REFERENCE

5832 4

SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

CONTENTS

<u>LINE</u>	<u>STATION</u>	<u>PLAN</u>	PROFILE
-L-	13+00 - 40+95.08	4,5	7,8
-Y2-	II+00 - I3+49 . 48	4	8
-Y5-	10+55 - 13+50.00	5	9
-Y6-	10+55 - 12+00.00	5	9
-Y7-	II+00 - I3+32 . 84	6	9
-Y8-	14+00 - 16+03.63	6	10
-RI-	10+00 - 12+61.13	5	II
-WLI-	35+25 - 36+50	12	12
-WL2-	38+25 - 40+50	12	12
-WL3-	10+72.75 - 12+80	12	12

APPENDICES

<u>APPEND</u>	<u>IX</u>	<u>TITL</u>	\underline{E}		SHEETS
Α	PAVEMENT	INVESTIC	MOITA	RESULTS	13-20
В	LABO	DRATORY	RESUL	_TS	21-23

ROADWAY SUBSURFACE INVESTIGATION

COUNTY MACON

PROJECT DESCRIPTION US 441 BUSINESS INTERSECTION IMPROVEMENTS AT WOMACK STREET, MAPLE STREET, PORTER STREET, AND DEPOT STREET **INVENTORY**

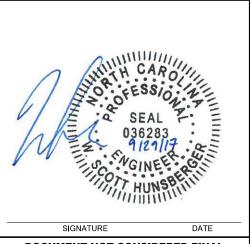
STATE PROJECT REFERENCE NO. U-5604

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1991) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS INCLORDED TO CLIMATIC CONDITIONS INCLOUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS, AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.


- NOTES:

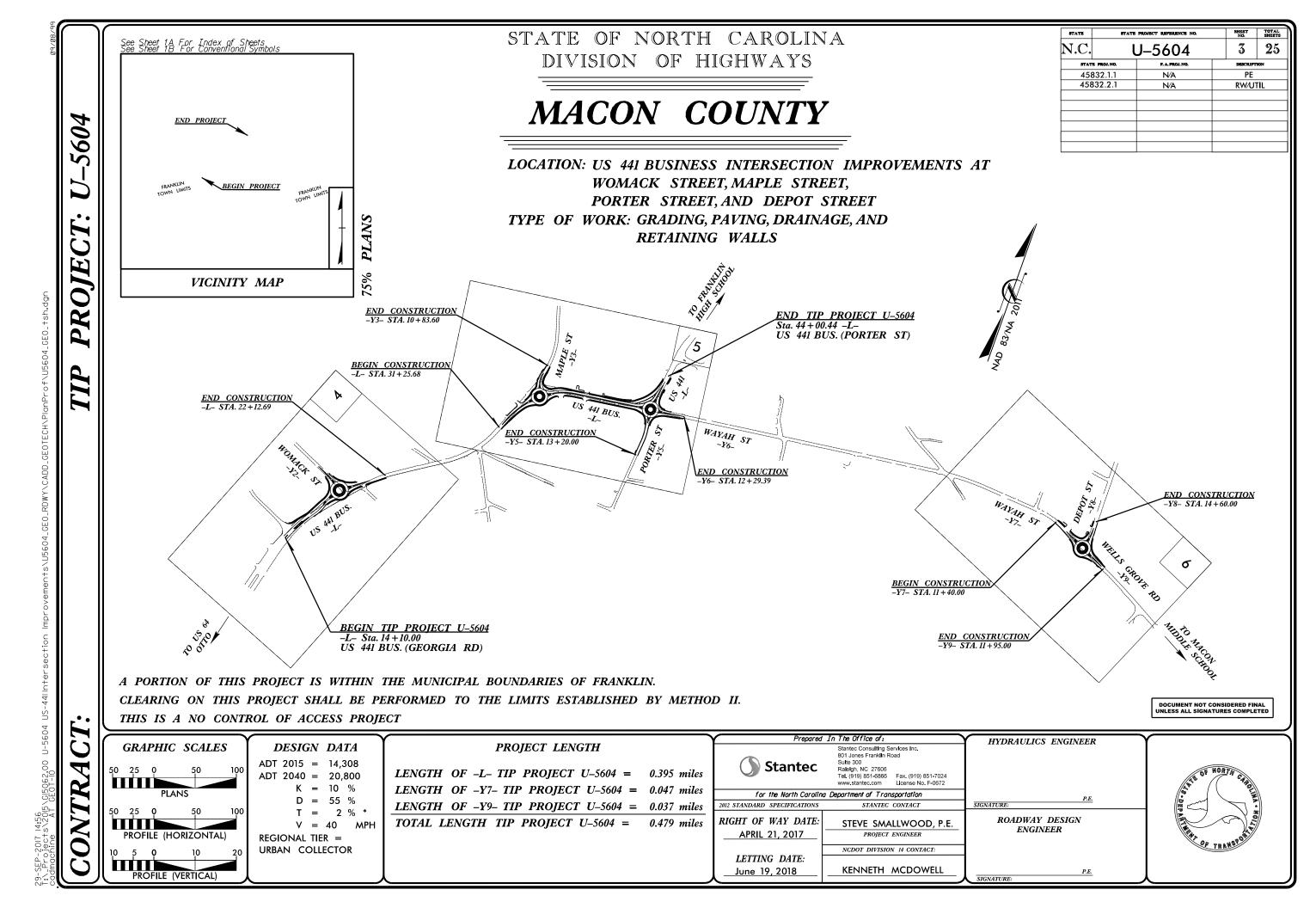
 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES BY ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

GOODNIGHT, D. J. LANE, R. W. TRIGON EXP. INVESTIGATED BY **GOODNIGHT**, **D**. **J**. DRAWN BY __HILL, M.J. CHECKED BY <u>HAMM</u>, J.R.

SUBMITTED BY FALCON DATE _SEPTEMBER 2017

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED


U-5604 SHEET NO.

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586), SOIL CLASSIFICATION	<u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60	AQUIFER - A WATER BEARING FORMATION OR STRATA.
IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF,GRAY,SULTY CLAY,MOIST WITH INTERBEDDED FINE SAND LAYERS,HIGHLY PLASTIC,A-7-6 SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > 100 BLOWS PER FOOT IF TESTED.	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
CENERAL CRANIII AR MATERIALS SILT-CLAY MATERIALS	MINERALOGICAL COMPOSITION	FINE TO COARSE CRAIN IGNEOUS AND METAMORPHIC ROCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND
CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	WOULD YIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANITE,	SURFACE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5	ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	UNELSS, OHBERU, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-0 A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-7-6 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 0000 d00000 00000 00000 00000 00000 00000 0000	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED
% PASSING SILT-	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED (CP) SHELL BEDS, ETC.	BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX GRANULAR CLAY MUCK, *40 30 MX 50 MX 51 MN FEAT	PERCENTAGE OF MATERIAL	WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN 36 MN	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK.
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
PASSING *40 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 50ILS WITH	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN LITLE UR HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOUS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
OF MAJOR GRAYEL, AND MATERIALS SAND GRAYEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER 24 HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
CEN BATING FAIR TO	<u> </u>	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE	SPRING OR SEEP	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
P1 OF A-7-5 SUBGROUP IS ≤ LL - 30 ;P1 OF A-7-6 SUBGROUP IS > LL - 30	- UU- SPRING ON SEEP	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH	FIELD.
PRIMARY SOIL TYPE COMPACTNESS OR RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	(MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES "CLUNK" SOUND WHEN STRUCK, IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
CONSISTENCY (N-VALUE) (TONS/FT ²)	WITH SOIL DESCRIPTION F ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE < 4	SOIL SYMBOL SPOT DATE TEST BORING SLOPE INDICATOR INSTALLATION	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR LUUSE 4 10 10	VST PMT INSTRICTION	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS
MAILERIAL DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
VERT DENSE 2 200	CODE DODING A COUNDING DOD	SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
VERY SOFT < 2	- INFERRED SOIL BOUNDARY - CORE BORING SOUNDING ROD	VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u>	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
MATERIAL STIFF 8 TO 15 1 TO 2	TTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER SPT N-VALUE	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
HARD > 30 > 4	INSTRUCTION	ROCK HARDNESS	RUN AND EXPRESSED AS A PERCENTAGE. SAPPOLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
DPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	USED IN THE TOP 2 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	SHALLOW UNDERCUT UNCLASSIFIED EXCAVATION - EMBANKMENT OR BACKFILL	TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	<u>SLICKENSIDE</u> - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	ABBREVIATIONS	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED	OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	BY MODERATE BLOWS.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF
SIZE IN. 12 3	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE - CORRELATION OF TERMS	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{ m d}$ - DRY UNIT WEIGHT	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION (ATTERBERG LIMITS) DESCRIPTION	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH	TENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
LL LIOUID LIMIT	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE, CAN BE SCRATCHED READILY BY FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
PLASTIC SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	FRACTURE SPACING BEDDING	
(PI) PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	HI HIGHLY V - VERY RATIO	TERM SPACING TERM THICKNESS	BENCH MARK: ELEVATIONS TAKEN FROM .TIN FILE DATED 2/16/16
- MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	ELEVATION: FEET
OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE	
REQUIRES ADDITIONAL WATER TO	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) ATTAIN OPTIMUM MOISTURE	6 CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	
PLASTICITY	CME-55 X 8* HOLLOW AUGERS CORE SIZE:	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH		FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW	TUNGCARBIDE INSERTS	RUBBING WITH FINGER FREES NUMEROUS GRAINS;	
SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST CASING WY ADVANCER HAND TOOLS:	GENILE BLUW BY HAMMER DISTRIEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH	BORTARIE HOICT TRICONE STEEL TEETH POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TOYOUT TOYOUT AUGUST	CDAING ADE DIEETCH T TO SEPARATE WITH STEEL DROPE.	
	X MOBILE B-57 TRICONE TUNGCARB. SOUNDING ROD	INDURATED DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	CORE BIT VANE SHEAR TEST	SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;	
HOSTITENS SOUTH AS EIGHT, DANK, STITENKED, ETG. HAE USED TO DESCRIBE HEFERMANCE.	<u> </u>	EXTREMELY INDURATED SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1-

Roadway Subsurface Investigation Report - Inventory

US 441 Business Intersection Improvements Womack Street, Maple Street, and Depot Street

Macon County, North Carolina TIP: U-5604 WBS: 45832.1.1 Falcon Project No.: G15062.00

Prepared for:

Stantec 801 Jones Franklin Road, Suite 300 Raleigh, NC 27606

Submitted by:
Falcon Engineering, Inc.
1210 Trinity Road, Suite 110
Cary, North Carolina 27513
(919) 871-0800
www.falconengineers.com

September 29, 2017

 TIP:
 U-5604

 WBS:
 45832.1.1

 COUNTY:
 Macon

DESCRIPTION: US 441 Business Intersection Improvements Womack Street,

Maple Street, and Depot Street

SUBJECT: Roadway Subsurface Investigation – Inventory

PROJECT DESCRIPTION

This project consists of approximately roundabout construction and intersection improvements at four intersections along US-441 Business in Franklin, Macon County, North Carolina.

Also included in this project are three retaining wall structures, two along -L- (left) and one along -Y5- (right). Investigation data for the retaining walls are incorporated into this report.

The investigation was conducted in two mobilizations; the first on March 9th and 10th, 2017 and the second between June 9th and July 11th, 2017 in general accordance with our Scope and Fee Estimates for Geotechnical Investigation and Engineering Services. The recommendations provided in this report are based solely on our site reconnaissance, soil test borings and laboratory test data, engineering evaluation of these data, and generally accepted soil and foundation engineering practices and principles.

A total of seventeen (17) Standard Penetration Test (SPT) borings were drilled for the proposed roadway alignments and retaining walls. All mechanical borings were drilled using a Mobile B-57 ATV drill rig equipped with 2 ¼-inch inside diameter hollow-stem augers, and SPT testing was performed with an automatic hammer. Representative soil samples, collected with a split-barrel sampler or hand auger, were selected for laboratory testing to verify visual field classifications. In addition, bulk samples were collected for standard Proctor compaction and California Bearing Ratio (CBR) testing. Ten (10) pavement core borings were also performed as part of this investigation, and in-situ CBR testing was performed using Kessler Dynamic Cone Penetrometer to depths of up to three feet below subgrade. An additional ten (10) hand auger borings were performed along retaining wall alignments which were added to the project after our initial mobilization. Hand auger borings were necessary at most locations due to overhead utilities.

The following alignments, totaling approximately 0.9 miles were explicitly investigated. Other minor Y-lines and driveways are included on the project but improvements are not anticipated to be significant enough to warrant investigation.

<u>Alignment</u>	Station (ft)
-L- (US 441 Business)	14+10.00—44+00.44
-Y2- (Womack Street)	10+00.00—14+09.48
-Y3- (Maple Street)	10+00.00—13+02.70
-Y5- (Porter Street)	10+00.00—14+66.69
-Y6- (Wayah Street)	10+00.00—13+82.43

AREAS OF SPECIAL GEOTECHNICAL INTEREST

I. The following locations contain very soft to soft/very loose soils with an N-value less than 4 near the ground surface:

Alignment	Station (ft)
-L-	16+00 to 18+00
-L-	32+00 to 36+00
-L-	38+00 to 40+00
-Y5-	10+50 to 12+00
-Y8-	15+50 to 16+50

II. Artificial fill was encountered at the following locations:

Alignment	Station (ft)
-L-	34+50 to 36+00
-L-	38+50 to 42+00
-Y7-	12+50 to 13+50
-Y8-	15+50 to 16+50
-R1-	11+50 to 12+50

III. Roadway Embankment was encountered at the following locations:

<u>Alignment</u>	Station (ft)

-L- 35+50 to 38+50 -Y6- 10+00 to 10+75

PHYSIOGRAPHY AND GEOLOGY

The project site is in the Blue Ridge Belt Physiographic Province of North Carolina. According to the *Geologic Map of North Carolina* (1985), the site is underlain by two major geologic units of the Coweeta Group (**ZYba** and **ZYbn**) in the Blue Ridge Belt Physiographic Provence. These units are of the Middle/Late Proterozoic Peroiod. The site is bound on the north and south by the Coweeta Group (**ZYba**) which is noted to consist of Amphibiolite – equigranular, massive to well foliated, rarely discordant, metamorphosed intrusive to extrusive mafic rock and may include metasedimetary rock. The majority of the middle of the site consists of a different unit of the Coweeta Group (**ZYbn**). This unit consists of Biotite Gneiss – migmatitic; interlayered and gradational with bitotite-garnett gneiss and amphibiolite; locally abundant quartz and alumino-silicates.

Existing site topography is typical of North Carolina's mountain region. The site lies predominantly within the Little Tennessee River valley, generally sloping west to east towards the river. The Womack, Maple, and Porter/Wayah sites lie atop a minor local high point/ridge line, while the Depot/Wayah site is much closer to the river and at a significantly lower elevation. Although frequent and large exposed rock outcroppings are common in the mountain region, no such features were observed at the site. None of the sites are close enough to notable water features to observe rock present in the bed or banks.

Sparse vegetation, occasional mature trees, landscaping, and maintained ground cover is present adjacent within proposed improvement areas, but otherwise much of the site is developed. Mixed industrial, commercial, and residential properties featuring various buildings, driveways, and parking lots line both sides of the road in all directions throughout most of the site.

SOIL PROPERTIES

A variety of soils were encountered along the project, including artificial fill, existing roadway embankments and residual soils.

Topsoil and rootmat was encountered in grassy, brushy, and wooded areas ranging in thickness from 0.3 to 0.7 feet, and typically on the order of 0.4 feet.

Artificial Fill soils were encountered at the ground surface beneath and adjacent to existing roadways. These consist of up to 0 to 10 feet of moist, very loose to loose, silty sand (A-2-4) and moist, very soft to medium stiff, sandy silt and sandy and silty clay (A-4, A-5, A-6, A-7).

Roadway Embankment soils were encountered at the ground surface beneath and adjacent to existing roadways. These consist of up to 3 to 12 feet of moist, very loose to medium dense, silty sand (A-2-5) and moist, medium stiff, silty clay (A-7).

Residual soils were encountered at the ground surface, or beneath artificial fill, roadway embankments or alluvial deposits. These soils consist of moist to wet, loose to dense, silty sand (A-1-b, A-2-4, A-2-5) and soft to stiff, sandy clay and silt, clayey silt and silty clays (A-4, A-5, A-6, A-7).

GROUNDWATER PROPERTIES

Groundwater levels were measured at the time of boring completion, and in many cases after a waiting period of at least 24 hours. Borings drilled within and in close proximity to existing roadways, and within residential or commercial areas were backfilled immediately after completion due to safety considerations.

Detailed groundwater measurements are included in the attached subsurface profiles and cross sections, and noted areas of shallow groundwater are included in the Areas of Special Geotechnical Interest earlier in this report.

ADDITIONAL LABORATORY TESTING

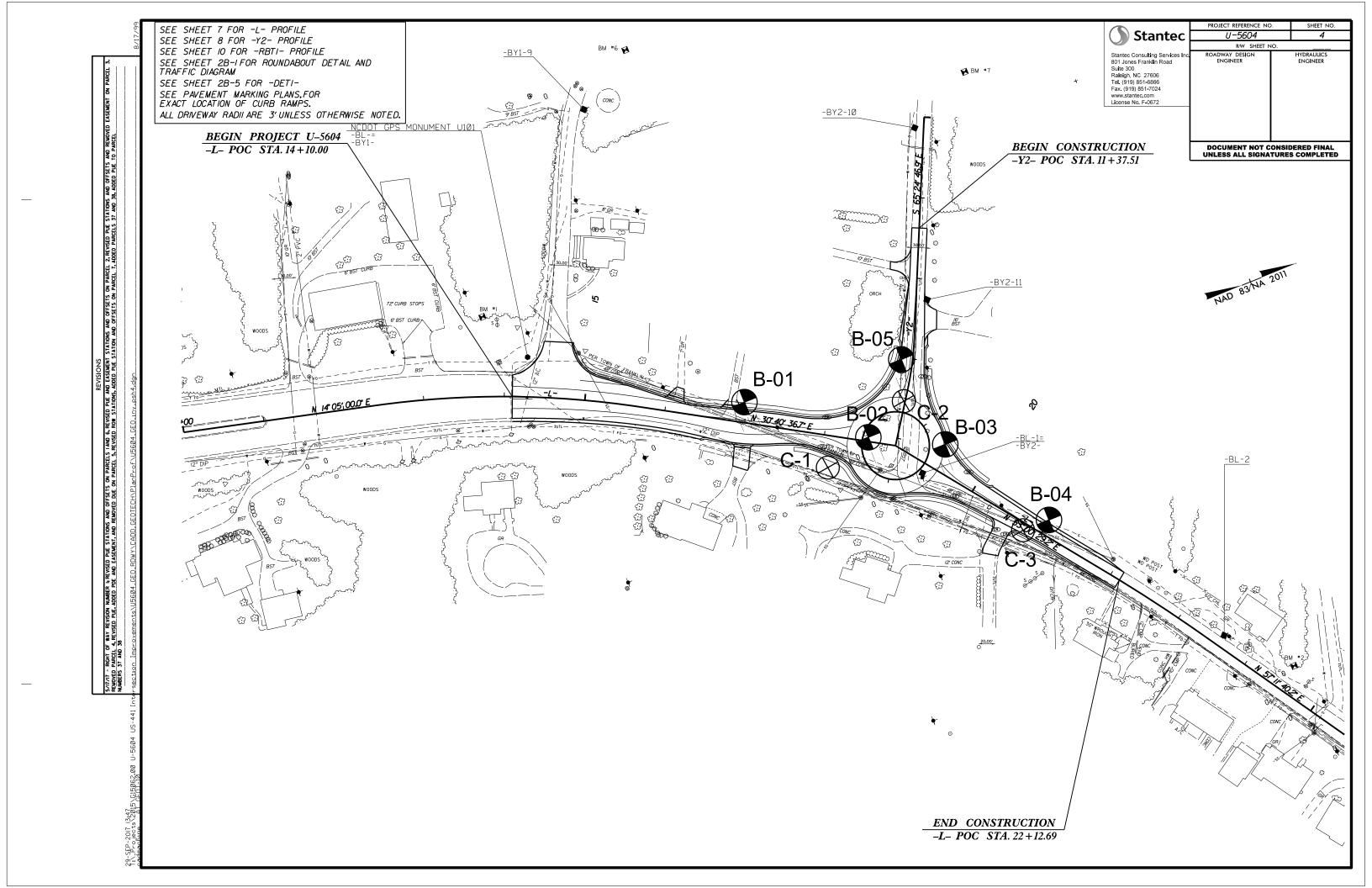
The following bulk samples were obtained:

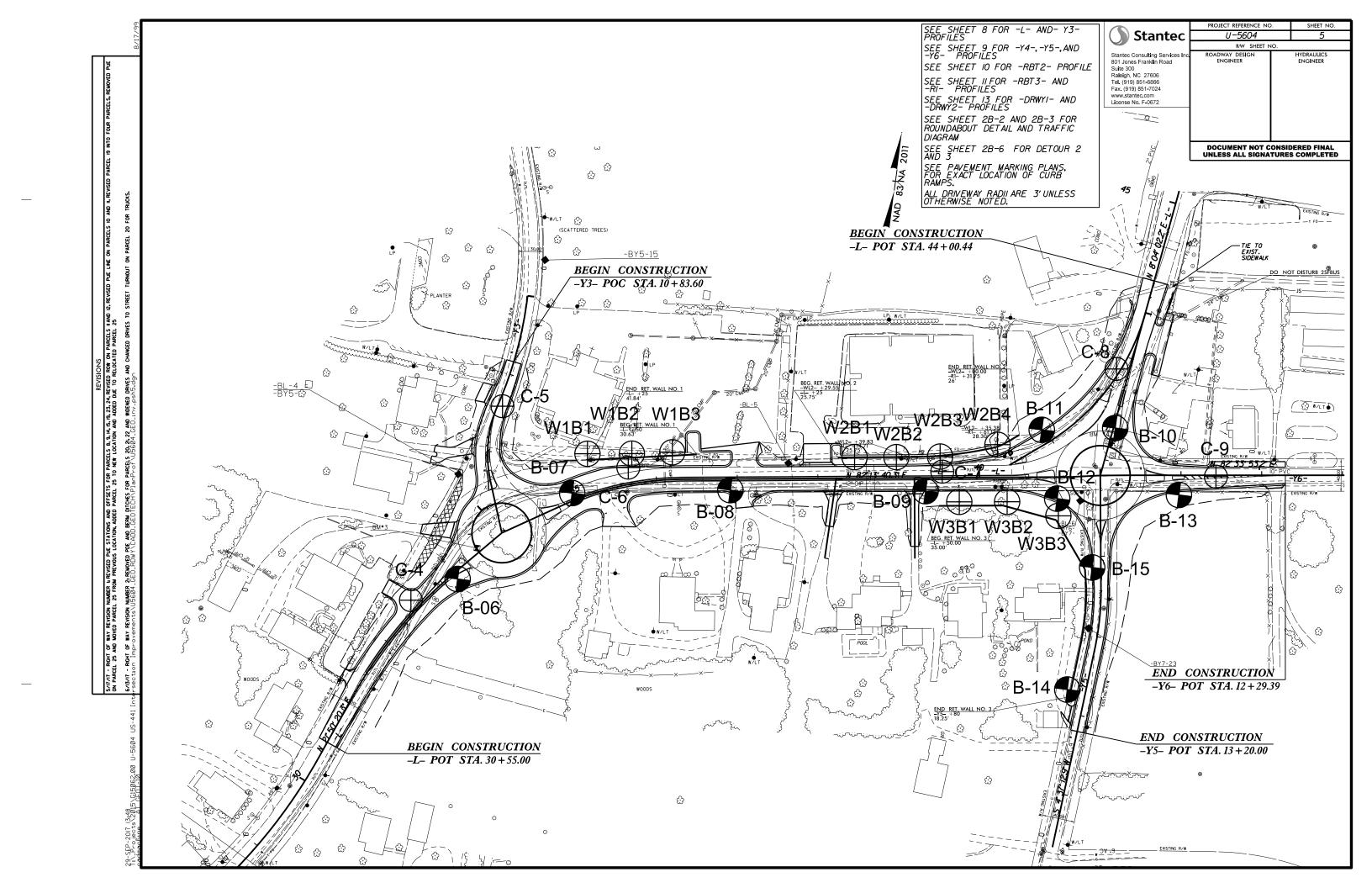
<u>Sample</u>	<u>Location</u>	<u>Depth(ft)</u>	<u>Test</u>
BS-1	16+96, 25' LT, -L-	1.0 – 8.5	California Bearing Ratio, Standard Proctor
BS-2	10+97, 24'RT, -Y6-	1.0 – 8.5	California Bearing Ratio, Standard Proctor

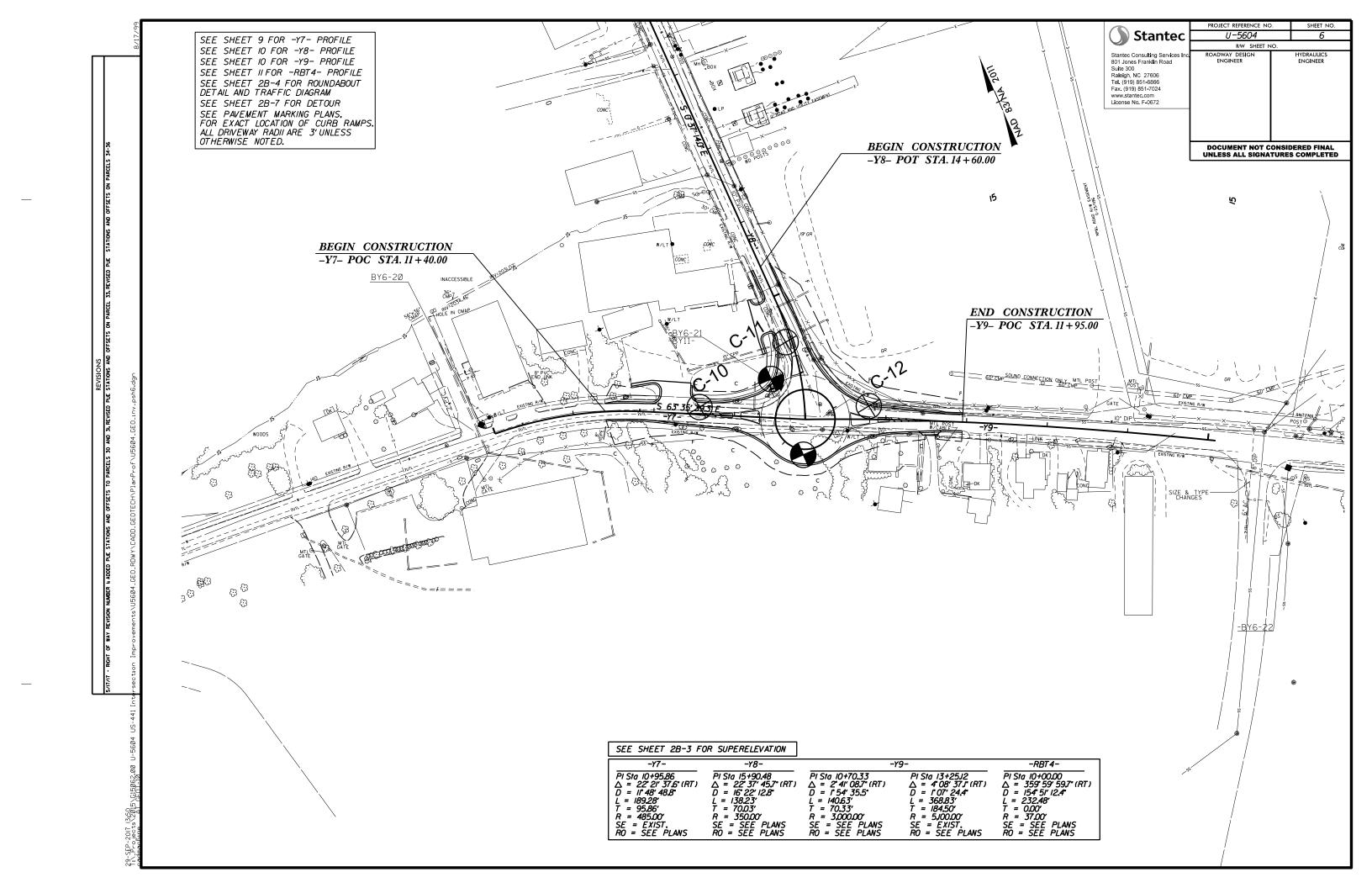
Classification test results for bulk samples are included in the subsurface profiles and cross sections and Standard Proctor and California Bearing Ratio (CBR) data is attached in the Appendix.

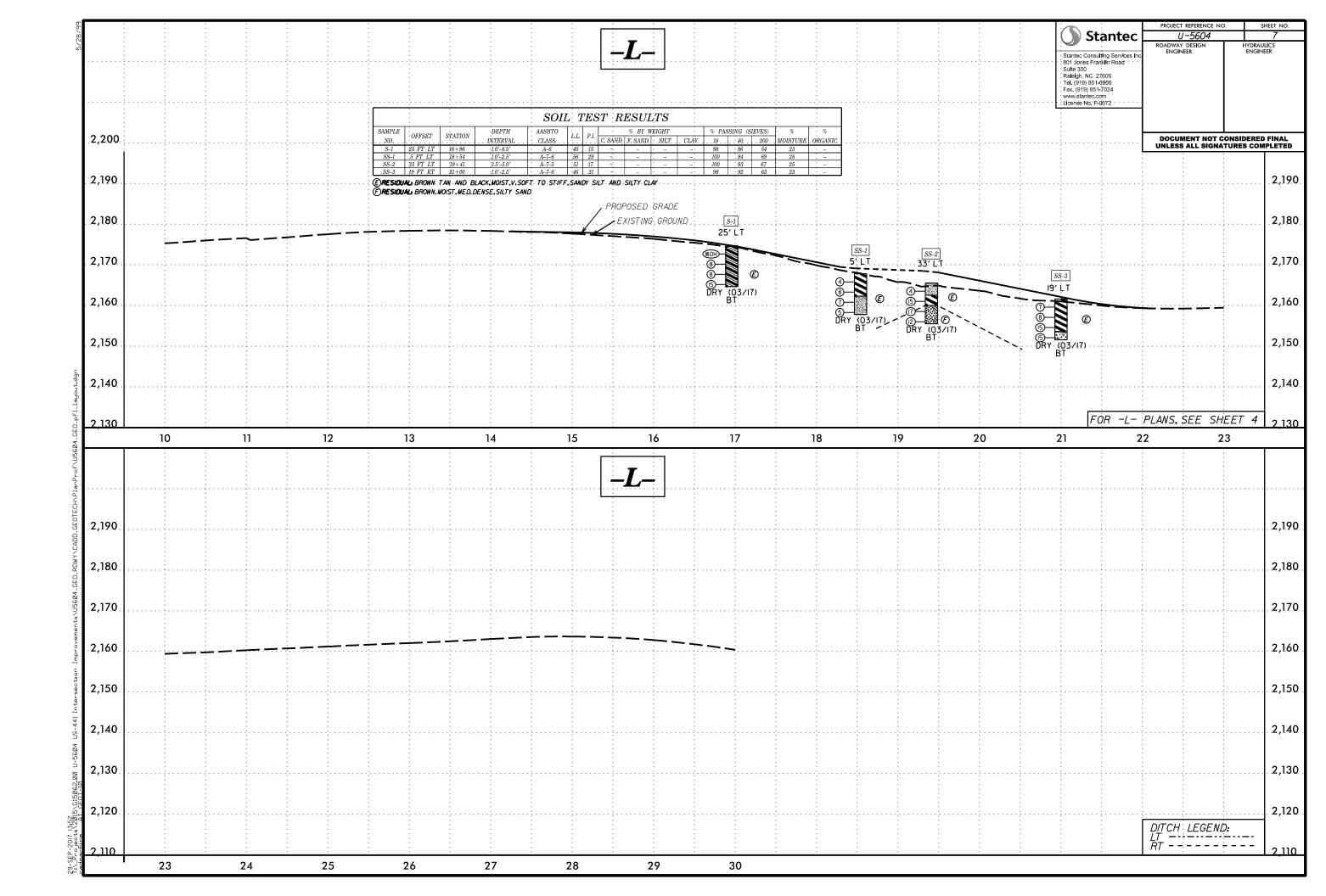
CLOSING

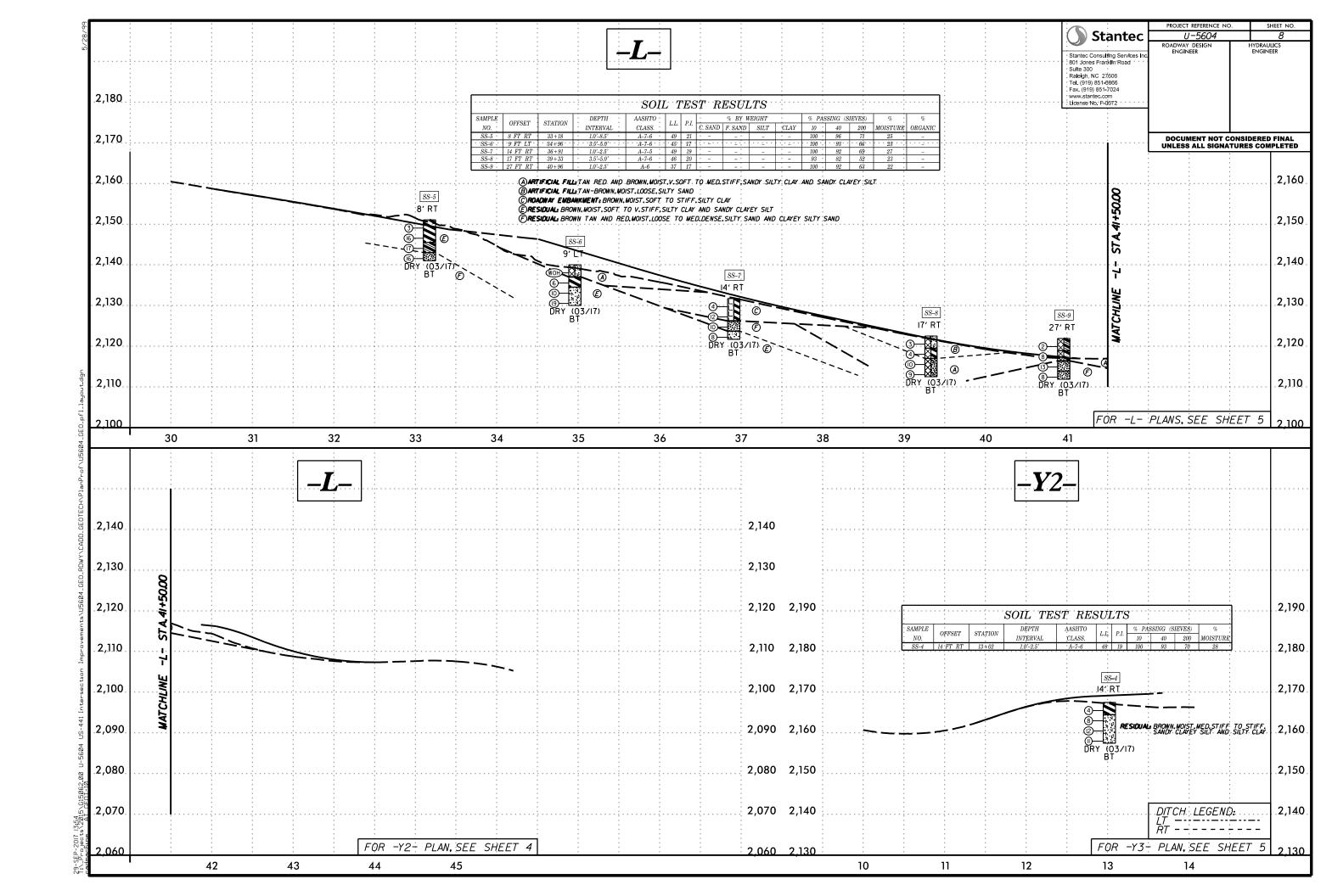
Falcon appreciates the opportunity to have provided our geotechnical engineering services for the above referenced project. If you have any questions concerning the contents of this report or need additional information, please do not hesitate to contact our office.

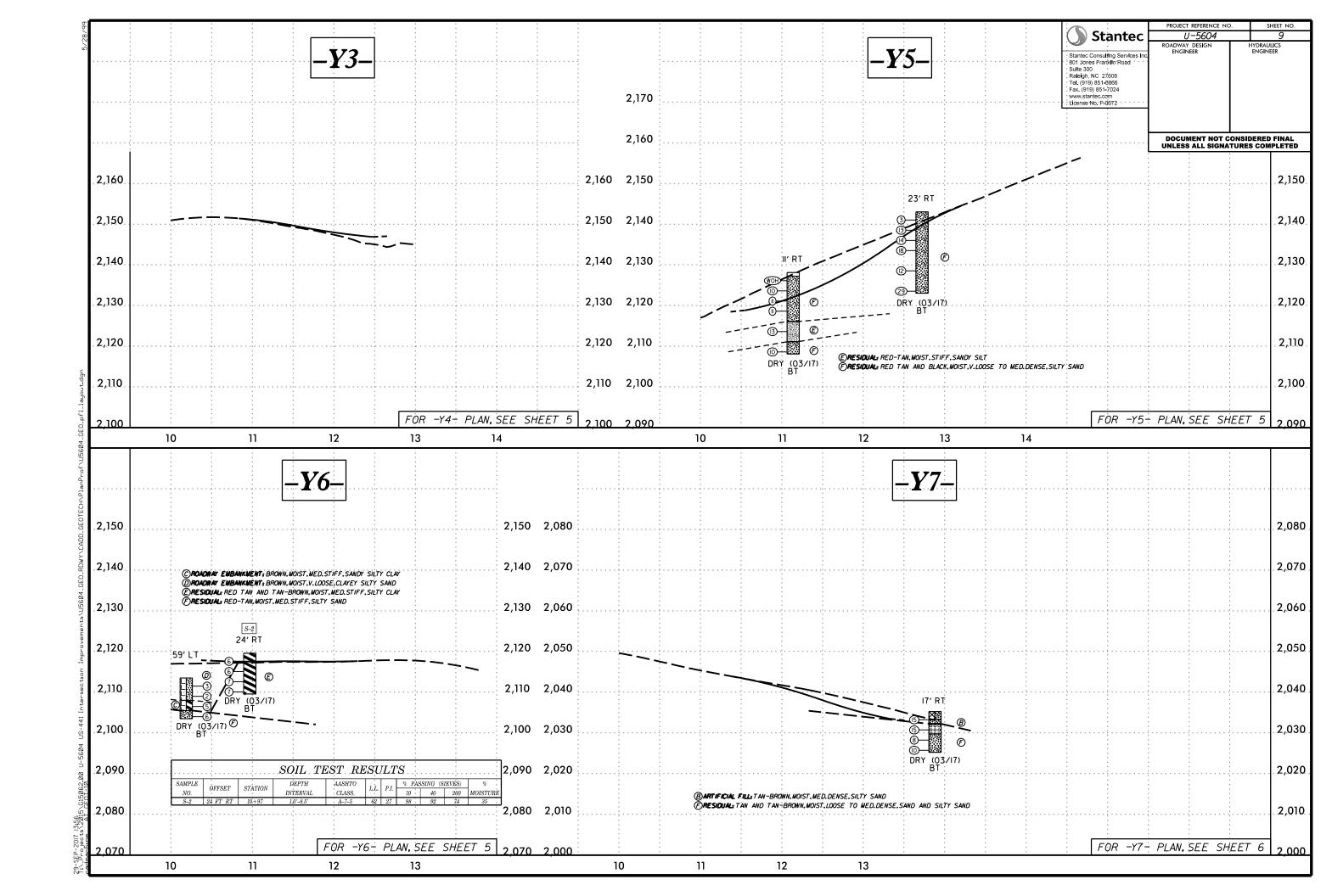

FALCON ENGINEERING, INC.

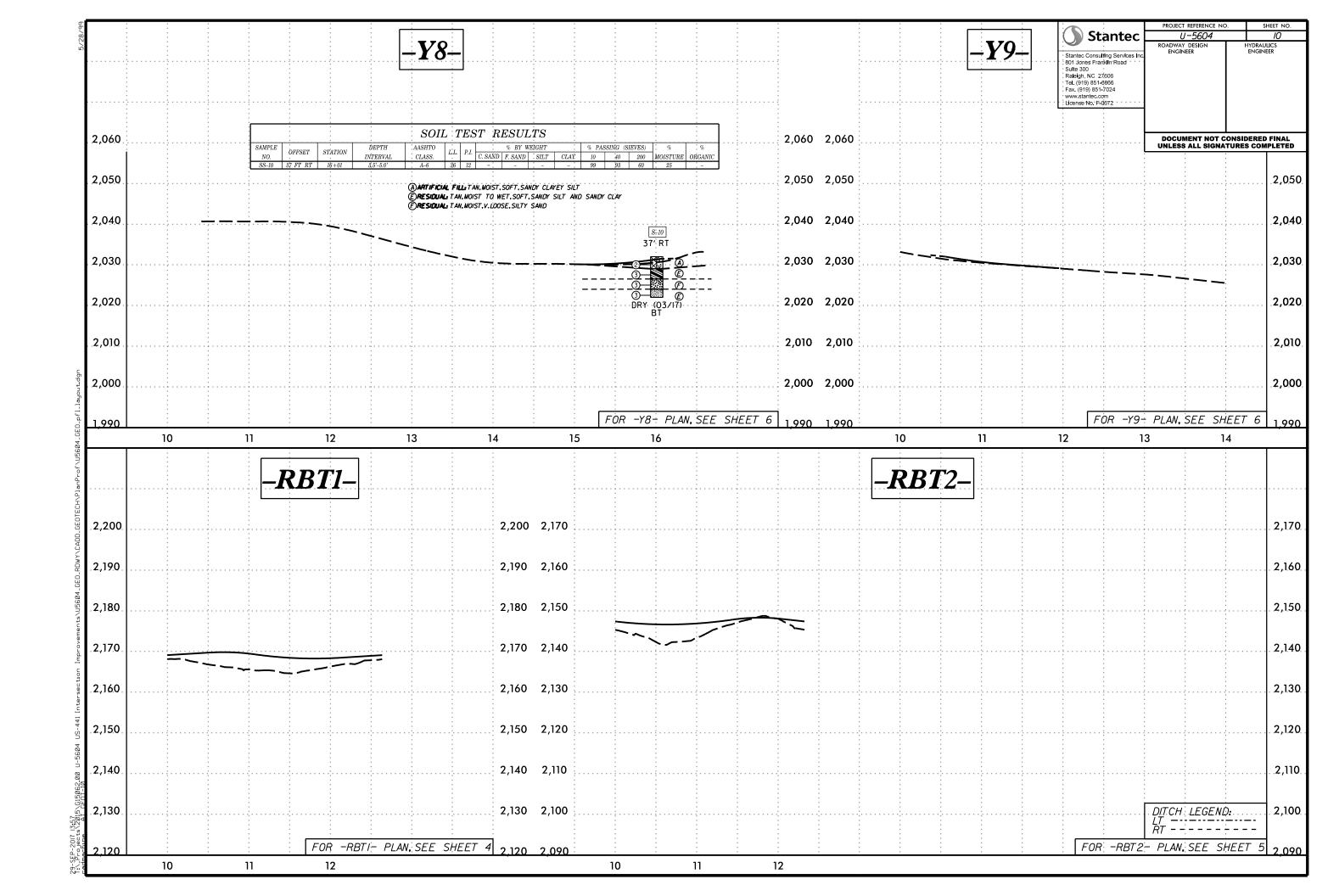

Report Prepared By: Report Reviewed By:

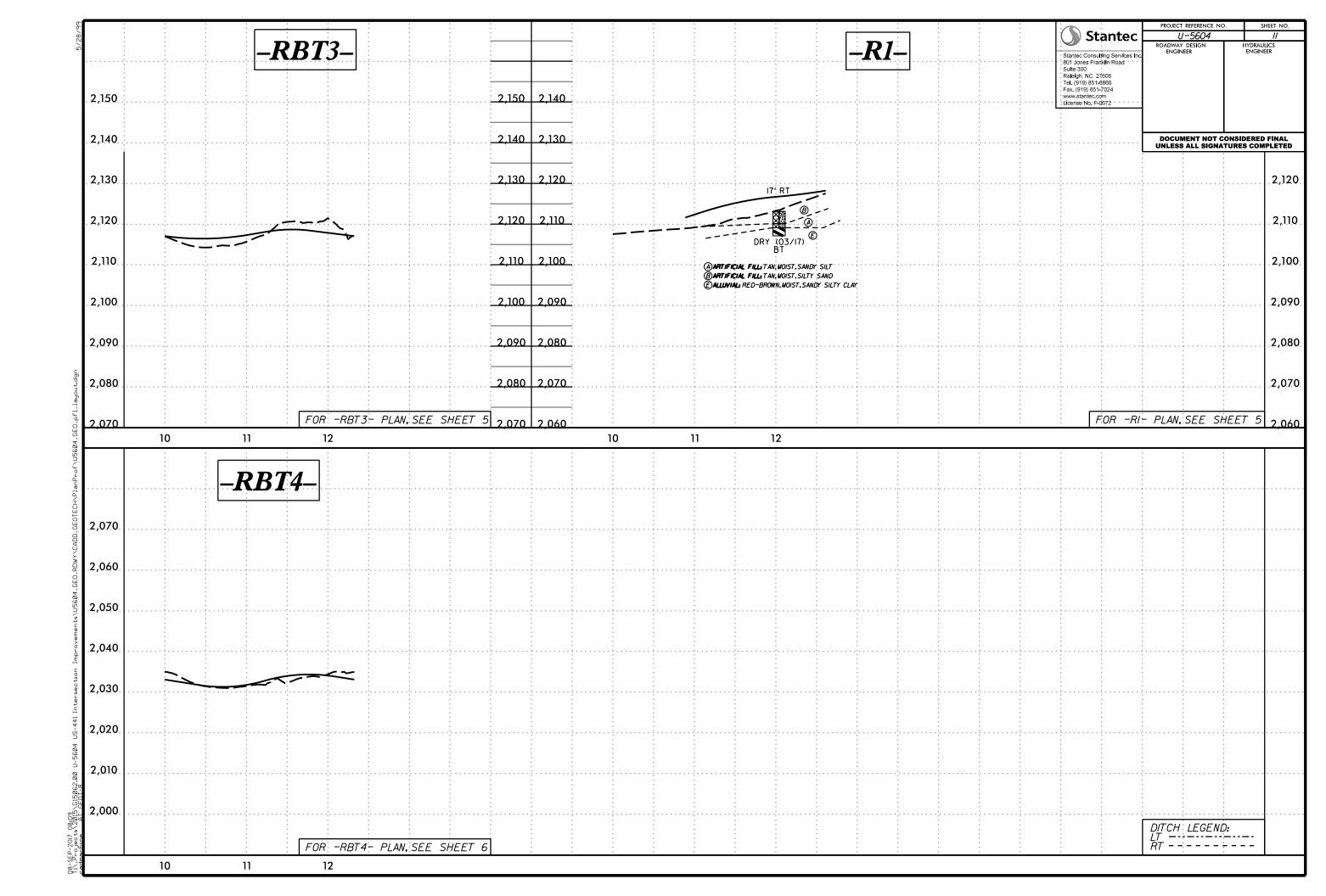

W. Scott Hunsberger, PE

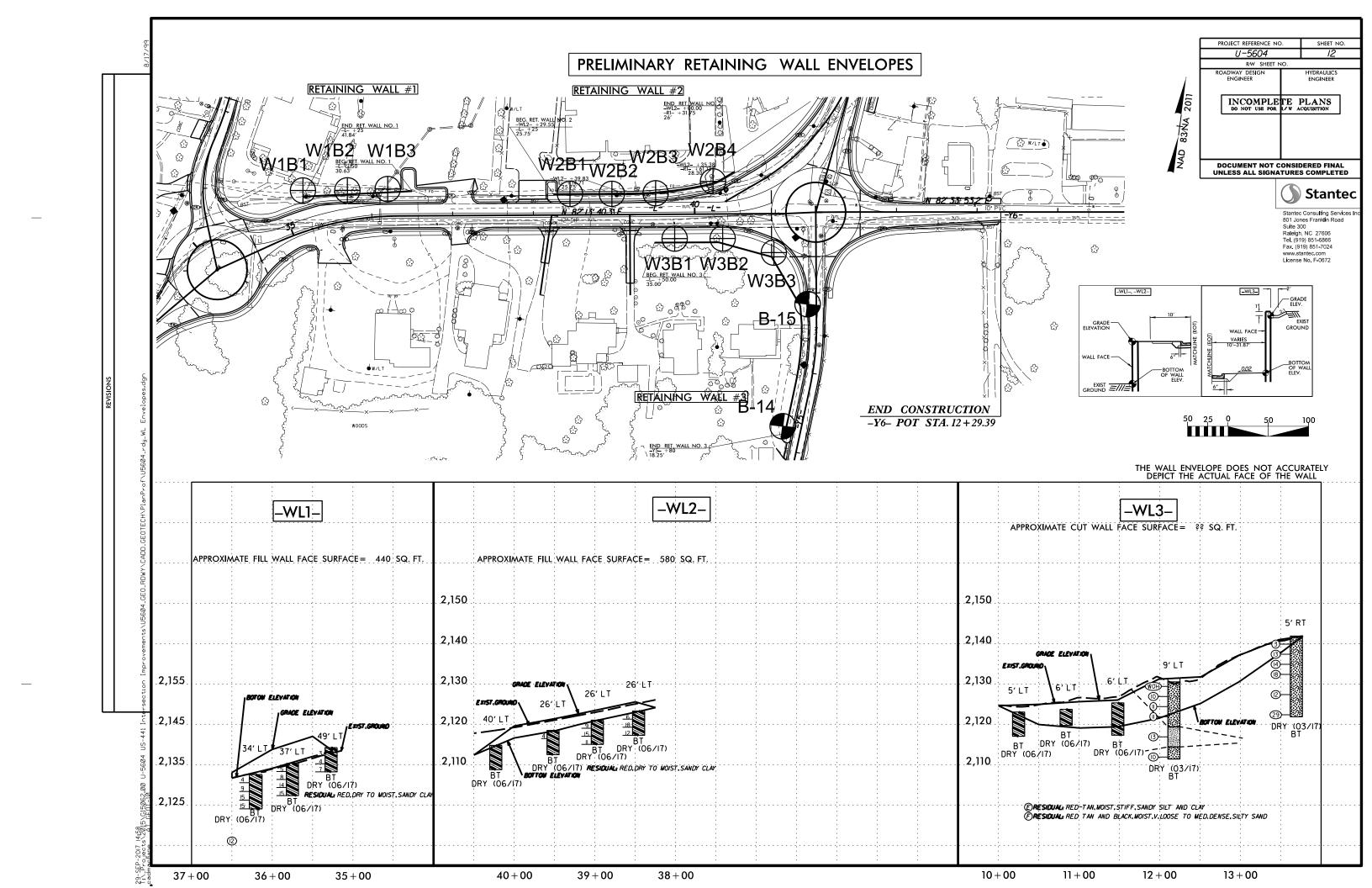

Geotechnical Engineer Geotechnical Engineering Manager

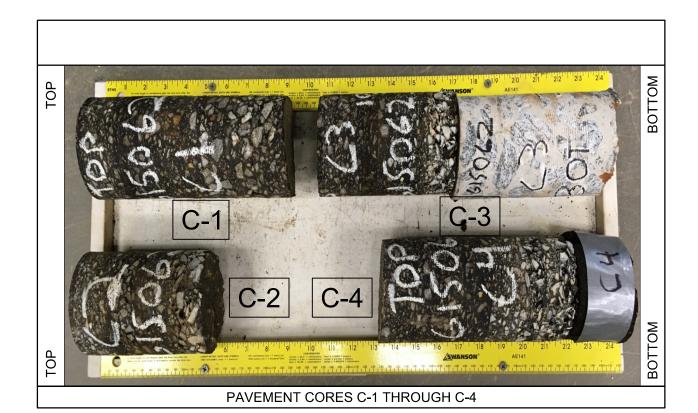

Jeremy R. Hamm, PE

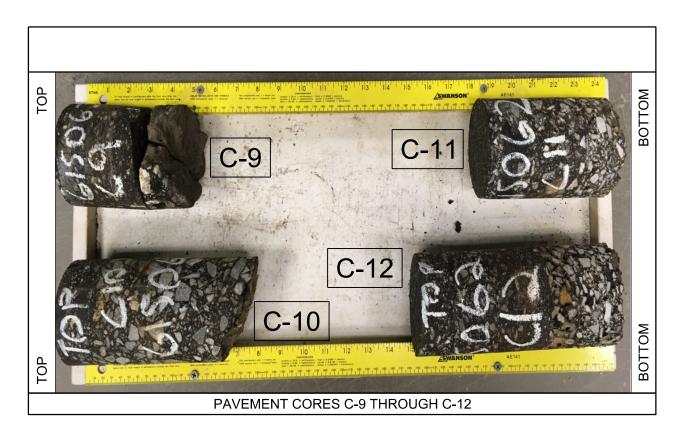


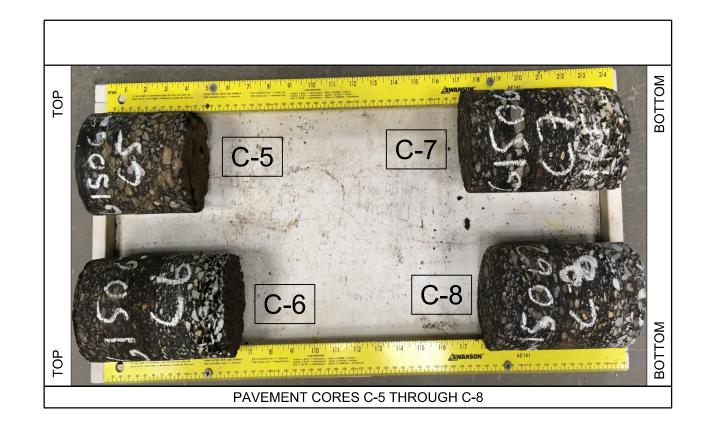




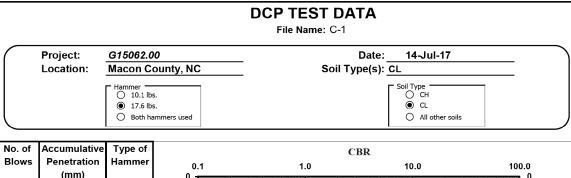


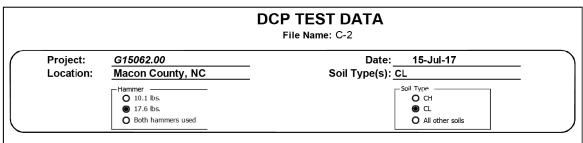


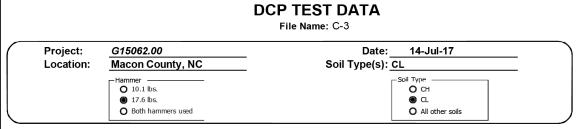


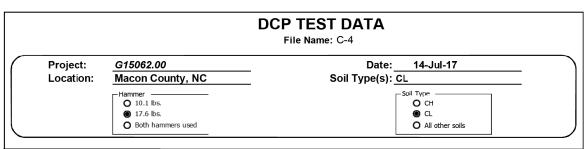


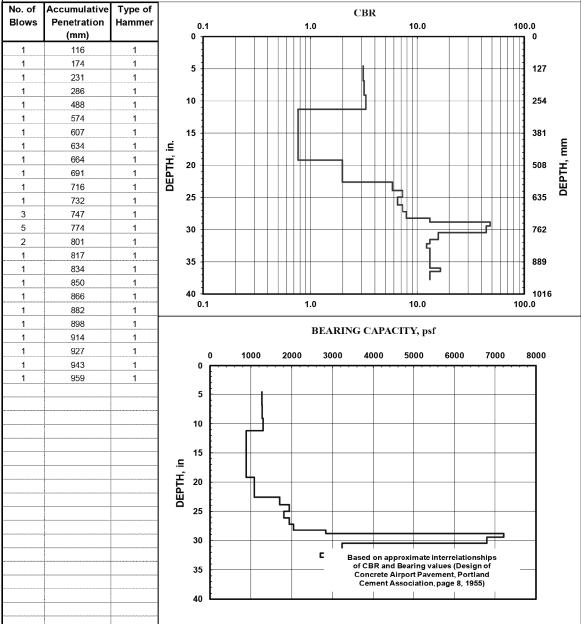
PROJECT REFERENCE NO. 13 U-5604 NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION APPENDIX A PAVEMENT INVESTIGATION RESULTS REFERENCE:





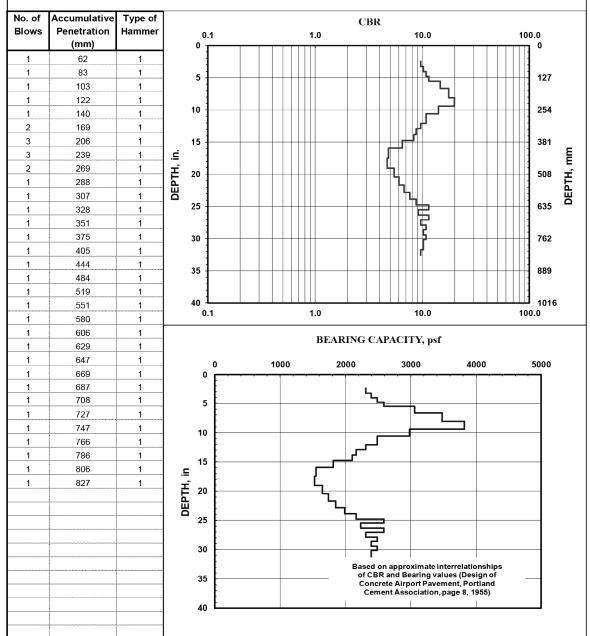

US 23/ US 64/ US 441 TO PORTER STREET INTERSCTION IMPROVEMENTS AT WOMAK MACON COUNTY, NC TIP NO. :U-5604 FALCON PROJECT NO.: G15062.00

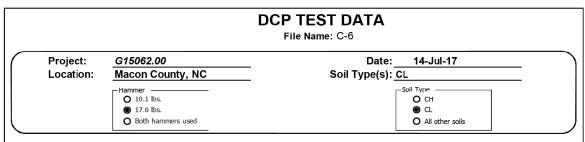

No. of Blows	Accumulative Penetration	Type of Hammer		0.1		1.0	CBI	₹ 10.0		100.0	
	(mm)			0 1						0	
1	48	1		- 1							
1	85	1		5						127	
1	104	1		- 1							
1	133	1		1							
1	172	1		10				1,3		254	
11	210	1		- 1							
1	238	1		15						381	_
1	262	1	.⊑	}]	ᇤ
1	287	1	DEPTH, in.	20				\\		508	Ť
1	313	1	<u>ا</u> ا	² :							E
1	313	1		1				 			DEPTH, mm
1	338	1		25		+++++		╎╎╎╎╎		635	_
1	362	1	l	1				5			
2	404	1	l	30				<u> </u>		762	
2	440	1		- 1							
2	472	1		35						889	
2	502	1		"						889	
2	530	1		- 1]	
3	572	1		40 1						1016	i
2	598	1		0.1		1.0		10.0		100.0	
3	637	1					EADDIGG	A DA CITTA			
2	663	1	1			В	EARING C	APACITY, psf			
2	693	1	1	0	40	00	2000	3000	4000	5000	
2	718	1	1	۰ 🗀				3000	4000	3000	
2	744	1	1	ŀ							
2	770	1	1	5		_		1			
2	795	1	1	ı İ		<u> </u>					
2	820	1	l	40		_	$\neg \bot$				
2	855	1	l	10							
2	879	1	1	- 1			~ _				
2	901	1	_ ا	15			-	¬			
2	925	1	≛	. [
2	950	1	DEPTH, in	20							
		· ·									
			ا ا	25							
			1	ŀ							
			l	30							
							Do		 		
				35			_ based _ of CE	on approximate inte BR and Bearing value	rrelationsnips s (Design of		
			l	"			Con	crete Airport Paveme	nt, Portland		
									gc 3, 1300 <i>)</i>		
				40			Cei	ment Association, pa	ge 8, 1955)		

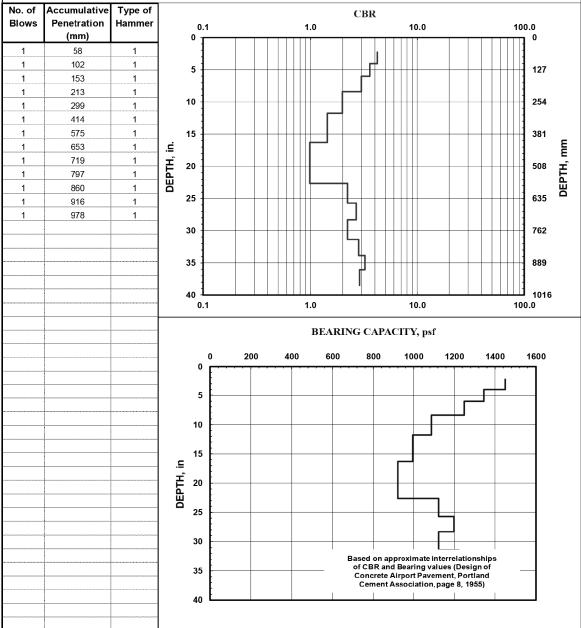


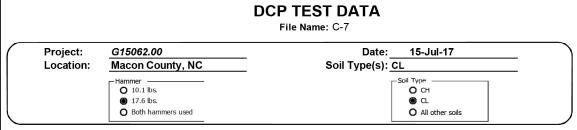
0 127 254 381 EE **TLG9
254
254
381
381
381 E E 508 H
381 EE
208 H H H H H H H H H H
508 H H H H
EPT 200
635

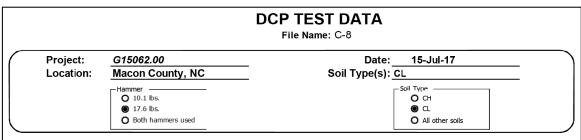
762
.]
889
1016 100.0
2000
hips
of
of

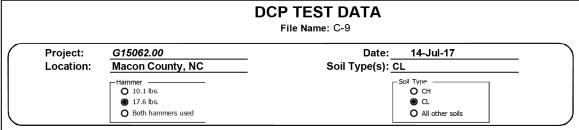


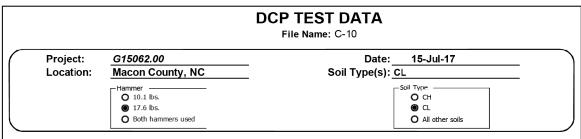

No. of Blows	Accumulative Penetration	Type of Hammer			.1				1.0	•	CBR		10.	0			100.		
	(mm)		ł	0								П					Π.	0	
1	56	1										L	ЩП						
1	93	1		5				+									1	127	
2	140	11											ЦП]		
2	191	1	-	10								(254	
1	219	1											וול					254	
11	250	1											2						
1	280	1	١.	15			+						Ъ					381	_
1	307	1].⊑										121						Ē
11	336	11	DEPTH, in.	20														508	DEPTH, mm
1	366	11											[4]						Ы
1	394	11		25														635	Ы
11	420	1	-	23									þ					633	
1	444	1	-																
1	469	1	1	30			+	+	+		+	+	1			+++		762	
1	491	11											7						
1	511	11		35			+						「			+		889	
11	534	11																	
11	558	11	-	40														4046	
11	580	1			.1				1.0				10.	0			100.	1016 0	
1	601	1																	
2	651	1							BE	ARING	G CA	PAC	ITY.	psf					
1	675	11											,	r					
1	700	11			0	į.	500		100	0	150	0	2	2000	2	500	3	000	
1	725	1	-	0	F		1 .							1		Τ.		7	
1	750	1	-		E							\Box		Щ.					
1	776	1	-	5	-									┲				1	
1	803	1			•									-					
1	829	1		10	\vdash		+				-		┶			+		1	
1	856	1											7						
1	884	1	-	15	-								_노	_				-	
1	911	1	2.	⊑	E									7					
1	938	11	TOPU.	É 20	-										_			1	
			6	<u>, </u>	•										_				
			2	5 25	. [1	
			-	20															
			ł	20	•									Ц					
			-	30										_				1	
			-		ļ.					Ba	sed o	n app	roxima Bearin	ate inter	relation s (Desig	ships in of			
			-	35	E				-	,	Concr	ete Ai	rport P	aveme	nt, Porti	and		1	
			J		Į.						Cem	ent As	ssociat	ion, pag	je 8, 19	55)		1	
	1	1	l	40					- 1		1			1		1			









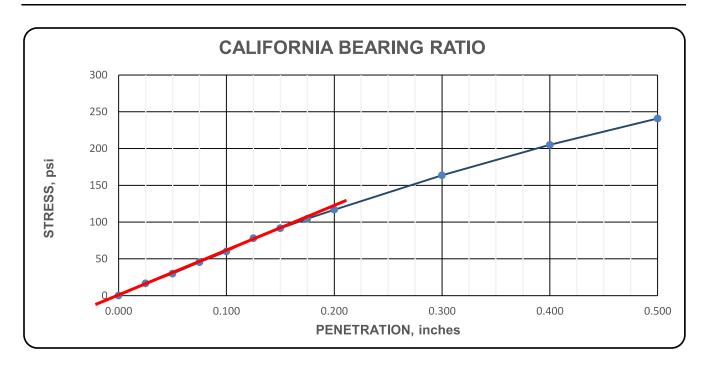

No. of Blows	Accumulative Penetration (mm)	Type of Hammer		0.1 0 T	1			1	.0	СВ	R	10.0			100.0	
1	247	1	1	Ĭ,											"	
<u>.</u> 1	340	1		_ 1												
1	459	1		5 +				III							127	
1	570	1		- 1											-	
1	697	1		10		-		+++	-						254	
1	787	1													}	
1	848	1		15				Ш							381	
1	892	1	ے ا	. 1												₹
1	958	1	 _	1					ነ							Ę
			DEPTH, in.	20				Ш							508	DEPTH, mm
			님	- 1					٢						-	Ē
			1	25 }				+++							635	
]													
				30				Ш						\perp	762	
				- 1					١ '						1	
				ا ء.						▎▐	\neg					
				35							Ť				889	
										'					}	
				40 L								40.0			1016	
				0.1	1			1	.0			10.0			100.0	
									BEAR	ING (CAPA	CITY, _I	osf			
					0	200	4	00	600	:	300	1000	1200	1400	1600	
				0	F						1					
			ı		ŀ											
	1		1	_	F											
				5												
				5 10												
				10												
				10 15												
			<u>2</u> .	10 15												
			i.	10 15												
			FPTH is	10 15												
			DEPTH is	10 15												
			DEPTH is	10									1			
			DEPTH is	10												
			DEPTH is	10 15 20 25						Bases	i on ap	proximal	e interrelatio	onships		
			DEDTH in	10 15 20 25 30						of C	BR and	l Bearing	e interrelatio	ign of		
			DEPTH is	10 15 20 25						of C Cor	BR and	d Bearing Airport Pa	values (Desi	ign of tland		
			DEDTH is	10 15 20 25 30						of C Cor	BR and	d Bearing Airport Pa	values (Desi	ign of tland		

(mm) 1	1 1 1 1 1 1 1 1 1		5						127 254 381	
1 147 1 227 1 355 1 508 1 629 1 672 1 789	1 1 1 1 1 1 1	11. 11. 20	5 -						254	
1 227 1 355 1 508 1 629 1 672 1 789	1 1 1 1 1	11. 11. 20	5 -						254	
1 355 1 508 1 629 1 672 1 789	1 1 1 1	DEPTH, in.	5			J				
1 508 1 629 1 672 1 789	1 1 1	DEPTH, in.	5							
1 629 1 672 1 789	1 1 1	DEPTH, in.							381	
1 672 1 789	1	DEPTH, in.							381	
1 789	1		1						-	_
	1		1							Ē
1 1000	1		1						508	Ŧ.
			_							DEPTH, mm
		2:								DE
			° †						635	
		1]						}	
		30	0						762	
			1							
	1	3:	5 🕌						889	
			1							
		40	, 1						∐} ₁₀₁₆	:
		- 4	0.1		1.0		10.0		100.0	,
					BEARI	NG CAPAC	ITY, psf			
			0	50		1000		00	2000	
			0	· · · · · · · · · · · · · · · · · · ·		1000				
		ļ	-							
			5							
			ŀ							
			10							
			ŀ							
			15							
		⊑	ŀ							
		DEPTH, in	20							
		[
			25							
		1	~							
		ł	30							
	-	-	~~							
		-	<u>, </u>			Based on app of CBR and I	roximate interre Bearing values (lationships (Design of		
		1	35			Concrete Ai	rport Pavement	, Portland		
						Cement As	sociation, page	o, 1900)		
		ł	40			-				

	Penetration (mm)	Hammer		0	.1				1.0			10.0		100.0		
1	43	1			1											
11	94	1		5										<u> </u>	27	
1	147	1		Ū							4					
1	193	1														
11	231	1		10							14			²	54	
11	282	1			1						4					
11	322	1		15	1		\vdash	+			 				81	_
1	359	1	DEPTH, in.		1						'	h				DEPTH, mm
1	395	1	Ξ	20				Ш				4			08	Ī
11	428	1	<u> </u>									ЪШ				PT
11	458	1	□	٥.								5		.	25	핌
11	488	11		25				П						ه ا	35	
11	519	1]											
1	546	1		30			\vdash	+	H					7	62	
11	572	1			1											
1	600	11		35								11/4		8	89	
1	626	1			1											
1	655	1		40										. !!!!!! <u>.</u>	016	
1	684	1			.1				1.0			10.0		100.0	016	
1	713	1														
1	739	1	-						BE	ARING	CAPA	CITY, psf	•			
1	766	1														
1	793	1		_	0	50	0		1000		1500	2000	2500	30	00	
11	814	1		C	, E			-			· ·					
1	832 854	1 1								لم						
1	875	1		5	· -					L	- T					
<u>'</u>	894	1			E					_						
1	912	1		10	·					-						
1	929	1			ŧ						5					
1	947	1	١.	_ 15	· [1				
	J-7		ה ה ה	<u> </u>	•							ר ר				
				20	· [-				
			נו ו	יָל												
			۱ ٔ	25	; [ᅮ				
			1		E											
				30	· ====											
			1		E					Rad	sed on an	proximate i	nterrelationship	s		
			1	35	, [0	f CBR and	Bearing va	lues (Design of	_		
			1	-	ŧ								ment, Portland page 8, 1955)			
			1	40	, E								. <u>.</u> . ,			

No. of Blows	Accumulative Penetration (mm)	Type of Hammer		0.1		1.0	CBR	10.0		100.0	
1	65	1		1							
1	114	1		5						427	
1	162	1		3				1		127	
1	204	1		1							
1	233	1] '	10				111111111111111111111111111111111111111		254	
1	256	1		1							
1	278	1		15						381	
1	321	1	_≘.	1							DEPTH. mm
1	397	1	DEPTH, in.	20						508	-
1	465	1	PT.]]]]	Ě
1	599	11		1		L					Ä
1	691	1] :	25						635	
1	765	1		1			<u> </u>				
1	801	1] ;	30						762	
1	829	1		1							
1	856	1		35						889	
1	886	11		"]]	
1	915	1		1							
11	943	1] '	40 0.1		1.0		10.0		1010 100.0	6
			DEPTH, in	0 0 5 10 15 20 25	500		1000	1500	2000	2500	
				35			of CBR Concre	n approximate into and Bearing valu ete Airport Pavem ent Association, pa	es (Design of ent, Portland		

		PROJECT REFERENCE NO.	SHEET NO.
		U-5604	20
	NORTH CAROLINA DEPARTMENT OF TRANSPORTATION		
	DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT		
	_ 		
04	SUBSURFACE INVESTIGATION		
26	ADDENDIV D		
<i>U</i> -5604	APPENDIX B LABORATORY RESULTS		
1			
E:			
$ \Im $			
REFERENCE:			
EI			
J.			
7			
N/A			
$ \tilde{C} $			
E			
PROJECT:			
K			


May 12, 2017

REPORT OF CALIFORNIA BEARING RATIO (CBR) AASHTO T 193

PROJECT NAME: (U-5604) US-441 Intersection Improvements

PROJECT NUMBER: G15062.01 SAMPLE IDENTIFICATION: B-01, BS-1, 1-8.5'

Bearing Ratio: at 0.1 inches of penetration: 6.1 at 0.2 inches of penetration: 7.8

Compaction Method: AASHTO T 99, AASHTO T 193: 5.1.1

Maximum Dry Unit Weight, lbs/ft³: 107.1 Optimum Water Content, %: 18.2 Compacted Dry Unit Weight, lbs/ft³: 105.0

Compacted Water Content, %: 20.3 Surcharge, lbs: 10

Compaction Percentage: 98.0 Immersion period, hours: 97 Water Content, Top one-inch after test, %: 23.9 Swell, %: 0.6

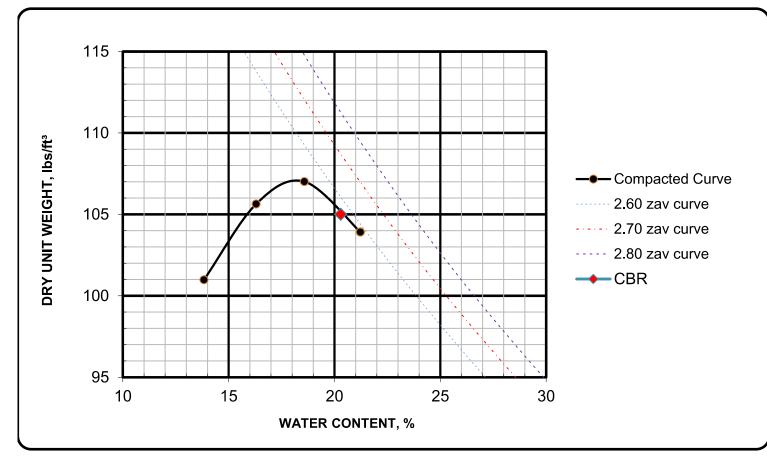
Remarks: Soaked specimen

Reviewed by: John Railly

Page 1 of 1

Document ID: BS-1 CBR

Falcon Engineering 1210 Trinity Rd. Suite 110 Raleigh, NC 27607
Telephone: 919-871-0800 Fax: 919-871-0803 www.falconengineers.com


REPORT OF MOISTURE-DENSITY RELATIONS OF SOILS
USING A 5.5-LB RAMMER AND A 12-IN. DROP
Performed in general accordance with AASHTO T 99, Method A

PROJECT NAME: (U-5604) US-441 Intersection Improvements PROJECT NUMBER: G15062.01

May 12, 2017

SAMPLE IDENTIFICATION: B-01, BS-1, 1-8.5' VISUAL DESCRIPTION: Brown sandy clay

MAXIMUM DENSITY, Ibs/ft³: 107.1 OPTIMUM MOISTURE CONTENT, %: 18.2

AS-RECEIVED WATER CONTENT: 22.7

REVIEWED BY:

LIQUID LIMIT: 40
PLASTIC LIMIT: 25

PLASTICITY INDEX: 15
PERCENT FINER NO. 200: 53.6

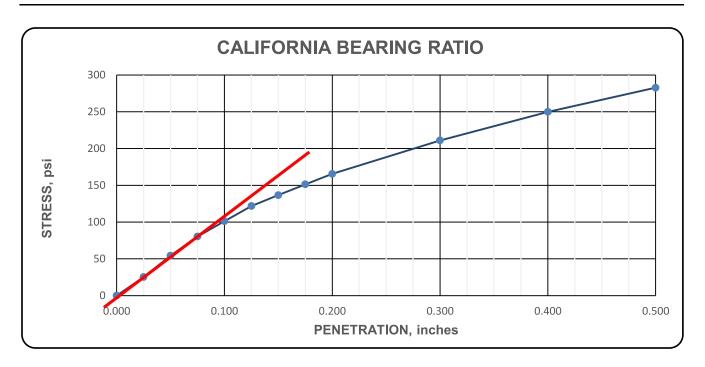
AASHTO CLASSIFICATION: A-6 (6)

REMARKS:

Document ID: BS-1 Laboratory Compaction

Falcon Engineering 1210 Trinity Road Suite 110 Raleigh, NC 27607
Telephone: 919-871-0800 Fax: 919-871-0803 www.falconengineers.com

Page 1 of 1


May 12, 2017

REPORT OF CALIFORNIA BEARING RATIO (CBR) AASHTO T 193

PROJECT NAME: (U-5604) US-441 Intersection Improvements

PROJECT NUMBER: G15062.01 SAMPLE IDENTIFICATION: B-13, BS-2, 1-8.5'

Bearing Ratio: at 0.1 inches of penetration: 10.3 at 0.2 inches of penetration: 11.1

Compaction Method: AASHTO T 99, AASHTO T 193: 5.1.1

Maximum Dry Unit Weight, Ibs/ft³: 94.3
Optimum Water Content, %: 28.0
Compacted Dry Unit Weight, Ibs/ft³: 92.1

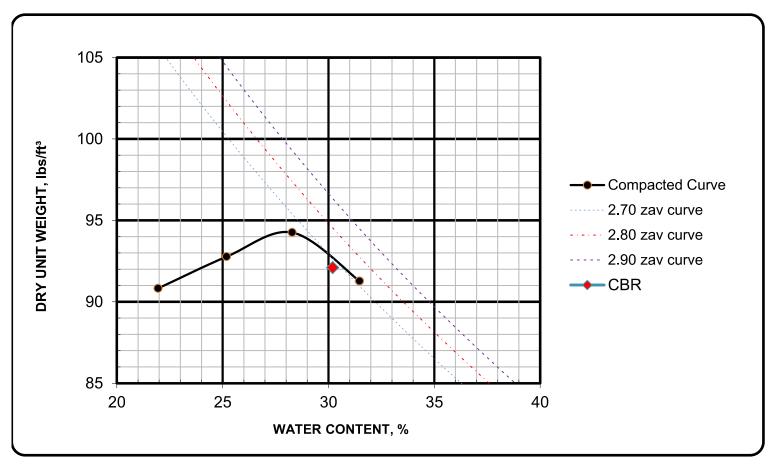
Compacted Water Content, %: 30.2 Surcharge, lbs: 10

Compaction Percentage: 97.7 Immersion period, hours: 97 Water Content, Top one-inch after test, %: 34.0 Swell, %: 0.5

Remarks: Soaked specimen

Reviewed by: John Railly

Document ID: BS-2 CBR


Falcon Engineering 1210 Trinity Rd. Suite 110 Raleigh, NC 27607
Telephone: 919-871-0800 Fax: 919-871-0803 www.falconengineers.com

Page 1 of 1

REPORT OF MOISTURE-DENSITY RELATIONS OF SOILS USING A 5.5-LB RAMMER AND A 12-IN. DROP Performed in general accordance with AASHTO T 99, Method A May 12, 2017

PROJECT NAME: (U-5604) US-441 Intersection Improvements
PROJECT NUMBER: G15062.01
SAMPLE IDENTIFICATION: B-13, BS-2, 1-8.5'
VISUAL DESCRIPTION: Red sandy clay

MAXIMUM DENSITY, Ibs/ft³: 94.3 OPTIMUM MOISTURE CONTENT, %: 28.0

AS-RECEIVED WATER CONTENT: 34.7

LIQUID LIMIT: 62
PLASTIC LIMIT: 35

PLASTICITY INDEX: 27
PERCENT FINER NO. 200: 73.9

AASHTO CLASSIFICATION: A-7-5 (22)

REMARKS:

Document ID: BS-2 Laboratory Compaction

REVIEWED BY:

Falcon Engineering 1210 Trinity Road Suite 110 Raleigh, NC 27607

Telephone: 919-871-0800 Fax: 919-871-0803 www.falconengineers.com

Page 1 of 1