuknewo Kuknewo f law that I those indivi	And Marsure A 44 Known have person duals immed	6-12-18 6-12-18 ally examined a diately responsi	Ag mon Remon nd am familia ble for obtainir resentative	ved ved led	information	elieve that the s	Image: Control of the second state

APPENDIX B PHOTO LOG

Overview of site prior to UST tank removal and closure activities.

Photo 2

View of asphalt removed and top of the tank exposed.

10610 Metromont Pkwy Suite 206 Charlotte, NC 28269

WBS

DATE

38979.1.2 PROCESSED TLH June 2018

During closure activities a buried 55 gallon drum was discovered and left in place.

Photo 4

Photo of EVO vacuum truck operators recovering vapors and liquid from the UST, prior to removal.

10610 Metromont Pkwy Suite 206 Charlotte, NC 28269

WBS 38979.1.2 PROCESSED TLH DATE June 2018

Photo of EVO personnel employing dry ice to inert the UST, prior to removal.

Photo 6

Photo of tank condition after extraction from the UST basin.

10610 Metromont Pkwy Suite 206 Charlotte, NC 28269

WBS 38979.1.2 PROCESSED TLH DATE June 2018

Photo of groundwater infiltration into the excavation after the UST was removed. 57 stone was placed in the excavation to aid in soil compaction below the groundwater.


Photo 8

The UST excavation was filled with soil and compacted with a remote control compaction roller in one foot lifts.

10610 Metromont Pkwy Suite 206 Charlotte, NC 28269

WBS 38979.1.2 PROCESSED TLH DATE June 2018

Crush in run stone was placed on top of the soil in the excavation and graded to land surface.

Photo 10

View of the site at completion of UST removal activities.

10610 Metromont Pkwy Suite 206 Charlotte, NC 28269

WBS 38979.1.2 PROCESSED TLH DATE June 2018

Due to the presence of shallow groundwater CSI was contracted to install 2 temporary monitoring wells to collect closure samples from each UST bed. Photo shows temporary monitoring well in the UST 1 and UST 2 tank bed.

Photo 12

Photo of second monitoring well location in the UST-3 tank bed

10610 Metromont Pkwy Suite 206 Charlotte, NC 28269

WBS 38979.1.2 PROCESSED TLH DATE June 2018

APPENDIX C MANIFESTS AND DISPOSAL CERTIFICATES

1703 Vargrave Street Winston-Salem, NC 27107 ph 336-725-5844 fax 336-725-6244

TANK DISPOSAL CERTIFICATE

Tank Owner:

NCDOT

Site Address:

1710 N. William St. Goldsboro, NC

Description of Tanks:

Tank Number	Size of Tank	<u>Contents</u>
1	500 Gallons	Gasoline
2	500 Gallons	Gasoline
3	300 Gallons	Kerosene

Transporter: Evo Corporation

EC Project #: 061814

Disposal Certification:

Evo Corporation does hereby certify that the above named storage tanks were transported to Triad Metal Recycling in Yadkinville, NC for proper disposal and recycling.

N. Ham um

Signature

Thomas W. Hammett CEO Evo Corporation

www.evocorp.net THE NEXT LEVEL.

1703 Vargrave Street Winston-Salem, NC 27107 ph 336-725-5844 fax 336-725-6244

CERTIFICATE OF DISPOSAL

Evo Corporation does hereby certify that 6.99 tons of non-hazardous contaminated material received on 6/12/2018 from:

Generator: NCDOT

Originating at: 1710 N. William St. Goldsboro, NC

EC Waste ID #: 061814

has been disposed of by Evo Corporation in a manner approved by the North Carolina Department of Environmental Quality.

. W. Hammet

Signature

Thomas W. Hammett CEO Evo Corporation

www.evocorp.net THE NEXT LEVEL.

1703 Vargrave Street Winston-Salem, NC 27107 ph 336-725-5844 fax 336-725-6244

CERTIFICATE OF DISPOSAL

Evo Corporation does hereby certify that 440 gallons of non-hazardous contaminated water received on 6/12/2018 from:

Generator: NCDOT

Originating at: 1710 N. William St. Goldsboro, NC

EC Waste ID #: 061814

has been disposed of by Evo Corporation in a manner approved by the North Carolina Department of Environmental Quality.

amed Signature

Thomas W. Hammett CEO Evo Corporation

www.evocorp.net THE NEXT LEVEL.

EVO CORPORATION 1703 Vargrave Street, Winston-Salem, NC 27107 www.evocorp

NON-HAZARDOUS MATERIALS MANIFEST

Load #					N	<i>l</i> anifest	_{No.} 76800
Generator: Site Address:	NCDOT	ATOR IN				919-	707-6857
	Goldaboro NC			Contact	:	Den:	nis Li
	MATERIAL DESCR	RIPTION	/ QUAN	ITITY / W	VEIGHT	-	
Gross Weight (lbs):	Material:		Water				
		Contaminant:			Ga	<u>soline</u>	<u>& #2 Fuel Oil</u>
Quantity	440	Tons	Drums	Pails	Sacs	Yards	Other:
	TRANSPO	ORTER I	NFORM	ATION			
Transporter:	Evo Corporation		<u></u>				725-5844
Truck #: <u>40</u>	2			Contact	:	- Tony	y Disher
As the transporter, I certify that the materials described above being shipped under this non-hazardous materials manifest are properly classified, packaged, labeled, secured and are in proper condition for transport in commerce under the applicable regulations governing transportation, and I hereby receive this material for delivery to the facility designate.							
Driver Signature:	- Lie & Ing- FACIL	TY INFO	ORMATI	Date: ON	6-12	18	
			F		6 . 11 .		
EVO CORPORATIO	DN			Evo Proje			<u> 061814 </u>
	703 Vargrave Street Phone: (336) 725-5844 //inston-Salem, NC 27107						
			C	Contact:	<u>Tony D</u>)isher	
I certify that the carrier has delivered the materials described above to this facility, and I hereby accept this material for treatment and/or disposal in a manner that has been authorized by the State of North Carolina.							

Facility Signature:

Date: 06-12-2018 Goldenrod/Generator

Pink/Carrier

Evo Corporation, 2008

White/Facility

Canary/Invoice

	1703 Vargrav	CORPORA ve Street, Winston-S www.evocorp.ne	Salem, NC t	27107		÷
	Load #			Manifest	No. 8	0436
		NERATOR INFORM	ATION	Wannest	140.	
	Generator: NCDOT		Phone:	919-707-6	857	
	Site Address:1710 N William St			· · · · · ·		
	City/State: Goldsboro NC		Contact	Dennis Li		
	MATERIAL D	ESCRIPTION / QUA	NTITY / W	/EIGHT		
	Gross Weight (Ibs): 46420	Material:	Soi	1		
	Empty Weight (Ibs): 3244D	Contaminant:	Gas	oline & #2	Fuel O	<u>il</u>
	Net Weight (lbs): 13480	<u> </u>				
	Quantity 6.99	Tons Drum	s Pails	Sacs Yards	Other:	
	TRA	- NSPORTER INFOR	MATION			
	Transporter: Evo Corporation		Phone:	336-725-5	844	
	Truck #:			Tony Dist		
	As the transporter, I certify that the ma materials manifest are properly classified, in commerce under the applicable regulat delivery to the facility designate.	packaged, labeled, se	cured and ortation, ar Date:	are in proper co	ndition for	transport
			II CN			
	·		Evo Proje	ect #:061	314	
	EVO CORPORATION 1703 Vargrave Street		Phone: (<u>336) 725-5844</u>		
	Winston-Salem, NC 27107		Contact:	Tony Disher		
	I certify that the carrier has delivered the material for treatment and/or disposal in a Facility Signature:	manner that has been	authorized		North Caro	
69	Evo Corporation, 2008					

Evo Corpor FC_202 ı,

TICKET NUMBER	THE CAT SCALE GUARANTEE The CAT Scale Company guarantees that our scales will give an accurate weight. What makes a different from other scale companies is that we back up our guarantee with cash. ^O WEIGH WHAT WE SAY OR WE PAY [®] you get an overweight fine from the state <u>AFTEB</u> one of our CAT Scales showed a legal weight, we will mediately check our scale and we will:) Reimburse you for the cost of the overweight fine if our scale is wrong, OR) A representative of CAT Scale Company will appear in court <u>WITH</u> the driver as an expert witness if we belleve our scale was correct. YOU SHOULD GET AN OVERWEIGHT FINE, YOU SHOULD DO THE FOLLOWING TO GET THE PROBLEM RESOLVED: Post bond and request a court date. Call CAT Scale Company direct 24 hours a day at 1-877-CAT-SCALE, ext. 7 (Toll Free) or visit www.catscaleguarantee.com for instructions. IMMEDIATELY send a copy of the citation, CAT Scale Ticket, your name, company, address, and phone number to CAT Scale Company Attn: Guarantee Department.
	* The four weights shown below are separate weights. The GROSS WEIGHT is the CERTIFIED WEIGHT and was weighed on a full length platform scale. All weights are guaranteed by CAT Scale. TE: -12-18 STEER AXLE 10040 1b DRIVE AXLE 14400 1b DRIVE AXLE 1980 1b VES TRAVEL STOP 667 85 EXIT 152 GROSS WEIGHT 6420 1b This is to certify that the following described merchandise was weighed, counted, or measured by a public or deputy weighmaster, and when properly signed and sealed shall be prima facia evidence of the
EIGH NUMBER 2025 USTOMER COPY	accuracy of the weight shown as prescribed by law. OGI814 UVESTOCK, PRODUCE, PROPERTY, COMMODITY, OR ARTICLE WEIGHER EIGHT_ALL_KINDS comANNY TRA218R #

APPENDIX D EXCAVATION LOG

Apex Companies, LLC

Excavation Log

7.71				Excavation Log				
Excation No.: P15-UST 1 and UST 2				Site Name: Parcel 15 - Edith S Smith Property				
Date: 6-12-18 Job No.: NCDOT-002 Apex Rep: Troy L. Holzschuh				Location: Goldsboro, Wayne County, NC				
				Sample Method: Backhoe				
				Excavation Method: Backhoe				
Remarks:	•							
Depth (ft BLS)	PID Reading (ppb)	FID Reading (ppb)	Lab Sample Depth	Soil/Lithologic Description				
	(99%)	(PPR)		Asphalt				
1	1.1	0						
2	3.2	0						
3				Tan, Sandy, Clayey Silt, Moist				
4	8.1	0						
•	0.1	0	Samples collected					
			at 4.5 feet					
5								
-	57.9	25.6		Water @ 5.5 feet				
6								
				Excavation Terminated at 6' bgs				
		V		ON DETAILS (If Applicable)				
Well Type/Diame	ter:	V		Outer Casing Interval:				
Total Depth:				Outer Casing Interval. Outer Casing Diameter:				
Screen Interval:				Bentonite Interval:				
Sand Interval:				Slot Size:				
Grout Interval:				Static Water Level:				

Apex Companies, LLC

Excavation Log

7 11				Excavation Log
Excation No.:	P15-UST 3			Site Name: Parcel 15 - Edith S Smith Property
Date: 6-12-18				Location: Goldsboro, Wayne County, NC
Job No.: NCD	OT-002			Sample Method: Backhoe
Apex Rep: Tre	oy L. Holzso	chuh		Excavation Method: Backhoe
Remarks:				
Depth (ft BLS)	PID Reading (ppb)	FID Reading (ppb)	Lab Sample ID	Soil/Lithologic Description
				Grass
1	0.0	0.0		Tan, Sandy Silt
2	0.0	0.0		Tan, Clayey, Sandy Silt
2			Sample at 2.5'	
3				4
4	4.2	0.0		4
		0.0	Samples collected	Orange and Yellow Marbled, Clayey Silt
			at 4.5 feet	
5				1
	37.3	10.2		Water
6				Water
				Excavation Terminated at 6' bgs
		V	VELL CONSTRUCT	ION DETAILS (If Applicable)
Well Type/Diame	eter:			Outer Casing Interval:
Total Depth: Screen Interval:				Outer Casing Diameter:
Screen Interval: Sand Interval:				Bentonite Interval:
Grout Interval:				Slot Size: Static Water Level:
Grout interval:				Jolalic vvalet Level.

APPENDIX E LABORATORY ANALYTICAL REPORT AND CHAIN OF CUSTODY REPORT

June 19, 2018

NCDOT_Apex Apex 10610 Metromont Pkwy Charlotte, NC 28208

RE: Project: WBS ELEMENT 28979.1.2 U-2714 Pace Project No.: 92388566

Dear NCDOT_Apex:

Enclosed are the analytical results for sample(s) received by the laboratory on June 14, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

They Cat

Trey Carter trey.carter@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Chemical Testing Engineer, NCDOT

CERTIFICATIONS

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 9

: 92388566

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92388566001	UST 1+2 SW-1 (4.5)	Solid	06/12/18 13:30	06/14/18 15:22
92388566002	UST 1+2 SW-2 (4.5)	Solid	06/12/18 13:35	06/14/18 15:22
92388566003	UST 1+2 SW-3 (4.5)	Solid	06/12/18 13:40	06/14/18 15:22
92388566004	UST 1+2 SW-4 (4.5)	Solid	06/12/18 13:45	06/14/18 15:22
92388566005	UST 3 SW-1 (4.5)	Solid	06/12/18 14:10	06/14/18 15:22
92388566006	UST 3 SW-2 (4.5)	Solid	06/12/18 14:15	06/14/18 15:22
92388566007	UST 3 SW-3 (4.5)	Solid	06/12/18 14:20	06/14/18 15:22
92388566008	UST 3 SW-4 (4.5)	Solid	06/12/18 14:25	06/14/18 15:22

SAMPLE ANALYTE COUNT

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92388566001	UST 1+2 SW-1 (4.5)	EPA 8015 Modified	SEM	2	PASI-C
		EPA 8015 Modified	CL	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92388566002	UST 1+2 SW-2 (4.5)	EPA 8015 Modified	SEM	2	PASI-C
		EPA 8015 Modified	CL	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92388566003	UST 1+2 SW-3 (4.5)	EPA 8015 Modified	SEM	2	PASI-C
		EPA 8015 Modified	CL	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92388566004	UST 1+2 SW-4 (4.5)	EPA 8015 Modified	SEM	2	PASI-C
		EPA 8015 Modified	CL	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92388566005	UST 3 SW-1 (4.5)	EPA 8015 Modified	SEM	2	PASI-C
		EPA 8015 Modified	CL	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92388566006	UST 3 SW-2 (4.5)	EPA 8015 Modified	SEM	2	PASI-C
		EPA 8015 Modified	CL	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92388566007	UST 3 SW-3 (4.5)	EPA 8015 Modified	SEM	2	PASI-C
		EPA 8015 Modified	CL	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92388566008	UST 3 SW-4 (4.5)	EPA 8015 Modified	SEM	2	PASI-C
		EPA 8015 Modified	CL	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

SUMMARY OF DETECTION

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No .:	92388566
1 400 1 10,000 140	02000000

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92388566001	UST 1+2 SW-1 (4.5)					
ASTM D2974-87	Percent Moisture	6.9	%	0.10	06/18/18 10:03	
92388566002	UST 1+2 SW-2 (4.5)					
ASTM D2974-87	Percent Moisture	6.3	%	0.10	06/18/18 10:03	
92388566003	UST 1+2 SW-3 (4.5)					
ASTM D2974-87	Percent Moisture	9.1	%	0.10	06/18/18 10:03	
92388566004	UST 1+2 SW-4 (4.5)					
ASTM D2974-87	Percent Moisture	11.3	%	0.10	06/18/18 10:03	
92388566005	UST 3 SW-1 (4.5)					
ASTM D2974-87	Percent Moisture	7.9	%	0.10	06/18/18 10:03	
92388566006	UST 3 SW-2 (4.5)					
ASTM D2974-87	Percent Moisture	14.0	%	0.10	06/18/18 10:03	
92388566007	UST 3 SW-3 (4.5)					
ASTM D2974-87	Percent Moisture	12.0	%	0.10	06/18/18 10:03	
92388566008	UST 3 SW-4 (4.5)					
ASTM D2974-87	Percent Moisture	12.9	%	0.10	06/18/18 10:04	

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Sample: UST 1+2 SW-1 (4.5)	Lab ID:	9238856600	1 Collected	d: 06/12/18	13:30	Received: 06/	14/18 15:22 Ma	atrix: Solid	
Results reported on a "dry weight	t" basis and are	adjusted fo	r percent mo	oisture, san	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA	8015 Modifie	ed Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) <i>Surrogates</i>	ND	mg/kg	5.4	4.8	1	06/15/18 19:45	06/18/18 16:56		
n-Pentacosane (S)	71	%	41-119		1	06/15/18 19:45	06/18/18 16:56	629-99-2	
Gasoline Range Organics	Analytical	Method: EPA	8015 Modifie	ed Preparat	ion Me	thod: EPA 5035A	/5030B		
Gas Range Organics (C6-C10) <i>Surrogat</i> es	ND	mg/kg	4.7	4.7	1	06/15/18 18:18	06/15/18 22:44		
4-Bromofluorobenzene (S)	73	%	70-167		1	06/15/18 18:18	06/15/18 22:44	460-00-4	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	6.9	%	0.10	0.10	1		06/18/18 10:03		

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Sample: UST 1+2 SW-2 (4.5)	Lab ID:	9238856600	02 Collected	l: 06/12/18	3 13:35	Received: 06/	/14/18 15:22 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	isture, sar	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EP/	A 8015 Modifie	d Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) <i>Surrogates</i>	ND	mg/kg	5.3	4.8	1	06/15/18 19:45	06/18/18 16:56		
n-Pentacosane (S)	57	%	41-119		1	06/15/18 19:45	06/18/18 16:56	629-99-2	
Gasoline Range Organics	Analytical	Method: EP/	A 8015 Modifie	d Preparat	ion Me	thod: EPA 5035A	/5030B		
Gas Range Organics (C6-C10) <i>Surrogates</i>	ND	mg/kg	4.6	4.6	1	06/15/18 18:18	06/15/18 23:12		
4-Bromofluorobenzene (S)	71	%	70-167		1	06/15/18 18:18	06/15/18 23:12	460-00-4	
Percent Moisture	Analytical	Method: AS	FM D2974-87						
Percent Moisture	6.3	%	0.10	0.10	1		06/18/18 10:03		

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Sample: UST 1+2 SW-3 (4.5)	Lab ID:	9238856600	3 Collected	I: 06/12/18	3 13:40	Received: 06/	(14/18 15:22 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted fo	or percent mo	isture, san	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA	A 8015 Modifie	d Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) <i>Surrogates</i>	ND	mg/kg	5.6	5.0	1	06/15/18 19:45	06/18/18 17:21		
n-Pentacosane (S)	74	%	41-119		1	06/15/18 19:45	06/18/18 17:21	629-99-2	
Gasoline Range Organics	Analytical	Method: EPA	A 8015 Modifie	d Preparat	ion Me	thod: EPA 5035A	/5030B		
Gas Range Organics (C6-C10) <i>Surrogates</i>	ND	mg/kg	4.7	4.7	1	06/15/18 18:18	06/15/18 23:40		
4-Bromofluorobenzene (S)	73	%	70-167		1	06/15/18 18:18	06/15/18 23:40	460-00-4	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	9.1	%	0.10	0.10	1		06/18/18 10:03		

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Sample: UST 1+2 SW-4 (4.5)	Lab ID:	9238856600	04 Collected	d: 06/12/18	3 13:45	Received: 06/	(14/18 15:22 Ma	atrix: Solid	
Results reported on a "dry weight	t" basis and are	adjusted fo	or percent mo	oisture, san	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA	A 8015 Modifie	d Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) <i>Surrogates</i>	ND	mg/kg	5.7	5.1	1	06/15/18 19:45	06/18/18 17:21		
n-Pentacosane (S)	68	%	41-119		1	06/15/18 19:45	06/18/18 17:21	629-99-2	
Gasoline Range Organics	Analytical	Method: EPA	A 8015 Modifie	d Preparat	ion Me	thod: EPA 5035A	/5030B		
Gas Range Organics (C6-C10) <i>Surrogates</i>	ND	mg/kg	4.8	4.8	1	06/15/18 18:18	06/18/18 16:01		
4-Bromofluorobenzene (S)	82	%	70-167		1	06/15/18 18:18	06/18/18 16:01	460-00-4	
Percent Moisture	Analytical	Method: AST	FM D2974-87						
Percent Moisture	11.3	%	0.10	0.10	1		06/18/18 10:03		

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Sample: UST 3 SW-1 (4.5)	Lab ID:	92388566005	Collected	I: 06/12/18	3 14:10	Received: 06/	/14/18 15:22 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	adjusted for	r percent mo	isture, san	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA	8015 Modifie	d Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) <i>Surrogates</i>	ND	mg/kg	5.5	4.9	1	06/15/18 19:46	06/18/18 18:11		
n-Pentacosane (S)	70	%	41-119		1	06/15/18 19:46	06/18/18 18:11	629-99-2	
Gasoline Range Organics	Analytical	Method: EPA	8015 Modifie	d Preparat	ion Me	thod: EPA 5035A	/5030B		
Gas Range Organics (C6-C10) <i>Surrogates</i>	ND	mg/kg	5.4	5.4	1	06/15/18 18:18	06/18/18 16:29		
4-Bromofluorobenzene (S)	77	%	70-167		1	06/15/18 18:18	06/18/18 16:29	460-00-4	
Percent Moisture	Analytical	Method: ASTN	M D2974-87						
Percent Moisture	7.9	%	0.10	0.10	1		06/18/18 10:03		

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Sample: UST 3 SW-2 (4.5)	Lab ID:	9238856600	6 Collected	d: 06/12/18	3 14:15	Received: 06/	14/18 15:22 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted fo	r percent mo	oisture, san	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA	8015 Modifie	d Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) Surrogates	ND	mg/kg	5.9	5.3	1	06/15/18 19:46	06/18/18 18:35		
n-Pentacosane (S)	74	%	41-119		1	06/15/18 19:46	06/18/18 18:35	629-99-2	
Gasoline Range Organics	Analytical	Method: EPA	8015 Modifie	d Preparat	ion Me	thod: EPA 5035A	/5030B		
Gas Range Organics (C6-C10) <i>Surrogates</i>	ND	mg/kg	8.3	8.3	1	06/15/18 18:18	06/16/18 01:05		
4-Bromofluorobenzene (S)	72	%	70-167		1	06/15/18 18:18	06/16/18 01:05	460-00-4	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	14.0	%	0.10	0.10	1		06/18/18 10:03		

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Sample: UST 3 SW-3 (4.5)	Lab ID:	92388566007	Collected	I: 06/12/18	3 14:20	Received: 06/	/14/18 15:22 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	adjusted for	r percent mo	isture, san	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA	8015 Modifie	d Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) <i>Surrogates</i>	ND	mg/kg	5.7	5.1	1	06/15/18 19:46	06/18/18 19:00		
n-Pentacosane (S)	72	%	41-119		1	06/15/18 19:46	06/18/18 19:00	629-99-2	
Gasoline Range Organics	Analytical	Method: EPA	8015 Modifie	d Preparat	ion Me	thod: EPA 5035A	/5030B		
Gas Range Organics (C6-C10) <i>Surrogates</i>	ND	mg/kg	5.3	5.3	1	06/15/18 18:18	06/16/18 01:33		
4-Bromofluorobenzene (S)	70	%	70-167		1	06/15/18 18:18	06/16/18 01:33	460-00-4	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	12.0	%	0.10	0.10	1		06/18/18 10:03		

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Sample: UST 3 SW-4 (4.5)	Lab ID:	92388566008	B Collected	d: 06/12/18	3 14:25	Received: 06/	14/18 15:22 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted for	r percent mo	oisture, san	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA	8015 Modifie	d Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) Surrogates	ND	mg/kg	5.8	5.2	1	06/15/18 19:46	06/18/18 19:00		
n-Pentacosane (S)	72	%	41-119		1	06/15/18 19:46	06/18/18 19:00	629-99-2	
Gasoline Range Organics	Analytical	Method: EPA	8015 Modifie	d Preparat	ion Me	thod: EPA 5035A	/5030B		
Gas Range Organics (C6-C10) <i>Surrogates</i>	ND	mg/kg	5.2	5.2	1	06/15/18 18:18	06/16/18 02:57		
4-Bromofluorobenzene (S)	77	%	70-167		1	06/15/18 18:18	06/16/18 02:57	460-00-4	
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	12.9	%	0.10	0.10	1		06/18/18 10:04		

Project: Pace Project No.:	WBS EL 9238856		28979.1.2 U-2714									
QC Batch:	41547			Analysis	Metho	4.	EPA 8015 Mo	dified				
	-			Analysis Method: EPA 8015 Modified Analysis Description: Gasoline Range Organics								
QC Batch Method:		035A/503		•				•	0		~~~ ~	
Associated Lab Sar		92388566 92388566	5001, 9238856600 5008	2, 9238856600	3, 923	88566004,	92388566005	, 923	88566006, 9	23885	66007,	
METHOD BLANK:	230417	1		Mat	rix: So	olid						
Associated Lab Sar		92388566 92388566	6001, 9238856600 6008	2, 9238856600	3, 923	88566004,	92388566005	, 923	88566006, 9	23885	66007,	
				Blank		Reporting						
Parar	meter		Units	Result		Limit	MDL		Analyze	d	Qualifiers	
Gas Range Organic	cs (C6-C1	0)	mg/kg	N	ND	6.	0	6.0	06/15/18 17	7:34		
4-Bromofluorobenzo		-)	%		78	70-16			06/15/18 17			
LABORATORY CO	NTROL S	AMPLE:	2304172									
				Spike	LC	S	LCS		6 Rec			
Parar	meter		Units	Conc.	Res	sult	% Rec	L	imits	Quali	fiers	
Gas Range Organic	cs (C6-C1	0)	mg/kg	49.8		47.9	96		70-165			
4-Bromofluorobenzo	ene (S)		%				76		70-167			
MATRIX SPIKE SA	MPI E.		2304173									
			2004110	92388516	001	Spike	MS		MS	9	% Rec	
Parar	meter		Units	Result		Conc.	Result		% Rec		Limits	Qualifiers
Gas Range Organio	cs (C6-C1	0)	mg/kg		ND	56.8	58	.1	101		47-187	
4-Bromofluorobenz		- /	%						77		70-167	
SAMPLE DUPLICA	TE: 230)4174										
				9238851600)2	Dup			Max			
Parar	meter		Units	Result		Result	RPD		RPD	(Qualifiers	
Gas Range Organic	cs (C6-C1	0)	mg/kg		١D	N	C		÷	30		
4-Bromofluorobenz	ene (S)		%		81	8	1	1				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project	No.:	9238856
--------------	------	---------

666

QC Batch: 415473		Analysi	is Method	d: EF	A 8015	Modified				
QC Batch Method: EPA 3546		Analysi	is Descrip	ption: 80	15 Solid	GCSV				
Associated Lab Samples: 92388566	001, 92388566002,	923885660	003, 9238	88566004						
METHOD BLANK: 2304179		M	latrix: So	olid						
Associated Lab Samples: 92388566	001, 92388566002,	923885660	003, 9238	88566004						
		Blank	I	Reporting						
Parameter	Units	Result	t	Limit	M	DL	Analyze	əd	Qualifiers	
Diesel Range Organics(C10-C28)	mg/kg		ND	5.0		4.5	06/18/18 ()7:38		_
n-Pentacosane (S)	%		78	41-119			06/18/18 ()7:38		
LABORATORY CONTROL SAMPLE &	LCSD: 2304180			2304181						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
		67.8	46.	.3 48.0	68	71	49-113		3 30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.:	923885
-------------------	--------

Pace Project No.: 92388566							
QC Batch: 415474		Analysis Meth	od: E	PA 8015 Modif	ied		
QC Batch Method: EPA 3546		Analysis Desc	ription: 8	015 Solid GCS	V		
Associated Lab Samples: 92388566	005, 92388566006	, 92388566007, 92	388566008				
METHOD BLANK: 2304182		Matrix:	Solid				
Associated Lab Samples: 92388566	005, 92388566006						
-		Blank	Reporting			A 11/1	
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifier	S
Diesel Range Organics(C10-C28)	mg/kg	ND	5.1		.6 06/18/18 17	-	
n-Pentacosane (S)	%	75	41-119)	06/18/18 17	:46	
LABORATORY CONTROL SAMPLE:	2304183						
		Spike L	CS	LCS	% Rec		
Parameter	Units	Conc. R	esult	% Rec	Limits	Qualifiers	
Diesel Range Organics(C10-C28)	mg/kg	67.1	52.0	77	49-113		
n-Pentacosane (S)	%			82	41-119		
MATRIX SPIKE SAMPLE:	2304184						
		92388566005	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Range Organics(C10-C28)	mg/kg	NE	72.4	45.3	60	10-146	
n-Pentacosane (S)	%				69	41-119	
SAMPLE DUPLICATE: 2304185							
		92388566006	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Diesel Range Organics(C10-C28)	mg/kg	ND	NE		3	0	
n-Pentacosane (S)	%	74	65	5 1	3		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	WBS ELEMENT 28	979.1.2 U-2714								
Pace Project No.:	92388566									
QC Batch:	415383		Analysis Meth	iod:	ASTM D2974-8	87				
QC Batch Method:	ASTM D2974-87		Analysis Description: Dry Weight/Percent Moisture							
Associated Lab Sar	nples: 923885660 923885660		2, 92388566003, 92	2388566004,	92388566005,	9238	8566006,	9238	8566007,	
SAMPLE DUPLICA	TE: 2303500									
			92388541001	Dup			Max			
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	72.9	73.	7	1		25		
SAMPLE DUPLICA	TE: 2303501									
			92388566008	Dup			Max			
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	12.9	13.	0	0		25		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: WBS ELEMENT 28979.1.2 U-2714

Pace Project No.: 92388566

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92388566001	UST 1+2 SW-1 (4.5)	EPA 3546	415473	EPA 8015 Modified	415575
92388566002	UST 1+2 SW-2 (4.5)	EPA 3546	415473	EPA 8015 Modified	415575
92388566003	UST 1+2 SW-3 (4.5)	EPA 3546	415473	EPA 8015 Modified	415575
92388566004	UST 1+2 SW-4 (4.5)	EPA 3546	415473	EPA 8015 Modified	415575
92388566005	UST 3 SW-1 (4.5)	EPA 3546	415474	EPA 8015 Modified	415573
92388566006	UST 3 SW-2 (4.5)	EPA 3546	415474	EPA 8015 Modified	415573
92388566007	UST 3 SW-3 (4.5)	EPA 3546	415474	EPA 8015 Modified	415573
92388566008	UST 3 SW-4 (4.5)	EPA 3546	415474	EPA 8015 Modified	415573
92388566001	UST 1+2 SW-1 (4.5)	EPA 5035A/5030B	415472	EPA 8015 Modified	415618
92388566002	UST 1+2 SW-2 (4.5)	EPA 5035A/5030B	415472	EPA 8015 Modified	415618
92388566003	UST 1+2 SW-3 (4.5)	EPA 5035A/5030B	415472	EPA 8015 Modified	415618
92388566004	UST 1+2 SW-4 (4.5)	EPA 5035A/5030B	415472	EPA 8015 Modified	415618
92388566005	UST 3 SW-1 (4.5)	EPA 5035A/5030B	415472	EPA 8015 Modified	415618
92388566006	UST 3 SW-2 (4.5)	EPA 5035A/5030B	415472	EPA 8015 Modified	415618
92388566007	UST 3 SW-3 (4.5)	EPA 5035A/5030B	415472	EPA 8015 Modified	415618
92388566008	UST 3 SW-4 (4.5)	EPA 5035A/5030B	415472	EPA 8015 Modified	415618
92388566001	UST 1+2 SW-1 (4.5)	ASTM D2974-87	415383		
92388566002	UST 1+2 SW-2 (4.5)	ASTM D2974-87	415383		
92388566003	UST 1+2 SW-3 (4.5)	ASTM D2974-87	415383		
92388566004	UST 1+2 SW-4 (4.5)	ASTM D2974-87	415383		
92388566005	UST 3 SW-1 (4.5)	ASTM D2974-87	415383		
92388566006	UST 3 SW-2 (4.5)	ASTM D2974-87	415383		
92388566007	UST 3 SW-3 (4.5)	ASTM D2974-87	415383		
92388566008	UST 3 SW-4 (4.5)	ASTM D2974-87	415383		

Pace Analytical"	Document Sample Condition Up	ry 7, 2018			
- Tabe Analytical	Documen F-CAR-CS-03			ssuing Authority: Carolinas Quality (
Laboratory receiving samples:			_		
Asheville Eden	Greenwood 🗌	Huntersvil		Raleigh	Mechanicsville
Sample Condition Client Name: Upon Receipt	(Project #	WO#:	9238	8566
Courier: Fed Ex UU	PS USPS Other:	Client	92388566		
Custody Seal Present? Yes No S	Seals Intact? Yes	No	Date/Initials	³ erson Examining C	contents: <u>6</u> /14/14
Packing Material: Bubble Wrap	Bubble Bags None	/		Biological Tissue	
□JR Gun ID: _92T040	Type of Ice: 🗔	Wet Blue [None		
Cooler Temp Corrected (°C): 5.5 USDA Regulated Soll (N/A, water sample)	actor: Add/Subtract (°C) _	Τe	Samples out on has begun		ples on Ice, cooling process
Did samples originate in a quarantine zone within the	United States: CA, NY, or SC	C (check maps)? D	ld samples originat cluding Hawaii and	e from a foreign sou Puerto Rico)?	urce (internationally, es 🔲No
				mments/Discrepa	
Chain of Custody Present?		□N/A 1.			
Samples Arrived within Hold Time?		□N/A 2.			
Short Hold Time Analysis (<72 hr.)?	Yes No	□N/A 3.			
Rush Turn Around Time Requested?	Yes No	□N/A 4.			
Sufficient Volume?	Yes No	□N/A 5.			
Correct Containers Used?	Ves 🗆 No	□N/A 6.			
-Pace Containers Used?	Yes No	□N/A			
Containers Intact?	Ves No	□N/A 7.			
Dissolved analysis: Samples Field Filtered?	Ves No	⊠N/A 8.			
Sample Labels Match COC?	Ves 🗆 No	□N/A 9.			
-Includes Date/Time/ID/Analysis Matrix:	SL				
Headspace in VOA Vials (>5-6mm)?	Yes No	☑N/A 10.			
Trip Blank Present?	Yes No	⊠N/A 11.			
Trip Blank Custody Seals Present?	Yes No	. <u>⊠</u> n/a		Field Data I	Required? Yes No
		Lot I	D of split contain	iers:	
CLIENT NOTIFICATION/RESOLUTION Collected in Wayne	G, NC.				
Person contacted: Troy Holzsch	ch	Date/Time:	6/15/18 10	5:56	
Project Manager SCURF Review:	Ċ		Date:	6/15/18	
Project Manager SRF Review:	TC		Date:	6/15/18	5

	Document Name: Sample Condition Upon Receipt(SCUR)	Document Revised: February 7, 2018 Page 1 of 2
Pace Analytical"	Document No.: F-CAR-CS-033-Rev.06	Issuing Authority: Pace Carolinas Quality Office
1	F-CAR-LS-USS-REV.00	Face carolinas quality office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Project WO#:92388566 PM: RWC Due Date: 05/21/18

CLIENT: 92-APEX MOOR

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg **Bottom half of box is to list number of bottle

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S- 125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S- 250 mL Amber H25O4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	\backslash				\backslash	\backslash	\backslash	\backslash	(\backslash	\bigwedge	\backslash						3			\sum	\sum			
2	\langle	•			\backslash	\backslash	\backslash	\backslash	1		\backslash		\backslash	\bigwedge	\backslash						3			\square	\sum			
3	\backslash				\backslash	\backslash	\backslash	\backslash	l		\backslash		\backslash	\bigwedge	\backslash						3			\backslash	\backslash			
4	$\overline{\ }$				\square	\setminus	\square	\backslash	(\backslash		\backslash	\square	\backslash						3			\square	\square			
5	\backslash				\setminus	\backslash	\backslash	\backslash)		\backslash		\backslash	\square	\backslash						3			\square	\square			
6	\setminus				\bigwedge	\bigwedge	\backslash	\square)		\backslash		\backslash	\square	\square						3			\square	\square			
7	\backslash				\square	\backslash	\setminus	\square)		\backslash		\bigwedge	\sum	\square						3			\square	\square			
8	\backslash				\backslash	\backslash	\square	\square			\backslash		\bigwedge		\bigwedge						3			\square	\square			
9	\setminus				\backslash	\backslash	\square	\square	10 		\backslash		\backslash											\square	\square			
10	\backslash				\square	\bigwedge	\bigwedge	\square			\backslash		\backslash		\square									\square	\square			
11	\backslash				\square	\square	$ \land $	\sum			\bigwedge		\square		\sum									\square	\sum			
12	\backslash				\backslash	\bigwedge	\bigwedge	\bigwedge			\bigwedge		\setminus		\square									\square	\square			

pH Adjustment Log for Preserved Samples											
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #					

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

•				12 ADDITIONAL COMMENTS	11	8 UST 3 SW-4 (4.5	7 UST 3 SW-3(45	11.ST 7 SW-26	1157 7 2	LIAS (M/H)	11/7 107 54/2/1	1/1/1 1-1 (1/1)	- 11 <t (4.5<="" 127="" sin-1="" th=""><th>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</th><th>Requested Due Date: 574 MAR F.d.</th><th>Phone: 704-799-6390 Fax</th><th>Charlotte, NC 28269 Email: tholzschuh@apexcos.com</th><th>Address: 10610 Metromont Pkwy</th><th>Clier</th><th>Section A</th><th>Face Analytical</th></t>	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Requested Due Date: 574 MAR F.d.	Phone: 704-799-6390 Fax	Charlotte, NC 28269 Email: tholzschuh@apexcos.com	Address: 10610 Metromont Pkwy	Clier	Section A	Face Analytical
	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	SAMPLER NAME AND SIGNATURE	7 2 Mar Jud Agex 6.14) 5LG 1430	SEC 1415	6	SLG	SUG	ST 1 1 1	02.61 81-71-71 57 - (MATRIX CODE COLLECTED UNA Water WW WAter WH Er COLLECTER TRANSFILLE THE DATER TIME A TIM	Indexent to CITO I STICLE	ame: WBS element 3	9 #	Copy To: Natio Lippard	Report To: Troy Holzschub	Section B	CHAIN-OI The Chain-of-C
	PLER: Tray & Holzschuh PLER: 7 2 Holzschuh DATE Signed: 6/	SNATURE	H-St 1522 mill hat 6.1	TIME ACCEPTED BY J AFFLUATION DATE				4 7 13	HX 13	4 X X X X	<u>ц</u> Х 13		4X X 13	SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol Other 3 Via) Kit Analyses Test V/N DRO by 8015 GRO 8015 GRO 8015 GRO 8015	11	Pace Project Manager: trey.carter@pacelabs.com, Pace Profile #: 1223-18	ote:	Name: NC	Attention: Advance Li	Section C Invoice Information	CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.
7 - 7	TEMP in C Received c lce (Y/N) Custody Sealed Cooler (Y/N) Samples Intact (Y/N)		X X S'5 2251 AHM	TIME			0007	2.04	2007	200	l a	200	(a)	Residual Chlorine (Y/N) 723 80 65 6 7		NC		Regulatory Agency		Page: 1 Of 1	leted accurately.

June 28, 2018

NCDOT_Apex Apex 10610 Metromont Pkwy Charlotte, NC 28208

RE: Project: NCDOT 38979.1.2 Pace Project No.: 92388933

Dear NCDOT_Apex:

Enclosed are the analytical results for sample(s) received by the laboratory on June 19, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

They Cat

Trey Carter trey.carter@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Chemical Testing Engineer, NCDOT

CERTIFICATIONS

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE ANALYTE COUNT

Project: NCDOT 38979.1.2 Pace Project No.: 92388933

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92388933001	TW-1	MADEP EPH	SEM	7	PASI-C
		MADEP VPH	CL	5	PASI-C
		EPA 8270	PKS	74	PASI-C
		EPA 8260	GAW	71	PASI-C
92388933002	TW-2	MADEP EPH	SEM	7	PASI-C
		MADEP VPH	CL	5	PASI-C
		EPA 8270	PKS	74	PASI-C
		EPA 8260	GAW	71	PASI-C

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Sample: TW-1	Lab ID: 923	88933001	Collected: 06/18/1	18 14:00) Received: 06	/19/18 10:29 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
MADEP EPH NC Water	Analytical Meth	nod: MADEI	P EPH Preparation N	Method:	MADEP EPH			
Aliphatic (C09-C18)	4830	ug/L	980	10	06/25/18 20:23	06/28/18 06:46		N2
Aliphatic (C19-C36)	ND	ug/L	980	10	06/25/18 20:23	06/28/18 06:46		N2
Aromatic (C11-C22)	2090	ug/L	98.0	1	06/25/18 20:23	06/28/18 06:46		N2
Surrogates								
Nonatriacontane (S)	0	%	40-140	10	06/25/18 20:23	06/28/18 06:46	7194-86-7	S4
o-Terphenyl (S)	56	%	40-140	1	06/25/18 20:23	06/28/18 06:46	84-15-1	
2-Fluorobiphenyl (S)	81	%	40-140	1	06/25/18 20:23	06/28/18 06:46	321-60-8	
2-Bromonaphthalene (S)	61	%	40-140	1	06/25/18 20:23	06/28/18 06:46	580-13-2	
VPH NC Water	Analytical Meth	nod: MADEI	P VPH					
Aliphatic (C05-C08)	146000	ug/L	12500	250		06/21/18 22:31		N2
Aliphatic (C09-C12)	144000	ug/L	12500	250		06/21/18 22:31		N2
Aromatic (C09-C10)	59700	ug/L	12500	250		06/21/18 22:31		N2
Surrogates		- 3 -						
4-Bromofluorobenzene (FID) (S)	97	%	70-130	250		06/21/18 22:31	460-00-4	
4-Bromofluorobenzene (PID) (S)	96	%	70-130	250		06/21/18 22:31	460-00-4	
8270 MSSV RVE Semivol Organic	Analytical Meth	nod: EPA 82	270 Preparation Met	hod: EP	A 3510			
Acenaphthene	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	83-32-9	
Acenaphthylene	ND	ug/L	83.3	10		06/21/18 09:27		
Aniline	ND	ug/L	83.3	10		06/21/18 09:27		
Anthracene	ND	ug/L	83.3	10		06/21/18 09:27		
Benzo(a)anthracene	ND	ug/L	83.3	10		06/21/18 09:27		
Benzo(a)pyrene	ND	ug/L	83.3	10		06/21/18 09:27		
Benzo(b)fluoranthene	ND	ug/L	83.3	10		06/21/18 09:27		
Benzo(g,h,i)perylene	ND	ug/L	83.3	10		06/21/18 09:27		
Benzo(k)fluoranthene	ND	ug/L	83.3	10		06/21/18 09:27		
Benzoic Acid	ND	ug/L	417	10		06/21/18 09:27		
Benzyl alcohol	ND	ug/L	167	10		06/21/18 09:27		
4-Bromophenylphenyl ether	ND	ug/L	83.3	10		06/21/18 09:27		
Butylbenzylphthalate	ND	ug/L	83.3	10		06/21/18 09:27		
4-Chloro-3-methylphenol	ND	ug/L	167	10		06/21/18 09:27		
4-Chloroaniline	ND	ug/L	167	10		06/21/18 09:27		
bis(2-Chloroethoxy)methane	ND	ug/L	83.3	10		06/21/18 09:27		
bis(2-Chloroethyl) ether	ND	ug/L	83.3	10		06/21/18 09:27		
2-Chloronaphthalene	ND	ug/L	83.3	10		06/21/18 09:27		
2-Chlorophenol	ND	ug/L	83.3	10		06/21/18 09:27		
4-Chlorophenylphenyl ether	ND	ug/L	83.3	10		06/21/18 09:27		
Chrysene	ND	ug/L	83.3	10		06/21/18 09:27		
Dibenz(a,h)anthracene	ND	-	83.3	10		06/21/18 09:27		
Dibenzofuran	ND	ug/L	83.3	10		06/21/18 09:27		
		ug/L						
1,2-Dichlorobenzene	ND	ug/L	83.3	10 10		06/21/18 09:27		
1,3-Dichlorobenzene	ND	ug/L	83.3	10		06/21/18 09:27		
1,4-Dichlorobenzene	ND	ug/L	83.3	10		06/21/18 09:27		
3,3'-Dichlorobenzidine	ND	ug/L	167	10		06/21/18 09:27		
2,4-Dichlorophenol	ND	ug/L	83.3	10		06/21/18 09:27		
Diethylphthalate	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	84-66-2	

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Sample: TW-1	Lab ID: 92388933001		Collected: 06/18/1	8 14:00	00 Received: 06/19/18 10:29 Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8270 MSSV RVE Semivol Organic	Analytical Meth	nod: EPA 82	270 Preparation Met	hod: EP/	A 3510				
2,4-Dimethylphenol	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	105-67-9		
Dimethylphthalate	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	131-11-3		
Di-n-butylphthalate	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	84-74-2		
4,6-Dinitro-2-methylphenol	ND	ug/L	167	10	06/19/18 20:35	06/21/18 09:27	534-52-1		
2,4-Dinitrophenol	ND	ug/L	417	10	06/19/18 20:35	06/21/18 09:27	51-28-5		
2,4-Dinitrotoluene	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	121-14-2		
2,6-Dinitrotoluene	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	606-20-2		
Di-n-octylphthalate	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	117-84-0		
bis(2-Ethylhexyl)phthalate	ND	ug/L	50.0	10	06/19/18 20:35	06/21/18 09:27	117-81-7		
Fluoranthene	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	206-44-0		
Fluorene	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	86-73-7		
Hexachloro-1,3-butadiene	ND	ug/L	83.3	10		06/21/18 09:27			
Hexachlorobenzene	ND	ug/L	83.3	10		06/21/18 09:27			
Hexachlorocyclopentadiene	ND	ug/L	83.3	10		06/21/18 09:27			
Hexachloroethane	ND	ug/L	83.3	10		06/21/18 09:27			
Indeno(1,2,3-cd)pyrene	ND	ug/L	83.3	10		06/21/18 09:27			
Isophorone	ND	ug/L	83.3	10		06/21/18 09:27			
1-Methylnaphthalene	1770	ug/L	667	80		06/21/18 11:00			
2-Methylnaphthalene	4110	ug/L	667	80		06/21/18 11:00			
2-Methylphenol(o-Cresol)	ND	ug/L	83.3	10		06/21/18 09:27			
,	ND	-	83.3	10		06/21/18 09:27			
3&4-Methylphenol(m&p Cresol)	5130	ug/L	667	80		06/21/18 09.27			
Naphthalene		ug/L							
2-Nitroaniline	ND	ug/L	417	10		06/21/18 09:27			
3-Nitroaniline	ND	ug/L	417	10		06/21/18 09:27			
4-Nitroaniline	ND	ug/L	167	10		06/21/18 09:27			
Nitrobenzene	ND	ug/L	83.3	10		06/21/18 09:27			
2-Nitrophenol	ND	ug/L	83.3	10		06/21/18 09:27			
4-Nitrophenol	ND	ug/L	417	10		06/21/18 09:27			
N-Nitrosodimethylamine	ND	ug/L	83.3	10		06/21/18 09:27			
N-Nitroso-di-n-propylamine	ND	ug/L	83.3	10		06/21/18 09:27			
N-Nitrosodiphenylamine	ND	ug/L	83.3	10		06/21/18 09:27			
2,2'-Oxybis(1-chloropropane)	ND	ug/L	83.3	10		06/21/18 09:27			
Pentachlorophenol	ND	ug/L	208	10		06/21/18 09:27			
Phenanthrene	ND	ug/L	83.3	10		06/21/18 09:27			
Phenol	ND	ug/L	83.3	10		06/21/18 09:27			
Pyrene	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	129-00-0		
1,2,4-Trichlorobenzene	ND	ug/L	83.3	10		06/21/18 09:27			
2,4,5-Trichlorophenol	ND	ug/L	83.3	10		06/21/18 09:27			
2,4,6-Trichlorophenol	ND	ug/L	83.3	10	06/19/18 20:35	06/21/18 09:27	88-06-2		
Surrogates	_								
Nitrobenzene-d5 (S)	0	%	40-121	10		06/21/18 09:27		D3,S4	
2-Fluorobiphenyl (S)	0	%	45-139	10		06/21/18 09:27		S4	
Terphenyl-d14 (S)	0	%	48-146	10		06/21/18 09:27		S4	
Phenol-d6 (S)	0	%	18-105	10		06/21/18 09:27		S4	
2-Fluorophenol (S)	0	%	13-118	10		06/21/18 09:27		S4	
2,4,6-Tribromophenol (S)	0	%	31-170	10	06/19/18 20:35	06/21/18 09:27	118-79-6	S4	

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Sample: TW-1	Lab ID: 92388933001		Collected: 06/18/1	18 14:00	Received: 0	Aatrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Meth	nod: EPA 82	260					
Acetone	ND	ug/L	12500	500		06/26/18 16:58	67-64-1	
Benzene	7850	ug/L	2500	500		06/26/18 16:58	71-43-2	
Bromobenzene	ND	ug/L	2500	500		06/26/18 16:58	108-86-1	
Bromochloromethane	ND	ug/L	2500	500		06/26/18 16:58	74-97-5	
Bromodichloromethane	ND	ug/L	2500	500		06/26/18 16:58	75-27-4	
Bromoform	ND	ug/L	2500	500		06/26/18 16:58	75-25-2	
Bromomethane	ND	ug/L	5000	500		06/26/18 16:58	74-83-9	M1
2-Butanone (MEK)	ND	ug/L	5000	500		06/26/18 16:58	78-93-3	
tert-Butyl Alcohol	ND	ug/L	50000	500		06/26/18 16:58	75-65-0	
n-Butylbenzene	ND	ug/L	2500	500		06/26/18 16:58	104-51-8	
sec-Butylbenzene	ND	ug/L	2500	500		06/26/18 16:58	135-98-8	
tert-Butylbenzene	ND	ug/L	2500	500		06/26/18 16:58	98-06-6	
Carbon tetrachloride	ND	ug/L	2500	500		06/26/18 16:58	56-23-5	
Chlorobenzene	ND	ug/L	2500	500		06/26/18 16:58	108-90-7	
Chloroethane	ND	ug/L	5000	500		06/26/18 16:58	75-00-3	
Chloroform	ND	ug/L	2500	500		06/26/18 16:58	67-66-3	
Chloromethane	ND	ug/L	2500	500		06/26/18 16:58	74-87-3	
2-Chlorotoluene	ND	ug/L	2500	500		06/26/18 16:58	95-49-8	
4-Chlorotoluene	ND	ug/L	2500	500		06/26/18 16:58	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	1000	500		06/26/18 16:58		
Dibromochloromethane	ND	ug/L	2500	500		06/26/18 16:58		
1,2-Dibromoethane (EDB)	ND	ug/L	2500	500		06/26/18 16:58	106-93-4	
Dibromomethane	ND	ug/L	2500	500		06/26/18 16:58	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	2500	500		06/26/18 16:58	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	2500	500		06/26/18 16:58		
1,4-Dichlorobenzene	ND	ug/L	2500	500		06/26/18 16:58		
Dichlorodifluoromethane	ND	ug/L	2500	500		06/26/18 16:58		
1,1-Dichloroethane	ND	ug/L	2500	500		06/26/18 16:58		
1,2-Dichloroethane	ND	ug/L	2500	500		06/26/18 16:58		
1,2-Dichloroethene (Total)	ND	ug/L	2500	500		06/26/18 16:58		
1,1-Dichloroethene	ND	ug/L	2500	500		06/26/18 16:58		
cis-1,2-Dichloroethene	ND	ug/L	2500	500		06/26/18 16:58		
trans-1,2-Dichloroethene	ND	ug/L	2500	500		06/26/18 16:58		
1,2-Dichloropropane	ND	ug/L	2500	500		06/26/18 16:58		
1,3-Dichloropropane	ND	ug/L	2500	500		06/26/18 16:58		
2,2-Dichloropropane	ND	ug/L	2500	500		06/26/18 16:58		
1,1-Dichloropropene	ND	ug/L	2500	500		06/26/18 16:58		
cis-1,3-Dichloropropene	ND	ug/L	2500	500		06/26/18 16:58		
trans-1,3-Dichloropropene	ND	ug/L	2500	500		06/26/18 16:58		
Diisopropyl ether	ND	ug/L	2500	500		06/26/18 16:58		
Ethylbenzene	3800	ug/L	2500	500 500		06/26/18 16:58		
Hexachloro-1,3-butadiene	ND	ug/L	2500	500 500		06/26/18 16:58		
2-Hexanone	ND	ug/L	5000	500		06/26/18 16:58		
Isopropylbenzene (Cumene)	ND	ug/L	2500	500 500		06/26/18 16:58		
p-lsopropyltoluene	ND	ug/L	2500	500 500		06/26/18 16:58		
Methylene Chloride	ND	ug/L	2500	500 500		06/26/18 16:58		L1
		uy/L	5000	500 500		50/20/10 10.50	10-00-2	L 1

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Sample: TW-1	Lab ID: 923	88933001	Collected: 06/18/	18 14:00	Received: 06/19/1	8 10:29	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Meth	nod: EPA 82	260					
Methyl-tert-butyl ether	ND	ug/L	2500	500	06/2	26/18 16:58	3 1634-04-4	
Naphthalene	ND	ug/L	2500	500	06/2	26/18 16:58	3 91-20-3	
n-Propylbenzene	ND	ug/L	2500	500	06/2	26/18 16:58	3 103-65-1	
Styrene	ND	ug/L	2500	500	06/2	26/18 16:58	3 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	2500	500	06/2	26/18 16:58	8 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	2500	500	06/2	26/18 16:58	3 79-34-5	
Tetrachloroethene	ND	ug/L	2500	500	06/2	26/18 16:58	3 127-18-4	
Toluene	36900	ug/L	2500	500	06/2	26/18 16:58	3 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	2500	500	06/2	26/18 16:58	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	2500	500	06/2	26/18 16:58	3 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	2500	500	06/2	26/18 16:58	3 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2500	500	06/2	26/18 16:58	3 79-00-5	
Trichloroethene	ND	ug/L	2500	500	06/2	26/18 16:58	3 79-01-6	
Trichlorofluoromethane	ND	ug/L	5000	500	06/2	26/18 16:58	3 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	2500	500	06/2	26/18 16:58	3 96-18-4	
1,2,4-Trimethylbenzene	4460	ug/L	2500	500	06/2	26/18 16:58	3 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	2500	500	06/2	26/18 16:58	3 108-67-8	
Vinyl acetate	ND	ug/L	5000	500	06/2	26/18 16:58	3 108-05-4	
Vinyl chloride	ND	ug/L	2500	500	06/2	26/18 16:58	3 75-01-4	
m&p-Xylene	13500	ug/L	5000	500	06/2	26/18 16:58	3 179601-23-1	
o-Xylene	5680	ug/L	2500	500	06/2	26/18 16:58	3 95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	105	%	70-130	500	06/2	26/18 16:58	3 460-00-4	
1,2-Dichloroethane-d4 (S)	117	%	70-130	500	06/2	26/18 16:58	3 17060-07-0	
Toluene-d8 (S)	106	%	70-130	500	06/2	26/18 16:58	3 2037-26-5	

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Sample: TW-2	Lab ID: 9	2388933002	Collected: 06/18/7	18 14:30	Received: 06	6/19/18 10:29 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
MADEP EPH NC Water	Analytical M	ethod: MADE	P EPH Preparation I	Method:	MADEP EPH			
Aliphatic (C09-C18)	ND	ug/L	98.0	1	06/25/18 20:23	06/27/18 11:17		N2
Aliphatic (C19-C36)	ND	ug/L	98.0	1	06/25/18 20:23	06/27/18 11:17		N2
Aromatic (C11-C22)	181	ug/L	98.0	1	06/25/18 20:23	06/27/18 11:17		N2
Surrogates		-						
Nonatriacontane (S)	73	%	40-140	1	06/25/18 20:23	06/27/18 11:17	7194-86-7	
o-Terphenyl (S)	76	%	40-140	1	06/25/18 20:23	06/27/18 11:17	84-15-1	
2-Fluorobiphenyl (S)	86	%	40-140	1	06/25/18 20:23	06/27/18 11:17	321-60-8	
2-Bromonaphthalene (S)	88	%	40-140	1	06/25/18 20:23	06/27/18 11:17	580-13-2	
VPH NC Water	Analytical M	ethod: MADE	P VPH					
Aliphatic (C05-C08)	6510	ug/L	625	12.5		06/21/18 21:34		N2
Aliphatic (C09-C12)	2430	ug/L	625	12.5		06/21/18 21:34		N2
Aromatic (C09-C10)	1060	ug/L	625	12.5		06/21/18 21:34		N2
Surrogates		÷9,-						
4-Bromofluorobenzene (FID) (S)	97	%	70-130	12.5		06/21/18 21:34	460-00-4	
4-Bromofluorobenzene (PID) (S)	95	%	70-130	12.5		06/21/18 21:34	460-00-4	
8270 MSSV RVE Semivol Organic	Analytical M	ethod: EPA 82	270 Preparation Met	hod: EP	A 3510			
Acenaphthene	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	83-32-9	
Acenaphthylene	ND	ug/L	10.0	1		06/21/18 00:21		
Aniline	ND	ug/L	10.0	1		06/21/18 00:21		
Anthracene	ND	ug/L	10.0	1		06/21/18 00:21		
Benzo(a)anthracene	ND	ug/L	10.0	1		06/21/18 00:21		
Benzo(a)pyrene	ND	ug/L	10.0	1		06/21/18 00:21		
Benzo(b)fluoranthene	ND	ug/L	10.0	1		06/21/18 00:21		
Benzo(g,h,i)perylene	ND	ug/L	10.0	1		06/21/18 00:21		
Benzo(k)fluoranthene	ND	ug/L	10.0	1		06/21/18 00:21		
Benzoic Acid	ND	ug/L	50.0	1		06/21/18 00:21		
Benzyl alcohol	ND	ug/L	20.0	1		06/21/18 00:21		
4-Bromophenylphenyl ether	ND	ug/L	10.0	1		06/21/18 00:21		
Butylbenzylphthalate	ND	ug/L	10.0	1		06/21/18 00:21		
4-Chloro-3-methylphenol	ND	ug/L	20.0	1		06/21/18 00:21		
4-Chloroaniline	ND	ug/L	20.0	1		06/21/18 00:21		
bis(2-Chloroethoxy)methane	ND	ug/L	10.0	1		06/21/18 00:21		
bis(2-Chloroethyl) ether	ND	ug/L	10.0	1		06/21/18 00:21		
2-Chloronaphthalene	ND	ug/L	10.0	1		06/21/18 00:21		
2-Chlorophenol	ND	ug/L	10.0	1		06/21/18 00:21		
4-Chlorophenylphenyl ether	ND	ug/L	10.0	1		06/21/18 00:21		
Chrysene	ND	ug/L	10.0	1		06/21/18 00:21		
Dibenz(a,h)anthracene	ND	ug/L	10.0	1		06/21/18 00:21		
Dibenzofuran	ND	ug/L	10.0	1		06/21/18 00:21		
1,2-Dichlorobenzene	ND	-	10.0	1		06/21/18 00:21		
•	ND	ug/L	10.0	1		06/21/18 00:21		
1,3-Dichlorobenzene		ug/L						
1,4-Dichlorobenzene	ND	ug/L	10.0	1		06/21/18 00:21		
3,3'-Dichlorobenzidine	ND	ug/L	20.0	1		06/21/18 00:21		
2,4-Dichlorophenol	ND	ug/L	10.0	1		06/21/18 00:21		
Diethylphthalate	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	04-00-2	

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Sample: TW-2	Lab ID: 92388933002		Collected: 06/18/2	18 14:30	0 Received: 06/19/18 10:29 Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8270 MSSV RVE Semivol Organic	Analytical Meth	od: EPA 82	270 Preparation Met	hod: EP/	A 3510				
2,4-Dimethylphenol	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	105-67-9		
Dimethylphthalate	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	131-11-3		
Di-n-butylphthalate	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	84-74-2		
4,6-Dinitro-2-methylphenol	ND	ug/L	20.0	1	06/19/18 20:35	06/21/18 00:21	534-52-1		
2,4-Dinitrophenol	ND	ug/L	50.0	1	06/19/18 20:35	06/21/18 00:21	51-28-5		
2,4-Dinitrotoluene	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	121-14-2		
2,6-Dinitrotoluene	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	606-20-2		
Di-n-octylphthalate	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	117-84-0		
bis(2-Ethylhexyl)phthalate	ND	ug/L	6.0	1	06/19/18 20:35	06/21/18 00:21	117-81-7		
Fluoranthene	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	206-44-0		
Fluorene	ND	ug/L	10.0	1		06/21/18 00:21			
Hexachloro-1,3-butadiene	ND	ug/L	10.0	1		06/21/18 00:21			
Hexachlorobenzene	ND	ug/L	10.0	1		06/21/18 00:21			
Hexachlorocyclopentadiene	ND	ug/L	10.0	1		06/21/18 00:21			
Hexachloroethane	ND	ug/L	10.0	1		06/21/18 00:21			
Indeno(1,2,3-cd)pyrene	ND	ug/L	10.0	1		06/21/18 00:21			
Isophorone	ND	ug/L	10.0	1		06/21/18 00:21			
1-Methylnaphthalene	ND	ug/L	10.0	1		06/21/18 00:21			
2-Methylnaphthalene	16.2	ug/L	10.0	1		06/21/18 00:21			
2-Methylphenol(o-Cresol)	ND	ug/L	10.0	1		06/21/18 00:21			
3&4-Methylphenol(m&p Cresol)	ND	-	10.0	1		06/21/18 00:21			
	52.9	ug/L	10.0	1		06/21/18 00:21			
Naphthalene	52.9 ND	ug/L	50.0	1		06/21/18 00:21			
2-Nitroaniline		ug/L							
3-Nitroaniline	ND	ug/L	50.0	1		06/21/18 00:21			
4-Nitroaniline	ND	ug/L	20.0	1		06/21/18 00:21			
Nitrobenzene	ND	ug/L	10.0	1		06/21/18 00:21			
2-Nitrophenol	ND	ug/L	10.0	1		06/21/18 00:21			
4-Nitrophenol	ND	ug/L	50.0	1		06/21/18 00:21			
N-Nitrosodimethylamine	ND	ug/L	10.0	1		06/21/18 00:21			
N-Nitroso-di-n-propylamine	ND	ug/L	10.0	1		06/21/18 00:21			
N-Nitrosodiphenylamine	ND	ug/L	10.0	1		06/21/18 00:21			
2,2'-Oxybis(1-chloropropane)	ND	ug/L	10.0	1		06/21/18 00:21			
Pentachlorophenol	ND	ug/L	25.0	1		06/21/18 00:21			
Phenanthrene	ND	ug/L	10.0	1		06/21/18 00:21			
Phenol	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	108-95-2		
Pyrene	ND	ug/L	10.0	1		06/21/18 00:21			
1,2,4-Trichlorobenzene	ND	ug/L	10.0	1		06/21/18 00:21			
2,4,5-Trichlorophenol	ND	ug/L	10.0	1		06/21/18 00:21			
2,4,6-Trichlorophenol	ND	ug/L	10.0	1	06/19/18 20:35	06/21/18 00:21	88-06-2		
Surrogates						/ /.			
Nitrobenzene-d5 (S)	70	%	40-121	1		06/21/18 00:21			
2-Fluorobiphenyl (S)	59	%	45-139	1		06/21/18 00:21			
Terphenyl-d14 (S)	43	%	48-146	1		06/21/18 00:21		S0	
Phenol-d6 (S)	52	%	18-105	1	06/19/18 20:35	06/21/18 00:21	13127-88-3		
2-Fluorophenol (S)	56	%	13-118	1	06/19/18 20:35	06/21/18 00:21	367-12-4		
2,4,6-Tribromophenol (S)	77	%	31-170	1	06/19/18 20:35	06/21/18 00:21	118-79-6		

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Sample: TW-2	Lab ID: 92388933002		Collected: 06/18/1	8 14:30	0 Received: 06/19/18 10:29 Matrix: Water				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV	Analytical Meth	nod: EPA 82	260						
Acetone	ND	ug/L	500	20		06/26/18 17:15	67-64-1		
Benzene	1460	ug/L	100	20		06/26/18 17:15	71-43-2		
Bromobenzene	ND	ug/L	100	20		06/26/18 17:15	108-86-1		
Bromochloromethane	ND	ug/L	100	20		06/26/18 17:15	74-97-5		
Bromodichloromethane	ND	ug/L	100	20		06/26/18 17:15	75-27-4		
Bromoform	ND	ug/L	100	20		06/26/18 17:15	75-25-2		
Bromomethane	ND	ug/L	200	20		06/26/18 17:15	74-83-9		
2-Butanone (MEK)	ND	ug/L	200	20		06/26/18 17:15	78-93-3		
tert-Butyl Alcohol	ND	ug/L	2000	20		06/26/18 17:15	75-65-0		
n-Butylbenzene	ND	ug/L	100	20		06/26/18 17:15	104-51-8		
sec-Butylbenzene	ND	ug/L	100	20		06/26/18 17:15	135-98-8		
tert-Butylbenzene	ND	ug/L	100	20		06/26/18 17:15	98-06-6		
Carbon tetrachloride	ND	ug/L	100	20		06/26/18 17:15	56-23-5		
Chlorobenzene	ND	ug/L	100	20		06/26/18 17:15	108-90-7		
Chloroethane	ND	ug/L	200	20		06/26/18 17:15	75-00-3		
Chloroform	ND	ug/L	100	20		06/26/18 17:15	67-66-3		
Chloromethane	ND	ug/L	100	20		06/26/18 17:15	74-87-3		
2-Chlorotoluene	ND	ug/L	100	20		06/26/18 17:15	95-49-8		
4-Chlorotoluene	ND	ug/L	100	20		06/26/18 17:15	106-43-4		
1,2-Dibromo-3-chloropropane	ND	ug/L	40.0	20		06/26/18 17:15	96-12-8		
Dibromochloromethane	ND	ug/L	100	20		06/26/18 17:15	124-48-1		
1,2-Dibromoethane (EDB)	ND	ug/L	100	20		06/26/18 17:15	106-93-4		
Dibromomethane	ND	ug/L	100	20		06/26/18 17:15	74-95-3		
1,2-Dichlorobenzene	ND	ug/L	100	20		06/26/18 17:15	95-50-1		
1,3-Dichlorobenzene	ND	ug/L	100	20		06/26/18 17:15	541-73-1		
1,4-Dichlorobenzene	ND	ug/L	100	20		06/26/18 17:15	106-46-7		
Dichlorodifluoromethane	ND	ug/L	100	20		06/26/18 17:15			
1,1-Dichloroethane	ND	ug/L	100	20		06/26/18 17:15	75-34-3		
1,2-Dichloroethane	ND	ug/L	100	20		06/26/18 17:15			
1,2-Dichloroethene (Total)	ND	ug/L	100	20		06/26/18 17:15			
1,1-Dichloroethene	ND	ug/L	100	20		06/26/18 17:15			
cis-1,2-Dichloroethene	ND	ug/L	100	20		06/26/18 17:15			
trans-1,2-Dichloroethene	ND	ug/L	100	20		06/26/18 17:15			
1,2-Dichloropropane	ND	ug/L	100	20		06/26/18 17:15			
1,3-Dichloropropane	ND	ug/L	100	20		06/26/18 17:15			
2,2-Dichloropropane	ND	ug/L	100	20		06/26/18 17:15			
1,1-Dichloropropene	ND	ug/L	100	20		06/26/18 17:15			
cis-1,3-Dichloropropene	ND	ug/L	100	20		06/26/18 17:15			
trans-1,3-Dichloropropene	ND	ug/L	100	20		06/26/18 17:15			
Diisopropyl ether	ND	ug/L	100	20		06/26/18 17:15			
Ethylbenzene	244	ug/L	100	20		06/26/18 17:15			
Hexachloro-1,3-butadiene	ND	ug/L	100	20		06/26/18 17:15			
2-Hexanone	ND	ug/L	200	20		06/26/18 17:15			
Isopropylbenzene (Cumene)	ND	ug/L	100	20		06/26/18 17:15			
p-lsopropyltoluene	ND	ug/∟ ug/L	100	20		06/26/18 17:15			
Methylene Chloride	ND	ug/L ug/L	100	20		06/26/18 17:15		L1	
		uy/L	100	20		00/20/10 17.10	10-00-2	L I	

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Sample: TW-2	Lab ID: 923	88933002	Collected: 06/18/1	8 14:30	Received: 06/19/18 10:29	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyze	ed CAS No.	Qual
8260 MSV	Analytical Meth	nod: EPA 82	260				
Methyl-tert-butyl ether	486	ug/L	100	20	06/26/18 1	7:15 1634-04-4	
Naphthalene	ND	ug/L	100	20	06/26/18 1	7:15 91-20-3	
n-Propylbenzene	ND	ug/L	100	20	06/26/18 1	7:15 103-65-1	
Styrene	ND	ug/L	100	20	06/26/18 1	7:15 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	100	20	06/26/18 1	7:15 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	100	20	06/26/18 1	7:15 79-34-5	
Tetrachloroethene	ND	ug/L	100	20	06/26/18 1	7:15 127-18-4	
Toluene	2670	ug/L	100	20	06/26/18 1	7:15 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	100	20	06/26/18 1	7:15 87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	100	20	06/26/18 1	7:15 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	100	20	06/26/18 1	7:15 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	100	20	06/26/18 1	7:15 79-00-5	
Trichloroethene	ND	ug/L	100	20	06/26/18 1	7:15 79-01-6	
Trichlorofluoromethane	ND	ug/L	200	20	06/26/18 1	7:15 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	100	20	06/26/18 1	7:15 96-18-4	
1,2,4-Trimethylbenzene	193	ug/L	100	20	06/26/18 1	7:15 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	100	20	06/26/18 1	7:15 108-67-8	
Vinyl acetate	ND	ug/L	200	20	06/26/18 1	7:15 108-05-4	
Vinyl chloride	ND	ug/L	100	20	06/26/18 1	7:15 75-01-4	
m&p-Xylene	652	ug/L	200	20	06/26/18 1	7:15 179601-23-1	
o-Xylene	297	ug/L	100	20	06/26/18 1	7:15 95-47-6	
Surrogates							
4-Bromofluorobenzene (S)	104	%	70-130	20	06/26/18 1	7:15 460-00-4	
1,2-Dichloroethane-d4 (S)	116	%	70-130	20	06/26/18 1	7:15 17060-07-0	
Toluene-d8 (S)	106	%	70-130	20	06/26/18 1	7:15 2037-26-5	

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Aliphatic (C05-C08)

Aliphatic (C09-C12)

Aromatic (C09-C10)

4-Bromofluorobenzene (FID) (S)

4-Bromofluorobenzene (PID) (S)

Pace Project No.: 92388933								
QC Batch: 416111		Analysis Me	thod: M	ADEP VPH				
QC Batch Method: MADEP VPH		Analysis De	scription: VI	PH NC Water				
Associated Lab Samples: 923889	33001, 92388933002							
METHOD BLANK: 2307517		Matrix	Water					
Associated Lab Samples: 923889	33001, 92388933002							
		Blank	Reporting					
Parameter	Units	Result	Limit	Analyzed	Qualifier	rs		
Aliphatic (C05-C08)	ug/L	ND	50.0	06/21/18 17:16	N2			
Aliphatic (C09-C12)	ug/L	ND	50.0	06/21/18 17:16	N2			
Aromatic (C09-C10)	ug/L	ND	50.0	06/21/18 17:16	N2			
4-Bromofluorobenzene (FID) (S)	%	84	70-130	06/21/18 17:16				
4-Bromofluorobenzene (PID) (S)	%	82	70-130	06/21/18 17:16				
LABORATORY CONTROL SAMPLE	& LCSD: 2307518		2307519					
		Spike LO	CS LCSD	LCS LCSD	% Rec		Max	
Parameter	Units	•	sult Result	% Rec % Rec	Limits	RPD	RPD	Qualifiers

384

324

102

370

314

99.7

128

108

102

111

110

123

105

100

106

104

70-130

30-130

70-130

70-130

70-130

4

3

2

25 N2

25 N2

25 N2

300

300

100

ug/L

ug/L

ug/L

%

%

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

Pace Project No.: 92388933	3					
QC Batch: 416640		Analysis Meth	nod: EF	PA 8260		
QC Batch Method: EPA 82	60	Analysis Des	cription: 82	60 MSV		
Associated Lab Samples: 9	2388933001, 92388933002					
METHOD BLANK: 2310251		Matrix:	Water			
Associated Lab Samples: 9	2388933001, 92388933002					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	06/26/18 13:21		
1,1,1-Trichloroethane	ug/L	ND	5.0	06/26/18 13:21		
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	06/26/18 13:21		
1,1,2-Trichloroethane	ug/L	ND	5.0	06/26/18 13:21		
1,1-Dichloroethane	ug/L	ND	5.0	06/26/18 13:21		
1,1-Dichloroethene	ug/L	ND	5.0	06/26/18 13:21		
1,1-Dichloropropene	ug/L	ND	5.0	06/26/18 13:21		
1,2,3-Trichlorobenzene	ug/L	ND	5.0	06/26/18 13:21		
1,2,3-Trichloropropane	ug/L	ND	5.0	06/26/18 13:21		
1,2,4-Trichlorobenzene	ug/L	ND	5.0	06/26/18 13:21		
1,2,4-Trimethylbenzene	ug/L	ND	5.0	06/26/18 13:21		
1,2-Dibromo-3-chloropropane	ug/L	ND	2.0	06/26/18 13:21		
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	06/26/18 13:21		
1,2-Dichlorobenzene	ug/L	ND	5.0	06/26/18 13:21		
1,2-Dichloroethane	ug/L	ND	5.0	06/26/18 13:21		
1,2-Dichloroethene (Total)	ug/L	ND	5.0	06/26/18 13:21		
1,2-Dichloropropane	ug/L	ND	5.0	06/26/18 13:21		
1,3,5-Trimethylbenzene	ug/L	ND	5.0	06/26/18 13:21		
1,3-Dichlorobenzene	ug/L	ND	5.0	06/26/18 13:21		
1,3-Dichloropropane	ug/L	ND	5.0	06/26/18 13:21		
1,4-Dichlorobenzene	ug/L	ND	5.0	06/26/18 13:21		
2,2-Dichloropropane	ug/L	ND	5.0	06/26/18 13:21		
2-Butanone (MEK)	ug/L	ND	10.0	06/26/18 13:21		
2-Chlorotoluene	ug/L	ND	5.0	06/26/18 13:21		
2-Hexanone	ug/L	ND	10.0	06/26/18 13:21		
4-Chlorotoluene	ug/L	ND	5.0	06/26/18 13:21		
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	06/26/18 13:21		
Acetone	ug/L	ND	25.0	06/26/18 13:21		
Benzene	ug/L	ND	5.0	06/26/18 13:21		
Bromobenzene	ug/L	ND	5.0	06/26/18 13:21		
Bromochloromethane	ug/L	ND	5.0	06/26/18 13:21		
Bromodichloromethane	ug/L	ND	5.0	06/26/18 13:21		
Bromoform	ug/L	ND	5.0	06/26/18 13:21		
Bromomethane	ug/L	ND	10.0	06/26/18 13:21		
Carbon tetrachloride	ug/L	ND	5.0	06/26/18 13:21		
Chlorobenzene	ug/L	ND	5.0	06/26/18 13:21		
Chloroethane	ug/L	ND	10.0	06/26/18 13:21		
Chloroform	ug/L	ND	5.0	06/26/18 13:21		
Chloromethane	ug/L	ND	5.0	06/26/18 13:21		
cis-1,2-Dichloroethene	ug/L	ND	5.0	06/26/18 13:21		
cis-1,3-Dichloropropene	ug/L	ND	5.0	06/26/18 13:21		
,	3		210			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT 38979.1.2 Pace Project No : 92388933

Pace Project No.:	92388933	

METHOD BLANK: 2310251		Matrix:	Water		
Associated Lab Samples: 923889	933001, 92388933002				
-		Blank	Reporting		0 11/1
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromochloromethane	ug/L	ND	5.0	06/26/18 13:21	
Dibromomethane	ug/L	ND	5.0	06/26/18 13:21	
Dichlorodifluoromethane	ug/L	ND	5.0	06/26/18 13:21	
Diisopropyl ether	ug/L	ND	5.0	06/26/18 13:21	
Ethylbenzene	ug/L	ND	5.0	06/26/18 13:21	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	06/26/18 13:21	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	06/26/18 13:21	
m&p-Xylene	ug/L	ND	10.0	06/26/18 13:21	
Methyl-tert-butyl ether	ug/L	ND	5.0	06/26/18 13:21	
Methylene Chloride	ug/L	ND	5.0	06/26/18 13:21	
n-Butylbenzene	ug/L	ND	5.0	06/26/18 13:21	
n-Propylbenzene	ug/L	ND	5.0	06/26/18 13:21	
Naphthalene	ug/L	ND	5.0	06/26/18 13:21	
o-Xylene	ug/L	ND	5.0	06/26/18 13:21	
p-Isopropyltoluene	ug/L	ND	5.0	06/26/18 13:21	
sec-Butylbenzene	ug/L	ND	5.0	06/26/18 13:21	
Styrene	ug/L	ND	5.0	06/26/18 13:21	
tert-Butyl Alcohol	ug/L	ND	100	06/26/18 13:21	
tert-Butylbenzene	ug/L	ND	5.0	06/26/18 13:21	
Tetrachloroethene	ug/L	ND	5.0	06/26/18 13:21	
Toluene	ug/L	ND	5.0	06/26/18 13:21	
trans-1,2-Dichloroethene	ug/L	ND	5.0	06/26/18 13:21	
trans-1,3-Dichloropropene	ug/L	ND	5.0	06/26/18 13:21	
Trichloroethene	ug/L	ND	5.0	06/26/18 13:21	
Trichlorofluoromethane	ug/L	ND	10.0	06/26/18 13:21	
Vinyl acetate	ug/L	ND	10.0	06/26/18 13:21	
Vinyl chloride	ug/L	ND	5.0	06/26/18 13:21	
1,2-Dichloroethane-d4 (S)	%	119	70-130	06/26/18 13:21	
4-Bromofluorobenzene (S)	%	104	70-130	06/26/18 13:21	
Toluene-d8 (S)	%	110	70-130	06/26/18 13:21	

LABORATORY CONTROL SAMPLE: 2310252

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		53.5	107	80-125	
1,1,1-Trichloroethane	ug/L	50	53.5	107	71-129	
1,1,2,2-Tetrachloroethane	ug/L	50	51.8	104	79-124	
1,1,2-Trichloroethane	ug/L	50	53.5	107	85-125	
1,1-Dichloroethane	ug/L	50	53.8	108	73-126	
1,1-Dichloroethene	ug/L	50	56.0	112	66-135	
1,1-Dichloropropene	ug/L	50	56.5	113	74-135	
1,2,3-Trichlorobenzene	ug/L	50	49.7	99	73-135	
1,2,3-Trichloropropane	ug/L	50	50.9	102	75-130	
1,2,4-Trichlorobenzene	ug/L	50	51.3	103	75-134	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

LABORATORY CONTROL SAMPLE:	2310252					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trimethylbenzene	ug/L		49.2	98	79-125	
1,2-Dibromo-3-chloropropane	ug/L	50	52.3	105	71-133	
1,2-Dibromoethane (EDB)	ug/L	50	53.1	106	83-124	
1,2-Dichlorobenzene	ug/L	50 50	49.7	99	80-133	
1,2-Dichloroethane	ug/L	50	51.2	102	67-128	
		100	109	102	73-128	
1,2-Dichloroethene (Total)	ug/L	50	52.9	109	75-120	
1,2-Dichloropropane	ug/L					
1,3,5-Trimethylbenzene	ug/L	50	49.7	99	79-123	
1,3-Dichlorobenzene	ug/L	50	49.9	100	77-130	
1,3-Dichloropropane	ug/L	50	54.4	109	76-131	
1,4-Dichlorobenzene	ug/L	50	48.7	97	78-130	
2,2-Dichloropropane	ug/L	50	55.2	110	40-160	
2-Butanone (MEK)	ug/L	100	126	126	61-144	
2-Chlorotoluene	ug/L	50	48.7	97	74-132	
2-Hexanone	ug/L	100	112	112	68-143	
4-Chlorotoluene	ug/L	50	48.7	97	76-133	
4-Methyl-2-pentanone (MIBK)	ug/L	100	111	111	72-135	
Acetone	ug/L	100	117	117	48-146	
Benzene	ug/L	50	53.5	107	80-125	
Bromobenzene	ug/L	50	50.2	100	75-125	
Bromochloromethane	ug/L	50	50.7	101	71-125	
Bromodichloromethane	ug/L	50	53.4	107	78-124	
Bromoform	ug/L	50	54.4	109	71-128	
Bromomethane	ug/L	50	33.1	66	40-160	
Carbon tetrachloride	ug/L	50	51.0	102	69-131	
Chlorobenzene	ug/L	50	49.4	99	81-122	
Chloroethane	ug/L	50	38.9	78	39-148	
Chloroform	ug/L	50	53.8	108	73-127	
Chloromethane	ug/L	50	37.4	75	44-146	
cis-1,2-Dichloroethene	ug/L	50	55.0	110	74-124	
cis-1,3-Dichloropropene	ug/L	50	57.1	114	72-132	
Dibromochloromethane	ug/L	50	54.0	108	78-125	
Dibromomethane	ug/L	50	48.7	97	82-120	
Dichlorodifluoromethane	ug/L	50	57.6	115	34-157	
Diisopropyl ether	ug/L	50	60.8	122	69-135	
Ethylbenzene	ug/L	50	49.0	98	79-121	
Hexachloro-1,3-butadiene	ug/L	50	48.6	97	72-131	
Isopropylbenzene (Cumene)	ug/L	50	49.6	99	81-132	
m&p-Xylene	ug/L	100	98.4	98	81-124	
Methyl-tert-butyl ether	ug/L	50	56.9	114	74-131	
Methylene Chloride	ug/L	50 50	71.8	144	64-133 L	1
n-Butylbenzene	ug/L	50 50	50.0	144	78-127	- 1
-	-					
n-Propylbenzene	ug/L	50	50.2	100	78-130	
Naphthalene	ug/L	50 50	50.4	101	73-133	
o-Xylene	ug/L	50	49.7	99	79-131	
p-Isopropyltoluene	ug/L	50	49.2	98	80-131	
sec-Butylbenzene	ug/L	50	50.0	100	80-133	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

LABORATORY CONTROL SAMPLE: 2310252

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Styrene	ug/L	50	50.4	101	84-126	
tert-Butyl Alcohol	ug/L	500	555	111	36-136	
tert-Butylbenzene	ug/L	50	49.1	98	77-133	
Tetrachloroethene	ug/L	50	51.2	102	78-122	
Toluene	ug/L	50	50.0	100	80-121	
ans-1,2-Dichloroethene	ug/L	50	54.0	108	71-127	
rans-1,3-Dichloropropene	ug/L	50	56.0	112	69-141	
richloroethene	ug/L	50	53.9	108	78-122	
richlorofluoromethane	ug/L	50	40.1	80	53-137	
inyl acetate	ug/L	100	123	123	40-160	
inyl chloride	ug/L	50	52.9	106	58-137	
,2-Dichloroethane-d4 (S)	%			92	70-130	
-Bromofluorobenzene (S)	%			97	70-130	
oluene-d8 (S)	%			97	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2310253					2310254						
	923	388933001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,2-Tetrachloroethane	ug/L	ND	10000	10000	8970	9830	90	98	70-130	9	
1,1-Trichloroethane	ug/L	ND	10000	10000	10700	11600	107	116	70-130	8	
1,2,2-Tetrachloroethane	ug/L	ND	10000	10000	8710	9550	87	96	70-130	9	
1,2-Trichloroethane	ug/L	ND	10000	10000	9070	9950	91	99	70-130	9	
1-Dichloroethane	ug/L	ND	10000	10000	10900	11500	109	115	70-130	6	
1-Dichloroethene	ug/L	ND	10000	10000	11300	12300	113	123	65-160	8	
,1-Dichloropropene	ug/L	ND	10000	10000	11000	12300	110	123	70-130	11	
2,3-Trichlorobenzene	ug/L	ND	10000	10000	8080	8990	81	90	70-130	11	
2,3-Trichloropropane	ug/L	ND	10000	10000	9140	9930	91	99	70-130	8	
2,4-Trichlorobenzene	ug/L	ND	10000	10000	8430	9320	84	93	70-130	10	
2,4-Trimethylbenzene	ug/L	4460	10000	10000	13100	14100	86	96	70-130	8	
2-Dibromo-3-chloropropane	ug/L	ND	10000	10000	7820	9210	78	92	70-130	16	
2-Dibromoethane (EDB)	ug/L	ND	10000	10000	9120	9880	91	99	60-139	8	
2-Dichlorobenzene	ug/L	ND	10000	10000	8410	9470	84	95	70-130	12	
2-Dichloroethane	ug/L	ND	10000	10000	10300	11300	103	113	70-130	9	
2-Dichloroethene (Total)	ug/L	ND	20000	20000	21600	23200	108	116	70-130	7	
2-Dichloropropane	ug/L	ND	10000	10000	9540	10400	95	104	70-130	8	
3,5-Trimethylbenzene	ug/L	ND	10000	10000	10000	11000	88	98	70-130	9	
,3-Dichlorobenzene	ug/L	ND	10000	10000	8470	9550	85	95	70-130	12	
3-Dichloropropane	ug/L	ND	10000	10000	9520	10300	95	103	70-130	8	
4-Dichlorobenzene	ug/L	ND	10000	10000	8380	9300	84	93	70-130	10	
2-Dichloropropane	ug/L	ND	10000	10000	10800	11900	108	119	70-130	9	
-Butanone (MEK)	ug/L	ND	20000	20000	19000	21400	95	107	70-130	12	
-Chlorotoluene	ug/L	ND	10000	10000	9360	10300	94	103	70-130	10	
-Hexanone	ug/L	ND	20000	20000	17700	20100	88	101	70-130	13	
-Chlorotoluene	ug/L	ND	10000	10000	8760	9710	88	97	70-130	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2310253			2310254								
			MS	MSD							
	9238	8933001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
4-Methyl-2-pentanone (MIBK)	ug/L	ND	20000	20000	17200	19400	86	97	70-130	12	
Acetone	ug/L	ND	20000	20000	21500	23000	108	115	70-130	7	
Benzene	ug/L	7850	10000	10000	18200	19200	103	113	58-162	5	
Bromobenzene	ug/L	ND	10000	10000	8460	9410	85	94	70-130	11	
Bromochloromethane	ug/L	ND	10000	10000	9940	10100	99	101	70-130	2	
Bromodichloromethane	ug/L	ND	10000	10000	9590	10600	96	106	70-130	10	
Bromoform	ug/L	ND	10000	10000	8720	9310	87	93	70-130	7	
Bromomethane	ug/L	ND	10000	10000	6720	7640	67	76	70-130	13 M1	
Carbon tetrachloride	ug/L	ND	10000	10000	10200	11100	102	111	70-130	8	
Chlorobenzene	ug/L	ND	10000	10000	8820	9740	88	97	70-138	10	
Chloroethane	ug/L	ND	10000	10000	9460	9960	95	100	70-130	5	
Chloroform	ug/L	ND	10000	10000	10500	11300	105	113	70-130	8	
Chloromethane	ug/L	ND	10000	10000	7560	8390	74	82	70-130	10	
cis-1,2-Dichloroethene	ug/L	ND	10000	10000	10600	11400	106	114	70-130	7	
cis-1,3-Dichloropropene	ug/L	ND	10000	10000	9990	11000	100	110	70-130	10	
Dibromochloromethane	ug/L	ND	10000	10000	9220	9870	92	99	70-130	7	
Dibromomethane	ug/L	ND	10000	10000	8890	9580	89	96	70-130	7	
Dichlorodifluoromethane	ug/L	ND	10000	10000	9970	10500	100	105	70-130	5	
Diisopropyl ether	ug/L	ND	10000	10000	10400	11000	104	110	70-130	6	
Ethylbenzene	ug/L	3800	10000	10000	13200	14000	94	102	22-189	6	
Hexachloro-1,3-butadiene	ug/L	ND	10000	10000	8470	9090	85	91	70-130	7	
Isopropylbenzene (Cumene)	ug/L	ND	10000	10000	9550	10200	95	102	70-130	6	
m&p-Xylene	ug/L	13500	20000	20000	32200	33500	93	100	32-193	4	
Methyl-tert-butyl ether	ug/L	ND	10000	10000	10700	12300	101	117	37-169	14	
Methylene Chloride	ug/L	ND	10000	10000	11700	13000	112	125	70-130	11	
n-Butylbenzene	ug/L	ND	10000	10000	9300	10100	93	101	70-130	8	
n-Propylbenzene	ug/L	ND	10000	10000	9850	10800	98	108	70-130	9	
Naphthalene	ug/L	ND	10000	10000	9130	10300	80	92	19-212	12	
o-Xylene	ug/L	5680	10000	10000	15200	16000	95	103	70-135	5	
p-Isopropyltoluene	ug/L	ND	10000	10000	8870	9760	89	98	70-130	10	
sec-Butylbenzene	ug/L	ND	10000	10000	9100	9950	91	100	70-130	9	
Styrene	ug/L	ND	10000	10000	9080	9880	91	99	70-130	8	
tert-Butyl Alcohol	ug/L	ND	100000	100000	86800	101000	87	101	70-130	16	
tert-Butylbenzene	ug/L	ND	10000	10000	7800	8690	78	87	70-130	11	
Tetrachloroethene	ug/L	ND	10000	10000	8940	9840	89	98	70-130	10	
Toluene	ug/L	36900	10000	10000	43400	44200	65	72	65-152	2	
trans-1,2-Dichloroethene	ug/L	ND	10000	10000	11000	11800	110	118	70-130	7	
trans-1,3-Dichloropropene	ug/L	ND	10000	10000	9980	10800	100	108	70-130	7	
Trichloroethene	ug/L	ND	10000	10000	9680	10300	97	103	70-142	6	
Trichlorofluoromethane	ug/L	ND	10000	10000	11000	11600	110	116	70-130	6	
Vinyl acetate	ug/L	ND	20000	20000	19000	21000	95	105	70-130	10	
Vinyl chloride	ug/L	ND	10000	10000	10600	11200	106	103	70-130	6	
1,2-Dichloroethane-d4 (S)	ug/∟ %		10000	10000	10000	11200	100	112	70-130	5	
4-Bromofluorobenzene (S)	%						103	103	70-130		
Toluene-d8 (S)	%						104	99	70-130		
	70						100	33	10-150		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT 38979.1.2

	2					
Pace Project No.: 92388933						
QC Batch: 415852		Analysis Metl	nod: EF	PA 8270		
QC Batch Method: EPA 3510		Analysis Des	cription: 82	70 Water MSSV R	VE	
Associated Lab Samples: 92388933	001, 92388933002					
METHOD BLANK: 2306104		Matrix:	Water			
Associated Lab Samples: 92388933	001, 92388933002					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1,2,4-Trichlorobenzene	ug/L	ND	10.0	06/20/18 13:22		
1,2-Dichlorobenzene	ug/L	ND	10.0	06/20/18 13:22		
1,3-Dichlorobenzene	ug/L	ND	10.0	06/20/18 13:22		
1,4-Dichlorobenzene	ug/L	ND	10.0	06/20/18 13:22		
1-Methylnaphthalene	ug/L	ND	10.0	06/20/18 13:22		
2,2'-Oxybis(1-chloropropane)	ug/L	ND	10.0	06/20/18 13:22		
2,4,5-Trichlorophenol	ug/L	ND	10.0	06/20/18 13:22		
2,4,6-Trichlorophenol	ug/L	ND	10.0	06/20/18 13:22		
2,4-Dichlorophenol	ug/L	ND	10.0	06/20/18 13:22		
2,4-Dimethylphenol	ug/L	ND	10.0	06/20/18 13:22		
2,4-Dinitrophenol	ug/L	ND	50.0	06/20/18 13:22		
2,4-Dinitrotoluene	ug/L	ND	10.0	06/20/18 13:22		
2,6-Dinitrotoluene	ug/L	ND	10.0	06/20/18 13:22		
2-Chloronaphthalene	ug/L	ND	10.0	06/20/18 13:22		
2-Chlorophenol	ug/L	ND	10.0	06/20/18 13:22		
2-Methylnaphthalene	ug/L	ND	10.0	06/20/18 13:22		
2-Methylphenol(o-Cresol)	ug/L	ND	10.0	06/20/18 13:22		
2-Nitroaniline	ug/L	ND	50.0	06/20/18 13:22		
2-Nitrophenol	ug/L	ND	10.0	06/20/18 13:22		
3&4-Methylphenol(m&p Cresol)	ug/L	ND	10.0	06/20/18 13:22		
3,3'-Dichlorobenzidine	ug/L	ND	20.0	06/20/18 13:22		
3-Nitroaniline	ug/L	ND	50.0	06/20/18 13:22		
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	06/20/18 13:22		

ND

ug/L

10.0 06/20/18 13:22

20.0 06/20/18 13:22

20.0 06/20/18 13:22

10.0 06/20/18 13:22

20.0 06/20/18 13:22

50.0 06/20/18 13:22

10.0 06/20/18 13:22

10.0 06/20/18 13:22

10.0 06/20/18 13:22

10.0 06/20/18 13:22

10.0 06/20/18 13:22 10.0 06/20/18 13:22

10.0 06/20/18 13:22

10.0 06/20/18 13:22

10.0 06/20/18 13:22

50.0 06/20/18 13:22

20.0 06/20/18 13:22

10.0 06/20/18 13:22

REPORT OF LABORATORY ANALYSIS

4-Bromophenylphenyl ether

4-Chlorophenylphenyl ether

4-Chloro-3-methylphenol

4-Chloroaniline

4-Nitroaniline

4-Nitrophenol

Acenaphthene

Aniline

Anthracene

Acenaphthylene

Benzo(a)pyrene

Benzoic Acid

Benzyl alcohol

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

bis(2-Chloroethoxy)methane

Project: NCDOT 38979.1.2 Pace Project No.: 92388933

-					
METHOD BLANK: 2306104	4	Matrix:	Water		
Associated Lab Samples: Parameter	92388933001, 92388933002 Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
bis(2-Chloroethyl) ether	ug/L	ND	10.0	06/20/18 13:22	
bis(2-Ethylhexyl)phthalate	ug/L	ND	6.0	06/20/18 13:22	
Butylbenzylphthalate	ug/L	ND	10.0	06/20/18 13:22	
Chrysene	ug/L	ND	10.0	06/20/18 13:22	
Di-n-butylphthalate	ug/L	ND	10.0	06/20/18 13:22	
Di-n-octylphthalate	ug/L	ND	10.0	06/20/18 13:22	
Dibenz(a,h)anthracene	ug/L	ND	10.0	06/20/18 13:22	
Dibenzofuran	ug/L	ND	10.0	06/20/18 13:22	
Diethylphthalate	ug/L	ND	10.0	06/20/18 13:22	
Dimethylphthalate	ug/L	ND	10.0	06/20/18 13:22	
Fluoranthene	ug/L	ND	10.0	06/20/18 13:22	
Fluorene	ug/L	ND	10.0	06/20/18 13:22	
Hexachloro-1,3-butadiene	ug/L	ND	10.0	06/20/18 13:22	
Hexachlorobenzene	ug/L	ND	10.0	06/20/18 13:22	
Hexachlorocyclopentadiene	ug/L	ND	10.0	06/20/18 13:22	
Hexachloroethane	ug/L	ND	10.0	06/20/18 13:22	
Indeno(1,2,3-cd)pyrene	ug/L	ND	10.0	06/20/18 13:22	
Isophorone	ug/L	ND	10.0	06/20/18 13:22	
N-Nitroso-di-n-propylamine	ug/L	ND	10.0	06/20/18 13:22	
N-Nitrosodimethylamine	ug/L	ND	10.0	06/20/18 13:22	
N-Nitrosodiphenylamine	ug/L	ND	10.0	06/20/18 13:22	
Naphthalene	ug/L	ND	10.0	06/20/18 13:22	
Nitrobenzene	ug/L	ND	10.0	06/20/18 13:22	
Pentachlorophenol	ug/L	ND	25.0	06/20/18 13:22	
Phenanthrene	ug/L	ND	10.0	06/20/18 13:22	
Phenol	ug/L	ND	10.0	06/20/18 13:22	
Pyrene	ug/L	ND	10.0	06/20/18 13:22	
2,4,6-Tribromophenol (S)	%	75	31-170	06/20/18 13:22	
2-Fluorobiphenyl (S)	%	66	45-139	06/20/18 13:22	
2-Fluorophenol (S)	%	57	13-118	06/20/18 13:22	
Nitrobenzene-d5 (S)	%	69	40-121	06/20/18 13:22	
Phenol-d6 (S)	%	47	18-105	06/20/18 13:22	
Terphenyl-d14 (S)	%	57	48-146	06/20/18 13:22	

LABORATORY CONTROL SAMPLE: 2306105

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L		23.2	46	31-120	
1,2-Dichlorobenzene	ug/L	50	24.1	48	38-120	
1,3-Dichlorobenzene	ug/L	50	22.5	45	30-122	
1,4-Dichlorobenzene	ug/L	50	25.8	52	37-120	
1-Methylnaphthalene	ug/L	50	30.7	61	34-113	
2,2'-Oxybis(1-chloropropane)	ug/L	50	17.0	34	18-120	
2,4,5-Trichlorophenol	ug/L	50	34.4	69	43-113	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

LCS

% Rec

% Rec

Limits

Qualifiers

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

LABORATORY CONTROL SAMPLE: 2306105 Spike LCS Parameter Units Conc. Result 2,4,6-Trichlorophenol ug/L 50 3

				/		
2,4,6-Trichlorophenol	ug/L		32.7	65	42-120	
2,4-Dichlorophenol	ug/L	50	38.9	78	30-120	
2,4-Dimethylphenol	ug/L	50	34.4	69	29-111	
2,4-Dinitrophenol	ug/L	250	62.5	25	19-132	
2,4-Dinitrotoluene	ug/L	50	36.8	74	58-128	
2,6-Dinitrotoluene	ug/L	50	36.0	72	54-129	
2-Chloronaphthalene	ug/L	50	26.0	52	43-117	
2-Chlorophenol	ug/L	50	33.8	68	37-120	
2-Methylnaphthalene	ug/L	50	31.1	62	33-120	
2-Methylphenol(o-Cresol)	ug/L	50	39.7	79	31-120	
2-Nitroaniline		100	58.8	59	48-121	
	ug/L	50				
2-Nitrophenol	ug/L		33.8	68	25-116	
3&4-Methylphenol(m&p Cresol)	ug/L	50	34.1	68	23-120	
3,3'-Dichlorobenzidine	ug/L	100	59.1	59	10-154	
3-Nitroaniline	ug/L	100	70.3	70	43-115	
4,6-Dinitro-2-methylphenol	ug/L	100	61.1	61	44-124	
4-Bromophenylphenyl ether	ug/L	50	34.8	70	34-113	
4-Chloro-3-methylphenol	ug/L	100	77.6	78	31-110	
4-Chloroaniline	ug/L	100	73.6	74	20-120	
4-Chlorophenylphenyl ether	ug/L	50	30.7	61	34-116	
1-Nitroaniline	ug/L	100	69.1	69	46-128	
4-Nitrophenol	ug/L	250	109	43	11-120	
Acenaphthene	ug/L	50	30.2	60	48-114	
Acenaphthylene	ug/L	50	31.6	63	48-112	
Aniline	ug/L	50	25.2	50	26-120	
Anthracene	ug/L	50	39.0	78	57-118	
Benzo(a)anthracene	ug/L	50	37.1	74	56-121	
Benzo(a)pyrene	ug/L	50	36.8	74	55-127	
Benzo(b)fluoranthene	-	50 50	36.5	74	53-127	
	ug/L	50 50	38.1	73	54-125	
Benzo(g,h,i)perylene	ug/L					
Benzo(k)fluoranthene	ug/L	50	39.6	79	51-123	
Benzoic Acid	ug/L	250	26.8J	11	10-120	
Benzyl alcohol	ug/L	100	68.0	68	27-120	
bis(2-Chloroethoxy)methane	ug/L	50	36.0	72	32-120	
bis(2-Chloroethyl) ether	ug/L	50	33.6	67	33-111	
bis(2-Ethylhexyl)phthalate	ug/L	50	33.9	68	50-145	
Butylbenzylphthalate	ug/L	50	33.2	66	54-138	
Chrysene	ug/L	50	36.8	74	58-127	
Di-n-butylphthalate	ug/L	50	36.6	73	56-125	
Di-n-octylphthalate	ug/L	50	30.9	62	50-134	
Dibenz(a,h)anthracene	ug/L	50	39.3	79	53-129	
Dibenzofuran	ug/L	50	32.8	66	45-120	
Diethylphthalate	ug/L	50	34.4	69	53-120	
Dimethylphthalate	ug/L	50	34.8	70	55-116	
Fluoranthene	ug/L	50	38.0	76	57-125	
Fluorene	ug/L	50	34.6	69	53-118	
	-	50 50	19.9	40	23-110	
Hexachloro-1,3-butadiene	ug/L	50	19.9	40	23-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

LABORATORY CONTROL SAMPLE: 2306105

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
lexachlorobenzene	ug/L		37.1	74	49-116	
lexachlorocyclopentadiene	ug/L	50	14.5	29	26-158	
lexachloroethane	ug/L	50	22.1	44	30-114	
deno(1,2,3-cd)pyrene	ug/L	50	38.7	77	55-128	
ophorone	ug/L	50	31.5	63	31-118	
Nitroso-di-n-propylamine	ug/L	50	39.1	78	32-119	
Nitrosodimethylamine	ug/L	50	28.6	57	13-120	
Nitrosodiphenylamine	ug/L	50	39.7	79	43-120	
phthalene	ug/L	50	30.3	61	32-120	
robenzene	ug/L	50	36.4	73	33-110	
ntachlorophenol	ug/L	100	62.8	63	10-137	
enanthrene	ug/L	50	38.9	78	57-117	
enol	ug/L	50	25.0	50	10-120	
ene	ug/L	50	37.2	74	55-122	
6-Tribromophenol (S)	%			80	31-170	
Fluorobiphenyl (S)	%			68	45-139	
luorophenol (S)	%			57	13-118	
robenzene-d5 (S)	%			71	40-121	
enol-d6 (S)	%			49	18-105	
phenyl-d14 (S)	%			54	48-146	

MATRIX SPIKE & MATRIX SPIKE	E DUPLICAT	E: 23061	06		2306107						
			MS	MSD							
	923	88939003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2,4-Trichlorobenzene	ug/L	ND	41.7	41.7	20.9	20.6	50	50	10-110	1	
1,2-Dichlorobenzene	ug/L	ND	41.7	41.7	21.3	22.1	51	53	10-110	4	
1,3-Dichlorobenzene	ug/L	ND	41.7	41.7	20.4	20.8	49	50	10-110	2	
1,4-Dichlorobenzene	ug/L	ND	41.7	41.7	22.6	23.1	54	56	10-110	2	
1-Methylnaphthalene	ug/L	ND	41.7	41.7	26.0	26.6	62	64	14-110	2	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	41.7	41.7	13.9	13.5	33	32	50-150	3 M1	
2,4,5-Trichlorophenol	ug/L	ND	41.7	41.7	26.9	26.6	65	64	19-105	1	
2,4,6-Trichlorophenol	ug/L	ND	41.7	41.7	25.2	25.5	60	61	13-108	1	
2,4-Dichlorophenol	ug/L	ND	41.7	41.7	30.1	29.3	72	70	19-111	3	
2,4-Dimethylphenol	ug/L	ND	41.7	41.7	26.5	25.5	63	61	21-103	4	
2,4-Dinitrophenol	ug/L	ND	208	208	126	127	60	61	10-109	1	
2,4-Dinitrotoluene	ug/L	ND	41.7	41.7	29.3	29.7	70	71	27-104	1	
2,6-Dinitrotoluene	ug/L	ND	41.7	41.7	27.8	28.5	67	68	28-101	2	
2-Chloronaphthalene	ug/L	ND	41.7	41.7	23.4	24.8	56	59	14-102	6	
2-Chlorophenol	ug/L	ND	41.7	41.7	26.7	26.2	64	63	16-110	2	
2-Methylnaphthalene	ug/L	ND	41.7	41.7	26.9	27.0	64	65	13-110	1	
2-Methylphenol(o-Cresol)	ug/L	ND	41.7	41.7	34.1	34.4	82	83	19-110	1	
2-Nitroaniline	ug/L	ND	83.3	83.3	40.3J	41.1J	48	49	26-103		
2-Nitrophenol	ug/L	ND	41.7	41.7	25.8	25.4	62	61	20-110	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

MATRIX SPIKE & MATRIX SPIKE	E DUPLICATE:	23061			2306107						
			MS	MSD					04 F		
		3939003	Spike	Spike	MS	MSD	MS	MSD	% Rec		<u> </u>
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
3&4-Methylphenol(m&p Cresol)	ug/L	ND	41.7	41.7	28.6	27.4	69	66	20-110	4	
3,3'-Dichlorobenzidine	ug/L	ND	83.3	83.3	30.8	33.0	37	40	25-112	7	
3-Nitroaniline	ug/L	ND	83.3	83.3	52.1	53.8	63	65	29-110	3	
4,6-Dinitro-2-methylphenol	ug/L	ND	83.3	83.3	59.6	59.0	72	71	10-117	1	
4-Bromophenylphenyl ether	ug/L	ND	41.7	41.7	28.5	28.8	68	69	20-105	1	
4-Chloro-3-methylphenol	ug/L	ND	83.3	83.3	58.0	58.2	70	70	22-110	0	
4-Chloroaniline	ug/L	ND	83.3	83.3	40.4	43.5	48	52	20-100	7	
4-Chlorophenylphenyl ether	ug/L	ND	41.7	41.7	27.3	28.4	66	68	19-102	4	
4-Nitroaniline	ug/L	ND	83.3	83.3	53.1	52.9	64	64	29-110	0	
4-Nitrophenol	ug/L	ND	208	208	116	117	56	56	10-110	1	
Acenaphthene	ug/L	ND	41.7	41.7	26.7	28.2	64	68	17-100	6	
Acenaphthylene	ug/L	ND	41.7	41.7	26.9	28.1	65	67	21-100	4	
Aniline	ug/L	ND	41.7	41.7	ЗJ	8.5	7	20	10-110	M1	
Anthracene	ug/L	ND	41.7	41.7	30.6	30.2	73	73	24-109	1	
Benzo(a)anthracene	ug/L	ND	41.7	41.7	29.4	28.1	71	67	22-117	5	
Benzo(a)pyrene	ug/L	ND	41.7	41.7	29.0	28.8	70	69	23-104	1	
Benzo(b)fluoranthene	ug/L	ND	41.7	41.7	29.0	27.6	70	66	23-103	5	
Benzo(g,h,i)perylene	ug/L	ND	41.7	41.7	29.5	28.8	71	69	18-111	2	
Benzo(k)fluoranthene	ug/L	ND	41.7	41.7	31.7	31.3	76	75	22-113	1	
Benzoic Acid	ug/L	ND	208	208	109	109	52	52	10-110	0	
Benzyl alcohol	ug/L	ND	83.3	83.3	52.7	52.2	63	63	19-101	1	
bis(2-Chloroethoxy)methane	ug/L	ND	41.7	41.7	27.3	27.1	65	65	22-110	1	
bis(2-Chloroethyl) ether	ug/L	ND	41.7	41.7	25.2	25.8	60	62	16-110	2	
bis(2-Ethylhexyl)phthalate	ug/L	ND	41.7	41.7	27.7	26.6	66	64	23-102	4	
Butylbenzylphthalate	ug/L	ND	41.7	41.7	26.9	25.7	65	62	25-110	4	
Chrysene	ug/L	ND	41.7	41.7	29.8	28.7	71	69	23-115	4	
Di-n-butylphthalate	ug/L	ND	41.7	41.7	30.5	28.9	73	69	26-110	6	
Di-n-octylphthalate	ug/L	ND	41.7	41.7	25.2	24.0	61	58	23-110	5	
Dibenz(a,h)anthracene	ug/L	ND	41.7	41.7	31.1	29.8	75	72	21-112	4	
Dibenzofuran	ug/L	ND	41.7	41.7	28.5	30.1	68	72	19-102	6	
Diethylphthalate	ug/L	ND	41.7	41.7	27.4	27.6	66	66	29-110	1	
Dimethylphthalate	ug/L	ND	41.7	41.7	27.2	27.5	65	66	27-110	1	
Fluoranthene	ug/L	ND	41.7	41.7	31.8	30.0	76	72	23-112	6	
Fluorene	ug/L	ND	41.7	41.7	29.4	30.4	71	73	22-104	3	
Hexachloro-1,3-butadiene	ug/L	ND	41.7	41.7	18.2	18.1	44	43	10-110	1	
Hexachlorobenzene	ug/L	ND	41.7	41.7	29.2	28.7	70	69	21-116	2	
Hexachlorocyclopentadiene	ug/L	ND	41.7	41.7	14.0	14.6	34	35	10-110	4	
Hexachloroethane	ug/L	ND	41.7	41.7	20.8	21.5	50	51	10-110	3	
Indeno(1,2,3-cd)pyrene	ug/L	ND	41.7	41.7	30.3	29.4	73	71	20-113	3	
Isophorone	ug/L	ND	41.7	41.7	24.0	23.7	58	57	50-150	1	
N-Nitroso-di-n-propylamine	ug/L	ND	41.7	41.7	29.4	30.1	70	72	21-105	2	
N-Nitrosodimethylamine	ug/L	ND	41.7	41.7	22.7	23.3	55	56	10-110	2	
N-Nitrosodiphenylamine	ug/L	ND	41.7	41.7	30.5	29.3	73	70	23-107	4	
Naphthalene	ug/L	ND	41.7	41.7	25.4	25.2	61	61	10-110	1	
Nitrobenzene	ug/L	ND	41.7	41.7	30.0	30.2	72	72	20-110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: NCDOT 38979.1.2 Pace Project No.: 92388933

MATRIX SPIKE & MATRIX SPI	KE DUPLICAT	E: 23061			2306107						
			MS	MSD					04 F		
		388939003	Spike	Spike	MS	MSD	MS	MSD	% Rec		• •
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Pentachlorophenol	ug/L	ND	83.3	83.3	55.4	52.8	67	63	10-118	5	
Phenanthrene	ug/L	ND	41.7	41.7	31.0	30.5	74	73	24-106	2	
Phenol	ug/L	ND	41.7	41.7	21.4	21.5	51	52	12-110	1	
Pyrene	ug/L	ND	41.7	41.7	29.3	27.9	70	67	24-114	5	
2,4,6-Tribromophenol (S)	%						70	71	31-170		
2-Fluorobiphenyl (S)	%						66	65	45-139		
2-Fluorophenol (S)	%						52	54	13-118		
Nitrobenzene-d5 (S)	%						62	61	40-121		
Phenol-d6 (S)	%						46	47	18-105		
Terphenyl-d14 (S)	%						47	47	48-146	S	2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

MADEP EPH

MADEP EPH NC Water

Analysis Method:

Analysis Description:

Matrix: Water

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

QC Batch:	416575
QC Batch Method:	MADEP EPH

Associated Lab Samples: 92388933001, 92388933002

METHOD BLANK: 2309953

Associated Lab Samples: 92388933001, 92388933002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Aliphatic (C09-C18)	ug/L	ND	100	06/27/18 11:45	N2
Aliphatic (C19-C36)	ug/L	ND	100	06/27/18 11:45	N2
Aromatic (C11-C22)	ug/L	ND	100	06/27/18 11:45	N2
2-Bromonaphthalene (S)	%	42	40-140	06/27/18 11:45	
2-Fluorobiphenyl (S)	%	42	40-140	06/27/18 11:45	
Nonatriacontane (S)	%	38	40-140	06/27/18 11:45	S0
o-Terphenyl (S)	%	39	40-140	06/27/18 11:45	S0

LABORATORY CONTROL SAMPLE	& LCSD: 2309954		23	309955						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Aliphatic (C09-C18)	ug/L	300	134	123	45	41	40-140	9	50	N2
Aliphatic (C19-C36)	ug/L	400	234	211	58	53	40-140	10	50	N2
Aromatic (C11-C22)	ug/L	850	556	533	65	63	40-140	4	50	N2
2-Bromonaphthalene (S)	%				67	64	40-140			
2-Fluorobiphenyl (S)	%				65	63	40-140			
Nonatriacontane (S)	%				60	56	40-140			
o-Terphenyl (S)	%				71	71	40-140			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: NCDOT 38979.1.2

Pace Project No.: 92388933

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter.
- S0 Surrogate recovery outside laboratory control limits.
- S2 Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample re-analysis).
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: NCDOT 38979.1.2 Pace Project No.: 92388933

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92388933001	TW-1	MADEP EPH	416575	MADEP EPH	416763
92388933002	TW-2	MADEP EPH	416575	MADEP EPH	416763
92388933001	TW-1	MADEP VPH	416111		
92388933002	TW-2	MADEP VPH	416111		
92388933001	TW-1	EPA 3510	415852	EPA 8270	415964
92388933002	TW-2	EPA 3510	415852	EPA 8270	415964
92388933001	TW-1	EPA 8260	416640		
92388933002	TW-2	EPA 8260	416640		

	Documen Sample Condition U			Document Revised: February 7, 2018 Page 1 of 2					
Pace Analytical"	Docume		Pac	Issuing Authority: ce Carolinas Quality (
L	F-CAR-CS-0	33-Kev.00							
Laboratory receiving samples: Asheville Eden	Greenwood 🗌	Hunte	ersville	Raleigh	Mechanicsv====				
Sample Condition Client Name: Upon Receipt ARF	ΞV	Pro		92388	933				
Courter: Fed Ex UU	PS USPS Other:	Client	92388933						
Custody Seal Present? Yes No	Seals Intact? Yes	Νο	Date/Initi	als Person Examining (Contents A 6-19-18				
Packing Material: 🛛 Bubble Wrap	Bubble Bags	ne 🗌 Othe	r	Biological Tissue	e Frozen?				
Thermometer:	Type of Ice:	∃Wet □Blue	None	□Yes □No [4	JN/A				
	Add (Subbaset (°C)	.04	ł						
Cooler Temp Corrected (°C): 1.6	actor: Add/Subtract (°C)	_+0.4	Temp should be Samples o has begun	e above freezing to 6 ut of temp criteria. San	°C nples on Ice, cooling process				
USDA Regulated Soll (N/A, water sample) Did samples originate in a quarantine zone within the	United States: CA, NY, or	SC (check maps)	Dld samples orig including Hawaii	and Puerto Rico)?					
				Comments/Discrepa	211091				
Chain of Custody Present?	Ves No	□N/A							
Samples Arrived within Hold Time?	Yes No		2						
Short Hold Time Analysis (<72 hr.)?	Yes No	□N/A	3.						
Rush Turn Around Time Requested?	Yes INO	□N/A	1.						
Sufficient Volume?	Yes No		i						
Correct Containers Used?			6.						
-Pace Containers Used?									
Containers Intact?			7						
Dissolved analysis: Samples Field Filtered?	Yes No		8 9.						
Sample Labels Match COC?									
-Includes Date/Time/ID/Analysis Matrix:									
Headspace in VOA Vials (>5-6mm)? Trip Blank Present?	Yes No		10. 11.	7					
Trip Blank Custody Seals Present?	Yes No								
COMMENTS/SAMPLE DISCREPANCY				Field Data	Required? Yes No				
			Lot ID of split cor	ntainers:					
CLIENT NOTIFICATION/RESOLUTION									
Person contacted:		Date/Tim	e:						
				Te 1	1				
Project Manager SCURF Review:	Č.		Date:	5 6/19	/18				
Project Manager SRF Review:	ÍC.		Date:	6/19	// K				

	Document Name: Sample Condition Upon Receipt(SCUR)	Document Revised: February 7, 2018 Page 1 of 2
Pace Analytical"	Document No.: F-CAR-CS-033-Rev.06	Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Projec WO#: 92388933

PM: RWC CLIENT: 92-

Due Date: 07/03/18

CLIENT: 92-NCDOTNE

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg **Bottom half of box is to list number of bottle

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic 2N Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG1S- 1 liter Amber H2SO4 (pH < 2)	AG3S- 250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1	\backslash					\backslash	\backslash	\backslash			X		\backslash	\backslash	\backslash	6								\sum	\square	2		
2	\backslash				\backslash	\backslash	\sum	\backslash			X	1	\backslash	\bigwedge		6								\sum	\sum	2	-	
3	\square				\backslash	\backslash	\bigwedge	\backslash			\backslash		\backslash	\backslash	\backslash									\sum	\sum			
4	\backslash				\backslash	\backslash	\backslash	\langle			\backslash		\backslash	\bigwedge	\backslash									\sum	\sum			
5	\mathbb{N}				\backslash	\backslash	\bigwedge	\backslash			\backslash		\backslash	\bigwedge	\backslash									\sum	\sum			
6	\backslash				\backslash	\backslash	\square				\backslash		\backslash	\bigwedge	\backslash									\sum	\sum			
7	\backslash				\backslash	\backslash	\bigwedge	\backslash			\backslash		\backslash	\sum	\backslash									\sum	\square			
8	\backslash	a			\sum	\sum	\square	\sum			\sum		\sum	\sum	\sum									\sum	\sum			
9	\square				\sum	\sum	\square	\square			\square		\sum	\sum	\sum									\sum	\sum			
10	\sum				\sum	\sum	\sum	\sum			\sum		\sum	\sum	\sum					•				\sum	\sum			
11	\sum				\sum	\sum	\sum	\sum			\sum		\backslash	\sum	\sum									\sum	\sum			
12	\backslash				\backslash	\bigwedge	\sum	\backslash			\backslash		\backslash	\sum	\backslash									\backslash	\sum			

	pH Adjustment Log for Preserved Samples												
Sample ID	Type of Preservative	pH upon recelpt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #							
			-										

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, Incorrect preservative, out of temp, Incorrect containers.

	\sim	
	tage	
Decord and	Analytic	
3	म	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed ac

rately

Section A	Section A Required Client Information:	Section B Required Project Information:	Invoice Inform	שעץ וs a בבסתב בכיכטוזובועד. או Section C Invoice Information:		Inpreted accuratery.	• • •
Company:		Report To: Troy Holzschuh	Attentio	n: Dennis Li			
Address:		1	Compa	Name: Horins	NCAST		
Charlotte Email:	Charlotte, NC 28269 Email: tholzschuh@abexcos.com	Purchase Order #:	Address: Pace Quo	uote: Kaleyh M/		R	Regulatory Agency
Phone:	704-799-6390 Fax	Project Name: NCDOT 38979.1.2	Pace P	Pace Project Manager: trey.carter@	trey.carter@pacelabs.com,	のないであると言語で	State / Location
Requeste	Requested Due Date: Standard	D'	Pace Profile #:	Ň			NC
		2	-		Requested Analysis Filtered (Y/N)	s Filtered (Y/N)	
		es to left)	N	Preservatives	Y/N		
	SAMPLE ID	(G=GRAB C= START					ne (Y/N)
ITEM#	One Character per box. (A-Z, 0-9 / , -) Sample Ids must be unique	Mar Ar	SAMPLE TEMP A # OF CONTAINE	H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol Other	Analyses VPH EPH 8260 VOCs Ful 8270 SVOC		Residual Chlori 97380973
	TW-1	1400		×	3221		Ş
2	TH-YT	wt6 6-18, 18 1430	N N	X			8
ω							
4							
5							
6							
7							
8							
9							
10							
11							
12							
and the second	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	DATE TIME		ACCEPTED BY / AFFILIATION		SAMPLE CONDITIONS
		und/An	200	1 Charlow	Pace 6	20 9	<
		of young there	01 21210	172-A3 050	Lermaplece 6	6-19-18 1050	X W
		SAMPLER NAM	SAMPLER NAME AND SIGNATURE				ed on
		SIGNATUR	SIGNATURE of SAMPLER: 772	y L Holzsc	huh DATE Signed: 6	19-18	TEMP in Received Ice (Y/N) Custody Sealed Cooler (Y/N)