This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document –

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page.

This file or an individual page shall not be considered a certified document.

S *-101*. 2 REFERENCE **CONTENTS**

DESCRIPTION

TITLE SHEET LEGEND SITE PLAN

CROSS SECTION

PROFILE

BORE LOGS SOIL TEST RESULTS

SHEET NO.

6-9

10-33

4360 3

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

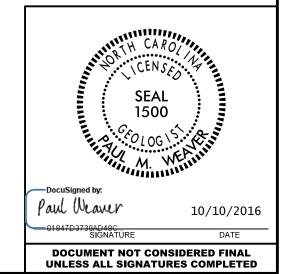
COUNTY <u>CRAV</u>EN

PROJECT DESCRIPTION US 70 (Havelock Bypass) from North of Pine Grove to North of Cateret County

SITE DESCRIPTION Site #5 - Bridge on SR 1756 over US 70 (Havelock Bypass) Between SR 1125 and SR 1763

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTA!
N.C.	R-1015	1	33

CAUTION NOTICE

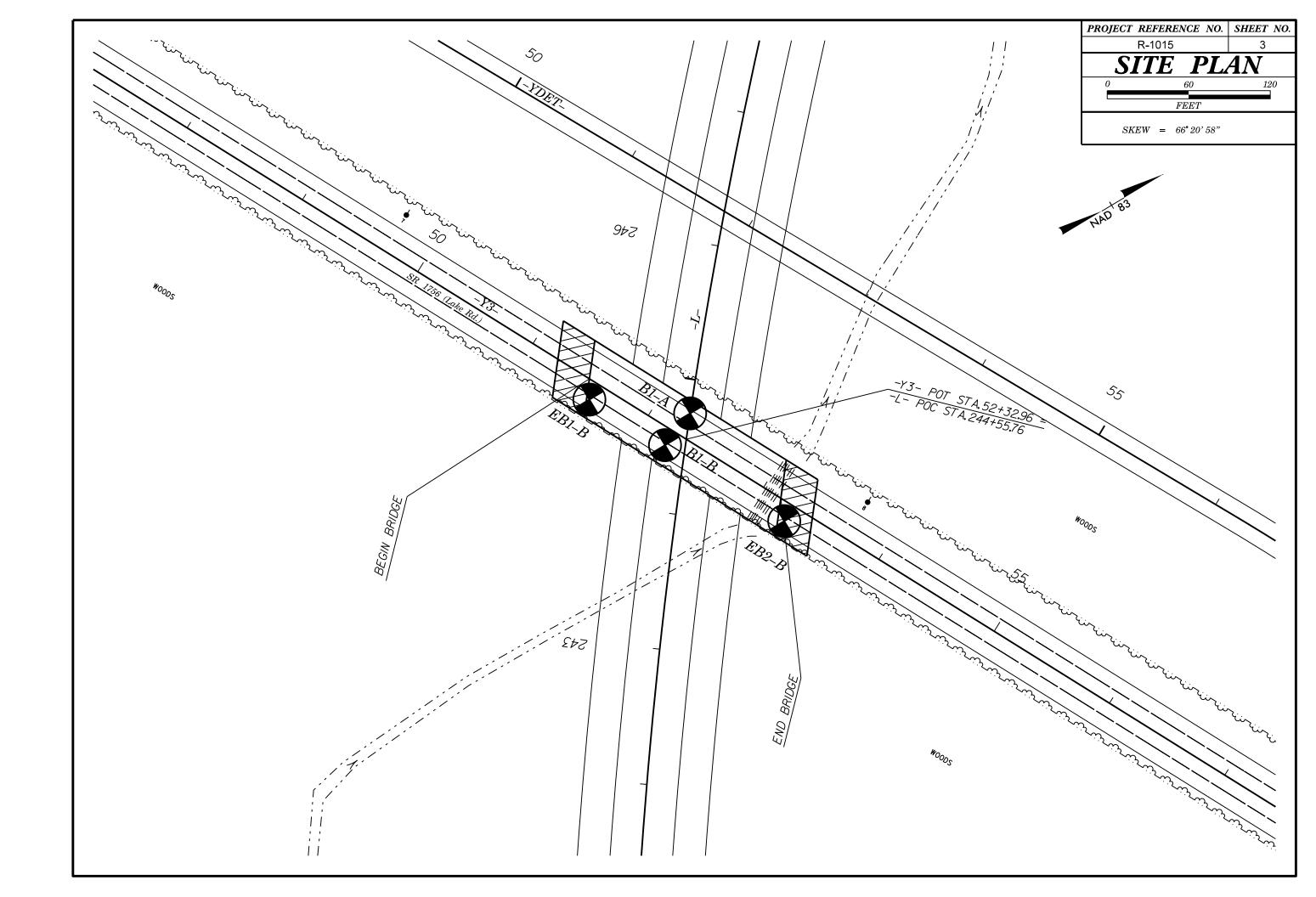

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

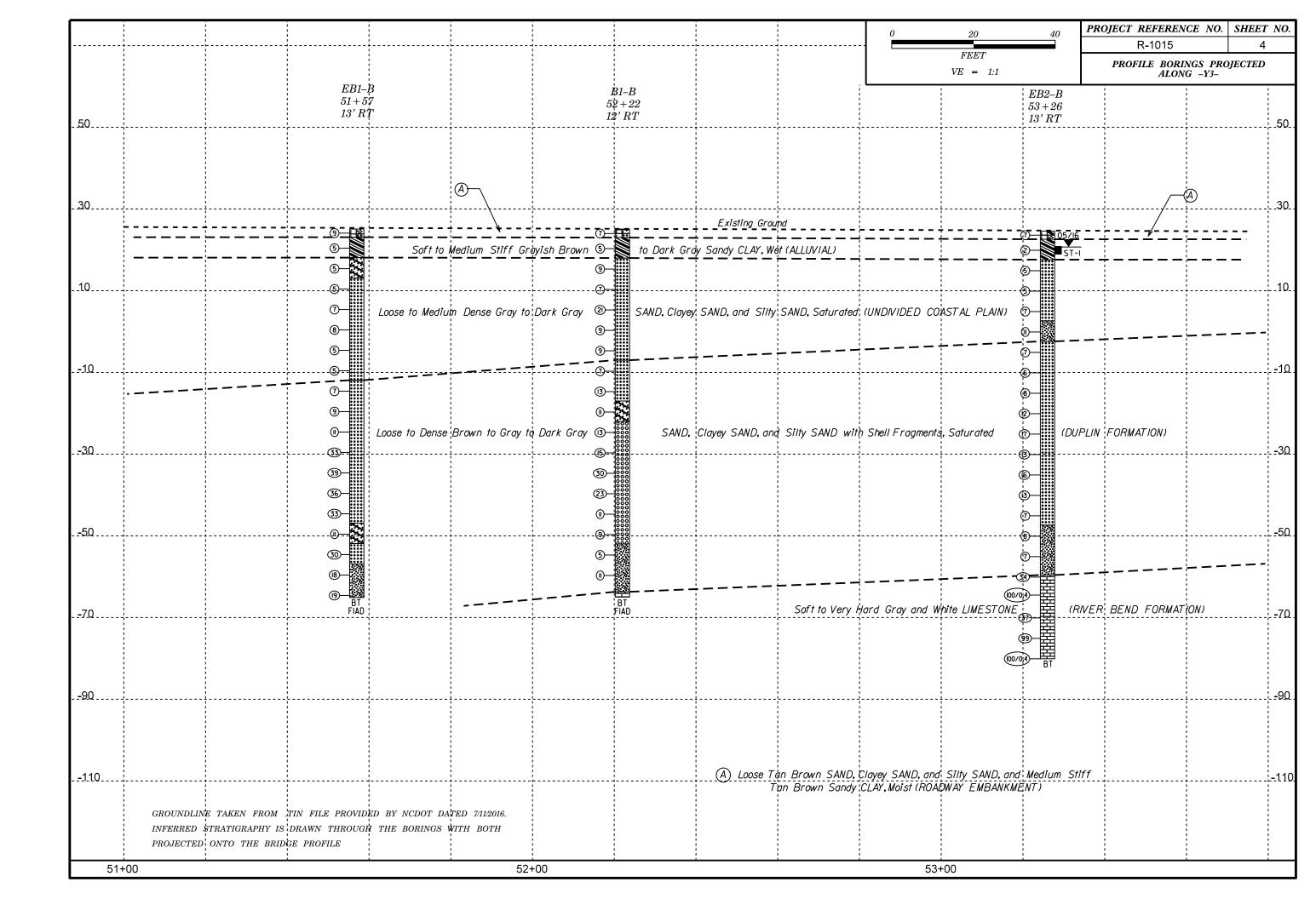
GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IMP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS MOLCATED IN THE SUBSURFACE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MELT OF THE PROPERTY NCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

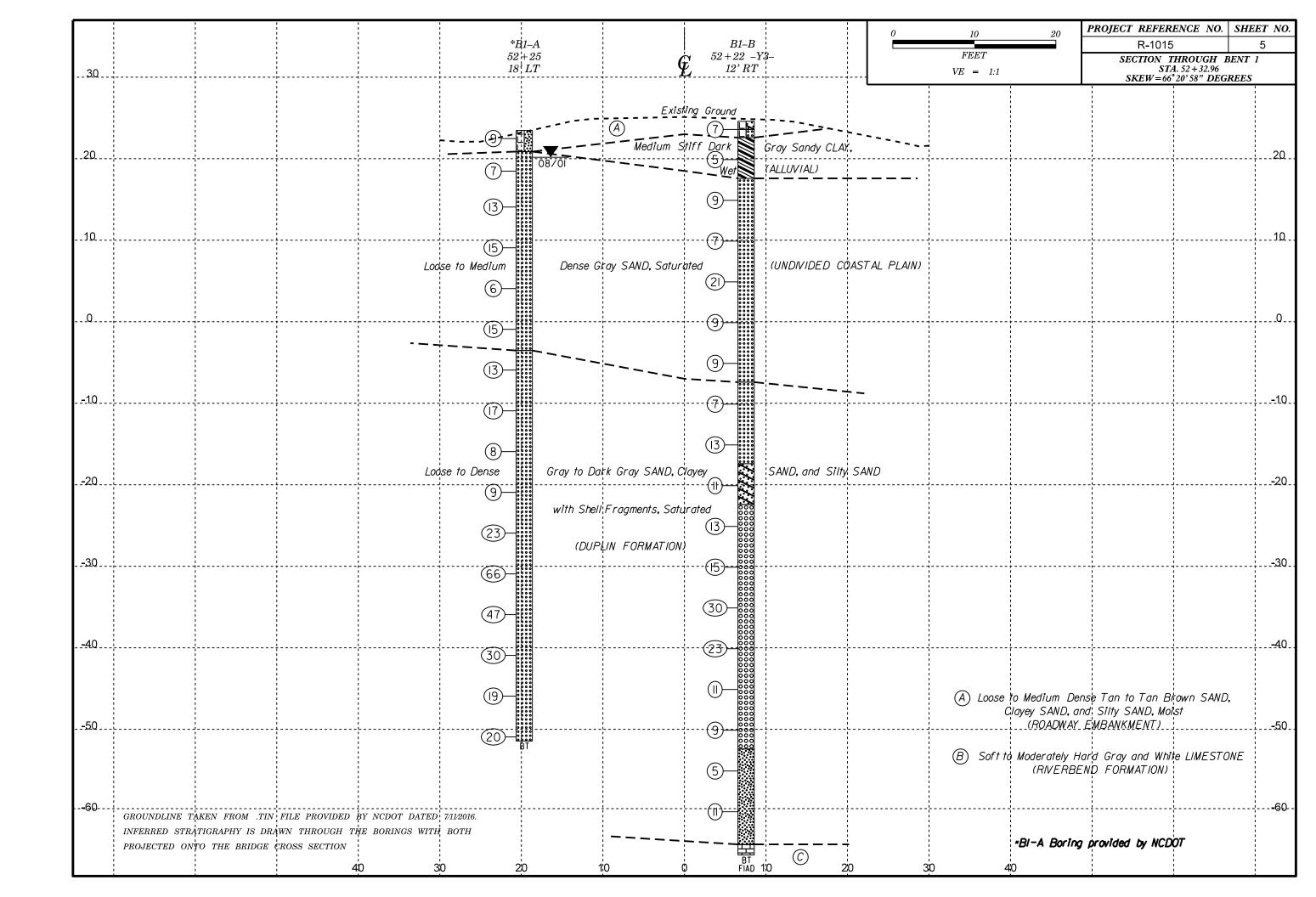
THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT, THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTEMPRETATIONS MADE, OR THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT, THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY RESAON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

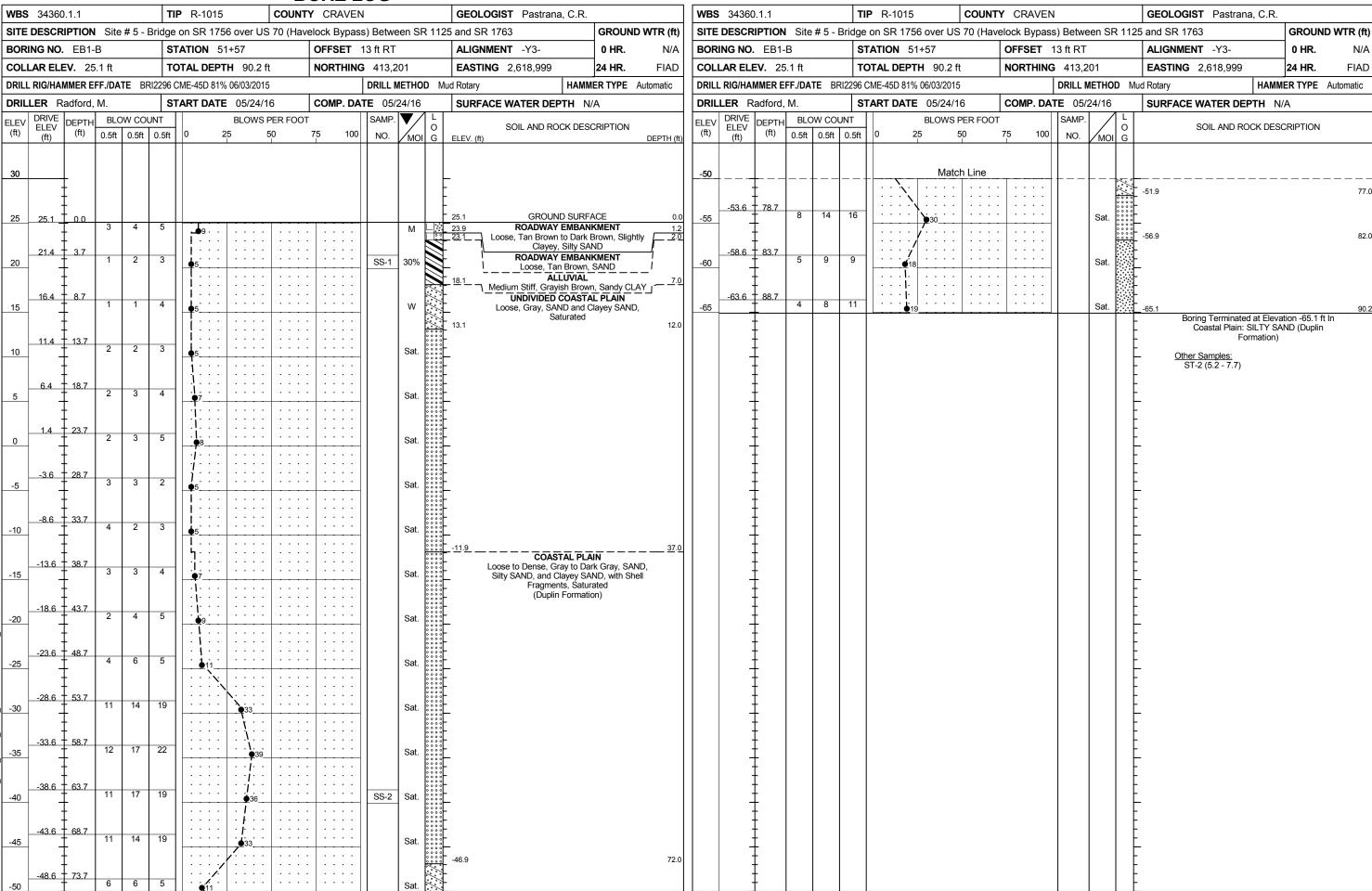
- IES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT
 OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS
 OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
 FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE
 CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL C.R. PASTRANA M. RADFORD INVESTIGATED BY ESP Associates, P.A. DRAWN BY __T.T. WALKER CHECKED BY P. WEAVER SUBMITTED BY <u>ESP</u> Associates, P.A. DATE JULY 2016

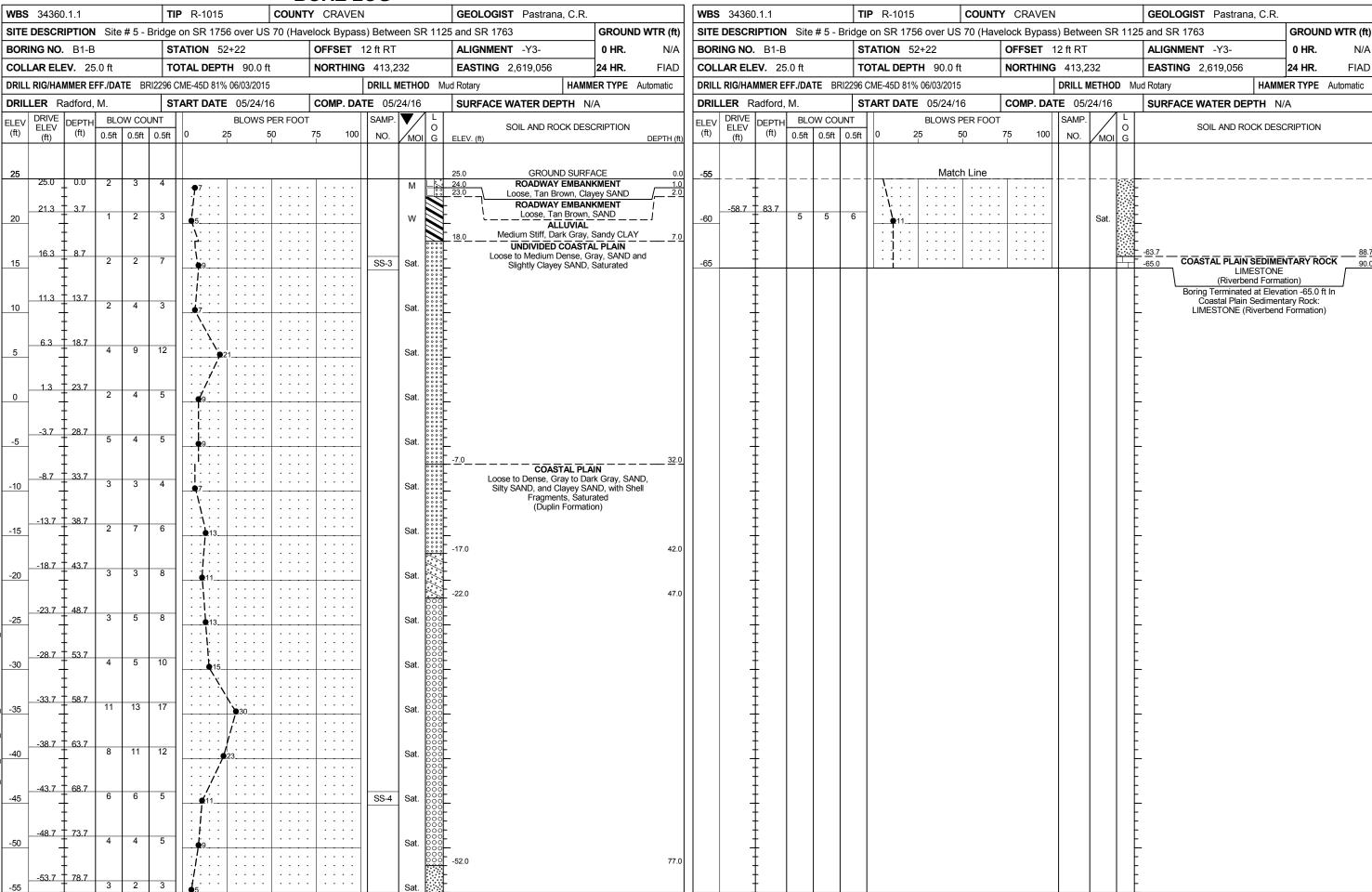

PROJECT REPERENCE NO. SHEET NO. 34360 (R—1015) 2

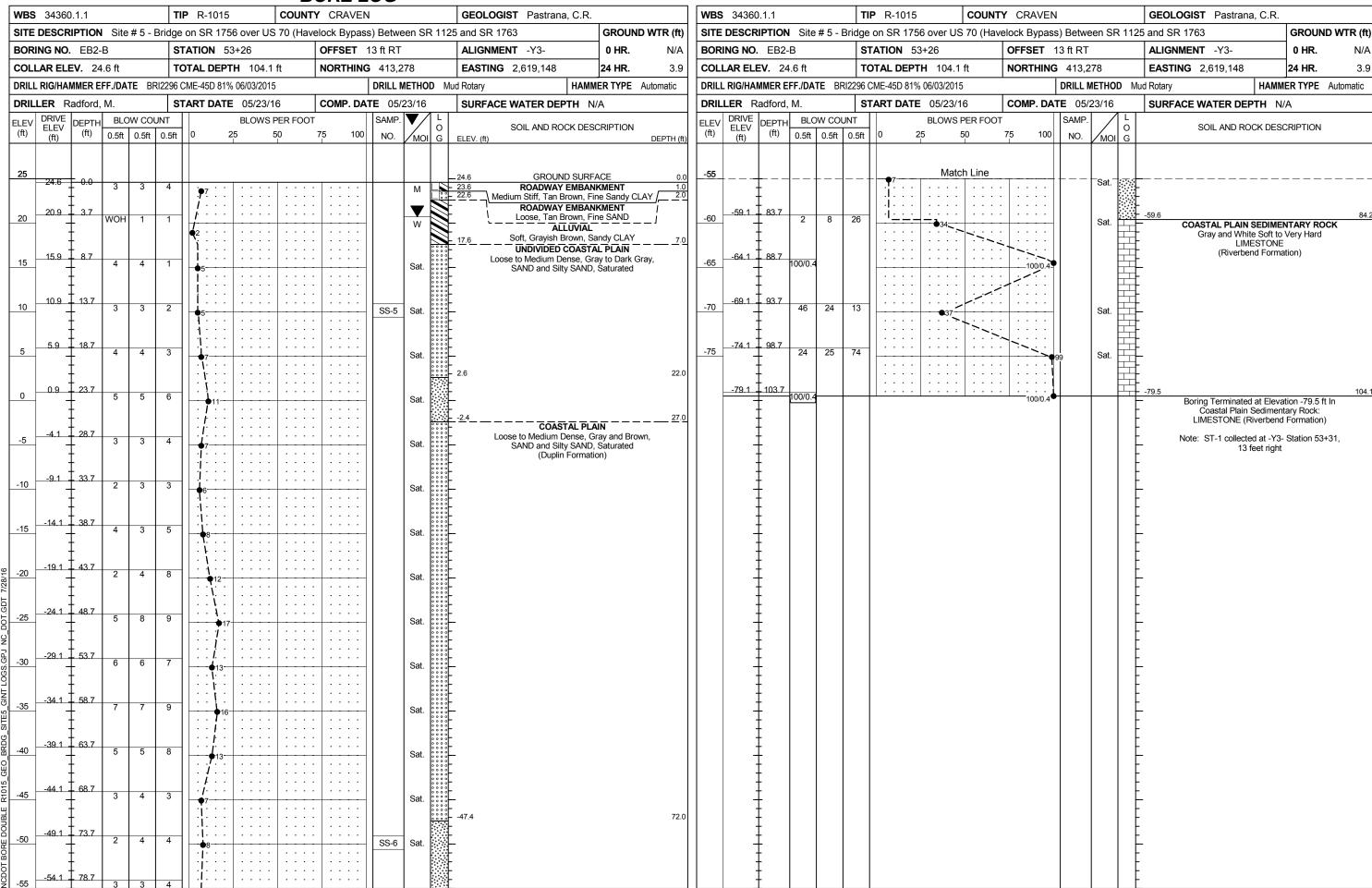

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION


SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUYIUM (ALLUY.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	ADUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF, GRAY, SILTY CLAY, WOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35% PASSING "200) (> 35% PASSING "200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE.	SURFACE.
CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	GNEISS, GABBRO, SCHIST, ETC. FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-6 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRTSTALLINE SEDIMENTARY ROCK THAT WOULD YELD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 0000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE.
7. PASSING	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
"10 50 MX CRANULAR SIL1" MUCK,	PERCENTAGE OF MATERIAL	CP) SHELL BEDS. ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
"48 38 MX 58 MX 51 MN PEAT SOILS SOILS PEAT "289 15 MX 25 MX 18 MX 35 MX 35 MX 35 MX 36 MN 3	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3%, 3 - 5%, TRACE 1 - 10%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
PASSING *40 SOUS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL 148 MX 41 MN 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN LITTLE OR HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	<u>OIP DIRECTION (DIP AZIMUTH)</u> - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH,
CROLD INDEX A A A ANY A MY 12 MY 15 MY NO MY AMOUNTS OF ORGANIC	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
UICINAL TYPES CTOME EPAGS ORGANIC SOILS	▼ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
OF MAJOR GRAVEL, AND CAMP CRAVEL AND CAMP CRIES CRIES	STATIC WATER LEVEL AFTER 24 HOURS	CRYSTALS ARE DULL AND DISCOLORED, CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SANU	<u></u>	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR POOR UNSUITABLE	· · · · · · · · · · · · · · · · · · ·	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ;PI OF A-7-6 SUBGROUP IS > LL - 30	O-MM→ SPRING OR SEEP	WITH FRESH ROCK.	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELO.
COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED		(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK. IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTH (N-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) 25/825 DIP & DIP DIRECTION OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
VERY LOOSE (4	SPT SIGNE WAYGATOR	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GENERALLY LOOSE 4 TO 10	SOIL SYMBOL SOFT ONT TEST BORING SLOPE INDICATOR INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS
MATERIAL MEDIUM DENSE 10 10 30 N/A	ARTIFICIAL FILL (AF) OTHER	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) VERY DENSE > 50	A LEST	SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	OF AN INTERVENING IMPERVIOUS STRATUM,
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MAN MONITORING WELL TEST BORING	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
MATERIAL STIFF 8 TO 15 1 TO 2	A DISTONETED	SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTREE ALLUVIAL SOIL BOUNDARY ALLUVIAL SOIL BOUNDARY INSTALLATION SPT N-VALUE	ALSO AN EXAMPLE.	RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK,
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053		HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7/4- DRY UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE CHIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION GOIDE FOR FIELD POISTORE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID: VERY WET, USUALLY	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC CEMICOLIO, DEGUIDES ORVING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WEI - (W) ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING	BENCH MARK: BM-I2: RR SPIKE IN TREE STA. 228+71.00 -L- 243' LEFT
""PLL + PLASTIC LIMIT	EQUIPMENT USED ON SUBJECT PROJECT	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	5, 5, 4, 7, 9, 9, 9, 5, 5, 5, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET	ELEVATION: 28.81 FEET
SL SHRINKAGE LIMIT	CME-45C CLAY BITS X AUTOMATIC MANUAL	MODERATELY CLOSE	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO	S. CONTINUOUS ELICUT AUCER	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	F.I.A.D. = FILLED IMMEDIATELY AFTER DRILLING
ATTAIN OPTIMUM MOISTURE	CME-55 □ CORE SIZE:	THINLY LAMINATED < 0.008 FEET INDURATION	
PLASTICITY		INDUMENTAL TON FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
PLASTICITY INDEX (PI) ORY STRENGTH	CME-550 HARD FACED FINGER BITS -N	DIRDING WITH FINGED EDEES NUMEDOUS CRAINS.	
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST UNGCARBIDE INSERTS	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM	X CASING W/ ADVANCER POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE:	
HIGHLY PLASTIC 26 OR MORE HIGH	PORTABLE HOIST TRICONESTEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	X CME-45D TRICONE TUNG, CARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE: DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	CORE BIT VANE SHEAR TEST	1	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS,	DATE: 8-15-14
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1





				\neg				UG			
34360					P R-1015		Y CRAVEN			GEOLOGIST F. Westcott-NCI	
			# 5 - E	Ť		US 70 (Have			R 1125		GROUND WTR (ft)
NG NO.	B1-A			S	TATION 52+25		OFFSET 1	8 ft LT		ALIGNMENT -Y3-	0 HR. N/A
AR ELE	EV . 23	.5 ft		TO	OTAL DEPTH 74	.9 ft	NORTHING	413,260		EASTING 2,619,045	24 HR. 3.3
RIG/HAI	MMER E	FF./DA	TE CN	1E-45B				DRILL METHO	D Mu	d Rotary HAMMI	ER TYPE Automatic
ER N	CDOT	Driller		S	TART DATE 08/1	3/01	COMP. DAT	E 08/13/01		SURFACE WATER DEPTH N/A	A
DRIVE	DEPTH	BLC	W COL	JNT	BLOV	VS PER FOOT		SAMP.	L	SOIL AND BOOK DESC	POIDTION
(ft)	(ft)	0.5ft	0.5ft	0.5ft	0 25	50	75 100	NO. MOI			DEPTH (ft)
23.5	- 0.0								L.E		
-	-	4	4	5	9					Modium Donco Tan Slighth	Clavey Silty
10.5	40				<u>''' </u>		<u> </u>		0000	SAND SAND	1 2.0
19.5	7.0	3	3	4	.					Loose to Medium Dense, Gr	ay, Coarse to
-	-									Fine SAND, Satura	ated
15.1	8.4	5	5	8	- \		ļ · · · ·				
-		3		Ü	13.						
-	_				.						
10.1	13.4	3	8	7	1 - 1		+			•	
1	ļ				, 7 15						
	<u> </u>				:i:: :::						
5.1	18.4 	9	4	2	1 1 1 1 1 1 1 1 1 1		+				
_	-				• • • • • • •						
0.1	22.4				:\:: ::						
- 0.1	23.4	4	8	7	15					•	
_	_				::{: ::		: : : :			3.5	27.0
-49	28.4								****	COASTAL PLAI	<u> </u>
-1.5	20.7	5	6	7	13		1			Medium Dense to Loose, Gr Fine SAND with Shell Fragme	ay, Coarse to ents. Saturated
-					$ \cdot \cdot i$					(Duplin Formatio	n)
-9.9	33.4				· · · · · ·						
-	[6	9	8	•17						
-					::/:: :::						
-14.9	38.4				: j : : : :		<u> </u>				
-	<u> </u>	3	ا ا	5	.•68						
-	-				[[-[::::F		
-19.9	43.4	3	5	4							
-	<u> </u>			•	:•						
-	<u> </u>				::\: ::		: : : :				
-24.9	48.4	9	10	13	> 22		+			•	
-	F										
	ţ _, .				:::: ::`	N. [
-29.9	53.4	13	27	39	 		3				
-	-										
-3/1 O	58.4										
- υ - .υ _	- 50.4	14	20	27	1	9 47 · · · ·				•	
-	ţ l				[[::::	/: · · · · ·	: : : :				
-39.9	L 63.4				• • • • • •/						
-	F	12	14	16	· · · · • •30					•	
-					::: /::						
-44.9	68.4				/					•	
-	-	8	11	8	19]				
-	F				::::: ::::						
-49.9	73.4	1		11	• • • • • • •						
	F	4	9	11	20			ı	::::	-51.4 Boring Terminated at Elevat	74.9
	DESCR NG NO. AR ELE RIG/HAI ER N DRIVE ELEV (ft) 19.5	DESCRIPTION NG NO. B1-A AR ELEV. 23 RIGHAMMER E ER NCDOT DRIVE (ft) DEPTH (ft) 8.4 10.1 13.4 10.1 13.4 -14.9 28.4 -19.9 38.4 -14.9 38.4 -24.9 48.4 -24.9 58.4 -39.9 58.4	DESCRIPTION Site NG NO. B1-A AR ELEV. 23.5 ft RIGHAMMER EFF./DA JER NCDOT Driller DRIVE (ft) DEPTH (ft) 0.5ft 23.5 0.0 4 19.5 4.0 3 15.1 18.4 9 0.1 23.4 4 -4.9 28.4 5 -9.9 33.4 6 -14.9 38.4 3 -19.9 43.4 3 -24.9 48.4 9 -29.9 53.4 13 -34.9 58.4 14 -39.9 68.4 8	NG NO. B1-A AR ELEV. 23.5 ft RIG/HAMMER EFF./DATE CN	NG NO B1-A Site # 5 - Bridge	DESCRIPTION Site # 5 - Bridge on SR 1756 over NG NO. B1-A STATION 52+25	DESCRIPTION Site # 5 - Bridge on SR 1756 over US 70 (Have NG NO. B1-A STATION 52+25	DESCRIPTION Site # 5 - Bridge on SR 1756 over US 70 (Havelock Bypass NG NO. B1-A STATION 52+25 OFFSET 1	DESCRIPTION Site # 5 - Bridge on SR 1756 over US 70 (Havelock Bypass) Between SF NG NO B1-A STATION 52+25 OFFSET 18 ft LT AR ELEV 23.5 ft TOTAL DEPTH 74.9 ft NORTHING 413.260 BER NCDOT Oriller START DATE 08/13/01 COMP. DATE 08/13/01 DRIVE DEPTH BLOW COUNT BLOW SPER FOOT SAMP MICH M	DESCRIPTION Site # 5 - Bridge on SR 1756 over US 70 (Havelock Bypass) Between SR 1728 (NG NO. B1-A STATION 52+25 OFFSET 18 ft LT TART ARE LEV. 23.5 ft TOTAL DEPTH 74.9 ft NORTHING 413,260 (SIGNAMMER EFF, DATE CME-485 OR 13/01 COMP. DATE 08/13/01 COMP. DATE 08/13/01 DEPTH 0.5 ft 0.5	DESCRIPTION Site # 5 - Bridge on SR 1756 over US 70 (Havelock Bypass) Detween SR 1125 and SR 1763

SOILS LABORATORY TESTS RESULTS

WBS NO.:

34360.1.1

TIP NO.:

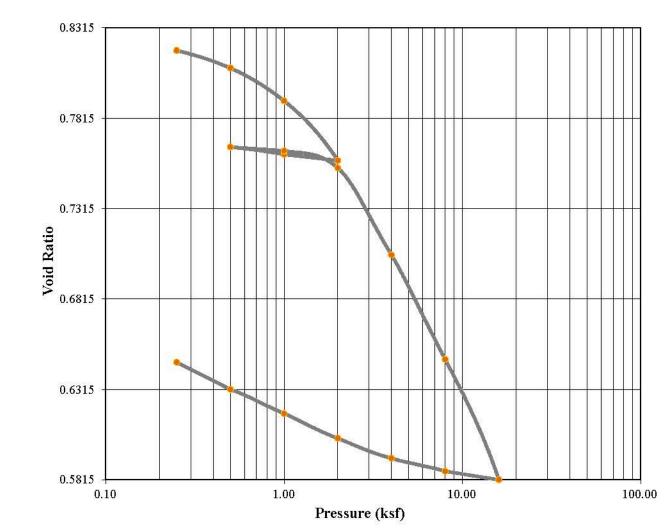
R-1015

COUNTY:

Craven

SITE DESCRIPTION: Site #5 - Bridge on SR 1756 over US 70 (Havelock Bypass) Between SR 1125 and SR 1763

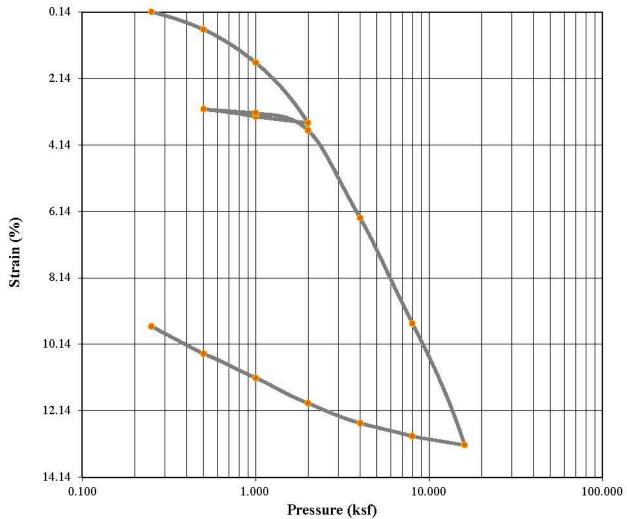
SAMPLE	Boring	DEPTH	AASHTO	N	L.L	P.I.		% BY W	/EIGHT		% P	ASSING SII	EVES	%
NO.		INTERVAL	CLASS				CSE. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE
SS-1	EB1-B	3.7-5.2	A-6 (6)	5	36	20	9	43	15	33	100	98	49	30.1
SS-2	EB1-B	63.7-65.2	A-3 (0)	36	19	NP	76	19	4	1	98	· 55	6	
SS-3	B1-B	8.7-10.2	A-3 (0)	9	13	NP	1	90	4	5	100	100	10	
SS-4	B1-B	68.7-70.2	A-1-b (0)	11	11	1	86	11	2	1	95	37	4	
SS-5	EB2-B	13.7-15.2	A-3 (0)	5	19	NP	9	83	4	4	100	99	8	
SS-6	EB2-B	73.7-75.2	A-2-4 (0)	8	22	1	1	76	19	4	100	99	27	
ST-1	EB2-B	3.7-5.7	A-6 (6)	2	32	16	9	38	13	40	100	98	55	30.9


Tony Summers

Certification No. 121-01-1108

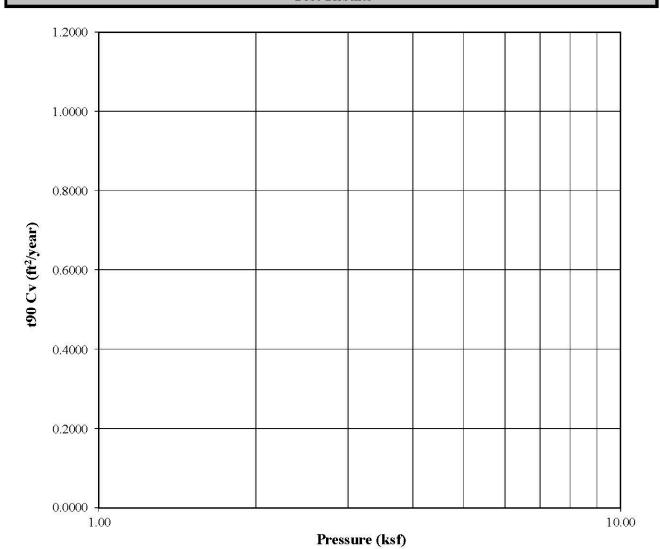
Consolidation Test

Test Results

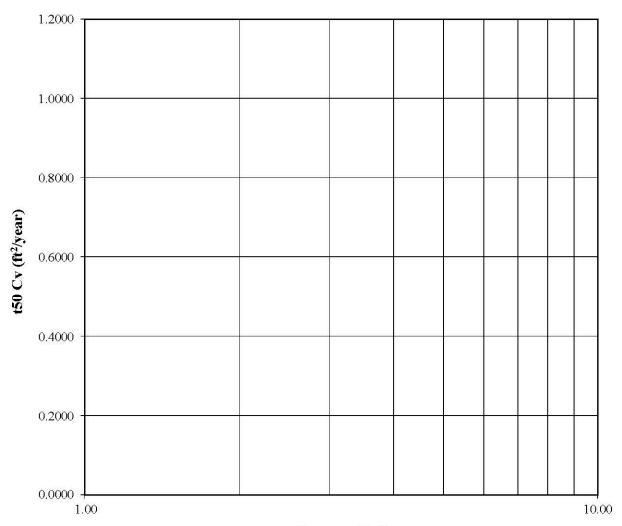

	Before	After	Liquid Limits:	32	Test Date:	6/24/2016
Moisture (%):	30.90	23.53	Plastic Limits:	16		
Dry Density (pcf):	90.67	102.79	Plasticity Index (%):	16		
Saturation (%):	99.31	102.31				
Void Ratio:	0.8225	0.6475	Specific Gravity:	2.650	Assumed	
Soil Description:	**		•			
Project Number:	CS34.325		Depth: 3.7'-5.7'	Rem arks:		
Sample Number:	ST-1	Borii	ng Number: EB2-B			

Project Number: Sample Number: ST-1 R-1015 (site #5) Project:

Client:


Location: EB2-B ST-1(3.7'-5.7') **Consolidation Test** Test Results

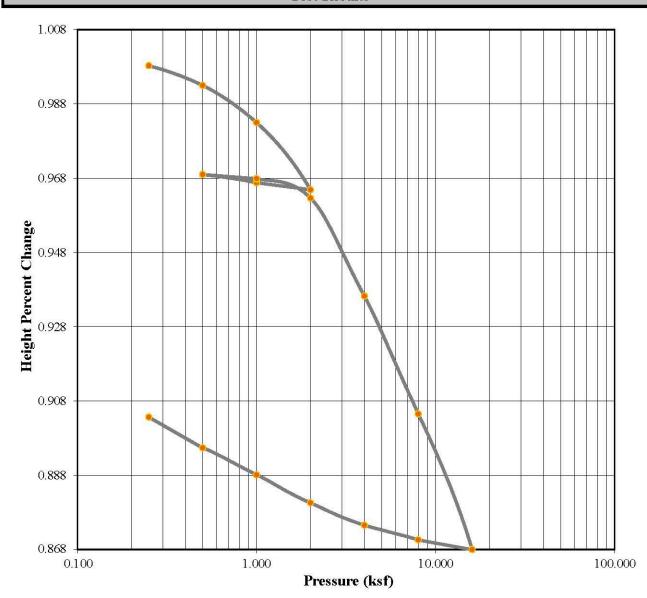
		Before	After	Liquid Limits:	32	Test Date:	6/24/2016
Moisture (%	i):	30.90	23.53	Plastic Limits:	16		
Dry Density	(pcf):	90.67	102.79	Plasticity Index (%):	16		
Saturation (- 77 TO 10 7	99.31	102.31	Straight Colon Christian Switch Colon Colonian colonia in inclusion colonia in colonia in colonia in colonia i			
Void Ratio:		0.8225	0.6475	Specific Gravity:	2.650	Assumed	
Sample Desc	cription:	**		•			
Project Num	ıber:	CS34.325		Depth: 3.7'-5.7'	Remarks:		
Sample Num	ıber:	ST-1	Borir	ng Number: EB2-B			
Project:	R-1015 ((site #5)			7		
Client:							
Location:	EB2-B S	ST-1(3.7'-5.7')					


Consolidation Test Test Results

--- t90 Cv

		Before	After	Liquid Limits:	32	Test Date:	6/24/2016
Moisture (%):	30.90	23.53	Plastic Limits:	16		
Dry Density	(pcf):	90.67	102.79	Plasticity Index (%):	16		
Saturation (%):	99.31	102.31	1			
Void Ratio:	400	0.8225	0.6475	Specific Gravity:	2.650	Assumed	
Soil Descript	ion:						
Project Num	ber:	CS34.325		Depth: 3.7'-5.7'	Remarks:		
Sample Num	ber:	ST-1	Bori	ing Number: EB2-B			
Project:	R-1015 (site #5)					
Client:							
Location:	EB2-B S	Γ-1(3.7'-5.7')					

Consolidation Test Test Results



Pressure (ksf)

→ t50 Cv

		Before	After	Liquid Limits:	32	Test Date:	6/24/2016
Moisture (%):	30.90	23.53	Plastic Limits:	16		
Dry Density	(pcf):	90.67	102.79	Plasticity Index (%):	16		
Saturation (%	%) :	99.31	102.31	35			
Void Ratio:	400	0.8225	0.6475	Specific Gravity:	2.650	Assumed	
Soil Descript	ion:						
Project Num	ber:	CS34.325		Depth: 3.7'-5.7'	Remarks:		
Sample Num	ber:	ST-1	Borin	ng Number: EB2-B			
Project:	R-1015 (s	ite #5)			7		
Client:							
Location:	EB2-B ST	·-1(3.7'-5.7')					

Consolidation Test Test Results

		Before	After	Liquid Limits:	32	Test Date:	6/24/2016
Moisture (%):	30.90	23.53	Plastic Limits:	16		
Dry Density	(pcf):	90.67	102.79	Plasticity Index (%):	16		
Saturation (%):	99.31	102.31	3			
Void Ratio:		0.8225	0.6475	Specific Gravity:	2.650	Assumed	
Soil Descript	tion:						
Project Num	ber:	CS34.325		Depth: 3.7'-5.7'	Remarks:		
Sample Num	ıber:	ST-1	Bori	ng Number: EB2-B			
Project:	R-1015	(site #5)			7		
Client:							
Location:	EB2-B	ST-1(3.7'-5.7')					

Page 5 of 45 Page 6 of 45

SHEET 13

Consolidation Test Results Summary

Project Number: CS34.325

Project: R-1015 (site #5)
Location: EB2-B ST-1(3.7'-5.7')

WBS No.: 34360.1.1

Sample Description: Gray to Dark Gray Sandy CLAY (A-6)

Sample Number: ST-1 Boring Number: EB2-B

3.7'-5.7' Test Number: Depth: Remarks: Sample Type: Undisturbed Test Date: 6/24/2016

Index	Load Sequence (ksf)	Cummulativ e Change in Height (in)	Specimen Height (in)	Height of Void (in)	Vertical Strain (%)	Void Ratio	t90 Fitting Time (min)	t50 Fitting Time (min)	t90 Cv (ft2/year)	t50 Cv (ft2/year)
0	0.000	0.0000	1.0000	0.4510	0.00	0.8213	0.000	0.000	0.000	0.000
1	0.250	0.0014	0.9986	0.4496	0.14	0.8188	0.000	0.000	0.000	0.000
2	0.500	0.0067	0.9933	0.4443	0.67	0.8091	0.000	0.000	0.000	0.000
3	1.000	0.0167	0.9833	0.4343	1.67	0.7910	0.000	0.000	0.000	0.000
4	2.000	0.0348	0.9652	0.4162	3.48	0.7580	0.000	0.000	0.000	0.000
5	1.000	0.0329	0.9671	0.4181	3.29	0.7614	0.000	0.000	0.000	0.000
6	0.500	0.0307	0.9693	0.4203	3.07	0.7654	0.000	0.000	0.000	0.000
7	1.000	0.0319	0.9681	0.4190	3.19	0.7632	0.000	0.000	0.000	0.000
8	0.500	0.0307	0.9693	0.4203	3.07	0.7655	0.000	0.000	0.000	0.000
9	1.000	0.0318	0.9682	0.4192	3.18	0.7634	0.000	0.000	0.000	0.000
10	2.000	0.0370	0.9630	0.4139	3.70	0.7539	0.000	0.000	0.000	0.000
11	4.000	0.0634	0.9366	0.3875	6.34	0.7058	0.000	0.000	0.000	0.000
12	8.000	0.0951	0.9049	0.3558	9.51	0.6481	0.000	0.000	0.000	0.000
13	16.000	0.1317	0.8683	0.3193	13.17	0.5815	0.000	0.000	0.000	0.000
14	8.000	0.1291	0.8709	0.3219	12.91	0.5863	0.000	0.000	0.000	0.000
15	4.000	0.1251	0.8749	0.3258	12.51	0.5934	0.000	0.000	0.000	0.000
16	2.000	0.1191	0.8809	0.3319	11.91	0.6045	0.000	0.000	0.000	0.000
17	1.000	0.1115	0.8885	0.3394	11.15	0.6182	0.000	0.000	0.000	0.000
18	0.500	0.1043	0.8957	0.3467	10.43	0.6315	0.000	0.000	0.000	0.000
19	0.250	0.0960	0.9040	0.3550	9.60	0.6465	0.000	0.000	0.000	0.000

Predicted value indicated with *

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Consolidation Specimen Information

 Project:
 R-1015 (site #5)

 Project Number:
 CS34.325

Location: EB2-B ST-1(3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

Sample Number: ST-1 Sample Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed

Test Number:

Liquid Limit:32.0000Initial Void Ratio:0.8225Initial Height (in):1.0000Plastic Limit:16.0000Plasticity Index (%):16.0000Initial Diameter (in):2.5000

Specific Gravity: 2.6500 Weight of Ring (g): 111.2000

Assumed

Parameters	Initial Specimen	Final Specimen
Moist Weight + Container (g)	150.99	195.90
Dry Soil + Container (g)	127.08	168.12
Weight of Container (g)	49.95	50.04
Moisture Content (%)	30.90	23.53
Void Ratio	0.8225	0.6475
Saturation (%)	99.31	102.31
Dry Density (pcf)	90.67	102. 7 9

Tested By: Tony Summers Checked By: Andrew Burton

Page 7 of 45

SHEET 14

Consolidation Test Results (Sequence 1) Load 0.250 ksf

Project: R-1015 (site #5) Project Number: CS34.325

Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

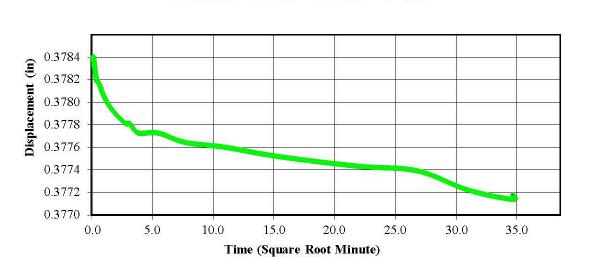
Boring Number: EB2-B
Depth: 3.7'-5.7' Remarks:

Sample Type: Undisturbed

Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.3786	0.0000	0.0000	0.8225
1.	00:00:01	0.3784	0.0002	0.0168	0.8222
2	00:00:02	0.3784	0.0002	0.0168	0.8222
3	00:00:03	0.3784	0.0002	0.0211	0.8221
4	00:00:04	0.3783	0.0003	0.0253	0.8220
5	00:00:05	0.3783	0.0003	0.0253	0.8220
6	00:00:06	0.3783	0.0003	0.0295	0.8220
7	00:00:12	0.3782	0.0004	0.0379	0.8218
8	00:00:15	0.3782	0.0004	0.0379	0.8218
9	00:00:30	0.3781	0.0004	0.0421	0.8217
10	00:01:00	0.3781	0.0005	0.0505	0.8216
11	00:02:00	0.3780	0.0006	0.0589	0.8214
12	00:04:01	0.3779	0.0007	0.0674	0.8213
13	00:08:01	0.3778	0.0008	0.0758	0.8211
14	00:10:01	0.3778	0.0008	0.0758	0.8211
15	00:15:01	0.3777	0.0008	0.0842	0.8210
16	00:30:02	0.3777	0.0008	0.0842	0.8210
17	01:00:04	0.3776	0.0009	0.0926	0.8208
18	02:00:07	0.3776	0.0010	0.0968	0.8207
19	04:00:14	0.3775	0.0011	0.1053	0.8206
20	08:00:27	0.3774	0.0011	0.1137	0.8204
21	12:00:40	0.3774	0.0012	0.1179	0.8203
22	16:00:53	0.3772	0.0013	0.1347	0.8200
23	20:01:07	0.3771	0.0014	0.1432	0.8199
24	20:05:24	0.3772	0.0014	0.1389	0.8200

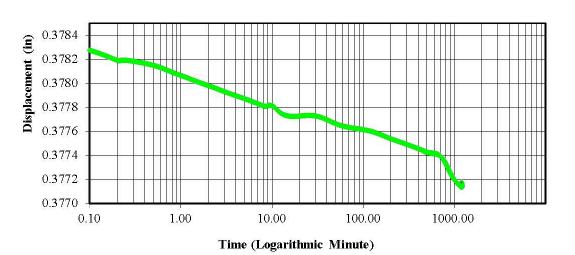
Tested By: Tony Summers

Checked By: Andrew Burton


SHEET 15

Consolidation Test Results (Sequence 1) Load 0.250 ksf

Load 1 Sqr Line1 Line2


Consolidation Graph (Squareroot Time)

Point1

Consolidation Graph (Logarithmic Time)

Load 1 Log

Page 8 of 45

Consolidation Test Results (Sequence 2) Load 0.500 ksf

Project: R-1015 (site #5) **Project Number:** CS34.325

Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

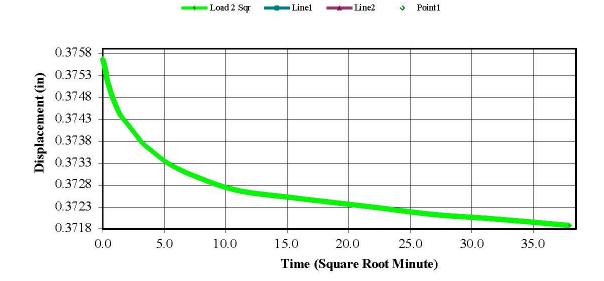
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.3772	0.0014	0.1389	0.8200
1.	00:00:00	0.3757	0.0029	0.2905	0.8172
2	00:00:01	0.3755	0.0030	0.3032	0.8170
3	00:00:02	0.3755	0.0031	0.3116	0.8168
4	00:00:03	0.3754	0.0032	0.3158	0.8167
5	00:00:04	0.3754	0.0032	0.3200	0.8167
6	00:00:05	0.3753	0.0033	0.3284	0.8165
7	00:00:11	0.3751	0.0035	0.3453	0.8162
8	00:00:14	0.3751	0.0035	0.3495	0.8161
9	00:00:30	0.3749	0.0037	0.3705	0.8157
10	00:01:00	0.3747	0.0039	0.3916	0.8154
11	00:02:00	0.3744	0.0042	0.4168	0.8149
12	00:04:00	0.3742	0.0044	0.4379	0.8145
13	00:08:00	0.3739	0.0047	0.4674	0.8140
14	00:10:00	0.3738	0.0048	0.4800	0.8137
15	00:15:00	0.3736	0.0050	0.4968	0.8134
16	00:30:01	0.3733	0.0053	0.5305	0.8128
17	01:00:03	0.3730	0.0056	0.5600	0.8123
18	02:00:06	0.3727	0.0059	0.5895	0.8117
19	04:00:13	0.3725	0.0061	0.6063	0.8114
20	08:00:26	0.3723	0.0063	0.6274	0.8111
21	12:00:39	0.3721	0.0064	0.6442	0.8107
22	16:00:53	0.3720	0.0065	0.6526	0.8106
23	20:01:06	0.3720	0.0066	0.6611	0.8104
24	23:59:57	0.3719	0.0067	0.6695	0.8103

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 2) Load 0.500 ksf

SHEET 16

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 2 Log

Page 10 of 45 Page 11 of 45

Consolidation Test Results (Sequence 3) Load 1.000 ksf

Project: R-1015 (site #5) Project Number: CS34.325

Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

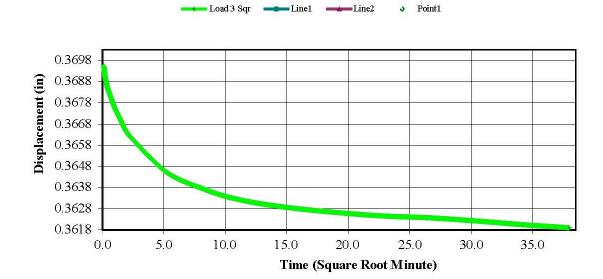
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

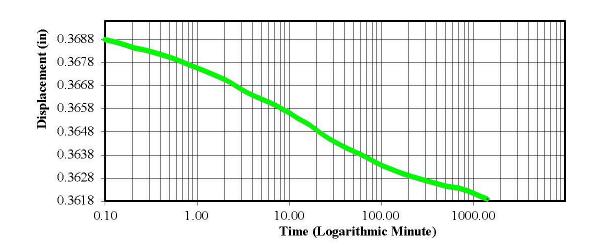
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.3719	0.0067	0.6695	0.8103
1	00:00:01	0.3695	0.0091	0.9053	0.8060
2	00:00:02	0.3693	0.0093	0.9305	0.8055
3	00:00:03	0.3691	0.0095	0.9516	0.8051
4	00:00:04	0.3689	0.0096	0.9642	0.8049
5	00:00:05	0.3689	0.0097	0.9684	0.8048
6	00:00:06	0.3688	0.0098	0.9768	0.8047
7	00:00:12	0.3685	0.0101	1.0105	0.8041
8	00:00:15	0.3684	0.0102	1.0189	0.8039
9	00:00:30	0.3680	0.0105	1.0526	0.8033
10	00:01:00	0.3676	0.0110	1.0989	0.8025
11	00:02:00	0.3671	0.0115	1.1495	0.8015
12	00:04:00	0.3664	0.0122	1.2168	0.8003
13	00:08:01	0.3659	0.0127	1.2716	0.7993
14	00:10:01	0.3656	0.0129	1.2926	0.7989
15	00:15:01	0.3652	0.0133	1.3347	0.7982
16	00:30:02	0.3644	0.0141	1.4147	0.7967
17	01:00:04	0.3638	0.0147	1.4737	0.7956
18	02:00:07	0.3632	0.0153	1.5326	0.7946
19	04:00:14	0.3628	0.0157	1.5747	0.7938
20	08:00:27	0.3625	0.0161	1.6084	0.7932
21	12:00:40	0.3624	0.0162	1.6211	0.7929
22	16:00:53	0.3622	0.0164	1.6379	0.7926
23	20:01:07	0.3620	0.0165	1.6547	0.7923
24	23:59:58	0.3619	0.0167	1.6674	0.7921

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 3) Load 1.000 ksf


SHEET 17

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 3 Log

Page 12 of 45 Page 13 of 45

Consolidation Test Results (Sequence 4) Load 2.000 ksf

Project: R-1015 (site #5) Project Number: CS34.325

Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

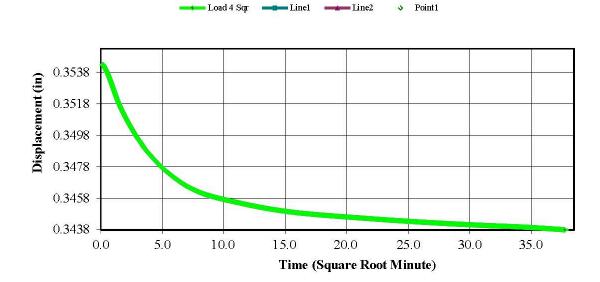
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

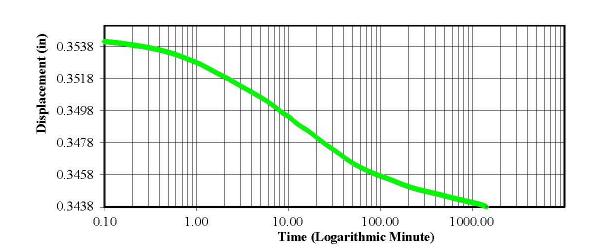
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.3619	0.0167	1.6674	0.7921
1.	00:00:01	0.3543	0.0243	2.4295	0.7782
2	00:00:02	0.3543	0.0243	2.4295	0.7782
3	00:00:03	0.3542	0.0243	2.4337	0.7781
4	00:00:04	0.3542	0.0244	2.4379	0.7781
5	00:00:05	0.3541	0.0244	2.4421	0.7780
6	00:00:06	0.3541	0.0245	2.4463	0.7779
7	00:00:12	0.3539	0.0247	2.4674	0.7775
8	00:00:15	0.3538	0.0248	2.4758	0.7774
9	00:00:30	0.3534	0.0251	2.5137	0.7767
10	00:01:00	0.3528	0.0258	2.5768	0.7755
11	00:02:00	0.3519	0.0267	2.6653	0.7739
12	00:04:00	0.3509	0.0276	2.7621	0.7722
13	00:08:00	0.3498	0.0288	2.8758	0.7701
14	00:10:01	0.3494	0.0291	2.9137	0.7694
15	00:15:01	0.3487	0.0299	2.9895	0.7680
16	00:30:02	0.3474	0.0312	3.1158	0.7657
17	01:00:03	0.3463	0.0323	3.2295	0.7636
18	02:00:07	0.3456	0.0330	3.3011	0.7623
19	04:00:13	0.3449	0.0336	3.3642	0.7612
20	08:00:26	0.3445	0.0341	3.4063	0.7604
21	12:00:40	0.3443	0.0343	3.4316	0.7599
22	16:00:53	0.3441	0.0345	3.4484	0.7596
23	20:01:06	0.3440	0.0346	3.4611	0.7594
24	23:59:56	0.3438	0.0348	3.4779	0.7591

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 4) Load 2.000 ksf


SHEET 18

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 4 Log

Page 14 of 45 Page 15 of 45

Consolidation Test Results (Sequence 5) Rebound 1.000 ksf

Project: R-1015 (site #5) Project Number: CS34.325

Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

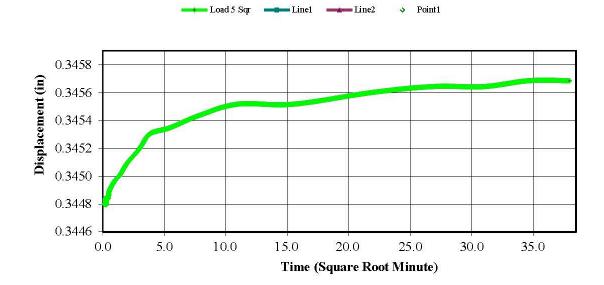
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

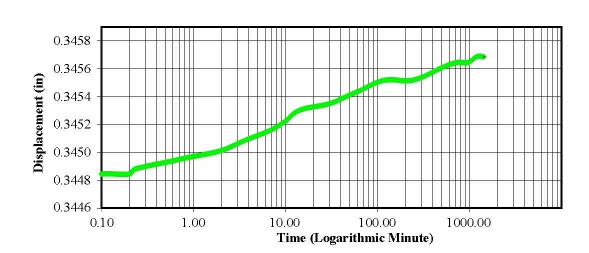
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.3438	0.0348	3.4779	0.7591
1.	00:00:01	0.3448	0.0338	3.3768	0.7609
2	00:00:02	0.3448	0.0338	3.3768	0.7609
3	00:00:03	0.3448	0.0337	3.3726	0.7610
4	00:00:04	0.3448	0.0338	3.3768	0.7609
5	00:00:05	0.3448	0.0338	3.3768	0.7609
6	00:00:06	0.3448	0.0337	3.3726	0.7610
7	00:00:12	0.3448	0.0337	3.3726	0.7610
8	00:00:15	0.3449	0.0337	3.3684	0.7611
9	00:00:30	0.3449	0.0336	3.3642	0.7612
10	00:01:00	0.3450	0.0336	3.3600	0.7613
11	00:02:00	0.3450	0.0336	3.3558	0.7613
12	00:04:00	0.3451	0.0335	3.3474	0.7615
13	00:08:01	0.3452	0.0334	3.3389	0.7616
14	00:10:01	0.3452	0.0333	3.3347	0.7617
15	00:15:01	0.3453	0.0333	3.3263	0.7619
16	00:30:02	0.3453	0.0332	3.3221	0.7619
17	01:00:04	0.3454	0.0331	3.3137	0.7621
18	02:00:07	0.3455	0.0331	3.3053	0.7623
19	04:00:14	0.3455	0.0331	3.3053	0.7623
20	08:00:27	0.3456	0.0330	3.2968	0.7624
21	12:00:40	0.3456	0.0329	3.2926	0.7625
22	16:00:53	0.3456	0.0329	3.2926	0.7625
23	20:01:07	0.3457	0.0329	3.2884	0.7626
24	23:59:57	0.3457	0.0329	3.2884	0.7626

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 5) Rebound 1.000 ksf


SHEET 19

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

── Load 5 Log

Page 16 of 45 Page 17 of 45

Consolidation Test Results (Sequence 6) Rebound 0.500 ksf

Project: R-1015 (site #5) Project Number: CS34.325

Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

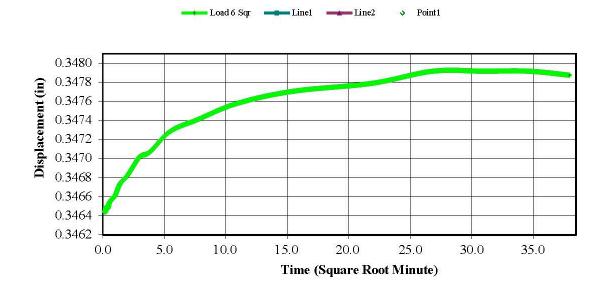
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

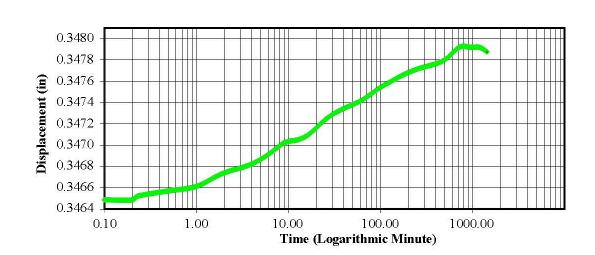
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.3457	0.0329	3.2884	0.7626
1	00:00:01	0.3464	0.0321	3.2126	0.7639
2	00:00:02	0.3464	0.0321	3.2126	0.7639
3	00:00:03	0.3464	0.0321	3.2126	0.7639
4	00:00:04	0.3465	0.0321	3.2084	0.7640
5	00:00:05	0.3465	0.0321	3.2084	0.7640
6	00:00:06	0.3465	0.0321	3.2084	0.7640
7	00:00:12	0.3465	0.0321	3.2084	0.7640
8	00:00:15	0.3465	0.0320	3.2042	0.7641
9	00:00:30	0.3466	0.0320	3.2000	0.7642
10	00:01:00	0.3466	0.0320	3.1958	0.7642
11	00:02:00	0.3467	0.0318	3.1832	0.7645
12	00:04:00	0.3468	0.0317	3.1747	0.7646
13	00:08:00	0.3470	0.0316	3.1579	0.7649
14	00:10:01	0.3470	0.0315	3.1537	0.7650
15	00:15:01	0.3471	0.0315	3.1495	0.7651
16	00:30:02	0.3473	0.0313	3.1284	0.7655
17	01:00:03	0.3474	0.0312	3.1158	0.7657
18	02:00:07	0.3476	0.0310	3.0989	0.7660
19	04:00:13	0.3477	0.0309	3.0863	0.7662
20	08:00:26	0.3478	0.0308	3.0779	0.7664
21	12:00:40	0.3479	0.0307	3.0653	0.7666
22	16:00:53	0.3479	0.0307	3.0653	0.7666
23	20:01:06	0.3479	0.0307	3.0653	0.7666
24	23:59:57	0.3479	0.0307	3.0695	0.7665

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 6) Rebound 0.500 ksf


SHEET 20

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 6 Log

Page 18 of 45 Page 19 of 45

Consolidation Test Results (Sequence 7) Load 1.000 ksf

Project: R-1015 (site #5) Project Number: CS34.325

Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

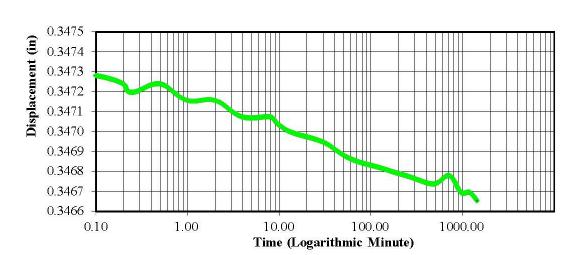
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed

Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.3479	0.0307	3.0695	0.7665
1	00:00:01	0.3473	0.0313	3.1284	0.7655
2	00:00:02	0.3473	0.0313	3.1284	0.7655
3	00:00:03	0.3473	0.0313	3.1284	0.7655
4	00:00:04	0.3473	0.0313	3.1284	0.7655
5	00:00:05	0.3473	0.0313	3.1284	0.7655
6	00:00:06	0.3473	0.0313	3.1284	0.7655
7	00:00:12	0.3472	0.0313	3.1326	0.7654
8	00:00:15	0.3472	0.0314	3.1368	0.7653
9	00:00:30	0.3472	0.0313	3.1326	0.7654
10	00:01:00	0.3472	0.0314	3.1411	0.7652
11	00:02:00	0.3472	0.0314	3.1411	0.7652
12	00:04:00	0.3471	0.0315	3.1495	0.7651
13	00:08:00	0.3471	0.0315	3.1495	0.7651
14	00:10:00	0.3470	0.0315	3.1537	0.7650
15	00:15:01	0.3470	0.0316	3.1579	0.7649
16	00:30:02	0.3469	0.0316	3.1621	0.7649
17	01:00:03	0.3469	0.0317	3.1705	0.7647
18	02:00:07	0.3468	0.0317	3.1747	0.7646
19	04:00:13	0.3468	0.0318	3.1789	0.7646
20	08:00:26	0.3467	0.0318	3.1832	0.7645
21	12:00:40	0.3468	0.0318	3.1789	0.7646
22	16:00:53	0.3467	0.0319	3.1874	0.7644
23	20:01:06	0.3467	0.0319	3.1874	0.7644
24	23:59:58	0.3467	0.0319	3.1916	0.7643

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 7) Load 1.000 ksf


SHEET 21

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 7 Log

Page 20 of 45 Page 21 of 45

Consolidation Test Results (Sequence 8) Rebound 0.500 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

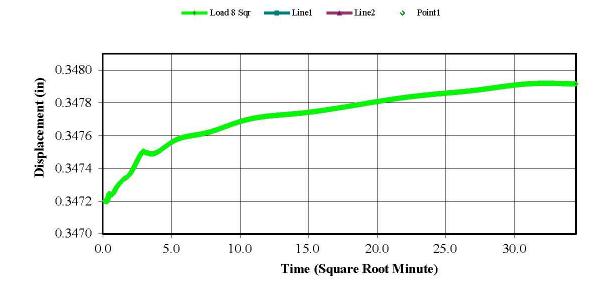
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

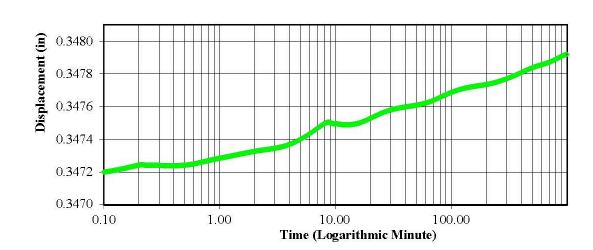
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.3467	0.0319	3.1916	0.7643
1.	00:00:01	0.3472	0.0314	3.1368	0.7653
2	00:00:02	0.3472	0.0314	3.1368	0.7653
3	00:00:03	0.3472	0.0314	3.1368	0.7653
4	00:00:04	0.3472	0.0314	3.1368	0.7653
5	00:00:05	0.3472	0.0314	3.1368	0.7653
6	00:00:06	0.3472	0.0314	3.1368	0.7653
7	00:00:12	0.3472	0.0313	3.1326	0.7654
8	00:00:15	0.3472	0.0313	3.1326	0.7654
9	00:00:30	0.3472	0.0313	3.1326	0.7654
10	00:01:00	0.3473	0.0313	3.1284	0.7655
11	00:02:00	0.3473	0.0312	3.1242	0.7656
12	00:04:00	0.3474	0.0312	3.1200	0.7656
13	00:08:00	0.3475	0.0311	3.1074	0.7659
14	00:10:00	0.3475	0.0311	3.1074	0.7659
15	00:15:01	0.3475	0.0311	3.1074	0.7659
16	00:30:01	0.3476	0.0310	3.0989	0.7660
17	01:00:03	0.3476	0.0309	3.0947	0.7661
18	02:00:06	0.3477	0.0309	3.0863	0.7662
19	04:00:13	0.3477	0.0308	3.0821	0.7663
20	08:00:26	0.3478	0.0307	3.0737	0.7665
21	12:00:40	0.3479	0.0307	3.0695	0.7665
22	16:00:53	0.3479	0.0307	3.0653	0.7666
23	20:01:06	0.3479	0.0307	3.0653	0.7666
24	23:59:57	0.3479	0.0307	3.0653	0.7666

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 8) Rebound 0.500 ksf


SHEET 22

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 8 Log

Page 22 of 45 Page 23 of 45

Consolidation Test Results (Sequence 9) Load 1.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

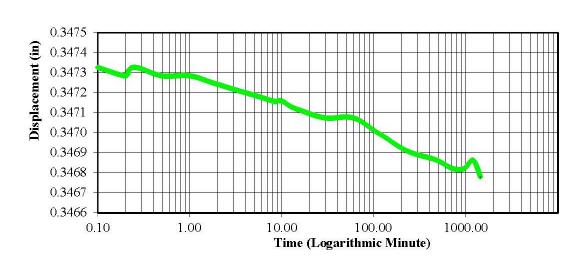
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed

Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.3479	0.0307	3.0653	0.7666
1	00:00:01	0.3474	0.0312	3.1200	0.7656
2	00:00:02	0.3474	0.0312	3.1200	0.7656
3	00:00:03	0.3474	0.0312	3.1200	0.7656
4	00:00:04	0.3474	0.0312	3.1200	0.7656
5	00:00:05	0.3474	0.0312	3.1200	0.7656
6	00:00:06	0.3473	0.0312	3.1242	0.7656
7	00:00:12	0.3473	0.0313	3.1284	0.7655
8	00:00:15	0.3473	0.0312	3.1242	0.7656
9	00:00:30	0.3473	0.0313	3.1284	0.7655
10	00:01:00	0.3473	0.0313	3.1284	0.7655
11	00:02:00	0.3472	0.0313	3.1326	0.7654
12	00:04:01	0.3472	0.0314	3.1368	0.7653
13	00:08:01	0.3472	0.0314	3.1411	0.7652
14	00:10:01	0.3472	0.0314	3.1411	0.7652
15	00:15:01	0.3471	0.0315	3.1453	0.7652
16	00:30:02	0.3471	0.0315	3.1495	0.7651
17	01:00:04	0.3471	0.0315	3.1495	0.7651
18	02:00:07	0.3470	0.0316	3.1579	0.7649
19	04:00:14	0.3469	0.0317	3.1663	0.7648
20	08:00:27	0.3469	0.0317	3.1705	0.7647
21	12:00:40	0.3468	0.0317	3.1747	0.7646
22	16:00:53	0.3468	0.0317	3.1747	0.7646
23	20:01:07	0.3469	0.0317	3.1705	0.7647
24	23:59:58	0.3468	0.0318	3.1789	0.7646

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 9) Load 1.000 ksf


SHEET 23

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 9 Log

Page 24 of 45 Page 25 of 45

Consolidation Test Results (Sequence 10) Load 2.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

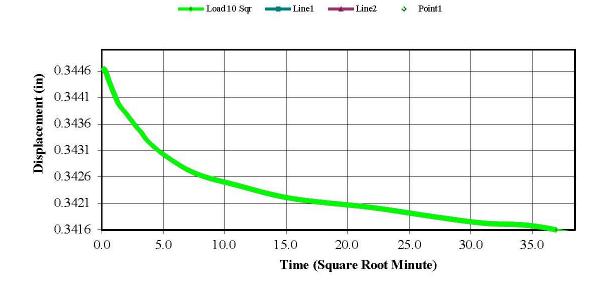
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

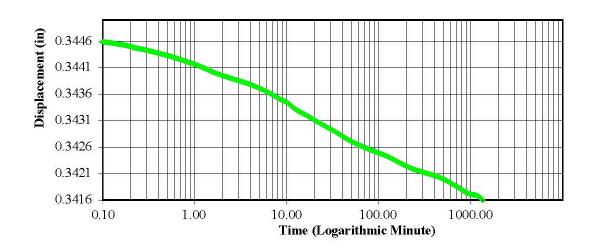
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.3468	0.0318	3.1789	0.7646
1	00:00:01	0.3446	0.0339	3.3937	0.7606
2	00:00:02	0.3446	0.0339	3.3937	0.7606
3	00:00:03	0.3446	0.0339	3.3937	0.7606
4	00:00:04	0.3446	0.0340	3.3979	0.7606
5	00:00:05	0.3446	0.0340	3.3979	0.7606
6	00:00:06	0.3446	0.0340	3.3979	0.7606
7	00:00:12	0.3445	0.0341	3.4063	0.7604
8	00:00:15	0.3445	0.0341	3.4105	0.7603
9	00:00:30	0.3443	0.0342	3.4232	0.7601
10	00:01:00	0.3442	0.0344	3.4400	0.7598
11	00:02:00	0.3440	0.0346	3.4611	0.7594
12	00:04:00	0.3438	0.0348	3.4779	0.7591
13	00:08:01	0.3435	0.0350	3.5032	0.7586
14	00:10:01	0.3435	0.0351	3.5116	0.7585
15	00:15:01	0.3432	0.0353	3.5326	0.7581
16	00:30:02	0.3429	0.0356	3.5621	0.7576
17	01:00:03	0.3427	0.0359	3.5916	0.7570
18	02:00:07	0.3424	0.0361	3.6126	0.7566
19	04:00:13	0.3422	0.0364	3.6379	0.7562
20	08:00:27	0.3420	0.0365	3.6547	0.7559
21	12:00:40	0.3419	0.0367	3.6716	0.7556
22	16:00:53	0.3417	0.0368	3.6842	0.7553
23	20:01:06	0.3417	0.0369	3.6884	0.7553
24	23:59:58	0.3416	0.0370	3.7011	0.7550

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 10) Load 2.000 ksf


SHEET 24

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 10 Log

Page 26 of 45 Page 27 of 45

Consolidation Test Results (Sequence 11) Load 4.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

Test Number:

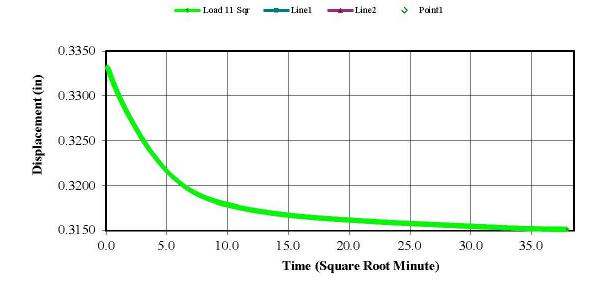
Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

Depth: 3.7'-5.7' **Remarks:**

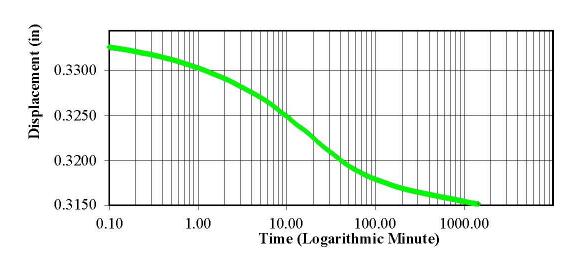
Sample Type: Undisturbed

Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.3416	0.0370	3.7011	0.7550
1	00:00:01	0.3332	0.0454	4.5389	0.7398
2	00:00:03	0.3329	0.0456	4.5642	0.7393
3	00:00:04	0.3328	0.0458	4.5768	0.7391
4	00:00:05	0.3327	0.0459	4.5895	0.7388
5	00:00:06	0.3326	0.0460	4.5979	0.7387
6	00:00:07	0.3325	0.0461	4.6105	0.7385
7	00:00:13	0.3320	0.0466	4.6568	0.7376
8	00:00:16	0.3318	0.0467	4.6737	0.7373
9	00:00:31	0.3312	0.0474	4.7411	0.7361
10	00:01:01	0.3302	0.0483	4.8337	0.7344
11	00:02:01	0.3291	0.0495	4.9516	0.7322
12	00:04:01	0.3275	0.0510	5.1032	0.7295
13	00:08:01	0.3256	0.0530	5.2968	0.7260
14	00:10:01	0.3249	0.0537	5.3684	0.7247
15	00:15:02	0.3235	0.0551	5.5074	0.7221
16	00:30:02	0.3210	0.0576	5.7558	0.7176
17	01:00:04	0.3189	0.0597	5.9663	0.7138
18	02:00:07	0.3176	0.0610	6.0968	0.7114
19	04:00:14	0.3167	0.0619	6.1895	0.7097
20	08:00:27	0.3160	0.0625	6.2526	0.7085
21	12:00:41	0.3157	0.0629	6.2863	0.7079
22	16:00:54	0.3155	0.0631	6.3116	0.7075
23	20:01:07	0.3152	0.0633	6.3326	0.7071
24	23:59:59	0.3152	0.0634	6.3411	0.7069


Tested By: Tony Summers

Checked By: Andrew Burton

SHEET 25


Consolidation Test Results (Sequence 11) Load 4.000 ksf

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 11 Log

Page 28 of 45 Page 29 of 45

Consolidation Test Results (Sequence 12) Load 8.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

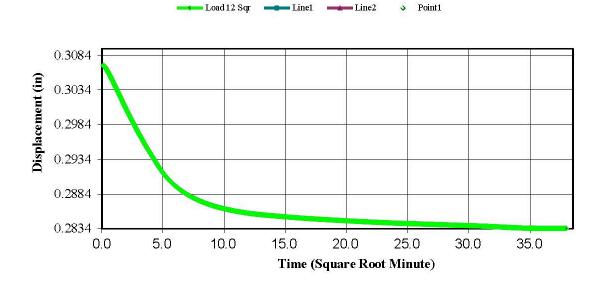
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

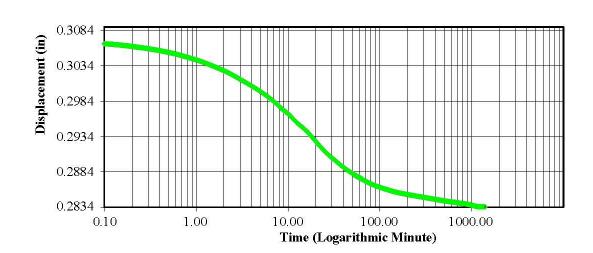
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.3152	0.0634	6.3411	0.7069
1.	00:00:01	0.3069	0.0717	7.1663	0.6919
2	00:00:02	0.3068	0.0717	7.1747	0.6917
3	00:00:03	0.3067	0.0718	7.1832	0.6916
4	00:00:04	0.3067	0.0 7 19	7.1874	0.6915
5	00:00:05	0.3066	0.0720	7.1958	0.6913
6	00:00:06	0.3065	0.0720	7.2042	0.6912
7	00:00:12	0.3061	0.0724	7.2421	0.6905
8	00:00:15	0.3060	0.0726	7.2589	0.6902
9	00:00:30	0.3053	0.0733	7.3263	0.6890
10	00:01:00	0.3043	0.0743	7.4316	0.6870
11	00:02:00	0.3027	0.0758	7.5832	0.6843
12	00:04:00	0.3006	0.0780	7.7979	0.6804
13	00:08:01	0.2977	0.0808	8.0842	0.6752
14	00:10:01	0.2967	0.0819	8.1895	0.6732
15	00:15:01	0.2945	0.0840	8.4042	0.6693
16	00:30:02	0.2904	0.0881	8.8126	0.6619
17	01:00:03	0.2876	0.0909	9.0947	0.6567
18	02:00:07	0.2859	0.0926	9.2632	0.6537
19	04:00:13	0.2851	0.0935	9.3516	0.6521
20	08:00:27	0.2844	0.0942	9.4189	0.6508
21	12:00:40	0.2840	0.0945	9.4526	0.6502
22	16:00:53	0.2838	0.0948	9.4779	0.6498
23	20:01:06	0.2835	0.0951	9.5074	0.6492
24	23:59:57	0.2835	0.0951	9.5116	0.6491

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 12) Load 8.000 ksf


SHEET 26

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 12 Log

Page 30 of 45 Page 31 of 45

Consolidation Test Results (Sequence 13) Load 16.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

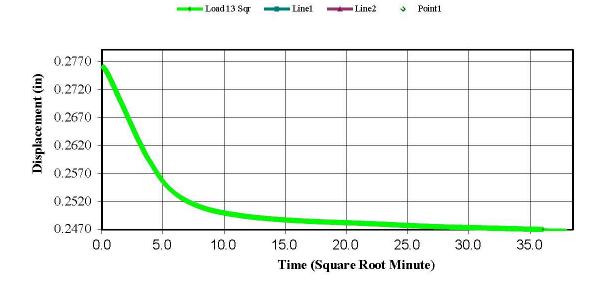
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

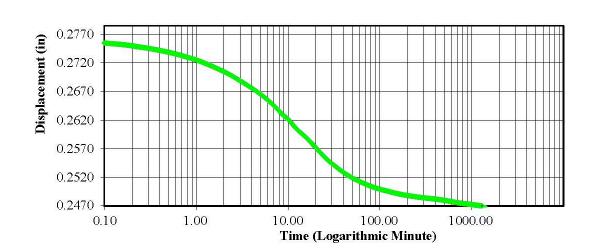
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.2835	0.0951	9.5116	0.6491
1.	00:00:01	0.2761	0.1025	10.2484	0.6357
2	00:00:02	0.2759	0.1027	10.2653	0.6354
3	00:00:03	0.2758	0.1027	10.2737	0.6353
4	00:00:04	0.2757	0.1029	10.2863	0.6350
5	00:00:05	0.2756	0.1029	10.2947	0.6349
6	00:00:06	0.2755	0.1031	10.3074	0.6346
7	00:00:12	0.2750	0.1035	10.3537	0.6338
8	00:00:15	0.2748	0.1038	10.3789	0.6333
9	00:00:30	0.2739	0.1047	10.4674	0.6317
10	00:01:00	0.2725	0.1060	10.6021	0.6293
11	00:02:00	0.2705	0.1080	10.8042	0.6256
12	00:04:01	0.2677	0.1109	11.0905	0.6204
13	00:08:01	0.2637	0.1149	11.4905	0.6131
14	00:10:01	0.2622	0.1163	11.6337	0.6105
15	00:15:01	0.2593	0.1192	11.9242	0.6052
16	00:30:02	0.2544	0.1242	12.4168	0.5962
17	01:00:04	0.2513	0.1273	12.7284	0.5905
18	02:00:07	0.2496	0.1290	12.8968	0.5874
19	04:00:14	0.2486	0.1299	12.9937	0.5857
20	08:00:27	0.2480	0.1305	13.0526	0.5846
21	12:00:40	0.2475	0.1310	13.1032	0.5837
22	16:00:53	0.2473	0.1313	13.1284	0.5832
23	20:01:07	0.2471	0.1315	13.1495	0.5828
24	23:59:58	0.2469	0.1317	13.1663	0.5825

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 13) Load 16.000 ksf


SHEET 27

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 13 Log

Page 32 of 45 Page 33 of 45

Consolidation Test Results (Sequence 14) Rebound 8.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

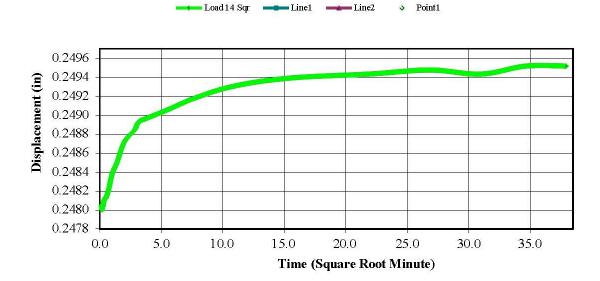
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

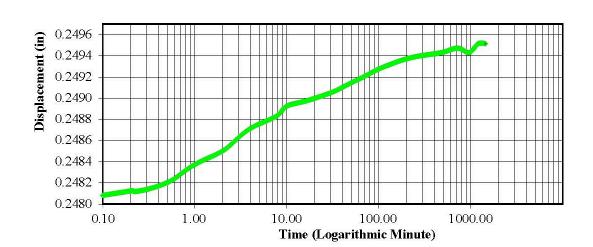
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.2469	0.1317	13.1663	0.5825
1.	00:00:01	0.2480	0.1305	13.0526	0.5846
2	00:00:02	0.2480	0.1306	13.0568	0.5845
3	00:00:03	0.2480	0.1305	13.0526	0.5846
4	00:00:04	0.2480	0.1305	13.0526	0.5846
5	00:00:05	0.2480	0.1305	13.0526	0.5846
6	00:00:06	0.2481	0.1305	13.0484	0.5847
7	00:00:12	0.2481	0.1304	13.0442	0.5848
8	00:00:15	0.2481	0.1304	13.0442	0.5848
9	00:00:31	0.2482	0.1304	13.0358	0.5849
10	00:01:01	0.2484	0.1302	13.0189	0.5852
11	00:02:01	0.2485	0.1301	13.0063	0.5855
12	00:04:01	0.2487	0.1299	12.9853	0.5858
13	00:08:01	0.2488	0.1297	12.9726	0.5861
14	00:10:01	0.2489	0.1296	12.9642	0.5862
15	00:15:01	0.2490	0.1296	12.9600	0.5863
16	00:30:02	0.2491	0.1295	12.9516	0.5864
17	01:00:04	0.2492	0.1294	12.9389	0.5867
18	02:00:07	0.2493	0.1293	12.9263	0.5869
19	04:00:14	0.2494	0.1292	12.9179	0.5871
20	08:00:27	0.2494	0.1291	12.9137	0.5871
21	12:00:40	0.2495	0.1291	12.9095	0.5872
22	16:00:53	0.2494	0.1291	12.9137	0.5871
23	20:01:07	0.2495	0.1291	12.9053	0.5873
24	23:59:58	0.2495	0.1291	12.9053	0.5873

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 14) Rebound 8.000 ksf


SHEET 28

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 14 Log

Page 34 of 45 Page 35 of 45

Consolidation Test Results (Sequence 15) Rebound 4.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

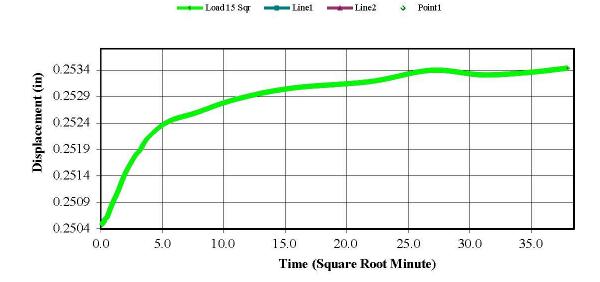
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

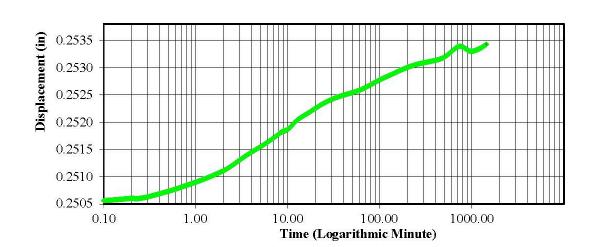
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.2495	0.1291	12.9053	0.5873
1.	00:00:01	0.2505	0.1281	12.8084	0.5891
2	00:00:02	0.2505	0.1280	12.8042	0.5891
3	00:00:03	0.2505	0.1280	12.8042	0.5891
4	00:00:04	0.2505	0.1280	12.8042	0.5891
5	00:00:05	0.2506	0.1280	12.8000	0.5892
6	00:00:06	0.2506	0.1280	12.8000	0.5892
7	00:00:12	0.2506	0.1280	12.7958	0.5893
8	00:00:15	0.2506	0.1280	12.7958	0.5893
9	00:00:30	0.2507	0.1278	12.7832	0.5895
10	00:01:00	0.2509	0.1277	12.7663	0.5898
11	00:02:00	0.2511	0.1275	12.7453	0.5902
12	00:04:01	0.2515	0.1271	12.7116	0.5908
13	00:08:01	0.2518	0.1268	12.6779	0.5914
14	00:10:01	0.2519	0.1267	12.6695	0.5916
15	00:15:01	0.2521	0.1264	12.6442	0.5921
16	00:30:02	0.2524	0.1261	12.6147	0.5926
17	01:00:04	0.2526	0.1260	12.5979	0.5929
18	02:00:07	0.2528	0.1257	12.5726	0.5934
19	04:00:14	0.2531	0.1255	12.5516	0.5937
20	08:00:27	0.2532	0.1254	12.5389	0.5940
21	12:00:40	0.2534	0.1252	12.5179	0.5944
22	16:00:53	0.2533	0.1253	12.5263	0.5942
23	20:01:07	0.2533	0.1252	12.5221	0.5943
24	23:59:57	0.2534	0.1251	12.5137	0.5944

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 15) Rebound 4.000 ksf


SHEET 29

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 15 Log

Page 36 of 45 Page 37 of 45

Consolidation Test Results (Sequence 16) Rebound 2.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

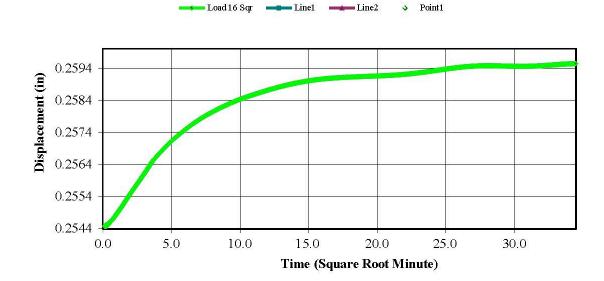
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

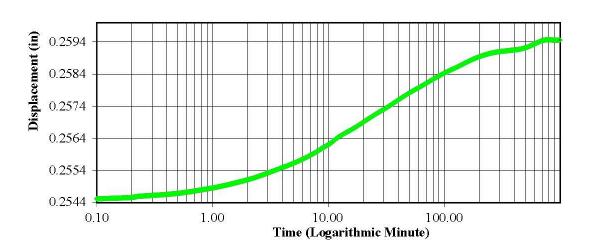
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain (%)	Void Ratio
0	00:00:00	0.2534	0.1251	12.5137	0.5944
1	00:00:01	0.2545	0.1241	12.4084	0.5963
2	00:00:02	0.2545	0.1241	12.4084	0.5963
3	00:00:03	0.2545	0.1240	12.4042	0.5964
4	00:00:04	0.2545	0.1241	12.4084	0.5963
5	00:00:05	0.2545	0.1240	12.4042	0.5964
6	00:00:06	0.2545	0.1240	12.4042	0.5964
7	00:00:12	0.2546	0.1240	12.4000	0.5965
8	00:00:15	0.2546	0.1240	12.3958	0.5966
9	00:00:30	0.2547	0.1239	12.3874	0.5967
10	00:01:00	0.2549	0.1237	12.3705	0.5970
11	00:02:00	0.2551	0.1235	12.3453	0.5975
12	00:04:00	0.2555	0.1231	12.3074	0.5982
13	00:08:01	0.2560	0.1226	12.2568	0.5991
14	00:10:01	0.2562	0.1224	12.2358	0.5995
15	00:15:01	0.2566	0.1219	12.1937	0.6003
16	00:30:02	0.2573	0.1213	12.1263	0.6015
17	01:00:03	0.2580	0.1206	12.0589	0.6027
18	02:00:07	0.2586	0.1200	12.0000	0.6038
19	04:00:13	0.2590	0.1195	11.9537	0.6046
20	08:00:27	0.2592	0.1194	11.9368	0.6049
21	12:00:40	0.2595	0.1191	11.9116	0.6054
22	16:00:53	0.2595	0.1191	11.9116	0.6054
23	20:01:06	0.2595	0.1190	11.9032	0.6056
24	23:59:58	0.2595	0.1191	11.9074	0.6055

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 16) Rebound 2.000 ksf


SHEET 30

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 16 Log

Page 38 of 45 Page 39 of 45

Consolidation Test Results (Sequence 17) Rebound 1.000 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

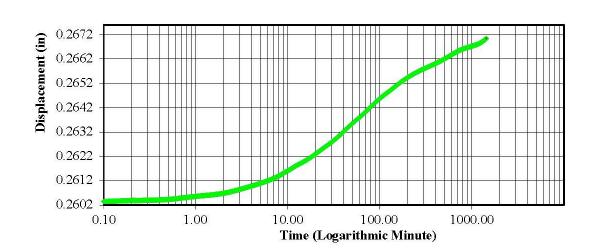
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed

Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.2595	0.1191	11.9074	0.6055
1.	00:00:01	0.2603	0.1183	11.8274	0.6069
2	00:00:02	0.2603	0.1182	11.8232	0.6070
3	00:00:03	0.2603	0.1182	11.8232	0.6070
4	00:00:04	0.2603	0.1182	11.8232	0.6070
5	00:00:05	0.2603	0.1182	11.8232	0.6070
6	00:00:06	0.2603	0.1182	11.8232	0.6070
7	00:00:12	0.2604	0.1182	11.8189	0.6071
8	00:00:15	0.2604	0.1182	11.8189	0.6071
9	00:00:30	0.2604	0.1181	11.8147	0.6072
10	00:01:00	0.2605	0.1180	11.8021	0.6074
11	00:02:00	0.2607	0.11 7 9	11.7895	0.6076
12	00:04:01	0.2610	0.11 7 6	11.7600	0.6082
13	00:08:01	0.2614	0.1172	11.7179	0.6089
14	00:10:01	0.2616	0.1170	11.6968	0.6093
15	00:15:01	0.2620	0.1166	11.6589	0.6100
16	00:30:02	0.2628	0.1158	11.5789	0.6115
17	01:00:04	0.2638	0.1148	11.4779	0.6133
18	02:00:07	0.2648	0.1138	11.3768	0.6151
19	04:00:14	0.2656	0.1130	11.2968	0.6166
20	08:00:27	0.2661	0.1124	11.2421	0.6176
21	12:00:40	0.2665	0.1120	11.2042	0.6183
22	16:00:53	0.2667	0.1119	11.1874	0.6186
23	20:01:07	0.2668	0.1117	11.1747	0.6188
24	23:59:58	0.2670	0.1115	11.1537	0.6192

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 17) Rebound 1.000 ksf


SHEET 31

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 17 Log

Page 40 of 45 Page 41 of 45

Consolidation Test Results (Sequence 18) Rebound 0.500 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

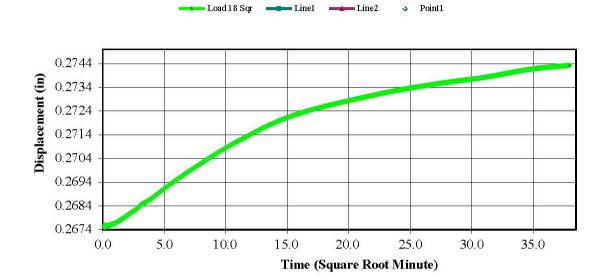
Test Number:

Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

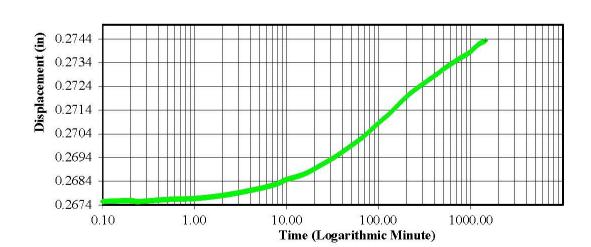
Depth: 3.7'-5.7' **Remarks:**

Sample Type: Undisturbed


Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.2670	0.1115	11.1537	0.6192
1.	00:00:01	0.2675	0.1111	11.1074	0.6201
2	00:00:02	0.2676	0.1110	11.0989	0.6202
3	00:00:03	0.2675	0.1110	11.1032	0.6201
4	00:00:04	0.2675	0.1110	11.1032	0.6201
5	00:00:05	0.2675	0.1110	11.1032	0.6201
6	00:00:06	0.2675	0.1110	11.1032	0.6201
7	00:00:12	0.26 7 6	0.1110	11.0989	0.6202
8	00:00:15	0.2675	0.1110	11.1032	0.6201
9	00:00:30	0.2676	0.1109	11.0947	0.6203
10	00:01:00	0.2677	0.1109	11.0905	0.6204
11	00:02:00	0.2678	0.1108	11.0779	0.6206
12	00:04:00	0.2680	0.1106	11.0568	0.6210
13	00:08:00	0.2683	0.1103	11.0274	0.6215
14	00:10:00	0.2685	0.1101	11.0105	0.6218
15	00:15:01	0.2687	0.1099	10.9895	0.6222
16	00:30:01	0.2693	0.1093	10.9263	0.6234
17	01:00:03	0.2701	0.1085	10.8463	0.6248
18	02:00:06	0.2711	0.10 7 5	10.7453	0.6267
19	04:00:13	0.2722	0.1064	10.6358	0.6287
20	08:00:26	0.2731	0.1055	10.5516	0.6302
21	12:00:40	0.2735	0.1051	10.5053	0.6310
22	16:00:53	0.2738	0.1048	10.4758	0.6316
23	20:01:06	0.2741	0.1044	10.4421	0.6322
24	23:59:58	0.2743	0.1043	10.4253	0.6325

Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results (Sequence 18) Rebound 0.500 ksf


SHEET 32

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

—— Load 18 Log

Page 42 of 45 Page 43 of 45

Consolidation Test Results (Sequence 19) Rebound 0.250 ksf

Project: R-1015 (site #5)
 Project Number: CS34.325

 Location: EB2-B-ST-1 (3.7'-5.7')

WBS No.: 34360.1.1 Test Date: 6/24/2016

Test Number:

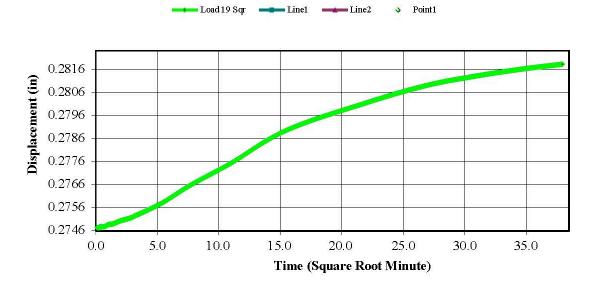
Sample Number: ST-1 Soil Description: Gray to Dark Gray Sandy CLAY (A-6)

Boring Number: EB2-B

Depth: 3.7'-5.7' **Remarks:**

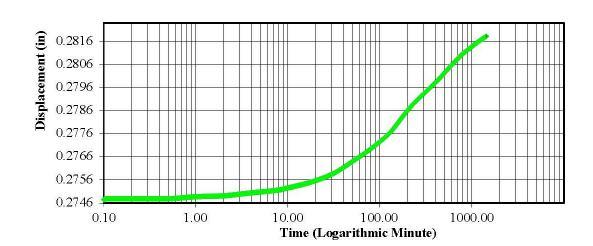
Sample Type: Undisturbed

Index	Time	Displacement (in)	Settlement (in)	Axial Strain	Void Ratio
0	00:00:00	0.2743	0.1043	10.4253	0.6325
L 1	00:00:01	0.2747	0.1038	10.3832	0.6333
2	00:00:03	0.2747	0.1038	10.3832	0.6333
L 3	00:00:04	0.2747	0.1038	10.3832	0.6333
4	00:00:05	0.2747	0.1038	10.3832	0.6333
L 5	00:00:06	0.2747	0.1038	10.3832	0.6333
6	00:00:07	0.2748	0.1038	10.3789	0.6333
L 7	00:00:13	0.2748	0.1038	10.3789	0.6333
8	00:00:16	0.2748	0.1038	10.3789	0.6333
L 9	00:00:31	0.2748	0.1038	10.3789	0.6333
10	00:01:01	0.2749	0.1037	10.3705	0.6335
L 11	00:02:01	0.2749	0.1037	10.3663	0.6336
12	00:04:02	0.2750	0.1035	10.3537	0.6338
L 13	00:08:02	0.2752	0.1034	10.3411	0.6340
14	00:10:02	0.2752	0.1033	10.3326	0.6342
L 15	00:15:02	0.2754	0.1032	10.3158	0.6345
16	00:30:03	0.2758	0.1027	10.2737	0.6353
L 17	01:00:05	0.2766	0.1020	10.1979	0.6366
18	02:00:08	0.2775	0.1011	10.1053	0.6383
L 19	04:00:15	0.2789	0.0996	9.9621	0.6409
20	08:00:28	0.2801	0.0984	9.8442	0.6431
L 21	12:00:41	0.2809	0.09 77	9.7684	0.6445
22	16:00:54	0.2813	0.0973	9.7263	0.6452
L 23	20:01:08	0.2816	0.09 7 0	9.6968	0.6458
24	23:59:59	0.2818	0.0968	9.6758	0.6461


Tested By: Tony Summers Checked By: Andrew Burton

Consolidation Test Results

SHEET 33


(Sequence 19) Rebound 0.250 ksf

Consolidation Graph (Squareroot Time)

Consolidation Graph (Logarithmic Time)

Load 19 Log

Page 44 of 45 Page 45 of 45

115
R-10
E: I
NC1
REI
ER

CONTENTS

DESCRIPTION

TITLE SHEET

CROSS SECTIONS

SITE PLAN

BORE LOGS SOIL TEST RESULTS

<u>TITLE</u>

CONSOLIDATION TESTS RESULTS 18-33

LEGEND

PROFILE

SHEET NO.

5-7

8-16

APPENDIX

APPENDICES

34360

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY _CRAVEN

PROJECT DESCRIPTION US 70 (Havelock Bypass) from North of Pine Grove to North of Carteret County Line

SITE DESCRIPTION Site No. 9 - Dual Bridges on US 70 over 70 Business between SR 1747 and SR 1176 Station 516 + 87.37 - L - /69 + 02.79 - RP2AC -

STATE PROJECT REPERENCE NO. 33 R-1015

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE INCLUDED IN THE REQUEST FOR PROPOSAL. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1991) 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

SOIL AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON GEOTECHNICAL INTERPRETATION UNLESS ENCOUNTERED IN A SAMPLE, INTERPRETED BOUNDARIES MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN SAMPLED STRATA AND BOREHOLE INFORMATION MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS, THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INMERENT IN THE STANDARD TEST METHOD, THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR CUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HINSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

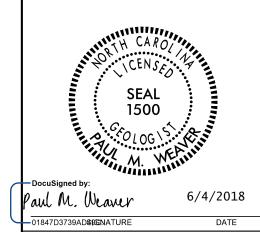
 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL

P.M. WEAVER C.R. PASTRANA Trigon Exploration

INVESTIGATED BY _ESP Associates, INC.

DRAWN BY __C.R. PASTRANA

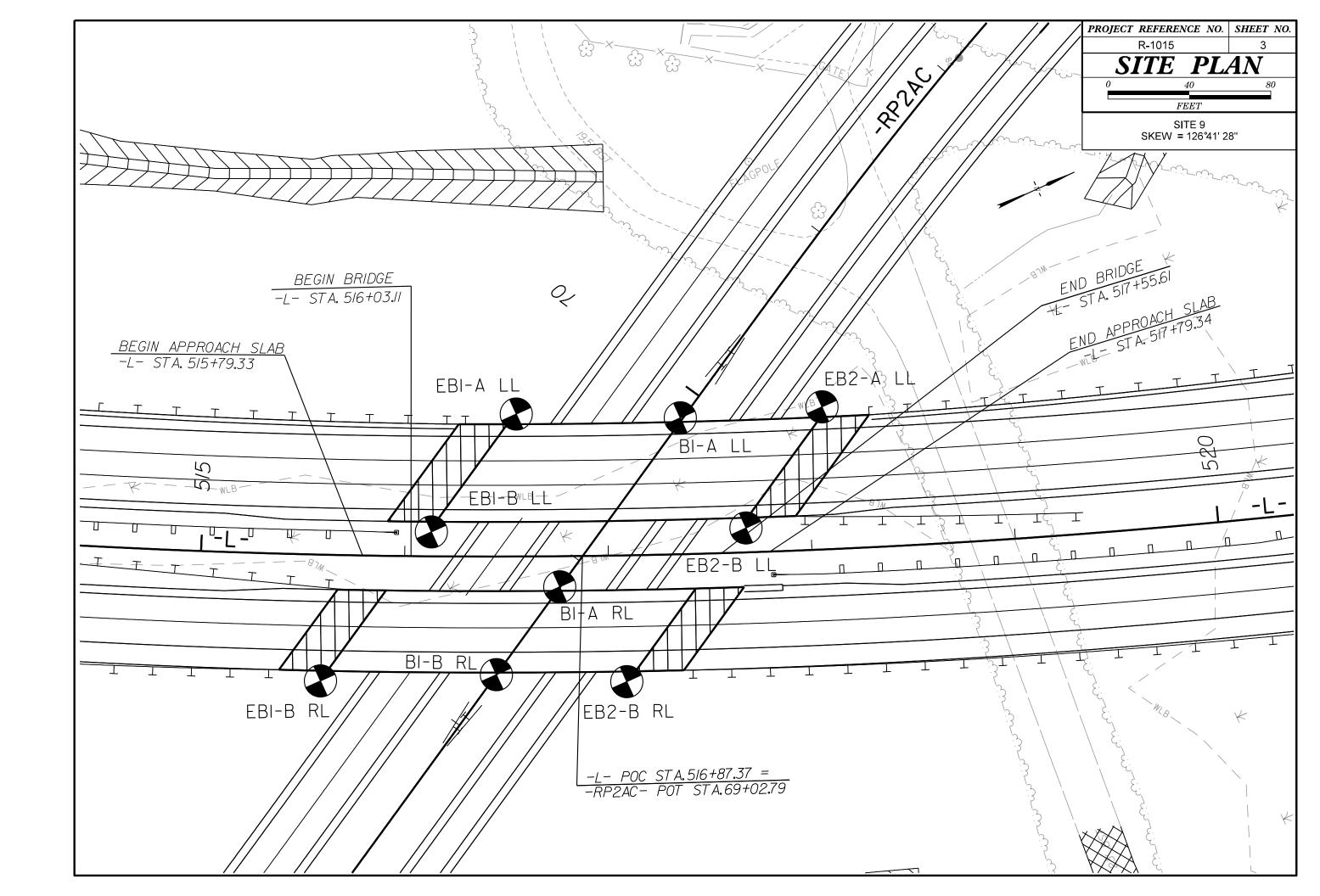

CHECKED BY P.M. WEAVER

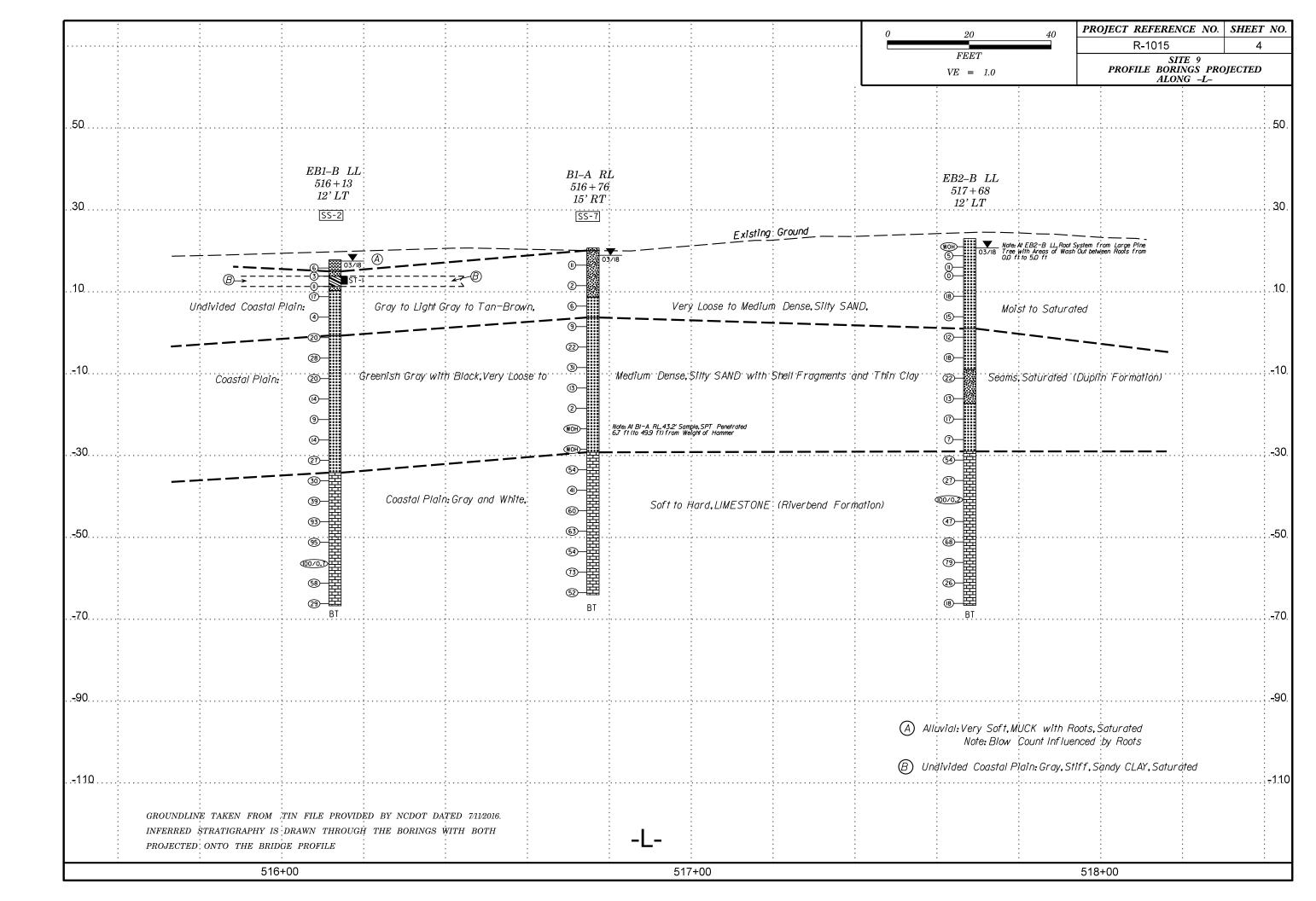
SUBMITTED BY <u>ESP</u> Associates, INC.

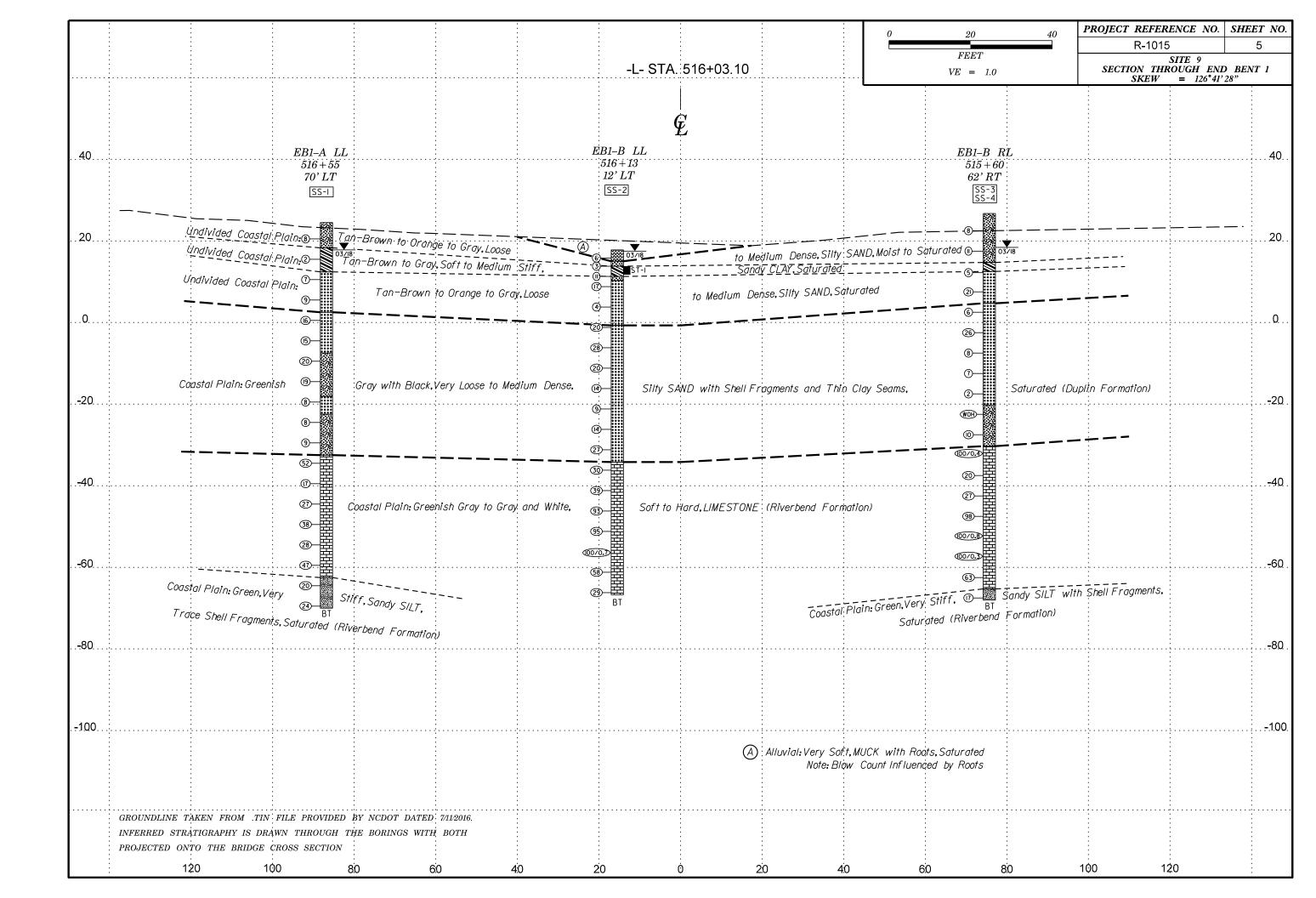
DATE <u>MAY</u> 2018

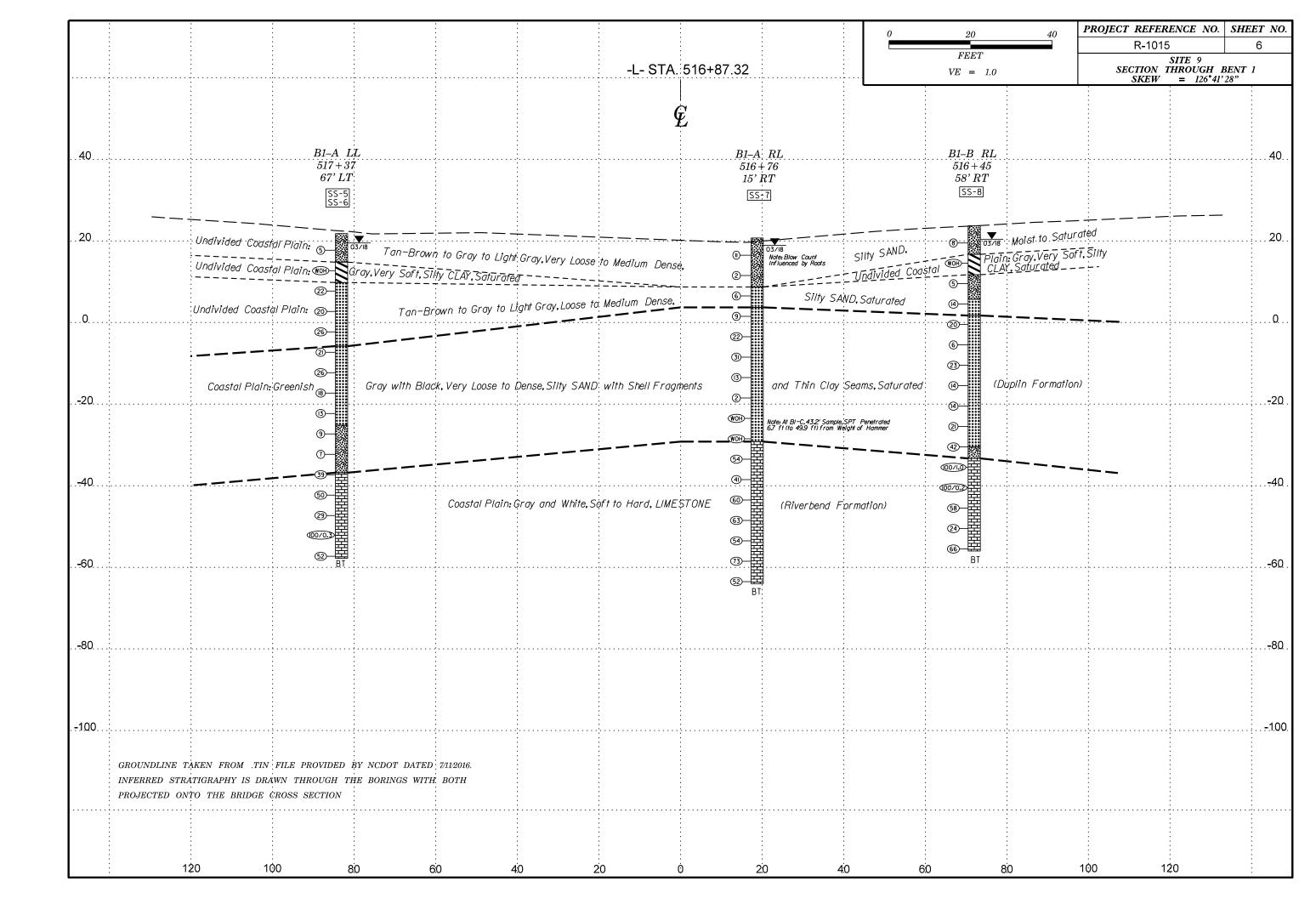
ESP ASSOCIATES, INC. 7011 ALBERT PICK RD GREENSBORO, NC 27409 FIRM # C-0587 WWW.ESPASSOCIATES.COM

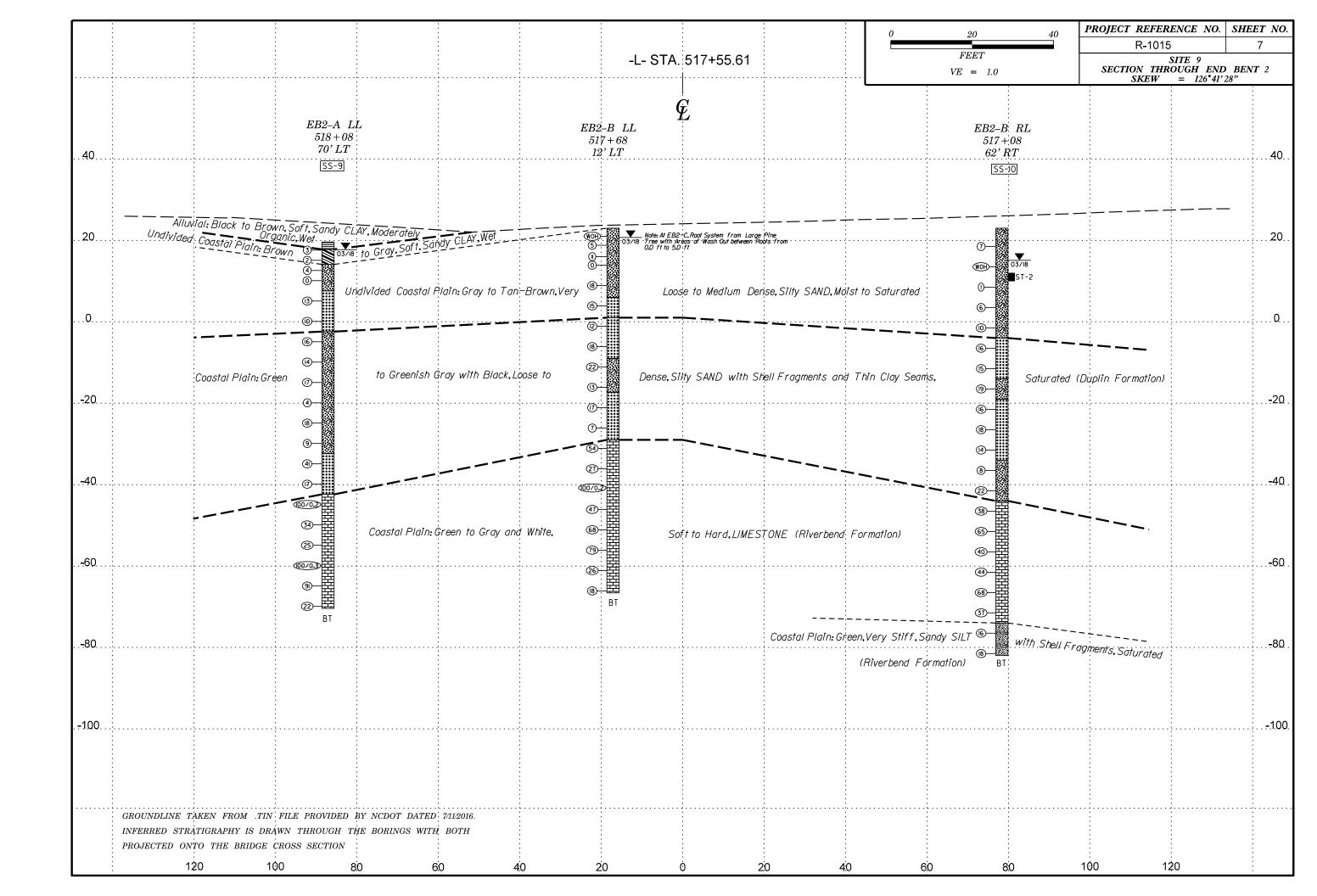
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

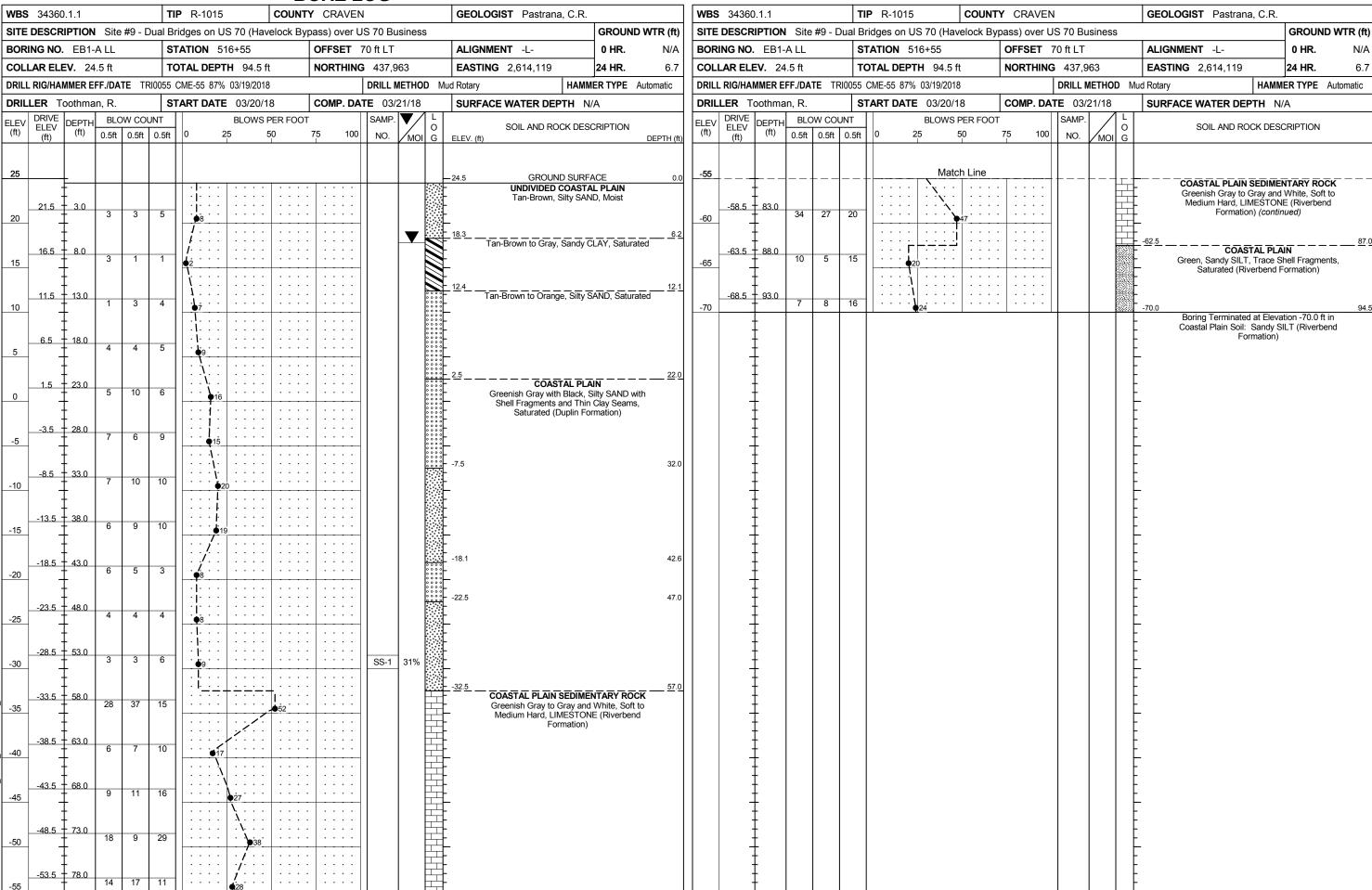

PROJECT REFERENCE NO. SHEET NO. 2

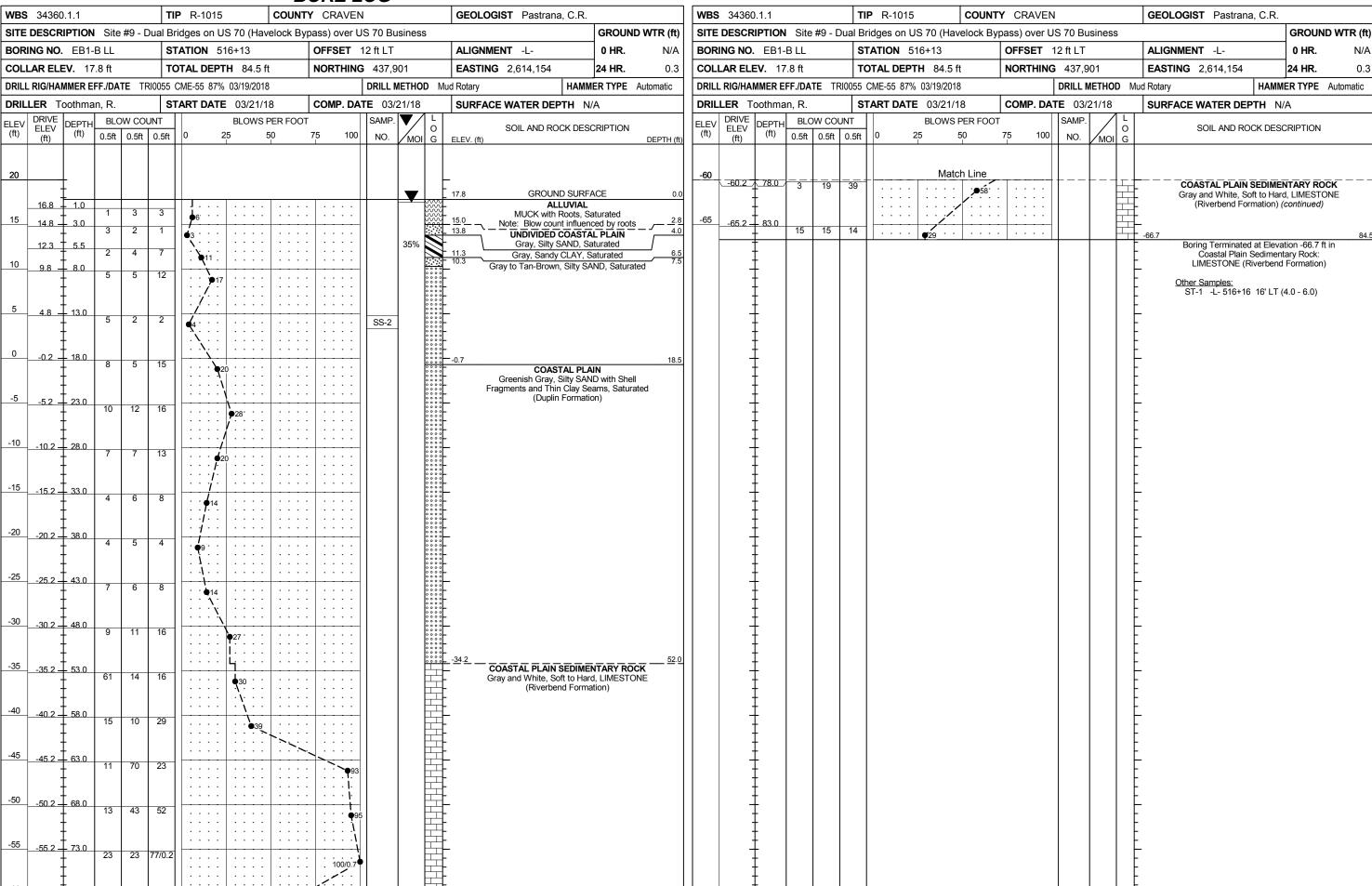

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

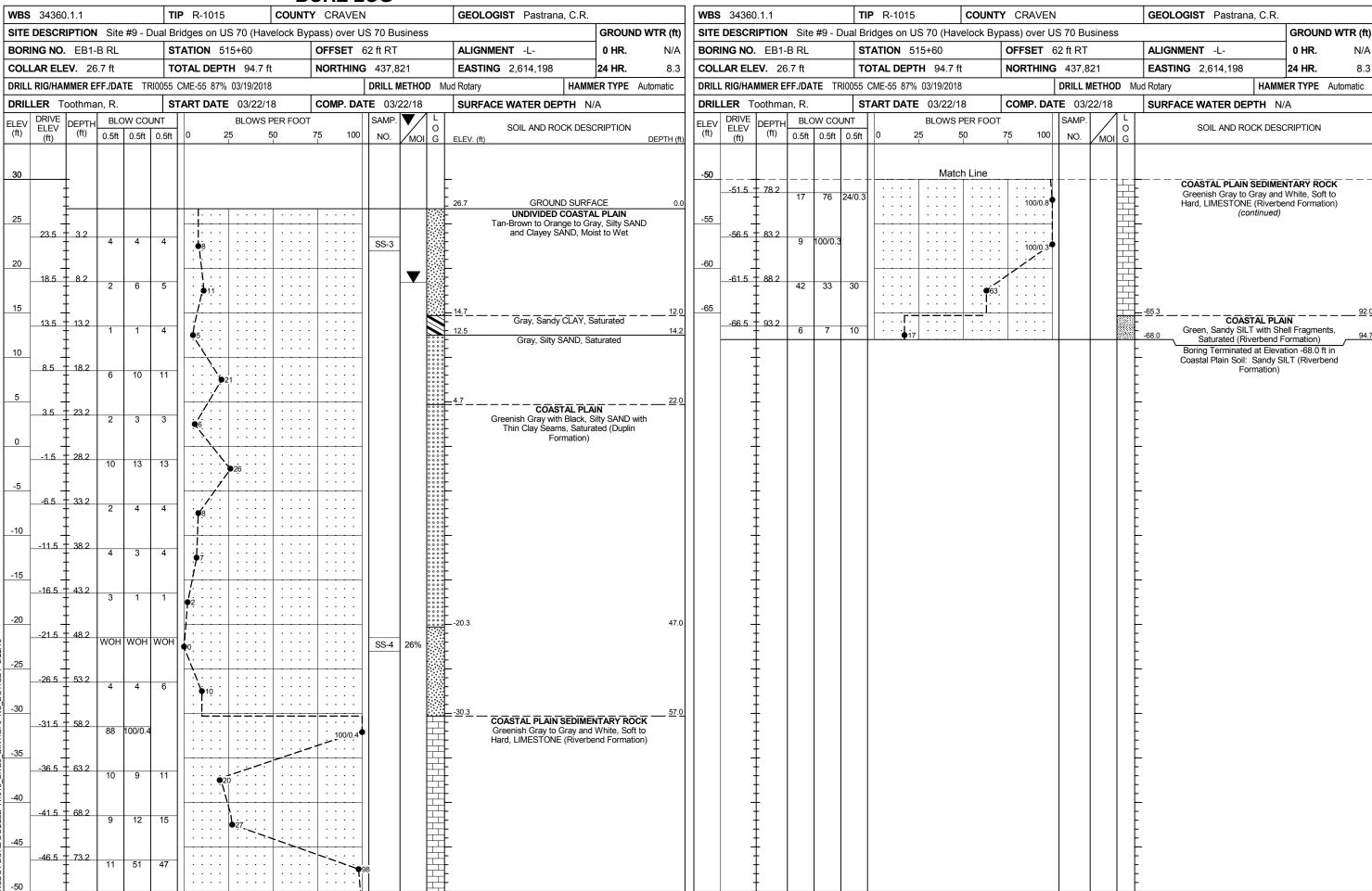

SUBSURFACE INVESTIGATION

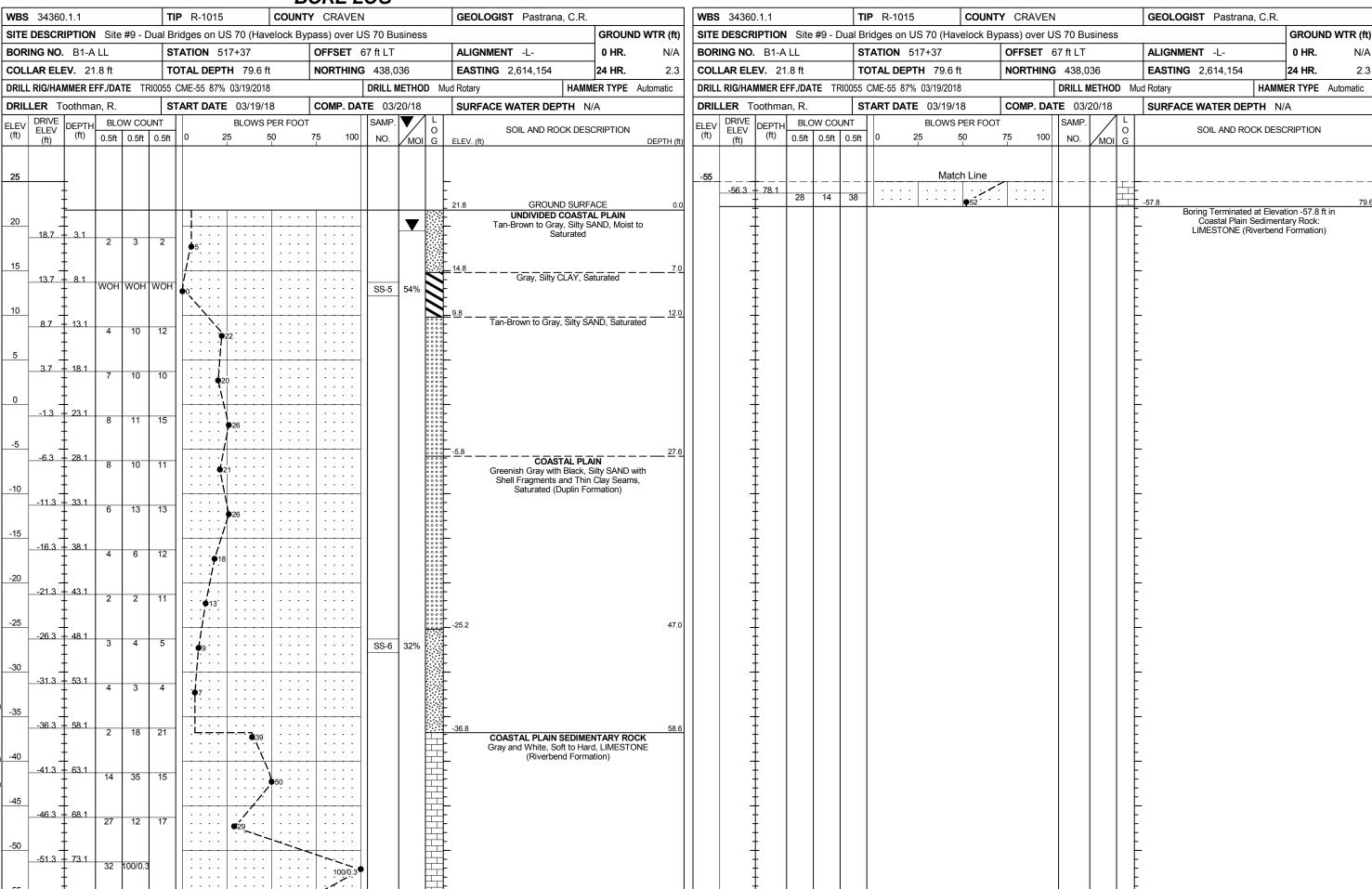

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

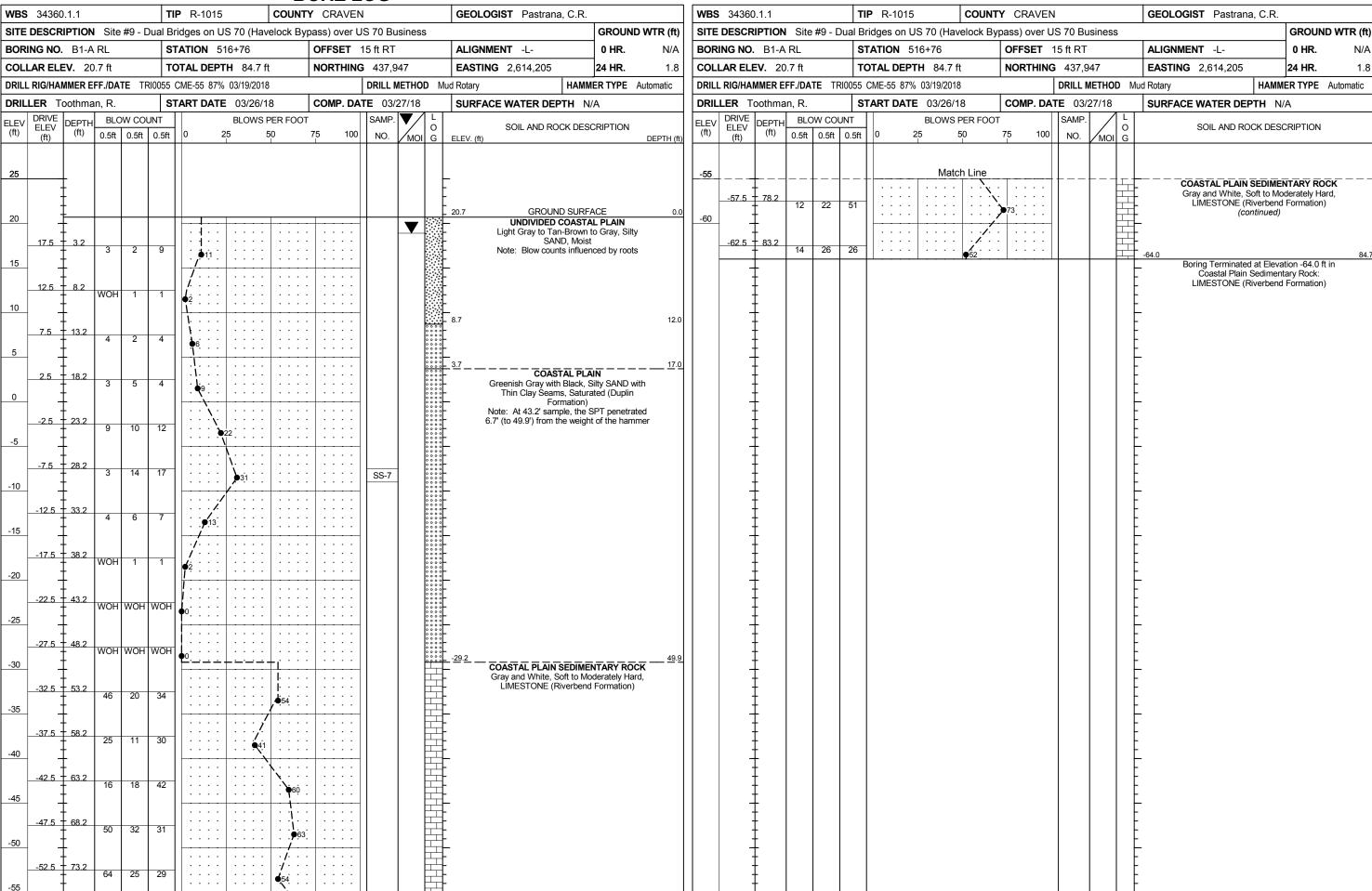

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE CRYSTALLINE WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE,	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) GNEISS, GABBRO, SCHIST, ETC. GNEISS, GABBRO, SCHIST, ETC. FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-0 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-3 A-6, A-7	COMPRESSIBILITY	NON-CHTSTALLINE SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
2. PASSING SILT-	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*18 50 MX GRANULAR	PERCENTAGE OF MATERIAL	WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
*288 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN 36 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL 48 MX 41 MN LITTLE OR PI 6 MX NP 18 MX 18 MX 11 MN 11 MN 18 MX 18 MX 11 MN 11 MN MNGRATE HIGHLY	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH,
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF UNDANIL	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	√ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
OF MAJOR GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR UNSUITABLE	PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.
AS SUBGRADE	SPRING OR SEEP	WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT OUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED	TT 25,425	(MOD.SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPRESSIVE STRENGTH (N-VALUE) (TONS/FT ²)	ROADWAY EMBANKMENT (RE) DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	IF TESTED, WOULD YIELD SPT REFUSAL SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL SOFT DAT TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR LUUSE 4 1U 10	VST PMT UNSTREEHTION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
MAIERIAL DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
VERY DENSE > 50 VERY SOFT < 2		SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5	MW C TEST BORING	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	INFERRED ROCK LINE "O MONITORING WELL WITH CORE	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
(COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4	TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER ON SPT N-VALUE	ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
U.S. STD. SIEVE SIZE 4 10 40 60 200 270		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT UNDIASSIFIED EXCAVATION - UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE USED IN THE TOP 3 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
	☐ CL CLAY MOD MODERATELY 7- UNIT WEIGHT	MEDIUM CAN BE GROOVED OR COUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS SOIL MOISTURE SCALE FIELD MOISTURE COURS FOR FIELD MOISTURE OF THE PROPERTY OF THE PROPE	CPT - CONE PENETRATION TEST NP - NON PLASTIC γ_d - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
(ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT,) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC CEMICOLID PROJUPES ODVING TO	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) SEMISULISI REGUIRES DIRTING TO ATTAIN OPTIMUM MOISTURE	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING	BENCH MARK: BM-26: RR SPIKE IN TREE STA. 520+57.00 -L- 308' LEFT
	EQUIPMENT USED ON SUBJECT PROJECT	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: 26.38 FEET
OM _ OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE	
SL _ SHRINKAGE LIMIT	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	X 6° CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	F.I.A.D. = FILLED IMMEDIATELY AFTER DRILLING
PLASTICITY	8* HOLLOW AUGERS	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST UNGCARBIDE INSERTS	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM	CASING W/ ADVANCER POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE:	
HIGHLY PLASTIC 26 OR MORE HIGH	PORTABLE HOIST X TRICONE 215/16 STEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE: DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	CORE BIT VANE SHEAR TEST	CHARD HAMMED BLOWS BEGLIDED TO BREAK SAMPLE.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.		EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1

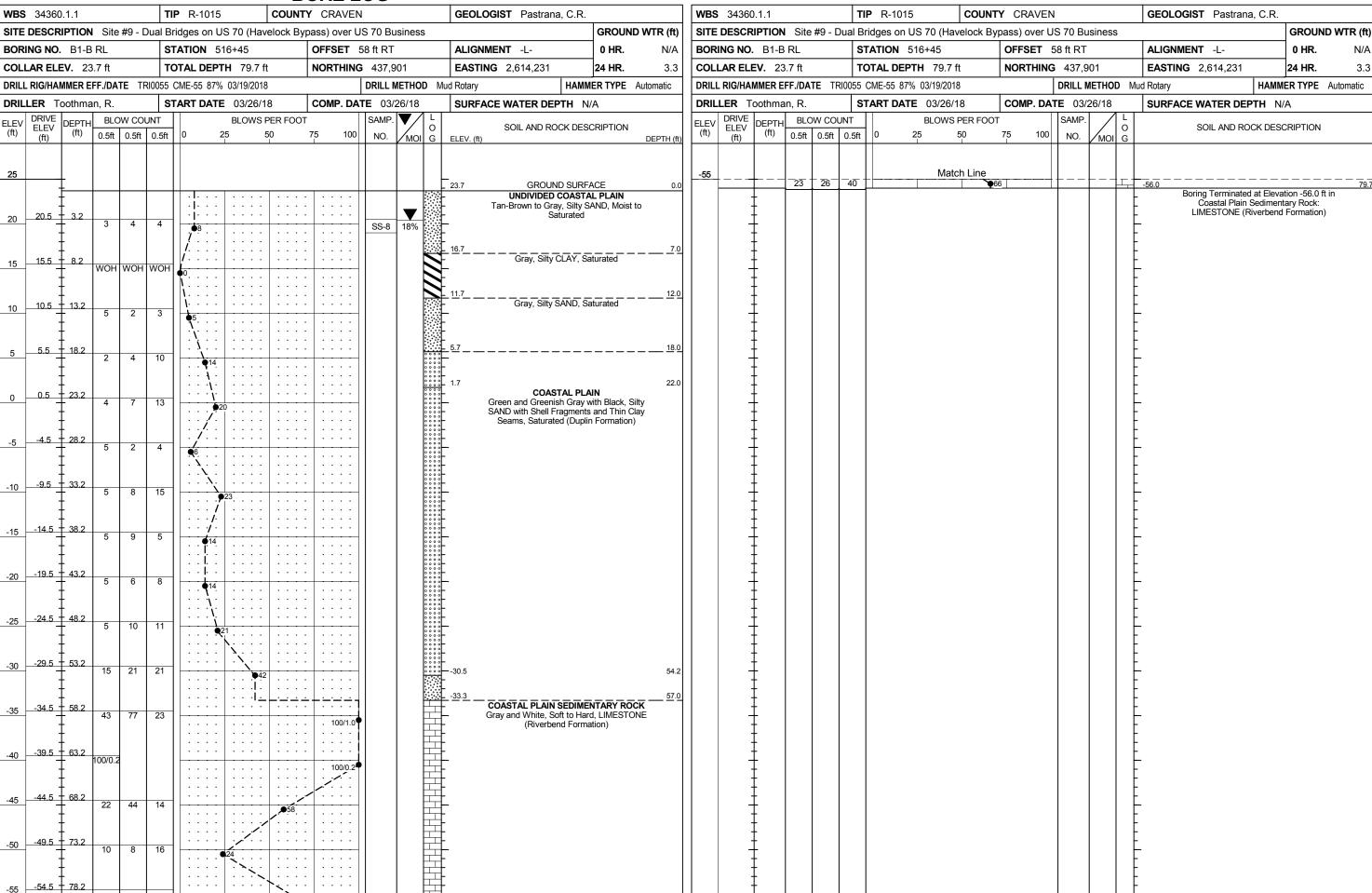


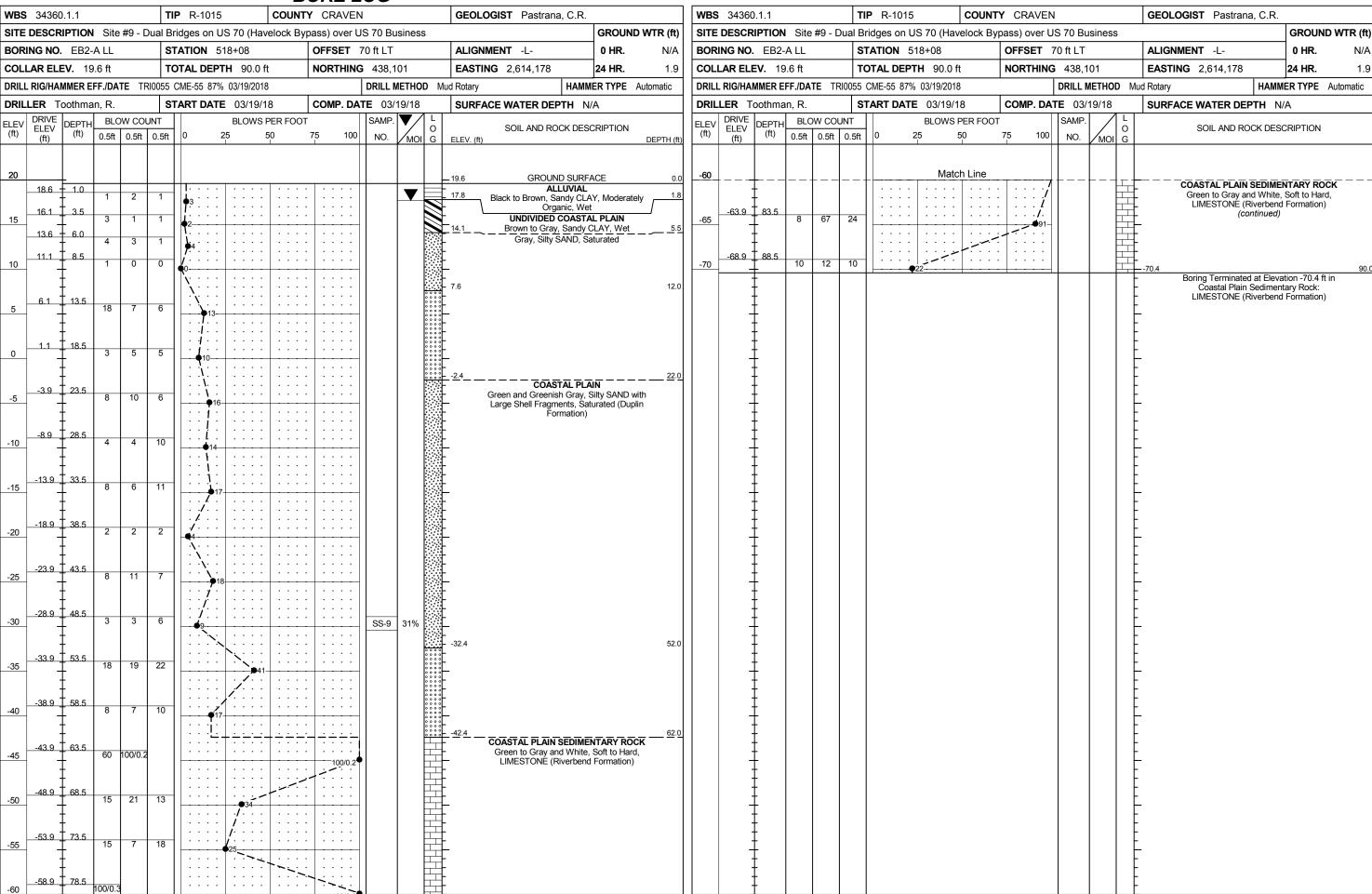


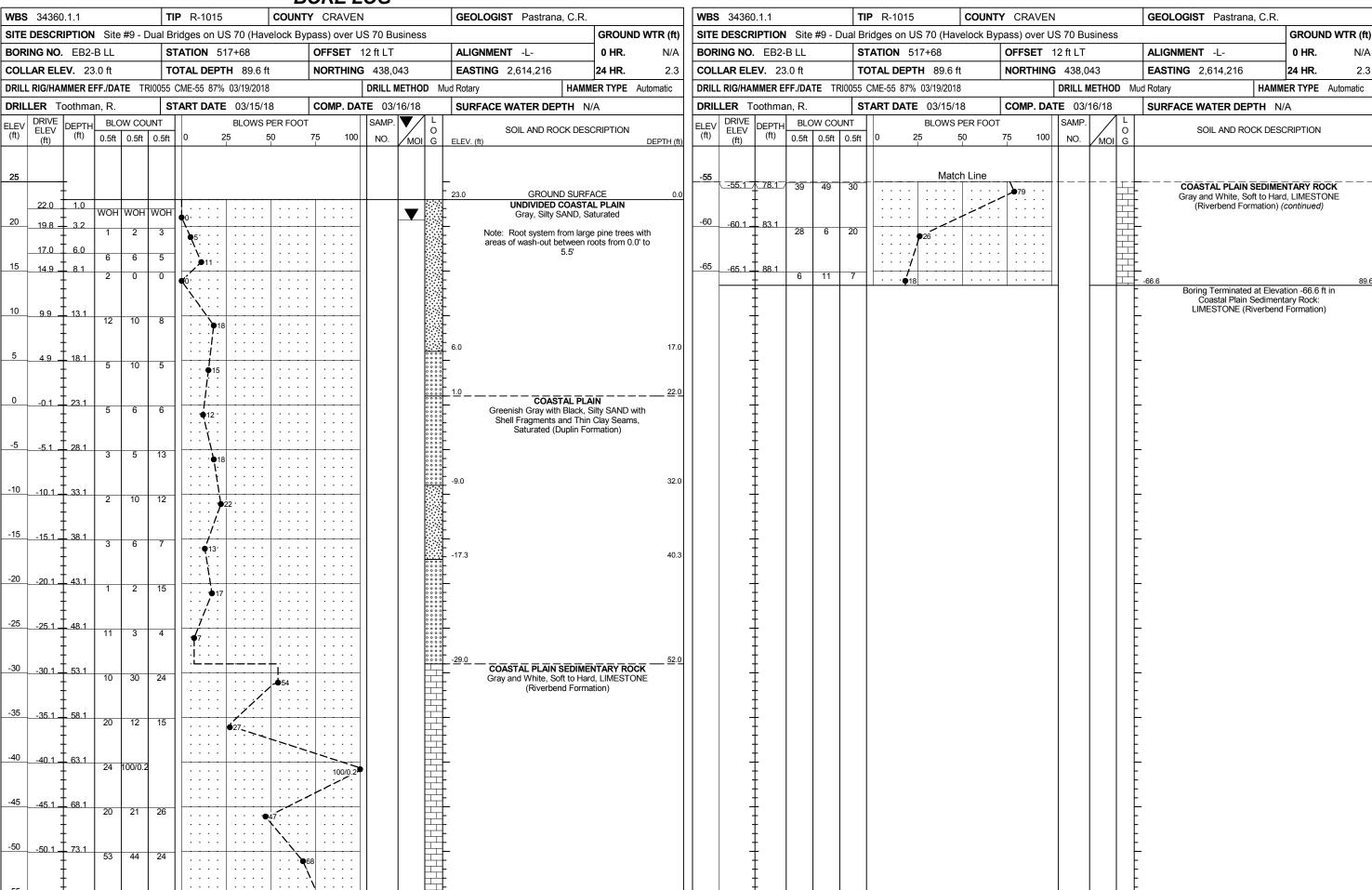


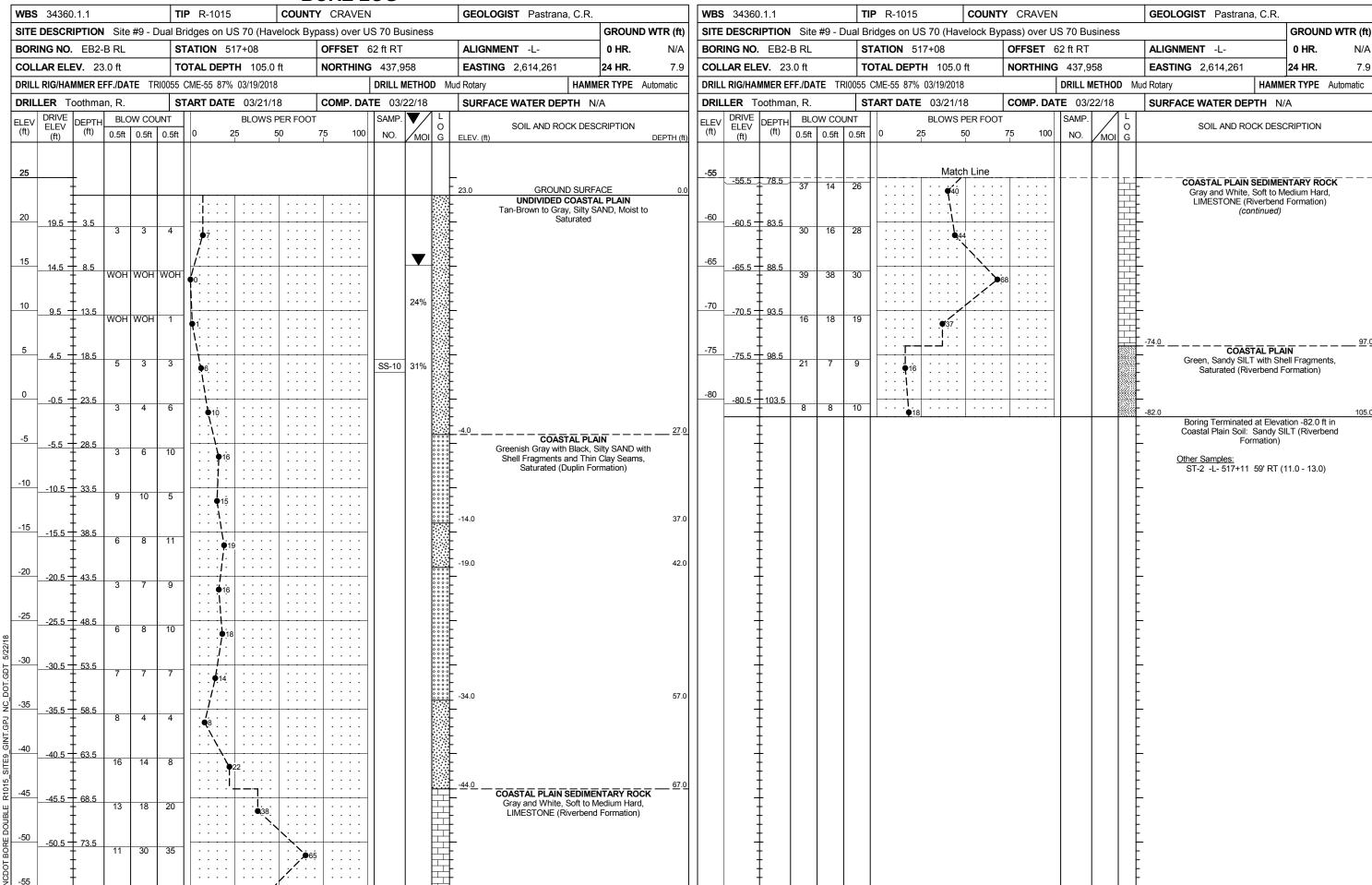












SOILS LABORATORY TESTS RESULTS

WBS NO.: 34360.1.1

TIP NO.: R-1015

COUNTY: Craven

SITE DESCRIPTION: Site #9 - Dual Bridges on US 70 (Havelock Bypass) over US 70 Business

BORING	SAMPLE	Boring	DEPTH	AASHTO	N	L.L	P.I.		% BY V	VEIGHT		% P	ASSING SI	VES	%	%
NO.	NO.	Location	INTERVAL (FT)					CSE. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC
EB1-A LL	SS-1	-L- 516+55, 70' LT	53.0-54.5	A-2-4 (0)		NP	NP	29	50	6	15	80	67	18	30.8	-
-	ST-1	-L- 516+16, 16' LT	4.0-6.0	A-6 (7)		31	18	6	39	20	35	100	98	57	34.6	-
EB1-B LL	SS-2	-L- 516+13, 12' LT	13.0-14.5	A-3 (1)		NP	NP	27	66	2	5	100	98	8	=	-
EB1-B RL	SS-3	-L- 515+60, 62' RT	3.2-4.7	A-2-4 (0)		NP	NP	36	50	2	12	100	79	15	=	-
EB1-B RL	SS-4	-L- 515+60, 62' RT	48.2-49.7	A-2-4 (0)		NP	NP	68	21	3	8	99	64	11	26.1	0.5
B1-A LL	SS-5	-L- 517+37, 67' LT	8.1-9.6	A-7-6 (30)		53	35	2	16	28	54	100	99	84	54.5	-
B1-A LL	SS-6	-L- 517+37, 67' LT	48.1-49.6	A-2-4 (0)		NP	NP	12	70	6	12	98	92	24	31.9	-
B1-A RL	SS-7	-L- 516+76, 15' RT	28.2-29.7	A-3 (1)		NP	NP	45	49	2	4	100	81	7	-	-
B1-B RL	SS-8	-L- 516+45, 58' RT	3.2-4.7	A-2-4 (0)		NP	NP	17	72	2	9	100	94	12	18.4	-
EB2-A LL	SS-9	-L- 518+08, 70' LT	48.5-50.0	A-2-4 (0)		NP	NP	12	67	7	14	100	93	27	31.0	-
=	ST-2	-L- 517+11, 59' RT	11.0-13.0	A-2-4 (0)		NP	NP	6	84	1	9	100	98	11	23.6	-
EB2-B RL	SS-10	-L- 517+08, 62' RT	18.5-20.0	A-2-4 (0)		NP	NP	7	79	5	9	100	97	17	31.1	-
									Signed:			Show	F. Janu			

NCDOT Certification No.

129-04-0411

PROJECT REFERENCE NO. SHEET NO. 18

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS

GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

APPENDIX A
CONSOLIDATION TESTS RESULTS

PROJECT: 34360

R-1015

REFERENCE:

ESP ASSOCIATES, INC.
7011 ALBERT PICK RD
SUITE E
GREENSBORO, NC 27409
FIRM # C-0587
WWW.ESPASSOCIATES.COM

5/15/18

Date

GEM

Input Checked By

4/10/18

Date

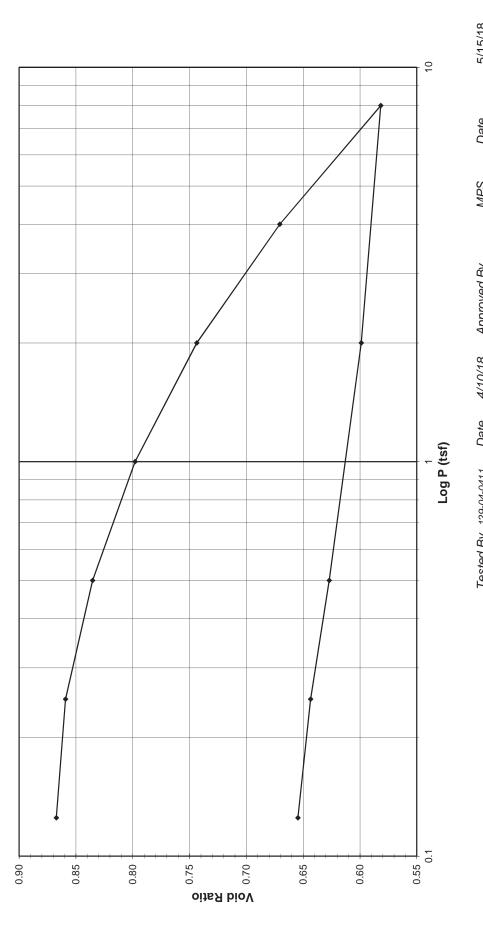
Tested By

DCN: CT-24E

page 2 of 2

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

eotechnical & geosynthetic testing


ESP Associates R-1015 Site 9 - CS34.327.00 R-2018-095-001 R-2018-095-001-002

Client Client Reference Project No. Lab ID

Boring No. Depth (ft) Sample No. Visual Description

-L- STA. 516+16, 16'LT 4.0-6.0 ST-1 LIGHT BROWN / GRAY CLAY

UNDISTURBED, INUNDATED AND DOUBLE DRAINED Sample Conditions:

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\[2018-095-001-002 GEOJAC-16TSF1 Cv.xlsm]FINAL PLOT Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • 2200 Westinghouse Blvd., Date: 5/3/12 DCN: CT-24E

page 1 of 2

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

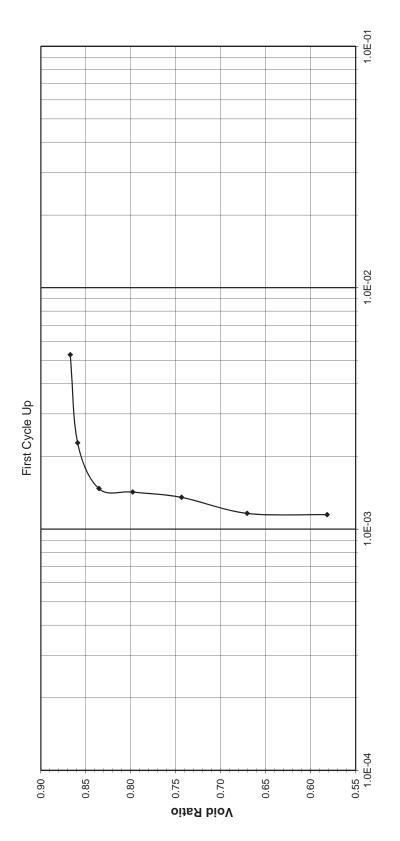
eotechnical & geosynthetic testina

Boring No. Depth (ft) Sample No. Visual Description ESP Associates R-1015 Site 9 - CS34.327.00 R-2018-095-001 R-2018-095-001-002 Client Client Reference Project No. Lab ID

-L- STA. 516+16, 16'LT 4.0-6.0 ST-1 LIGHT BROWN / GRAY CLAY

UNDISTURBED, INUNDATED AND DOUBLE DRAINED R409 (in.) Sample Conditions: Consolidometer No. 1 Division =

Sample Properties	Initial	Final			-	Test Data Summary	Summary			
Water Content	9	CO	Applied	Final Dial		Machine Corrected	Height of	Volume	Dry Density	Void
Wt. Tare & WS (g)	313.18	232.09	riessure (tsf)	(div)	(div)	(div)	(mm)	(22)	(g/cc)	Natio
Wt. Tare & DS (g)	267.85	206.50								
Wt. Water (g)	45.33	25.59	Seating	0	0	0	25.400	80.440	1.40226	0.87555
Wt. Tare (g)	100.77	103.09	0.125	51.5	7.5	44.1	25.288	80.085	1.40846	0.86728
Wt. DS (g)	167.08	103.41	0.25	106.2	18.6	87.6	25.178	79.735	1.41465	0.85912
Water Content (%)	27.13	24.75	0.5	247.8	33.9	214.0	24.856	78.719	1.43292	0.83541
			_	469.4	55.5	413.9	24.349	77.111	1.46280	0.79793
Sample Parameters			2	789.6	86.4	703.2	23.614	74.783	1.50832	0.74366
Sample Diameter (in)	2.5	2.5	4	1218.3	125.8	1092.4	22.625	71.652	1.57423	0.67066
Sample Height (in)	1.0000	0.8822	80	1734.8	168.6	1566.2	21.422	67.841	1.66267	0.58179
Sample Volume (cc)	80.44	96.02	2	1584.7	109.7	1475.0	21.654	68.575	1.64487	0.59891
Wt. Wet Sample + Ring (g)	247.89	245.20	9.0	1391.9	67.4	1324.5	22.036	69.785	1.61634	0.62713
Wt. of Ring (g)	104.49	104.49	0.25	1297.5	60.3	1237.2	22.258	70.488	1.60024	0.64351
Wt. of Wet Sample (g)	143.40	140.71	0.125	1238.4	60.3	1178.1	22.408	70.963	1.58951	0.65459
Wet Density (pcf)	111.24	123.73								
Wet Density (g/cc)	1.78	1.98								
Water Content (%)	27.13	24.75								
Wt. of Dry Sample (g)	112.80	112.80								
Dry Density (pcf)	87.50	99.19								
Dry Density (g/cc)	1.40	1.59								
Void Ratio	0.8755	0.6546								
Saturation (%)	81.50	99.42								
Specific Gravity	2.63	Measured								
		+	Tostod By 120 04 0411		Doto 4/10/10 Input Chooked Dy	John triad		/VI	7,40	E/1E/10



Boring No. Depth (ft) Sample No. Visual Description ESP Associates R-1015 Site 9 - CS34.327.00 R-2018-095-001 R-2018-095-001-002 Client Client Reference Project No. Lab ID

ONE DIMENSIONAL CONSOLIDATION
AASHTO T-216

-L- STA. 516+16, 16'LT 4.0-6.0 ST-1 LIGHT BROWN / GRAY CLAY

UNDISTURBED, INUNDATED AND DOUBLE DRAINED Sample Conditions:

Coefficient of Consolidation (cm²/sec)

3.2018 PROJECTSIESP Associates/2018-095 ESP - R-1015 SITE 9/(2018-095-001-002 GEOJAC-16TSF1 Cvx/Ism)|FINAL PLOT Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net DCN: CT-24E

ONE DIMENSIONAL CONSOLIDATION
AASHTO T-216

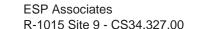
eotechnical & geosynthetic testinn

-L- STA. 516+16, 16'LT 4.0-6.0 ST-1 LIGHT BROWN / GRAY CLAY Boring No. Depth (ft) Sample No. Visual Description ESP Associates R-1015 Site 9 - CS34.327.00 R-2018-095-001 R-2018-095-001-002 Client Client Reference Project No. Lab ID

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED Consolidometer No. R409

1 Division = 0.0001 (in.)

Time C_v Test Data Summary
Corrected Sample Machine Dial Load Final Initial Sample Properties


Calliple I Operated		3 -					all linear y		
			Load	Dial	Machine	Corrected	Sample	Time	ડે
Water Content			Increment	Reading	Deflection	Dial Reading	Height	t 50	
Tare Number	9-SS	800		@ t ₅₀		@ t ₅₀	@ t ₅₀		
Wt. Tare & WS (g)	313.18	232.09	(tsf)	(div)	(div)	(div)	(cm)	(min.)	(cm ² /sec)
Wt. Tare & DS (g)	267.85	206.50							
Wt. Water (g)	45.33	25.59	0.0 - 0.125	25.0	7.5	17.5	2.536	1.00	0.00528
Wt. Tare (g)	100.77	103.09	0.125 - 0.25	75.4	18.6	56.8	2.526	2.30	0.00228
Wt. DS (g)	167.08	103.41	0.25 - 0.5	173.7	33.9	139.8	2.504	3.50	0.00147
Water Content (%)	27.13	24.75	0.5 - 1	358.5	55.5	303.0	2.463	3.50	0.00142
			1 - 2	627.9	86.4	541.4	2.402	3.50	0.00135
Sample Parameters			2 - 4	995.3	125.8	869.4	2.319	3.80	0.00116
Sample Diameter (in)	2.5	2.5	4 - 8	1462.1	168.6	1293.5	2.211	3.50	0.00115
Sample Height (in)	1.000	0.882	8-2	Ϋ́Z	109.7	ΑN	Ϋ́	Ϋ́	Ą
Sample Volume (cc)	80.44	96.02	2 - 0.5	Ϋ́	67.4	ΝΑ	ΑN	Ϋ́	ΑN
Wt. Wet Sample + Ring (g)	247.89	245.20	0.5 - 0.25	Ν	60.3	ΑN	ΑN	Ϋ́	N A
Wt. of Ring (g)	104.49	104.49	0.25 - 0.125	Ν	60.3	ΑN	ΑN	Ϋ́	N A
Wt. of Wet Sample (g)	143.40	140.71							
Wet Density (pcf)	111.24	123.73							
Wet Density (g/cc)	1.78	1.98							
Water Content (%)	27.13	24.75							
Wt. of Dry Sample (g)	112.80	112.80							
Dry Density (pcf)	87.50	99.19							
Dry Density (g/cc)	1.40	1.59							
Void Ratio	0.8755	0.6546							
Saturation (%)	81.50	99.42							
Specific Gravity	2.63	Measured							
		Tested By 129-04-0411	-0411 Date	4/10/18	4/10/18 Input Checked By	əd By	GEM	Date	5/15/18
page 4 of 4 DCN: CT	DCN: CT-24E Date: 5/3/12 Revision: 6	ion: 6	Z:\2018 P.	ROJECTSIESP AS	sociates\2018-095 E	Z.'2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\2018-095-001-002 GEOJAC-16TSF1 Cv.xismJFINAL PLOT	-095-001-002 GEOJ	AC-16TSF1 CV.X	ISMJFINAL PLOT

DCN: CT-24E Date:

page 4 of 4

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

R-2018-095-001 R-2018-095-001-002

Client

Lab ID

Client Project

0.0

10.0

20.0

40.0

50.0

60.0

Dial Reading

Project No.

Boring No. Depth (ft) Sample No. Visual Description -L- STA. 516+16, 16'LT 4.0-6.0

ST-1

Test Load

1 Division

Start Date

Start Time

Final Reading

Consolidometer No.

LIGHT BROWN / GRAY CLAY

(tsf)

(div)

0.0-0.125

51.5

R409

0.0001

4/10/18

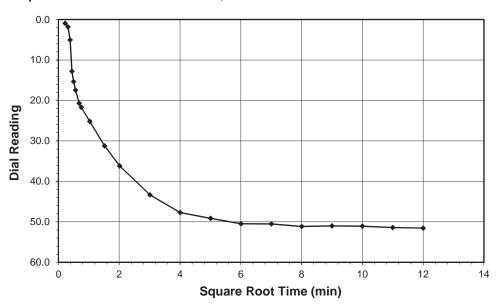
17:10:38

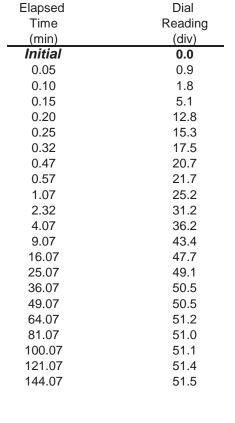
40.0

50.0

60.0

80.0


90.0

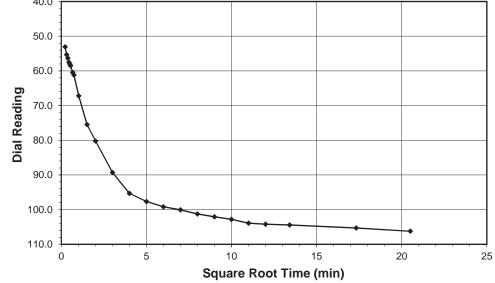

100.0

110.0

Dial Reading

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

0.	0.1	1	10	100	1000	
		Log Tir	me (min)			
	Tested By 129-04-0411	Date 4/1	0/18 Checke	ed By GEM	Date	5/15/18
page 1 of 1	DCN: CT-24E D	ate: 5/3/12 Revision: 3	7:12019 PBO IECTS	SIESP Associates\2018-095 ESP	- P-1015 SITE 0\12019	-005-001-002-CEO IAC-16TSE1

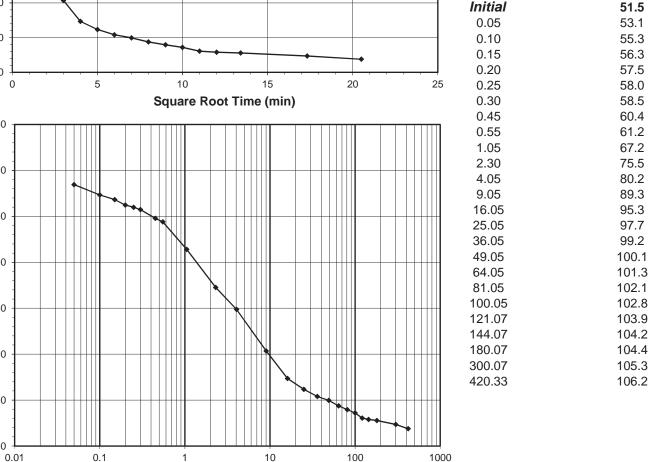

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

ESP Associates -L- STA. 516+16, 16'LT Client Boring No.

Client Project R-1015 Site 9 - CS34.327.00 Depth (ft) 4.0-6.0 Project No. R-2018-095-001 Sample No. ST-1

LIGHT BROWN / GRAY CLAY Lab ID R-2018-095-001-002 Visual Description

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED


ı	Test Load	(tsf)	0.125-0.25
ı	Final Reading	(div)	106.2
1	Consolidomete	er No.	R409
l	1 Division	(in)	0.0001
1			
ı	Start Date		4/11/18
l	Start Time		0:11:01
l			
١	Flansed		Dial

Reading

(div)

Time

(min)

Tested By 129-04-0411 Date Checked By **GEM** Date 5/15/18 4/11/18 page 1 of 1

Log Time (min)

DCN: CT-24E Date: 5/3/12 Revision:

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\[2018-095-001-002 GEOJAC-16TSF1 Cv.xlsm]STEP 2

0.5-1.0

469.4

R409

0.0001

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates Client Project R-1015 Site 9 - CS34.327.00

Client

Lab ID

Project No.

100.0

120.0

140.0

200.0

220.0

240.0

260.0 0.01

page 1 of 1

0.1

Dial Reading

R-2018-095-001 R-2018-095-001-002 Boring No. Depth (ft) Sample No.

Visual Description

-L- STA. 516+16, 16'LT 4.0-6.0

ST-1

Test Load

1 Division

Start Date

Start Time

Final Reading

Consolidometer No.

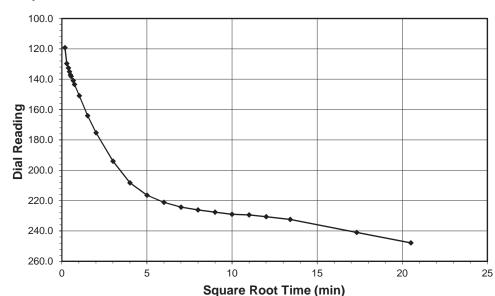
LIGHT BROWN / GRAY CLAY

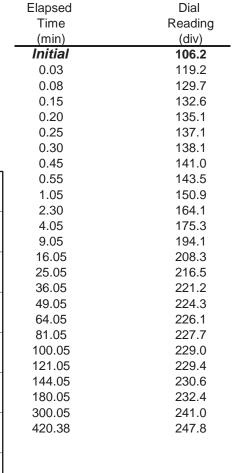
(tsf)

(div)

0.25-0.5

247.8


R409


0.0001

4/11/18

7:11:21

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

	Tested By 129-04-0411 Date	4/11/18	Checked By	GEM	Date	5/15/18
1	DCN: CT-24E Date: 5/3/12 R	evision: 3				

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

100

1000

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\\2018-095-001-002 GEOJAC-16TSF1 Cv.xlsm]STEP 3

10

Log Time (min)

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

(tsf)

(div)

ESP Associates

Client Project R-1015 Site 9 - CS34.327.00 Project No. R-2018-095-001

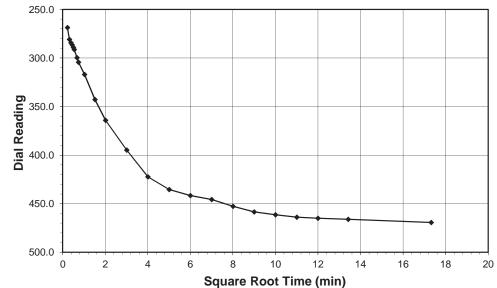
Lab ID R-2018-095-001-002

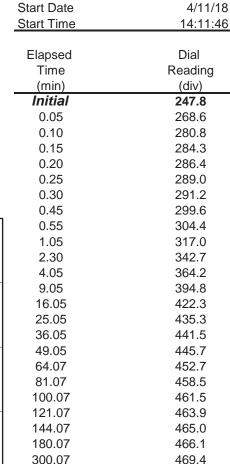
Client

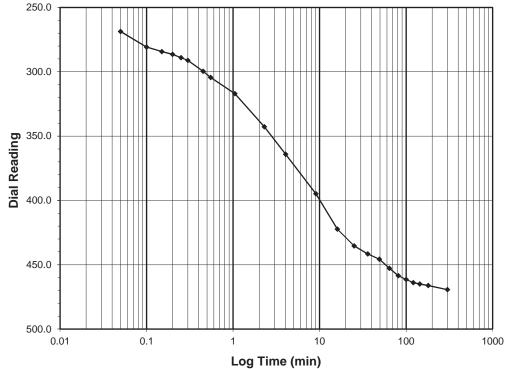
-L- STA. 516+16, 16'LT Boring No. Depth (ft) 4.0-6.0

Sample No. ST-1 Visual Description

LIGHT BROWN / GRAY CLAY

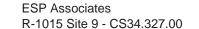

Test Load


1 Division


Final Reading

Consolidometer No.

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



Tested By 129-04-0411 Date Checked By **GEM** 5/15/18 4/11/18 Date

page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision:

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

R-2018-095-001 R-2018-095-001-002

Client

Lab ID

Client Project

450.0

500.0

550.0

600.0

650.0

700.0

750.0

800.0

850.0

page 1 of 1

0.01

0.1

Reading

Dial

Project No.

Boring No. Depth (ft) Sample No. Visual Description

-L- STA. 516+16, 16'LT 4.0-6.0

ST-1

Test Load

1 Division

Start Date

Start Time

Final Reading

Consolidometer No.

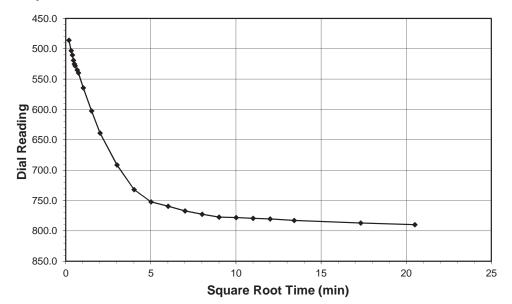
LIGHT BROWN / GRAY CLAY

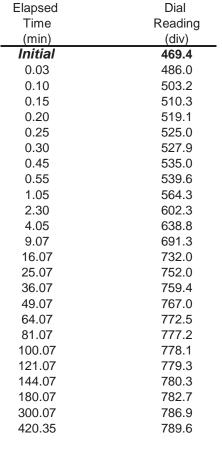
(tsf)

(div)

1.0-2.0

789.6


R409


0.0001

4/11/18

21:12:10

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

	Tested By 129-04-0411 Date	4/11/18	Checked By	GEM	Date	5/15/18
1	DCN: CT-24E Date: 5/3/12 Re	vision: 3				

100

1000

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\\2018-095-001-002 GEOJAC-16TSF1 Cv.xlsm]STEP 5

10

Log Time (min)

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

ESP Associates

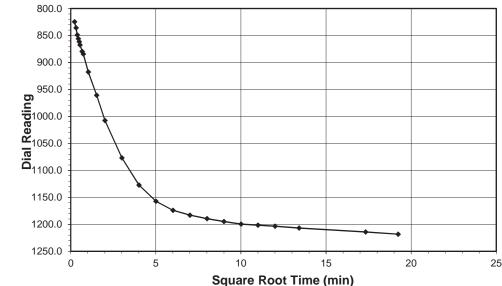
Client Project R-1015 Site 9 - CS34.327.00 Project No. R-2018-095-001

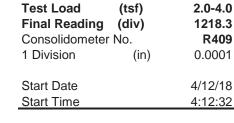
Lab ID R-2018-095-001-002

Client

800.0

850.0

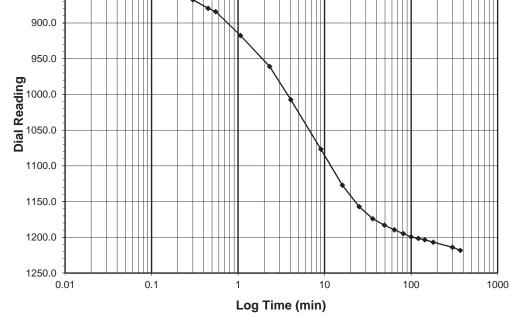

-L- STA. 516+16, 16'LT Boring No. Depth (ft) 4.0-6.0 Sample No. ST-1


LIGHT BROWN / GRAY CLAY Visual Description

Elapsed

Time

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED



Dial

Reading

		3
+	(min)	(div)
	Initial	789.6
	0.05	824.7
	0.10	835.9
	0.15	849.0
4	0.20	856.1
25	0.25	861.6
	0.30	867.5
	0.45	879.6
	0.55	884.3
	1.07	917.7
	2.32	960.9
	4.07	1007.6
Н	9.07	1076.8
	16.07	1127.2
Ш	25.07	1157.1
	36.07	1174.0
	49.07	1183.0
	64.07	1189.5
	81.07	1194.8
	100.07	1199.5
	121.07	1201.6
	144.07	1203.5
	180.07	1206.8
	300.07	1214.1
	370.07	1218.3
\mathbb{H}	1	

5/15/18

4/12/18

Checked By

Tested By 129-04-0411 Date page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision: Date

GEM

8.0-2.0

1584.7

0.0001

R409

ONE DIMENSIONAL CONSOLIDATION geotechnical &

eetechnics geotechnical & geosynthetic testing

AASHTO T-216

Client Project ESP Associates
Client Project R-1015 Site 9 - CS34.327.00

Project No.

1200.0

1300.0

1400.0

Reading 1500.0

1600.0

1700.0

1800.0

page 1 of 1

0.01

0.1

Dial

Lab ID

R-2018-095-001 R-2018-095-001-002 Boring No.
Depth (ft)
Sample No.
Visual Description

-L- STA. 516+16, 16'LT

4.0-6.0 ST-1

Test Load

1 Division

Start Date

Start Time

Elapsed

Time

Final Reading

Consolidometer No.

LIGHT BROWN / GRAY CLAY

(tsf)

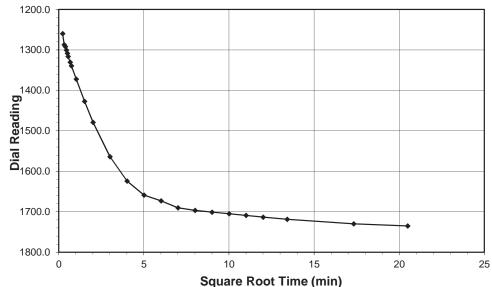
(div)

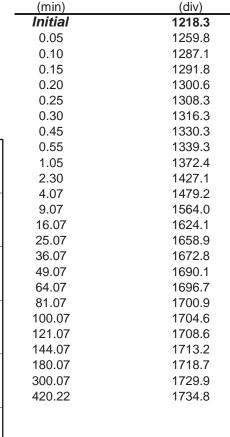
4.0-8.0

1734.8

0.0001

4/12/18


10:22:37


Dial

Reading

R409

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

	Tested By 129-04-0411 Date	4/12/18	Checked By	GEM	Date	5/15/18
1	DCN: CT-24E Date: 5/3/12 R	evision: 3				

100

1000

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\(2018-095-001-002 GEOJAC-16TSF1 Cv.xlsm \) STEP 7

10

Log Time (min)

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

geotechnical & geosynthetic testing

(tsf)

(div)

Test Load

1 Division

Final Reading

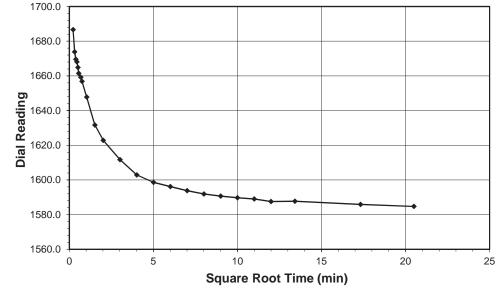
Consolidometer No.

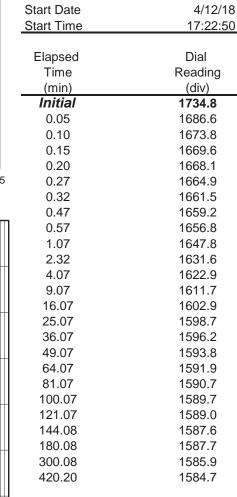
ESP Associates Boring No. -L- STA. 516+16, 16'LT

R-1015 Site 9 - CS34.327.00 Depth (ft) 4.0-6.0 R-2018-095-001 Sample No. ST-1

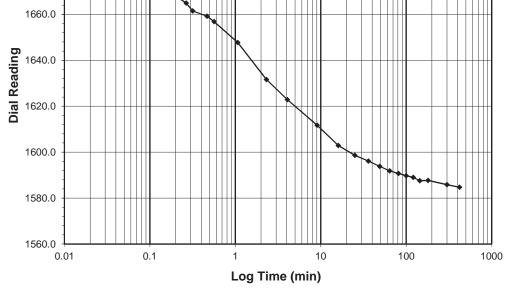
Lab ID R-2018-095-001-002 Visual Description LIGHT BROWN / GRAY CLAY

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED


Client


Client Project

1700.0


1680.0

Project No.

5/15/18

Tested By 129-04-0411 Date 4/12/18 Checked By GEM Date page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision: 3

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

R-2018-095-001 R-2018-095-001-002

Client

Lab ID

Client Project

1380.0

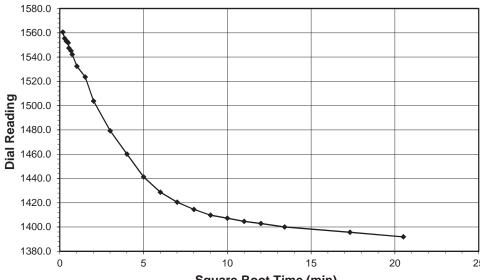
page 1 of 1

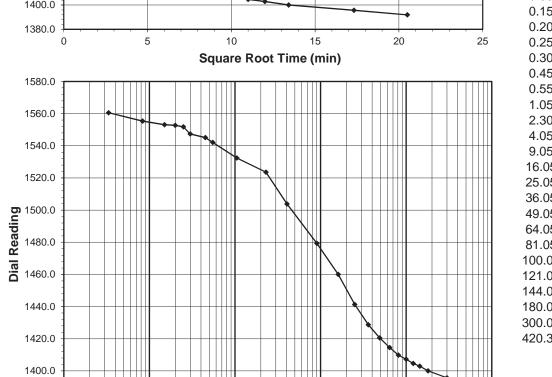
0.01

0.1

Project No.

Boring No. Depth (ft) Sample No.


Visual Description


-L- STA. 516+16, 16'LT 4.0-6.0

ST-1

LIGHT BROWN / GRAY CLAY

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Log Time (min)

Test Load	(tsf)	2.0-0.
Final Reading	` ,	1391.9
Consolidomete	er No.	R409
1 Division	(in)	0.000
Start Date		4/13/19

Start Date	4/13/18
Start Time	0:23:02

Elapsed	Dial
Time	Reading
(min)	(div)
Initial	1584.7
0.03	1560.5
0.08	1555.4
0.15	1553.1
0.20	1552.7
0.25	1551.8
0.30	1547.3
0.45	1545.1
0.55	1542.1
1.05	1532.5
2.30	1523.5
4.05	1503.8
9.05	1479.3
16.05	1460.0
25.05	1441.3
36.05	1428.7
49.05	1420.5
64.05	1414.5
81.05	1409.8
100.05	1407.3
121.05	1404.6
144.05	1402.9
180.05	1400.0
300.05	1395.7
420.33	1391.9

Tested By 129-04-0411 Date	4/13/18	Checked By	GEM	Date	5/15/18
DCN: CT-24F Date: 5/3/12 Rev	vision: 3				

100

1000

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\(2018-095-001-002 GEOJAC-16TSF1 Cv.xlsm \) STEP 9

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client ESP Associates
Client Project R-1015 Site 9 - CS34.327.00

Project No. R-2018-095-001 Lab ID R-2018-095-001-002

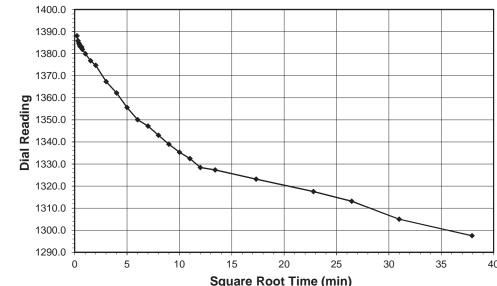
R-2018-095-001

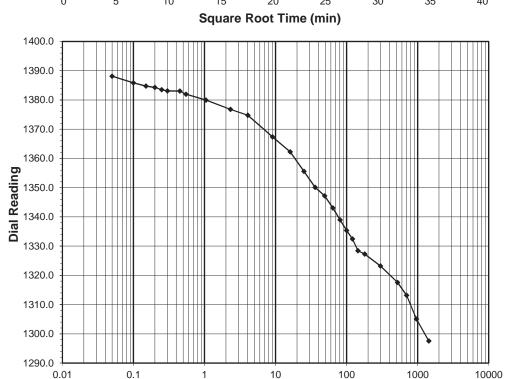
Sample No.
Visual Description

Boring No.

Depth (ft)

-L- STA. 516+16, 16'LT 4.0-6.0


4.0-6.0 ST-1


Elapsed

Time

on LIGHT BROWN / GRAY CLAY

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Log Time (min)

Test Load	(tsf)	0.5-0.25
Final Reading	(div)	1297.5
Consolidomete	r No.	R409
1 Division	(in)	0.0001
Start Date		4/13/18
Start Time		7:23:23

Dial

Reading

1 11110	rtodanig
(min)	(div)
Initial	1391.9
0.05	1388.1
0.10	1385.8
0.15	1384.8
0.20	1384.3
0.25	1383.5
0.30	1383.1
0.45	1383.0
0.55	1381.9
1.05	1379.9
2.32	1376.8
4.07	1374.7
9.07	1367.3
16.07	1362.2
25.07	1355.6
36.07	1350.1
49.07	1347.2
64.07	1343.0
81.07	1339.0
100.07	1335.3
121.07	1332.4
144.07	1328.4
180.07	1327.3
300.07	1323.2
520.07	1317.6
700.08	1313.2
960.08	1305.0
1440.02	1297.5
)	

5/15/18

Tested By 129-04-0411 Date 4/13/18 Checked By
page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision: 3

GEM

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates Client Client Project R-1015 Site 9 - CS34.327.00 Project No.

Lab ID

page 1 of 1

Depth (ft) R-2018-095-001 Sample No. Visual Description R-2018-095-001-002

Boring No.

-L- STA. 516+16, 16'LT 4.0-6.0

ST-1

Test Load

1 Division

Start Date

Start Time

Elapsed

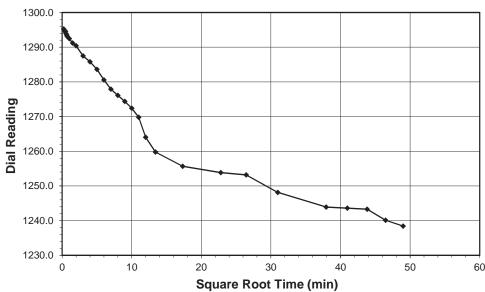
Final Reading

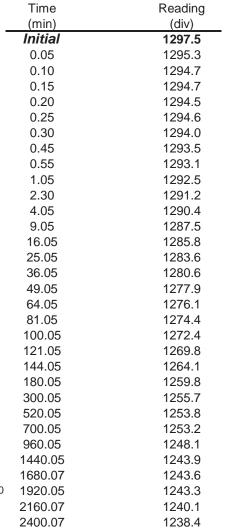
Consolidometer No.

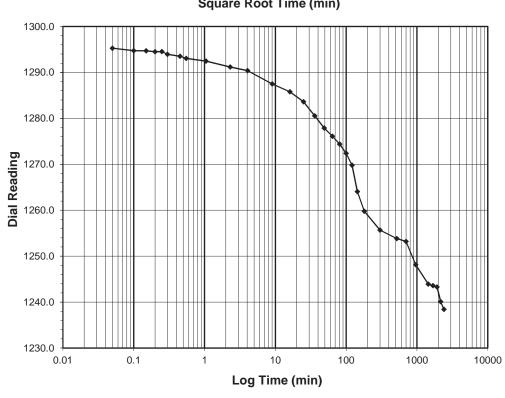
LIGHT BROWN / GRAY CLAY

(tsf) (div) 0.25-0.125

1238.4


4/14/18


7:23:25


Dial

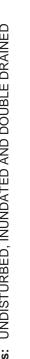
R409 0.0001

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

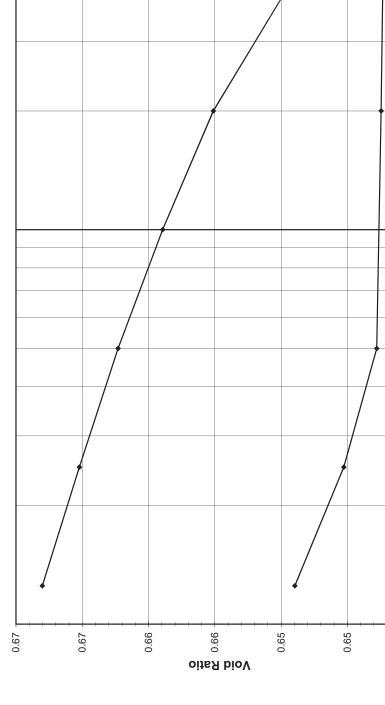
Tested By 129-04-0411 Date Checked By **GEM** 5/15/18 4/14/18 Date DCN: CT-24E Date: 5/3/12 Revision:

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\[2018-095-001-002 GEOJAC-16TSF1 Cv.xlsm]\STEP 11

eotechnical & geosynthetic testing


ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

CS34.327.00


ESP Associates R-1015 Site 9 - CS34.3 R-2018-095-001 R-2018-095-001-011

Boring No. Depth (ft) Sample No. Visual Description

-L- STA. 517+11, 59'RT 11.0-13.0 ST-2 GRAY SAND

Log P (tsf)

Ö.

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

eotechnical & geosynthetic testing

Boring No. Depth (ft) Sample No. Visual Description

ESP Associates R-1015 Site 9 - CS34.327.00 R-2018-095-001 R-2018-095-001-011

Client Client Reference Project No. Lab ID

-L- STA. 517+11, 59'RT 11.0-13.0 ST-2 GRAY SAND

UNDISTURBED, INUNDATED AND DOUBLE DRAINED R470 (in.) Sample Conditions: Consolidometer No. 1 Division =

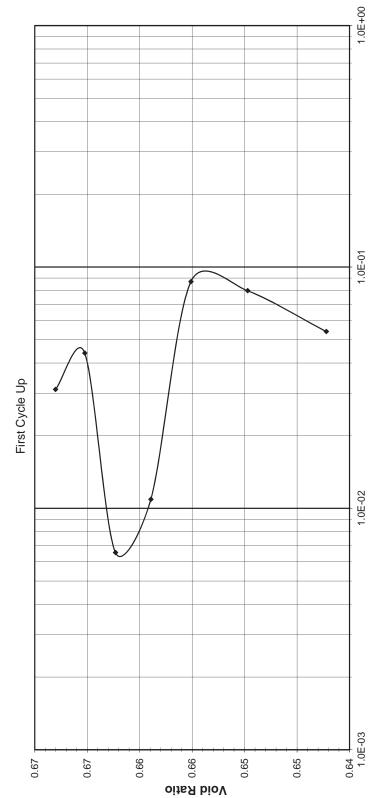
Initial

Sample Properties	Initial	Final				Test Data Summary	Summary			
Water Content			Applied		Machine	Final Dial Machine Corrected Height of	Height of	Volume	Dry	Void
Tare Number	TB-08	815	Pressure	Reading	Deflection Reading	Reading	Sample	(၁၁)	Density	Ratio
Wt. Tare & WS (g)	485.43	287.95	(tsf)	(div)	(div)	(div)	(mm)		(a/cc)	
Wt. Tare & DS (g)	418.64	259.52								
Wt. Water (g)	66.79	28.43	Seating	0	0	0	25.400	80.440	1.57952	0.67139
Wt. Tare (g)	135.33	135.83	0.125	24.4	4.2	20.2	25.349	80.278	1.58272	0.66802
Wt. DS (g)	283.31	123.69	0.25	49.9	13.1	36.9	25.306	80.143	1.58537	0.66523
Water Content (%)	23.57	22.98	0.5	81.7	27.4	54.3	25.262	80.003	1.58815	0.66231
			_	125.6	51.0	74.5	25.211	79.840	1.59138	0.65893
Sample Parameters			2	184.5	87.1	97.4	25.153	79.656	1.59506	0.65511
Sample Diameter (in)	2.5	2.5	4	254.4	124.7	129.7	25.071	79.396	1.60028	0.64971
Sample Height (in)	1.0000	0.9866	∞	337.6	163.1	174.5	24.957	79.036	1.60758	0.64222
Sample Volume (cc)	80.44	79.36	2	276.1	103.0	173.1	24.960	79.047	1.60734	0.64246
Wt. Wet Sample + Ring (g)	371.31	370.56	0.5	227.0	55.9	171.1	24.965	79.063	1.60703	0.64279
Wt. of Ring (g)	214.30	214.30	0.25	204.7	48.4	156.3	25.003	79.183	1.60460	0.64527
Wt. of Wet Sample (g)	157.01	156.26	0.125	182.6	48.4	134.2	25.059	79.361	1.60100	0.64897
Wet Density (pcf)	121.80	122.87								
Wet Density (g/cc)	1.95	1.97								
Water Content (%)	23.57	22.98								
Wt. of Dry Sample (g)	127.06	127.06								
Dry Density (pcf)	98.26	99.90								
Dry Density (g/cc)	1.58	1.60								
Void Ratio	0.6714	0.6490								
Saturation (%)	92.70	93.50								
Specific Gravity	2.64	Measured								

Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net 2200 Westinghouse Blvd.,

Tested By

DCN: CT-24E Date: 5/3/12 Re


page 2 of 2

ONE DIMENSIONAL CONSOLIDATION
AASHTO T-216

eotechnical & geosynthetic testing

-L- STA. 517+11, 59'RT 11.0-13.0 ST-2 GRAY SAND Boring No. Depth (ft) Sample No. Visual Description ESP Associates R-1015 Site 9 - CS34.327.00 R-2018-095-001 R-2018-095-001-011 Client Client Reference Project No. Lab ID

UNDISTURBED, INUNDATED AND DOUBLE DRAINED Sample Conditions:

Coefficient of Consolidation (cm²/sec)

First Cycle Up

ONE DIMENSIONAL CONSOLIDATION AASHTO T-216

-L- STA. 517+11, 59'RT 11.0-13.0 ST-2 GRAY SAND Boring No. Depth (ft) Sample No. Visual Description ESP Associates R-1015 Site 9 - CS34.327.00 R-2018-095-001 R-2018-095-001-011 Client Client Reference Project No. Lab ID

UNDISTURBED, INUNDATED AND DOUBLE DRAINED R470 (in.) Sample Conditions: Consolidometer No. 1 Division =

Increment Reading Deflection Dial Reading Height t_{so} $t_{$
(tsf) (div) (div) (div) (min.) (GO) (Line) (GO) (Line) (GIV)
0.0 - 0.125
0.00 - 0.125
0.125 - 0.25
0.25 - 0.5 74.2 27.4 46.8 2.528 0.80 0.5 - 1 177.3 51.0 66.2 2.523 0.48 0.5 - 1 147.3 51.0 66.2 2.523 0.48 0.5 - 1 164.8 87.1 77.6 2.520 0.06 0.25 - 4 235.6 124.7 110.9 2.512 0.07 0.40 0.8 - 2 NA 103.0 NA
0.5 - 1 117.3 51.0 66.2 2.523 0.48 0 1 - 2 164.8 87.1 77.6 2.520 0.06 0 2 - 4 235.6 124.7 110.9 2.512 0.07 0 4 - 8 321.7 163.1 158.6 2.500 0.10 0 8 - 2 NA 103.0 NA NA NA NA NA O.5 - 0.25 NA 48.4 NA NA NA NA NA O.5 - 0.25 NA 48.4 NA
1 - 2 164.8 87.1 77.6 2.520 0.06 0 2 - 4 235.6 124.7 110.9 2.512 0.07 0 4 - 8 321.7 163.1 158.6 2.500 0.10 0 8 - 2 NA 103.0 NA
2 - 4 235.6 124.7 110.9 2.512 0.07 0 4 - 8 321.7 163.1 158.6 2.500 0.10 0 8 - 2 NA 103.0 NA
4 - 8 321.7 163.1 158.6 2.500 0.10 0 8 - 2 NA 103.0 NA NA NA NA 2 - 0.5 NA 55.9 NA NA NA NA 0.5 - 0.25 NA 48.4 NA NA NA NA 0.25 - 0.125 NA 48.4 NA NA NA NA Date 4/17/18 Input Checked By GEM Date
8 - 2 NA 103.0 NA
2 - 0.5 NA 55.9 NA NA NA NA O.5 - 0.25 NA 48.4 NA
0.25 - 0.125 NA 48.4 NA NA NA NA NA NA O.25 - 0.125 NA 48.4 NA
0.25 - 0.125 NA 48.4 NA NA NA NA NA Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date
Date 4/17/18 Input Checked By GEM Date

• Fax (919) 876ione (919) 876-0405

Lab ID

0.0

5.0

10.0

20.0

25.0

30.0 0.01

0.1

Dial Reading

SHEET 28

(tsf)

(div)

0.0-0.125

24.4

R470

0.0001

4/17/18

10:32:22

Dial

Reading

(div)

0.0

0.3

GRAY SAND

Test Load

1 Division

Start Date

Start Time

Elapsed

Time

(min)

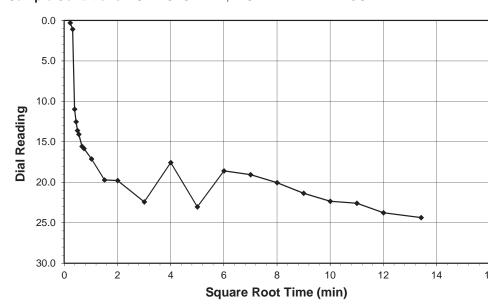
Initial

0.05

Final Reading

Consolidometer No.

Visual Description


ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client **ESP** Associates -L- STA. 517+11, 59'RT Boring No. Client Project R-1015 Site 9 - CS34.327.00 Depth (ft) 11.0-13.0 Project No. R-2018-095-001 Sample No. ST-2

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

R-2018-095-001-011

		I		•			
						0.10	1.1
						0.15	11.0
						0.20	12.5
	8	10	12	14	16	0.25	13.6
ıare F	Root Time	(min)				0.30	14.1
						0.45	15.6
						0.55	15.8
						1.05	17.1
						2.30	19.7
						4.05	19.8
						9.05	22.4
						16.05	17.6
						25.05	23.0
						36.05	18.6
						49.07	19.0
						64.07	20.0
						81.07	21.4
						100.07	22.3
						121.07	22.6
						144.07	23.8
		// /	\backslash / \rangle			180.07	24.4
			¥				
\coprod				*			

1000

Tested By 129-04-0411 Date 4/17/18 Checked By **GEM** 5/15/18 Date DCN: CT-24E Date: 5/3/12 Revision: 3

Log Time (min)

page 1 of 1 Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\\2018-095-001-011 GEOJAC-16TSF1 Cv.xlsm]STEP 1 2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

100

0.25-0.5

81.7

R470

0.0001

4/17/18

16:33:11

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates R-1015 Site 9 - CS34.327.00

Client

Lab ID

Client Project

30.0

35.0

50.0

page 1 of 1

0.1

Dial Reading

Project No.

R-2018-095-001 R-2018-095-001-011 Boring No. Depth (ft) Sample No.

-L- STA. 517+11, 59'RT 11.0-13.0

Final Reading (div)

Consolidometer No.

(tsf)

0.125-0.25

49.9

R470

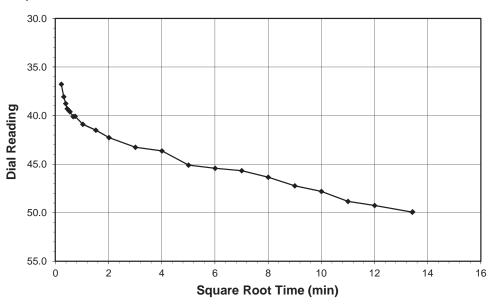
0.0001

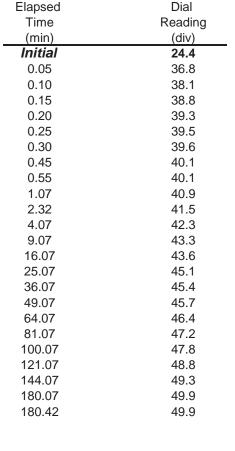
4/17/18

13:32:46

ST-2

Visual Description GRAY SAND


Test Load


1 Division

Start Date

Start Time

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

	Tested By	129-04-0411 Date	<i>4/17/18</i>	Checked By	GEM	Date	5/15/18
1		DCN: CT-24E Date: 5/3/12 Revis	sion: 3				

10

Log Time (min)

eotechnics

(tsf)

(div)

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

Client Project ESP Associates
Client Project R-1015 Site 9 - CS34.327.0

Project No. Lab ID

68.0

70.0

72.0

80.0

82.0

84.0

0.01

Dial Reading

R-1015 Site 9 - CS34.327.00 R-2018-095-001

R-2018-095-001 R-2018-095-001-011 Boring No.
Depth (ft)
Sample No.

Visual Description

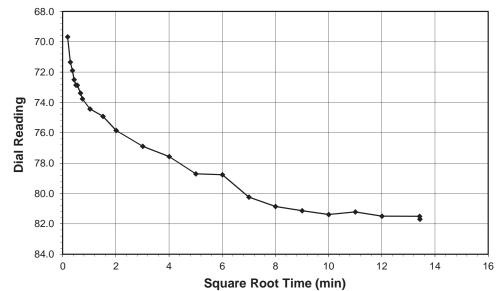
11.0-13.0 ST-2

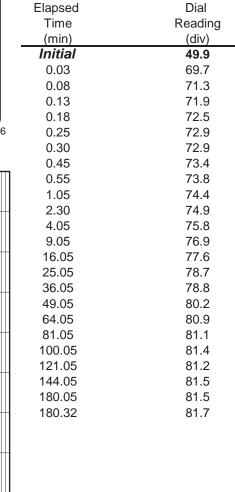
-L- STA. 517+11, 59'RT

GRAY SAND

Test Load

1 Division


Start Date


Start Time

Final Reading

Consolidometer No.

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

5/15/18

Tested By 129-04-0411 Date 4/17/18 Checked By GEM Date

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

Log Time (min)

0.1

1000

100

100

1000

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\\2018-095-001-011 GEOJAC-16TSF1 Cv.x/sm]STEP 2

1.0-2.0

184.5

(tsf)

(div)

0.5-1.0

125.6

R470

0.0001

4/17/18

19:33:31

Dial

Reading

(div)

81.7

111.6

112.5

113.1

113.9

114.4

114.8

117.0

117.5

118.6

120.3

121.4

122.7

123.5

124.4

124.5

125.2

125.3

125.4

125.4

125.6

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates Client Client Project R-1015 Site 9 - CS34.327.00

Project No. R-2018-095-001 Lab ID R-2018-095-001-011

110.0

112.0

114.0

116.0

120.0

122.0

124.0

126.0

128.0

0.01

0.1

Dial Reading

Boring No. Depth (ft) Sample No. Visual Description

-L- STA. 517+11, 59'RT 11.0-13.0 ST-2

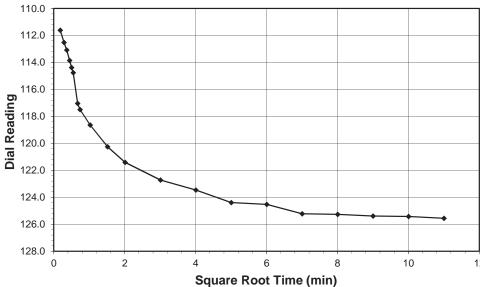
GRAY SAND

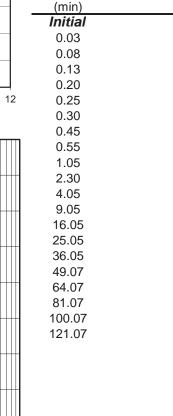
Test Load

1 Division

Start Date

Start Time


Elapsed


Time

Final Reading

Consolidometer No.

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

	Tested By	129-04-0411 Date	4/17/18	Checked By	GEM	Date	5/15/18
page 1 of 1		DCN: CT-24E Date: 5/3/12	Revision: 3				

Log Time (min)

100

1000

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\(\)2018-095-001-011 GEOJAC-16TSF1 Cv.xlsm]STEP 4

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates Client Client Project

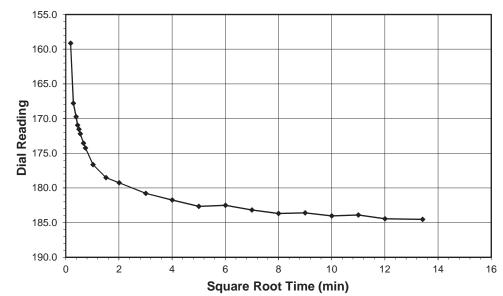
Project No. Lab ID

155.0

R-1015 Site 9 - CS34.327.00 R-2018-095-001

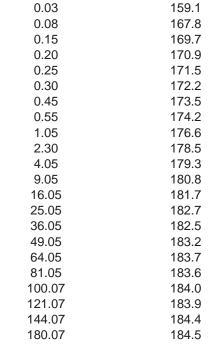
R-2018-095-001-011

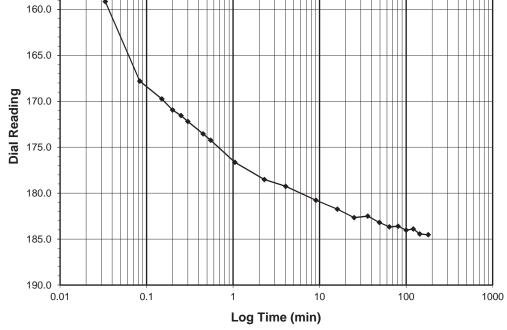
Boring No. Depth (ft) Sample No.


-L- STA. 517+11, 59'RT 11.0-13.0

ST-2 Visual Description

GRAY SAND


Test Load


Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Final Reading	(div)	184.5
Consolidometer	No.	R470
1 Division	(in)	0.0001
0, 15,		4/47/40
Start Date		4/17/18
Start Time		22:33:55
Elapsed		Dial
Time		Reading
(min)		(div)
Initial		125.6
0.03		159.1
0.08		167.8
0.15		169.7
0.20		170.9

(tsf)

Tested By 129-04-0411 Date Checked By **GEM** 5/15/18 4/17/18 Date

page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision:

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates R-1015 Site 9 - CS34.327.00

R-2018-095-001 R-2018-095-001-011

Client

Lab ID

Client Project

230.0

235.0

Dial Reading 240.0

250.0

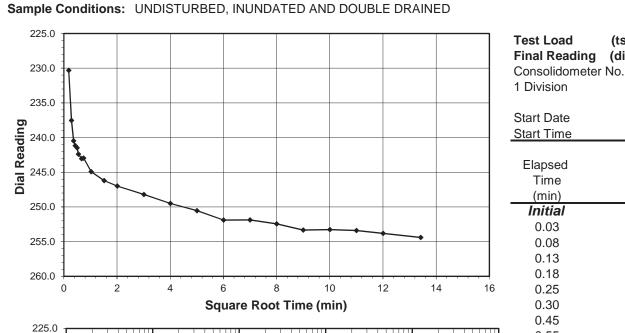
255.0

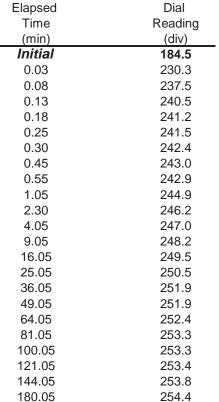
260.0

page 1 of 1

0.01

0.1


Project No.


Boring No. Depth (ft) Sample No.

Visual Description

-L- STA. 517+11, 59'RT 11.0-13.0

ST-2 **GRAY SAND**

(tsf)

(div)

2.0-4.0

254.4

R470

0.0001

4/18/18

1:34:20

		Log Time (mi	n)				
	Tested By 129-04-0411 Date	4/18/18	Checked By	GEM	Date	5/15/18	
1	DCN: CT-24E Date: 5/3/12	Revision: 3					
		Z:\20	18 PROJECTS\ESP Associate	s\2018-095 ESP - R-101	15 SITE 9\[2018-	.095-001-011 GEOJAC-16TSF1 Cv.xlsm]ST	ГЕР 6

100

1000

10

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

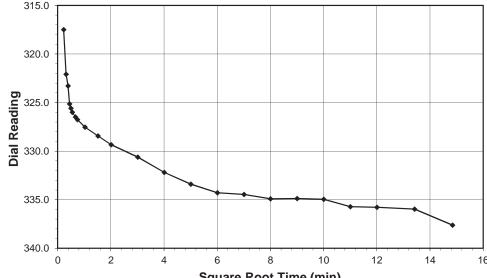
ESP Associates Client Client Project R-1015 Site 9 - CS34.327.00

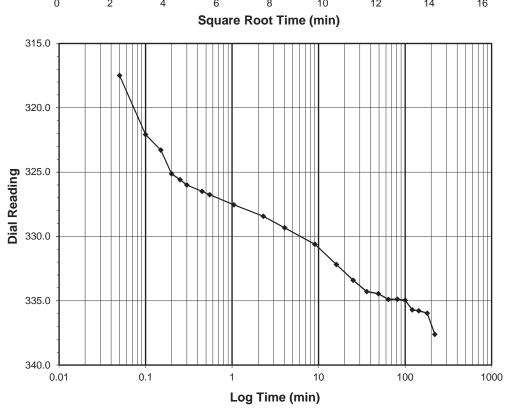
Project No. Lab ID

R-2018-095-001

R-2018-095-001-011

Boring No. Depth (ft) Sample No.


11.0-13.0 ST-2 Visual Description


GRAY SAND

Elapsed

-L- STA. 517+11, 59'RT

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Test Load	(tsf)	4.0-8.0
Final Reading	(div)	337.6
Consolidomete	r No.	R470
1 Division	(in)	0.0001
Start Date		4/18/18
Start Time		4:34:44

Dial

Time	Reading
(min)	(div)
Initial	254.4
0.05	317.5
0.10	322.1
0.15	323.3
0.20	325.1
0.25	325.6
0.30	326.0
0.45	326.5
0.55	326.8
1.05	327.5
2.30	328.4
4.05	329.3
9.07	330.6
16.07	332.2
25.07	333.4
36.07	334.3
49.07	334.5
64.07	334.9
81.07	334.9
100.07	335.0
121.07	335.7
144.07	335.8
180.07	336.0
220.47	337.6

5/15/18

Tested By 129-04-0411 Date Checked By GEM 4/18/18 page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision:

Date

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates

Client

Lab ID

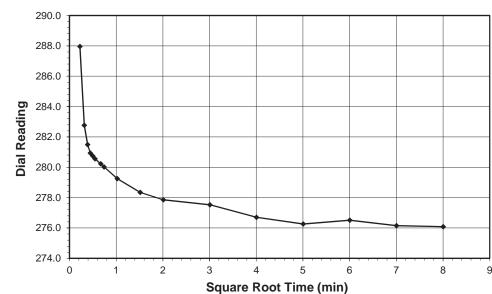
page 1 of 1

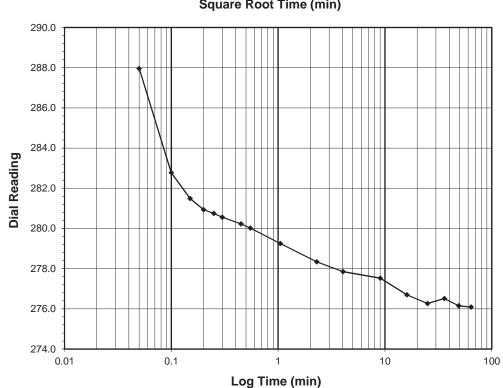
Client Project

Project No.

R-1015 Site 9 - CS34.327.00 R-2018-095-001 R-2018-095-001-011

Boring No. Depth (ft) Sample No. Visual Description


-L- STA. 517+11, 59'RT 11.0-13.0


ST-2

Start Time

GRAY SAND

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Test Load Final Reading	(tsf) (div)	8.0-2.0 276.1
Consolidometer 1 Division	r No. (in)	R470 0.0001
Start Date		4/18/18

8:15:13

Elapsed Time (min)	Dial Reading (div)
Initial	337.6
0.05	288.0
0.10	282.8
0.15	281.5
0.20	280.9
0.25	280.7
0.30	280.6
0.45	280.2
0.55	280.0
1.05	279.3
2.30	278.3
4.05	277.9
9.05	277.5
16.05	276.7
25.05	276.3
36.05	276.5
49.05	276.1
64.05	276.1

	Tested By 129-04-0411 Date	4/18/18	Checked By	GEM	Date	5/15/18
1	DON: OT 04F D-t-: 5/0/40 D-	delen 0				

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\\2018-095-001-011 GEOJAC-16TSF1 Cv.xlsm]STEP 8

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates Client Client Project R-1015 Site 9 - CS34.327.00

Project No. Lab ID

Dial

page 1 of 1

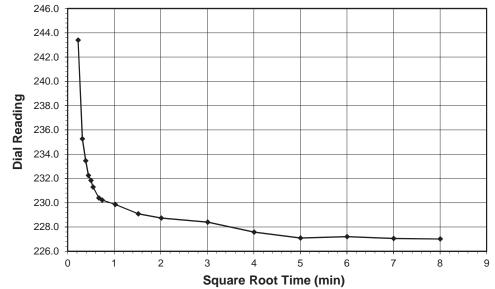
R-2018-095-001 R-2018-095-001-011 Boring No. Depth (ft) Sample No. -L- STA. 517+11, 59'RT 11.0-13.0

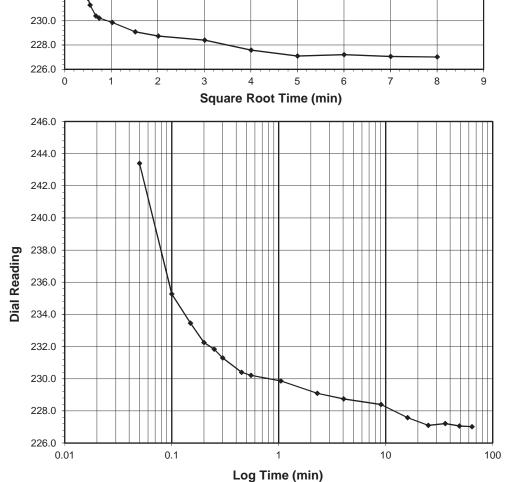
ST-2 Visual Description **GRAY SAND**

Start Time

4.05

9.05


16.05


25.05

36.05

49.05 64.07

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Test Load	(tsf)	2.0-0.5
Final Reading	(div)	227.0
Consolidomete	r No.	R470
1 Division	(in)	0.0001
Start Date		4/18/18

11:15:34

228.7

228.4

227.6

227.1 227.2

227.1

227.0

Elapsed	Dial
Time	Reading
(min)	(div)
Initial	276.1
0.05	243.4
0.10	235.3
0.15	233.5
0.20	232.3
0.25	231.8
0.30	231.3
0.45	230.4
0.55	230.2
1.05	229.9
2.30	229.1

5/15/18

Tested By 129-04-0411 Date 4/18/18 Checked By DCN: CT-24E Date: 5/3/12 Revision:

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\\2018-095-001-011 GEOJAC-16TSF1 Cv.xlsm]STEP 9

GEM

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

2200 Westinghouse Blvd., Suite 103 • Raleigh, NC 27604 • Phone (919) 876-0405 • Fax (919) 876-0460 • www.geotechnics.net

ONE DIMENSIONAL CONSOLIDATION

AASHTO T-216

ESP Associates R-1015 Site 9 - CS34.327.00

Client

Lab ID

Client Project

218.0

216.0

214.0

210.0

208.0

206.0

204.0

0.01

0.1

Dial Reading

Project No.

R-2018-095-001 R-2018-095-001-011

Boring No. Depth (ft) Sample No.

Visual Description

-L- STA. 517+11, 59'RT 11.0-13.0

(tsf)

(div)

0.5-0.25

204.7

R470

0.0001

4/18/18

14:15:59

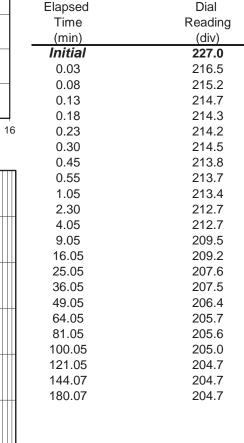
Dial

ST-2 **GRAY SAND**

Test Load

1 Division


Start Date


Start Time

Final Reading

Consolidometer No.

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

	Tested By 129-04-0411 Date	4/18/18	Checked By	GEM	Date	5/15/18
page 1 of 1	DCN: CT-24E Date: 5/3/12 Re	vision: 3				

100

1000

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\[2018-095-001-011 GEOJAC-16TSF1 Cv.xlsm]STEP 10

10

Log Time (min)

ONE DIMENSIONAL CONSOLIDATION

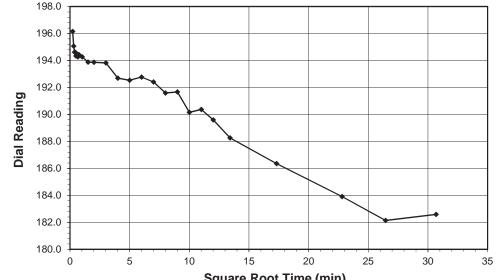
AASHTO T-216

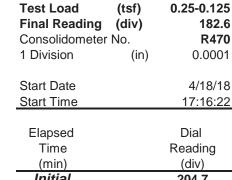
ESP Associates Client Client Project R-1015 Site 9 - CS34.327.00

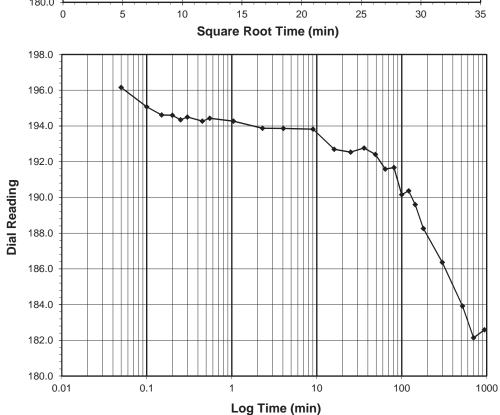
Project No. Lab ID

R-2018-095-001

R-2018-095-001-011


Depth (ft) Sample No. Visual Description


Boring No.


-L- STA. 517+11, 59'RT 11.0-13.0 ST-2

GRAY SAND

Sample Conditions: UNDISTURBED, INUNDATED AND DOUBLE DRAINED

Initial	204.7
0.05	196.2
0.10	195.1
0.15	194.6
0.20	194.6
0.25	194.3
0.30	194.5
0.45	194.3
0.55	194.4
1.05	194.3
2.30	193.9
4.05	193.9
9.05	193.8
16.05	192.7
25.05	192.5
36.05	192.8
49.05	192.4
64.07	191.6
81.07	191.7
100.07	190.2
121.07	190.4
144.07	189.6
180.07	188.3
300.07	186.4
520.07	183.9
700.07	182.1
941.73	182.6

5/15/18

Tested By 129-04-0411 Date Checked By GEM 4/18/18 page 1 of 1 DCN: CT-24E Date: 5/3/12 Revision:

Z:\2018 PROJECTS\ESP Associates\2018-095 ESP - R-1015 SITE 9\(2018-095-001-011 GEOJAC-16TSF1 Cv.xlsm\) STEP 11

Date

CONTENTS SHEET NO. REFERENCE 34360

DESCRIPTION

CROSS SECTION BORE LOGS SOIL TEST RESULTS

TITLE SHEET LEGEND SITE PLAN

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY <u>CRA</u>VEN

PROJECT DESCRIPTION US 70 (HAVELOCK BYPASS) FROM NORTH OF PINE GROVE TO NORTH OF CARTERET COUNTY LINE

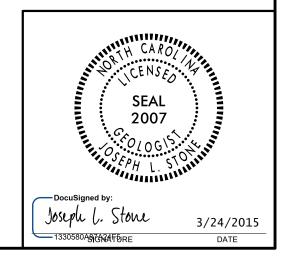
SITE DESCRIPTION CULVERT NO. 90 ON US 70 OVER TUCKER CREEK AT -RP2AC- STA. 44+89

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	R-1015	1	6

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING UNIT AT 1999 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (MIN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS MOLCATED IN THE SUBSURFACE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS WATCH THE CONDIT INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

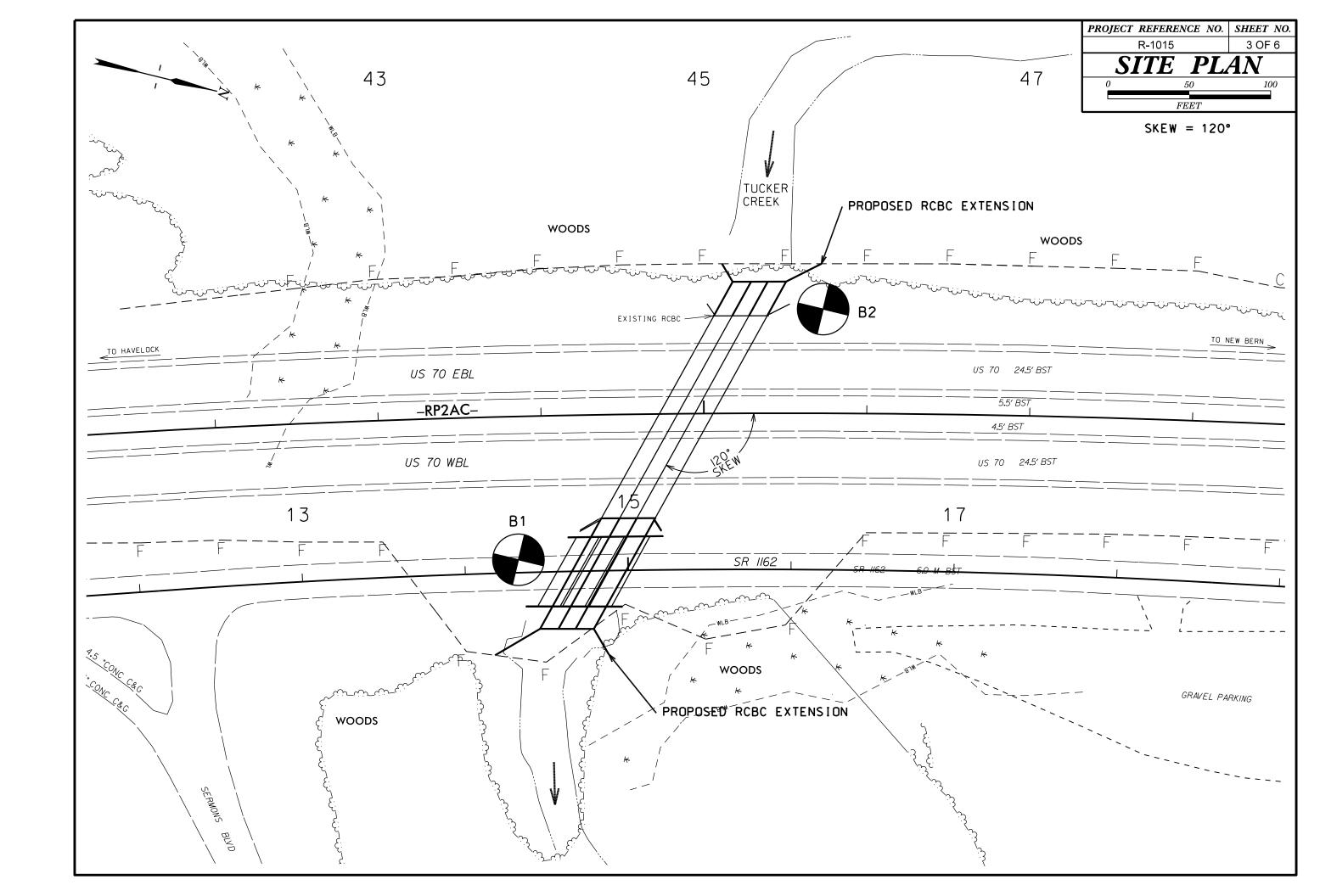

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED OF AN PREASON RESULTING FROM THE ACTUAL CONDITIONS OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

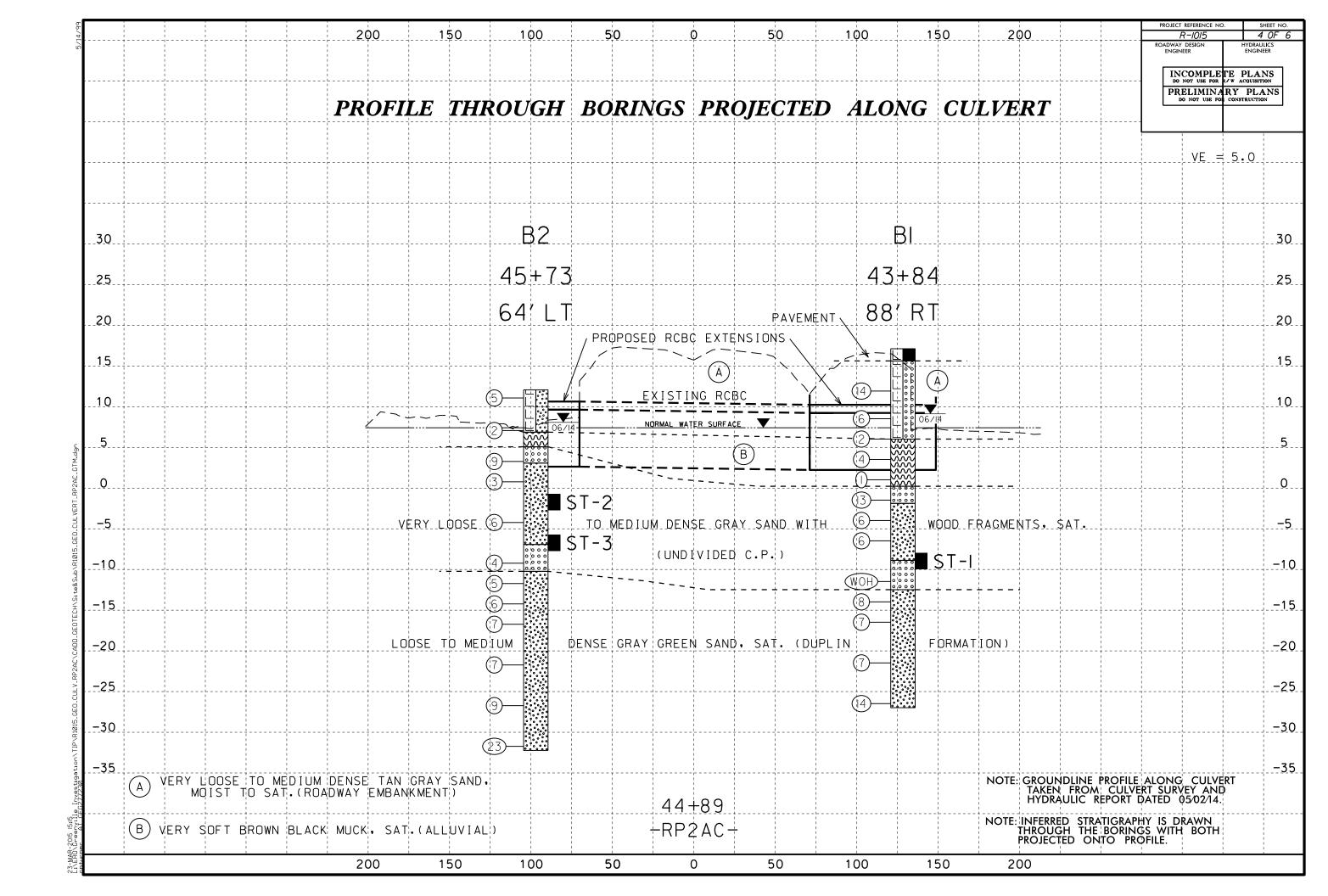
- ES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT
 OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS
 OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
 FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE
 CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

A.A. MOORE SUMMIT PERSONNEL INVESTIGATED BY __J.L. STONE DRAWN BY __C.P. TURNER SUBMITTED BY __D.N. ARGENBRIGHT DATE **JULY** 2014

PERSONNEL

R.E. SMITH


PROJECT REFERENCE NO. SHEET NO. 2 OF 6


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	<u>WELL GRADED</u> - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. <u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF.GRAY.SILTY CLAY.MOIST WITH INTERBEDDED FINE SAND LAYERS.HIGHLY PLASTIC.A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	NI//AI//A	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, <u>SUBANGULAR</u> , <u>SUBROUNDED</u> , OR <u>ROUNDED</u> .	WEATHERED WON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS	MINERALOGICAL COMPOSITION	CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
(> 35% PASSING "200) (> 35% PASSING "200)	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-6 A-1-b A-2-4 A-2-5 A-2-6 A-2-7 B-2-6 A-2-7 B-2-6 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
000000000	SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	OF SLOPE.
SYMBOL 000000000000000000000000000000000000	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
7. PASSING SILT- SILT- MUCK, GRANULAR SILT- MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*40 30 MX 50 MX 51 MN SOILS CLAY PEAT	GRANULAR SILT - CLAY	- WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
20 MX 25 MX 35 MX 36 MN 35 MN 35 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL.
LL 40 MX 41 MN LITTLE OR	MODERATELY ORGANIC	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN MODERATE HIGHLY ORGANIC		OF A CRYSTALLINE NATURE.	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOILS		SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. OF MAJOR GRAVEL, AND SAND GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS MATTER	WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
MATERIALS SAND SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER <u>24</u> HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABL		DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL. FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30	— SPRING OR SEEP	WITH FRESH ROCK.	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
COMPACTNISCS OR RANGE OF STANDARD RANGE OF UNCONFINED		(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPRESSIVE STRENGTH (N-VALUE) COMPRESSIVE STRENGTH (TONS/FT ²)	ROADWAY EMBANKMENT (RE) #ITH SOIL DESCRIPTION WITH SOIL DESCRIPTION DF ROCK STRUCTURES	IF TESTED, WOULD YIELD SPT REFUSAL	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
VERY LODGE 4.4	SPI CO CLORE INDICATOR	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GENERALLT LOOSE 4 TO 10	SOIL SYMBOL OPT ONT TEST BORING SLOPE INDICATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS
MATERIAL DENSE 10 TO 30 N/A	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) VERY DENSE > 50	THE TOPOWER EMBRICATION OF TEST	SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5	- INFERRED SOIL BOUNDARY - CORE BORING SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <i>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</i>	OF AN INTERVENING IMPERVIOUS STRATUM.
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MM MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
MATERIAL STIFF 8 TO 15 1 TO 2	A PIEZOMETER	SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
HARD > 30 > 4	TTT ALLUVIAL SOIL BOUNDARY A INSTALLATION SPT N-VALUE		RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. CTD. CIEVE. CITE. 4 10 10 00 000 070	TOTAL UNIDED CUT TOTAL UNION ACCUSED EVEN VALUE OF THE STATE OF THE ST		SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNCLASSIFIED EXCAVATION - TAN UNCLASSIFIED EXCAVATION -	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	EXCAVATION / UNSUITABLE WASTE ACCEPTABLE, BUT NOT TO BE	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER COBRLE CRAYEL COARSE FINE SULT CLAY		HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	USED IN THE TOP 3 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER COBBLE (RAVEL (CDR)) COARSE (SI DR) FINE (SILT CLAY SAND (SI DR)) SILT (CLAY SAND (SI DR))	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK UNDERCUT OR BACKFILL ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SITCKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER (BLDR,) COBBLE (COB,) GRAVEL (GR,) COARSE SAND SAND SAND (SL.) SILT CLAY (CL.)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBREVIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MCA MICACEOUS WEA WEATHERED	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SITCKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER (BLDR.) COBBLE (COB.) CRAYEL (GR.) COARSE SAND (CSE. SD.) FINE SAND (F. SD.) SILT (SL.) CLAY (CL.) GRAIN MM 305 75 2.0 0.25 0.05 0.005	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK UNDERCUT OR BACKFILL ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SITCKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBREVIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA, - MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE ORG ORGANIC USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL WE MANAMENT OR BACKFILL VST - VANE SHEAR TEST WEA WEATHERED Y - UNIT WEIGHT ORGANIC	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD EXCAPATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAPATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAPATED IN FRAGMENTS	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBREVIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST NP - NON PLASTIC CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL VST - VANE SHEAR TEST MED MEDIUM VST - VANE SHEAR TEST MED ME	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SILEKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 BB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATAM AND EXPRESSED AS A PERCENTAGE.
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA, - MICACEOUS CL- CLAY MOD MODERATELY CPT - CONE PENETRATION TEST ORG ORGANIC DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST SAP- SAPROLITIC S- SAPOLITIC S- SAND, SANDY USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL WEBBANKMENT OR BACKFILL WEBANKMENT OR BACKFILL VST - VANE SHEAR TEST WEA WEATHERED Y - UNIT WEIGHT OF - ONVAMIC PENETRATION TEST OF - SAPROLITIC S - BULK S - SHIT SPOON	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD CAN BE SCRATCHED BY KNIFE OR PICK, COUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL- CLAY MOD MODERATELY CPT - COME PENETRATION TEST OPT - DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST SPAPE - SAPROLITIC DPT - DYNAMIC PENETRATION TEST SPAPE - SAPROLITIC CF - VOID RATIO CF - FINE SL - SILT, SLITY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI - SILT, SLITY ST - SHELBY TUBE	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD EXCAPTED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR COUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT, CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SILEKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK DUALITY DESIGNATION (SRDD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA, - MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST ORG ORGANIC DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC E - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS SL SILT, SILTY FRACT, - FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A CEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL- CLAY MOD MODERATELY CPT - COME PENETRATION TEST OPT - DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST SPAPE - SAPROLITIC DPT - DYNAMIC PENETRATION TEST SPAPE - SAPROLITIC CF - VOID RATIO CF - FINE SL - SILT, SLITY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI - SILT, SLITY ST - SHELBY TUBE	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CAPVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING BEDDING	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. JOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP *57827 AT R-1015A -BY4-
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBREVIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MEDIUM CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OFF - ORGANIC OMT - DILATOMETER TEST OFF - ORGANIC OMT - DILATOMETER TEST OFF - SAPROLITIC C - VOID RATIO C - VOID RATIO C - VOID RATIO C - FINE SL SLIGHTLY FRACK FRACMENTS MUCLASSIFIED EXCAVATION - WEA WEATHERED Y - UNIT WEIGHT Y - ORY UNIT WEIGHT S - DRY UNIT WEIGHT S - BULK S - BULK S - SHULK S - SPLIT SPOON S - SAP. SAPROLITIC FOSS FOSSILIFEROUS SLI - SLIGHTLY RS - ROCK FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRACS FRAGMENTS MUCLASSIFIED EXCAVATION - WEBARKMENT OR BACKFILL VIST VANE SHEAR TEST S - NAMBACKFILL VIST VANE SHEAR TEST S - ORY UNIT WEIGHT S - SAPPLE ABBREVIATIONS S - SPLIT SPOON S - SHILL SUIGHTLY RS - ROCK RT - RECOMPACTED TRIAXIAL FRACS FRAGMENTS MUCLASSIFIED VIST VANE SHEAR TEST S - VANE SHEAR TEST S - VANE SHEAR TEST S - NAMBACKFILL VIST VANE SHEAR TEST S - SAPCH S - WEA WEATHERED Y - UNIT WEIGHT S - SAPPLE ABBREVIATIONS S - SBULK S - SBULK S - SPLIT SPOON S - SHILL SPOON S - SPLIT SPOON FRACE - FRACTURED, FRACTURES TO - TRICONE REFUSAL FRACS FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENTS W - MOISTURE CONTENT C - TRICONE REFUSAL FRACE FRACMENT - TRICONE REFUSAL FRACE TRICONE REFUSAL FRACE TRICONE REFUSAL FR	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD EXCAYATED BY HARD BLOW OF A CEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAYATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAYATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAYATED READILY WITH POINT OF PICK. PICKES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SITCKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF STRATA MAD EXPRESSED AS A PERCENTAGE. STRATA LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27; RR SPIKE IN PP *57827 AT R-1015A -BY4-STA, 16+05, 278' RT (N 435536, E 2615246)
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MCA MCACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OPT - DYNAMIC PENETRATION TEST OPT - DYNAMIC PENETRATION TEST OPT - OYNAMIC PENETRATION TEST OPT - STANDAM OPT - SAPPOLITIC CF SAPOLITIC CF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING BEDDING IERM SPACING IERM THICKNESS	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF FOCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-IOISA -BY4-STA, I6+05, 278' RT (N 435536, E 26I5246) ELEVATION: 14.12 FEET
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - COME PENETRATION TEST OPRIOR OF THE COME PENETRATION TEST OPT - DYNAMIC PENETRATION TEST OPT - DYNAMIC PENETRATION TEST OPT - DYNAMIC PENETRATION TEST SAP. SAPROLITIC C - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS SL SILT, SILTY FOSS FROSSILIFEROUS FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL HI HIGHLY V - VERY BOUIPMENT USED ON SUBJECT PROJECT	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE AS TO 10 FEET THICKLY BEDDED 0.15 - 4 FEET THICKLY BEDDED 0.63 - 0.16 FEET CLOSE 0.16 TO 1 FOOT VERY THICKLY BEDDED 0.063 - 0.16 FEET CLOSE 0.16 TO 1 FOOT VERY THICKLY BEDDED 0.063 - 0.16 FEET THINKLY BEDDED 0.063 - 0.16 FEET CLOSE 0.16 TO 1 FOOT VERY THINKLY BEDDED 0.063 - 0.16 FEET CLOSE 0.06 TO 1 FOOT VERY THINKLY BEDDED 0.065 - 0.16 FEET THINKLY BEDDED	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SITCKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF I FOOT INTO SOIL WITH A 2 INCH DUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF STRATA MAD EXPRESSED AS A PERCENTAGE. STRATA LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27; RR SPIKE IN PP *57827 AT R-1015A -BY4-STA, 16+05, 278' RT (N 435536, E 2615246)
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OPT - DILATOMETER TEST DMT - SAPP. SAPPOLITIC SO SAND, SANDY S S - SPILIT SPOON F - FINE SL SILT, SILTY FRACT FRACTURES TOR - TRICONE REFUSAL FRACS FRAGMENTS MI - MODISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: MANUAL BY CONTINUOUS FLIGHT AUGER AUGURANIC MANUAL BY CONTINUOUS FLIGHT AUGER AUGURANIC MANUAL LOCAL THE TOP 3 FEET OF EMBANKMENT OR BACKFILL USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL SEBAKKMENT OR BACKFILL WEA WEATHERED "CAN UNIT WEIGHT "A DRY UNIT WEIGHT "S - BRUK "S - SPILIT SPOON "S - SP	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE MODERATELY CLOSE 1 TO 3 FEET THICKLY BEDDED 0.15 - 4 FEET THICKLY BEDDED 1.5. 5 FEET	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF FOCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-IOISA -BY4-STA, I6+05, 278' RT (N 435536, E 26I5246) ELEVATION: 14.12 FEET
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OFF DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST SPT - SAPPOLITIC C - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS FARC FRACTURED, FRACTURES TCR - TRICOME REFUSAL FRACS FRAGMENTS W - MOISTURE CONTENT CBT - CONTENDACT BUILD TO THE TOP 3 FEET OF EMBANKMENT OR BACKFILL WEA WEATHERED Y - UNIT WEIGHT Y - DRY - UNIT WEIGHT OF - DYNAMIC PENETRATION TEST SAPL SAPROLITIC S - BAUKL OF - SAPPLIT SPOON S - SUL - SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLL - SILT, SILTY FRACS FRAGMENTS W - MOISTURE CONTENT CBT - CALIFORNIA BEARING HI HIGHLY V - VERY BOUIPMENT USED ON SUBJECT CME-45C CME-55 USCA - WEATHERED Y - UNIT WEIGHT OF - DRY - WEA WEATHERED Y - UNIT WEIGHT OF - DRY - WEA WEATHERED Y - UNIT WEIGHT OF - DRY - WEA WEATHERED Y - UNIT WEIGHT OF - DRY - WEA WEATHERED Y - UNIT WEIGHT OF - DRY - WEA WEATHERED Y - UNIT WEIGHT OF - DRY - WEA WEATHERED Y - UNIT WEIGHT OF - DRY - WEA WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - WOIL RATIONS WEA WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - DRY - WEATHERED Y - UNIT WEIGHT OF - UNIT WEIG	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 0.15 - 4 FEET MODERATELY CLOSE 1.10 3 FEET THICKLY BEDDED 0.06 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THICKLY BEDDED 0.083 - 0.16 FEET THICKLY LAMINATED 0.000 - 0.03 - 0.16 FEET	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF FOCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-IOISA -BY4-STA, I6+05, 278' RT (N 435536, E 26I5246) ELEVATION: 14.12 FEET
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OPT - DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST SPT - SAPROLITIC C - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS FAGA FRACTURED, FRACTURES TCR - TRICOME REFUSAL FRACS FRAGMENTS HI HIGHLY COME-45C CME-55 WEA WEATHERED Y- UNIT WEIGHT WEA WEATHERED Y- UNIT WEIGHT Y- OR PANIOL WEA WEATHERED Y- UNIT WEIGHT SEA SAPROLITIC SAPPLE ABBREVIATIONS S - SPLIT SPOON ST SHELBY TUBE SIL - SILT, SILTY ST - SHELBY TUBE RS - ROCK RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING HI HIGHLY CME-45C CME-55 WHOLLOW AUGERS USEN CORE SIZE: - B - HAMMER TYPE: CAPPLE ABACK - HAMMER TYPE: - AUTOMATIC MANUAL - CORE SIZE: - B - HAMMER TYPE: - CAPPLE ABACK - HAMMER TYPE: - CALESTON - MANUAL - CORE SIZE: - B - HOLLOW AUGERS - CORE SIZE: - B - HAMMER TYPE: - CALESTON - MANUAL - CORE SIZE: - B - HAMMER TYPE: - CORE SIZE: - CORE S	CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING VERY WIDE MORE THAN 10 FEET WIDE MODERATELY CLOSE 1 TO 3 FEET THICKLY BEDDED 1.5 - 4 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET THICKLY BEDDED 0.03 - 0.03 FEET THICKLY BEDDED 0.03 - 0.03 FEET THICKLY LAMINATED 0.000 FEET THICKLY L	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF FOCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-1015A -BY4-STA, 16+05, 278' RT (N 435536, E 2615246) ELEVATION: 14.12 FEET
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA, - MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST ORG ORGANIC DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST SD SAND, SANDY FOSS FOSSILIFEROUS SL SILT, SILTY FOSS FOSSILIFEROUS FRAC FRACTURED, FRACTURES TICR - TRICONE REFUSAL FRACS FRAGMENTS HI HIGHLY CME-55 WEA WEATHERED Y - UNIT WEIGHT WEA WEATHERED Y - UNIT WEIGHT WEA WEATHERED Y - UNIT WEIGHT ST - SAMPLE ABBREVIATIONS S - SHIT SPOON SS - SPLIT SPOON SS - SPLIT SPOON SS - SPLIT SPOON SS - SPLIT SPOON SL SILT, SILTY FOSS FOSSILIFEROUS SL SILT, SILTY FRACS FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRACS FRAGMENTS W - MOISTURE CONTENT HI HIGHLY CME-55 B* HOLLOW AUGERS W CME-550 HARD FACED FINGER BITS TUNG,-CARBIDE INSERTS	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROOVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET THICKLY BEDDED 1.5 - 4 FEET THICKLY BEDDED 0.16 - 1.5 FEET THICKLY BEDDED 0.03 - 0.16 FEET THICKLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.000 8.03 - 0.03 FEET THICKLY LAMINATED 0.000 8.000 FEET THICKLY LAMINATED 0.000 8.000 FEET THICKLY LAMINATED 0.0000 FEET THICKLY LAMINATED 0.00000 FEET THICKLY	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF FOCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-1015A -BY4-STA, 16+05, 278' RT (N 435536, E 2615246) ELEVATION: 14.12 FEET
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST ORG ORGANIC DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC E - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS SLI - SILT, SILTY ST - SHELBY TUBE FRACS FRACTURED, FRACTURES TCR - TRICONE REFUSAL FRAGS FRAGMENTS W - MOISTURE CONTENT DRILL UNITS: DRILL UNITS: DRILL UNITS: ADVANCING TOOLS: W - MOISTURE CME-550 HAND TOOLS: W - ADVANCER W - ADVANCER W - MOISTURE HAND TOOLS: W - MOISTURE HAND TOOLS: W - MAND TOOLS: HAND TOOLS:	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY HARD CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MODE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING VERY WIDE MODERATE BLOWS OF A GEOLOGIST'S PICK. SOFT OR MODE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING VERY WIDE MODERATE BLOWS OF A GEOLOGIST'S PICK. WIDE A 10 10 FEET THICKNESS VERY WIDE MODERATE BLOWS OF A GEOLOGIST'S PICK. FREY CLOSE LESS THAN 0.16 FEET THICKLY BEDDED 1.5 - 4 FEET THINLY BEDDED 0.63 - 0.63 FEET THINLY LAMINATED COMOB - 0.03 - 0.16 FEET THINLY LAMINATED N.008 - 0.03 FEET THINLY LAMINATED RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF FOCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-1015A -BY4-STA, 16+05, 278' RT (N 435536, E 2615246) ELEVATION: 14.12 FEET
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OPRIOR OF THE TEST OPT - DYNAMIC PENETRATION TEST OPT - DYNAMIC PENETRATION TEST OPT - DYNAMIC PENETRATION TEST OPT - STANDAM OF THE TEST OPT - TONSAMIC PENETRATION TEST OPT - STANDAM OF THE TEST OPT - TONSAMIC PENETRATION TEST OPT - STANDAM OF THE TEST OPT - STANDAM OF THE TEST OPT - TONSAMIC PENETRATION TEST OPT - STANDAM OF THE TEST OPT - TONSAMIC PENETRATION TEST OPT - TONSAMIC OPT - STANDAM OF THE TOP 3 FEET OF EMBANKMENT OR BACKFILL SAMPLE ABBREVIATIONS S - BULK S - BULK S - BULK S - BULK S - SPLIT SPOON SS	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROOVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET THICKLY BEDDED 1.5 - 4 FEET THICKLY BEDDED 0.16 - 1.5 FEET THICKLY BEDDED 0.03 - 0.16 FEET THICKLY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.000 8.03 - 0.03 FEET THICKLY LAMINATED 0.000 8.000 FEET THICKLY LAMINATED 0.000 8.000 FEET THICKLY LAMINATED 0.0000 FEET THICKLY LAMINATED 0.00000 FEET THICKLY	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF FOCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-IOISA -BY4-STA, I6+05, 278' RT (N 435536, E 26I5246) ELEVATION: 14.12 FEET
DPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBREVIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OPRIOR - NON PLASTIC CSE COARSE OPT - DYNAMIC PENETRATION TEST OPT - DYNAMIC PENETRATION TEST SAPL - SAPROLITIC C - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL HI HIGHLY EQUIPMENT USED ON SUBJECT DRILL UNITS: ADVANCING TOOLS: CME-45C CME-550 MARD FACED FINGER BITS VANE SHEAR TEST WAY ADVANCER PORTABLE HOIST WAY ADVANCER HAND TOOLS: POST HOLE DIGGER HAND AUGER	CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROOVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED BEADILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE WORD THAN 10 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 4 FEET WODERATELY CLOSE 1 TO 3 FEET THICKLY BEDDED 0.03 - 0.03 - 0.03 FEET THICKLY LAMINATED 0.008 - 0.03 - 0.03 FEET THICKLY LAMINATED 0.008 - 0.03 FEET T	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REDUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-1015A -BY4- STA, 16+05, 278' RT (N 435536, E 2615246) ELEVATION: 14.12 FEET
OPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBRE VIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST ORG ORGANIC DMT - DILATOMETER TEST DPT - DYNAMIC PENETRATION TEST SAP. SAPROLITIC C - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIANIAL BT - BORING TERMINATED MICA MICACCOUS WEA WEATHERED Y- UNIT WEIGHT SAMPLE ABBREVIATIONS S - SPLIT SPOON SS - SPLIT SPOON SS - SPLIT SPOON ST - SHELBY TUBE RS - ROCK FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL CBR - CALIFORNIA BEARING HI HIGHLY V - VERY RATIO DRILL UNITS: DR	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT, HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT, SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE, CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET THICKLY BEDDED 1.5 - 4 FEET THICKLY BEDDED 1.5 - 4 FEET THICKLY BEDDED 0.16 - 1.5 FEET THINCY BEDDED 0.03 - 0.16 FEET THICKLY LAMINATED 0.008 FEET THICKLY LAMINATED 0.008 FEET THINCY LAMINATED 0.008 FEET THINCY LAMINATED 0.008 FEET THINCY LAMINATED 0.008 FEET THINCY LEGONED CONTROL OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS: GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF FOCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-IOISA -BY4-STA, I6+05, 278' RT (N 435536, E 26I5246) ELEVATION: 14.12 FEET
DPENING (MM)	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - ACCEPTABLE DEGRADABLE ROCK ABBREVIATIONS AR - AUGER REFUSAL BT - BORING TERMINATED MICA MICACEOUS CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST OPRIOR - NON PLASTIC CSE COARSE OPT - DYNAMIC PENETRATION TEST OPT - DYNAMIC PENETRATION TEST SAPL - SAPROLITIC C - VOID RATIO F - FINE SL SILT, SILTY FOSS FOSSILIFEROUS FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL HI HIGHLY EQUIPMENT USED ON SUBJECT DRILL UNITS: ADVANCING TOOLS: CME-45C CME-550 MARD FACED FINGER BITS VANE SHEAR TEST WAY ADVANCER PORTABLE HOIST WAY ADVANCER HAND TOOLS: POST HOLE DIGGER HAND AUGER	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK, CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL. FRACTURE SPACING TERM SPACING VERY WIDE MORE THAN 10 FEET THICKLY BEDDED 4 FEET THICKLY BEDDED 1.5 - 4 FEET THINLY BEDDED 1.5 - 4 FEET THINLY BEDDED 0.03 - 0.16 FEET THINLY LAMINATED 0.000 8.03 - 0.16 FEET THINLY LAMINATED	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REDUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TIS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: BM-27: RR SPIKE IN PP #57827 AT R-1015A -BY4- STA, 16+05, 278' RT (N 435536, E 2615246) ELEVATION: 14.12 FEET

WBS 34360.1.1	TIP R-1015 COUNTY CRAVE	EN GEOLOGIST Contract Ge	eologist	WBS 34360.1.1	TIP R	R-1015 COUNTY CR	AVEN	GEOLOGIST Contract Geol	
SITE DESCRIPTION CULVERT C	C90 ON -RP2AC- (US 70) OVER TUCKER CRE	EEK	GROUND WTR (ft)	SITE DESCRIPTION C	CULVERT C90 ON -R	RP2AC- (US 70) OVER TUCKER	CREEK		GROUND WTR (fi
BORING NO. B1	STATION 43+84 OFFSET	88 ft RT ALIGNMENT -RP2AC-	0 HR. N/A	BORING NO. B2	STATIO	ION 45+73 OFF	SET 64 ft LT	ALIGNMENT -RP2AC-	0 HR. N//
COLLAR ELEV. 17.1 ft	TOTAL DEPTH 44.1 ft NORTHIN	NG 435,582 EASTING 2,614,951	24 HR. 8.0	COLLAR ELEV. 12.0	ft TOTAL	L DEPTH 44.3 ft NOR	THING 435,727	EASTING 2,614,757	24 HR. 4.0
DRILL RIG/HAMMER EFF./DATE GFOO	0057 CME-550X 82% 05/19/2014	DRILL METHOD Mud Rotary	HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./	DATE GFO0057 CME-5	550X 82% 05/19/2014	DRILL METHOD	Mud Rotary HAI	MMER TYPE Automatic
DRILLER N/A	START DATE 06/19/14 COMP. D	DATE 06/19/14 SURFACE WATER DEPTI	1 N/A	DRILLER N/A	START	T DATE 06/19/14 CON	P. DATE 06/20/14	SURFACE WATER DEPTH	N/A
ELEV CHI		SAMP. L O SOIL AND ROCK	(DESCRIPTION DEPTH (ft)	I I FI FV I · · · ·	BLOW COUNT 0.5ft 0.5ft 0	BLOWS PER FOOT 25 50 75	100 NO. MOI G		ESCRIPTION
20			DUDEAOS.	15					
_	- : : ! : : : : : : : : : : : : : : :	17.1 GROUND: - 15.6 PAVEI		12.0 0.0	1 2 3	15		☐ 12.0 GROUND SU ROADWAY EMB	ANKMENT
15		ROADWAY EN	MOIST TO SAT	10				TAN GRAY SAND, M	IOIST TO SAT.
12.9 4.2 3 6			, WOIST TO SAT.	8.0 1 4.0	$\frac{1}{1}$			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
10 05 70	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- LISH		5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	• 1 1 1		ALLUVIA 5.0 — BROWN BLACK N	
1 9.5 T 7.6 1 1 1	3 6			12 T 78 I	OH 2 7	L		UNDIVIDED COAS	STAL PLAIN ,
7.0 10.1		SS-2 6.0	11.1	1.7 + 10.3	$\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$	/	- ·	GRAY SAND WITH WO	OD FRAGMENTS,
5 4.5 + 12.6	• • • • • • • • • • • • • • • • • • • •	SS-3 ALLU	VIAL		4 2 1 4	3		-	
2.0 15.1 WOH 2	2 4	SS-4 BROWN BLAC	K WOOK, SAT.					-	
0 2.0 15.1 WOH WOH	1	SS-5 0.2 0.2	16.9	-3.3 + 15.3	3 3 3			∷ -	
-0.5 T 1/.6 I I	8	UNDIVIDED CO	ASTAL PLAIN	-3 +				:-	
-3.0 20.1	: * • • • • • • • • • • • • • • • • • •	[SA		-8.3 + 20.3	<u> </u>			-7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0 -7.0	1:
-5 -5.5 - 22.6	3 6	- SS-7		-10	2 3 1	4		-10.3	22
	4			-10.8 7 22.8	3 2 3		SS-11	COASTAL F	PLAIN
	/	- -8.9	26.0	-13.3 - 25.3	2 3 3			FORMATI	
-10 -10.5 27.6		0000		-15 -15 8 + 27 8	- · · •	1 6			
-13.0 T 30.1	MOH 6	- 55-8 -12.5	29.6	1 1	2 3 4	<u> </u>	SS-12		
3 4	4	SS-9 GRAY GREEN SAI	L PLAIN					* -	
-15 -15.5 32.6 2 3	4	─ I FORMA	ATION)	-20 -20.8 32.8	2 3 4	<u> </u>		∷_ ∴_	
	· • • • · · · · · · · · · · · · · · ·	:			2 3 4	• 7 · · · · · · · · · · · ·			
-20 -20.5 37.6		-		-25		<u> </u>			
-20.5 + 37.6 2 3	4			-25.8 7 37.8	3 4 5				
‡	. \	-		‡					
-25 + 42.6				-30 + 42.8				# <u></u>	
- 5 6	8 14	-27.0	44.1	-30.0 + -2.0				- 32.3	44
		Boring Terminated at MEDIUM DE						 Boring Terminated at El MEDIUM DENS 	
		Other Samples:						- Other Samples:	
		ST-1 (25.1 - 27.1)						ST-2 (12.8 - 14.8) ST-3 (17.8 - 19.8)	
								51-5 (17.0 - 19.0)	
1 1 7 1 1				1 1				-	
								F	
								-	
]								‡	
'l									
±				±				<u> </u>	
				-				t	
				‡				F	
				‡				F	
<u> </u>		‡		‡				ţ	
<u> </u>				‡				L	
				±				t	
[-		 				-	

34360.1.1 R-1015 CULVERT NO. 90 ON US 70 OVER TUCKER CREEK AT -RP2AC- STA. 44+89

	$B1\ SOIL\ TEST\ RESULTS$														
SAMPLE NO.	OFFSET	STATION	$DEPTH \ INTERVAL$	AASHTO CLASS.	L.L.	P.I.	C.SAND	$\frac{\%}{F.SAND}$	WEIGHT SILT	CLAY	% PAS 10	SING (SI)	IEVES) 200	% MOISTURE	% ORGANIC
SS- 1	88 RT	43+84	4. 2- 5. 7	A- 3(0)	15	NP	18. 3	74.6	0.2	6.8	97	89	8	-	-
SS-2	88 RT	43+84	10. 1- 11. 1	A- 3(0)	14	NP	7.0	88. 1	2.0	2.8	99	98	6	-	-
SS- 3	88 RT	43+84	11. 1- 11.6	A-2-4(0)	22	1	11.1	62.2	15. 9	10.9	100	97	29	-	-
SS- 4	88 RT	43+84	12.6-14.1	A-6(4)	37	18	10. 1	49. 1	23. 9	16.9	100	93	43	-	-
SS- 5	88 RT	43+84	15. 1- 16.6	A-2-4(0)	27	NP	5.8	75.3	10. 1	8.9	100	96	23	-	-
SS- 6	88 RT	43+84	17.6-19.1	A- 3(0)	19	NP	20.5	76.7	2. 0	0.8	100	96	4	-	-
SS-7	88 RT	43+84	20. 1-21.6	A-2-4(0)	28	NP	27.8	55. 1	10.3	6.8	100	95	21	-	-
SS-8	88 RT	43+84	27.6-29.1	A- 3(0)	15	NP	27.0	68.2	2.0	2.8	99	92	6	-	-
SS- 9	88 RT	43+84	30. 1- 31.6	A-2-4(0)	28	NP	17.3	61.0	12. 9	8.9	100	95	27	-	-
SS- 10	88 RT	43+84	42.6-44.1	A-2-4(0)	29	NP	16. 1	66.2	10.9	6.8	97	87	27	-	-

	B2 SOIL TEST RESULTS														
SAMPLE	OFFSET	STATION	DEPTH	AASHTO	T T	DI		% BY V	WEIGHT		% PAS	SING (SI	IEVES)	%	%
NO.	OFFSEI	STATION	INTERVAL	CLASS.	L.L.	Γ.1.	C.SAND	F.SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC
SS- 11	64 LT	45+73	22. 8- 24. 3	A-2-4(0)	26	NP	<i>36. 2</i>	44. 3	10.7	8.9	87	74	20	_	-
SS- 12	64 LT	45+73	27.8-29.3	A-2-4(0)	24	NP	<i>15.</i> 5	73.6	<i>3.</i> 2	7.6	100	95	14	-	-

CONTENTS SHEET NO. K REFERENCE 34360

5-6

DESCRIPTION TITLE SHEET

LEGEND SITE PLAN

PROFILE

BORE LOGS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY <u>CRAVEN</u>

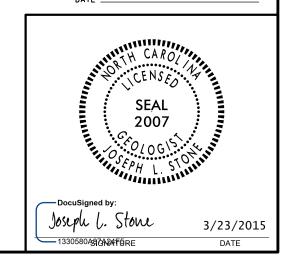
PROJECT DESCRIPTION US 70 (HAVELOCK BYPASS) FROM NORTH OF PINE GROVE TO NORTH OF CARTERET COUNTY LINE

SITE DESCRIPTION CULVERT ON US 70 OVER UT TO TUCKER CREEK AT -L- STA. 509 + 41

STATE PROJECT REFERENCE NO. R-1015 6

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (199) 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

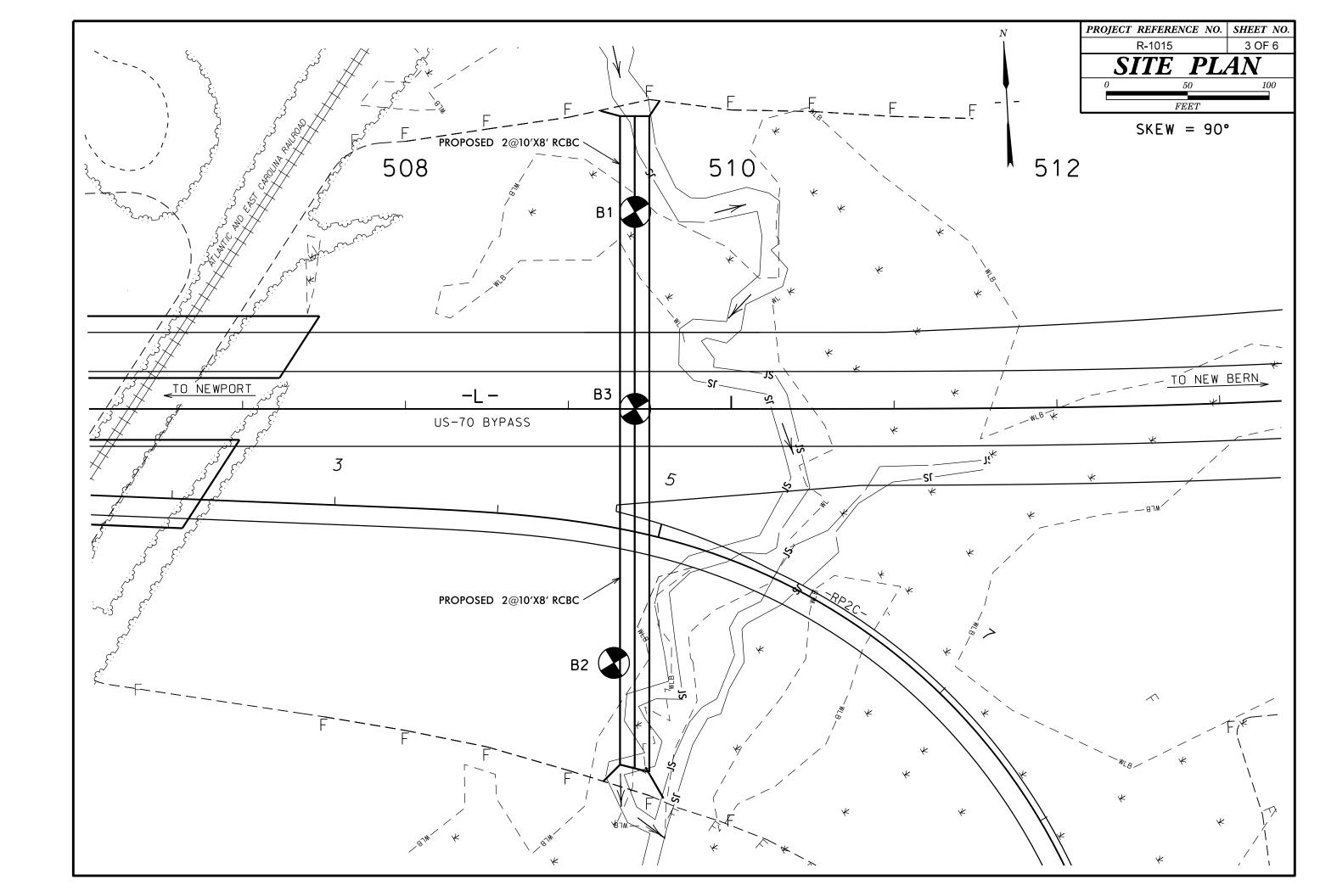

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE DBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

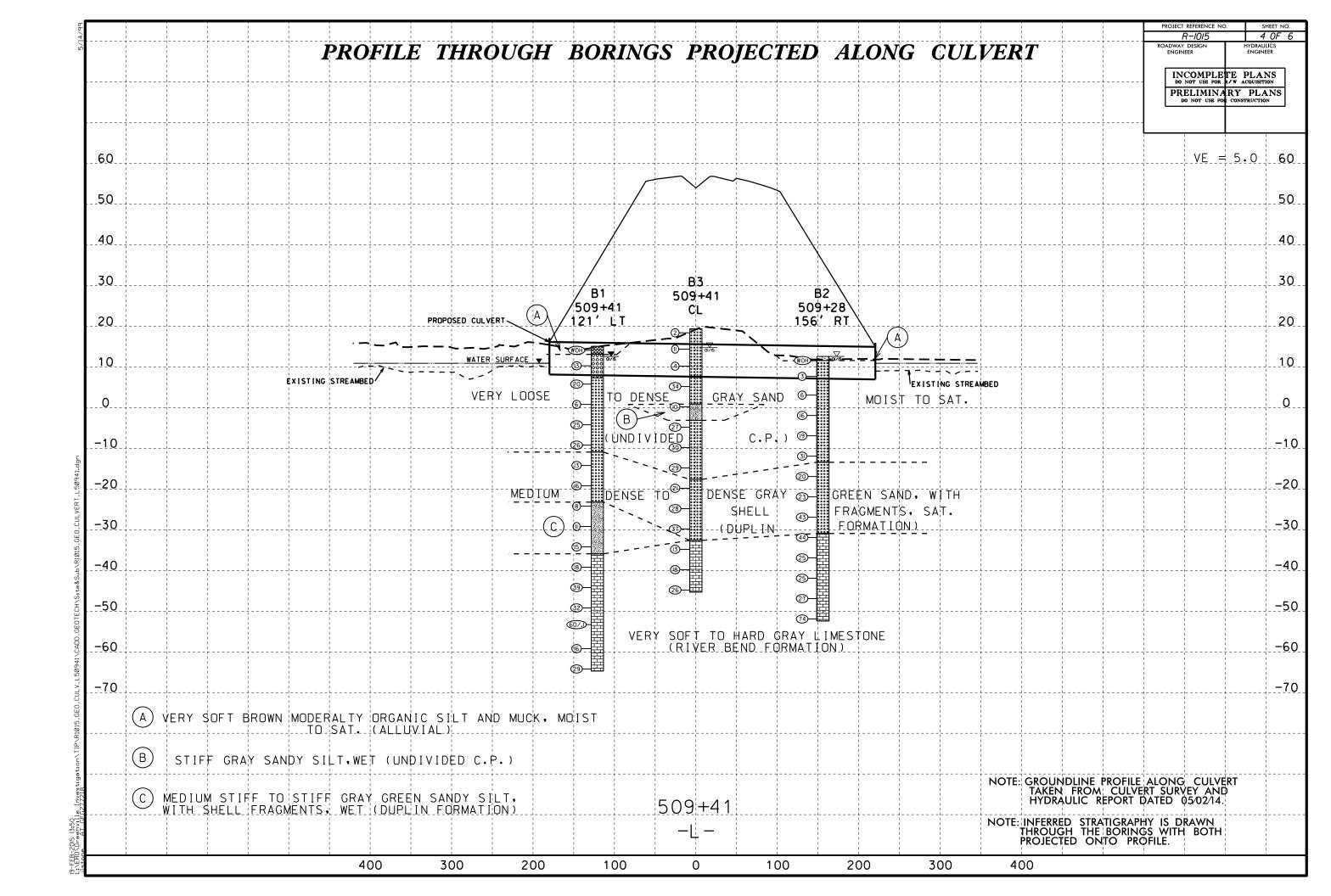
THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DIES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONDE TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OF FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- TES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT
 OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS
 OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
 FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE
 CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

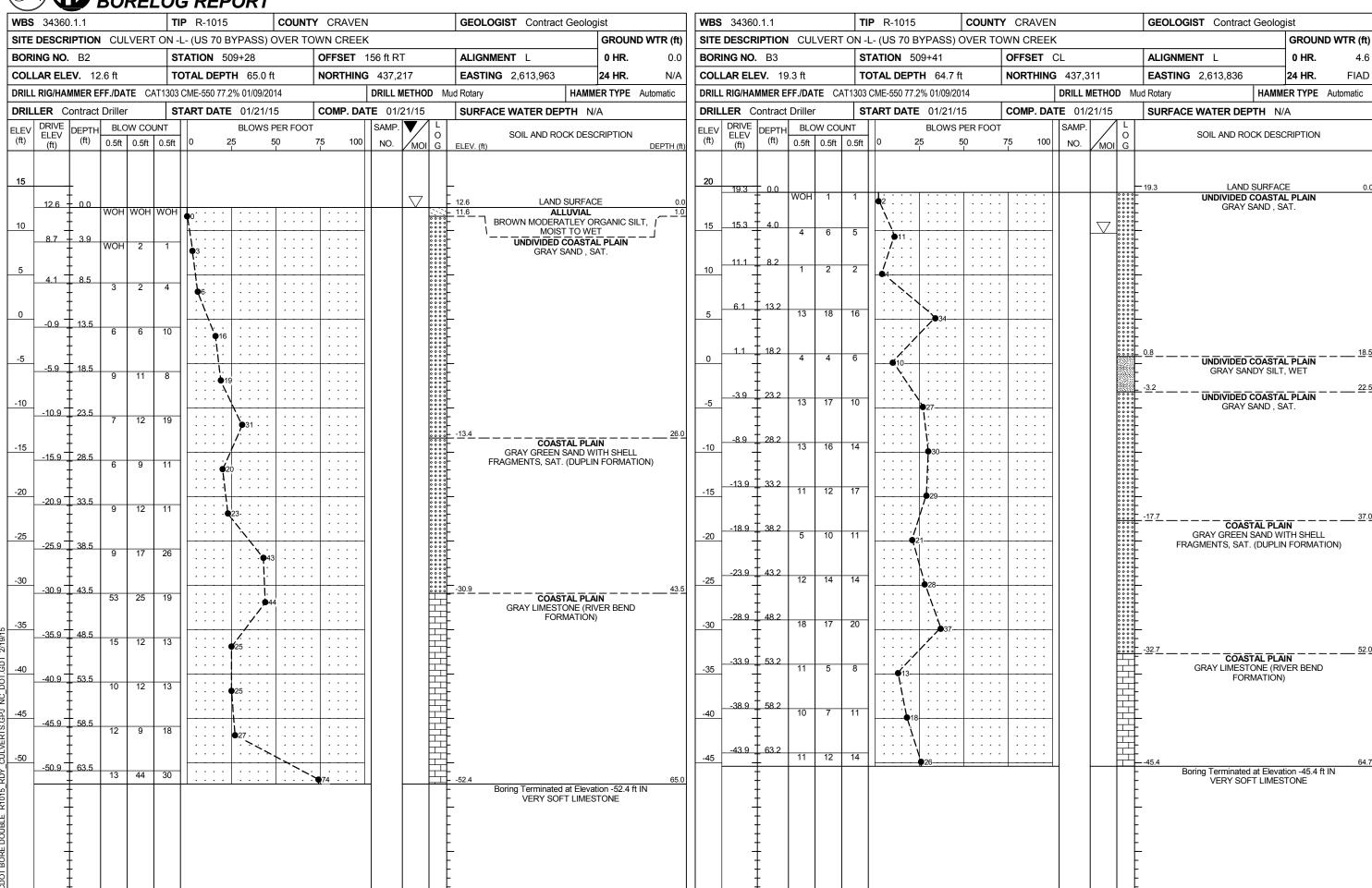
CATLIN PERSONNEL
-
NVESTIGATED BY J.L. STONE
DRAWN BY
CHECKED BY D.N. ARGENBRIGHT
SUBMITTED BYD.N. ARGENBRIGHT
NATE FEBRUARY 2015

PERSONNEL


PROJECT REPERENCE NO. SHEET NO. 2 OF 6


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION


SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS				
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED, AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.				
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586), SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.				
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.				
AS MINERALUGICAL COMPUSITION, ANGOLARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.				
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT				
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE.	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.				
CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	THE TO CONFESS COALS AT TAMODRIUS AND NON COASTAL BLAIN	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.				
CLASS. A-1-6 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE ROCK (NCR) ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.				
SYMBOL 000000000000000000000000000000000000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED				
Z PASSING GRANULAR SILT- MUCK, ■10 50 MX	HIGHLY COMPRESSIBLE LL > 50 PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.				
*40 30 MX 50 MX 51 MN SOILS CLAY PEAT	GRANIII AR SILT - CLAY	WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.				
*200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 36 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE				
PASSING *40 SOUS WITH	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	HORIZONTAL. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE				
LL 40 MX 41 MN LITTLE OR LITTLE OR 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN 11 MN MODERATE HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.				
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOULS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.				
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER OF MAJOR GRAVEL, AND CANE CRAYER AND CANE C	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI,) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.				
MATERIALS SAND SAND GRAVEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM				
GEN. RATING AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE		(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.				
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 :PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING OR SEEP	WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM, FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE				
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.				
PRIMARY SOIL TYPE COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH	TOADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES 'CLUNK' SOUND WHEN STRUCK, IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.				
CONSISTENCY CONSISTENCY (N-VALUE) COMPRESSIVE STRENGTH (TONS/FT ²)	WITH SOIL DESCRIPTION OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.				
GENERALLY VERY LOOSE	SOIL SYMBOL SOIL SYMBOL SPT DPT DMT TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.				
MATERIAL MEDIUM DENSE 10 TO 30 N/A	ARTIFICIAL FILL (AF) OTHER AND AND CONE PENETROMETER	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.				
(NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50	THAN ROADWAY EMBANKMENT TEST	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE				
VERY SOFT < 2 < 0.25	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD	(V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	OF AN INTERVENING IMPERVIOUS STRATUM.				
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF				
MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4	A ALLINIA CON BOUNDARY A PIEZOMETER	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE				
HARD > 30 → 4	INSTHEFTION	ROCK HARDNESS	RUN AND EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT				
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	ROCK.				
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO				
COARSE FINE	SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.				
BOULDER	ABBREVIATIONS	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.				
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF				
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL				
SOIL MOISTURE - CORRELATION OF TERMS	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\dot{\gamma}_{ m d}$ - DRY UNIT WEIGHT	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.				
SOIL MOISTURE SCALE FIELD MOISTURE (ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.				
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY				
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.				
PLASTIC SEMISOLID. PEOULDES DRYING TO	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.				
RANGE - WET - (W) SEMISOLIS REGULES BY ING TO ATTAIN OPTIMUM MOISTURE PLASTIC LIMIT	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING	BENCH MARK: BM-26: RR SPIKE IN 8" OAK AT -BL- STA. 430+61, 326' LT				
	EQUIPMENT USED ON SUBJECT PROJECT	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	N 438405, E 2614036 ELEVATION: 26.38 FEET				
OM _ OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET					
SL _ SHRINKAGE LIMIT	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	NOTES:				
- DRY - (D) ATTAIN OPTIMUM MOISTURE	CME-55 G* CONTINUOUS FLIGHT AUGER CORE SIZE:	THINLY LAMINATED < 0.008 FEET					
PLASTICITY	8' HOLLOW AUGERS	INDURATION					
PLASTICITY INDEX (PI) DRY STRENGTH	X CME-550 HARD FACED FINGER BITS	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINGER FREES NUMEROUS GRAINS;					
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST UNGCARBIDE INSERTS	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.					
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	X CASING W/ ADVANCER POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE;					
COLOR	PORTABLE HOIST X TRICONE 2 15/6" STEEL TEETH HAND AUGER	BREAKS EASILY WHEN HIT WITH HAMMER.					
	TRICONE 'TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.					
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	CORE BIT VANE SHEAR TEST	SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;					
		SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1				

WBS 34360.1.1 TIP R-1015 COUNTY CRAVEN			CRAVEN GEOLOGIST Contract Geologist								50.1.1			TI	IP R-1015	COUNT	Y CRAVE	N		GEC	GEOLOGIST Contract Geologist										
SITE	SITE DESCRIPTION CULVERT ON -L- (US 70 BYPASS) OVER TOWN CREEK						SITE DESCRIPTION CULVERT C				T ON -	L- (US 70 BYPASS	OWN CREE	K		•			GROUND WTR (ft)												
BOR	ORING NO. B1 STATION 509+41			OFFSET 121 ft LT				AL	ALIGNMENT L		2.5	BORING NO. B1				S	STATION 509+41			121 ft L	Т	ALIC	ALIGNMENT L		0 HR. 2.5						
COLI	DRILL RIG/HAMMER EFF./DATE CAT1303 CME-550 77.2% 01/09/2014 DRILLER Contract Driller START DATE 01/20/15 C		NORTI	NORTHING 437,375			EA	STING 2,613,733	24 HR.	2.5	COLLAR ELEV. 15.1 ft					OTAL DEPTH 79.	NORTHING	G 437,3	375	EAS	EASTING 2,613,733		24 HR. 2.								
DRILL			DRILL METHOD Mud			ETHOD	Mud Rot	ary HAMN	MER TYPE	Automatic	DRILL RIG/H	EFF./DA	F./DATE CAT13		CME-550 77.2% 01/09		DRILL I	DRILL METHOD Mu		ry	HAMMER TYPE Automa		atic								
			СОМР	COMP. DATE 01/20/15			SU	RFACE WATER DEPTH N	I/A	A		DRILLER Contract Driller		START DATE 01/20/15		0/15	COMP. DA	ATE 01/20/15		SUR	SURFACE WATER DEPTH		N/A								
ELEV (ft)	DRIVE DE	EPTH (ft) 0.		COUN	_	0 0		PER FOO						SOIL AND ROCK DES	SCRIPTION	CRIPTION		DEPTH BLOW CO			BLOWS PER FOO			SAMP.		0	SOIL AND RO	OCK DESCRIPTION			
(11)	(ft)	(11) 0.	.5ft 0).5ft 0	.5ft	0 2	25 	50	75 	100	NO.	MOI G	S ELEV	/. (ft)		DEPTH (ft)	(ft) (ft)	(11)	0.5ft	0.5ft	0.5ft	0 25	50	75 100	NO.	MOI	G				
																						.,	-4-1-1 :								
20													-				-60	+	- 	+	-	Mi	atch Line	.	++	├ -┼ı		COAS	TAL PLAIN		-
	‡												<u> </u>				-63.2	78.3	<u> </u>		<u> </u>] :::::\\:::						GRAY LIMEST FORMATION	ONE (RIVEF ON) <i>(continu</i>	R BEND ed)	
15	15.1	0.0		/OH W									15.1	LAND SURFA		0.0		‡	12	12	17	29 .			Ц		-64.7	Boring Terminated	l at Elevation	-64 7 ft IN	79
	‡	"	OIIIVV	, OI I W		0		.				V ***	13.1	BROWN MUCK, MOIS	ST TO SAT.			‡									Ė	VERY SOF	T LIMESTO	NE	
10	11.3	3.8	4	7	6			.				00 00 00	<u> </u>	UNDIVIDED COASTA GRAY SAND , S	AL PLAIN SAT.			‡									Ė				
10	‡					\\13_		.				000000000000000000000000000000000000000						‡									-				
	6.8	8.3	3	10	10	: : :/:		.				00	7.3			7.8		‡									F				
5	‡	`	Ĭ		"	•2	10	<u> </u>				000						Ŧ									F				
	1.8	13 3				1.7.1		.				000						Ŧ									F				
0			2	3	3	4 6 · ·						000						Ξ									E				
	Ŧ											0 0 0						Ŧ									E				
	-3.2	18.3	9	13	12	· · · ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `		. .		11		000						1									E				
-5	+					· · · · ·		 				000	-					+									-				
	-8.2 + 2	23.3					: : :	. .				000						‡									E				
-10		4	4	11 '	15		26 · ·					000				00.0		1									Ł				
	‡					: : : <i>:/</i> : : : <i>/</i> :		. .		11		000	-10.9	COASTAL PLA				‡									-				
45	-13.2 + 2	28.3	5	6	7	· · · •/ ·		. .				000		GRAY GREEN SAND W FRAGMENTS, SAT. (DUPLI				‡									_				
-15	‡							 				000	:- -					‡									-				
	-18.2 - ;	33.3	_	_		.		.				000	\$ -					‡									Ė				
-20	‡	;	5	'	9	♦16		· · · · ·				000						‡									L				
	‡					::/:::		.		: :		000				20.2		‡									-				
-25	-23.2 ;	38.3	2	4	4	. /		.		: :			-23.2	COASTAL PLA		<u>38.3</u>		‡									Ė				
	Ŧ									-			F	GRAY GREEN SANDY SIL FRAGMENTS, (DUPLIN I				Ŧ									F				
	-28.2 +	43.3	4	3	8	: : :							F					Ŧ									F				
-30	Ŧ					· • 11 ·							F					Ŧ									F				
	-33.2 I	48.3											E					Ŧ									E				
-35	Ī		4	6	9	• • ●15							E					Ī									E				
	±							. .					-35.9	COASTAL PLA		51.0		1									E				
	-38.2 + 5	53.3	6	6	12	· · · \ ·		. .					4	GRAY LIMESTONE (RI FORMATION				<u> </u>									E				
-40	+							+					1					†									-				
	-43.2	58.3					.\.	.		: :			<u> </u>					‡									-				
-45		1	16	19 2	20		39						<u></u>					‡									Ł				
	‡						/ . . / .	· · · · ·					<u> </u>					‡									ļ.				
50	-48.2 + 6	63.3	14	16	16		· /· ·	· · · · ·		: :			‡					‡									Ė				
-50	‡							+					‡					‡									F				
	-53.2 + 6	68.3	/0.4					.					‡					‡									<u> </u>				
-55	‡	60/	/0.1				• • •	· · · ·	<u> </u>	0/0.1		片	‡					‡									Ļ				
	<u> </u>	70.0								: :		Ħ	‡					‡									ļ.				
00	-58.2	73.3	8	8	8		<u> </u>	: : : :		: :		H	亡					İ									t				

