

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

ROY COOPER JAMES H. TROGDON, III GOVERNOR SECRETARY

November 5, 2018

MEMORANDUM TO: Brian Hanks, P.E.

State Structures Engineer

ATTENTION: Kristy Alford, P.E.

Project Engineer

FROM:

John L. Pilipchuk, L.G., P.E.

State Geotechnical Engineer

John Pilipchuk

STATE PROJECT: 50118.1.FS1 (I-5700)

COUNTY: **WAKE**

Bridge No. 1499 on SR 3015 (Airport Blvd.) and Replace Bridge DESCRIPTION:

No. 37 on SR 3015 (Airport Blvd.) over I-40

SUBJECT: Structure Inventory

The Geotechnical Engineering Unit has reviewed and presents the subsurface investigation recommendations prepared by Kleinfelder Inc. for the above referenced project.

Structure Inventory (19) pages X

Please call Jaime Love, LG or Neil Roberson, LG at (919) 662-4710x227 if there are any questions concerning this memorandum.

Attachment

Website: www.ncdot.gov

Telephone: (919) 707-6850

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

SHEET NO.

REFERENCE

50118

	TITLE SHEET
2	LEGEND (SOIL & ROCK)
2A	SUPPLEMENTAL LEGEND (GSI)
3	SITE PLAN
4	PROFILE
5-7	CROSS SECTIONS
8-17	BORE LOGS CORE REPORTS AND CORE PHOTOGRAPH

ROCK CORE TEST RESULTS

DESCRIPTION

TITLE CHEET

STRUCTURE SUBSURFACE INVESTIGATION

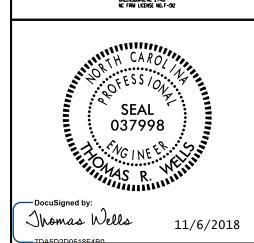
COUNTY WAKE
PROJECT DESCRIPTION <i>I-40 AND SR 3015 (AIRPORT</i>
BOULEVARD) REVISE INTERCHANGE AND
CONSTRUCT AUXILIARY LANE ON I-40 WESTBOUND
FROM SR 3015 (AIRPORT BOULEVARD) TO 1-540
SITE DESCRIPTION BRIDGE ON AIRPORT BOULEVARD
OVER I-40

STATE PROJECT REFERENCE NO. 18 I = 5700

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1999 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN SOME BORNDOS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.


THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

THE ACTUAL CONDITIONS AT THE PROJECT SITE.
PERSONNEL
C. DRISCOLL
TRIGON EXPLORATIO
INVESTIGATED BY C. DRISCOLL
DRAWN BY S. PAPKE
CHECKED BY
SUBMITTED BY KLEINFELDER, INC.
OCTORER 2010
DATE OCTOBER 2018
Prepared in the Office of:
KLEINFELDER Bright People. Right Solutions.
7343 BEST FREMOLT AVE. GREENSORO, NE 2740 NC FRIM LICENSE NO, F-132

7DA5D2D0518F4B0... SIGNATURE

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

I-5700 SHEET NO.

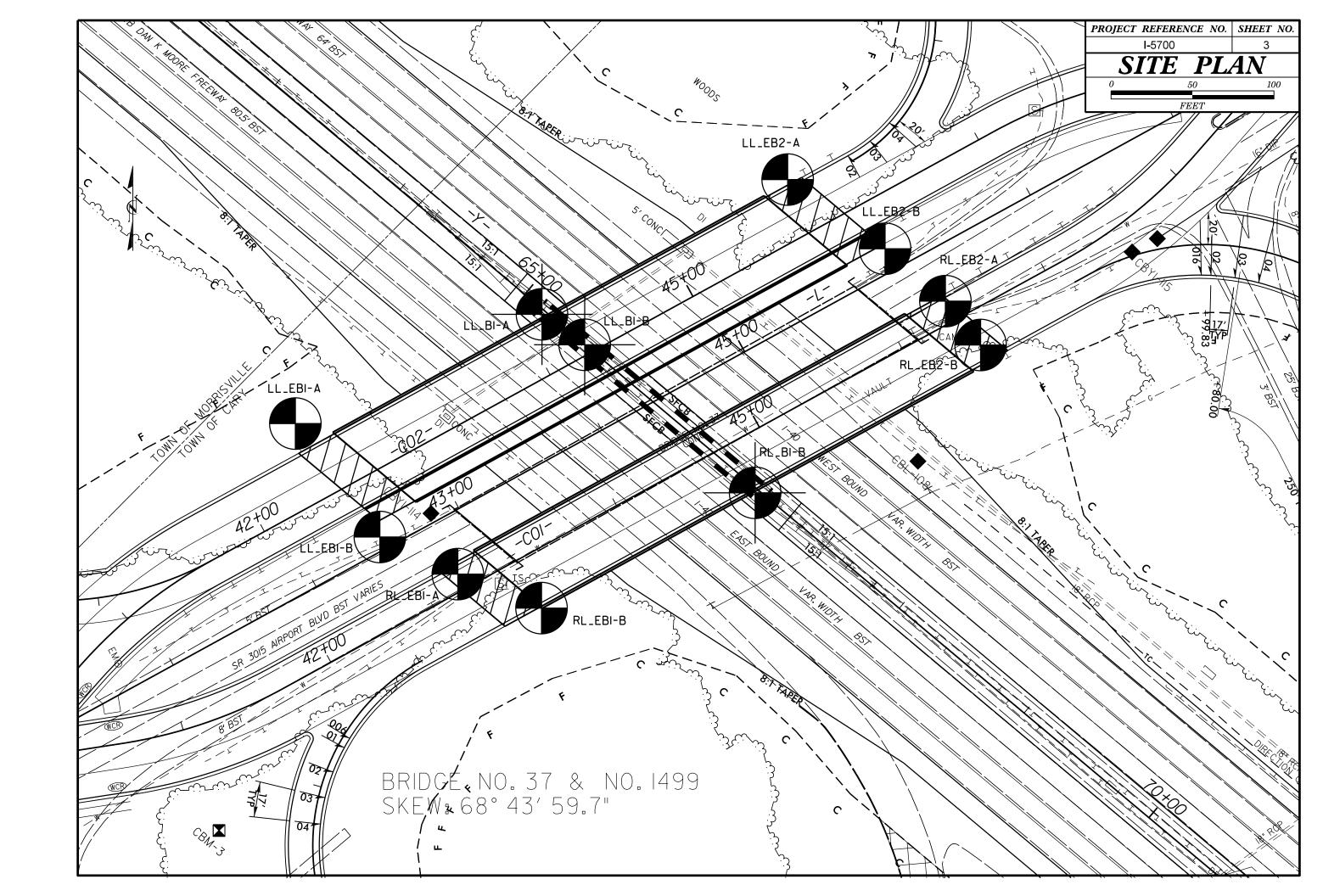
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

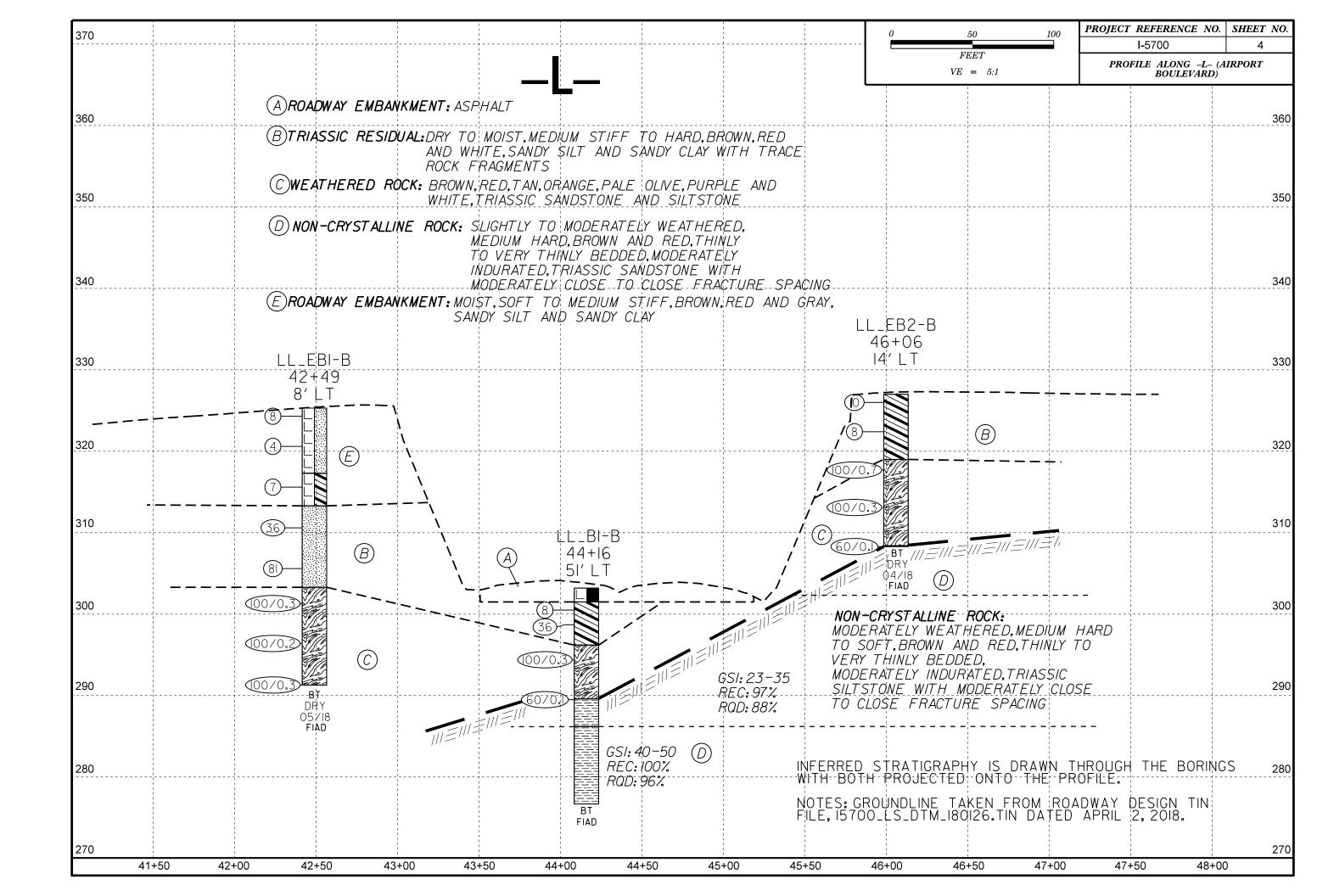
SUBSURFACE INVESTIGATION

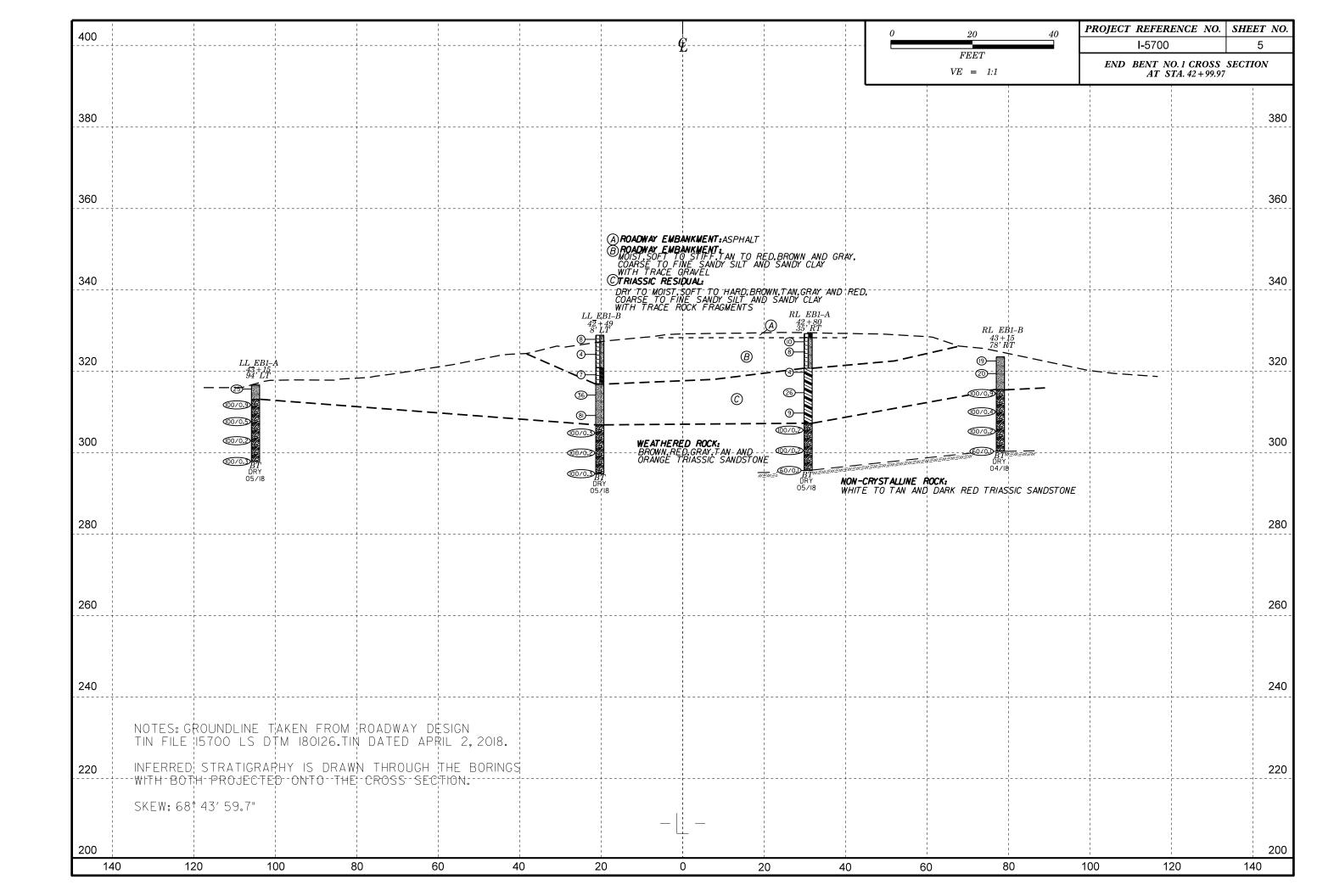
SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED, AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF,GRAY,SILTY CLAY,MOIST WITH INTERBEDDED FINE SAND LAYERS,HIGHLY PLASTIC,A-7-6 SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED.	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
CENERAL CRANILLAR MATERIALS SILT-CLAY MATERIALS	MINERALOGICAL COMPOSITION	FINE TO COARSE CRAIN ICNEOUS AND METAMORPHIC ROCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE CEVEL AT
CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE,	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	NON-CRYSTALLINE ONEISS, GABBRO, SCHIST, ETC. FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEMIMENTARY PORCY THAT WOULD VEHI D. COT DECISION IS TESTED.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-6 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-5 A-3 A-6, A-7	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 000000000000000000000000000000000000	MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING GRANULAR SILT- MUCK.	HIGHLY COMPRESSIBLE LL > 50 PERCENTAGE OF MATERIAL	SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*40 30 MX 50 MX 51 MN SOILS CLAY PEAT	GRANULAR SILT - CLAY	WEATHERING	<u>DIKE</u> - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
*200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN 501L5 OP	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
PI 6 MX NP IB MX IB MX II MN II MN IB MX II MN II MN MODERATE OPCOMIC	GROUND WATER	OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH. FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOILS		SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI,) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STUNE FRAUS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SAND SAND GRAVEL AND SAND SOILS SOILS	▼ STATIC WATER LEVEL AFTER <u>24</u> HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS	<u>FLOAT</u> - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR UNSUITABLE		DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 :PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING OR SEEP	WITH FRESH ROCK.	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
COMPACTNESS OF RANGE OF STANDARD RANGE OF UNCONFINED	I∏ 25,025	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK. IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMMINETALISM ON PENETRATION RESISTENCE COMPRESSIVE STRENGTH (IN-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	<u>LEDGE</u> - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL STILL STANDING SLOPE INDICATOR	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR LOOSE 4 TO 10 GRANULAR MEDIUM DENSE 10 TO 30 N/A	VST PMT INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS
MATERIAL DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
VERT DENSE 2 200		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	── INFERRED SOIL BOUNDARY ← CORE BORING SOUNDING ROD	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER SPT N-VALUE	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
HARD > 30 > 4	INSTREETION	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
COARSE FINE	SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BOULDER COBBLE GRAVEL SAND SAND SILT CLAY	ONDERCOT LCCF THOLE DEGRHDHOLE ROCK	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(CSE, SU,) (F SU,)	ABBRE VIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
GRAIN MM 305 75 2.0 0.25 0.005 0.005 SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7- UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7- DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION ONLY FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLIDE DRYING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) STING TO ATTAIN OPTIMUM MOISTURE (PI) PL PLASTIC LIMIT	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK: N/A
	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: N/A FEET
OM — OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	
SL _ SHRINKAGE LIMIT	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	6' CONTINUOUS FLIGHT AUGER CORE SIZE:	. VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	BORING ELEVATIONS OBTAINED FROM PROJECT TIN FILE 15700_LS_DTM_180126.TIN, RECEIVED ON APRIL 2, 2018
PLASTICITY	X CME-55 X 8* HOLLOW AUGERS CORE SIZE:	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS X-N Q2	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	FIAD- FILLED IMMEDIATELY AFTER DRILLING
NON PLASTIC 0-5 VERY LOW	TUNGCARBIDE INSERTS	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS;	
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST CASING W/ ADVANCER HAND TOOLS:	GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
HIGHLY PLASTIC 26 OR MORE HIGH	POST HOLE DIGGER PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	X TRICONE 15/16 TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	X CORE BIT SOUNDING ROU VANE SHEAR TEST	DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.	DATE O IE 14
		SHITTLE BREHAS ACKUSS UKAINS.	DATE: 8-15-14

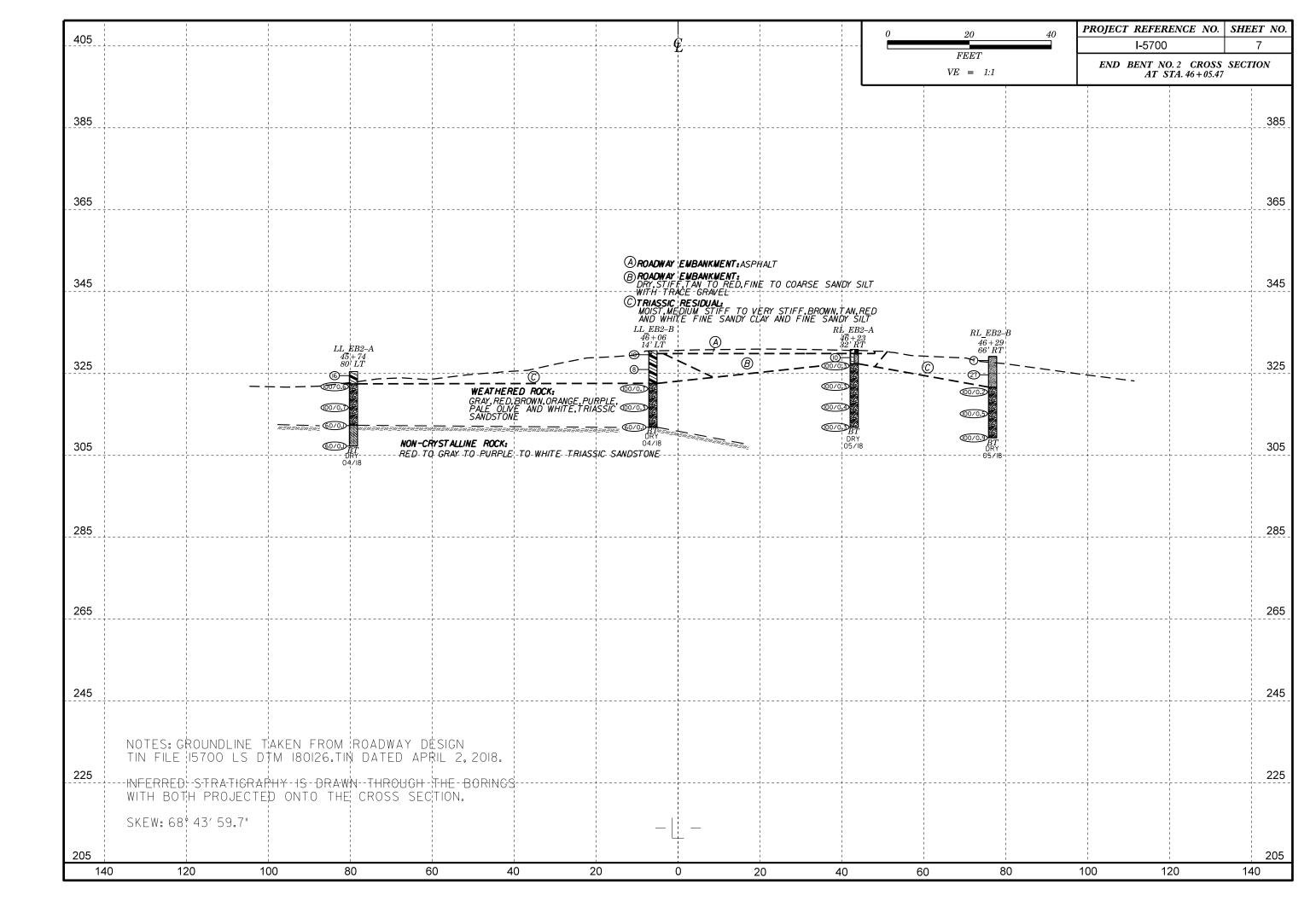
DJECT REFERENCE NO.	SHEET NO.
-5700	2A

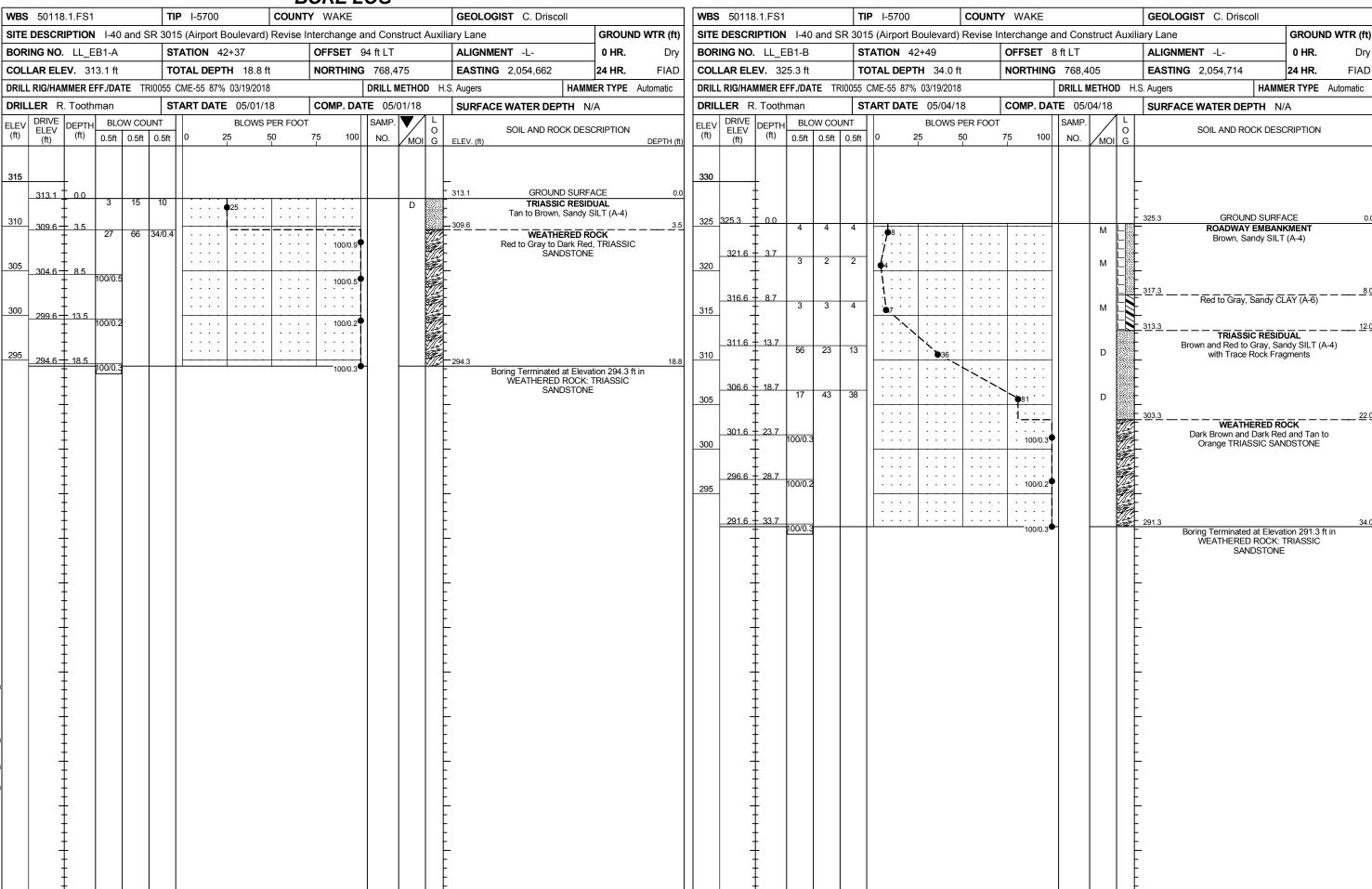

DATE: 8-19-16


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


SUPPLEMENTAL LEGEND GEOLOGICAL STRENGTH INDEX (GSI) TARLES

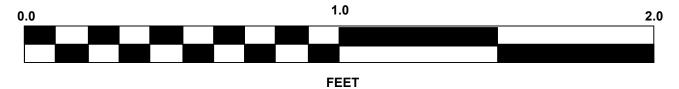

AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Jos	inted Ro	ock Mass (Marinos and F	oek, 2000)			AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Deformed Heterogeneous Rock Masses (Marinos and Hoek, 2000)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000)		s po		ν Φ Ο Φ	aces	GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E., 2000)
From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Guoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis.	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surface: GOOD Rough, slightly weathered, iron stained	moderately weathered and surfaces	ensided, highly weathered surf compact coatings or fillings gular fragments	VERY POOR Slickensided, highly weathered surfarenth soft clay coatings or fillings	Even a description of the lithology, structure and surface conditions (barticularly of the pedding planes), choose a pox in the chart. Tocate the bosition in the pox that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too brecise. Grown criterion does not abbly to structurally controlled failures. Where uniavorably oriented continuous weak blanar discontinuities are present, these will dominate the pehaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, bood and very b
STRUCTURE		!	l l	UALITY		COMPOSITION AND STRUCTURE
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities BLOCKY - well interlocked un-	 PIECES 	90		N/A	N/A	A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes these bedding planes may cause structurally controlled instability. A. Thick bedded, very blocky sandstone The effect of pelitic coatings and the bedding planes is minimized. A. Thick bedded, very blocky sandstone The effect of pelitic coatings and the bedding planes is minimized. A. Thick bedded, very blocky sandstone The effect of pelitic coatings and the bedding planes is minimized. A. Thick bedded, very blocky sandstone The effect of pelitic coatings and the bedding planes is minimized. A. Thick bedded, very blocky sandstone The effect of pelitic coatings and the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes the rock mass, in shallow tunnels or slopes. A. Thick bedded, very blocky sandstone The effect of pelitic coatings and the bedding planes is minimized by the confinement of the rock mass, in shallow tunnels or slopes the rock mass, i
disturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	OF ROCK	70 60				B. Sand- stone with stone and stone with sultstone sultstone sultstone or silty shale or clayey or clayey
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	OCKING O		50			thin inter- layers of siltstone in similar amounts amounts amounts amounts and siltstone layers state with sandstone layers
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	- INTERL		40	30		C. D. E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	 			20		G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a chaotic structure with pockets of clay. Thin layers of sandstone are transformed sandstone are transformed unto small rock places.
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	— II - V	N/A N/A			10 /	### Sailostone layers #### Of clay, "Min layers of stages of sandstone are transformed into small rock pieces. Means deformation after tectonic disturbance

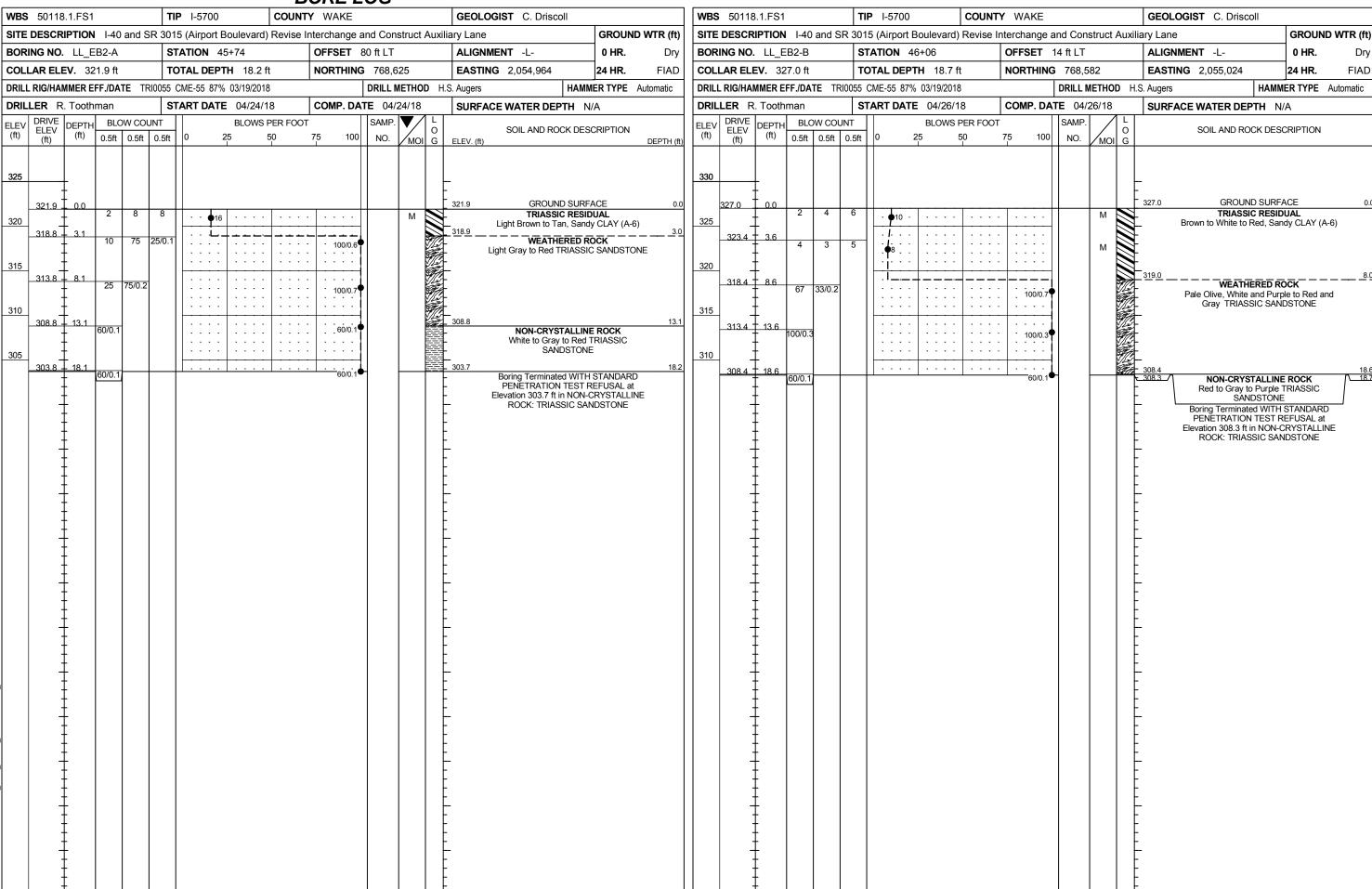


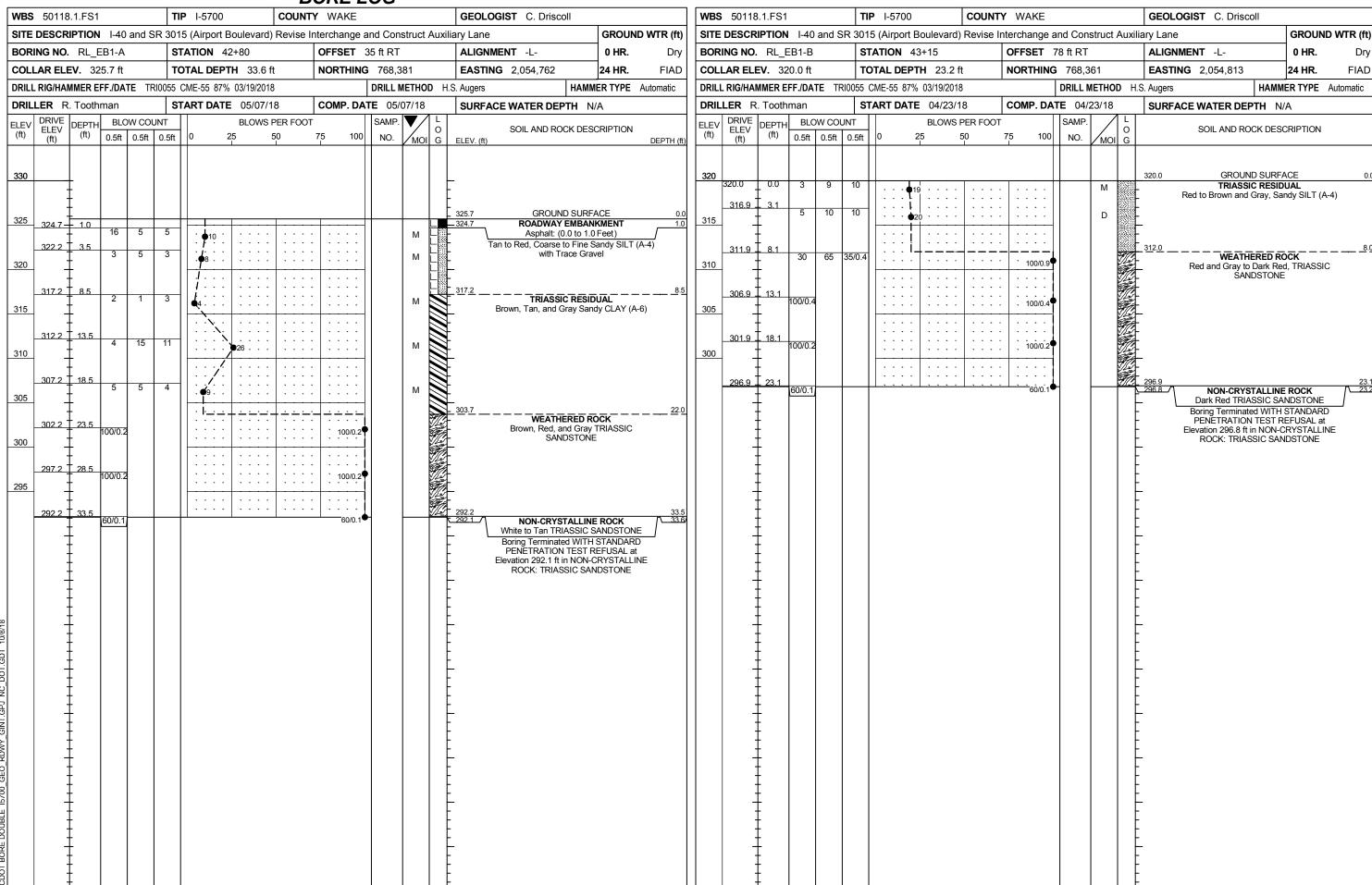
Will Story The Story		BORE .			CORE LOG					
SORING NO. LL, B1-A	WBS 50118.1.FS1	TIP I-5700 COUNTY WAKE	E GEOLOGIST C. Driscoll		WBS 50118.1.FS1	TIP I-5700 CO	UNTY WAKE	GEOLOGIST C. Driscoll		
COLLAR ELEV. 30.3.5 TOTAL DEPTH 28.2 ft NORTHING 768.542 EASTING 2.054.813 24 MR FIAD	SITE DESCRIPTION I-40 and SR	3015 (Airport Boulevard) Revise Interchange	ge and Construct Auxiliary Lane	GROUND WTR (ft)	SITE DESCRIPTION I-40 and SR	R 3015 (Airport Boulevard) Rev	rise Interchange and Construct Au	uxiliary Lane	GROUND WTR (ft)	
DRILL RICHAMMER EFF./DATE TR94/35 CME-55 65% 02220315 DRILL METHOD Mult Rotary MAMMER TYPE Automatic	BORING NO. LL_B1-A	STATION 44+02 OFFSET	T 80 ft LT ALIGNMENT -L-	0 HR. N/A	BORING NO. LL_B1-A	STATION 44+02	OFFSET 80 ft LT	ALIGNMENT -L-	0 HR . N/A	
DRILLER R. TOOHMON START DATE 05/09/18 COMP. DATE 05/09/18 COMP. DATE 05/09/18 SURFACE WATER DEPTH N/A	COLLAR ELEV. 303.5 ft	TOTAL DEPTH 26.2 ft NORTHIN	ING 768,542 EASTING 2,054,813	24 HR. FIAD	COLLAR ELEV. 303.5 ft	TOTAL DEPTH 26.2 ft	NORTHING 768,542	EASTING 2,054,813	24 HR . FIAD	
ELEV FIRST OF THE PROPERTY OF	DRILL RIG/HAMMER EFF./DATE TRI94			IMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE TRIS	9435 CME-55 85% 02/22/2016	DRILL METHOD	Mud Rotary HA	AMMER TYPE Automatic	
10				N/A			COMP. DATE 05/09/18	SURFACE WATER DEPTH	N/A	
Column C	ELEV DRIVE DEPTH BLOW COUNT		(a) Y O SOIL AND ROCK DE				TA			
305 300 3.5 5 5 8 300 3.5 5 32 17 3.5 3.	(π) (γ 0.5π 0.5π 0.	Sit 0 20 30 75 10	MOI G ELEV. (ft)	DEPTH (ft)	ELEV ELEV DEPTH RUN RATE	REC. RQD SAMP. REC. (ft) (ft) NO. (ft)	RQD O (ft)	DESCRIPTION AND REMARKS		
302.0 1.5 5 8 932.0 RADMAY EMBANKENT Apphat (0.0 to 1.5 Foot) 15 8 935.0 RADMAY EMBANKENT RADMAY RADMAY EMBANKENT RADMAY RADM	005				(It) (WIII VIL)	% % %	% G ELEV. (ft)	Dogin Coring @ 15 4 ft	DEPTH (ft)	
30.0 1.5 5 8 9 13.2 Moderately Indurated, TRIASSIC CONGLOMERATE with Moderately Close Asphale (10 to 1.5 Foot) 1.5 285 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	305		- 303.5 GROUND SUR	RFACE 0.0	288.1 T 15.4 n.s.	(0.5) (0.5) (4.5)	(4.5) 288.1	NON-CRYSTALLINE ROCK		
290 290.0 13.5 100/0.2 100/0. 100/0.2	302.0 1.5		. Asphalt: (0.0 to 1		1 4 5.0 \frac{1}{1.30\text{0.8}}		94% Slightly Weather Moderately Indur	ated, TRIASSIC CONGLOMERATE with	ay, Thinly Bedded, th Moderately Close	
290 290.0 13.5 100/0.2 100/0. 100/0.2	300 300 0 7 3 5 1 1 1	17	TRIASSIC RES	IDUAL	282.3 + 21.2 3:00 3:45 5:00	100% 98% (6.0)	(5.7) 283.3 Moderately Weath	. •	20.2 d Red. Thinly to Very	
290 290.0 13.5 100/0.2 100/0. 100/0.2					280	(5.0) (4.8) RS-1 100%	95% 巨宝士 Thinly Bedde	ed, Moderately Indurated, TRIASSIC SI	LTSTONE with	
290 290.0 13.5 100/0.2 100/0. 100/0.2	295 295.0 8.5				4:30			(GSI: 25-35)		
290 290.0 13.5 100/0.2 100/0. 100/0.2					277.3 + 26.2 4:45					
NON-CRYSTALLINE ROCK Slightly Weathered, Medium Hard Brown, Red and Gray, Thinly Bedded, Moderately Indurated, TRIASSIC CONGLOMERATE With Moderately Close Fracture Spacing (REC: 94 %, RQD: 95 %, GSI: 40-50) RS-1	200	:::: !==++==++==	- 291.5 — — — WEATHERED I	ROCK 12.0			-	TRIASSIC SILTSTONE		
NON-CRYSTALLINE ROCK Slightly Weathered, Medium Hard Brown, Red and Gray, Thinly Bedded, Moderately Indurated, TRIASSIC CONGLOMERATE With Moderately Close Fracture Spacing (REC: 94 %, RQD: 95 %, GSI: 40-50) RS-1			0.2 Brown TRIASSIC CON				-			
Red and Gray, Thinly Bedded, Moderately Indurated, TRIASSIC CONGLOMERATE 20.2 (REC: 94 %, RQD: 94 %, RQS: 40-50) Moderately Indurated, Thinly to Very Thinly Bedded, Moderately Indurated, TRIASSIC SILTSTONE with Moderately Close to Close Fracture Spacing (REC: 100 %, RQD: 95 %, GSI: 25-35) Borint Triangle at Elevation 277.3 ft in NON-CRYSTALLINE ROCK: TRIASSIC	60/0.0		0.0 NON-CRYSTALLIN	NE ROCK						
280 RS-1 R	285		Red and Gray, Thinly Bed	Ided, Moderately			-			
Moderately Weathered, Medium Hard to Soft, Brown and Red, Thinly to Very Thinly Bedded, Moderately Indurated, TRIASSIC SILTSTONE with Moderately Close to Close Fracture Spacing (REC: 100 %, RQD: 95 %, GSI: 25-35) Boring Terminated at Elevation 277.3 ft in NON-CRYSTALLINE ROCK: TRIASSIC			with Moderately Close Fr	racture Spacing r 20.2			<u>E</u>			
Bedded, Moderately Indurated, TRÍASSIĆ	280		Soft Brown and Red Thir	nly to Very Thinly			-			
Fracture Spacing (REC: 100 %, RQD: 95 %, GSI: 25-35) Boring Terminated at Elevation 277.3 ft in NON-CRYSTALLINE ROCK: TRIASSIC			Bedded, Moderately Indur	rated, TRIASSIC			-			
I	+		Fracture Spa	cina			-			
			Boring Terminated at Elev NON-CRYSTALLINE RO	vation 277.3 ft in OCK: TRIASSIC						
							-			
							[
							[_			
							-			
							-			
	1318		 				<u>E</u>			
	1 1 1						<u> </u>			
	g: +						-			
							-			
							-			
	0. T									
							 			
	<u>)</u>									
			‡							
							[-			

CORE PHOTOGRAPHS

LL_B1-A BOXES 1 - 2 15.4 to 26.2 FEET

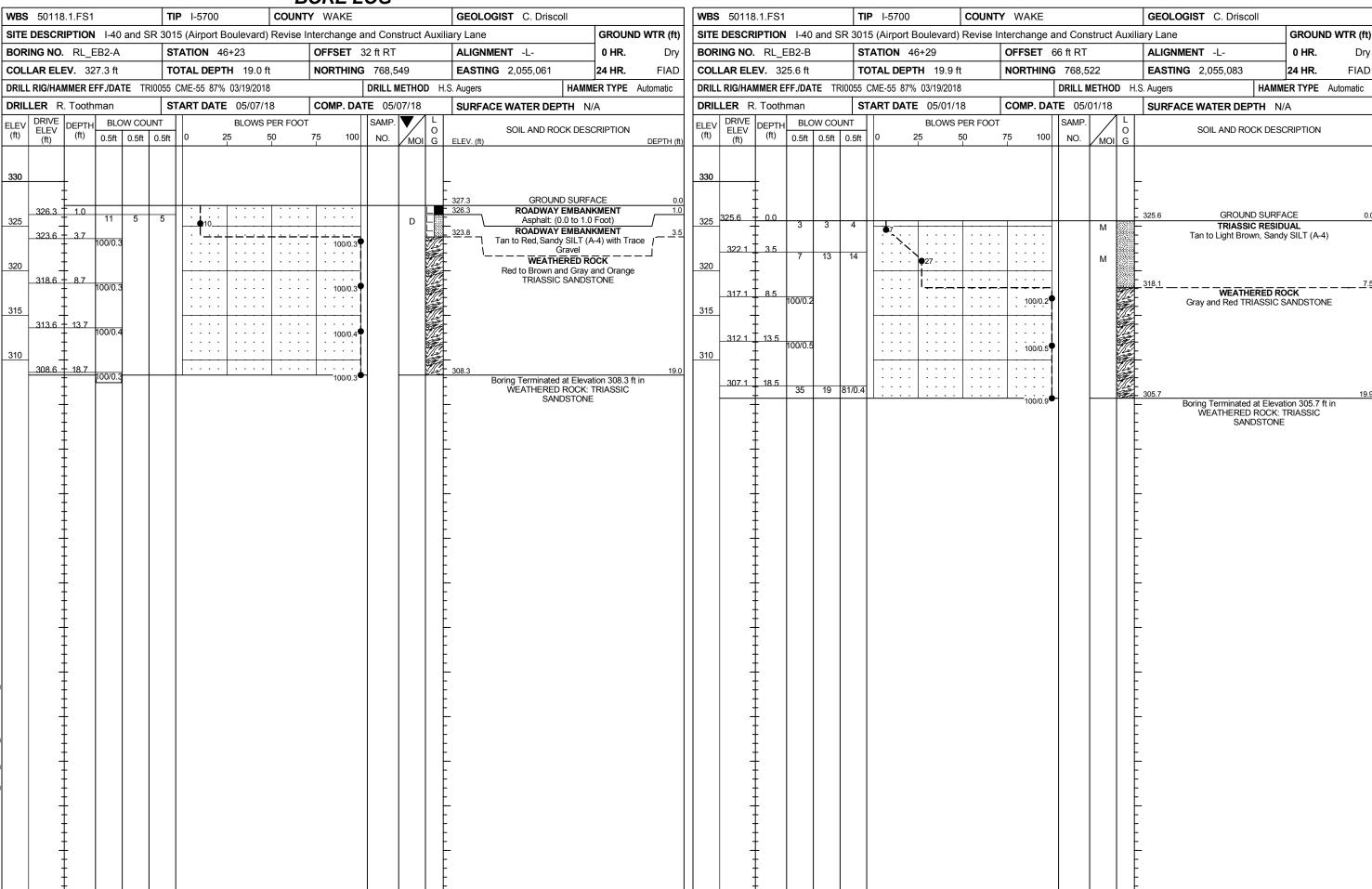

FEET


	BORE LO		CORE LOG						
WBS 50118.1.FS1	TIP I-5700 COUNTY WAKE	GEOLOGIST C. Driscoll		WBS 50118.1.FS1	WBS 50118.1.FS1 TIP I-5700 COUNTY WAKE GEOLOG				
SITE DESCRIPTION I-40 and SF	R 3015 (Airport Boulevard) Revise Interchange ar	and Construct Auxiliary Lane	GROUND WTR (ft)	SITE DESCRIPTION I-40 and SR	kiliary Lane GROUND	WTR (ft)			
BORING NO. LL_B1-B	STATION 44+16 OFFSET 5	51 ft LT ALIGNMENT -L-	0 HR . N/A	BORING NO. LL_B1-B	STATION 44+16	OFFSET 51 ft LT	ALIGNMENT -L- 0 HR.	N/A	
COLLAR ELEV. 303.2 ft	TOTAL DEPTH 26.5 ft NORTHING	G 768,523 EASTING 2,054,839	24 HR. FIAD	COLLAR ELEV. 303.2 ft	TOTAL DEPTH 26.5 ft	NORTHING 768,523	EASTING 2,054,839 24 HR .	FIAD	
DRILL RIG/HAMMER EFF./DATE TRIS	9435 CME-55 85% 02/22/2016	DRILL METHOD Mud Rotary HAMME	ER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE TRI9	0435 CME-55 85% 02/22/2016	DRILL METHOD	Mud Rotary HAMMER TYPE Au	utomatic	
DRILLER R. Toothman	START DATE 05/10/18 COMP. DAT	SURFACE WATER DEPTH N/A	Α	DRILLER R. Toothman	START DATE 05/10/18	COMP. DATE 05/10/18	SURFACE WATER DEPTH N/A		
ELEV DRIVE DEPTH BLOW COUN		SAMP. L SOIL AND ROCK DESC	CRIPTION	CORE SIZE NQ2	TOTAL RUN 12.8 ft				
(ft) (ft) (ft) 0.5ft 0.5ft	0.5ft 0 25 50 75 100	NO. MOI G ELEV. (ft)	DEPTH (ft)	ELEV RUN DEPTH RUN RATE (ft) (ft) (ft) (Minft)	RUN STRAT REC. RQD (ft) (ft) NO. (ft) %	TA L RQD O	DESCRIPTION AND REMARKS		
305				289.5 (ft) (It) (Min/ft)	% % % % % % % % % %	G ELEV. (ft)	Begin Coring @ 13.7 ft	DEPTH (ft)	
-			ACE 0.0	289.5 + 13.7 2.8 2:30/0.8	3 (2.7) (2.4) 96% 86% 97% 8	2.9) 289.5 Moderately Weather	NON-CRYSTALLINE ROCK ered, Medium Hard to Soft, Brown and Red, Thinly to Ve	13.7	
301.5 + 1.7		ROADWAY EMBANK - 301.5 Asphalt: (0.0 to 1.7)		286.7 16.5 5:45	(5.0) (4.8)	286.2 Thinly Bedded	I, Moderately Indurated, TRIASSIC SILTSTONE with iderately Close to Close Fracture Spacing	17.0	
299 7 1 35	5 20	M TRIASSIC RESIDU	UAL	285 5:30 4:00 3:15	(5.0) (4.8) RS-2 (9.5) (9.5) (9.5)	7%	(GSI: 25-35)	<i>_</i>	
	. • • •		A1 (A-0)	281.7 2 1.5 5:00 4:30		Slightly to Moderat Very Thinly Bedde	tely Weathered, Medium Hard, Brown and Red, Thinly to ed, Moderately Indurated, TRIASSIC SANDSTONE with iderately Close to Close Fracture Spacing	D	
295 204 7 9 5		296.2 — — — WEATHERED RO	DCK 7.0	280 + 5.0 5:00 5:00	(5.0) (4.9) 100% 98%	Mo	derately Close to Close Fracture Spacing (GSI: 40-50)		
294.7 + 8.5 100/0.3		Red to Brown TRIASSIC S	SILTSTONE	4:30					
‡		296.2 WEATHERED RO Red to Brown TRIASSIC S		276.7 26.5 4:30		276.7 Boring Terminate	ed at Elevation 276.7 ft in NON-CRYSTALLINE ROCK:	26.5	
290 289.6 13.6 60/0.1		289.6	13.6				TRIASSIC SANDSTONE		
		Moderately Weathered, Mer	edium Hard to						
285		286.2 Soft, Brown and Red, Thinly Bedded, Moderately Indurately RS-2	ed. TRIASSIC			<u> </u>			
 		Fracture Spacin	na l						
‡		(REC: 97 %, RQD: 88 %, Slightly to Moderately Weath	nered. Medium						
280		Hard, Brown and Red, Thinly Bedded, Moderately Indurate	to Very Thinly						
‡		SANDSTONE with Moderal 276.7 Close Fracture Spa	itely Close to						
		- (REC: 100 %, RQD: 98 %,	GSI: 40-50)						
		Boring Terminated at Elevati NON-CRYSTALLINE ROCK	K: TRIASSIC						
‡		SANDSTONE							
‡						-			
‡									
‡						<u> </u>			
‡						-			
‡						-			
						<u> </u>			
71/-									
						-			
7 Tag									
5. T									
						-			
1000									
						-			
 						-			
						<u> </u>			


CORE PHOTOGRAPHS

LL_B1-B BOXES 1 - 2: 13.7 to 26.5 FEET

BORE LOG					CORE LOG								
WBS 50118.1.FS1	TIP I-5700 COUN	NTY WAKE	GEOLOGIST C. Driscoll		WBS 50118	8.1.FS1		TIP I-570		NTY WAKE	GEOLOGIST C. Drisco	GEOLOGIST C. Driscoll	
SITE DESCRIPTION I-40 and S	SR 3015 (Airport Boulevard) Revise	e Interchange and Construct Aux	kiliary Lane	GROUND WTR (ft)	SITE DESCR	RIPTION	I-40 and SR	R 3015 (Airpoi	rt Boulevard) Revise	e Interchange and Constru	uct Auxiliary Lane	GROUND WTR (ft)	
BORING NO. RL_B1-B	STATION 44+64	OFFSET 79 ft RT	ALIGNMENT -L-	0 HR. N/A	BORING NO	. RL_B1-	В	STATION	44+64	OFFSET 79 ft RT	ALIGNMENT -L-	0 HR. N/A	
COLLAR ELEV. 302.2 ft	TOTAL DEPTH 21.3 ft	NORTHING 768,431	EASTING 2,054,944	24 HR. FIAD	COLLAR EL	EV. 302.	2 ft	TOTAL DE	PTH 21.3 ft	NORTHING 768,431	EASTING 2,054,944	24 HR. FIAD	
DRILL RIG/HAMMER EFF./DATE THE	RI9435 CME-55 85% 02/22/2016	DRILL METHOD	Mud Rotary HAMN	MER TYPE Automatic	DRILL RIG/HA	MMER EFF	/DATE TRIS	9435 CME-55 8	5% 02/22/2016	DRILL MET	HOD Mud Rotary	HAMMER TYPE Automatic	
DRILLER R. Toothman	START DATE 05/13/18	COMP. DATE 05/13/18	SURFACE WATER DEPTH N	I/A	DRILLER R	R. Toothma	an	START DA	TE 05/13/18	COMP. DATE 05/13/	18 SURFACE WATER DEF	PTH N/A	
ELEV DRIVE DEPTH BLOW CO		75 400		CRIPTION	CORE SIZE	NQ2	1	TOTAL RU					
(ft) (ft) (ft) 0.5ft 0.5ft	0.5ft 0 25 50	75 100 NO. MOI G	ELEV. (ft)	DEPTH (ft)	ELEV RUN ELEV (ft)	DEPTH R	UN RATE (Min/ft)	REC. RQD	SAMP. STRATA REC. RQ (ft) (ft) (ft) %	A L QD O G ELEV. (ft)	DESCRIPTION AND REMARK	S DEPTH (ft)	
305			_		293.8			(0.0)	(0.7)	7)	Begin Coring @ 8.4 ft		
			- 302.2 GROUND SURF	ACE 0.0	290.9	8.4 2 11.3	N=60/0.0 1:45/0.9	0 (2.6) (2.5) 90% 86%	100%/\100	7) 293.8 0% 293.1 Slightly	NON-CRYSTALLINE ROCK / Weathered, Medium Hard, Brown and I	Red, Thinly Bedded, 19.1	
300 300.9 1.3 3 4	7		300.9 ROADWAY EMBAN Asphalt: (0.0 to 1.3	IKMENT 1.3	200		N=60/0.9 1:45/0.9 4:30 4:00	(5.0) (5.0) 100% 100%	RS-3 (11.9) (11. 98% 92°		Indurated, TRIASSIC CONGLOMERAT Fracture Spacing	E with Moderately Close	
298.8 + 3.4 100/0.2	11 · • • · · · · · · · · · · · · · · · ·	M M	298.8 TRIASSIC RESII Brown, Sandy CLA	DUAL 3.4		‡	4:45 4:15 4:00 3:30 5:00 5:45 4:30 3:15	100%		Slightly We	(GSI: 50-60) athered, Moderately Hard, Brown and R	ed, Thinly to Very Thinly	
		. 100/0.2	WEATHERED R	ock — — —	285.9	16.3	3:30 3:00 5.0	(5.0) (4.4)	-	Bedded,	Moderately Indurated, TRIASSIC SAND Moderately Close Fracture Spa	STONE with Close to cing	
295			Dark Red to Brown T			Ŧ l`	5:45 4:30	(5.0) (4.4) 100% 88%			(GSI: 40-50)		
293.8 + 8.4 60/0.0			293.1 NON-CRYSTALLIN Slightly Weathered, Mediu	E ROCK 9.1	280.9	I 21.3	3:15 4:15			280.9		21.3	
290			and Red. Thinly Bedded	. Moderately	-	-				Boring To	erminated at Elevation 280.9 ft in NON-C TRIASSIC SANDSTONE		
T			Indurated, TRIASSIC CON with Moderately Close Fra (REC: 100 %, RQD: 100%	acture Spacing		<u>†</u>				1 -			
		· · · · · · ·	Slightly Weathered, Modera	tely Hard, Brown		<u> </u>				<u> </u>			
285		 	Slightly Weathered, Modera and Red, Thinly to Very T Moderately Indurated,	hinly Bedded, TRIASSIC		‡							
		·· ····	SANDS TONE with Close Close Fracture Sp	to Moderately pacing		‡							
			280.9 (REC: 98 %, RQD: 92 % Boring Terminated at Eleva	, GSI: 40-50) 21.3 ation 280.9 ft in	-	‡							
			Boring Terminated at Elevi NON-CRYSTALLINE ROC SANDSTON	CK: TRIASSIC E		‡							
					-	‡							
			-			‡							
			-			‡							
			_		-	‡				-			
			ţ.			‡				-			
			ţ		-	‡				-			
			-			‡							
			-			‡							
			-			‡				F			
			F			Ŧ				 			
$_{\underline{\omega}}$			F		-	I				[-			
7,1/2			F			<u>†</u>				1 -			
			[_	<u> </u>				<u> </u>			
			-			‡							
			[‡							
			Ł		-	‡				-			
			_			‡							
			-			‡							
			F			‡							
[8]			ţ			‡							
19200			<u> </u>			‡							
 			ţ			‡							
			ţ			‡				-			
			F			‡							
			ţ			‡							
ğ †			†			İ l							


CORE PHOTOGRAPHS

RL_B1-BBOXES 1 - 2: 8.4 to 21.3 FEET

FEET

LABORATORY SUMMARY SHEET FOR ROCK CORE SAMPLES

SHEET 18

PROJECT NO.: 50118.1.FS1 (I-5700)

COUNTY: Wake

I-40 AND SR 3015 (AIRPORT BOULEVARD) REVISE INTERCHANGE AND CONSTRUCT AUXILIARY LANE

Sample No.	Boring No.	Depth (ft)	Rock Type	Geologic Map Unit	Run RQD (%)	Length (in)	Diameter (in)	Unit Weight (pcf)	Unconfined Compressive Strength (psi)	Young's Modulus (psi)	Splitting Tensile Strength (psi)	Remarks
RS-1	LL_B1-A	21.7 - 22.1	TRIASSIC SILTSTONE	TRc	96	4.82	1.97	162.9	6,277	N/A	N/A	GSI - 25 to 35
RS-2	LL_B1-B	17.3 - 17.7	TRIASSIC SANDSTONE	TRc	96	4.78	1.98	163.2	2,939	49,864	N/A	GSI - 40 to 50
RS-3	RL_B1-B	10.7 - 11.1	TRIASSIC SANDSTONE	TRc	86	4.58	1.98	158.8	8,830	N/A	N/A	GSI - 40 to 50