This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document –

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page.

This file or an individual page shall not be considered a certified document.

SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

CONTENTS

K

REFERENCE

<u>SHEET</u>	<u>DESCRIPTION</u>
1	TITLE SHEET
2	LEGEND
3	PLAN SHEET
4 - 5	PROFILES
6 - II	BORING LOGS
12 - 34	LABORATORY TEST RESULTS

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY **LENOIR**

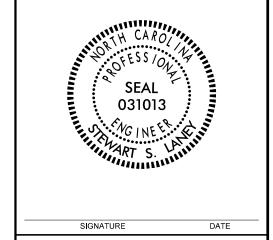
PROJECT DESCRIPTION C.F. HARVEY PARKWAY AND NC 58 TO INTERSECTION OF NC 11 AND GRANGER STATION ROAD GRADING, PAVING, DRAINAGE, STRUCTURES AND SIGNALS SITE DESCRIPTION BRIDGE NO. 212 AND NO. 213 ON -L-(FELIX HARVEY PARKWAY) OVER -Y4-(WALLACE FAMILY ROAD)

INVENTORY

STATE PROJECT REFERENCE NO. 34 R - 5703

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE INCLUDED IN THE REQUEST FOR PROPOSAL. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1999 707-6805. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.


SOIL AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON GEOTECHNICAL INTERPRETATION UNLESS ENCOUNTERED IN A SAMPLE, INTERPRETED BOUNDARIES MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN SAMPLED STRATA AND BOREHOLE INFORMATION MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVEL OS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS HOLD WATER LEVELS OF SOIL MOISTURE CONDITION. THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND AS WELL AS COTHER NON-CLIMATIC EACTORS. PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

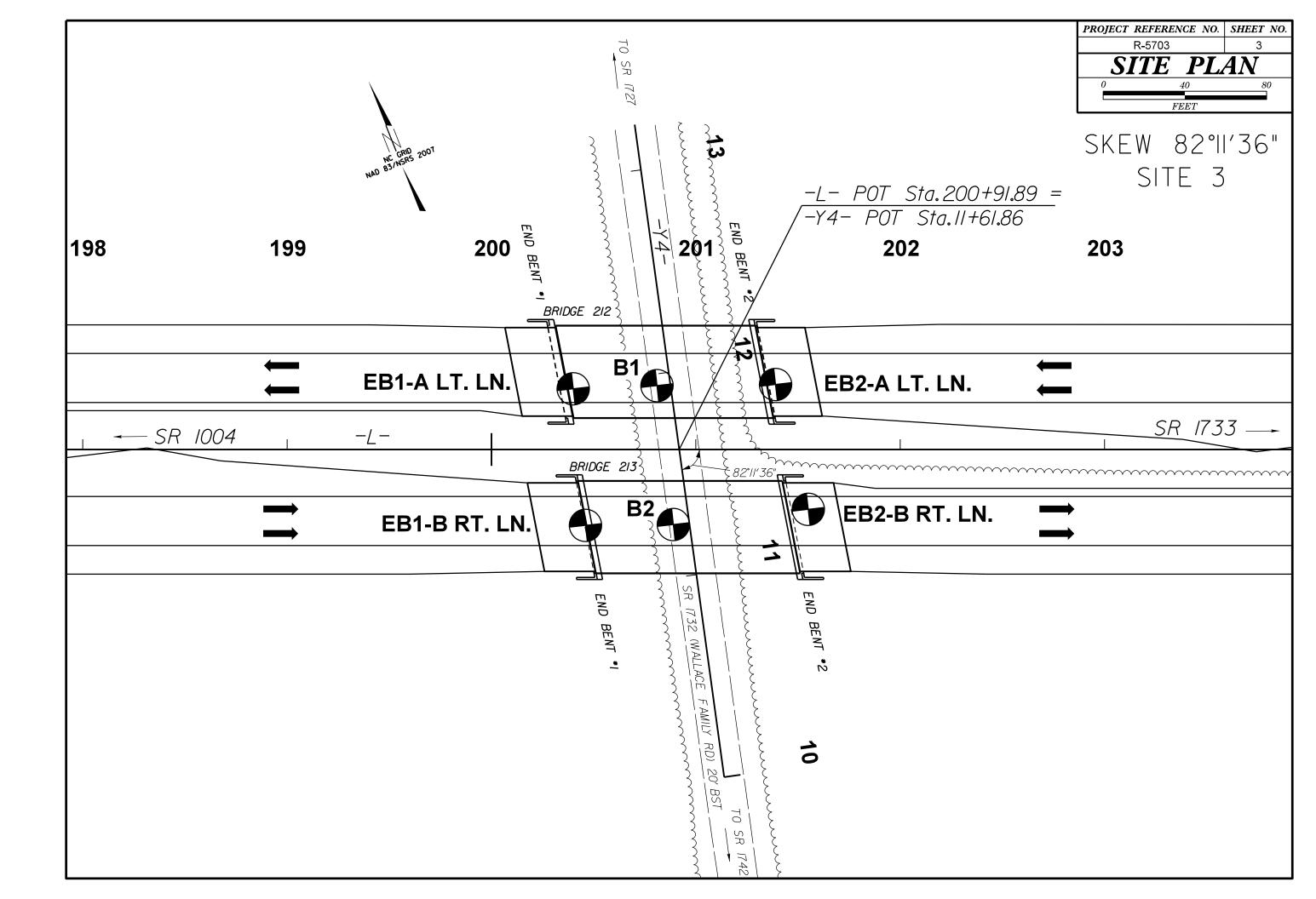
THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DES ON TO WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NICESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

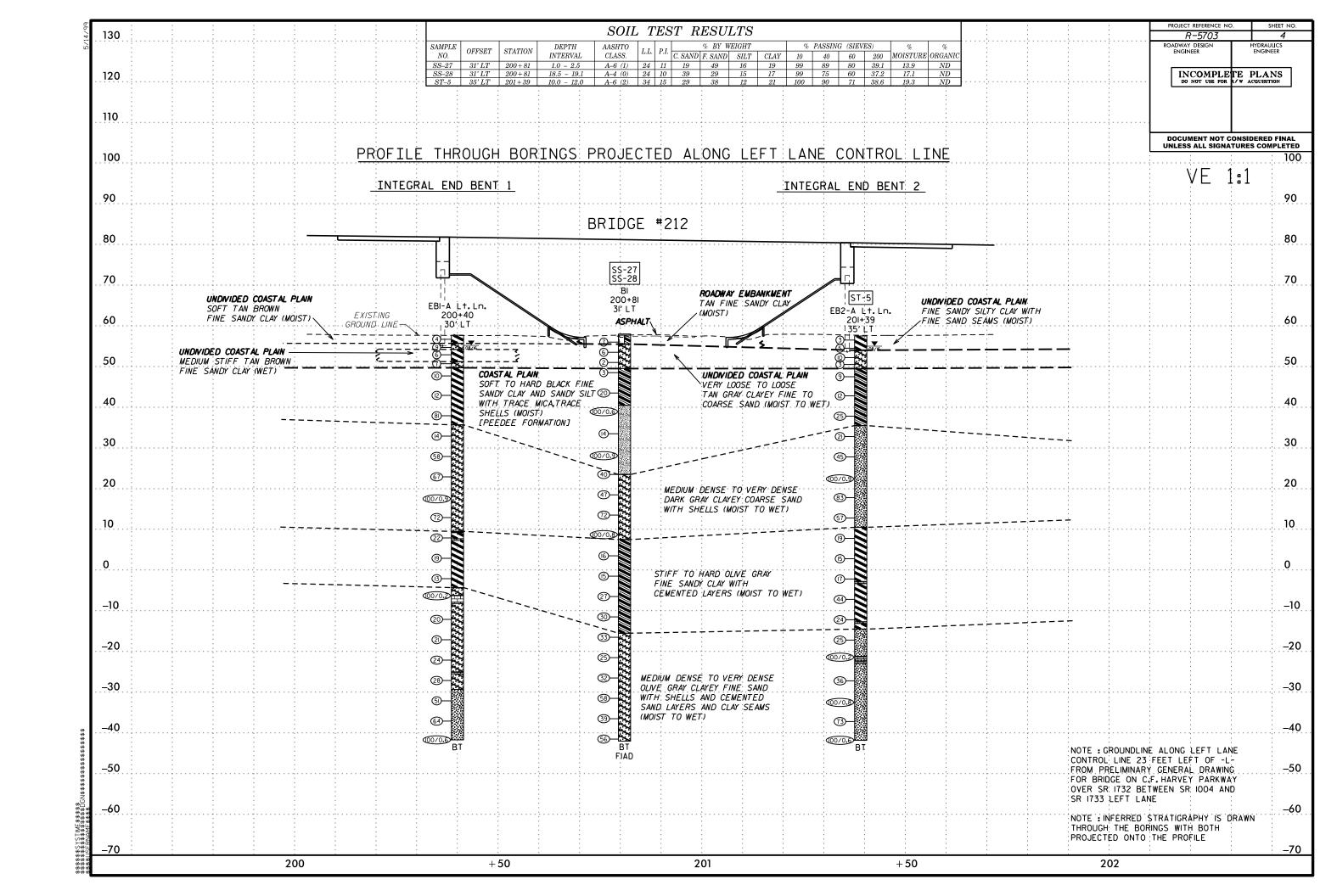
- TES:
 THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT
 OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS
 OR CONTRACT FOR THE PROJECT.
 BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS
 FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASSED ON DIFFERENCES BETWEEN THE
 CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

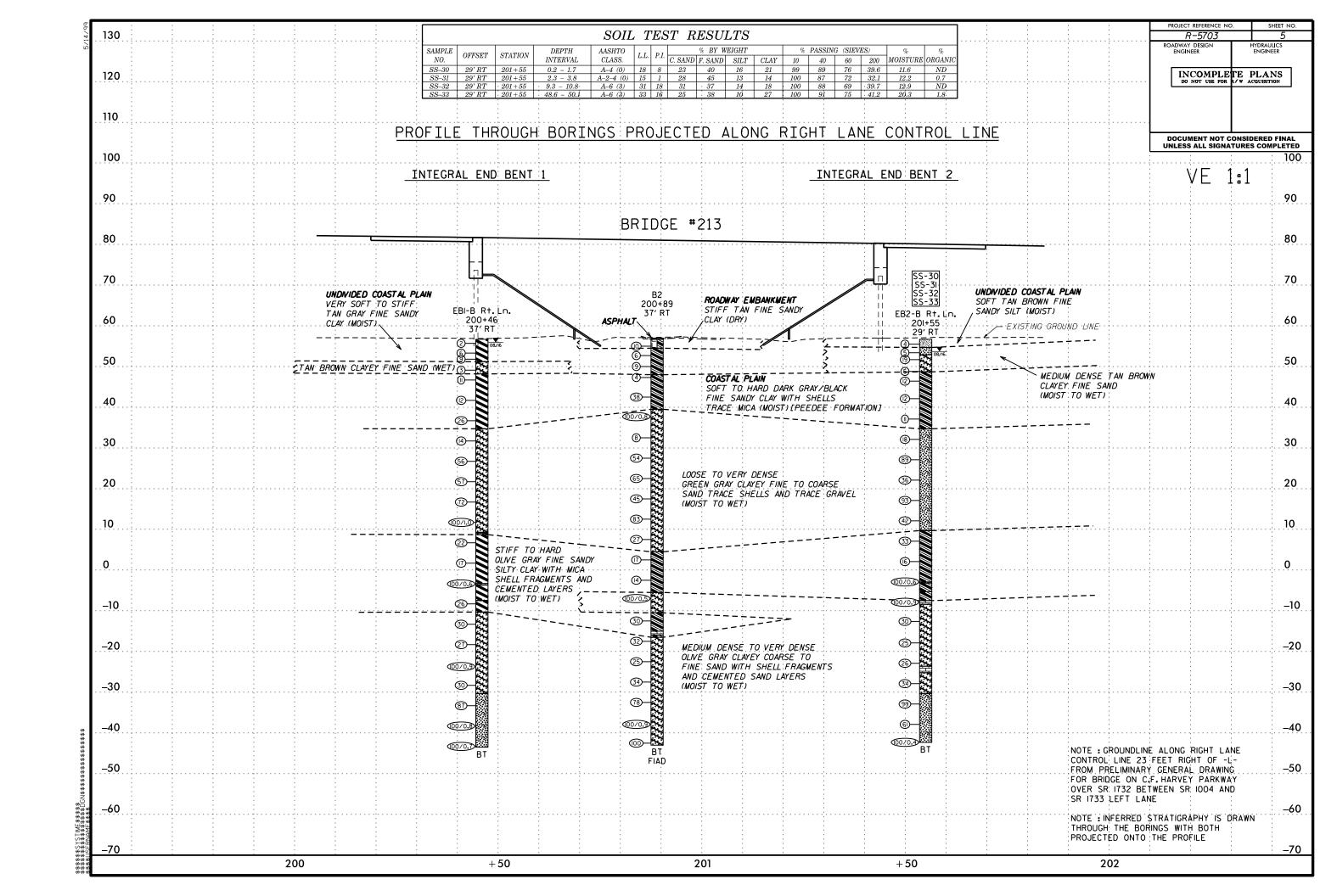
K. HILL S. MITCHELL S. TIERNAN C. CHANDLER F. WRIGHT E. BLONSHINE J. PEELE M. RAWLS INVESTIGATED BY _S&ME, INC. DRAWN BY C. CHANDLER CHECKED BY S. MITCHELL SUBMITTED BY _S&ME, INC. DATE _FEBRUARY, 2017

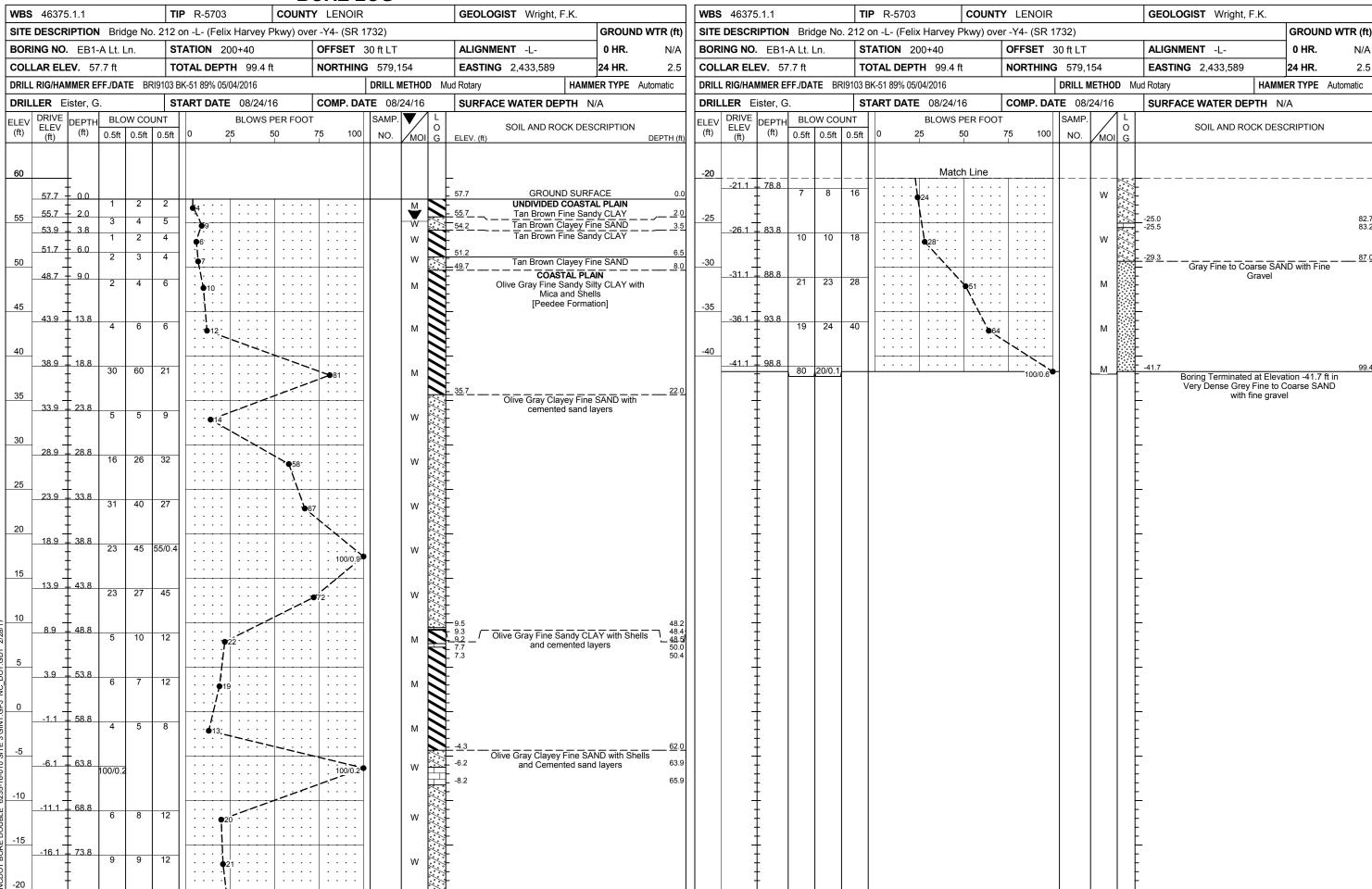
S. LANEY

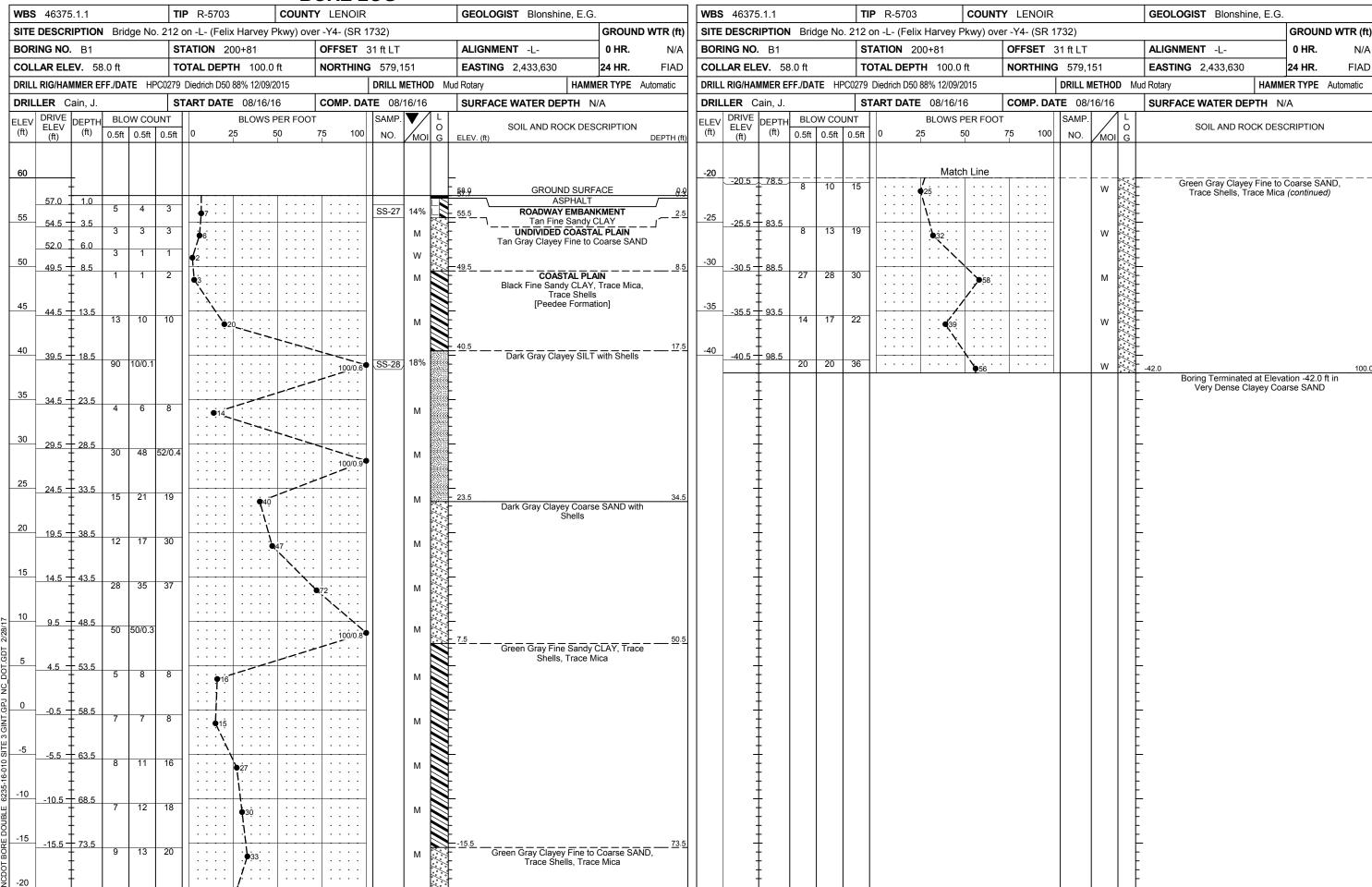
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

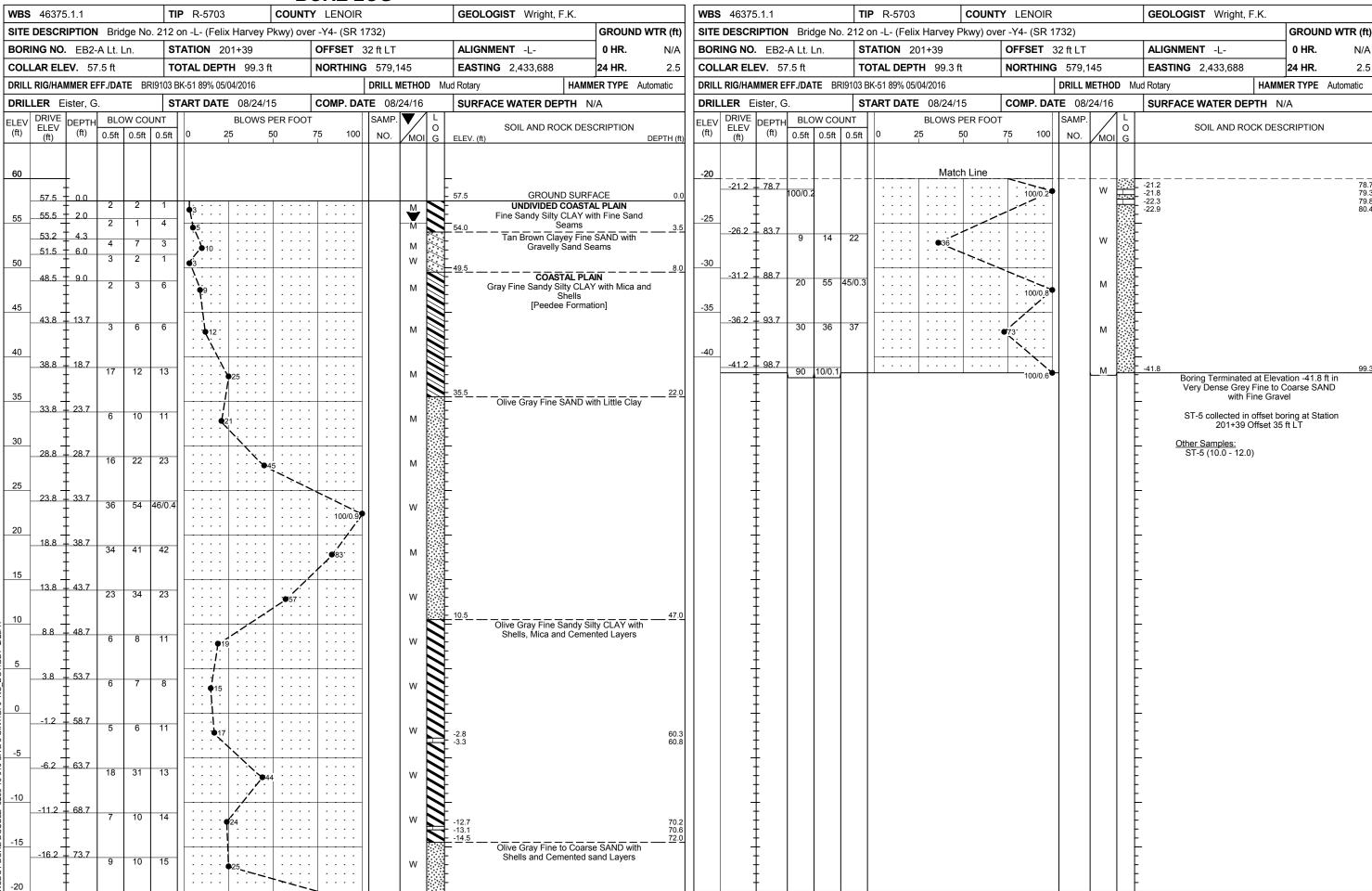

PROJECT REFERENCE NO. SHEET NO. 2

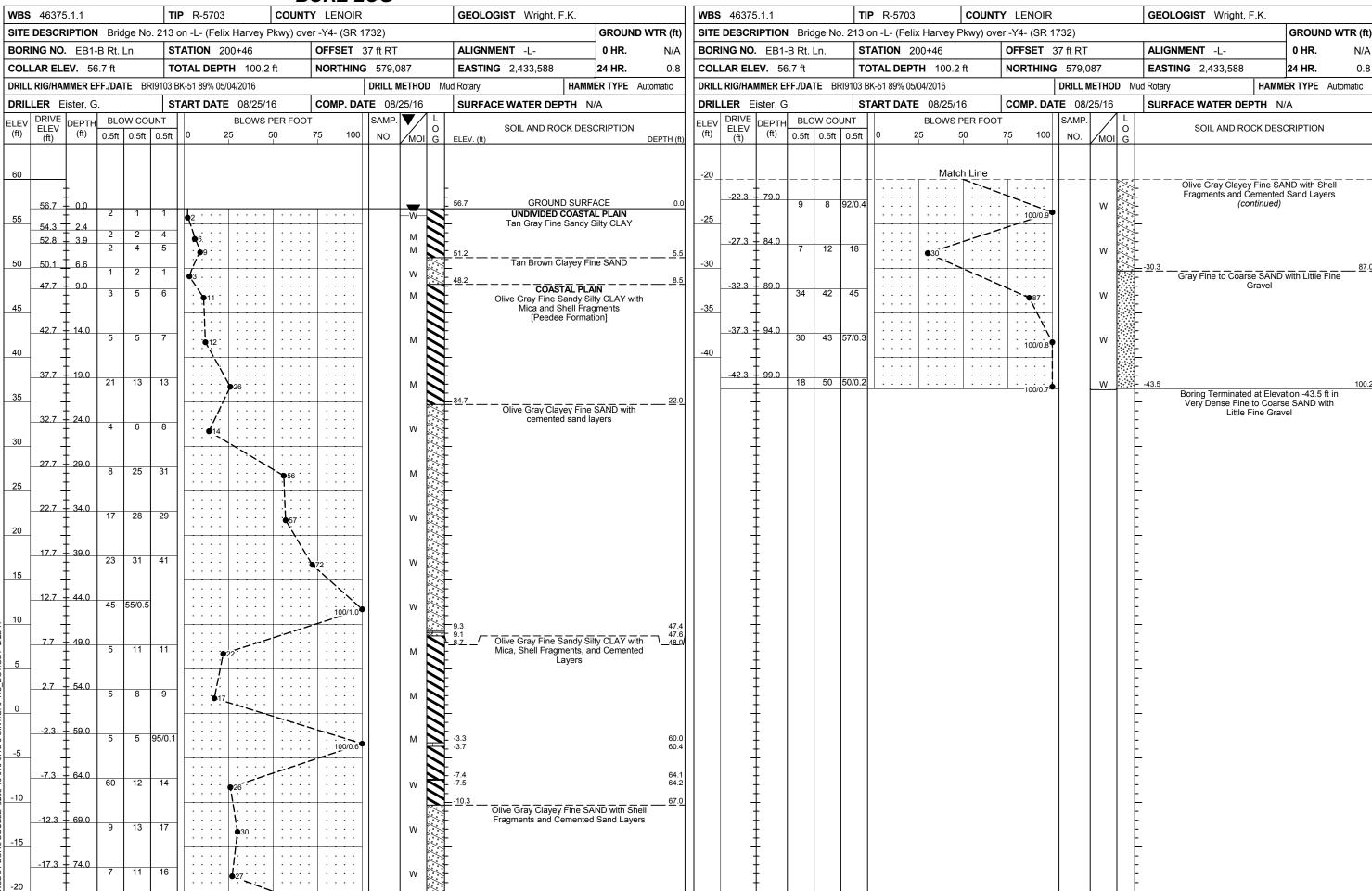

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

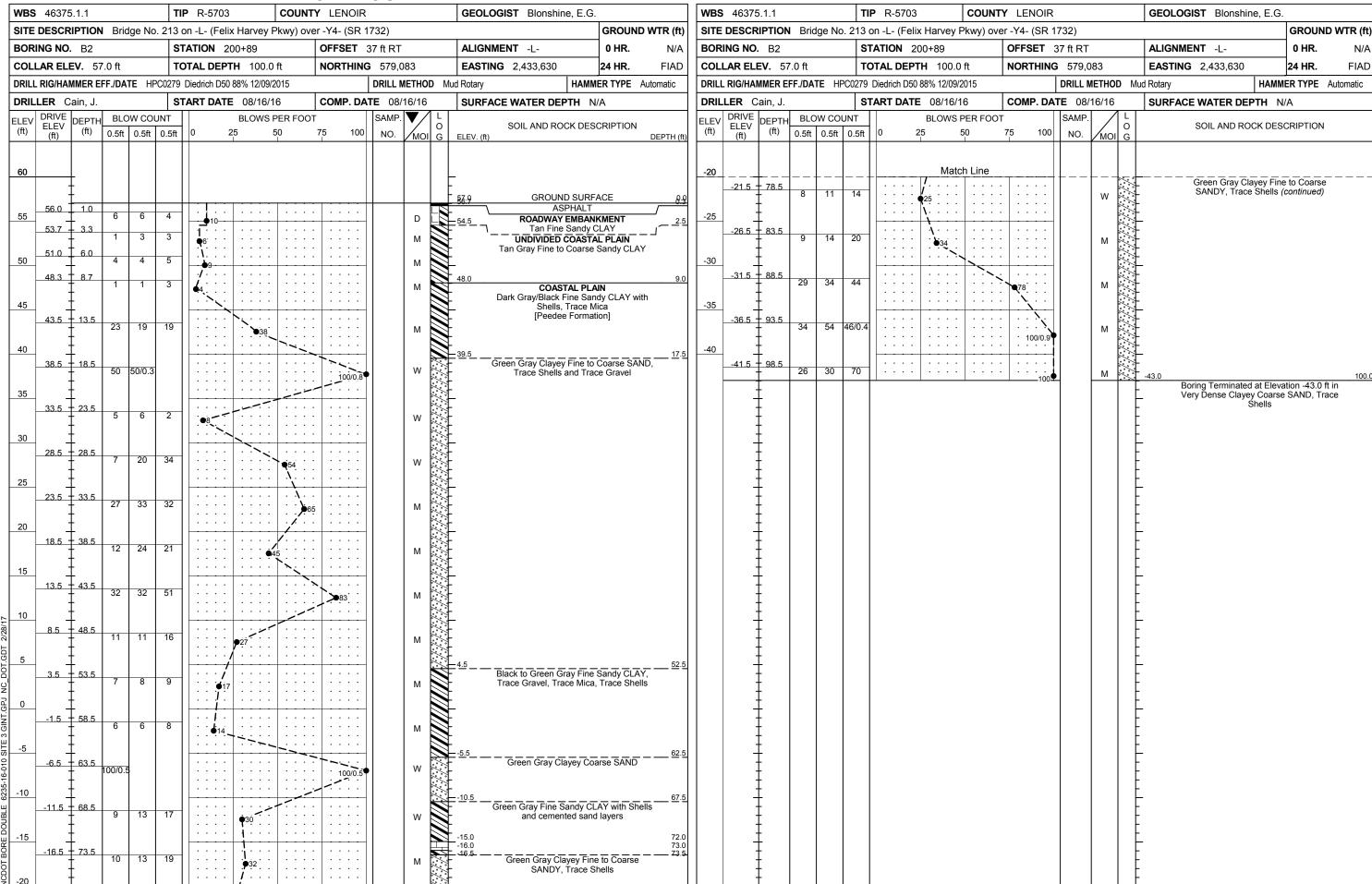

SUBSURFACE INVESTIGATION

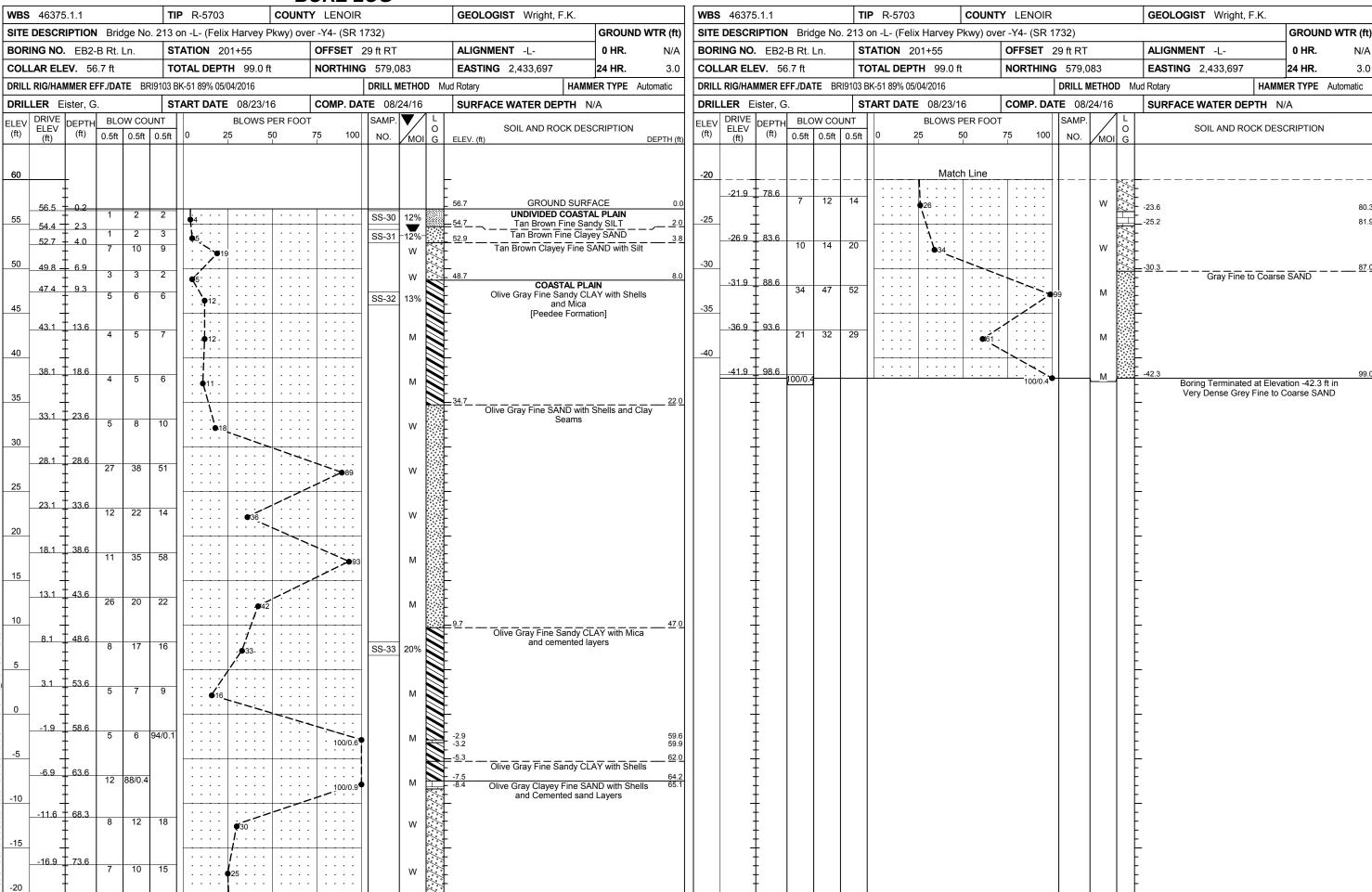

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE.	ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING:	GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN	AQUIFER - A WATER BEARING FORMATION OR STRATA.
CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE,	ANGULARITY OF GRAINS	REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING
VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS:	WEATHERED WINDOWS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS ORGANIC MATERIALS	MINERALOGICAL COMPOSITION	CRYSTALLINE FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
LLASS. (\$\(\sigma\) 39% PASSING *200) (> 39% PASSING *200)	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (CR) WOOLD FIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANTE, GNEISS, GABBRO, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-6 A-2-7 A-1	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM
SYMBOL 0000d000000	SLIGHTLY COMPRESSIBLE LL < 31	ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.	OF SLOPE.
7. PASSING	MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	COASTAL PLAIN SEDIMENTARY ROCK COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
■10 50 MX GRANULAR SIL1- MUCK,	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC. WEATHERING	DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
*40 30 MX 50 MX 51 MN PEAT *200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER	ROCKS OR CUTS MASSIVE ROCK,
MATERIAL	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
PASSING *40 40 MX 41 MN	LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN.	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN 11 MN MODERATE HIGHLY	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF SOULS	GROUND WATER	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. FINE SILTY OR CLAYEY SILTY CLAYEY MATTER		(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
OF MAJOR GRAYEL AND SAND GRAYEL AND SAND SOILS SOILS	STATIC WATER LEVEL AFTER HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR POOR UNSUITABLE	√Pw PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA PERCHED WATER, SATURATED ZONE, OR WATER BEARING PERCHED WATER BEAR	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL.
AS SUBURADE PUUR	SPRING OR SEEP	WITH FRESH ROCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
PI OF A-7-5 SUBGROUP IS < LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS	-	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
PANCE OF CTANDARD PANCE OF UNCONFINED	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD.SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTATION PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION	<u>IF TESTED, WOULD YIELD SPT REFUSAL</u>	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
(N-VALUE) (TUNS/FT-)	WITH SOIL DESCRIPTION OF ROCK STRUCTURES	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED	ITS LATERAL EXTENT.
GENERALLY VERY LOOSE	SOIL SYMBOL Oper out test boring SLOPE INDICATOR INSTALLATION	TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
MATERIAL DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) VERY DENSE > 50	THAN ROADWAY EMBANKMENT TEST	SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT < 2 < 0.25	— INFERRED SOIL BOUNDARY — CORE BORING SOUNDING ROD	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <i>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</i>	OF AN INTERVENING IMPERVIOUS STRATUM,
GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	INFERRED ROCK LINE MONITORING WELL TEST BORING WITH CORE	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4	A ALLUMAN COM POUNDABY A PIEZOMETER CONTRACTOR	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
HARD > 30 > 4	INSTALLATION SPT N-VALUE	ROCK HARDNESS	RUN AND EXPRESSED AS A PERCENTAGE.
TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	UNDERCUT UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE	SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BUULDER COBBLE GRAVEL SAND SAND SILI CLAY	UNDERCOT LESS ACCEPTABLE DEGRADABLE ROCK	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(CSE, SD.) (F SD.) (SE.)	ABBREVIATIONS	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED	OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
SOIL MOISTURE - CORRELATION OF TERMS	CL CLAY MOD MODERATELY γ - UNIT WEIGHT	HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOUL MOISTURE SCALE FIELD MOISTURE	CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 _d - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC	POINT OF A GEOLOGIST'S PICK.	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY
(ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY
(SAT.) FROM BELOW THE GROUND WATER TABLE	F - FINE SL, - SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC CEMISOL ID. DEGLIDES DRVING TO	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) SEMISOLITY REGULARS DATING TO ATTAIN OPTIMUM MOISTURE PLASTIC LIMIT	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING	BENCH MARK: 135.18 FEET RIGHT -L- 343+61, R57037 GPS MONUMENT
	EQUIPMENT USED ON SUBJECT PROJECT	TERM SPACING TERM THICKNESS VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET	N 578,731.5020 E 2,447,574.9400 ELEVATION: 56.27 FEET
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET	N 516,131,3020 E 2,441,514,3400 ELEVATION: 56.21 FEET
SL SHRINKAGE LIMIT	CME-45C CLAY BITS X AUTOMATIC MANUAL	CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	6' CONTINUOUS FLIGHT AUGER CORE SIZE:	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	FIAD - FILLED IMMEDIATLEY AFTER DRILLING
PLASTICITY	CME-55 CORE SIZE: CORE SIZE: -H	INDURATION	
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS -N	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW	I I TUNG -CARRIDE INSERTS	RUBBING WITH FINGER FREES NUMEROUS GRAINS: FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
SLIGHTLY PLASTIC 6-15 SLIGHT MODERATELY PLASTIC 16-25 MEDIUM	VANE SHEAR TEST X CASING W/ ADVANCER HAND TOOLS: Description: Post Hole digger		
HIGHLY PLASTIC 26 OR MORE HIGH	POST HOLE DIGGER POST HOLE DIGGER POST HOLE DI	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNG, CARB.	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY),	X BK-5I CORE BIT VANE SHEAR TEST	DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X <u>D-50</u>	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE: SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-1
		JAMELLE DILEND HONOSS UNHING.	DATE: 6-13-14



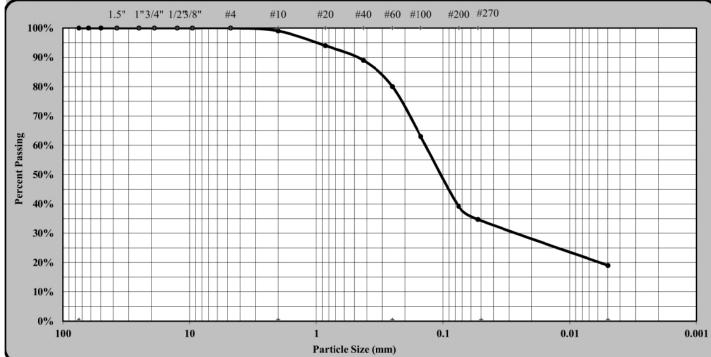






Revision Date: 12/20/09

Particle Size Analysis of Soils


AASHTO T88 as Modified by NCDOT

51110 100 as Moaijiea by NCDO1

Quality Assurance

					Quan	iy Assurance					
S&	S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616										
S&ME Project #:	6235-16-010			Report Date:		11/8/16					
Project Name:	C.F. Harvey Parkway	Extension R-:	5703	Test Date(s):		11/1-8/16					
State Project #:	N/A F.A	A. Project No:	N/A	TIP NO:	N/A						
Client Name:	Michael Baker Engine	ering									
Address:	Raleigh, NC										
Boring #:	B1	Sample #:	SS-27	Sample	Date:	N/A					
Location:	Site-Borehole	Offset:	N/A	Depth	n (ft):	1.0-2.5'					
Sample Description:	Tan fine sandy CLAY				0	A-6 (1)					

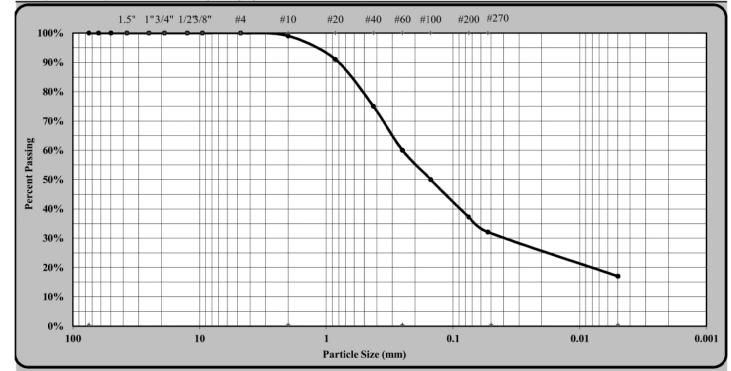
		1 at tiefe i	size (min)					
As Defin	ed by NCDOT			Fine Sand		< 0.2	5 mm and >	0.05 mm
Gravel	< 75 mm a	nd > 2.00 mm		Silt		< 0.05 and > 0.005 mm		05 mm
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay			< 0.005 m	m
Maximum Particle Size	#4	Coarse	Sand		19%	Silt		16%
Gravel	1%	Fine Sa	nd	4	45%	Clay		19%
Apparent Relative Density	2.650	Moistu	re Content	1	3.9%	% Passin	g #200	39.1%
Liquid Limit	24	Plastic	Limit		13	Plastic In	dex	11
		Soil Morta	r (-#10 Siev	ve)				
Coarse Sand	19%	Fine Sand	46%		Silt	16%	Clay	19%
Description of Sand & Grav	el Particles:	Rounded				Ang	ular	X
Hard & Durable	\boxtimes	Soft			Weat	thered & Fri	able	
References / Comments / Deviati	ons: ND=N	ot Determined.						
Karen Warner		118-06-0305		Labora	tory Tec	chnician	<u>11</u>	1/8/2016
Technician Name		Certification No.			Position			Date
Stewart Laney, P.E	<u> </u>			Sen	ior Engi	neer		
Technical Responsibility		Signature			Position			Date
Thi	s report shall not be	reproduced, except in	full, without th	e written ap	proval of S	&ME, Inc.		

Form No. TR-T88

Revision Date: 12/20/09

Revision No. 0

S&ME, Inc.


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

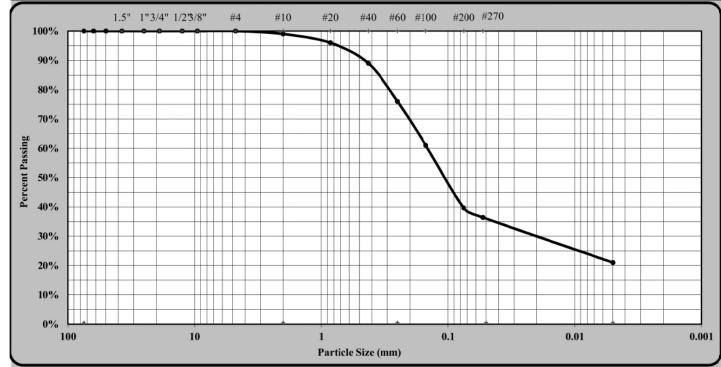
Quality Assurance

						2	9 1100000
S&	ME, Inc. Raleigh,	3201 Spring Fore	est Road, Ra	aleigh, N	North Carolina	27616	
S&ME Project #:	6235-16-010				Report Date:		11/8/16
Project Name:	C.F. Harvey Park	way Extension R-5	5703		Test Date(s):		11/1-8/16
State Project #:	N/A	F.A. Project No:	N/A		TIP NO:	N/A	
Client Name:	Michael Baker E	ngineering					
Address:	Raleigh, NC						
Boring #:	B1	Sample #:	SS-28		Sample	Date:	N/A
Location:	Site-Borehole	Offset:	N/A		Dept	h (ft):	18.5-19.1'
Sample Description:	Dark Gray Clayey	SILT				0	A-4 (0)

As Defin	As Defined by NCDOT]	Fine Sand	< 0.25 mm and > 0.05 mm		
Gravel	< 75 mm an	d > 2.00 mm		Silt	< 0.05 and > 0.005 mm		05 mm
Coarse Sand	< 2.00 mm a	nd >0.25 mm		Clay	<	0.005 mn	n
Maximum Particle Size	#4	Coarse S	and	39%	Silt		15%
Gravel	1%	Fine San	d	28%	Clay		17%
Apparent Relative Density	2.650	Moisture	Content	17.1%	% Passing #	200	37.2%
Liquid Limit	24	Plastic L	imit	14	Plastic Index		10
		Soil Mortar	(-#10 Siev	re)			
Coarse Sand	39%	Fine Sand	29%	Silt	15%	Clay	17%
Description of Sand & Grav	vel Particles:	Rounded			Angula	r	X
Hard & Durable	×	Soft		Weatl	nered & Friable	e	
References / Comments / Deviati	ons: ND=No	t Determined.					
Karen Warner		118-06-0305		Laboratory Tec	hnician	<u>11</u>	/8/2016
Technician Name		Certification No.		Position			Date
Stewart Laney, P.E			_	Senior Engir	neer		
Technical Responsibility		Signature		Position			Date
Thi	s report shall not be r	eproduced, except in f	full, without th	e written approval of So	&ME, Inc.		

Raleigh, NC 27616

Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

					2	,
S&	ME, Inc. Raleigh,	3201 Spring Ford	est Road, Ra	leigh, North Carolin	a 27616	
S&ME Project #:	6235-16-010			Report Date	:	11/8/16
Project Name:	C.F. Harvey Park	way Extension R-5	5703	Test Date(s)	:	11/1-8/16
State Project #:	N/A	F.A. Project No:	N/A	TIP NO:	N/A	
Client Name:	Michael Baker Er	ngineering				
Address:	Raleigh, NC					
Boring #:	EB2-B Rt. Ln.	Sample #:	SS-30	Samp	le Date:	N/A
Location:	Site-Borehole	Offset:	N/A	De	pth (ft):	0.2-1.7'
Sample Description:	Tan brown fine sa	ndy SILT			0	A-4 (0)

As Defin	ed by NCDOT			Fine Sand			< 0.25 mm and > 0.05 mm		
Gravel	< 75 mm and > 2.00 mm			Silt		< 0.05 and > 0.005 mm		05 mm	
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay			< 0.005 mr	n	
Maximum Particle Size	#4	Coarse S	Sand		23%	Silt		15%	
Gravel	1%	Fine Sar	nd		40%	Clay		21%	
Apparent Relative Density	2.650	Moisture	e Content		11.6%	% Passir	ng #200	39.6%	
Liquid Limit	18	Plastic I	Limit		10	Plastic In	ndex	8	
		Soil Mortar	(-#10 Siev	ve)					
Coarse Sand	23%	Fine Sand	40%		Silt	16%	Clay	21%	
Description of Sand & Grav	vel Particles:	Rounded				An	gular	X	
Hard & Durable	\times	Soft			Weat	thered & Fr	iable		
References / Comments / Deviati	ons: ND=N	ot Determined.							
Karen Warner		118-06-0305		Labo	ratory Tec	hnician	<u>11</u>	/8/2016	
Technician Name		Certification No.			Position			Date	
Stewart Laney, P.E	<u> </u>			<u>S</u> 6	enior Engi	neer			
Technical Responsibility		Signature			Position			Date	
Thi	s report shall not be	reproduced, except in	full, without th	ie written	approval of S	&ME, Inc.			

3201 Spring Forest Road Raleigh, NC 27616 Form No. TR-T88
Revision No. 0

S&ME, Inc.

Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

				~ .
S&	ME, Inc. Raleigh,	3201 Spring Forest Road, R	aleigh, North Carolina 27	7616
S&ME Project #:	6235-16-010		Report Date:	11/14/16
Project Name:	C.F. Harvey Park	way Extension R-5703	Test Date(s):	10/7 - 11/14/16
State Project #:	N/A	F.A. Project No: N/A	TIP NO:	N/A
Client Name:	Michael Baker E	ngineering		
Address:	Raleigh, NC			
Boring #:	EB2-B Rt. Ln.	Sample #: SS-31	Sample D	Date: N/A
Location:	Site-Borehole	Offset: N/A	Depth	(ft): 2.3 - 3.8
Sample Description:	Tan Silty Clayey	Coarse to Fine SAND		A-2-4 (0)

As Defin	ed by NCDOT		F	ine Sand	< 0.25 mm and > 0.05 mm		
Gravel	< 75 mm	and > 2.00 mm	Silt		< 0.05 and > 0.005 mm		05 mm
Coarse Sand	< 2.00 mn	n and >0.25 mm		Clay	<	0.005 mr	n
Maximum Particle Size	#10	Coarse S	Sand	28%	Silt		13%
Gravel	0%	Fine San	nd	45%	Clay		14%
Apparent Relative Density	ND	Moisture	e Content	ND	% Passing #	#200	32.1%
Liquid Limit	15	Plastic L	Limit	14	Plastic Inde	x	1
		Soil Mortar	(-#10 Siev	e)			
Coarse Sand	28%	Fine Sand	45%	Silt	13%	Clay	14%
Description of Sand & Grav	el Particles:	Rounded			Angula	ır	
Hard & Durable		Soft		Weat	hered & Friabl	e	
References / Comments / Deviati	ons: ND=	Not Determined.					
Mal Krajan, ET Technician Name		104-01-0703 Certification No.		Laboratory M	anager	<u>11.</u>	/14/2016 Date
Mal Krajan, ET Technical Responsibility	_	Signature	\geq	<u>Laboratory M</u> Position	<u>anager</u>	11.	/14/2016 Date
Thi	s report shall not b	e reproduced, except in t	full, without the	written approval of S	&ME. Inc.		

Revision No. 0 Revision Date: 07/10/08

Moisture, Ash, and Organic Matter

AASHTO T-267

Quality Assurance

		11111	31110 1 207				2	21551111111111
S&ME, Inc	. Raleigh	, 3201 Spring F	orest Raod,	Raleigh,	, Nort	h Carolina	27616	
6235-16-01	10				Rep	ort Date:	10	0/21/16
C.F. Harvey	Parkway	Extension R-57	703		Test	Date(s):	10/18	- 10/21/16
Michael Bal	ker Engin	eering						
Raleigh, NC								
EB2-B Rt. I	∠n.	Sample #:	SS	-31		Sample	Date:	N/A
Site-Boreho	le	Offset:	N	/A		Dep	th (ft):	2.3 - 3.8
tion: Tan Sil	ty Clayey	Coarse to Fine	SAND (A-2-	4) (0)				
Balance: 0.0.	l g.Readal	bility, 500g. Minir	num Capaccity	,				
&ME ID #:	1024	Cal. Date:	11/06/16	Due:	11	/06/17		
1	C.F. Harvey Michael Bal Raleigh, NC EB2-B Rt. I Site-Boreho tion: Tan Sil Balance: 0.0	6235-16-010 C.F. Harvey Parkway Michael Baker Engin Raleigh, NC EB2-B Rt. Ln. Site-Borehole tion: Tan Silty Clayey Balance: 0.01 g.Readal	6235-16-010 C.F. Harvey Parkway Extension R-57 Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: Site-Borehole Offset: tion: Tan Silty Clayey Coarse to Fine Balance: 0.01 g.Readability, 500g. Minin	C.F. Harvey Parkway Extension R-5703 Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS Site-Borehole Offset: N tion: Tan Silty Clayey Coarse to Fine SAND (A-2-Balance: 0.01 g.Readability, 500g. Minimum Capaccity	6235-16-010 C.F. Harvey Parkway Extension R-5703 Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS-31 Site-Borehole Offset: N/A tion: Tan Silty Clayey Coarse to Fine SAND (A-2-4) (0) Balance: 0.01 g.Readability, 500g. Minimum Capaccity	6235-16-010 Rep C.F. Harvey Parkway Extension R-5703 Test Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS-31 Site-Borehole Offset: N/A tion: Tan Silty Clayey Coarse to Fine SAND (A-2-4) (0) Balance: 0.01 g.Readability, 500g. Minimum Capaccity	6235-16-010 Report Date: C.F. Harvey Parkway Extension R-5703 Test Date(s): Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS-31 Sample Site-Borehole Offset: N/A Dept. tion: Tan Silty Clayey Coarse to Fine SAND (A-2-4) (0) Balance: 0.01 g.Readability, 500g. Minimum Capaccity	S&ME, Inc. Raleigh, 3201 Spring Forest Raod, Raleigh, North Carolina 27616 6235-16-010 Report Date: 10 C.F. Harvey Parkway Extension R-5703 Test Date(s): 10/18 Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS-31 Sample Date: Site-Borehole Offset: N/A Depth (ft): tion: Tan Silty Clayey Coarse to Fine SAND (A-2-4) (0) Balance: 0.01 g.Readability, 500g. Minimum Capaccity

Method A: Moisture Content Determination

Required Oven Temperature: 105 ± 5° C

	_		
	Oven Temperature: 105 °C	Tare #	t
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	48.00
а	Mass of <i>As-Received</i> Specimen + Tare Wt.	grams	94.87
b	Mass of Oven Dry Specimen + Tare Wt.	grams	89.76
w	Water Weight	(a-b)	5.11
A	Mass of As-Received Specimen	(a-t)	46.87
В	Mass of Oven Dry Specimen	(b-t)	41.76
% Moi	sture Content as a % of As Received or Total Mass	(w/A)*100	10.9%
%	Moisture Content as a % of Oven-dried Mass	(w/B)*100	12.2%
S&ME	ID #: 1454 Cal. Date: 10/7/16 Due:	10/7/17	_

Oven *S&ME ID #:* 1454

Method C (440° C) or D (750° C): Ash Content and Organic Matter Determination

mem	Membra C (440 C) of D (750 C). Ash Coment and Organic Manier Determination							
	Muffle Furnace: 455 °C	Tare #	11					
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	13.60					
b	Mass of Oven Dry Specimen + Tare Wt.	grams	39.45					
С	Ash Weight + Tare Wt.	grams	39.26					
C	Ash Weight	c-t	25.66					
В	Mass of Oven Dry Specimen	(b-t)	25.85					
D	% Ash Content	(C/B)*100	99.3%					
	% Organic Matter	100-D	0.7%					

Muffle Furnace: S&ME ID #: 00261

Notes / Deviations / References:

Mal Krajan, ET Technical Responsibility Signature

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Page 14 of 34

Form No: TR-T289-1

Revision No. 0

Revision Date: 07/10/08

pH of Soil

AASHTO T289 Quality Assurance

	S&ME, Inc.	Raleigh, 3201 Sprii	, North Carolina 27616				
Project #:	6235-16-01	0	Report Date:	11	11/7/16		
Project Nam	ne: C.F. Harvey	Parkway Extension I	R-5703		Test Date(s):	11/5	- 11/7/16
Client Name	Name: Michael Baker Engineering						
Client Addr	ess: Raleigh, NC						
Boring #:	EB2-B Rt. Ln.	2-B Rt. Ln. Sample #: SS-31			Sample D	ate:	N/A
Location:	Site-Borehole	Offs	set: N/A		Depth (ft): 2.3 - 3.8		
Sample Des	cription: Tan	Silty Clayey Coarse	to Fine SA	AND (A-2-4) (0))		
Equipment:							
Balance		S&ME ID#	1024	Cal. Date:	11/6/16	Due:	11/6/17
Sieve:	#10	S&ME ID#	13223	Cal. Date:	6/11/16	Due:	6/11/17
pH Meter:		S&ME ID#	1365	Cal. Date:	11/7/16	Due:	NA

pH Meter Calibration

Buffer Solution	Results
pH buffer 7.0	7.02
pH buffer 4.01	4.01
pH buffer 10.0	10.03
Buffer Temperature ⁰ C	22.4

Measuring pH of Soil

Measurements						
Weigtht of Air Dry Soil (g)	20.01					
Distilled Water (g)	20.02					
Temperature ⁰ C	21.4					
pH Readings	5.89					

AASHTO T-289: Determining pH of Soil for Use in Corrosion Testing Notes / Deviations / References:

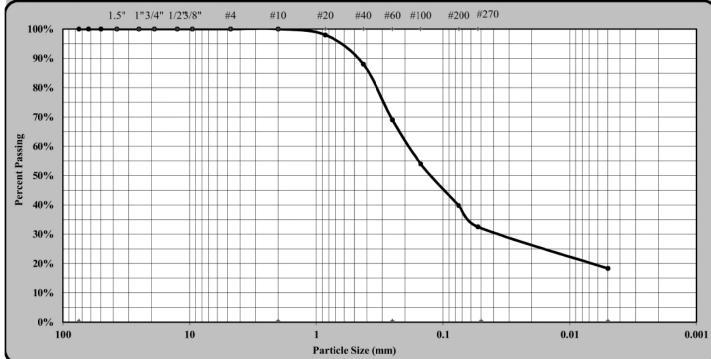
Mal Krajan, ET Technical Responsibility

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

EB2-B Rt. Ln. SS-32 (9.3-10.8)

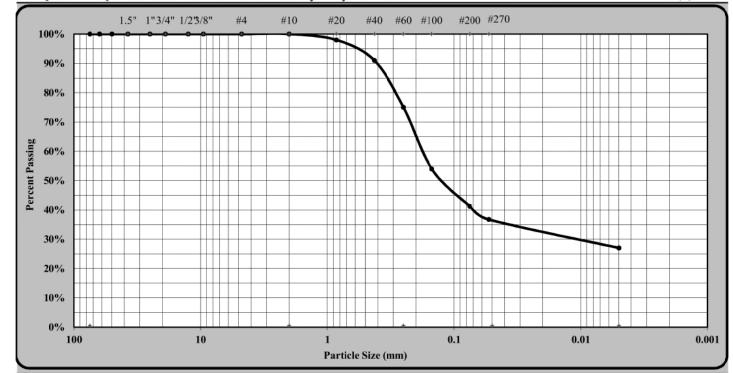
					Quality As	ssurance
S&	ME, Inc. Raleigh, 3	201 Spring Fore	est Road, Ra	leigh, North Carolina 27	7616	
S&ME Project #:	6235-16-010			Report Date:	11	/8/16
Project Name:	C.F. Harvey Parkwa	ay Extension R-5	5703	Test Date(s):	11/	1-8/16
State Project #:	N/A	F.A. Project No:	N/A	TIP NO:	N/A	
Client Name:	Michael Baker Eng	ineering				
Address:	Raleigh, NC					
Boring #:	EB2-B Rt. Ln.	Sample #:	SS-32	Sample D	ate:	N/A
Location:	Site-Borehole	Offset:	N/A	Depth	(ft):	9.3-10.8'
Sample Description:	Gray fine sandy CL	AY		•	0 A-	6 (3)

		1 article 5	ize (iiiii)				
As Defin	ed by NCDOT			Fine Sand	< 0.25 m	nm and > ().05 mm
Gravel	< 75 mm a	nd > 2.00 mm		Silt	< 0.05	and > 0.00	05 mm
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay	<	0.005 mn	n
Maximum Particle Size	#20	Coarse	Sand	31%	Silt		14%
Gravel	0%	Fine Sar	nd	37%	Clay		18%
Apparent Relative Density	2.650	Moistur	e Content	12.9%	% Passing #	#200	39.7%
Liquid Limit	31 Plastic Li		Limit	13	Plastic Index	x	18
		Soil Mortar	(-#10 Siev	/e)			
Coarse Sand	31%	Fine Sand	37%	Silt	14%	Clay	18%
Description of Sand & Gra	vel Particles:	Rounded			Angula	ır	X
Hard & Durable	\boxtimes	Soft	Soft		Veathered & Friable		
References / Comments / Deviat	ions: ND=N	ot Determined.					
Karen Warner		118-06-0305		Laboratory Tec	chnician	<u>11</u>	/8/2016
Technician Name		Certification No.	Position				Date
Stewart Laney, P.I	<u> </u>			Senior Engi	neer		
Technical Responsibility		Signature	Signature Position				Date
Th	is report shall not be	reproduced, except in	full, without th	e written approval of S	&ME, Inc.		

3201 Spring Forest Road Raleigh, NC 27616

Form No. TR-T88 Revision No. 0

Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

				a a	
Se	&ME, Inc. Raleigh,	3201 Spring Fores	st Road, Ral	eigh, North Carolina 27	616
S&ME Project #:	6235-16-010			Report Date:	11/14/16
Project Name:	C.F. Harvey Park	way Extension R-5'	703	Test Date(s):	10/7 - 11/14/16
State Project #:	N/A	F.A. Project No:	N/A	TIP NO:	V/A
Client Name:	Michael Baker Er	ngineering			
Address:	Raleigh, NC				
Boring #:	EB2-B Rt. Ln.	Sample #:	SS-33	Sample Da	ite: N/A
Location:	Site-Borehole	Offset:	N/A	Depth (ft): 48.6 - 50.1
Sample Description	: Brown Coarse to F	ine Sandy Silty CL	AY		A-6 (3)

As Defined by NCDOT			Fine Sand < 0.25			.25 mm and > 0.05 mm	
Gravel	Gravel < 75 mm and > 2.00 mm		Silt		< 0.05 a	< 0.05 and > 0.005 mm	
Coarse Sand	< 2.00	0 mm and >0.25 mm		Clay	<	0.005 mi	n
Maximum Particle Size	#4	Coarse S	and	25%	Silt		10%
Gravel	0%	Fine San	d	38%	Clay		27%
Apparent Relative Density	ND	Moisture	Content	ND	% Passing #	200	41.2%
Liquid Limit	33	Plastic L	imit	17	Plastic Index	(16
		Soil Mortar	(-#10 Siev	e)			
Coarse Sand	25%	Fine Sand	38%	Silt	10%	Clay	27%
Description of Sand & Grav	vel Particles	s: Rounded			Angula	r	
Hard & Durable		Soft		Wea	thered & Friable	e	
References / Comments / Deviati	ions:	ND=Not Determined.					
<u>Mal Krajan, ET</u> Technician Name		104-01-0703 Certification No.		Laboratory N	<u>Ianager</u>	11	/14/2016 Date
Mal Krajan, ET Technical Responsibility		Signature	Signature		<u>Laboratory Manager</u> Position		/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Revision No. 0 Revision Date: 07/10/08

Moisture, Ash, and Organic Matter

AASHTO T-267

Quality Assurance

							2	y 1200tti miree
S&ME, In	c. Raleigh	, 3201 Spring F	orest Raod,	Raleigh,	, Nort	h Carolina	27616	
6235-16-0	10				Repo	ort Date:	1	0/21/16
C.F. Harve	y Parkway	Extension R-57	703		Test	Date(s):	10/18	3 - 10/21/16
Michael B	aker Engin	eering						
: Raleigh, N	С							
EB2-B Rt.	Ln.	Sample #:	SS	-33		Sample	Date:	N/A
Site-Boreh	ole	Offset:	N	/A		Dep	th (ft):	48.6 - 50.1
Sample Description: Brown Coarse to Fine Sandy Silty CLAY (A-6) (3)								
Balance: 0.	01 g.Readal	bility, 500g. Minir	num Capaccity	,				
S&ME ID #:	1024	Cal. Date:	11/06/16	Due:	11,	/06/17		
	6235-16-0 C.F. Harve Michael Baleigh, N EB2-B Rt. Site-Borehotion: Brown Balance: 0.	6235-16-010 C.F. Harvey Parkway Michael Baker Engine: Raleigh, NC EB2-B Rt. Ln. Site-Borehole otion: Brown Coarse to Balance: 0.01 g.Readal	6235-16-010 C.F. Harvey Parkway Extension R-57 Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: Site-Borehole Offset: otion: Brown Coarse to Fine Sandy Silter Balance: 0.01 g.Readability, 500g. Minim	6235-16-010 C.F. Harvey Parkway Extension R-5703 Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS Site-Borehole Offset: N otion: Brown Coarse to Fine Sandy Silty CLAY (A-Balance: 0.01 g.Readability, 500g. Minimum Capaccity	6235-16-010 C.F. Harvey Parkway Extension R-5703 Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS-33 Site-Borehole Offset: N/A otion: Brown Coarse to Fine Sandy Silty CLAY (A-6) (3) Balance: 0.01 g.Readability, 500g. Minimum Capaccity	6235-16-010 Report C.F. Harvey Parkway Extension R-5703 Test Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS-33 Site-Borehole Offset: N/A Stion: Brown Coarse to Fine Sandy Silty CLAY (A-6) (3) Balance: 0.01 g.Readability, 500g. Minimum Capaccity	6235-16-010 Report Date: C.F. Harvey Parkway Extension R-5703 Test Date(s): Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS-33 Sample Site-Borehole Offset: N/A Deportion: Brown Coarse to Fine Sandy Silty CLAY (A-6) (3) Balance: 0.01 g.Readability, 500g. Minimum Capaccity	S&ME, Inc. Raleigh, 3201 Spring Forest Raod, Raleigh, North Carolina 27616 6235-16-010 Report Date: 1 C.F. Harvey Parkway Extension R-5703 Test Date(s): 10/18 Michael Baker Engineering Raleigh, NC EB2-B Rt. Ln. Sample #: SS-33 Sample Date: Site-Borehole Offset: N/A Depth (ft): otion: Brown Coarse to Fine Sandy Silty CLAY (A-6) (3) Balance: 0.01 g.Readability, 500g. Minimum Capaccity

Method A: Moisture Content Determination

Required Oven Temperature: 105 ± 5° C

	*	*	
	Oven Temperature: 105 °C	Tare #	ae
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	45.80
а	Mass of As-Received Specimen + Tare Wt.	grams	106.52
b	Mass of Oven Dry Specimen + Tare Wt.	grams	96.29
w	Water Weight	(a-b)	10.23
A	Mass of As-Received Specimen	(a-t)	60.72
В	Mass of Oven Dry Specimen	(b-t)	50.49
% Mo	isture Content as a % of As Received or Total Mass	(w/A)*100	16.8%
%	Moisture Content as a % of Oven-dried Mass	(w/B)*100	20.3%
S&ME	EID #: 1454 Cal. Date: 10/7/16 Due:	10/7/17	

Oven *S&ME ID #:* 1454

Method C (440° C) or D (750° C): Ash Content and Organic Matter Determination

	Muffle Furnace: 455 °C	Tare #	200
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	48.84
b	Mass of Oven Dry Specimen + Tare Wt.	grams	85.98
c	Ash Weight + Tare Wt.	grams	85.30
C	Ash Weight	c-t	36.46
В	Mass of Oven Dry Specimen	(b-t)	37.14
D	% Ash Content	(C/B)*100	98.2%
	% Organic Matter	100-D	1.8%

Muffle Furnace: S&ME ID #: 00261

Notes / Deviations / References:

Mal Krajan, ET Technical Responsibility Signature

Laboratory Manager Position

11/14/2016 Date

Page 1 of 1

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Page 16 of 34

Form No: TR-T289-1

Revision No. 0

Revision Date: 07/10/08

pH of Soil

AASHTO T289 Quality Assurance

	S&ME,	Inc. Raleigh, 3201 Sprin	North Carolina 27616				
Project #:	6235-16	5-010			Report Date:	1	1/7/16
Project Name	e: C.F. Har	C.F. Harvey Parkway Extension R-5703		Test Date(s):	11/5	- 11/7/16	
Client Name:	t Name: Michael Baker Engineering						
Client Addre	ss: Raleigh,	NC					
Boring #: EB2-B Rt. Ln.		n. Sample	Sample #: SS-33				N/A
Location:	Site-Borehole	e Offs	Offset: N/A			(ft): 4	18.6 - 50.1
Sample Desc	ription:	Brown Coarse to Fine S	andy Silty	CLAY (A-6) (3))		
Equipment:							
Balance		S&ME ID#	1024	Cal. Date:	11/6/16	Due:	11/6/17
Sieve:	#10	S&ME ID#	13223	Cal. Date:	6/11/16	Due:	6/11/17
pH Meter:		S&ME ID#	1365	Cal. Date:	11/7/16	Due:	NA

pH Meter Calibration

Buffer Solution	Results
pH buffer 7.0	7.02
pH buffer 4.01	4.01
pH buffer 10.0	10.03
Buffer Temperature ⁰ C	22.4

Measuring pH of Soil

Measurements	
Weigtht of Air Dry Soil (g)	30.10
Distilled Water (g)	30.11
Temperature ⁰ C	21.9
pH Readings	5.36

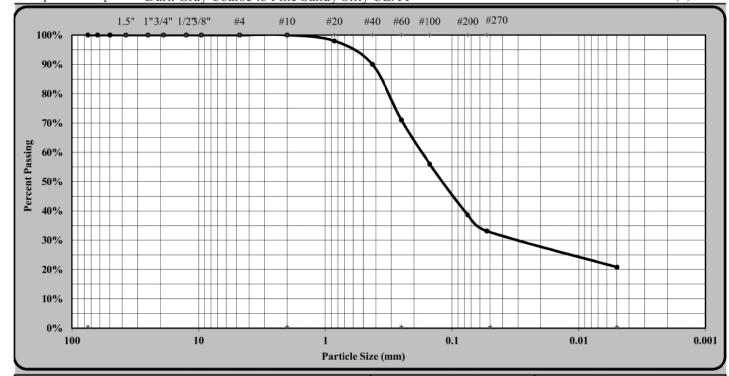
AASHTO T-289: Determining pH of Soil for Use in Corrosion Testing Notes / Deviations / References:

Mal Krajan, ET Technical Responsibility

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.


3201 Spring Forest Road Raleigh, NC.. 27616

Particle Size Analysis of Soils

Revision Date: 12/20/09 AASHTO T88 as Modified by NCDOT

				Quality Assurance								
S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616												
S&ME Project #:	6235-16-010		Report Date:	9/20/16								
Project Name:	C.F. Harvey Parkw	yay Extension R-5703	Test Date(s):	9/12 - 9/20/16								
State Project #:	N/A	F.A. Project No: N/A	TIP NO:	N/A								
Client Name:	Michael Baker Eng	gineering										
Address:	Raleigh, NC											
Boring #:	EB2-A Lt. Ln.	Sample #: ST-5	Sample D	ate: N/A								
Location:	Station 201+39	Offset: 35 ft LT	Depth ((ft): 10 - 12 ft.								
Sample Description	Sample Description: Dark Gray Coarse to Fine Sandy Silty CLAY A-6 (2)											

As Defin	ed by NCDOT		Fi	ne Sand	< 0.25 mm and > 0.05 mm						
Gravel	< 75 mm a	nd > 2.00 mm		Silt	< 0.05 and > 0.005 mm						
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay	< 0.005 n	nm					
Maximum Particle Size	#10	Coarse	Sand	29%	Silt	12%					
Gravel	0%	Fine Sa	nd	38%	Clay	21%					
Apparent Relative Density	ND	Moistur	e Content	ND	% Passing #200	38.6%					
Liquid Limit	34	Plastic 1	Limit	19	Plastic Index	15					
		Soil Morta	r (-#10 Sieve)							
Coarse Sand	29%	Fine Sand	38%	Silt	12% Clay	21%					
Description of Sand & Grav	vel Particles:	Rounded			Angular	\boxtimes					
Hard & Durable	X	Soft	X	Weat	hered & Friable	X					
References / Comments / Deviati	References / Comments / Deviations: ND=Not Determined.										
	-			-							

es / Comments / Deviations:	ND=Not Determined.		
Mal Krajan, ET	104-01-0703	Laboratory Manager	9/12/2016
Technician Name	Certification No.	Position	Date
Mal Krajan, ET		Laboratory Manager	9/26/2016
Technical Responsibility	Signature	Position	Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

3201 Spring Forest Road Raleigh, NC 27616

EB2-A Lt. Ln. ST-5 (10 - 12 ft) Classification

Page 17 of 34

Oedometer Settlement Tests

Sample details Sketch showing specimen location in original Sample

Depth

Description:

Dark Gray Coarse to Fine Sandy Silty CLAY (A-6) (2)

Undisturbed Height H₀ (in) 0.999 Diameter Do (in) 2.501 Weight W₀ (gr) 159.64 Bulk Density ρ (PCF) 123.92 Particle Density Ps 2.661

(measured)

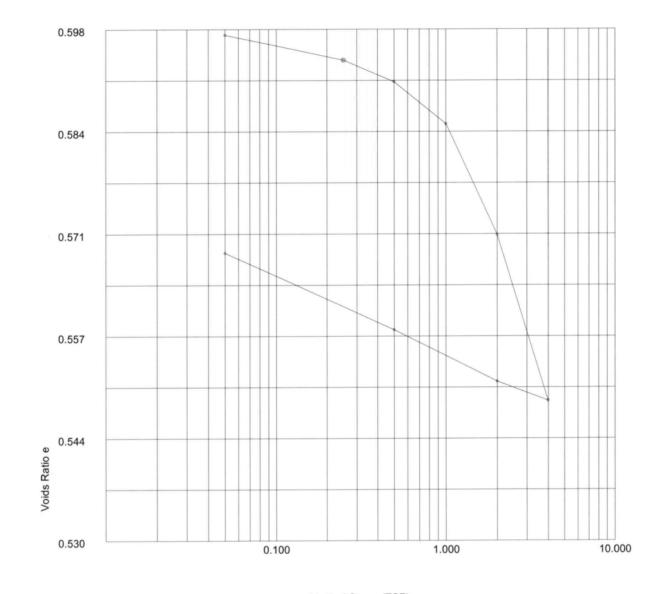
Initial Conditions

1001 Settlement Channel 19.3 Moisture Content wo% 103.86 Dry Density pd (PCF) 0.5987 Voids Ratio e₀ Deg of Saturation S₀% 85.8 Swelling Pressure Ss (TSF) 0.000

Final Conditions

22.4 Moisture Content w_f% 105.88 Dry Density Pd (PCF) Voids Ratio ef 0.5683 Deg of Saturation S_f% 100.00 0.019 Settlement: (in) 0.076 Compression Index C_c

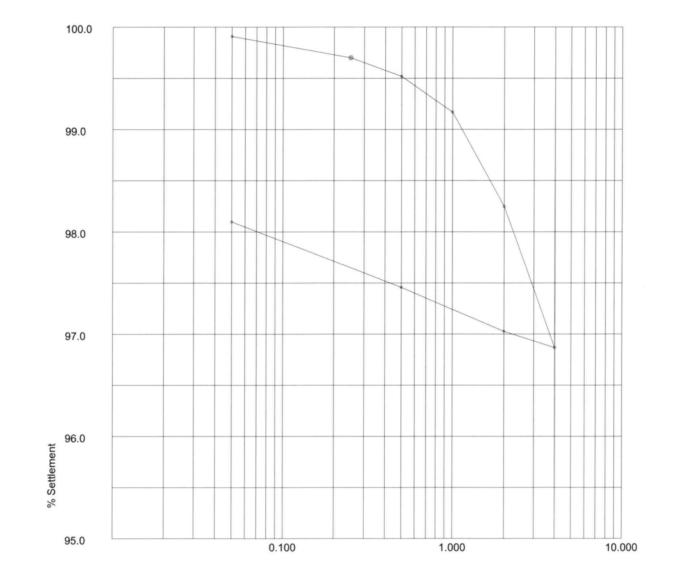
Notes:


Test specimen taken from the middle of UD tube.

STM D2435-96			Test name		olidation	
			Date of Test:	9-22-	16	
ite Reference: C.F. Harvey Parkway			Sample: Borehole:	ST-5 EB2-A Lt. Ln.		
obfile:	E:\62351601.JOB		borenoie.	EBZ- <i>F</i>	, Lt. Ln	
perator: MK		Checked:			Approved:	

Vertical Stress (TSF)

ASTM D2435-96			Test name Date of Test:	9-22-	olidation 16	
Site Reference: Jobfile: Operator:	C.F. Harvey Parkway E:\62351601.JOB	Checked: W	Sample: Borehole:	ST-5 EB2-	A Lt. Ln. Approved:	

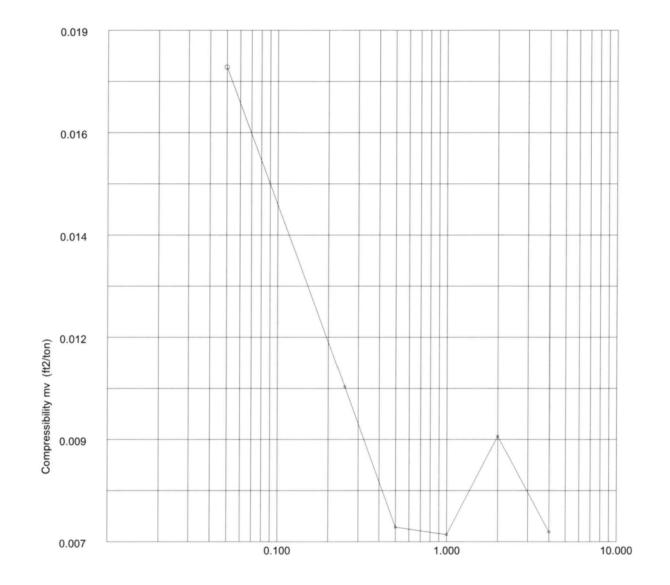

Oedometer Settlement Tests

\$S&ME

,	0.598						,								
	0.596							0							
											+				
(0.584					T					П				
				\top	\top	††					††				
0	0.571			-		+		+		+++	$^{+}$				
io			+	+++	+					+++	+		1		++++
Rat	0.557	-	-	+		+				1	#				
qs		_	-	+	++	+		+		+++	+		-		
Voids Ratio e	0.544			+	+	+		-			+				++++
				\perp		4		_		$\perp \perp \downarrow$	1				++++
	0.530										Ш				
1	100.0					\top		0			П				
				1	\top	\top					+				
6	98.8			+	$\dagger\dagger$	+					+				
				+	+	+				+++	+				
T 6	97.6	-	+ +	++	+	++							1		
% Settlement			-	+	++	+		+		+++	H		-	-	
lem	96.4		-	+		+		+		+++	+				
Sett				+				-		+++	-				++++
% 0	95.2			\perp		4					Н.			\square	
	30.2			\perp		Ш					Ш				
Compressibility mv (ft2/ton)	94.0										Ш				
12/te															
÷ 0	0.019					П					П				
É					A	\top					П				
£ 0	0.016			\top	1					+++	†				
ssib				+	+	1					Ħ				
ores	0.014			+	+	+	1	+		+++	+				
m c				+	+	+	1			+++	+				
ŏ o	0.012		-	+	+	+				+++	Н				
			-	+	++	+		1			Н				++++
0	0.009			+	+	-		+		+++					++++
				\perp	11				1	+++		/			++++
0	0.007)	+	1				
ay)															
2/d	2.300														
Ħ,															
٥ ا	1.900														
Consolidation cv (ft2/day)				+	+						\parallel				
<u>ig</u> 1	1.500			++	+										
nso				++	+	+		+	\times	1	+	,			++++
Õ 1	1.100			++	+	++		+			+	-/			
				+	+	+		/		11	\mathbb{H}	-/-			++++
							/			1	1	/			
0	700		_	+							1/1	/			
0	0.700										X				

ASTM D2435-96				Test name Date of Test:	Conse 9-22-	olidation 16	
Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-A	Lt. Ln.	
Operator: MV		Checked:	M	_		Approved:	

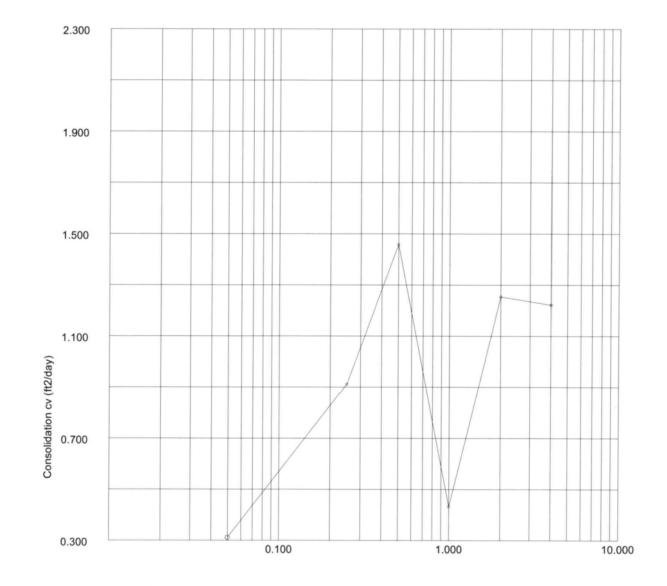
Vertical Stress (TSF)



Vertical Stress (TSF)

A	ASTM D2435-96			Test name Consolidation Date of Test: 9-22-16			
♦S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-A	A Lt. Ln.	
	Operator: ML		Checked: M	K		Approved:	

Page 19 of 34



Vertical Stress (TSF)

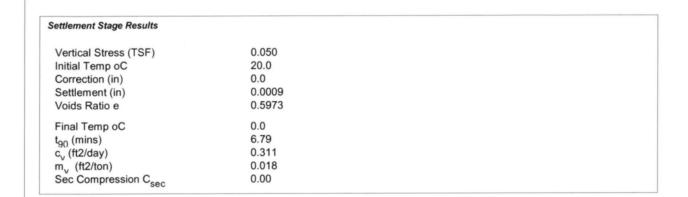
A	ASTM D2435-96				Test name Date of Test:	Conso 9-22-	olidation 16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-A	A Lt. Ln.	
	Operator: MU		Checked:	M	_		Approved:	

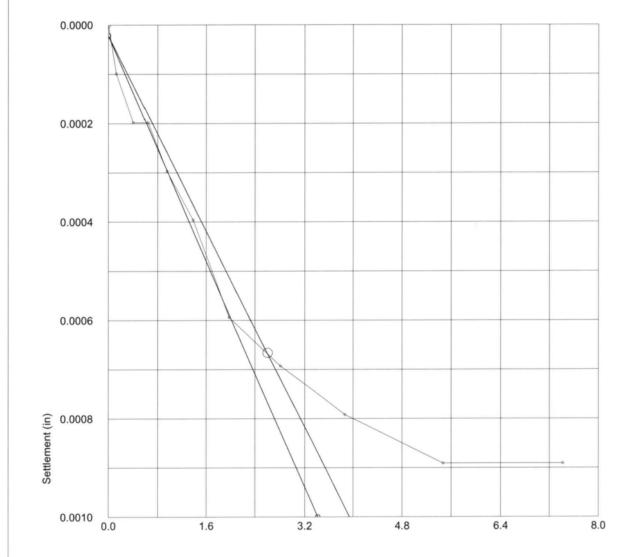
ASTM D2435-96

Vertical Stress (TSF)

A	ASTM D2435-96			Test name Co Date of Test: 9-2		olidation 16
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.
	Operator: ML		Checked: Mu	K		Approved:

Page 20 of 34

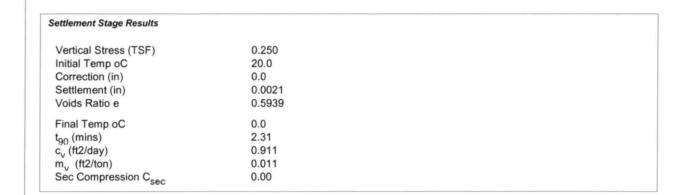

Stress (TSF)	Initial Temp. oC	Settlement Total (in)	Cal Corr. (in)	Final Temp. oC	Voids Ratio e _f	t _{so} (mins)		c _v (ft2/day)	m _v (ft2/ton)
0.050	20.0	0.0009	0.0	20.0	0.5973	6.794	0.00	0.311	0.018
0.250	20.0	0.0030	0.0	20.0	0.5939	2.312	0.00	0.911	0.011
0.500	20.0	0.0048	0.0	20.0	0.5910	1.439	0.00	1.458	0.007
1.000	20.0	0.0083	0.0	20.0	0.5854	4.834	0.00	0.432	0.007
2.000	20.0	0.0175	0.0	20.0	0.5707	1.644	0.00	1.254	0.009
4.000	20.0	0.0313	0.0	20.0	0.5486	1.648	0.00	1.222	0.007
2.000	20.0	0.0297	0.0	20.0	0.5512				0.001
0.500	20.0	0.0254	0.0	20.0	0.5580				0.003
0.050	20.0	0.0190	0.0	20.0	0.5683				0.015

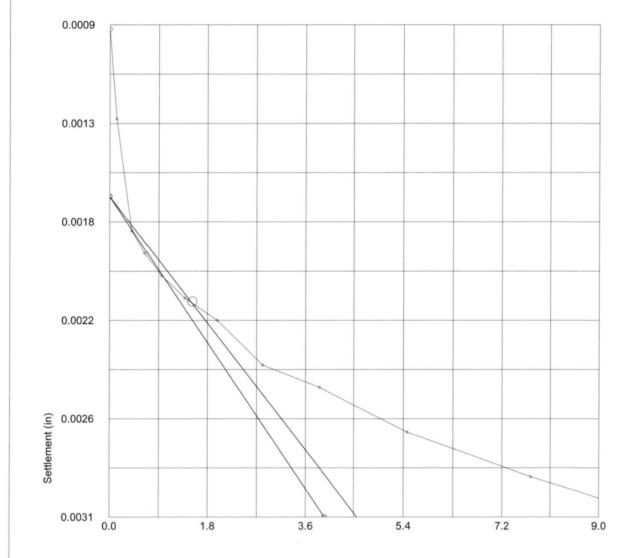

	ASTM D2435-96			Test name Date of Test:	Conse 9-22-	olidation 16	
S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.	
	Operator: ML		Checked: 🔨	u		Approved:	

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	0	0.0000	0.0000
2	0.017	1	0.0001	0.0001
3	0.167	2	0.0002	0.0002
4	0.416	2	0.0002	0.0002
5	0.917	3	0.0003	0.0003
6	1.917	4	0.0004	0.0004
7	3.917	6	0.0006	0.0006
8	7.917	7	0.0007	0.0007
9	14.917	8	0.0008	0.0008
10	29.917	9	0.0009	0.0009
11	55.113	9	0.0009	0.0009

	ASTM D2435-96			Test name Date of Test:	9-22-	olidation Load: 0.050 (TSF) 16
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-A	A Lt. Ln.
	Operator: MLL		Checked: M	u		Approved:

Page 21 of 34


Root Time (mins)

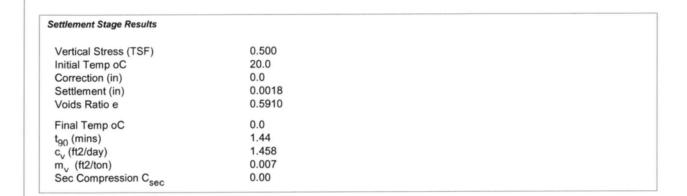

	ASTM D2435-96			Test name Date of Test:	9-22-	olidation 16
\$S&ME	Site Reference: C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-A Lt. Ln.	
	Operator: ML		Checked: NU			Approved:

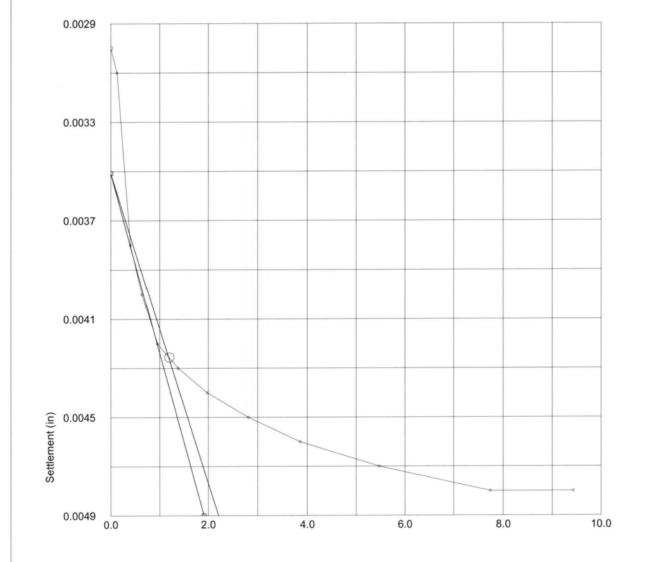
No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	9	0.0009	0.0009
2	0.017	13	0.0013	0.0013
3	0.167	18	0.0018	0.0018
4	0.417	19	0.0019	0.0019
5	0.917	20	0.0020	0.0020
6	1.917	21	0.0021	0.0021
7	3.917	22	0.0022	0.0022
8	7.917	24	0.0024	0.0024
9	14.917	25	0.0025	0.0025
10	29.917	27	0.0027	0.0027
11	59.917	29	0.0029	0.0029
12	82.233	30	0.0030	0.0030

	ASTM D2435-96			Test name Date of Test:	9-22-1	olidation Load: 0.250 (TSF)	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-A	A Lt. Ln.	
	Operator: ML		Checked:	NL		Approved:	

Page 22 of 34

Root Time (mins)

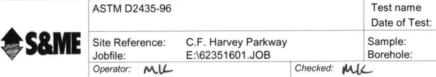

	ASTM D2435-96			Test name Date of Test:	Conse 9-22-	olidation 16	
\$S&ME	Site Reference: C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-A Lt. Ln.		
	Operator: NU		Checked: NU	_		Approved:	


No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	30	0.0030	0.0030
2	0.017	31	0.0031	0.0031
3	0.167	38	0.0038	0.0038
4	0.417	40	0.0040	0.0040
5	0.917	42	0.0042	0.0042
6	1.917	43	0.0043	0.0043
7	3.917	44	0.0044	0.0044
8	7.917	45	0.0045	0.0045
9	14.917	46	0.0046	0.0046
10	29.917	47	0.0047	0.0047
11	59.917	48	0.0048	0.0048
12	88.933	48	0.0048	0.0048

	ASTM D2435-96			Test name Date of Test:	Conso 9-22-	olidation Load: 0.500 (TSF) 16
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.
	Operator: MLL		Checked: MG	-		Approved:

Page 23 of 34

Oedometer Settlement Tests

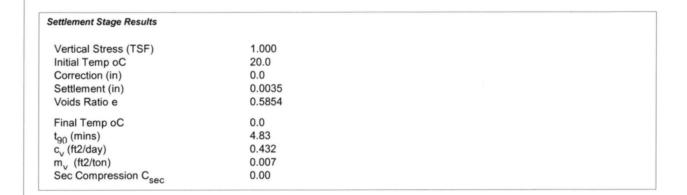


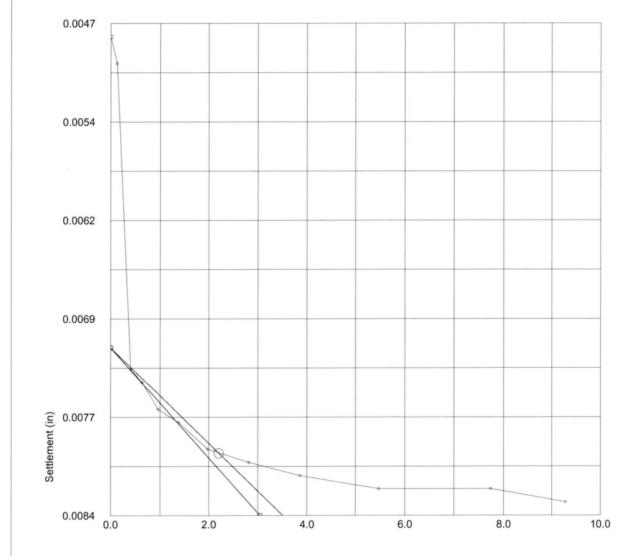
Root Time (mins)

Consolidation

EB2-A Lt. Ln.

9-22-16 ST-5

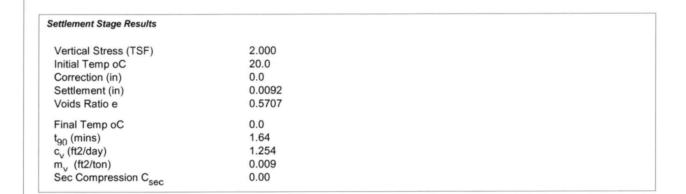


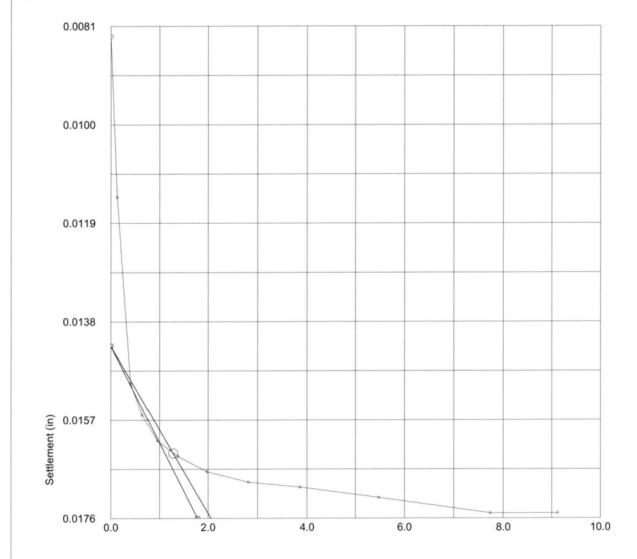

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	48	0.0048	0.0048
2	0.017	50	0.0050	0.0050
3	0.167	73	0.0073	0.0073
4	0.417	74	0.0074	0.0074
5	0.917	76	0.0076	0.0076
6	1.917	77	0.0077	0.0077
7	3.917	79	0.0079	0.0079
8	7.917	80	0.0080	0.0080
9	14.917	81	0.0081	0.0081
10	29.917	82	0.0082	0.0082
11	59.917	82	0.0082	0.0082
12	86.330	83	0.0083	0.0083

\$S&ME	Site
4	300

	ASTM D2435-96			Test name Date of Test:	Consolid 9-22-16	dation Load: 1.000 (TSF)	
E	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-A L	t. Ln.	
	Operator: NUC		Checked: M(C	-	Ap	pproved:	

Page 24 of 34

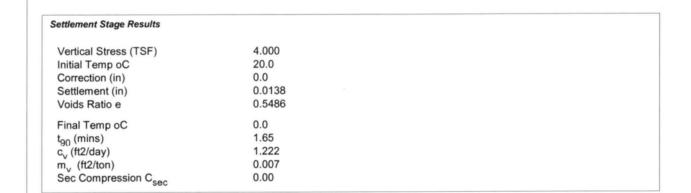

Root Time (mins)

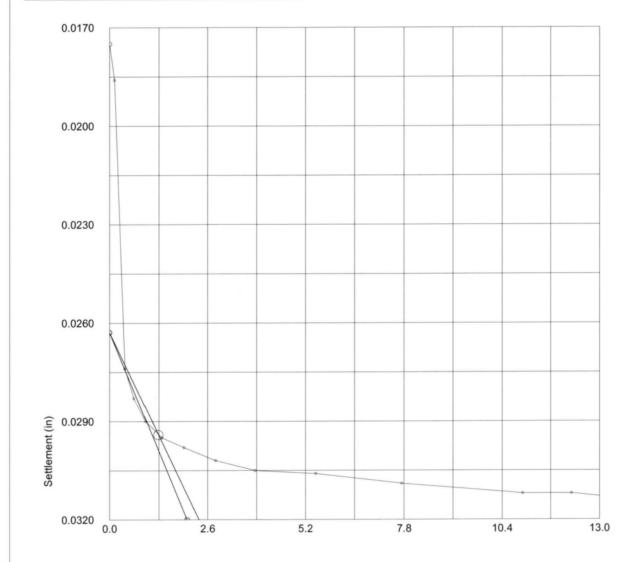

	ASTM D2435-96			Test name Date of Test:	Cons 9-22-	olidation 16
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	-A Lt. Ln.
	Operator: MU		Checked: NL			Approved:

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	83	0.0083	0.0083
2	0.017	114	0.0114	0.0114
3	0.167	150	0.0150	0.0150
4	0.417	156	0.0156	0.0156
5	0.917	161	0.0161	0.0161
6	1.917	164	0.0164	0.0164
7	3.917	167	0.0167	0.0167
8	7.917	169	0.0169	0.0169
9	14.917	170	0.0170	0.0170
10	29.917	172	0.0172	0.0172
11	59.917	175	0.0175	0.0175
12	83.233	175	0.0175	0.0175

	ASTM D2435-96				Test name Date of Test:	Consolidation Load: 2.000 (TSF) 9-22-16		
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-	A Lt. Ln.	
	Operator: NV		Checked:	MI	~		Approved:	

Page 25 of 34


Root Time (mins)


•	ASTM D2435-96			Test name Date of Test:	9-22-	olidation 16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2- <i>l</i>	A Lt. Ln.	
	Operator: MLC		Checked:	LL		Approved:	

No.	Time	Displacement	Displacement	Settlement (in)	
	(mins)	(divs)	(in)	(111)	
1	0.000	175	0.0175	0.0175	
2	0.017	186	0.0186	0.0186	
3	0.167	274	0.0274	0.0274	
4	0.417	283	0.0283	0.0283	
5	0.917	290	0.0290	0.0290	
6	1.917	295	0.0295	0.0295	
7	3.917	298	0.0298	0.0298	
8	7.917	302	0.0302	0.0302	
9	14.917	305	0.0305	0.0305	
10	29.917	306	0.0306	0.0306	
11	59.917	309	0.0309	0.0309	
12	119.917	312	0.0312	0.0312	
13	149.917	312	0.0312	0.0312	
14	170.500	313	0.0313	0.0313	

	ASTM D2435-96			Test name Date of Test:	9-22-1	olidation Load: 4.000 (TSF) 16
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-A	A Lt. Ln.
	Operator: ML		Checked: ML	_		Approved:

Page 26 of 34

Root Time (mins)

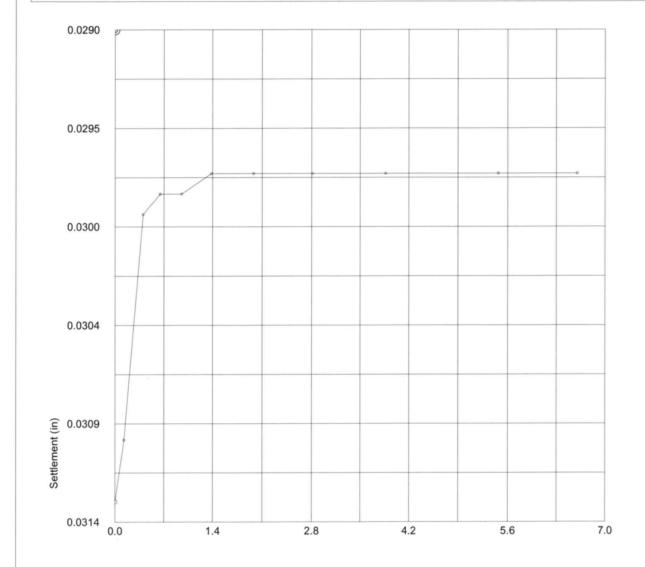
	ASTM D2435-96			Test name Date of Test:	Consolidation 9-22-16		
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.	
	Operator: MLL		Checked:	K		Approved:	

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	313	0.0313	0.0313
2	0.017	310	0.0310	0.0310
3	0.167	299	0.0299	0.0299
4	0.417	298	0.0298	0.0298
5	0.917	298	0.0298	0.0298
6	1.917	297	0.0297	0.0297
7	3.917	297	0.0297	0.0297
8	7.917	297	0.0297	0.0297
9	14.917	297	0.0297	0.0297
10	29.917	297	0.0297	0.0297
11	43.533	297	0.0297	0.0297

♦S&M		ASTM D2435-96			Date of Test:	9-22-	olidation Load: 2.000 (TSF)	
	\$S&ME	Site Reference: C.F. Harvey Parkway Jobfile: E:\62351601.JOB			Sample: ST-5 Borehole: EB2-A Lt. Ln.		A Lt. Ln.	
		Operator: MLL	-	Checked: M	ل		Approved:	

Page 27 of 34

Oedometer Settlement Tests


Settlement Stage Results Vertical Stress (TSF) 2.000 Initial Temp oC 20.0 Correction (in) 0.0 Settlement (in) 0.0016

 Settlement (in)
 0.0016

 Voids Ratio e
 0.5512

 Final Temp oC

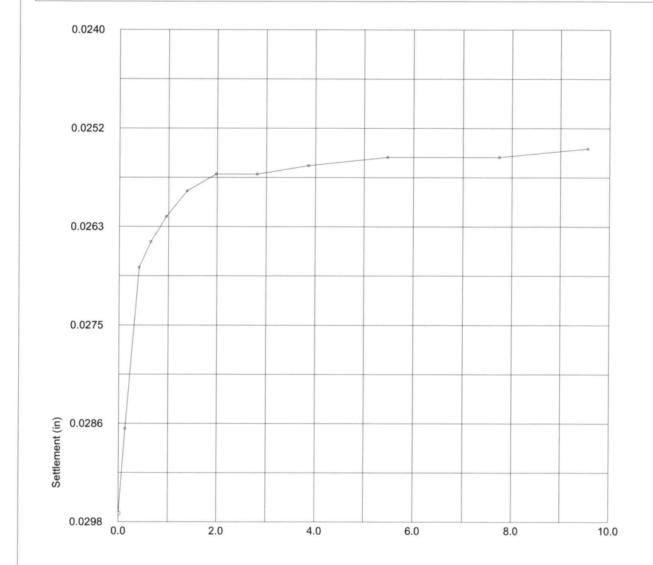
 $\begin{array}{l} t_{90} \text{ (mins)} \\ c_{_{V}} \text{ (ft2/day)} \\ m_{_{V}} \text{ (ft2/ton)} \\ \text{Sec Compression C}_{\text{sec}} \end{array}$

Root Time (mins)

	ASTM D2435-96			Test name Date of Test:	9-22-	olidation 16
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.
	Operator: MUC		Checked:	ull		Approved:

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	297	0.0297	0.0297
2	0.017	287	0.0287	0.0287
3	0.167	268	0.0268	0.0268
4	0.417	265	0.0265	0.0265
5	0.917	262	0.0262	0.0262
6	1.917	259	0.0259	0.0259
7	3.917	257	0.0257	0.0257
8	7.917	257	0.0257	0.0257
9	14.917	256	0.0256	0.0256
10	29.917	255	0.0255	0.0255
11	59.917	255	0.0255	0.0255
12	91.217	254	0.0254	0.0254

A	ASTM D2435-96				Test name Date of Test:	9-22-	nsolidation Load: 0.500 (TSF) 22-16		
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-A	A Lt. Ln.		
	Operator: NL		Checked:	M	_		Approved:		


Page 28 of 34

Oedometer Settlement Tests

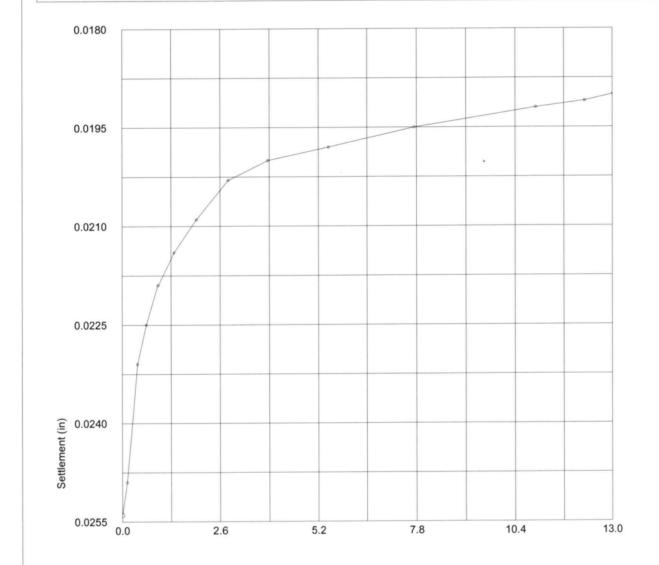
Settlement Stage Results

0.500 20.0 Vertical Stress (TSF) Initial Temp oC 0.0 Correction (in) Settlement (in) Voids Ratio e 0.0043 0.5580 Final Temp oC

t₉₀ (mins) c_V (ft2/day) m_V (ft2/ton) Sec Compression C_{sec}

Root Time (mins)

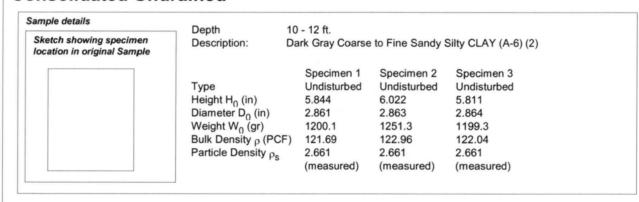
A	ASTM D2435-96				Test name Date of Test:	Consolidation 9-22-16		
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-	A Lt. Ln.	
	Operator: MV		Checked:	M	K		Approved:	


No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	254	0.0254	0.0254
2	0.017	249	0.0249	0.0249
3	0.167	231	0.0231	0.0231
4	0.417	225	0.0225	0.0225
5	0.917	219	0.0219	0.0219
6	1.917	214	0.0214	0.0214
7	3.917	209	0.0209	0.0209
8	7.917	203	0.0203	0.0203
9	14.917	200	0.0200	0.0200
10	29.917	198	0.0198	0.0198
11	59.917	195	0.0195	0.0195
12	119.917	192	0.0192	0.0192
13	149.917	191	0.0191	0.0191
14	169.330	190	0.0190	0.0190

♦ S&ME	ASTM D2435-96			Test name Date of Test:	9-22-	olidation Load: 0.050 (TSF) 16
	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-A	A Lt. Ln.
	Operator: MLL		Checked: M(L		Approved:

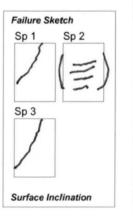
Page 29 of 34

Oedometer Settlement Tests



Root Time (mins)

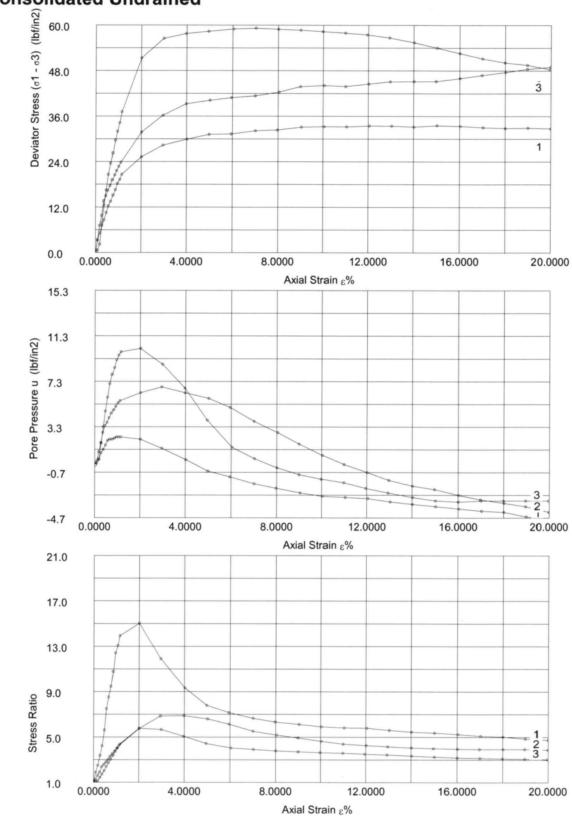
	ASTM D2435-96		Test name Date of Test:	Consolidation 9-22-16		
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.
	Operator: MLL	-	Checked: M	الد		Approved:


Effective Stress Triaxial Compression

Consolidated Undrained

Initial Conditions			
	Specimen 1	Specimen 2	Specimen 3
Cell Pressure _{G3} (lbf/in2)	4.0	13.0	21.0
Pore Pressure u (lbf/in2)	0.0	0.0	0.0
Machine Speed d _r (in/min)	0.0073	0.0067	0.0082
No. of Membranes	1	1	1
Total Thickness (in)	0.012	0.012	0.012
Strain Channel	1798	1798	1798
Load Channel	1776	1776	1776
Pore P. Channel	1779	1779	1779
Volume Channel	Volume Chan	g Volume Chan	g Volume Chang
Moisture Content wo%	18.9	19.7	19.5
Dry Density ρ _{d0} (PCF)	102.32	102.74	102.09
Voids Ratio e ₀	0.62	0.62	0.63
Deg of Saturation S ₀ %	80.89	85.00	83.03
	0.99	0.95	0.96

Final Conditions	Specimen 1	Specimen 2	Specimen 3
Moisture Content w _f %	22.1	21.6	20.7
Dry Density ρ _d (PCF)	103.36	104.96	105.90
Voids Ratio e _f	0.61	0.58	0.57
Deg of Saturation S _f %	96.82	98.77	97.13
Failure Criteria	Mx Stress Ra	tioMx Stress Ra	tioMx Stress Ratio
Axial Strain Ef%	2.0	4.0	2.0
Corr Dev Stress (o1 - o3)f (lbf/in2)	25.2	39.2	51.3
Minor Stress _{G3f} (lbf/in2)	1.8	6.7	10.8
Major Stress of (lbf/in2)	27.0	45.9	62.1
Stress Ratio $(\sigma_1/\sigma_3)_f$	15.0	6.9	5.8
Notes:			

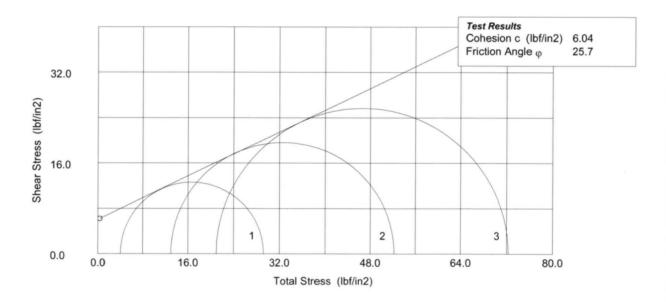

1	A	L
	\$S&ME	S
- 1	A	J

Test Method: AST		Test name Date of Test:	CU Triaxial (SS, MS) 9-20-16			
Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.	
Operator: Mk		Checked: M	La		Approved:	

Page 30 of 34

Effective Stress Triaxial Compression

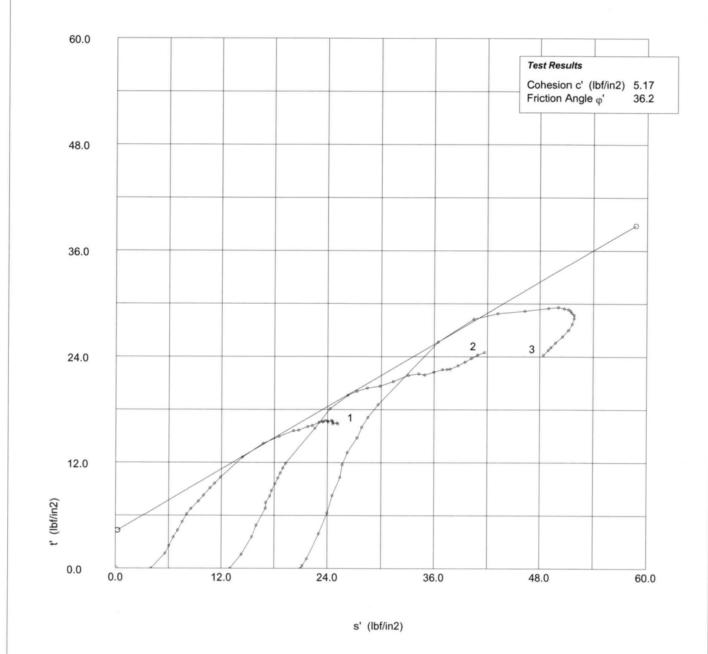
Consolidated Undrained



est Method: AST	M D4767-95		Test name Date of Test:	CU Tria 9-20-16	U Triaxial (SS, MS) -20-16		
te Reference: bfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-A Lt. Ln.			
perator: MU		Checked:	Le	/	Approved:		

Effective Stress Triaxial Compression

Consolidated Undrained



A	Test Method: AST	M D4767-95	Test name CU To Date of Test: 9-20-		riaxial (SS, MS) 16		
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.	
	Operator: MUL	-	Checked: M	<u>_</u>		Approved:	

Page 31 of 34

Effective Stress Triaxial Compression

Consolidated Undrained

A	Test Method: ASTM D4767-95					Test name Date of Test:	CU T 9-20-	riaxial (SS, MS) 16
\$S&ME	Site Referer Jobfile:		C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-	A Lt. Ln.
	Operator:	mk		Checked:	M	L		Approved:

Effective Stress Triaxial Compression

Consolidated Undrained Shear (Specimen 1)

No.	Strain (divs)	Strain ε%	Load (divs)	Load (lbs)	Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_m$ (lbf/in2)		Minor Str σ ₃ ' (lbf/in2)	Major Str σ ₁ (lbf/in2)	Ratio σ_1'/σ_3'
1	144	0.00	544	0.0	0	0.0	0.0	0.0	4.00	4.00	1.00
2	199	0.09	761	21.7	1	0.1	3.4	3.4	3.90	7.29	1.87
3	256	0.19	872	32.8	5	0.5	5.1	5.1	3.50	8.63	2.46
4	311	0.29	997	45.3	10	1.0	7.1	7.1	3.00	10.07	3.36
5	366	0.38	1099	55.5	13	1.3	8.7	8.7	2.70	11.36	4.21
6	423	0.48	1222	67.8	17	1.7	10.6	10.6	2.30	12.86	5.59
7	478	0.57	1345	80.1	21	2.1	12.5	12.3	1.90	14.21	7.48
8	532	0.67	1423	87.9	22	2.2	13.7	13.5	1.80	15.31	8.51
9	591	0.77	1533	98.9	22	2.2	15.4	15.2	1.80	17.00	9.45
10	645	0.86	1622	107.8	23	2.3	16.7	16.6	1.70	18.27	10.75
11	698	0.95	1730	118.6	24	2.4	18.4	18.2	1.60	19.83	12.39
12	758	1.05	1799	125.5	24	2.4	19.4	19.3	1.60	20.88	13.05
13	812	1.15	1888	134.4	24	2.4	20.8	20.6	1.60	22.24	13.90
14	1315	2.01	2206	166.2	22	2.2	25.5	25.2	1.80	27.02	15.01
15	1873	2.97	2431	188.7	14	1.4	28.7	28.3	2.60	30.91	11.89
16	2490	4.03	2567	202.3	4	0.4	30.4	29.9	3.60	33.52	9.31
17	3048	4.99	2678	213.4	-6	-0.6	31.7	31.2	4.60	35.78	7.78
18	3608	5.95	2714	217.0	-11	-1.1	32.0	31.3	5.10	36.41	7.14
19	4228	7.01	2802	225.8	-17	-1.7	32.9	32.2	5.70	37.85	6.64
20	4791	7.98	2845	230.1	-21	-2.1	33.1	32.4	6.10	38.45	6.30
21	5409	9.04	2932	238.8	-25	-2.5	34.0	33.1	6.50	39.63	6.10
22	5987	10.03	2973	242.9	-28	-2.8	34.2	33.3	6.80	40.06	5.89
23	6575	11.04	3002	245.8	-29	-2.9	34.2	33.2	6.90	40.10	5.81
24	7165	12.05	3056	251.2	-30	-3.0	34.6	33.5	7.00	40.47	5.78
25	7743	13.04	3087	254.3	-33	-3.3	34.6	33.4	7.30	40.74	5.58
26	8313	14.02	3100	255.6	-35	-3.5	34.4	33.1	7.50	40.64	5.42
27	8899	15.03	3163	261.9	-37	-3.7	34.8	33.5	7.70	41.22	5.35
28	9486	16.04	3188	264.4	-39	-3.9	34.8	33.4	7.90	41.28	5.22
29	10063	17.03	3199	265.5	-41	-4.1	34.5	33.0	8.10	41.14	5.08
30	10637	18.01	3218	267.4	-42	-4.2	34.3	32.8	8.20	41.01	5.00
31	11215	19.00	3263	271.9	-46	-4.6	34.5	32.9	8.60	41.52	4.83
32	11794	20.00	3287	274.3	-48	-4.8	34.4	32.8	8.80	41.56	4.72

	Test Method: AST	M D4767-95		Test name Date of Test:	9-20-	riaxial (SS, MS) Shear (Specimen 1)	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.	
	Operator: ML	-	Checked: ~	L		Approved:	

Page 32 of 34

Effective Stress Triaxial Compression

Page 3 / 3

Consolidated Undrained Shear (Specimen 3)

No.	Strain (divs)	Strain ε%	Load (divs)	Load (lbs)	Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_m$ (lbf/in2)		Minor Str σ ₃ ' (lbf/in2)	Major Str σ ₁ ' (lbf/in2)	Ratio σ_1'/σ_3'
1	9	0.00	780	0.0	0	0.0	0.0	0.0	21.00	21.00	1.00
2	63	0.09	819	3.9	1	0.1	0.6	0.6	20.90	21.52	1.03
3	117	0.19	917	13.7	4	0.4	2.2	2.2	20.60	22.78	1.11
4	174	0.29	1275	49.5	19	1.9	7.9	7.9	19.10	26.95	1.41
5	226	0.38	1573	79.3	33	3.3	12.6	12.6	17.70	30.27	1.71
6	281	0.47	1823	104.3	47	4.7	16.5	16.5	16.30	32.81	2.01
7	338	0.57	2095	131.5	59	5.9	20.8	20.6	15.10	35.74	2.37
8	391	0.67	2279	149.9	71	7.1	23.7	23.5	13.90	37.43	2.69
9	444	0.76	2454	167.4	79	7.9	26.4	26.3	13.10	39.37	3.01
10	503	0.86	2668	188.8	85	8.5	29.8	29.6	12.50	42.11	3.37
11	555	0.95	2821	204.1	92	9.2	32.2	32.0	11.80	43.80	3.71
12	610	1.05	2965	218.5	96	9.6	34.4	34.2	11.40	45.63	4.00
13	669	1.15	3151	237.1	99	9.9	37.3	37.1	11.10	48.22	4.34
14	1166	2.02	4091	331.1	102	10.2	51.6	51.3	10.80	62.13	5.75
15	1730	3.00	4466	368.6	88	8.8	56.9	56.5	12.20	68.71	5.63
16	2291	3.97	4594	381.4	67	6.7	58.3	57.8	14.30	72.08	5.04
17	2856	4.96	4677	389.7	39	3.9	58.9	58.4	17.10	75.46	4.41
18	3476	6.04	4769	398.9	15	1.5	59.6	59.0	19.50	78.48	4.02
19	4041	7.02	4830	405.0	5	0.5	59.9	59.2	20.50	79.68	3.89
20	4610	8.01	4861	408.1	-3	-0.3	59.7	58.9	21.30	80.22	3.77
21	5176	9.00	4894	411.4	-9	-0.9	59.5	58.7	21.90	80.57	3.68
22	5738	9.98	4919	413.9	-13	-1.3	59.3	58.3	22.30	80.61	3.61
23	6309	10.97	4944	416.4	-16	-1.6	59.0	57.9	22.60	80.53	3.56
24	6874	11.96	4963	418.3	-21	-2.1	58.6	57.5	23.10	80.57	3.49
25	7441	12.95	4958	417.8	-25	-2.5	57.9	56.7	23.50	80.18	3.41
26	8065	14.03	4924	414.4	-29	-2.9	56.7	55.4	23.90	79.31	3.32
27	8633	15.02	4874	409.4	-32	-3.2	55.3	54.0	24.20	78.22	3.23
28	9202	16.01	4819	403.9	-33	-3.3	54.0	52.6	24.30	76.88	3.16
29	9770	17.00	4766	398.6	-32	-3.2	52.6	51.2	24.20	75.37	3.11
30	10337	17.99	4738	395.8	-32	-3.2	51.6	50.1	24.20	74.32	3.07
31	10905	18.98	4741	396.1	-32	-3.2	51.0	49.5	24.20	73.69	3.05
32	11475	19.97	4705	392.5	-32	-3.2	50.0	48.4	24.20	72.57	3.00

1	S&ME	Site

	Test Method: AST			Test name Date of Test:	CU Triaxial (SS, MS) Shear (Specimen 3) 9-20-16		
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-	A Lt. Ln.
	Operator: MLC		Checked:	M	L		Approved:

	h showing s on in origina

Depth

Dark Gray Coarse to Fine Sandy Silty CLAY (A-6) (2) Description:

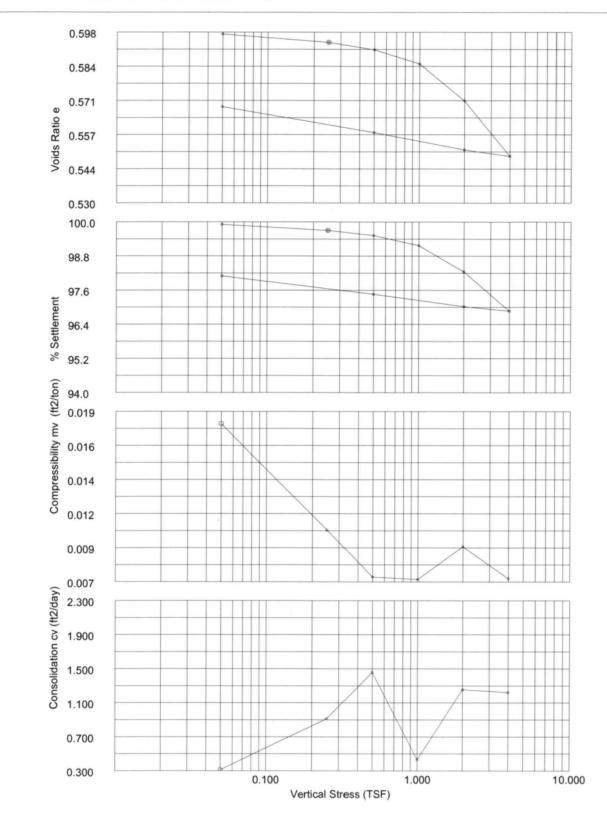
Type Undisturbed Height H₀ (in) Diameter D₀ (in) 0.999 2.501 Weight W₀ (gr) 159.64 Bulk Density ρ (PCF) 123.92 Particle Density ρ_s 2.661 (measured)

Initial Conditions

Settlement Channel 1001 Moisture Content wo% 19.3 Dry Density Pd (PCF) 103.86 Voids Ratio e₀ 0.5987 Deg of Saturation So% 85.8 Swelling Pressure Ss (TSF) 0.000

Final Conditions

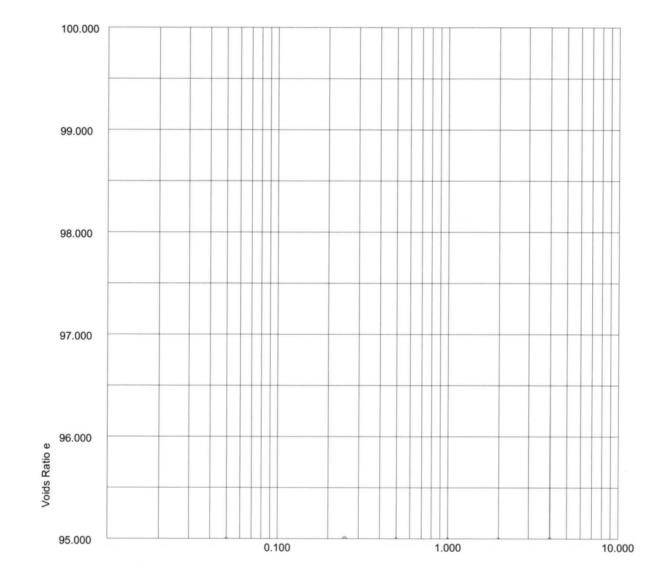
Moisture Content w_f% 22.4 Dry Density Pd (PCF) 105.88 Voids Ratio ef 0.5683 Deg of Saturation S_f% 100.00 Settlement: (in) 0.019 Compression Index C_c 0.076


Notes:

Test specimen taken from the middle of UD tube.

ASTM D2435-96 Consolidation Test name 9-22-16 Date of Test: Site Reference: C.F. Harvey Parkway ST-5 Sample: E:\62351601.JOB Jobfile: Borehole: EB2-A Lt. Ln. Checked: ML Operator: Approved: mu

Page 33 of 34



	ASTM D2435-96				Test name Consolidation Date of Test: 9-22-16		
ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB			Sample: Borehole:	ST-5 EB2-	A Lt. Ln.
	Operator: ML		Checked:	MI	L		Approved:

ASTM D2435-96

Vertical Stress (TSF)

Test name

Consolidation

A				Date of Test:	9-22-	16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey Parkway E:\62351601.JOB		Sample: Borehole:	ST-5 EB2-	A Lt. Ln.	
	Operator: ML		Checked: M(_		Approved:	

Page 34 of 34

463

SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

CONTENTS

·	•
SHEET	DESCRIPTION
	TITLE SHEET
2	LEGEND
3	PLAN SHEET
4 - 11	PROFILES
12 = 31	BORING LOGS
32 = 59	LABORATORY TEST RESULTS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY LENOIR

PROJECT DESCRIPTION C.F. HARVEY PARKWAY AND NC 58 TO INTERSECTION OF NC 11 AND GRANGER STATION ROAD GRADING, PAVING, DRAINAGE, STRUCTURES AND SIGNALS SITE DESCRIPTION BRIDGE NO. 214 AND NO. 215 ON -L-(FELIX HARVEY PARKWAY) OVER STONYTON CREEK

INVENTORY

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	R-5703	1	59

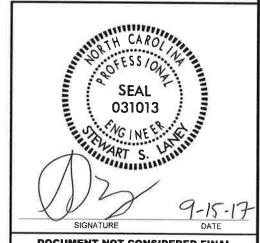
CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE WICLUDED IN THE REDUST FOR PROPOSAL. THE VARIOUS FIELD BORNG LOGS, ROCK COPES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALECH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, CEOTECHNICAL ENGINEERING LINET AT 1999 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

SOIL AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON GEOTECHNICAL INTERPRETATION UNLESS ENCOUNTERED IN A SAMPLE. INTERPRETED BOUNDARIES MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN SAMPLED STATA AND BORRHOLE INFORMATION MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS. THE LABORATION FACESSARILY REFLECT ACTUAL SUBSURFACE PROPER OF SELVEN BORINGS. THE LABORATION SAMPLED DATA AND THE NI SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY NIREBERT IN THE STANDARD TEST METHOD. THE OBSERVEW MATER LEVELS OR SOIL MOISTURE CONDITIONS MOICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BUDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BUDDING AND CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE OPERATIMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR DENING IN OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BUDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH NOBERDONT SUBSURFACE INVESTIGATIONS AS HE DEEDN ENCESSARY TO SATISFY HINSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY TEASON RESULTING FROM THE CITUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:


 I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIGERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAVES ANY CLAIMS FOR INSERSED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

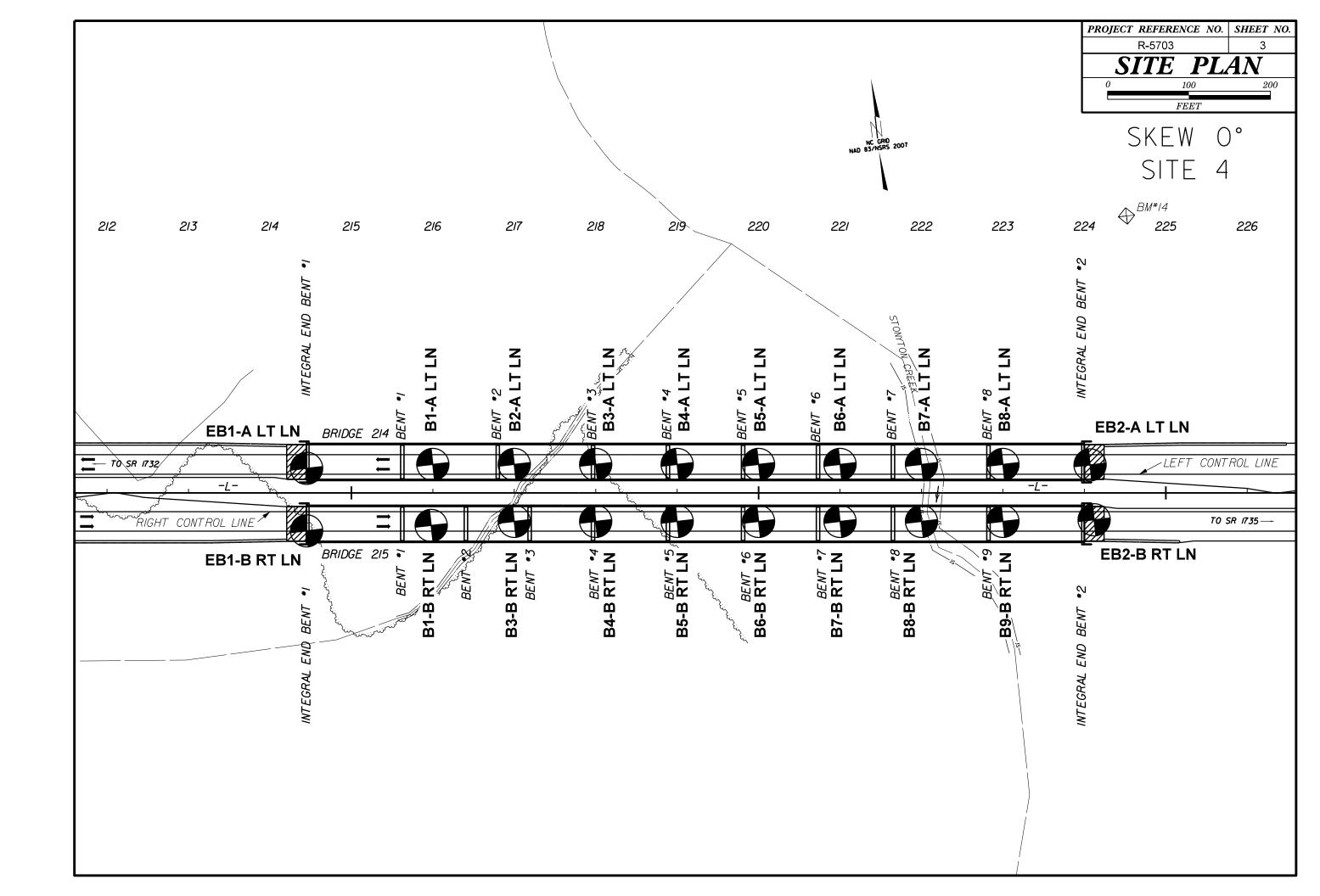
 PFRSONNEL

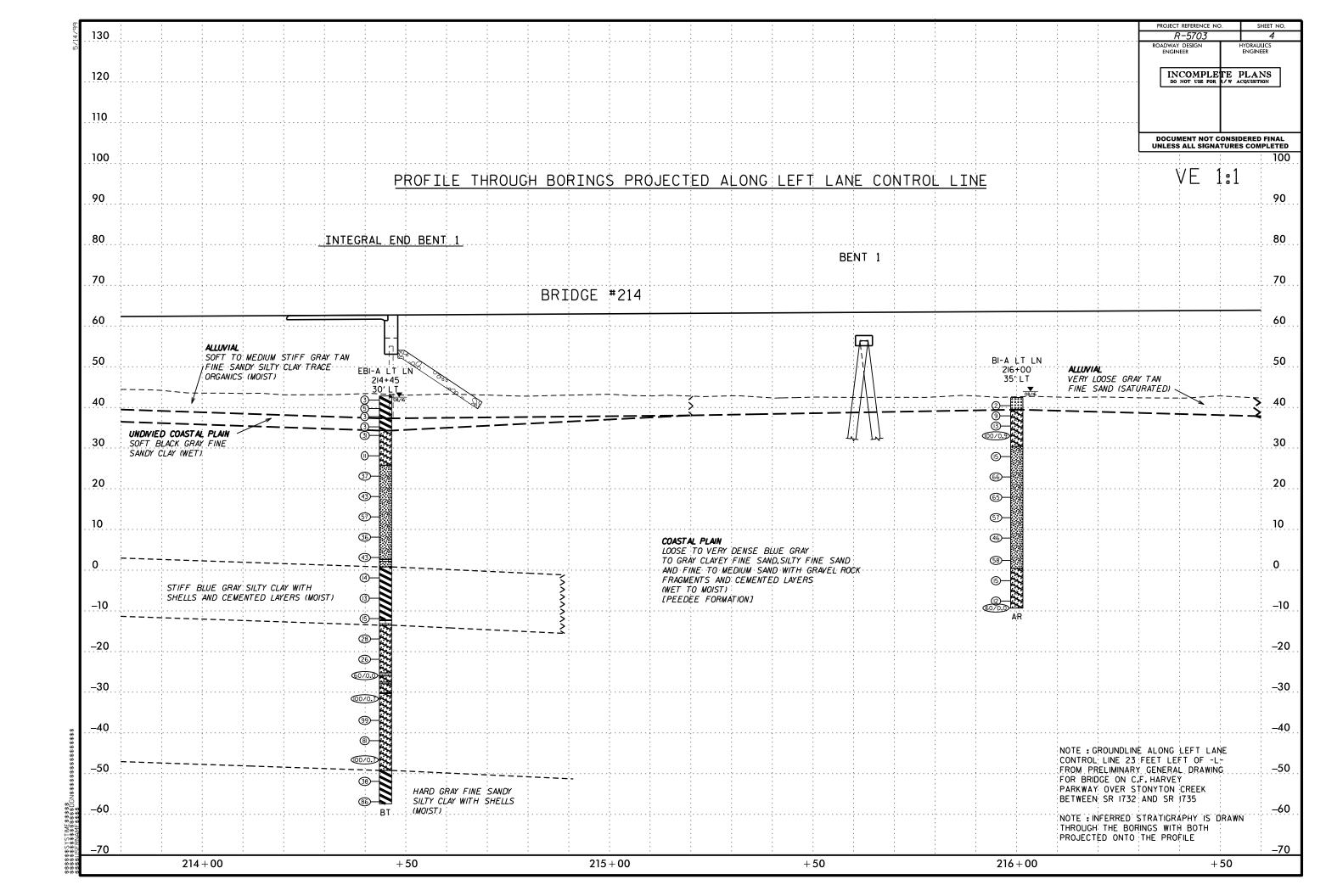
PERSONNEL

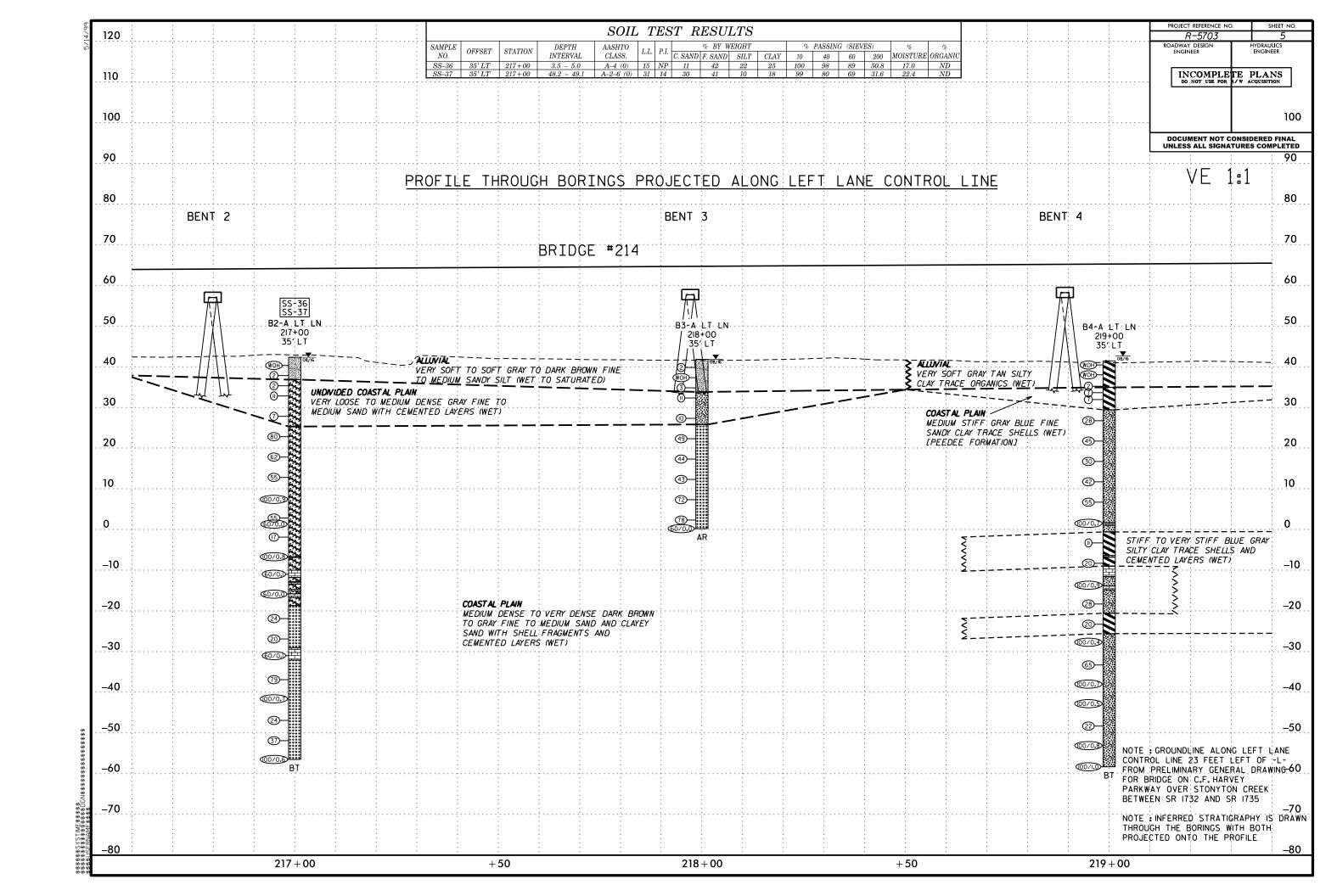
S. LANEY K. HILL S. MITCHELL S. TIERNAN C. CHANDLER F. WRIGHT E. BLONSHINE J. PEELE M. RAWLS INVESTIGATED BY _S&ME, INC. DRAWN BY __C. CHANDLER CHECKED BY S. MITCHELL SUBMITTED BY SEME, INC.

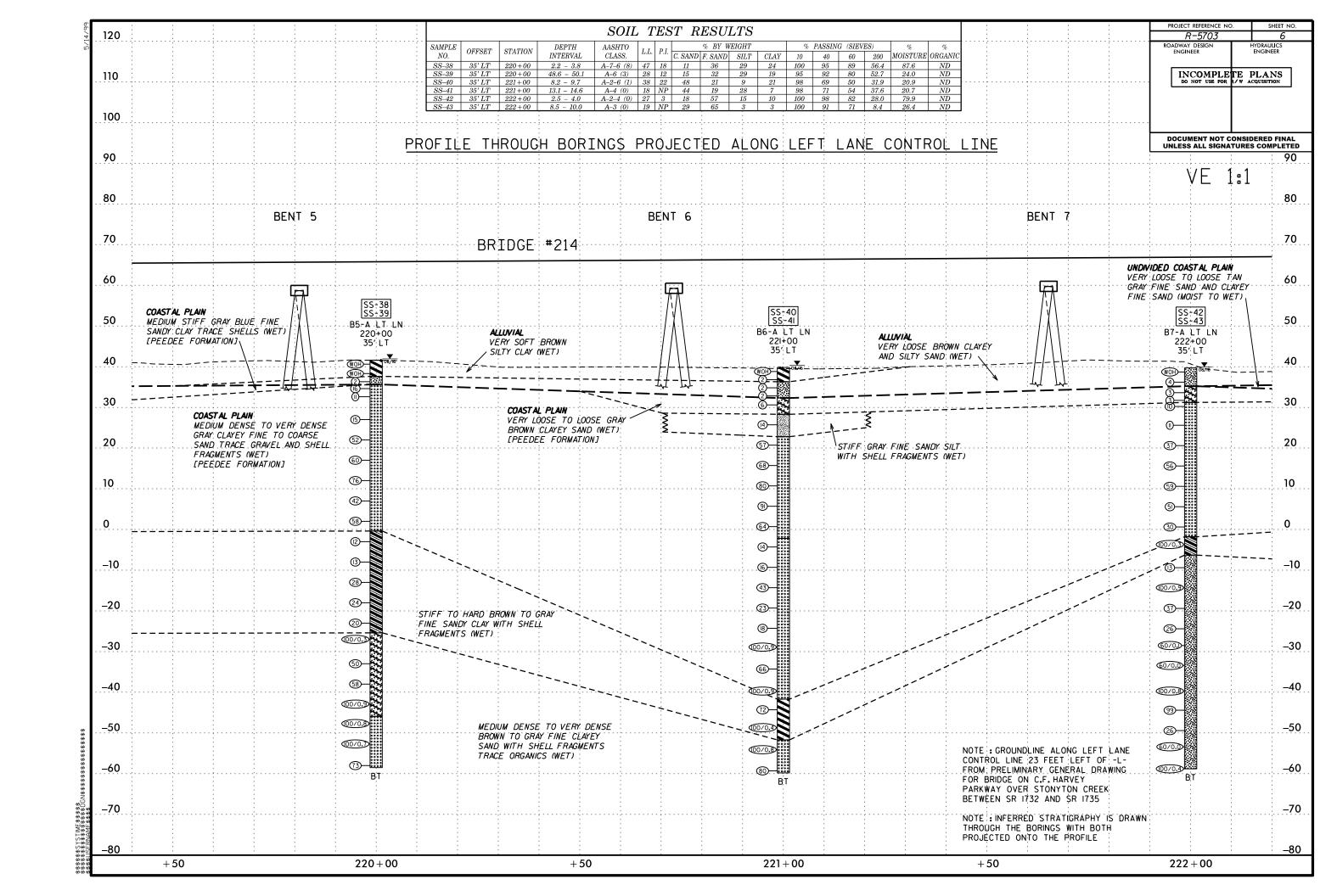
DATE __MAY 2017

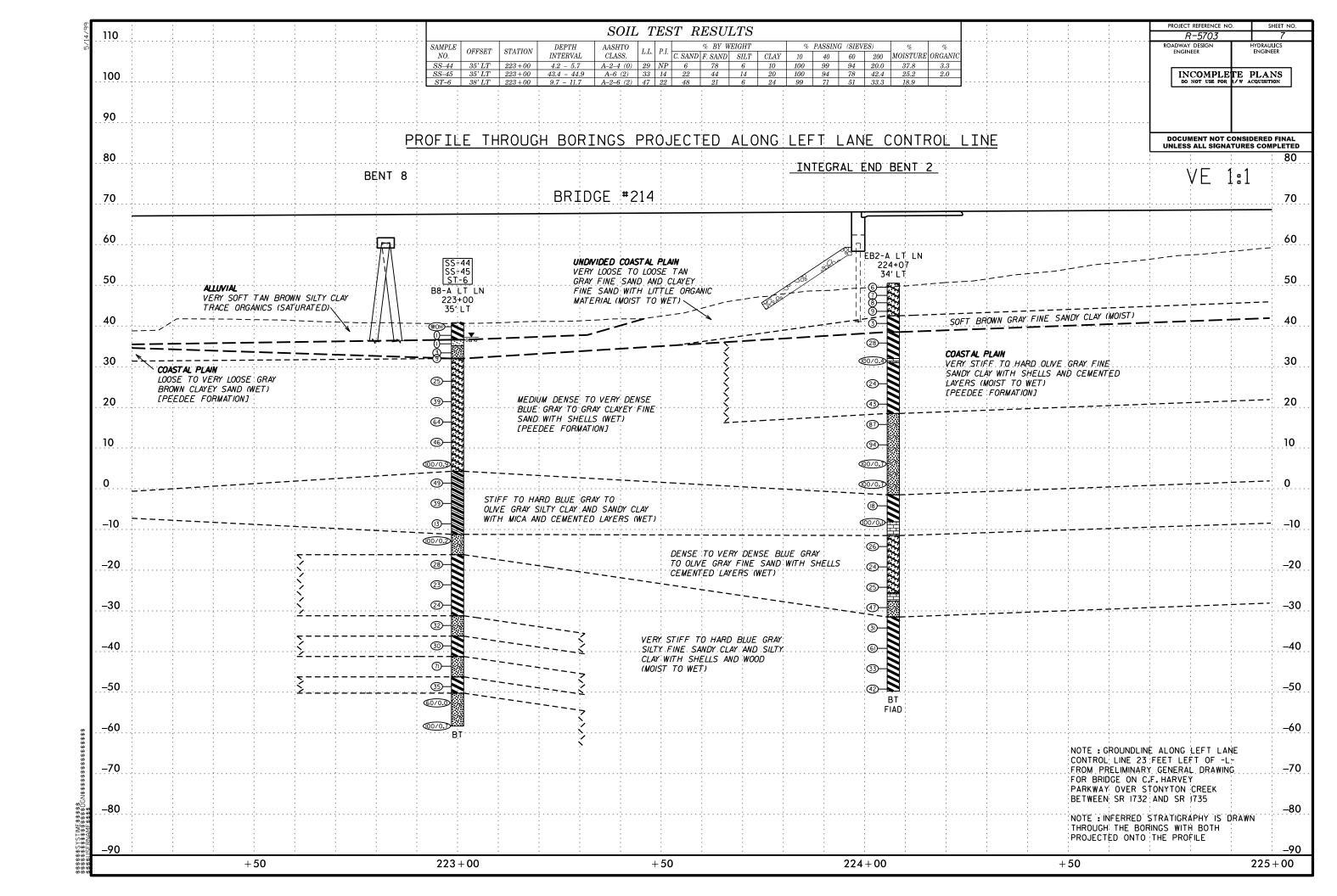
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

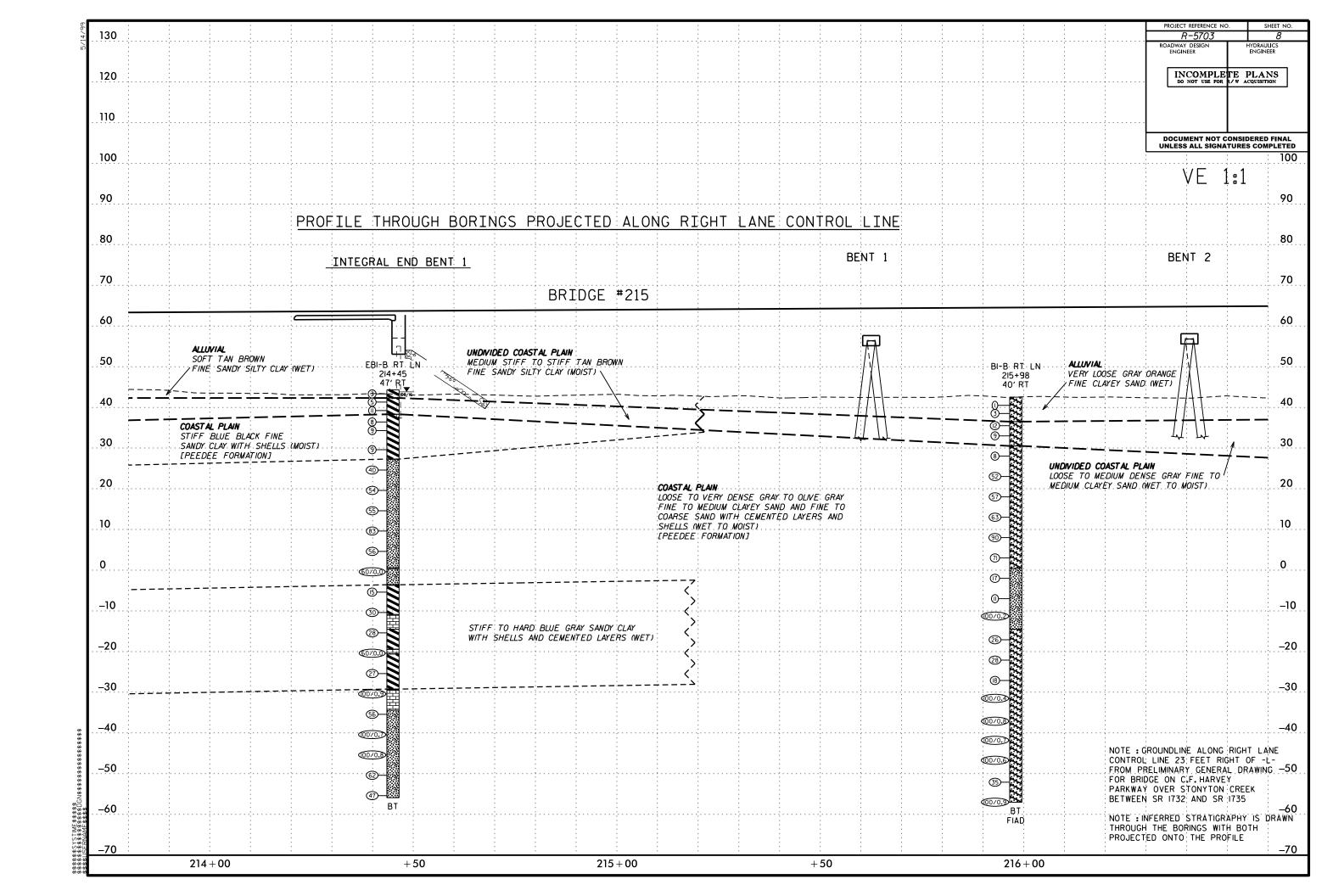

DET REFERENCE NO.	GILDET NO.
–5703	2

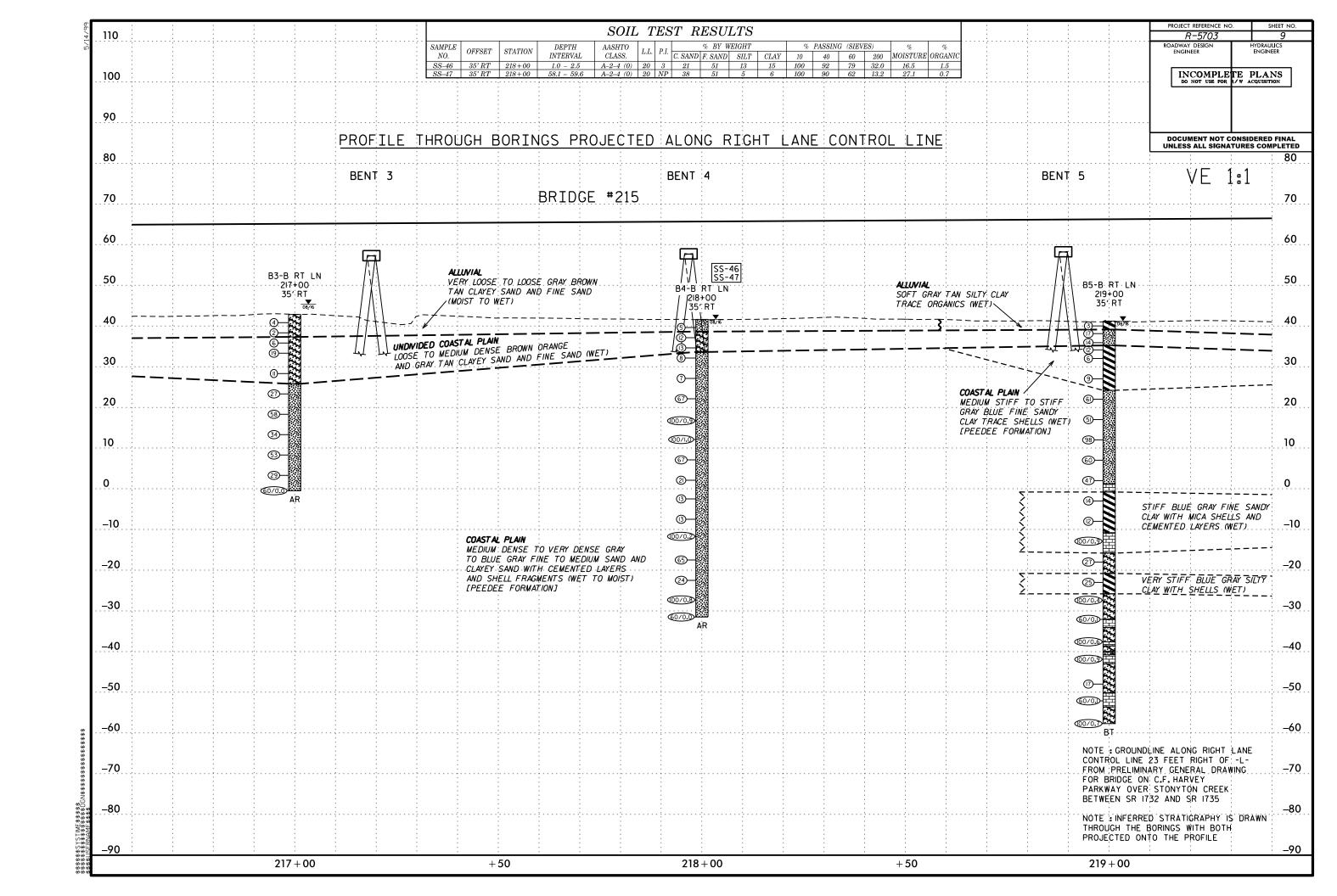

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

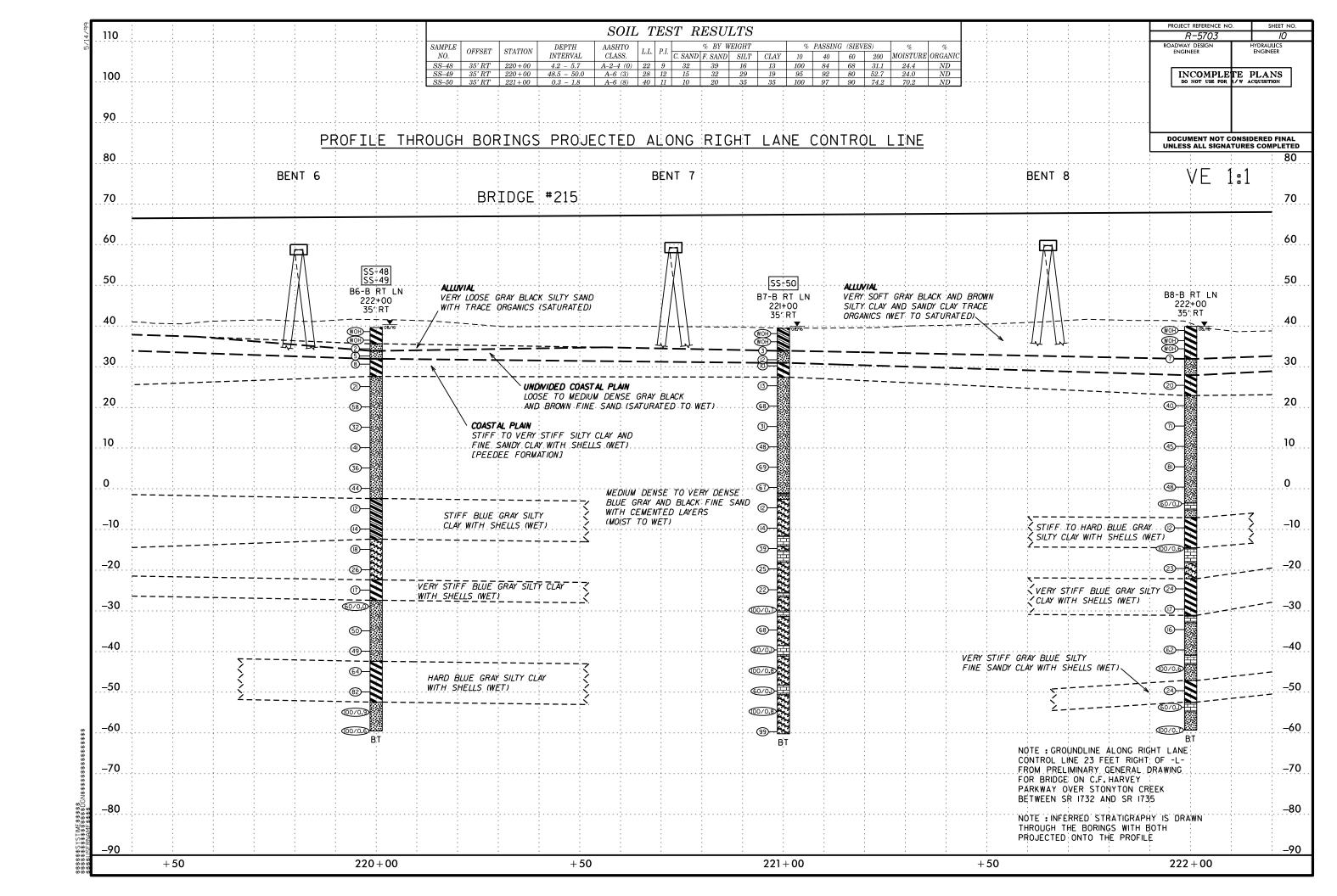

SUBSURFACE INVESTIGATION

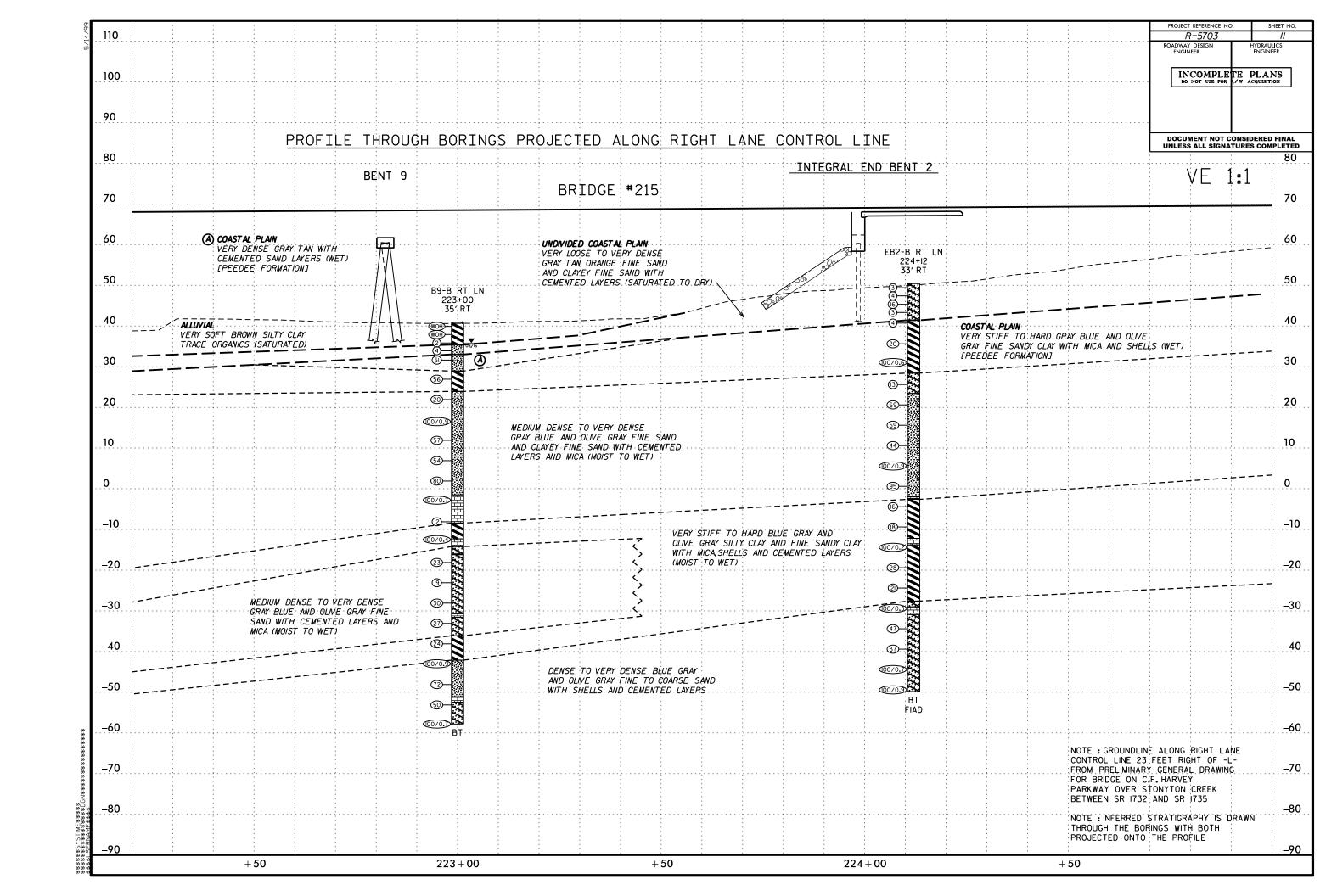

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (MASHTO T 206, ASTM DISBO, SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	HABD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (WR) 100 BLOWS PER FOOT IF TESTED. CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC. FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE. CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-0 (A-1-b) A-2-4 (A-2-5) (A-2-6) (A-2-7) A-3 A-6, A-7 SYMBOL COSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE	NON-CRYSTALLINE ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELLO SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN SEDIMENTARY ROCK COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK (CP) SHELL BEDS, ETC.	COLLUYIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*10 50 MX GHANULAH GHANULAH CLAY MUCK,	PERCENTAGE OF MATERIAL GRANULAR SILT - CLAY	WEATHERING	<u>DIKE</u> - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
-2000 15 MA (25 MA) 0 MA (35 MA) 35 MA (35 MA) 35 MA (35 MN) 35 MN 35 MN	ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE
LL 40 MX 41 MN 440 MX 41 MN 40 MX 41 MN 40 MX 41 MN 40 MX 41 MN LITTLE OR HIGHL. PI 6 MX NP 10 MX 10 MX 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN 11 MN 10 MX 10 MX 11 MN 11 MN MODERATE GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX NO MX AMOUNTS OF GRANIC GROUP TOTAL TOTAL STORY STOR	HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE GROUND WATER	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE. SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) 1 INCH. DPEN JOINTS MAY CONTAIN CLAY, IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR	LINE OF DIP, MEASURED CLOCKWISE FROM NORTH. FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
USUAL TYPES STONE FRAGS. OF MAJOR GRAYEL AND MATERIALS SAND SAND SAND SAND SOLD SAND SAND SOLD SAND SOLD SOLD SOLD SOLD SOLD SOLD SOLD SOL	■ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING ■ STATIC WATER LEVEL AFTER HOURS ▼ PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS	SPRING OR SEEP MISCELLANEOUS SYMBOLS	WITH FRESH ROCK. MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH AND CAN DE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM, FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY PENERATION RESISTENCE (N-VALUE) COMPRESSIVE STRENGTH (TONS/FTZ) GENERALLY VERY LOOSE 4 TO 10	WITH SOIL DESCRIPTION OF ROCK STRUCTURES SOIL SYMPOLE SO	IE TESTED, WOULD STEED SPT REFUSAL SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND EVIDENT BUT (SEY.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
GRANULAR	ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER THAN ROADWAY EMBANKMENT	IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	MOTILED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTILING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED MATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
VERY SOFT < 2 < 0.25	INFERRED SOIL BOUNDARY CORE BORING SOUNDING ROD TEST BORING WITH CORE PIEZOMETER INSTALLATION SPT N-VALUE	(V SEV.) REMAINING, SAPPOLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DECREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF COMPLETE ROCK REDUCED TO SOIL ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE.	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK, ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
HARD > 30 > 4 TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	ROCK HARDNESS	RUN AND EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053	UNDERCUT UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAV	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
BOULDER COBBLE GRAVEL SAND SAND (SL.) (CL.)	UNDERCUT UNDERCUT ONCLASSIFIED EXCAVATION - EMBANKMENT OR BACKFILL ABBREVIATIONS	TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	<u>SLICKENSIDE</u> - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
GRAIN MM 305 75 2.0 0.25 0.005 0.005 SIZE IN. 12 3 SOIL MOISTURE - CORRELATION OF TERMS	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 _d - DRY UNIT WEIGHT	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE (ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTIO - SATURATED - USUALLY LIQUID; VERY WET, USUALLY	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE.	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL
LL LIQUID LIMIT (SAT.) FROM BELOW THE GROUND WATER TABLE		VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) ATTAIN OPTIMUM MOISTURE (PI) PL PLASTIC LIMIT	FRAGS FRAGMENTS	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK: BMI4: 340.30 FEET RIGHT -L- 224+52 RR SPIKE IN BASE OF 12° PINE
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT	EQUIPMENT USED ON SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: CME-45C CLAY BITS X AUTOMATIC MANUAL	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET	N 579,195.2330 E 2,436,020.6560 ELEVATION: 64.40 FEET NOTES:
- DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE PLASTICITY	CME-55 6° CONTINUOUS FLIGHT AUGER CORE SIZE: B° HOLLOW AUGERS -B -H	VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET INDURATION	FIAD - FILLED IMMEDIATLEY AFTER DRILLING
PLASTICITY INDEX (PI) DRY STRENGTH	CME-550 HARD FACED FINGER BITS	FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT	VANE SHEAR TEST X CASING W/ ADVANCER HAND TOOLS:	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
MODERATELY PLASTIC 16-25 MEDIUM HIGHLY PLASTIC 26 OR MORE HIGH COLOR	PORTABLE HOIST X TRICONE 2 15/16 STEEL TEETH HAD HAD ERR	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE: BREAKS EASILY WHEN HIT WITH HAMMER. GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE:	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X BK-51 CORE BIT SOUNDING ROD VANE SHEAR TEST	INDURATED ON THE DIFFICULT TO BREAK WITH HAMMER. EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14









	<u>""</u>	<u>U</u>	y E	30	RE	LO	G I	REP	OR	T																																			
WE	S 46	375.1	.1			-	ΓIP	R-5703		(COUNT	Y LEN	IOIR				GEO	LOGIST	r Wrigh	nt, F.K.				WBS	4637	5.1.1			TI	P R-570	3	C	OUNTY	LENOI	R			GI	EOLOG	SIST W	right, F.k	<.			
SIT	E DES	CRIP	TION	Brid	lge No	o. 214	on -l	- (Felix	Harve	y Pk	wy) ove	er Stony	ton C	reek							GRO	UND WTF	(ft)	SITE	DESCF	RIPTION	Brid	lge No	. 214	on -L- (Fe	lix Har	ey Pkw	y) over	Stonyton	Creek								ROUND	WTR ((ft)
во	RING I	NO.	EB1-A	4 LT I	_N		STAT	ON 2	14+45			OFFSI	ET 3	0 ft LT			ALIG	NMENT	Γ -L-		0 HF	₹.	N/A	BORI	NG NO	. EB1-	A LT I	LN	S ⁻	TATION	214+4	5		OFFSET	30 ft L	Т.		AL	LIGNME	ENT -L-	-		HR.	N	I/A
co	LLAR	ELEV	. 42.	.8 ft			ГОТА	L DEP1	H 100	0.2 ft		NORT	HING	579,	003		EAST	TING 2	2,434,99	1	24 HF	₹.	0.3	COLL	AR EL	EV . 42	.8 ft		TO	OTAL DE	PTH 1	00.2 ft		NORTHI	NG 579	9,003		E/	ASTING	3 2,434	,991	24	4 HR.	C	0.3
DRI	LL RIG/	HAMN	IER EF	F./DA	TE B	RI9103	3 BK-5	1 89% 05	/04/2016	6				DRILL	METH	OD Mu	ıd Rotary	у		HAM	MER TYP	PE Automa	tic	DRILL	RIG/HA	MMER E	FF./DA	TE BF	RI9103 I	3K-51 89%	05/04/20	16			DRILI	L MET	HOD	Mud Ro	tary		I	HAMMER	TYPE A	utomati	С
DR	LLER						STAR	T DATE	08/2	22/16		COMP					SURF	FACE W	VATER [DEPTH 1	N/A					ister, G				TART DA	E 08	/22/16		COMP. D	ATE 0	8/22/	16	SI	JRFAC	E WATE	R DEPT	H N/A			
ELE (ft)	DRIV ELE (ft		EPTH (ft)	O.5ft	0.5ft	0.5f	t 0	2	BLOV	VS PE	R FOO	Г 75	100	SAMP NO.	1 /	101	ELEV. (f	S(ft)	SOIL AND	ROCK DES	SCRIPTIO		TH (ft)	ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)		0.5ft	_	0	25	0WS PER 50		75 10	SAM NO	- 1 /	MOI G) G		SOIL A	ND ROCK	(DESCRI	PTION		_
45		8 =	0.0	1	1	2		· · · ·							M		42.8			OUND SURI	_		0.0	-35	-35.9	78.7	 28	42	57				ine 		99										
40	40.	7 🛨	2.1	1	1	4	┤	· · ·							l M		-	Gray	y Tan Fine	Sandy Silt Organics	ty CLAY,	Trace		-40	-	‡								/.	_		//	*							
35	36.	7 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +		WOH	1	2	- <i> </i>	3		· ·		·			w		37.3	- L	UNDIVIDI	ED COAST	ΓAL PLAII	N h Silt	5.5	-45	-40.9	83.7	26	40	41			:: :		81		N	И 🔆 🔆	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
33	34.	1 ‡	8.7	28	16	15	- ♣:	·	<u> </u>						l w		34.3	— — — -	,	ASTAL PL			8.5	-40	-45.9	88.7	56	44/0.2						· · · · · ·	$\exists 1$		и 🔆	*							
30		† 1 + .	12.7	20				: : : : : /	31 .	· · ·					W	**************************************	-	Blue	e Gray Cla Gravel a	ayey Fine S and Rock Fi edee Forma	SAND with ragments	n Fine		-50	50.0	93.7		11/0.2						100/0.	7		****** !	- <u>49.2</u>	<u>2 — Blu</u>	ue Gray Fir	ne Sandy	Silty CLA	Y with She	<u>s</u>	<u>92.0</u>
25		Ī		5	5	6		•11 ·		· · · · · · · · · · · · · · · · · · ·					w		<u>25.8</u>		y Eino SA	.ND with Cl	lay Soome		17.0	-55	-30.9	93.7	24	26	12			\$38. 				N									
	24.	1 	18.7	12	15	22	$+\Gamma$			37 -					М		-	Gray	Ceme	nted Sand	Layers	s and			-55.9	98.7	11	34	52					- 86			л I	-57.4	4					10	00.2
20		I 1 + ;	23.7														-								-	-								- - 00				-57.5	В	Boring Terr ard Blue G	minated at Gray Fine S She	Sandy Silt	n -57.4 ft ii y CLAY wi	1	70.2
		Ī		14	20	23				43					М																							Ē							
15		1 + 1	28.7	9	25	32	 -	: : :		::	57 .				М		-								-	+												-							
10	9.1	-	33.7	11	12	24	<u>:</u>	: : :		/ /					 _M		-								- -	<u> </u>												F							
5		<u> </u>	38 7					· · ·							"		-								- -	-												-							
0		+		16	28	15				. . 43					М		2.7 2.2 0.8	— <u>- Divo</u> (Cray Silk	CLAY with	Time Con		40.1 40.6 42.0			† - -												Ē							
	-0.	9 T	43.7	5	6	8		• • 14 • 1.							М		-	Dide (Oray Only	Shells	TT IIIe Gai	iid witii			- -	<u> </u>												F							
-5	5.	9 	48.7	4	6	7	<u></u> ∦:								١.,		-								-	Ī												F							
-10		, ‡	50.7					·•13· ·•1. ·		· · ·					M		_								- -	<u> </u>												E							
5/2/17		9 7 !	SS./	14	6	9	:	• • 15_ • • 15_	· · · · ·] · · · · ·	· ·		·			М		-12.2 -12.4 -13.5	Blue (Gray Clay with Cer	ey Fine SA mented Sar	AND with a	Shells,	55.0 55.2 56.3			† 												Ė							
DOT.GDT	-15	9 + 9	58.7	8	12	16			•28· ·						w		-				•				- - -	 - - -												-							
4.GPJ N	20	9 + 6	63.7	10	11	15			26		· · · · · · · · · · · · · · · · · · ·				w		-								- - - -	<u> </u>												-							
DOUBLE SITE	25	9 + 6	68.7	60/0.0								6	: :		w	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25.2 -26.0 -27.5 -27.9						68.0 68.8 70.3 70.7		-	 												-							
CDOT BORE D		. .	73.7	6	94/0.2	2						- 10	0/0.7		w		30.1 -30.3						72.9 73.1		- -																				

WBS 4	6375.1	.1			Т	IP F	₹-5703		(COUNT	Y LE	NOIR				GEOLOGI	ST Peele	, J.E.		
SITE DE	SCRIP	TION	Bric	dge No	214	on -L	(Felix	Harve	y Pk	wy) ove	r Stor	yton (Creek						GROUN	ID WTR (f
ORING	NO.	B1-A	LT LI	N	S	TATI	ION 2	16+00			OFF	SET	35 ft LT			ALIGNME	NT -L-		0 HR.	N/
OLLAF	R ELEV	. 42	.4 ft		T	ОТА	L DEPT	H 51.	7 ft		NOF	RTHING	G 578,9	986		EASTING	2,435,140)	24 HR.	N/
RILL RI	G/HAMN	MER EF	F./DA	TE M	ID0314	D-25	86% 08/	04/2016					DRILL I	ИЕТНО	D M	ud Rotary		HAM	MER TYPE	Automatic
RILLEI	R Wig	gins,	М.		S	TAR	T DATE	08/02	2/16		CON	/IP. DA	TE 08/	02/16		SURFACE	WATER D	EPTH 1	1.5ft	
_EV DF	RIVE DI	EPTH	BLC	OW CO	UNT			BLOW	/S PE	R FOOT			SAMP.	V /	1 L		COIL AND I		COUDTION	
	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0	2	25	50		75 	100	NO.	MO	O I G	ELEV. (ft)	SOIL AND I	ROCK DE	SCRIPTION	DEPTH
45	\perp													_		_				
	±													┻	- 	· _ · · _ · · _ · · _ · · _ · · _ · · _ · · _ · · _ · · _ · · _ · · _ · · _ · · _ · · · _ · · · _ · · · _ · · · _ · · · _ · · · _ · · · _ · · · _ · · · _ · · · · _ ·		URFACE UND SURI	(08/02/16) _ FACE	= =
	1.4	1.0	1	1	1	Ħŗ	• • •				Τ:			_	0000			ALLUVIAL		
40 3	_{88.9} <u> </u>	3.5	ı	'	1	2			-		+÷			Sat.	0000		<u>-</u>	Tan Fine S		
	+		2	4	5]]	9		-		:			М	/ //		Gray	ASTAL PL Silty Fine S	SAND	
35	86.4	6.0	7	8	5	:	.\ •13~		:		:			l w	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•	[Pee	dee Forma	ation]	
	33.9	8.5	60	40/0.4	-	-			==+		₹.			l _M		-				
	‡		00	10/0.4		:					<u></u>	100/0.9		"		•				
30	‡					الــٰ				. <u></u>	1:					30.4	Gray Fin	e to Mediu	m SAND	1
2	8.9	13.5	5	7	8	:	• •15							М			,			
) F	‡					:		\.\.\.\.												
25 2	23.9 +	18.5	- 10			<u> </u>					+:					- :				
	‡		16	26	40	:					3 .			М						
20	<u></u>					lĿ				¦ .	<u> :</u>					-				
1	8.9 1	23.5	18	30	35	╢:				j .	:			M		.				
	±									/:										
15	3.9 I	28.5				H				- /	+÷					_				
	J.J + 1	20.5	16	25	32	:				∮ 57 · ·	:			М						
0	Ŧ					:			: <i>,</i>	/. : : :	:					•				
	8.9 🕇 :	33.5	12	16	30	↓ □			-/		1:			١		- ·				
	‡		12	10	30	:			Q 46					M		•				
5	‡					lĿ					<u> </u> :					-				
_3	3.4 ‡ 3	39.0	20	28	30	{ :			:	<u>```</u> :::	:			M		•				
_	‡					:				,. ● 58 	:			IVI		· · 0.4				4
0	1. +	,,						./			+:					Dark	Gray Fine S	AND with	Cemented L	ayers
-	1.6 + 4	44.0	6	7	8	11:	. •15		:		:			М	**					
-5	<u> </u>						. l	<u> </u>	<u>.</u>		<u> </u>				* //					
	6.6 T	49.0	5	6	6	↓ Ē	· j. ·		: T						**					
	9.3 I	51.7	3	°	0	$ \cdot $	● 12 —		·÷		<u> </u>			M	**	9.3				5
	+		60/0.0	1		Γ'		,	-	<i>.</i>		60/0.0	•1	_M_	1	_	Boring Terr	ninated wi	th Standard	
	Ŧ															- Pen - in \	etration Test Very Dense [Dark Gray	Fine SAND	9.3 π with
	Ţ														1 1	•	Cer	nented Lay	yers	
	‡															-				
	‡															•				
	‡															-				
	‡															• •				
	‡														[• •				
	Ŧ															_				
	Ŧ															• •				
	‡															• •				
	‡															- :				
	‡																			
	+			1									1		1 -	•				

WBS 46375.1.1		TY LENOIR	GEOLOGIST Peele, J.E.		ITY LENOIR	GEOLOGIST Peele, J.E.
SITE DESCRIPTION Bridge No.	. 214 on -L- (Felix Harvey Pkwy) ov		GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 214 on -L- (Felix Harvey Pkwy) ov		GROUND WTR (ft)
BORING NO. B2-A LT LN	STATION 217+00	OFFSET 35 ft LT	ALIGNMENT -L- 0.0	BORING NO. B2-A LT LN STATION 217+00	OFFSET 35 ft LT	ALIGNMENT -L- 0 HR. 0.0
COLLAR ELEV. 42.3 ft	TOTAL DEPTH 98.8 ft	NORTHING 578,975	EASTING 2,435,240 24 HR . 0.0	COLLAR ELEV. 42.3 ft TOTAL DEPTH 98.8 ft	NORTHING 578,975	EASTING 2,435,240 24 HR. 0.0
DRILL RIG/HAMMER EFF./DATE MIL	D0314 D-25 86% 08/04/2016	DRILL METHOD Mu	d Rotary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04/2016	DRILL METHOD M	ud Rotary HAMMER TYPE Automatic
DRILLER Wiggins, M.	START DATE 08/03/16	COMP. DATE 08/03/16	SURFACE WATER DEPTH N/A	DRILLER Wiggins, M. START DATE 08/03/16	COMP. DATE 08/03/16	SURFACE WATER DEPTH N/A
ELEV (ft) DRIVE (ELEV (ft) DEPTH 0.5ft 0.5ft		75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	DRIVE	75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION
45		V	42.3 GROUND SURFACE 0.0 ALLUVIAL	-35 Match Line -35.9 78.2 35 41 38		
41.3	WOH 1 1 1 1 1 1 1 1 1 1 1 1 1		Gray Fine to Medium Sandy SILT	-40 -40.9 83.2 54 46/0.2		· - - - -
35 3.8 - 8.5 3 5	6		UNDIVIDED COASTAL PLAIN Gray Fine to Medium SAND	-45 -45.9 88.2 8 11 13 · · · · · · · · · · · · · · · · ·		<u>-</u> - - -
28.8 + 13.5	4 \$7	· · · · · · · · · · · · · · · · · · ·		-50 -50.9 93.2 9 14 23 • • • • • • • • • • • • • • • •		- - - - -
25 23.8 18.5 22 30	50	•80 · · · W	25.3 17.0 COASTAL PLAIN Dark Brown to Gray Fine SAND with Clay, Shell Fragments and Cemented Sand Layers [Peedee Formation]	-55.9 98.2 64 36/0.1		- 56.5 98.8 Boring Terminated at Elevation -56.5 ft in Hard Dark Gray SAND with Clay, Shell
18.8 - 23.5 5 22	40	2 · · · · · · W				Fragments
13.8 - 28.5 24 28	27	w				- - - -
8.8 - 33.5 40 56	44/0.4	.				
3.8 38.5 23 15 1.3 41.0 60/0.0	40 •55_	W W	•			- : :
-0.9 43.2 6 8	9	w				- - - -
-5.9		SS-37 22%	-6.7 -6.9 49.2 -10.0 52.3			- - - -
-10.9 53.2 60/0.1			-11.8 54.1 -12.8 55.1 -13.4 55.7 -14.7 57.0			-
-15.9 \(\) 58.2 \(\) 60/0.0 \(\) 00 \(\) -20 \(\)		W W	-15.1 57.4 -15.8 58.1 -16.7 59.0 -18.7 61.0 Dark Gray Fine SAND with Clay and Shell Fragments and Cemented Sand layers			- - - - -
-20.9	15	W 0000	Fragments and Cemented Sand layers			- - - -
-25.9 T 68.2 6 8	12 •20,	W 0000	-29.1 71.4			
-30.9 73.2 60/0.1		. : 60/0.19 W	-32.1 74.4			• • •

VBS 46375.1.1	ļ.	TIP R-5703	COUNTY LENOIR		GEOLOGIST Peele, J	
SITE DESCRIPTION		14 on -L- (Felix Harvey P			_	GROUND WTR (ft
BORING NO. B3-A L	T LN	STATION 218+00	OFFSET 3	35 ft LT	ALIGNMENT -L-	0 HR. 0.0
OLLAR ELEV. 41.8	ft	TOTAL DEPTH 41.6 f	ft NORTHING	578,964	EASTING 2,435,339	24 HR. 0.0
RILL RIG/HAMMER EFF	./DATE MID03	114 D-25 86% 08/04/2016		DRILL METHOD N	lud Rotary	HAMMER TYPE Automatic
RILLER Wiggins, M	1.	START DATE 08/05/1	16 COMP. DA	TE 08/05/16	SURFACE WATER DEF	PTH N/A
EV DRIVE DEPTH	BLOW COUNT	<u> </u>	PER FOOT	SAMP. L	SOIL AND RO	CK DESCRIPTION
(ft) (ft) (ft) C	0.5ft 0.5ft 0.5	5ft 0 25	50 75 100	NO. MOI G	ELEV. (ft)	DEPTH
45					_	
				_	-	
40.8 + 1.0		1				ID SURFACE LUVIAL
· + I^	/OH 1 1	• 2	 	w	Dark Brown	Fine Sandy SILT
38.3 7 3.5	1 WOH WC	DH		Sat.	_	
$\frac{35.8 + 6.0}{}$	VOH WOH 3	1		Sat.	_	
33 3 + 85		\P_{i}^{3}		Sai.	33.8	COASTAL PLAIN
	10 5 6	11 . 11		W	 Dark Gray Silty Fin 	e SAND with Cemented
0 ‡		-			- -	Layers
28.3 13.5	3 4 6			l w	-	
5 ‡		1		**************************************		1
23.3 18.5			 	0000		TAL PLAIN m SAND with Cemented
23.3 18.3	11 24 25	5 : : : : : : : : : : : : : : : : :		W	- -	Layers
0 +			/ · · · · · · · ·	0000	-	
18.3 23.5	14 20 24	<u> </u>		0000	_	
	14 20 24	4	14	W	_	
5 7				0000	_	
13.3 7 28.5	16 20 23	3	3	W	-	
o				0000	-	
8.3 + 33.5			1.5	0000	- -	
ļ —	20 34 38	8	72	W	- -	
<u> </u>			· · · · \ · · · ·	0000	<u>-</u>	
3.3 + 38.5	30 34 44	4	::::[\::::	0000	- -	
1 1			· · · · · •78. · · · · · · ·	W	- - _{0.2}	4
0.2 1 41.6	0/0.0		60/0.0	<u> </u>	Boring Termin	ated with Standard
<u> </u>					Very Dense Gray Fi	fusal at Elevation 0.2 ft in ne to Medium SAND with
1 1					_ Cemer	nted Layers
1 1					-	
					-	
					-	
					-	
					- -	
					- -	
					- -	
					-	
1 1					_	
					-	
					<u>-</u>	
					- -	
‡					-	
‡					_	
					<u> </u>	
					-	

W BOREL	1			1					1	
WBS 46375.1.1	TIP R-5703 COUNTY LEN		EOLOGIST Wright, F.K.		WBS 46375.1.1			TY LENOIR	GEOLOGIST Wright, I	
	214 on -L- (Felix Harvey Pkwy) over Stony	<u> </u>		GROUND WTR (ft)		<u> </u>	. 214 on -L- (Felix Harvey Pkwy) ov			GROUND WTR (ft)
BORING NO. B4-A LT LN			LIGNMENT -L-	0 HR . N/A	BORING NO. B4-/		STATION 219+00	OFFSET 35 ft LT	ALIGNMENT -L-	0 HR. N/A
COLLAR ELEV. 41.4 ft			ASTING 2,435,438	24 HR. N/A	COLLAR ELEV. 4		TOTAL DEPTH 99.7 ft	NORTHING 578,95		24 HR. N/A
DRILL RIG/HAMMER EFF./DATE MID		DRILL METHOD Mud R	<u> </u>	MER TYPE Automatic			D0314 D-25 86% 08/04/2016		ETHOD Mud Rotary	HAMMER TYPE Automatic
DRILLER Coogan, M. ELEV DRIVE DEPTH BLOW COUI		IP. DATE 08/10/16 S SAMP. ▼ L	URFACE WATER DEPTH 1.	.2ft	DRILLER Coogan		START DATE 08/09/16	T SAMP.	0/16 SURFACE WATER DEF	PTH 1.2ft
ELEV Cft) DRIVE ELEV (ft) DEPTH BLOW COUI		100 NO. MOI G ELI	SOIL AND ROCK DES	CRIPTION DEPTH (ft)	ELEV DRIVE ELEV (ft) DEPTH				MOI G SOIL AND RO	CK DESCRIPTION
(ii)		I WO I WOI G ELI	=v. (ii)	DEFTH (II)	(ii)				MOI G	
45					-35		Match Line			
			WATER SURFACE (08/09/16)	-37.3 + 78.7	1			Blue Gray Fine S.	AND with Clay Seams, Cemented Sand Layers
41.4 T 0.0 WOH WOH V	WOLL I	- 41.	4 GROUND SURF		1 †	58 42/0.2		. 100/0.7	W (co	ntinued)
30 1 24	 		Gray Tan Silty CLAY, with Fi Organics	ine Sand, Trace	-40 +			. 		
39.0 2.4 WOH WOH V		: : : W	Organics		-42.3 + 83.7	100/0.5			w	
35 34.6 6.8 1 1	1 2	W 34.	9 COASTAL PLA	6.5	-45			· - · · ·		
32.9 + 8.5 2 3 WOH 3	4 I I I I I I I		Gray Blue Fine Sandy CLAY	, with Silt, Trace	-47.3 - 88.7	7 10	12			
30	[→] [→] / _→ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	::: 	Shells [Peedee Format	-	-50	' 10	12		W	
27.7 + 13.7		29.	Gray Blue Fine SAND, wit	th Clay, Trace	-52.3 + 93.7					
+ 5 7	21 228	- · · w	Śhells and cemented s	sand layers	+	31 69/0.3			w	
25					-55			. 		
22.7 + 18.7 18 24	21	· · ·			-57.3 - 98.7	47 53/0.5			W -58.3	99.7
20 +								100/1.0	 Boring Terminated Very Den 	at Elevation -58.3 ft in se Fine SAND
17.7 + 23.7	:::: ::/:: :::: :::	· · ·								
15 8 11	19 •30	· · ·			‡					
T I I	. \ \				‡				-	
12.7 + 28.7	25	· · ·								
10 1					1 1 = 1				 	
7.7 + 33.7 23 27	70 '.				1 1 ±				-	
5 +	25									
2.7 + 38.7	:::: :::: :::: ::::	· · ·							-	
0 7 27 37 6		1.7 100/0.7		39.7 40.4						
T I I		-0.6	Blue Gray Silty CLAY with Fi	ine Sand, Trace 42.0	‡					
-2.3 + 43.7 4 5	6	::: w S =	Shells and cemented s	sand layers	‡					
-5			1	47.8	1 ‡					
-7.3 + 48.7 5 7	13	-6.8		48.2	1 1 1				<u> </u>	
-10	• • • • • • • • • • • • • • • • • • • •		Gray Clayey Fine SAND, wi	ith Trace Shells 50.4	±					
-12.3 + 53.7	:::: ::: ::: \`\`\\;	-11	.6 and Cemented Sand Laye Seams	ers, and Clay 53.0	‡				-	
10 12 8		100/0.9 W -13		55.3 56.2					-	
· · · · · -			.•	30.2						
-17.3 + 58.7 10 12	16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · w			‡					
<u>2</u> -20			. <u>6</u>	62.0	‡					
-22.3 - 63.7 5 6			Blue Gray Silty CLAY with Fi	ine Sand, Trace	‡				E	
-25 T	•20	W 3-	6	67.0	$ \equiv$				<u>E</u>	
			Blue Gray Fine SAND with Trace Shells and Cemente	n Clay Seams,	‡					
[a] + 100/0.4		100/0.4 9 W	Trace Stiells and Certiente	a Janu Layers	‡					
+					‡				-	
-32.3 + 73.7	33	· · ·			‡					
9 -35 †					†	1 1 1				

WBS 46375.1.1		ITY LENOIR	GEOLOGIST Peele, J.E.		ITY LENOIR	GEOLOGIST Peele, J.E.
SITE DESCRIPTION Bridge No.			GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 214 on -L- (Felix Harvey Pkwy) ov		GROUND WTR (ft)
BORING NO. B5-A LT LN	STATION 220+00	OFFSET 35 ft LT	ALIGNMENT -L- 0 HR. N/A	BORING NO. B5-A LT LN STATION 220+00	OFFSET 35 ft LT	ALIGNMENT -L- 0 HR. N/A
COLLAR ELEV. 41.6 ft	TOTAL DEPTH 100.1 ft	NORTHING 578,942	EASTING 2,435,538 24 HR. N/A	COLLAR ELEV. 41.6 ft TOTAL DEPTH 100.1 ft	NORTHING 578,942	EASTING 2,435,538 24 HR. N/A
DRILL RIG/HAMMER EFF./DATE MID	1	DRILL METHOD M	'	DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04/2016	DRILL METHOD M	· ·
DRILLER Coogan, M.	START DATE 08/24/16	COMP. DATE 08/25/16	SURFACE WATER DEPTH 0.3ft	DRILLER Coogan, M. START DATE 08/24/16	COMP. DATE 08/25/16	SURFACE WATER DEPTH 0.3ft
ELEV (ft) DEPTH BLOW COU (ft) 0.5ft 0.5ft		75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	ELEV (ft) (ft) DEPTH BLOW COUNT BLOWS PER FOOM (ft) 0.5ft 0.	OT SAMP. L O NO. MOI G	SOIL AND ROCK DESCRIPTION
45				-35 Match Line		Brown to Gray Fine Clayey SAND with Shell Fragments (continued)
	MOH •0. · · · · · · · · · · · · · ·	<u> </u>	41.6 WATER SURFACE (08/24/16) 0.0 ALLUVIAL Brown Silty CLAY	-37.0 78.6 22 26 32 · · · · · · · · · · · · · · · · · ·		- Fragments (conunued)
39.3 + 2.3 WOH WOH 37.3 + 4.3 WOH WOH	NOH 0	SS-38 88% W	- 37.6 4.0 4.0 Brown to Gray Clayey SAND	-42.0 83.6 52 48/0.4	· · · · · · · W	<u>-</u> -
35 35.6 + 6.0 3 7 33.6 + 8.0 5 6	9 16 5	W 0000	- 35.6	<u>-45</u>	· · · · · · · · · · · · · · · · · · ·	
30 +	. 1		Gravel [Peedee Formation]	-50	W	with Shell Fragments
28.0 13.6 3 5	10 0 15 0 0 0 0			-52.0	W	-
23.0 18.6	23		-	57.0 98.6 23 31 42		- 59.5 - 100
20 18.0 23.6	· · · · · · · · · · · · · · · · · · ·	00000	- - -		10 0000	Boring Terminated at Elevation -58.5 ft in Very Dense Gray Fine SAND with Clay Seams and Shell Fragments
15 15 25	35		_			
† - -	40	76 · · · W				-
8.0 33.6 16 20	22	W W	 - -			<u></u>
5	42		- - -			- - -
3.0 38.6 15 31	27	W	- - - 04 420			- - - -
-2.0 43.6 4 5	7 · · · · · · · · · · · · · · · · · ·	: · · · · ·	Brown to Gray Fine Sandy CLAY with Shell Fragments			_ - -
-7.0 48.6			- - -			- - - -
-10	13.	SS-39 SS-39 SS-39	_			
-12.0 53.6 34 15 -15	13 28	: : : : : w				<u>-</u>
-15 -17.0 58.6 7 10 -20 -22.0 63.6 5 7 -25 -26.7 68.3 100/0.3 -32.0 73.6 15 23	14	· · · · · · · · · · · · · · · · · · ·	-			-
-22.0 63.6	1		- - -			- - -
-25	13	· · · · · ·				<u>-</u> - -
-26.7 + 68.3 100/0.3 -30		· 100/0.3	Brown to Gray Fine Clayey SAND with Shell Fragments			
<u>+ </u>			-	+	1 1 1	 -

	<u>" V</u>	V	BO	RE	LOC	REP	PORT																				
WBS	4637	5.1.1			TII	P R-5703		COUNTY	Y LENOIF	?		GEOLOGIST Peele, J.E.		WBS 4637	75.1.1			TI	IP R-5703 COUN	ITY LENOIR	₹		GEOLOG	GIST Peele, J.E			
SITE	DESC	RIPTION	N Brid	dge No	o. 214 c	n -L- (Felix	Harvey F	Pkwy) over	r Stonyton	Creek			GROUND WTR (ft	SITE DESC	RIPTIO	N Bri	dge No	o. 214 (on -L- (Felix Harvey Pkwy) ov	er Stonyton (Creek					ROUND V	VTR (ft)
BOR	NG NO	. B6- <i>A</i>	A LT LI	N	ST	ATION 2	21+00		OFFSET	35 ft LT	•	ALIGNMENT -L-	0 HR. N/A	BORING NO	D. B6-	A LT L	.N	S.	TATION 221+00	OFFSET	35 ft LT		ALIGNMI	ENT -L-		HR.	N/A
		EV . 39				TAL DEPT		t	NORTHIN			EASTING 2,435,537	24 HR . N/A	_					OTAL DEPTH 99.6 ft	NORTHIN	, 			3 2,435,537		HR.	N/A
				ATE M		D-25 86% 08/			.			Mud Rotary HA	MMER TYPE Automatic	-			ATE M		D-25 86% 08/04/2016			ETHOD N	/lud Rotary		HAMMER	TYPE Aut	omatic
DRIL		Coogan				ART DATE			COMP. D			SURFACE WATER DEPTH	0.5ft	DRILLER (TART DATE 08/23/16	COMP. DA		24/16	SURFAC	E WATER DEP	TH 0.5ft		
ELEV (ft)		DEPTH (ft)	BLO	OW CO		0 3		PER FOOT 50	75 100	11		SOIL AND ROCK D		ELEV DRIVE (ft) Cft)	DEPTI		OW CO		BLOWS PER FOO 0 25 50	OT 75 100	SAMP.			SOIL AND ROO	CK DESCR	PTION	
(14)	(ft)	(,	0.511	0.511	0.511		i .		10) INO.	MOI	G ELEV. (ft)	DEPTH (I	(it) (ft)	(14)	0.510	0.511	0.511		70 100	NO.	MOI G					
40												WATER SURFAC	E (08/23/16)	1 40					Match Line								
40	39.8	0.0	WOH	WOH	WOH	0					W	_ ALLUVI	AL	0 -40	 		+		iviateri Line		 		-41.7				- — — — 81.5
	37.8	+	WOH	1	1	\ \begin{array}{cccccccccccccccccccccccccccccccccccc					w	Brown Silty CLAY, to 36.3	3	-43.3	83.1	1	1] :::: ::::	:			F 7	Gray Sandy CLAY	with Shell	ragments	
35	35.8	4.0	1	1	1	1 · · · · · •				4	w	Brown Clayey Fine SAN	D, Trace Organics	-45	‡	40	46	26		72		w	<u> </u>				
	33.8	+	1	1	1	2					w	32.3		5	‡								<u></u>				
30	31.6	+ 8.2 +	3	2	4	,				SS-40	21%	COASTAL F Gray Fine SAND with Sh	PLAIN nell Fragments and	-48.3 -50	88.1	100/0.	.4				 	w	<u></u>				
	-	Ī				1, 1					· · ·	Clay Sea [Peedee Forr	ms <u>11</u> . mation]	5	Ŧ					I			<u>-51.7</u>				<u>91.5</u>
	26.7	13.1	5	6	8					99 41	21%	Gray Fine Sandy SILT wi	mation] 11. ith Shell Fragments	-53.3	93.1	50	50/0.3	3				W	E	Gray Fine SAND v	with Shell F	ragments	
25	-	Ŧ				14			+	33-41	12170	_		-55	\pm					100/0.8	₹I	0000	E				
	21.7	+ + 18.1									000	22.8 Gray Fine SAND, with Sh	nell Fragments, Clay	-58.3	98.1							0000	<u></u>				
20	_	‡	17	29	28			57 · ·			W	Seams	S		+	29	40	40		. €80		W SSSS	-59.8	Poring Torminated	at Elevetic	50 0 ft in	99.6
		‡						: '/: :			0 0	000_ 000_			‡								- 5	Boring Terminated a Very Dense Gray F	at Elevatio Fine SAND gments	with Shell	
15	16.7	23.1	24	33	35			/ .	58		W	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			‡								-	Flag	ginenis		
15	-	‡					1	† Š.		1	0 0	000			‡								-				
	11.7	+ - 28.1	10	32	10				\::::		0 0	0 0 0 0 0 0			‡								-				
10	-	‡	18	32	48				₹80	4	1 88	::: -			‡								-				
	0.7	‡									0 0	>			Ŧ								-				
5	6.7	+ 33.1 +	32	49	42				91		W	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Ŧ								-				
	-	Ŧ							1/		0 0	, , , , , , , , , , , , , , , , , , ,			Ŧ								F				
	1.7	38.1	32	38	26				/		W	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Ŧ								E				
0	-	Ŧ						64	+ : : : :		VV oo				\pm												
	-3.3	43.1									0 0	Gray Fine SAND with Sh Clay Sea	nell Fragments and		‡								-				
-5		‡	6	7	7	• • •14					W	Clay Sea	ims		‡								_				
		‡									0 0	000_ 000_			‡								-				
-10	-8.3	+ 48.1 +	5	7	9	1 .					W	000			‡								-				
10	-	Ŧ							1	1	0 0	>			Ŧ								F				
	-13.3	53.1	a	10	33						000	000 000 000			Ŧ								-				
-15	-	Ŧ					4:	3	+	+	W	000			Ŧ								E				
17	-18.3	+ + 58.1					<i>i</i> /				0 0	> 0 0 - 0 0 - 0 0 0			<u> </u>								E				
-20	-10.0	-	8	11	12		23	<u> </u>			W	000- 000- 000-			‡								_				
DOT.GDT		‡				/					0 0	> 0 0 0 0 0 0 0 0 0 0 0			‡								-				
[00]	-23.3	63.1	5	6	12	· · · · j·					W	0 0 0 0 0 0 0 0 0			‡								-				
<u>9</u> -25	-	‡					<u></u>	1	<u> </u>	1	0 0	\$			‡								-				
4.GP	-28.3	+ + 68.1									\A/ 000	000			‡								-				
SITE 4.GPJ	-	‡	20	80/0.4					100/0.9		W	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			‡								<u> </u>				
	co =	‡				: : : :			//::		0 0	0 0 0 - 0 0 0 0 - 0 0 0 0 -			‡								F				
BORE DOUBLE	-33.3	+ 73.1 +	19	23	43				<u></u>		W	000			Ŧ								F				
BOR	-	Ŧ						T	1		0 0 0				Ŧ								E				
CDOT	-38.3	78.1	18	40	60/0.4					\prod	W	0 0 0 0 0 0 0 0 0 0 0 0 0			‡								-				

WBS 46375.1.1	LOG REPORT TIP R-5703 COUNTY L	I ENOIR	GEOLOGIST Peele, J.E.	WBS 46375.1.1 TIP R-5703 COU	INTY LENOIR	GEOLOGIST Peele, J.E.
	214 on -L- (Felix Harvey Pkwy) over Sto		GROUND WTR (ff			GROUND WTR (ft)
BORING NO. B7-A LT LN			ALIGNMENT -L- 0 HR. N/A		OFFSET 35 ft LT	ALIGNMENT -L- O HR. N/A
COLLAR ELEV. 39.7 ft			EASTING 2,435,737 24 HR. N/A		NORTHING 578,920	EASTING 2,435,737 24 HR . N/A
DRILL RIG/HAMMER EFF./DATE MI		DRILL METHOD Mud		DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04/2016	DRILL METHOD	
DRILLER Coogan, M.	1		SURFACE WATER DEPTH 0.2ft	DRILLER Coogan, M. START DATE 08/22/16	COMP. DATE 08/23/16	SURFACE WATER DEPTH 0.2ft
ELEV DRIVE DEPTH BLOW COL		SAMP. V		ELEV DRIVE DEPTH BLOW COUNT BLOWS PER FO	OOT SAMP.	.
(ft) ELEV (ft) 0.5ft 0.5ft			SOIL AND ROCK DESCRIPTION LEV. (ft) DEPTH (75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION
40			9.7 WATER SURFACE (08/22/16) 0	Match Line	<u>;</u>	L
39.7 0.0 1 WOH		· · · · · W	ALLUVIAL Brown Silty SAND			Dark Gray Fine SAND with Clay Seams, Shell Fragments and trace organics
37.2 T 2.5 WOH 2	2 1 .	SS-42 80%		-43.4 + 83.1	1 1 1 1 10" ""	_ (continued)
35 34.6 5.1 3 2	1		5.2 COASTAL PLAIN 4	5 -45		%
32.7 + 7.0 31.2 + 8.5 2 1		····	Gray Brown Clayey SAND [Peedee Formation] 1.2	48.4 + 88.1		%-
30 31.2 6.3 4 4	6 10	SS-43 26%	Gray Fine SAND	6 11 15 26	·· ···	9-
25 26.6 + 13.1 3 6	5 . 1	W		-53.4 + 93.1		
+		W W W W W W W W W W W W W W W W W W W			1 1 1 10.000	% -
21.6 + 18.1				-58.4 + 98.1		
20 11 13	1 3	· · · · W		100/0.4	100/0.4	Boring Terminated at Elevation -58.8 ft in Very Dense Gray Fine SAND with Shell
†						Fragmentsand Organics
15 16.6 + 23.1 13 25	31	· · · ·				-
T 7 1 1						F
11.6 + 28.1 18 28	. j .					-
10 10 28	1	W				F
6.6 + 33.1		0000				E
5 16 25	26	· · · · W				Ł
	:::: :::/: :::: :					-
1.6 + 38.1	18 .	W				-
	30.		1.841			-
-3.4 + 43.1			Dark Gray Silty CLAY			‡
-5 100/0.3		100/0.3 M				-
			Dark Gray Fine SAND with Clay Seams,	4		-
-10 -8.4 + 48.1 5 6	7 .	· · · · · W	Shell Fragments and trace organics			-
†						F
-13.4 + 53.1 8 94/0.4	:::: :::: ::::: ::::: ::::: :::: :::: ::::	w w				-
-15		100/0.9				E
-18.4 + 58.1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				[
<u> </u>	21	· · · · · w				Ł
109.	:::: :/::: :::: :					-
-23.4 + 63.1 7 11	15	· · · · ·				_
2 -25	D 26					-
-28.4 + 68.1						-
-30 -30 -30		60/0.1				_
						ţ
-33.4 - 73.1 60/0.0		60/0.0 ♦				<u> </u>
						F
-38.4 + 78.1	44/0.0					Į.
₋₄₀ + 37 56	44 /U.3 · · · · · · · · · · · · ·	· · · · 1 W				

WBS 46375.1.1	TIP R-5703 COUN	TY LENOIR	GEOLOGIST Wright, F.K.	WBS 46375.1.1 TIP R-5703 COUNT	Y LENOIR	GEOLOGIST Wright, F.K.
SITE DESCRIPTION Bridge No	o. 214 on -L- (Felix Harvey Pkwy) ov	er Stonyton Creek	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 214 on -L- (Felix Harvey Pkwy) ove	er Stonyton Creek	GROUND WTR (ft)
BORING NO. B8-A LT LN	STATION 223+00	OFFSET 35 ft LT	ALIGNMENT -L- 0 HR. N/A	BORING NO. B8-A LT LN STATION 223+00	OFFSET 35 ft LT	ALIGNMENT -L- 0 HR. N/A
COLLAR ELEV. 40.8 ft	TOTAL DEPTH 99.1 ft	NORTHING 578,909	EASTING 2,435,836 24 HR. 3.6	COLLAR ELEV. 40.8 ft TOTAL DEPTH 99.1 ft	NORTHING 578,909	EASTING 2,435,836 24 HR. 3.6
DRILL RIG/HAMMER EFF./DATE M	IID0314 D-25 86% 08/04/2016	DRILL METHOD M	ud Rotary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04/2016	DRILL METHOD Mu	ud Rotary HAMMER TYPE Automatic
DRILLER Coogan, M.	START DATE 08/19/16	COMP. DATE 08/19/16	SURFACE WATER DEPTH N/A	DRILLER Coogan, M. START DATE 08/19/16	COMP. DATE 08/19/16	SURFACE WATER DEPTH N/A
ELEV (ft) DRIVE ELEV (ft) DEPTH (ft) DEPTH 0.5ft 0.5ft		T SAMP. V L O NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	ELEV DRIVE DEPTH BLOW COUNT BLOWS PER FOOT	75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION
45			- : : 40.8 GROUND SURFACE 0.0	-35 Match Line -37.6 78.4		Blue Gray Silty CLAY with Fine Sand and Shells
38.7 + 2.1 WOH WOH 36.6 + 4.2 1 WOH	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.	Tan Brown Silty CLAY with Fine Sand, Trace Organics 36.6 UNDIVIDED COASTAL PLAIN 5.7	-40 -42.6 + 83.4 -45 -45 -40 -42.6 + 83.4 -42.6 + 83.4 -43.3 32 39	•71	Gray Fine SAND with Shells
34.4 + 6.4 33.0 + 7.8 3 1 2 30	7	: · · · · ·	Tan Gray Fine SAND with little organic material 32.0 COASTAL PLAIN Blue Gray clayey Fine SAND, shells	-47.6 88.4 8 11 24		46.2 87.4 Blue Gray Fine Sandy CLAY with Shells and Wood
27.4 - 13.4 11 13	12 25		[Peedee Formation]		60/0.0♥ W	Gray Fine SAND with CLAY and Shells
22.4 18.4 11 15	24		- - -	-57.6 98.4 66 34/0.2 · · · · · · · · · · · · · · · · · · ·	100/0.7• W	- 58.3 99. Boring Terminated at Elevation -58.3 ft in Very Dense Fine SAND
17.4 = 23.4 21 30	34	4				ST-6 Recovered from offset boring Station 223+00 Offest 38 ft Left Other Samples:
10 12.4 28.4 17 20	26 46	w	- -			ST-6 (9.7 - 11.7)
7.4 33.4 30 46	54/0.4		-4.3			-
2.4 7 38.4 26 26	23	*	Blue Gray Silty CLAY with Mica			- - -
-2.6 + 43.4 17 14 -5	25	SS-45 25%	- -			
<u>-7.6 + 48.4 4 6</u>	7		-11.2 52.0			
-12.6 + 53.4 100/0.2		100/0.2	Blue Gray Fine SAND with Shells and Cemented Sand			: - - -
-17.6 + 58.4 -20 -10 12	16 • • • • • • • • • • • • • • • • • • •	: : : : : : w	Blue Gray Silty Fine Sandy CLAY with Shells and Clayey Fine Sand Seams			-
-17.6 - 58.4 - 100/0.2 - 17.6 - 58.4 - 10 12 - 22.6 - 63.4 8 8 - 25 - 27.6 - 68.4 8 8 - 30 - 30 - 32.6 - 73.4 - 10 15	15		- -			- - -
-27.6 + 68.4 8 8 -30 + 8 8	16	: : : : : w	31.2 72.0			
32.6 + 73.4 10 15	17		Gray Fine SAND with Shells			

WBS 46375.1.1		COUNTY LENOIR		GEOLOGIST Wright, F.K.		WBS 46375.1.1		NTY LENOIR	GEOLOGIST Wright, F.K.	
SITE DESCRIPTION Bridge No				_	GROUND WTR (ft)		o. 214 on -L- (Felix Harvey Pkwy) o			GROUND WTR (ft)
BORING NO. EB2-A LT LN	STATION 224+07	OFFSET 34		ALIGNMENT -L-	0 HR. N/A	BORING NO. EB2-A LT LN	STATION 224+07	OFFSET 34 ft LT	ALIGNMENT -L-	0 HR. N/A
COLLAR ELEV. 50.5 ft	TOTAL DEPTH 100.2 f			EASTING 2,435,935	24 HR. FIAD	COLLAR ELEV. 50.5 ft	TOTAL DEPTH 100.2 ft	NORTHING 578,898	EASTING 2,435,935	24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE B			ORILL METHOD M	, '	IMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE B		DRILL METHOD		AMMER TYPE Automatic
DRILLER Eister, G.	START DATE 09/09/16			SURFACE WATER DEPTH	N/A	DRILLER Eister, G.	START DATE 09/09/16	COMP. DATE 09/09/16	SURFACE WATER DEPTH	N/A
ELEV (ft) DRIVE ELEV (ft) DEPTH (ft) BLOW CO 0.5ft 0.5ft			NO. MOI G	SOIL AND ROCK DE	SCRIPTION DEPTH (ft)	ELEV CHIP CHIP CHIP CHIP CHIP CHIP CHIP CHIP		OT SAMP. L O NO. MOI G		DESCRIPTION
55				_		-25	Match Line		25.5. Gray Fine to Coarse S.	AND and computed \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
50 50.5 0.0 2 3	3			. 50.5 GROUND SUR — UNDIVIDED COAST		-28.2 78.7 17 25		w	-25.8 Gray Fille to Coalse 5. -27.6 sand la	yers 76.3
48.5 + 2.0 3 4	3		M	Tan Clayey Fine SAND w		Ţ			31.5 Fine Sandy CLAY with I	Eine to Coarse Sand
46.7 + 3.8 4 4	4		W			-33.2 + 83.7 10 15	16	:: :::: w	Sean	is
45 44.6 5.9 2 4	5		W	- ·		-35			- -	
41.6 + 8.9	1			- 42.5 Brown Gray Fine Sa		-38.2 + 88.7 9 19	42		-	
40 1 1	2			· -		-40			<u>-</u>	
36.8 + 13.7				COASTAL PL	12.0	-43.2 + 93.7			 - -	
35 13.7 11 17	11		w	Olive Gray Fine Sandy CLA cemented sand	layers	-45 9 13	20	. : : : : : м	-	
				Peedee Forma	•				£	
31.8 18.7 100/0.4		100/0.4		32.0 31.0 —	18.5 19.5	<u>-48.2 </u>		м	- 49.7 Boring Terminated at I Hard Fine Sa	100.2 Elevation -49.7 ft in
26.8 + 23.7				•					Hard Fine Sa	ndy CLAY
25 22 12	12		M N	-					_	
									_	
21.8 + 28.7 10 17	26								-	
20		<u> </u>		- - 18.5	32.0				-	
16.8 + 33.7			00000	Gray Fine to Coars	se SAND				-	
15 23 35	52	87	M	• -					-	
1				•					-	
10 11.8 + 38.7 38 52	42	• • • • • • • • • • • • • • • • • • •	М	•					-	
				-					E	
6.8 43.7 50 50/0.2		$\cdots $		- -					E	
5 1 1 1 1 1		100/0.7		_					-	
1.8 + 48.7						‡			ţ	
0 60 40/0.2	2	100/0.7		-					<u> </u>	
		_:-:		1.5 Olive Gray Fine Sandy CL/					<u> </u>	
-3.2 + 53.7 8 9	9		M S	Shells and cemented	sand layers				‡	
				- -					F	
-8.2 + 58.7 100/0.1		100/0.1		-8.1	58.6				F	
1 -10 + 100/0.1				_ 	.	‡			-	
-13.2 + 63.7				Olive Gray Clayey Fine S	AND with Shells				E	
-15 9 11	15		w [%]	· ·					E	
			****						<u> </u>	
-18.2 68.7 6 10	14		w 👯						ţ	
-3.2 - 53.7 8 9 -5.7 -10 -8.2 - 58.7 100/0.1 -13.2 - 63.7 9 11 -18.2 - 68.7 6 10 -20 -23.2 - 73.7 9 10	24			_		‡			<u> </u>	
-23.2 + 73.7									ţ	
9 10	15		W	•		+			<u> </u>	

WBS 46375.1.1	TIP R-5703 COUNT	TY LENOIR	GEOLOGIST Wright, F.K.	WBS 46375.1.1	TIP R-5703	COUNTY LENOIR	GEOLOGIST Wright, F.K	
SITE DESCRIPTION Bridge No. 2	15 on -L- (Felix Harvey Pkwy) ov	er Stonyton Creek	GROUND WTR (ft	SITE DESCRIPTION Bridge No. 2	215 on -L- (Felix Harvey Pkw	yy) over Stonyton Creek	•	GROUND WTR
BORING NO. EB1-B RT LN	STATION 214+45	OFFSET 47 ft RT	ALIGNMENT -L- 0 HR. N/A	BORING NO. EB1-B RT LN	STATION 214+45	OFFSET 47 ft RT	ALIGNMENT -L-	0 HR.
COLLAR ELEV. 44.3 ft	TOTAL DEPTH 100.2 ft	NORTHING 578,933	EASTING 2,434,983 24 HR . 0.5	COLLAR ELEV. 44.3 ft	TOTAL DEPTH 100.2 ft	NORTHING 578,933	EASTING 2,434,983	24 HR.
DRILL RIG/HAMMER EFF./DATE BRI91	103 BK-51 89% 05/04/2016	DRILL METHOD MU	ud Rotary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE BRIS	9103 BK-51 89% 05/04/2016	DRILL METHOD N	Mud Rotary H	IAMMER TYPE Automat
DRILLER Eister, G.	START DATE 08/22/16	COMP. DATE 08/23/16	SURFACE WATER DEPTH N/A	DRILLER Eister, G.	START DATE 08/22/16	COMP. DATE 08/23/16	SURFACE WATER DEPTH	l N/A
ELEV (ft) DEPTH (ft) BLOW COUNT (ft) (ft) 0.5ft 0.5ft 0.		75 100	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ELEV CHIP (ft) DEPTH BLOW COUNTY (ft) O.5ft O.5f		75 100 SAMP. L O NO. MOI G	SOIL AND ROCK	DESCRIPTION
45 44.3 0.0			-44.3 GROUND SURFACE 0	0 -35 16 - 22 -	Match L	_ine ■56	-	
42.3 7 2.0	2 3	: : : : :	ALLUVIAL 42.3 Tan Brown Fine Sandy Silty CLAY 2		94		 	
40 40.2 4.1	3	: : : : : M	UNDIVIDED COASTAL PLAIN				 	
40 40.2 4.1 2 4	7 11	- M	_ Tan Brown Fine Sandy Silty CLAY 38.3 6	-40 -39.4 - 83.7 50 50/0.2		100/0.7	 - -	
37.4 + 6.9 6 4	4 . F · · · · · · · · · ·		COASTAL PLAIN Blue Black Fine Sandy CLAY with Shells				‡	
35 35.3 + 9.0 3 4	5		Peedee Formation]	-45 -44.4 + 88.7 56 44/0.3		W	<u> </u>	
		M				. 100/0.8	 	
30 30.6 + 13.7		: :::: 🕞		-50 -49.4 + 93.7			_	
30 30.6 + 13.7 4 4	5		-	-50 -49.4 - 93.7 28 28	34	● 62 W	 	
						/	<u> </u>	
25.6 18.7	23		Gray Fine SAND with Cemented Sand Layers	-55 -54.4 - 98.7	30		<u> </u>	
□	40	- W		T 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1" 1"	447	W S	-55.9 Boring Terminated at	Elevation -55.9 ft in
		-					Dense Green Gray Cla She	nyey Fine SAND wtih
0 20.6 + 23.7 20 27 2	1 1 1 1 1 1 1 1 1 1	· · · · · ·	_				F	
							- -	
5 15.6 28.7							-	
15 23 31 2	24	- M	-				- -	
							‡	
0 10.6 + 33.7 32 42 4	41		_				<u> </u>	
		·					_	
1 20 7							Ł	
5.6 + 38.7 12 16 4		M	-				-	
							-	
0 0.6 + 43.7 60/0.0			0.6 43 _0.3 44				F	
T		M	0.0	<u> </u>			F	
			-3.6				F	
5 -4.4 + 48.7 5 6	9	· · · · · · M	_3.7_ / Blue Gray Sandy CLAY with Shells,				F	
			23,100				F	
10 -9.4 + 53.7							F	
6 12 1	18	- w	¯-10.9 55	2			F	
							‡	
15 -14.4 + 58.7 18 11 1	17		-14.5 -	3			<u> </u>	
	□ · · · · · □ □ 28, · · · · · · · · · · · · · · · · · · ·	: :::: " 🔀					‡	
-19.4 + 63.7		:: ::: 	-19.4 63	,			<u> </u>	
20 -19.4 + 63.7 60/0.0		60/0.0 W	-19.4 20.6 64				-	
							ŀ	
25 -24.4 + 68.7	10	: :::: 🔀					F	
7 11 1	10 027	- w	-				F	
			000	_			‡	
30 -29.4 + 73.7 8 92/0.4		· · · · · · · · · · · · · · · · · · ·	-29.2 -29.4 Green Gray Clayey Coarse SAND with Shells 73	2			<u> </u>	
		. . 100/0.9	and Cemented Sand Layers				‡	
		· []			1		L	

WBS 46375.1.1	TIP R-5703 COUN	TY LENOIR	GEOLOGIST Peele, J.E.		WBS 4637	5.1.1		TIP R-5703	COUNTY LENG	DIR		GEOLOGIST Peele, J.E.	
SITE DESCRIPTION Bridge No.	215 on -L- (Felix Harvey Pkwy) ov	er Stonyton Creek		GROUND WTR (ft)	SITE DESCI	RIPTION B	ridge No. 215	5 on -L- (Felix Harvey	Pkwy) over Stonyto	n Creek			GROUND WTR (ft)
BORING NO. B1-B RT LN	STATION 215+98	OFFSET 40 ft RT	ALIGNMENT -L-	0 HR . N/A	BORING NO). B1-B RT	LN ;	STATION 215+98	OFFSE	T 40 ft R	T	ALIGNMENT -L-	0 HR. N/A
COLLAR ELEV. 42.5 ft	TOTAL DEPTH 99.5 ft	NORTHING 578,917	EASTING 2,435,132	24 HR. FIAD	COLLAR EL	. EV. 42.5 ft	· -	TOTAL DEPTH 99.5	ft NORTH	ING 578	,917	EASTING 2,435,132	24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE MID	0314 D-25 86% 08/04/2016	DRILL METHOD Mu	d Rotary HAMM	MER TYPE Automatic	DRILL RIG/HA	MMER EFF./	DATE MID031	14 D-25 86% 08/04/2016		DRILL	METHOD	Mud Rotary I	HAMMER TYPE Automatic
DRILLER Wiggins, M.	START DATE 08/03/16	COMP. DATE 08/03/16	SURFACE WATER DEPTH N	I/A	DRILLER \		:	START DATE 08/03/	16 COMP.	DATE 08	8/03/16	SURFACE WATER DEPT	H N/A
ELEV (ft) DRIVE (LEV (ft) DEPTH BLOW COU	I	75 100	SOIL AND ROCK DESC	CCRIPTION DEPTH (ft)	ELEV CHICAGO (FIT)	1	ILOW COUNT off 0.5ft 0.5f	_	5PER FOOT 75 7	SAMI NO.	1/10		DESCRIPTION
41.5 1.0			42.5 GROUND SURF. ALLUVIAL		-35 -36.1	78.6			ch Line	0.8		Olive Gray Clayey Fi	ne to coase Clayey lls (continued)
40 39.5 3.0 WOH WOH 39.5 6.0 1 2 36.5 6.0 3 4	1 1 3 · · · · · · · · · · · · · · · · ·	W W	Gray Orange Fine Clay UNDIVIDED COASTA Gray Fine to Medium Cl	AL PLAIN /—	-40 -41.1	<u> </u>	9 31/0.2		100/	0.7		7	
30 29.0 13.5 4 4	5	M M	30.5 COASTAL PLA Gray Fine to Medium cla	avev SAND	-46.1 -50 -51.1	93.6	30/0.1		100/	<u>: </u>	M		
25 24.0 18.5 15 22	30	M M	[Peedee Format	tion]	55_	98.6	3 62/0.4	• • • • • • • • • • • • • • • • • • • •	100/	: :		-57.0 Boring Terminated at	99. -Elevation -57.0 ft in
19.0 23.5 18 25	32					‡ ‡						Very Dense Clar	yey Fine SAND
14.0 28.5 16 29		w											
5 4.0 38.5 15 28	43	90 W										<u>-</u> 	
-1.0 43.5 6 8	9 17	M	0.5 Dark Gray Fine SAND	D with Silt42.0								<u> </u>	
-5 -6.0 48.5 5 5 -10	6 011	M										<u>-</u> - - - -	
-11.1	13	100/0.2	-14.5Olive Gray Clayey Fine to SAND with She	57.0_ coase Clayey ells		‡						- - -	
-20 -21.1 63.6 8 12	16	W W				‡						<u>-</u> -	
-26.1 68.6 7 8	10 /18	w										<u></u>	
-31.1 73.6 100/0.4		100/0.4				†						<u> </u>	

BORING NO). B3-B .EV. 42 MMER E	RT LI			on -L- (Felix Harvey I	Pkwy) ove	r Stonyton C	reek					GROUND W	/TR (f
COLLAR EL ORILL RIG/HA ORILLER V LEV DRIVE ELEV (ft)	EV. 42		N	6-								I .		•
PRILL RIG/HA PRILLER V LEV DRIVE ELEV (ft)	MMER E	2 8 ft		3	TATION 217+00		OFFSET 3	35 ft RT		ALIGNME	ENT -L-		0 HR.	N/A
PRILLER V LEV DRIVE ELEV (ft)				T	OTAL DEPTH 43.3	ft	NORTHING	578,9	06	EASTING	2,435,232		24 HR.	N/A
RILLER V EV DRIVE ELEV (ft)		FF./DA	TE M	ID0314	D-25 86% 08/04/2016		<u> </u>			Mud Rotary	<u> </u>	HAMME	R TYPE Auto	omatic
EV ELEV (ft)	Niggins				TART DATE 08/04/	16	COMP. DA				E WATER DE			
(ft)		1	OW CO		11	PER FOOT		SAMP.		.				
	(ft)	0.5ft	0.5ft	0.5ft	0 25	50	75 100	NO.	MOI		SOIL AND RO	OCK DESCI		DEPTH
15						'								
									lacksquare		WATER SU	RFACE (08	/04/16)	
	‡									42.8	GPOUI	ND SURFAC	~=	
41.8	1.0				<u> </u>				<i>\\</i> ?.;;	+2.0	Al	LUVIAL		
39.3	3.5	1	2	2	4				M	* -	Gray/Brov	vn Clayey S	SAND	
	Ī	1	1	1					w 🖔	37.3				
36.8_	6.0	3	3	3	,				w 🕺	<u> </u>	UNDIVIDED Brown/Orange F			
34.3	8.5	3	6	13		+	1		% %	<u>'</u>		SAND	Fille Clayey	
	İ	3	"	13	19				W	**				
0	<u> </u>				$ \cdot\cdot '\cdot \cdot\cdot\cdot\cdot$				·%/%	** -				
29.3	13.5	4	5	6	11				w	%- - -				
	Ŧ					: : : :			<u>/://:</u>	25.8				1
5 24.3	18.5									<u> </u>		STAL PLAIR		
	‡	12	13	14	27				W	ii- G		Layers		
0	‡				:::: :`\\;						[Peede	ee Formatio	n]	
19.3	23.5	23	26	32		\			w					
	‡					. 58			VV					
5	‡					<u> </u>								
14.3	28.5	18	13	21					W					
	ł				:::: ::\					· _				
9.3	33.5													
	Ŧ	18	23	30		53			W					
5	Ŧ				:::: ::://									
4.3	38.5	15	13	16					w					
	‡					+-:::								
-0.5	‡ _{43.3}					ļ · · · · · ·	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		w 🕌	-0.5				4
	‡	60/0.0					60/0.0			- Pe	Boring Termi netration Test F			
	‡										Very Dense Gra			
-	‡									<u> </u>				
	İ									Ł				
	+									-				
	Ŧ									F				
	Ŧ									F				
	‡									F				
	‡									F				
	‡									F				
-	‡									F				
	‡									ţ				
	<u> </u>									Ł				
	£									E				
	Ŧ									F				
	‡									F				
	‡									ţ				
	‡									ţ				

NBS	46375	5.1.1			TI	P R-5703		COUNT	Y LENO	R			GEOLOGI	ST Peele, J	.E.		
SITE	DESCR	RIPTION	l Brid	lge No	. 215	on -L- (Feli	x Harvey I	Pkwy) ove	er Stonytor	Creek			-			GROUN	D WTR (f
		. B4-B				TATION 2				35 ft R1	-		ALIGNMEN	NT -L-		0 HR.	0.
OLI	AR ELI	EV . 41	.6 ft			OTAL DEP		ft	NORTHI				EASTING	2,435,331		24 HR.	0.
				TF M		D-25 86% 08			1			D Mi	ud Rotary		,		Automatic
		Viggins,				TART DAT		16	COMP	ATE 08			 	WATER DEF			7 tatornatio
	DRIVE	1		DW CO				PER FOO	!	SAMP		1 - 1	JOIN ACE	WAILK DLI	111 18//		
LEV (ft)	ELEV (ft)	DEPTH (ft)	0.5ft	0.5ft		0	25	50	, 75 10		MOI	O G	ELEV. (ft)	SOIL AND RO	CK DESC	RIPTION	DEPTH
	(11)									11	VIVIO		ELEV. (II)				DEFIN
45																	
45		‡											- ·				
		‡											. 41.6		ID SURFA	CE	
40	40.6	1.0	WOH	2	3	1				SS-46	17%			AL Brown/Tan F	LUVIAL ine SAND	with Silt	
	38.1	3.5								33-40	17 /0		38.6	UNDIVIDED			
	25.0	+	3	5	7	. 12.					W	**	•	Tan Fine to Me			
35	35.6	6.0	5	5	8	<u> </u>	ļ	+		$\dashv 1$	w	***	-				
-	33.1	8.5	3	4	4	:;;;::					l w		33.6	COAS	TAL PLAI	<u> </u>	
30		‡	•	-		.●8					vv		· Da	ark Gray Fine C fragments and	Clayey SAN d Cemente	ND with sho d Lavers	ell
0		‡ ₋				 : : : :	<u> </u>	1		\dashv		_	-	[Peede	e Formatio	on]	
-	28.1	I 13.5	3	3	4	. •			.		w		•				
5		\pm					\ <u>``</u> ``						•				
	23.1	T 18.5											-				
		Ŧ	14	29	38				67		W		•				
20	_	‡					ļ · · · ·	ļ · · ·		_			-				
	18.1	23.5	32	47	60/0.4						l	-					
		‡	32	47	00/0.4				100/0	9	W						
15	-	ł				 	+	+		-{		_	_				
	13.1	28.5	27	47	53					\perp	w						
10		Ŧ							100/1		''		•				
	8.1	33.5					1		. //				_				
	- 0.1	1 33.5	22	27	40			<u>مر </u>	67		W		•				
5	-	‡						///		_			-				
	3.1	38.5			10								•				
		\pm	′	8	13	•	21				W						
0	-11	I I 42 7					+	7		$\exists 1$			- -				
	-1.5	43.7	60/0.0 5	6	7		<u> </u>	+		0	W						
-5		Ŧ					: : : :						•				
_	-6.5	+ + 48.1					: : : :	1 : : :					- ·				
		‡	5	5	8	13-					W						
10	-	‡					· · · ~ ~	+					, -				
-	-11.5	53.1	100/0.2			::::			. 100/0	2	w						
		‡				: : : :			.	-			•				
15	-	<u> </u>					+	+ • • •		_			_				
	-16.5	<u>† 58.1</u> †	9	34	31				5	SS-47	27%		•				
20		Ŧ					: : : :						· ·				
	-21.5	63.1					1.,/.	1					- ·				
		‡	7	10	14	::::	24		: : : : :		W		•				
25	-	‡					. ? > .	`_:_:					-				
-	-26.5	68.1	6	94/0.3		: : : •			+		w		•				
		ł	്	3−1 /0.3					100/0	8 T	""						
30	_	Ŧ					ļ · · · · ·	ļ · · · ·		\dashv			-				
-	-31.5	+ 73.1 +	60/0.0			1	1	1	60/0	0 ♦	_w_	4	· -31.5 ·	Boring Termin	ated with	Standard	7
		+		1	1						1	1 -	Pene	tration Test Re	fusal at El	evation -3	1.5 ft

WBS 46375.1.1	TIP R-5703 COUNT	TY LENOIR	GEOLOGIST Wright, F.K.	WBS 46375.1.1 TIP R-5703	COUNTY LENOIR	GEOLOGIST Wright, F.K.
SITE DESCRIPTION Bridge No	. 215 on -L- (Felix Harvey Pkwy) over	er Stonyton Creek	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 215 on -L- (Felix I	Harvey Pkwy) over Stonyton Creek	GROUND WTR (ft)
BORING NO. B5-B RT LN	STATION 219+00	OFFSET 35 ft RT	ALIGNMENT -L- 0 HR. 0.0	BORING NO. B5-B RT LN STATION 219	9+00 OFFSET 35 ft RT	ALIGNMENT -L- 0 HR. 0.0
COLLAR ELEV. 41.2 ft	TOTAL DEPTH 98.9 ft	NORTHING 578,884	EASTING 2,435,431 24 HR. 0.0	COLLAR ELEV. 41.2 ft TOTAL DEPTH	NORTHING 578,884	EASTING 2,435,431 24 HR. 0.0
DRILL RIG/HAMMER EFF./DATE M	D0314 D-25 86% 08/04/2016	DRILL METHOD MO	ud Rotary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04	4/2016 DRILL METHOD	Mud Rotary HAMMER TYPE Automatic
DRILLER Coogan, M.	START DATE 08/08/16	COMP. DATE 08/09/16	SURFACE WATER DEPTH N/A	DRILLER Coogan, M. START DATE	08/08/16 COMP. DATE 08/09/16	SURFACE WATER DEPTH N/A
ELEV CHI CHI CHI CHI CHI CHI CHI CHI CHI CHI		T SAMP. V L O NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	DRIVE DEPTH BLOW COUNT	BLOWS PER FOOT SAMP. NO. MOI G	
45 41.0 0.2 1 2 1 39.1 2.1 4 8 36.9 4.3 5 5 5 35.1 6.1	9 17	W W W W W W W W W W	41.2 GROUND SURFACE 0.0 ALLUVIAL 39.1 Gray Tan Silty CLAY with Fine Sand, Trace Organics UNDIVIDED COASTAL PLAIN Gray Tan Fine SAND, Trace Silt Gravel and Coarse Sand layer at 5.8 feet 6.0	-35 -37.0 78.2 22 78/0.1 -40 -41.0 82.2 45 55/0.4 -45	Match Line	-37.6 78. -38.6 79. -39.9 81. -40.2 81. -40.8 82. -43.0 84.
30			COASTAL PLAIN Gray Blue Fine Sandy CLAY with Silt, Trace Shells [Peedee Formation]	-50	60/0.1 W	-50.1 91. Mudstone / Limestone fragments -53.6 94.
25 23.0 18.2 21 27 20 18.0 23.2	34		24.2 Blue Gray Fine Silty SAND with cemented sand layers	-55	100/0.7 W	-57.7 98. Boring Terminated at Elevation -57.7 ft in Cemented SAND
15 18 21 15 28.2 30 42		W W W W W W W W W W W W W W W W W W W				
10 8.0 33.2 20 25 5 1	35	w				
3.0 38.2 17 24 0 -2.0 43.2 4 6	8		Fine Sandy CLAY with Mica and Shells and Cemented Layers			
-5 -7.0 48.2 4 5	7		·			- - - - - -
-12.0 53.2		100/0.9 7 1 1 1	-10.8 52.0 Mudstone / Limestone fragments			
-17.0	16	w w	Blue Gray Clayey Fine SAND, with Shells -20.8 Blue Gray Silty CLAY with Fine Sand and Shells			
-15 -15 -17.0 -58.2 9 12 -20 -22.0 -63.2 6 9 -25 -27.0 -68.2 100/0.4 -30 -32.0 73.2 60/0.1	25,	W W	Gray Black Fine Clayey SAND with Shells, cemented sand layers and mudstone fragments -32.0 73.2			- - - - - -
60/0.1		60/0.1 T VV	- 34.1 75.3			E

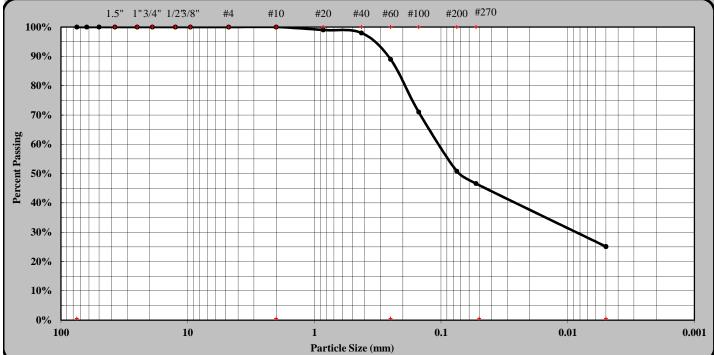
WBS 46375.1.1	RELOG REPORT TIP R-5703 COUI	NTY LENOIR	GEOLOGIST Wright, F.K.		WBS	3 46375.1.1			TIP R-5703	COUN	TY LENOIR			GI	EOLOGIST Wright, F.	.K.	
SITE DESCRIPTION Brid	dge No. 215 on -L- (Felix Harvey Pkwy) c	ver Stonyton Creek	- -	GROUND WTR (ft)	SITE	DESCRIPTION	l Bridge	e No.	. 215 on -L- (Felix	(Harvey Pkwy) ov	er Stonyton C	Creek		_		GROUN	D WTR (ft
BORING NO. B6-B RT L	N STATION 220+00	OFFSET 35 ft RT	ALIGNMENT -L-	0 HR. N/A		RING NO. B6-B			STATION 2		OFFSET		-	Al	LIGNMENT -L-	0 HR.	N/A
COLLAR ELEV. 39.6 ft	TOTAL DEPTH 99.1 ft	NORTHING 578,872	EASTING 2,435,530		COL	LAR ELEV. 39	9.6 ft		TOTAL DEPT	TH 99.1 ft	NORTHING	G 578,8	872	E	ASTING 2,435,530	24 HR.	N/A
DRILL RIG/HAMMER EFF./DA	NTE MID0314 D-25 86% 08/04/2016	DRILL METHOD M		MER TYPE Automatic				MIC	 D0314 D-25 86% 08/					OD Mud Ro		HAMMER TYPE	
DRILLER Coogan, M.	START DATE 08/11/16	COMP. DATE 08/12/16	SURFACE WATER DEPTH	0.7ft	DRII	LER Coogan,	M.		START DATE	08/11/16	COMP. DA	TE 08/	/12/16	SI	URFACE WATER DEPT	TH 0.7ft	
FI FV P · · · ·	DW COUNT BLOWS PER FO 0.5ft 0.5ft 0 25 50	OT	SOIL AND ROCK DES	SCRIPTION DEPTH (ft)	ELEV (ft)	DRIVE ELEV (ft)	BLOW 0.5ft 0			BLOWS PER FOC 25 50	75 100	SAMP.	MO	L O OI G	SOIL AND ROC	CK DESCRIPTION	
40			WATER SURFACE	(08/11/16) FACE - 0.0	-40	<u> </u>				Match Line			L	<u> </u>			
39.6 0.0 WOH 37.5 2.1 WOH 37.5 2.1 WOH 38.6 6.0 To WOH 31.6 8.0 23 35	Sat. Sat. Sat. Sat. Sat. Sat. Sat. Sat.	Gray Black Silty CLAY with Organics 35.6 33.9 Gray Black Silty SAND with Organics 31.9 Gray Black Silty SAND with Sand Sand Fragments, Silt a COASTAL Blue Gray Silty CLAY, w Peedee Forms Blue Gray Fine SAND, w	Fine Sand, Trace 4.0 h Trace Organics 5.7 FAL PLAIN D, with Wood Clay AIN AIN 12.0 12.0	-45 -50	-43.9 83.5 -48.9 88.5 -53.9 93.5 -58.9 98.5	50 de 15 de	17	65		100/0.9		w w	52	Blue Gray Silty CLA St Blue Gray Silty Fine W Boring Terminated a	Seams (continued) Y with Fine Sand a hells SAND, with Shells a lood	99.	
1.1 38.5 11 -3.9 43.5 4 -8.9 48.5 5	20 24	W W W		h Fine Sand and													
<u>-13.9</u> <u>53.5</u> <u>11</u>	8 10 18	w	12.4 Gray Clayey Fine SAND, Clay Seam	with Shells and ss										-			
-18.9 58.5 8	10 16	W	- - - 22.4	62.0													
-25 63.5 6	6 11 017	w w	Blue Gray Silty CLAY, with Shells	h Fine Sand and		#											
-30 -28.9 68.5 60/0.0 -33.9 73.5		600.01	Fine SAND with Shells, C Layers and Clay														
-35 18 -38.9 78.5 17	22 28 50 50	W	- - - -														

WBS 46375.1.1		TY LENOIR	GEOLOGIST Wright, F.K.		WBS 46375.1.1		TIP R-5703	COUNTY LEN	IOIR	GEOLOGIST Wright, F.K	
	215 on -L- (Felix Harvey Pkwy) over		<u> </u>	ID WTR (ft)			15 on -L- (Felix Harvey P			GEOEGGIOT Wright, F.I.C	GROUND WTR (f
BORING NO. B7-B RT LN	STATION 221+00	OFFSET 35 ft RT	ALIGNMENT -L- 0 HR.	N/A	BORING NO. B7-E		STATION 221+00		ET 35 ft RT	ALIGNMENT -L-	0 HR. N/
COLLAR ELEV. 39.4 ft	TOTAL DEPTH 99.6 ft	NORTHING 578,861	EASTING 2,435,629 24 HR .	N/A	COLLAR ELEV. 39		TOTAL DEPTH 99.6 ft		HING 578,861	EASTING 2,435,629	24 HR. N/.
DRILL RIG/HAMMER EFF./DATE MI		DRILL METHOD M					314 D-25 86% 08/04/2016		DRILL METHOD		AMMER TYPE Automatic
DRILLER Coogan, M.	START DATE 08/15/16	COMP. DATE 08/16/16	SURFACE WATER DEPTH 0.5ft		DRILLER Coogan,	, M.	START DATE 08/15/1	6 COMP	P. DATE 08/16/16	SURFACE WATER DEPTH	
ELEV DRIVE ELEV (ft) DEPTH 0.5ft 0.5ft	0.5ft 0 25 50	T SAMP. V L O NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft)	DEPTH (ft)	ELEV DRIVE ELEV (ft) DEPTH	BLOW COUNT 0.5ft 0.5ft 0.5	5ft 0 25 5	PER FOOT 50 75	SAMP. L O NO. MOI G		DESCRIPTION
39.1 0.3 WOU WOU	woн • · · · · · · · · · · · ·	<u> </u>	39.4 WATER SURFACE (08/15/16)	- · · - · · - · · 0.0	40		Matc	ch Line		-41.1	- 8
37.1 2.3 WOH WOH 35 34.9 4.5 WOH 1	• 0	Sat.	Gray Black Silty CLAY with Fine Sand a Trace Organics 33.9	and 5.5	<u>-43.7 83.1</u>	42 58/0.3				-	
32.7 + 6.7 31.2 + 8.2 4 5 30 2 5	7 5		UNDIVIDED COASTAL PLAIN Gray Black Fine SAND with Fine Grav 30.9 COASTAL PLAIN Blue Gray Silty CLAY with Fine Sand a	8.5	-48.7 88.1	60/0.1				-48.2 50.6	8
26.3 13.1 4 5	8		Shells Shells [Peedee Formation] Gray Black Fine SAND with Clay Sear	12.0	-53.7 93.1	27 39 61/0	/0.3		 		
20 21.3 18.1 15 30	38		- - - -		-58.7 98.1	36 44 5				-60.2 Boring Terminated at I	Elevation -60.2 ft in
16.3 23.1 8 11	20 31	· · · · · · · · · · · · · · · · · · ·	- - - -							- Very Dense Gray Fine to Cemented Sand Lay	o Medium SAND with
10 11.3 28.1 15 20		· · · · · · · · · · · · · · · · · · ·	- - - -							-	
6.3 7 33.1 25 32	37	69 W	- - - -							-	
0 1.3 38.1 25 44	23	67 W	- - - - 1.1							- - -	
3.7	6 12	w	- 2.6 Gray to Black Silty Clayey SAND with S Fragments	42 0						- - -	
-10	8 14	w	- - - - 11.6	51.0						-	
-13.7 - 53.1 49 21	18 39	w	-11.7 Gray Black Clayey SAND with Cement -14.1 Sand Layers, Shells, and Clay Seam -15.2	ns 53.5 54.6						<u>-</u>	
-18.7 58.1 10 12	13	w	18.1 - _ -	57.5						<u>-</u>	
-23.8 63.2 6 8	14	w		65.0 66.0						<u>-</u>	
-30 -28.8 68.2 6 18	82/0.2	1 1 	30.0 31.4	69.4 70.8						<u>-</u>	
-33.7 73.1 24 41	27	W W	_ - - -							-	
-38.6 78.0 60/0.1		60/0.1 W	38.5	77.9						-	

WBS 46375.1.1 TIP R-5703 COUNT	TY LENOIR GE	EOLOGIST Wright, F.K.	WBS 46375.1.1 TIP R-5703	COUNTY LENOIR	GEOLOGIST Wright, F.K.
SITE DESCRIPTION Bridge No. 215 on -L- (Felix Harvey Pkwy) over	er Stonyton Creek	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 215 on -L- (Felix H	arvey Pkwy) over Stonyton Creek	GROUND WTR
BORING NO. B8-B RT LN STATION 222+00	OFFSET 35 ft RT AL	LIGNMENT -L- 0 HR. 0.0	BORING NO. B8-B RT LN STATION 222-	-00 OFFSET 35 ft RT	ALIGNMENT -L- 0 HR.
COLLAR ELEV. 39.9 ft TOTAL DEPTH 99.2 ft	NORTHING 578,850 EA	ASTING 2,435,729 24 HR. 0.0	COLLAR ELEV. 39.9 ft TOTAL DEPTH	99.2 ft NORTHING 578,850	EASTING 2,435,729 24 HR .
DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04/2016	DRILL METHOD Mud Rot	otary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04/	2016 DRILL METHOD	Mud Rotary HAMMER TYPE Automat
DRILLER Coogan, M. START DATE 08/16/16	COMP. DATE 08/17/16 SU	URFACE WATER DEPTH 0.0ft	DRILLER Coogan, M. START DATE	08/16/16 COMP. DATE 08/17/16	SURFACE WATER DEPTH 0.0ft
DRIVE DEPTH BLOW COUNT BLOWS PER FOO	75 100 / 0	SOIL AND ROCK DESCRIPTION DEPTH (ft)	ELEV (ft) DRIVE (ELEV (ft)) DEPTH (ft) BLOW COUNT (ft) 0.5ft 0.5ft 0.5ft 0 25	SLOWS PER FOOT SAMP. COMPANY SAMP. NO. MOI G	
40	39.9		-40	Match Line	<u></u>
39.9 0.0 WOH WOH WOH 37.4 2.5 WOH WOH WOH 35.4 4.5 WOH WOH WOH WOH 32.9 7.0		ALLUVIAL Brown Sandy CLAY, Trace Wood	-43.6 83.5 80 20/0.1	100/0.6 W	-43.2 -47.1
30 WOH 1 6		UNDIVIDED COASTAL PLAIN Gray Brown Fine SAND COASTAL PLAIN COASTAL PLAIN COASTAL PLAIN		w w	Gray Blue Silty Fine Sandy CLAY with Shells
25 26.4 + 13.5 4 7 13 20	22.9	Blue Gray Fine Sandy CLAY with Silt [Peedee Formation] Gray Black Fine SAND, with cemented sand	60/0.1		-52.5 Gray Blue Fine SAND with Little Clay, Shells, -54.8 and cemented sand layers
20 21.4 18.5 13 19 21	w =	layers	-58.6 + 98.5 35 65/0.2 · · · · · ·	100/0.7• W	- 59.3 Boring Terminated at Elevation -59.3 ft in Very Dense Fine SAND
15 16.4 + 23.5 23 29 42	• • • • • • • • • • • • • • • • • • •				
10 11.4 28.5 14 15 30	w				
5 6.4 + 33.5 22 38 43	w W				
0 1.4 38.5 15 21 27	w				
-3.6 + 43.5	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	43.4 45.1 			
-8.6	: : : : : : w	Blue Gray Silty CLAY with Fine Sand and Shells			
-13.6 + 53.5	100/0.6 W	5 54.4 6 Gray Blue Clayey Fine SAND with Shells and cemented sand layers			<u> </u>
-18.6 + 58.5 9 10 13 · · · · • • · · · · · · · · · · · · ·	-18.2 W	2 58.1			
-23.6 + 63.5 7 9 15 · · · · · · · · · · · · · · · · · ·	: : : : : : w 	Gray Blue Silty CLAY with Fine Sand and Shells			
-30 -28.6	W -31.1	1 71.0 3 Gray Fine SAND, with Clay, shells and 71.2 9 cemented sand layers 72.8			<u>-</u> -
-35	w	contented saint layers			E E

WBS 46375.1.1		TY LENOIR	GEOLOGIST Wright, F.K.	WBS 46375.1.1 TIP R-5703 CO	UNTY LENOIR	GEOLOGIST Wright, F.K.
SITE DESCRIPTION Bridge No	. 215 on -L- (Felix Harvey Pkwy) ov	er Stonyton Creek	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 215 on -L- (Felix Harvey Pkwy)	over Stonyton Creek	GROUND WTR (ft)
BORING NO. B9-B RT LN	STATION 223+00	OFFSET 35 ft RT	ALIGNMENT -L- 0 HR. N/A	BORING NO. B9-B RT LN STATION 223+00	OFFSET 35 ft RT	ALIGNMENT -L- 0 HR. N/A
COLLAR ELEV. 40.9 ft	TOTAL DEPTH 98.7 ft	NORTHING 578,839	EASTING 2,435,828 24 HR. 5.1	COLLAR ELEV. 40.9 ft TOTAL DEPTH 98.7 ft	NORTHING 578,839	EASTING 2,435,828 24 HR. 5.1
DRILL RIG/HAMMER EFF./DATE MI	D0314 D-25 86% 08/04/2016	DRILL METHOD M	ud Rotary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE MID0314 D-25 86% 08/04/2016	DRILL METHOD N	Mud Rotary HAMMER TYPE Automatic
DRILLER Coogan, M.	START DATE 08/18/16	COMP. DATE 08/18/16	SURFACE WATER DEPTH N/A	DRILLER Coogan, M. START DATE 08/18/16	COMP. DATE 08/18/16	SURFACE WATER DEPTH N/A
ELEV (ft) DEPTH BLOW COL (ft) (ft) 0.5ft 0.5ft		75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	ELEV (ft) DRIVE ELEV (ft) DEPTH (ft) BLOW COUNT BLOWS PER F 0.5ft 0.5ft 0.5ft 0 25 50	75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION
45 40.9 0.0 WOH WOH	WOH 0	Sat.	- - - 40.9 GROUND SURFACE 0.0 - - ALLUVIAL	-35 Match Lir		Blue Gray Silty CLAY with Fine Sand Seams and Shells
38.9 2.0 WOH WOH 36.8 4.1 WOH 1 34.9 6.0 3 2 32.6 8.3 1 1	WOH 1 2 50 44 51	Sat	Brown Silty CLAY with Fine Sand, Trace Organics 35.4 UNDIVIDED COASTAL PLAIN Gray Tan Fine SAND COASTAL PLAIN Gray Tan Fine SAND, with cemented sand	-42.1	100/0.9 W	-42.1
27.9 13.0 3 28	28	w W	layers [Peedee Formation]12.0	-50 -52.1 93.0 43 18 32	w	51.1 92.1 52.4 93.3
22.9 18.0 7 10	10 20	w 3	Gray Blue Fine SAND, with Clay and Cemented Sand Layers	-57.1 9 8.0 50 50/0.2	100/0.7 W	-57.8 98.: Boring Terminated at Elevation -57.8 ft in Very Dense Fine SAND
17.9 23.0 15 47	53/0.4	100/0.9 W	: - -			- - - -
10 28.0 15 25		w 1	- - -			- - - -
5 2.9 38.0 18 38	42		: : - :			- - - -
0 -2.1 43.0 55 45/0.2		W W	- - - 1.5 42.4			- - - - -
-5 -7.1 48.0 5 5	7	w	- - - 8.4 49.3 - Blue Gray Silty CLAY with Fine Sand and			- - - - -
-10 -12.1 53.0 100/0.4		100/0.4 W	Shells - 12.3 Blue Gray Clayey Fine SAND, with Shells - 14.2 and cemented sand layers 55.1			
-17.1 58.0 9 11	12	w	-16.0 56.9 -16.2 57.1 -			- - - - -
-22.1 63.0 5 8	11	W				- - - -
-15	15	w				- - - - -
9 12	15	W W	:			-

WBS 46375.1.1		Y LENOIR	GEOLOGIST Wright, F.K.	WBS 46375.1.1 TIP R-5703	COUNTY LENOIR	GEOLOGIST Wright, F.K.
SITE DESCRIPTION Bridge No. 2	15 on -L- (Felix Harvey Pkwy) ove	er Stonyton Creek	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 215 on -L- (Felix Harvey	Pkwy) over Stonyton Creek	GROUND WTR (ft)
BORING NO. EB2-B RT LN	STATION 224+12	OFFSET 33 ft RT	ALIGNMENT -L- 0 HR. N/A	BORING NO. EB2-B RT LN STATION 224+12	OFFSET 33 ft RT	ALIGNMENT -L- 0 HR. N/A
COLLAR ELEV. 50.4 ft	TOTAL DEPTH 100.2 ft	NORTHING 578,828	EASTING 2,435,928 24 HR. FIAD	COLLAR ELEV. 50.4 ft TOTAL DEPTH 100.	2 ft NORTHING 578,828	EASTING 2,435,928 24 HR. FIAD
DRILL RIG/HAMMER EFF./DATE BRI91	03 BK-51 89% 05/04/2016	DRILL METHOD MU	Id Rotary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE BRI9103 BK-51 89% 05/04/2016	DRILL METHOD	Mud Rotary HAMMER TYPE Automatic
DRILLER Eister, G.	START DATE 09/08/16	COMP. DATE 09/09/16	SURFACE WATER DEPTH N/A	DRILLER Eister, G. START DATE 09/08/	16 COMP. DATE 09/09/16	SURFACE WATER DEPTH N/A
DRIVE DEPTH BLOW COUNT CH CH CH CH CH CH CH C	I	SAMP. V L O NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	ELEV (ft) DRIVE ELEV (ft) DEPTH (ft) BLOW COUNT (D.5ft) 0.5ft 0.5ft 0.5ft 0 25	PER FOOT SAMP. L O NO. MOI G	
55 50 50.4 0.0 1 2	1 1 1	D	50.4 GROUND SURFACE 0.0 UNDIVIDED COASTAL PLAIN	-25 Mat -28.4 - 78.8 -30 -30 -8 92/0.3	ch Line	-27.6
48.4 + 2.0		· · · · · ·	Tan Orange Clayey Fine SAND with Clay Seams 41.4 COASTAL PLAIN Olive Gray Fine Sandy CLAY, with Mica [Peedee Formation]	-35 -35 -38.4 - 88.8 -40 -40 -43.4 - 93.8 -45 -45 -38.4 - 88.8 -40 -38.4 - 88.8 -40 -40 -38.4 - 88.8 -40 -40 -38.4 - 88.8 -40 -38.4 - 88.8 -40 -43.4 - 93.8 -43.4 - 93.8 -43.4 - 93.8 -45 -48.8 -49.8	W W	-30.9 81.3
31.6 - 18.8 95 5/0.1		100/0.6		-48.4 + 98.8 10 15 85/0.4 · · · · · · · · · · · · · · · · · · ·	100/0.9	49.8
25 5 6 21.6 28.8 17 21 4		W 3				- - - - - -
15 16.6 33.8 24 34 2	5	M	-			- - - - - - -
10 11.6 + 38.8 19 21 2		M	-			- - - - -
5 35 60 40/ 1.6 48.8 30 40 5			-			- - - - -
-3.4 - 53.8 6 7	9 16	M M	-2.0 -2.4 -2.6			- - - - -
-8.4 - 58.8 8 6 1	2 18		- -12.2 62.6			- - - - -
-13.4 - 63.8 100/0.2		100/0.29 W	-13.8 64.2 -			- - - - -
-3.4 - 53.8 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 28		-			- - - - -


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Ouality Assurance

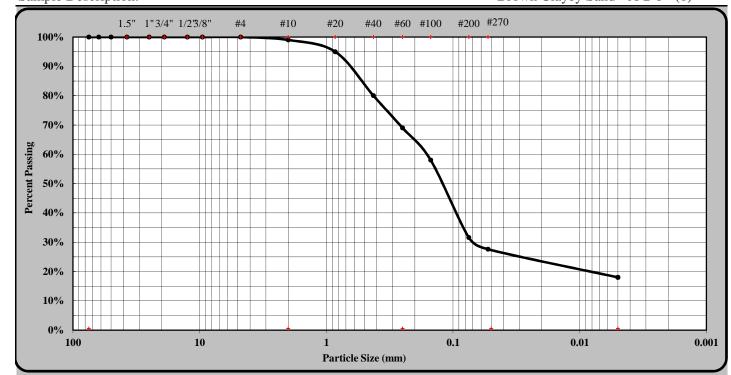
				Quality Assurance
S	&ME, Inc. Raleig	h, 3201 Spring Forest Road	l, Raleigh, North Carolina	27616
S&ME Project #:	6235-16-010		Report Date:	11/8/16
Project Name:	C.F. Harvey Pa	rkway Extension R-5703	Test Date(s):	11/1-8/16
State Project #:	46375.1.1	F.A. Project No: N/A	TIP NO:	R-5703
Client Name:	Michael Baker	Engineering		
Address:	Raleigh, NC			
Boring #:	B2-A LT LN	Sample #: SS-36	Sample	Date: 8/3/16
Location:	217+00	Offset: 35' LT	Depti	h (ft): 3.5-5.0'
Sample Description:			Gray sandy S	ILT A-4 (0)

		1 at ticle Si	ze (mm)			
As Defin	ed by NCDOT			Fine Sand	< 0.25 mm	and > 0.05 mm
Gravel	< 75 mm a	nd > 2.00 mm		Silt	< 0.05 an	d > 0.005 mm
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay	< 0.	.005 mm
Maximum Particle Size	#10	Coarse S	Sand	11%	Silt	22%
Gravel	0%	Fine Sar	nd	42%	Clay	25%
Apparent Relative Density	2.650	Moisture	e Content	17.0%	% Passing #2	50.8%
Liquid Limit	15	Plastic L	Limit	0	Plastic Index	N.P.
		Soil Mortar	(-#10 Siev	ve)		
Coarse Sand	11%	Fine Sand	42%	Silt	22%	Clay 25%
Description of Sand & Gra	vel Particles:	Rounded			Angular	X
Hard & Durable	X	Soft		Weat	hered & Friable	
References / Comments / Deviati	ions: ND=N	ot Determined.				
Karen Warner		118-06-0305		Laboratory Tec	hnician	11/8/2016
Technician Name		Certification No.		Position		Date
Stewart Laney, P.I	<u> </u>			Senior Engi	<u>neer</u>	
Technical Responsibility		Signature		Position		Date
Th	is report shall not be	reproduced, except in j	full, without th	e written approval of S	&ME, Inc.	

Form No. TR-T88 Revision No. 0

S&ME, Inc.

Revision Date: 12/20/09

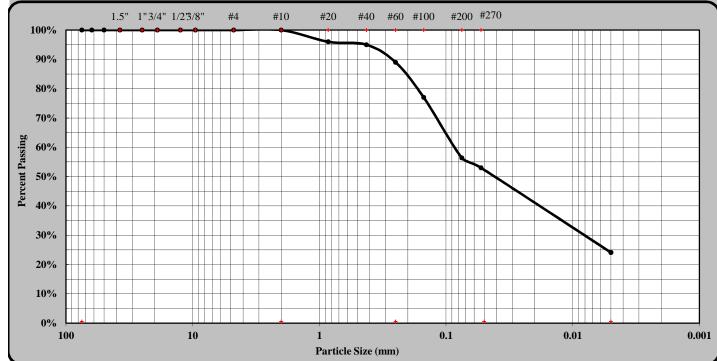

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

			~	·
S	&ME, Inc. Raleig	h, 3201 Spring Forest Road, Ralei	igh, North Carolina 276	516
S&ME Project #:	6235-16-010		Report Date:	11/8/16
Project Name:	C.F. Harvey Pa	rkway Extension R-5703	Test Date(s):	11/1-8/16
State Project #:	46375.1.1	F.A. Project No: N/A	TIP NO: R	-5703
Client Name:	Michael Baker	Engineering		
Address:	Raleigh, NC			
Boring #:	B2-A LT LN	Sample #: SS-37	Sample Dat	te: 8/3/16
Location:	217+00	Offset: 35' LT	Depth (f	(t): 48.2-49.1'
Sample Description	•		Brown Clavey Sa	nd A-2-6 (0)

As Define	ed by NCDOT			Fine Sand	< 0.25 mm and > 0.05 mm			
Gravel	< 75 mm an	d > 2.00 mm		Silt	< 0.05	and > 0.00	05 mm	
Coarse Sand	< 2.00 mm a	nd >0.25 mm		Clay	<	< 0.005 mn	n	
Maximum Particle Size	#4	Coarse S	and	30%	Silt		10%	
Gravel	1%	Fine San	d	41%	Clay		18%	
Apparent Relative Density	2.650	Moisture Content 22.4% %		% Passing	#200	31.6%		
Liquid Limit	31	Plastic Limit 17 F		Plastic Inde	×	14		
	Soil Mortar (-#10 Sieve)							
Coarse Sand	30%	Fine Sand	42%	Silt	10%	Clay	18%	
Description of Sand & Grav	el Particles:	Rounded			Angula	ar	X	
Hard & Durable	X	Soft		Weatl	nered & Friab	le		
References / Comments / Deviation	ons: ND=No	ot Determined.						
W W		110.06.0205		T 1 (77)		1.1	/0/2016	
Karen Warner		<u>118-06-0305</u>		Laboratory Tec	nnician	<u>11</u>	<u>/8/2016</u>	
Technician Name		Certification No.		Position			Date	
Stewart Laney, P.E				Senior Engir	<u>neer</u>			
Technical Responsibility		Signature	Position				Date	
This	s report shall not be i	eproduced, except in t	full, without th	e written approval of So	&ME, Inc.			


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

S&	S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616									
S&ME Project #:	6235-16-010		Report Date:	9/20/16						
Project Name:	C.F. Harvey Par	kway Extension R-5703	Test Date(s):	9/12 - 9/20/16						
State Project #:	46375.1.1	F.A. Project No: N/A	TIP NO:	R-5703						
Client Name:	Michael Baker l	Engineering								
Address:	Raleigh, NC									
Boring #:	B5-A LT LN	Sample #: SS-38	Sample D	Pate: 8/24/16						
Location:	220+00	Offset: 35' LT	Depth	(ft): 2.3 - 3.8						
Sample Description:		Dark Gray Coarse to	Fine Sandy Silty CL	AY A-7-6 (8)						

As Defin	As Defined by NCDOT		Fine Sand			< 0.25 mm and > 0.05 mm			
Gravel	< 75 mm	n and > 2.00 mm		Silt		< 0	0.05 and > 0.0	05 mm	
Coarse Sand	< 2.00 m	m and >0.25 mm		Clay			< 0.005 mm		
Maximum Particle Size	#4	Coarse S	Sand		11%	Silt		29%	
Gravel	0%	Fine San	ıd		36%	Clay		24%	
Apparent Relative Density	ND	Moisture	e Content		87.6%	% Passin	ng #200	56.4%	
Liquid Limit	47	Plastic Limit 29 Plastic Index		ndex	18				
		Soil Mortar	(-#10 Siev	re)					
Coarse Sand	11%	Fine Sand	36%		Silt	29%	Clay	24%	
Description of Sand & Grav	vel Particles:	Rounded				Angular		X	
Hard & Durable	X	Soft	X		Weat	hered & Fr	iable	X	
References / Comments / Deviati	ons: ND=	=Not Determined.							
Mal Krajan, ET		104-01-0703		Labo	oratory M	<u>anager</u>	9/	12/2016	
Technician Name		Certification No.			Position			Date	
Mal Krajan, ET		N		Labo	oratory M	<u>anager</u>	9/	26/2016	
Technical Responsibility		Signature		Position		-	Date		
Tl.		ha named and anomatical	C.11:4141.			OME Inc			

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-T88 Revision No. 0

Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

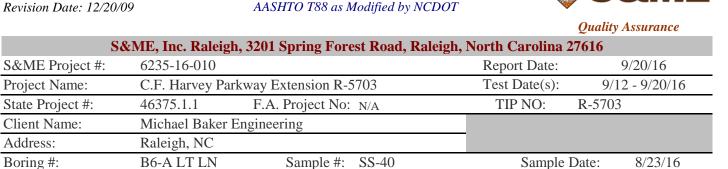
					2	J
S	&ME, Inc. Raleig	h, 3201 Spring Forest Road	l, Raleigh, North	Carolina 2	7616	
S&ME Project #:	6235-16-010		Rep	ort Date:		11/8/16
Project Name:	C.F. Harvey Pa	rkway Extension R-5703	Tes	t Date(s):		11/1-8/16
State Project #:	46375.1.1	F.A. Project No: N/A	T	IP NO:	R-570)3
Client Name:	Michael Baker	Engineering				
Address:	Raleigh, NC					
Boring #:	B5-A LL	Sample #: SS-39		Sample I	Date:	8/24/16
Location:	220+00	Offset: 35' LT		Depth	(ft):	48.6-50.1
Sample Description:			Brown Gray Fir	ne Sandy CI	LAY	A-6 (3)

As Defin	ed by NCDOT			Fine Sand	< 0.25 mm and > 0.05 mm		
Gravel	< 75 mm a	nd > 2.00 mm		Silt	< 0.05 a	and > 0.00	05 mm
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay	<	0.005 mm	1
Maximum Particle Size	1/2"	Coarse S	Sand	15%	Silt		29%
Gravel	5%	Fine Sar	nd	32%	Clay		19%
Apparent Relative Density	2.650	Moisture	e Content	24.0%	% Passing #200		52.7%
Liquid Limit	28	Plastic L	Limit	16	Plastic Index		12
Soil Mortar (-#10 Sieve)							
Coarse Sand	16%	Fine Sand	34%	Silt	30%	Clay	20%
Description of Sand & Gravel Particles:		Rounded			Angula	r	X
Hard & Durable	X	Soft		Weat	hered & Friable	е	
Maximum Particle Size1/2"Coarse Sand15%Silt29%Gravel5%Fine Sand32%Clay19%Apparent Relative Density2.650Moisture Content24.0%% Passing #20052.7%Liquid Limit28Plastic Limit16Plastic Index12Soil Mortar (-#10 Sieve)Coarse Sand16%Fine Sand34%Silt30%Clay20%Description of Sand & Gravel Particles:Rounded□Angular☒							
Karen Warner		118-06-0305		Laboratory Tec	<u>hnician</u>	<u>11</u>	<u>/8/2016</u>
Technician Name		Certification No.		Position			Date
Stewart Laney, P.E				Senior Engi	<u>neer</u>		
Technical Responsibility		Signature	Position				Date
Thi	s report shall not be	reproduced, except in j	full, without th	ne written approval of S	&ME, Inc.		

Location:

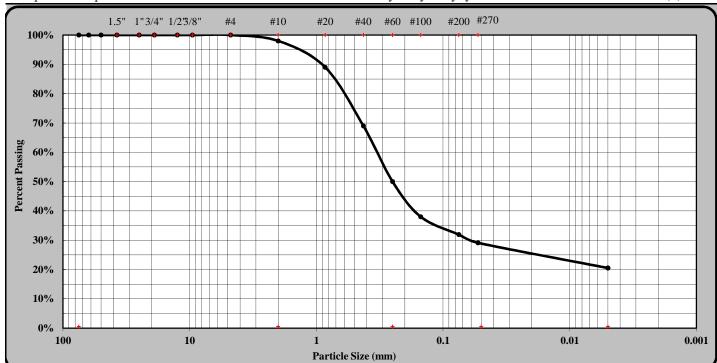
221+00

Particle Size Analysis of Soils


AASHTO T88 as Modified by NCDOT

8.2 - 9.7

Depth (ft):


B6-A LT LN SS-40 (8.2 - 9.7 ft) Classification.xls

35' LT

Sample Description: Dark Gray Silty Clayey Fine to Coarse SAND A-2-6 (1)

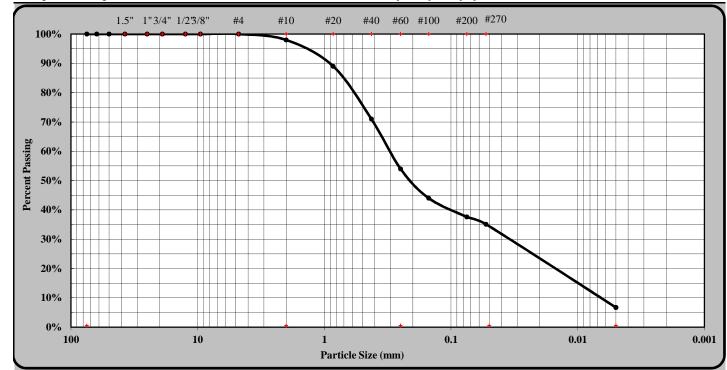
Offset:

As Defin	ed by NCDOT		I	Fine Sand	1	< 0.25 mm and > 0.05 mm			
Gravel	< 75 mm	and > 2.00 mm		Silt		< 0.05 and > 0.005 mm			
Coarse Sand	< 2.00 mn	n and >0.25 mm		Clay		<	< 0.005 mm		
Maximum Particle Size	#4	Coarse S	and		48%	Silt		9%	
Gravel	2%	Fine Sand		21%	Clay		21%		
Apparent Relative Density	ND	Moisture	Moisture Content 20.9% % P			% Passing	#200	31.9%	
Liquid Limit	38	Plastic Limit 16			Plastic Inde	ex	22		
Soil Mortar (-#10 Sieve)									
Coarse Sand	49%	Fine Sand	21%		Silt	9%	Clay	21%	
Description of Sand & Grav	vel Particles:	Rounded				Angul	ar	X	
Hard & Durable	X	Soft	X		Weatl	hered & Friab	le	X	
References / Comments / Deviati	ons: ND=	Not Determined.							
Mal Krajan, ET		104-01-0703		Labo	oratory Ma	<u>anager</u>	9/	12/2016	
Technician Name		Certification No.			Position			Date	
Mal Krajan, ET		M	\geq	Labo	oratory Ma	<u>anager</u>	<u>9/</u>	26/2016	
Technical Responsibility		Signature			Position	Date		Date	

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-T88 Revision No. 0

Revision Date: 12/20/09

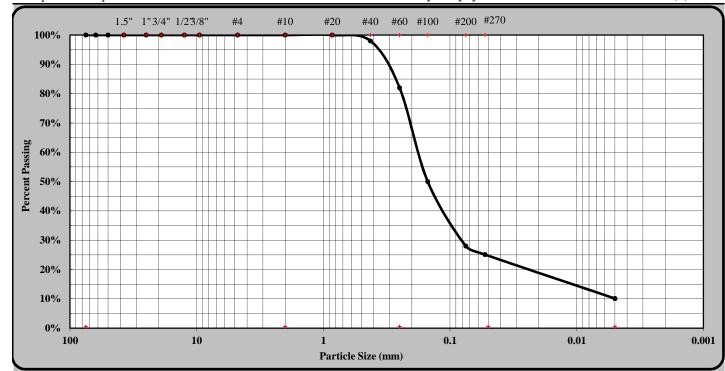

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

				Quality 1155th three
Sa	&ME, Inc. Raleigh	n, 3201 Spring Forest Road, Ralei	gh, North Carolina 27	7616
S&ME Project #:	6235-16-010		Report Date:	9/20/16
Project Name:	C.F. Harvey Par	kway Extension R-5703	Test Date(s):	9/12 - 9/20/16
State Project #:	46375.1.1	F.A. Project No: N/A	TIP NO:	R-5703
Client Name:	Michael Baker I	Engineering		
Address:	Raleigh, NC			
Boring #:	B6-A LT LN	Sample #: SS-41	Sample D	Pate: 8/23/16
Location:	221+00	Offset: 35' LT	Depth	(ft): 13.1 - 14.6
Sample Description:	:	Dark Gray Silty Cla	ayey Fine to Coarse SA	ND A-4 (0)

As Defin	As Defined by NCDOT Gravel <75 mm and > 2.00 mm		I	Fine Sand	< 0.25 mm and > 0.05 mm			l
Gravel	< 75 mi	m and > 2.00 mm		Silt	< 0.05 and > 0.005 m		005 mm	ĺ
Coarse Sand	< 2.00 n	nm and >0.25 mm		Clay		< 0.005 m	ım	İ
Maximum Particle Size	#4	Coarse S	and	44%	Silt		28%	
Gravel	2%	Fine San	d	19%	Clay		7%	
Apparent Relative Density	ND	Moisture	Content	20.7%	% Passing	#200	37.6%	
Liquid Limit	18	Plastic L	imit	0	Plastic Inde	ex	N.P.	
		Soil Mortar	(-#10 Siev	e)				ĺ
Coarse Sand	45%	Fine Sand	19%	Silt	29%	Clay	7%	
Description of Sand & Grav	el Particles:	Rounded			Angu	lar	X	
Hard & Durable	X	Soft	X	Weat	thered & Frial	ole	X	
References / Comments / Deviation	ons: ND	Not Determined.						
Mal Krajan, ET Technician Name		104-01-0703 Certification No.		Laboratory M	anager	9	0/12/2016 Date	
Mal Krajan, ET		Signature	\geq	Laboratory M	anager	9	0/26/2016 Date	
Technical Responsibility		Signature				Date		


This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Sé	&ME, Inc. Raleigh	n, 3201 Spring Forest Road, Ra	leigh, North Carolina	27616
S&ME Project #:	6235-16-010		Report Date:	9/20/16
Project Name:	C.F. Harvey Par	kway Extension R-5703	Test Date(s):	9/12 - 9/20/16
State Project #:	46375.1.1	F.A. Project No: N/A	TIP NO:	R-5703
Client Name:	Michael Baker I	Engineering		
Address:	Raleigh, NC			
Boring #:	B7-A LT LN	Sample #: SS-42	Sample	Date: 8/22/16
Location:	222+00	Offset: 35' LT	Depth	n (ft): 2.5 - 4.0
Sample Description:		Dark Brown Silty	Clayey Coarse to Fine S	AND A-2-4 (0)

As Defin	ed by NCDOT		F	Fine Sand			< 0.25 mm and > 0.05 mm		
Gravel	< 75 mm	and > 2.00 mm		Silt		< 0.05 and > 0.005 mm			
Coarse Sand	< 2.00 mm	n and >0.25 mm	Clay			< 0.005 mm			
Maximum Particle Size	#4	Coarse S	Sand		18%	Silt		15%	
Gravel	0%	Fine Sand 5		57%	Clay		10%		
Apparent Relative Density	ND	Moisture	Content	ent 79.9% % Passing #200			g #200	28.0%	
Liquid Limit	27	Plastic Limit 24			Plastic Inc	dex	3		
Soil Mortar (-#10 Sieve)									
Coarse Sand	18%	Fine Sand	57%		Silt	15%	Clay	10%	
Description of Sand & Grav	vel Particles:	Rounded				Ang	ular	X	
Hard & Durable	X	Soft	X		Weat	hered & Fria	able	X	
References / Comments / Deviati	ons: ND=	Not Determined.							
Mal Krajan, ET		104-01-0703		Labo	oratory M	anager	9/	12/2016	
Technician Name		Certification No.			Position	_		Date	
Mal Krajan, ET		M		Labo	oratory M	<u>anager</u>	9/	<u>′26/2016</u>	
Technical Responsibility		Signature			Position			Date	

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-T88

Revision Date: 12/20/09

Particle Size Analysis of Soils Revision No. 0

AASHTO T88 as Modified by NCDOT

Quality Assurance

						£	, 11000000	
S	&ME, Inc. Raleigh	n, 3201 Spring For	est Road, Ra	leigh, No	rth Carolina	27616		
S&ME Project #:	6235-16-010]	Report Date:		9/20/1	6
Project Name:	C.F. Harvey Par	kway Extension R-	5703	r	Γest Date(s):	9/	12 - 9/2	0/16
State Project #:	46375.1.1	F.A. Project No:	N/A		TIP NO:	R-570	13	
Client Name:	Michael Baker I	Engineering						
Address:	Raleigh, NC							
Boring #:	B7-A LT LN	Sample #:	SS-43		Sample	Date:	8/22	2/16
Location:	222+00	Offset:	35' LT		Dept	h (ft):	8.5	- 10
Sample Description:			Gray Silty (Clayey Co	arse to Fine S	AND	A-3	(0)

As Define	ed by NCDOT	1	Fine Sand < 0.25			0.25 mm and > 0.05 mm	
Gravel	< 75 mi	m and > 2.00 mm	Silt		< 0.05 and > 0.005 mm)5 mm
Coarse Sand	< 2.00 n	nm and >0.25 mm		Clay	< 0.005 mm		ı
Maximum Particle Size	#4	Coarse S	and	29%	Silt		3%
Gravel	0%	Fine San	d	65%	Clay		3%
Apparent Relative Density	ND	Moisture	Content	26.4%	% Passing #200		8.4%
Liquid Limit	19	Plastic L	imit	0	Plastic Index		N.P.
Soil Mortar (-#10 Sieve)							
Coarse Sand	29%	Fine Sand	65%	Silt	3%	Clay	3%
Description of Sand & Grav	el Particles:	Rounded			Angular		X
Hard & Durable	X	Soft	⊠ Weat		thered & Friable		X
References / Comments / Deviation	ons: ND	=Not Determined.					
Mal Krajan, ET Technician Name		104-01-0703 Certification No.		Laboratory Market Position	anager	<u>9/1</u>	12/2016 Date
Mal Krajan, ET Technical Responsibility		Signature		Laboratory M	<u>anager</u>	9/2	26/2016 Date
* *	s report shall no	signature t he reproduced except in f	Full without the		&ME Inc		Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

B7-A LT LN SS-42 (2.5 - 4 ft) Classification.xls

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

						ي المان	<i>y</i> 1255 000 00000			
S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616										
S&ME Project #:	6235-16-010			Re	port Date:		11/14/16			
Project Name:	C.F. Harvey Par	rkway Extension R-5	5703	Te	est Date(s):	10)/7 - 11/14/16	6		
State Project #:	46375.1.1	F.A. Project No:	N/A	,	TIP NO:	R-570)3			
Client Name:	Michael Baker	Engineering								
Address:	Raleigh, NC									
Boring #:	B8-A LT LN	Sample #:	SS-44		Sample	Date:	8/19/16			
Location:	223+00	Offset:	35' LT		Dept	th (ft):	4.2 - 5.7			
Sample Description:			Gray Silty	Clayey Coar	se to Fine S	SAND	A-2-4 (0)			

As Define	Fine Sand			< 0.25	< 0.25 mm and > 0.05 mm				
Gravel	•	and > 2.00 mm		Silt		< 0.05 and > 0.005 mm			
Coarse Sand	< 2.00 mm	and >0.25 mm	Clay			< 0.005 mi			
Maximum Particle Size	#10	Coarse S	Sand		6%	Silt		6%	
Gravel	0%	Fine Sar	nd		78%	Clay		10%	
Apparent Relative Density	ND	Moisture	Moisture Content 37.8%		% Passing	; #200	20.0%		
Liquid Limit	29	Plastic Limit		0	Plastic Index N		N.P.		
Soil Mortar (-#10 Sieve)									
Coarse Sand	6%	Fine Sand	78%		Silt	6%	Clay	10%	
Description of Sand & Grav	el Particles:	Rounded				Angı	ılar		
Hard & Durable		Soft			Weat	hered & Fria	ıble		
References / Comments / Deviation	ons: ND=N	Not Determined.							
Mal Krajan, ET		104-01-0703		Labo	ratory M	anager_	<u>10</u>	0/7/2016	
Technician Name		Certification No.			Position			Date	

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

3201 Spring Forest Road

Raleigh, NC 27616

<u>Laboratory Manager</u>

Position

36 OF 59

Form No: TR-T267 Revision No. 0

Balance:

Oven

Revision Date: 07/10/08

Moisture, Ash, and Organic Matter

AASHTO T-267

Quality Assurance

S&ME, Inc. Raleigh, 3201 Spring Forest Raod, Raleigh, North Carolina 27616								
Project #:	6235-16-010	5-16-010 Re		Report Date:	10/21/16			
Project Name:	C.F. Harvey Parkw	vay Extension R-5703		Test Date(s):	10/18	- 10/21/16		
Client Name:	Michael Baker Eng	gineering						
Client Address:	Raleigh, NC							
Boring #:	B8-A LT LN	Sample #:	SS-44	Sample	Date:	8/19/16		
Location:	223+00	Offset:	35' LT	Dep	th (ft):	4.2 - 5.7		
Sample Description: Gray Silty Clayey Coarse to Fine SAND (A-2-4) (A)								
Equipment:	Balance: 0.01 g.Rea	dability, 500g. Minimum	Capaccity					

Method A: Moisture Content Determination

1024

Cal. Date:

S&ME ID #:

11/06/17 Required Oven Temperature: 105 ± 5° C

	Oven Temperature: 105 °C	Tare #	1
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	46.08
а	Mass of As-Received Specimen + Tare Wt.	grams	91.85
b	Mass of Oven Dry Specimen + Tare Wt.	grams	79.30
w	Water Weight	(a-b)	12.55
A	Mass of As-Received Specimen	(a-t)	45.77
В	Mass of Oven Dry Specimen	(b-t)	33.22
% Ma	oisture Content as a % of As Received or Total Mass	(w/A)*100	27.4%
9	% Moisture Content as a % of Oven-dried Mass	(w/B)*100	37.8%
S&M)	F.ID #: 1454 Cal Date: 10/7/16 Due:	10/7/17	

11/06/16

Due:

Method C (440°C) or D (750°C): Ash Content and Organic Matter Determination

	Muffle Furnace: 455 °C	Tare #	44
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	50.03
b	Mass of Oven Dry Specimen + Tare Wt.	grams	83.23
С	Ash Weight + Tare Wt.	grams	82.14
C	Ash Weight	c-t	32.11
В	Mass of Oven Dry Specimen	(b-t)	33.20
D	% Ash Content	(C/B)*100	96.7%
	% Organic Matter	100-D	3.3%

S&ME ID #: 00261 Muffle Furnace:

Notes / Deviations / References:

Mal Krajan, ET Technical Responsibility

Laboratory Manager

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Mal Krajan, ET

Technical Responsibility

11/14/2016

Date

Form No: TR-T289-1

Revision Date: 07/10/08

Revision No. 0

pH of Soil

AASHTO T289

Quality Assurance

							~	•
S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616								j
Project #:	Project #: 6235-16-010		Report Date:		11/7/16			
Project Nan	ne: C	C.F. Harvey Pa	arkway Extension l	R-5703		Test Date(s):	11	/5 - 11/7/16
Client Nam	e: N	Iichael Baker	Engineering					
Client Addr	ress: R	Raleigh, NC						
Boring #:	B8-A	LT LN	Sample	e #: SS-44		Sample Da	ate:	8/19/16
Location:	223+0	00	Offs	set: 35' LT		Depth (ft):	4.2 - 5.7
Sample Des	cription	:	Gra	y Silty Clay	ey Coarse to I	Fine SAND (A-2	2-4) (0)	
Equipment:								
Balance			S&ME ID#	1024	Cal. Date:	11/6/16	Due:	11/6/17
Sieve:	#	10	S&ME ID#	13223	Cal. Date:	6/11/16	Due:	6/11/17
pH Meter:			S&ME ID#	1365	Cal. Date:	11/7/16	Due:	NA

pH Meter Calibration

Buffer Solution	Results
pH buffer 7.0	7.02
pH buffer 4.01	4.01
pH buffer 10.0	10.03
Buffer Temperature ⁰ C	22.4

Measuring pH of Soil

Measurements	
Weigtht of Air Dry Soil (g)	30.01
Distilled Water (g)	30.02
Temperature ⁰ C	22.7
pH Readings	5.88

AASHTO T-289: Determining pH of Soil for Use in Corrosion Testing Notes / Deviations / References:

Mal Krajan, ET Technical Responsibility

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

B8-A LT LN SS-44 (4.2 - 5.7 ft) pH.xls S&ME, Inc. - Corporate 3201 Spring Forest Road Page 1 of 1

Form No. TR-T88 Revision No. 0

Revision Date: 12/20/09

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

						~	-			
S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616										
S&ME Project #:	6235-16-010			Rep	ort Date:		11/14/16			
Project Name:	C.F. Harvey Par	kway Extension R-5	5703	Tes	t Date(s):	10	/7 - 11/14/16			
State Project #:	46375.1.1	F.A. Project No:	N/A	Т	TP NO:	R-570)3			
Client Name:	Michael Baker I	Engineering								
Address:	Raleigh, NC									
Boring #:	B8-A LT LN	Sample #:	SS-45		Sample	Date:	8/19/16			
Location:	223+00	Offset:	35' LT		Dept	th (ft):	43.4 - 44.9			
Sample Description:		Dar	rk Gray Coars	se to Fine Sa	ndy Silty (CLAY	A-6 (2)			

As Define	ed by NCDOT		Fine Sand			< 0.25 mm and > 0.05 mm		
Gravel	< 75 mm a	and > 2.00 mm		Silt		< 0.05 and > 0.005 mm		05 mm
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay			< 0.005 mr	n
Maximum Particle Size	#10	Coarse S	and		22%	2% Silt		14%
Gravel	0%	Fine San	d		44%	Clay		20%
Apparent Relative Density	ND	Moisture	Content		25.2%	% Passing	#200	42.4%
Liquid Limit	33	Plastic Limit			19	Plastic Index		14
Soil Mortar (-#10 Sieve)								
Coarse Sand	22%	Fine Sand	44%		Silt	14%	Clay	20%
Description of Sand & Grav	el Particles:	Rounded				Angul	lar	
Hard & Durable		Soft			Weat	hered & Friab	ole	
References / Comments / Deviati	ons: ND=N	Not Determined.						
MAIZ: ET		104 01 0702		T 1	. 34		11	/1.4/2016
<u>Mal Krajan, ET</u>		<u>104-01-0703</u>		Labo	oratory Ma	<u>anager</u>	11/	<u>/14/2016</u>
Technician Name		Certification No.			Position			Date
Mal Krajan, ET		M S		Labo	oratory Ma	anager	<u>11</u> ,	/14/2016

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Signature

3201 Spring Forest Road Raleigh, NC 27616

Date

Position

Technical Responsibility

Revision No. 0 Revision Date: 07/10/08

Moisture, Ash, and Organic Matter

AASHTO T-267

Quality Assurance

		AASH1U 1-20/						Quani	y Assurance
	S&ME, Inc. Raleigh, 3201 Spring Forest Raod, Raleigh, North Carolina								
Project #:	6235-16-01	6235-16-010				Repor	t Date:	1	0/21/16
Project Name:	C.F. Harvey	C.F. Harvey Parkway Extension R-5703				Test D	ate(s):	10/18	3 - 10/21/16
Client Name:	Michael Ba	ker Engine	eering						
Client Address:	Raleigh, NC								
Boring #:	B8-A LT LI	N	Sample #:	SS	-45		Sample	Date:	8/19/16
Location:	223+00		Offset:	35	LT		Dep	th (ft):	43.4 - 44.9
Sample Descript	ion: Dark G	ray Coars	e to Fine Sandy	Silty CLAY	(A-6) (2))			
Equipment:	Balance: 0.0	l g.Readab	pility, 500g. Mini	mum Capaccity	v				
Balance: Se	& <i>ME ID #:</i>	1024	Cal. Date:	11/06/16	Due:	11/0	6/17		

Method A: Moisture Content Determination

Required Oven Temperature: 105 ± 5° C

	Oven Temperature: 105 °C	Tare #	2
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	47.05
а	Mass of As-Received Specimen + Tare Wt.	grams	100.89
b	Mass of Oven Dry Specimen + Tare Wt.	grams	90.07
W	Water Weight	(a-b)	10.82
A	Mass of As-Received Specimen	(a-t)	53.84
В	Mass of Oven Dry Specimen	(b-t)	43.02
% Ma	visture Content as a % of As Received or Total Mass	(w/A)*100	20.1%
9	6 Moisture Content as a % of Oven-dried Mass	(w/B)*100	25.2%
S&MI	E ID #: 1454 Cal. Date: 10/7/16 Due:	10/7/17	

Method C (440°C) or D (750°C): Ash Content and Organic Matter Determination

	Muffle Furnace: 455 °C	Tare #	2
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	13.61
b	Mass of Oven Dry Specimen + Tare Wt.	grams	38.57
c	Ash Weight + Tare Wt.	grams	38.08
С	Ash Weight	c-t	24.47
В	Mass of Oven Dry Specimen	(b-t)	24.96
D	% Ash Content	(C/B)*100	98.0%
	% Organic Matter	100-D	2.0%

Muffle Furnace: *S&ME ID #:* 00261

Notes / Deviations / References:

Oven

Mal Krajan, ET Technical Responsibility Signature

Laboratory Manager

11/14/2016 Date

Page 1 of 1

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

38 OF 59

Form No: TR-T289-1

Revision No. 0

Revision Date: 07/10/08

pH of Soil

Quality Assurance

AASHTO T289

S&ME, Inc. Raleigh, 3201 Spring F				Forest Road, Raleigh, North Carolina 27616					
Project #:	6235-16-010)					11/7/16		
Project Name: C.F. Harvey Park		Parkway Extension l	R-5703		Test Date(s):	11/:	11/5 - 11/7/16		
Client Name	: Michael Bake	er Engineering							
Client Addre	ess: Raleigh, NC								
Boring #:	B8-A LT LN	Sample	e #: SS-45		Sample D	ate:	8/19/16		
Location:	223+00	Offs	Offset: 35' LT			(ft):	43.4 - 44.9		
Sample Desc	cription:	Dark	Gray Coars	se to Fine Sand	y Silty CLAY ((A-6) (2)			
Equipment:									
Balance		S&ME ID#	1024	Cal. Date:	11/6/16	Due:	11/6/17		
Sieve:	#10	S&ME ID#	13223	Cal. Date:	6/11/16	Due:	6/11/17		
pH Meter:		S&ME ID#	1365	Cal. Date:	11/7/16	Due:	NA		

pH Meter Calibration

Buffer Solution	Results
pH buffer 7.0	7.02
pH buffer 4.01	4.01
pH buffer 10.0	10.03
Buffer Temperature ⁰ C	22.4

Measuring pH of Soil

Measurements					
Weigtht of Air Dry Soil (g)	30.03				
Distilled Water (g)	30.03				
Temperature ⁰ C	22.4				
pH Readings	5.61				

AASHTO T-289: Determining pH of Soil for Use in Corrosion Testing Notes / Deviations / References:

Mal Krajan, ET Technical Responsibility

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Particle Size Analysis of Soils


AASHTO T88 as Modified by NCDOT

Revision Date: 12/20/09

Quality Assurance

					~	•
S	&ME, Inc. Raleig	h, 3201 Spring Ford	est Road, Ral	eigh, North Carolina	27616	
S&ME Project #:	6235-16-010			Report Date:		12/27/16
Project Name:	C.F. Harvey Pa	rkway Extension R-5	5703	Test Date(s):	12	2/24 - 12/27/16
State Project #:	46375.1.1	F.A. Project No:	N/A	TIP NO:	R-57	03
Client Name:	Michael Baker	Engineering				
Address:	Raleigh, NC					
Boring #:	B8-A LT LN	Sample #:	ST-6	Sample	Date:	8/19/16
Location:	223+00	Offset:	38' LT	Depth	n (ft):	9.7 - 11.7 ft.
Sample Description:		Da	rk Gray Silty	Clayey Fine to Coare S.	AND	A-2-6 (2)

As Define	ed by NCDOT		Fin	e Sand	< 0.25 mm and > 0.05 mm		
Gravel	< 75 mm a	nd > 2.00 mm		Silt		< 0.05 and > 0.005 mm	
Coarse Sand	< 2.00 mm and >0.25 mm			Clay		< 0.005 mm	
Maximum Particle Size	#4	Coarse	Sand	48%	Silt		6%
Gravel	1%	Fine San	nd	21%	Clay		24%
Apparent Relative Density	ND	Moistur	e Content	18.9%	% Passing #	<i>‡</i> 200	33.3%
Liquid Limit	37	Plastic Limit		15	Plastic Index	ĸ	22
		Soil Morta	r (-#10 Sieve)				
Coarse Sand	48%	Fine Sand	22%	Silt	6%	Clay	24%
Description of Sand & Grav	el Particles:	Rounded			Angula	r	X
Hard & Durable	X	Soft		Weat	hered & Friable	e	
References / Comments / Deviation	one: ND-N	lot Determined					

References / Comments / Deviations:

Mal Krajan, ET Technician Name

Mal Krajan, ET

Technical Responsibility

104-01-0703 Certification No. Signature

Laboratory Manager Position

<u>Laboratory Manager</u>

Position

12/27/2016 Date

9/26/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

3201 Spring Forest Road Raleigh, NC 27616

B8-A LT LN ST-6 (9.7 - 11.7 ft) Classification.xls

39 OF 59

Oedometer Settlement Tests

Sketch showing specimen location in original Sample

Sample details

Initial Conditions

9.7 - 11.7 ft. Depth

Description:

Dark Gray Silty Clayey Fine to Coarse SAND (A-2-6) (0)

Height H₀ (in) Diameter D₀ (in) Weight W₀ (gr) Bulk Density ρ (PCF) Particle Density Ps

Undisturbed 0.997 2.501 165.58 128.79 2.667 (measured)

Settlement Channel 1942 Moisture Content wo% 19.1 Dry Density Pd (PCF) 108.17 Voids Ratio eo 0.5385 Deg of Saturation S₀% 94.4 Swelling Pressure Ss (TSF) 0.000

Final Conditions

Moisture Content w_f% 22.4 Dry Density Pd (PCF) 110.46 0.5066 Voids Ratio e, Deg of Saturation S_f% 100.00 Settlement: (in) 0.021 0.060 Compression Index C

Operator: ML

Notes:

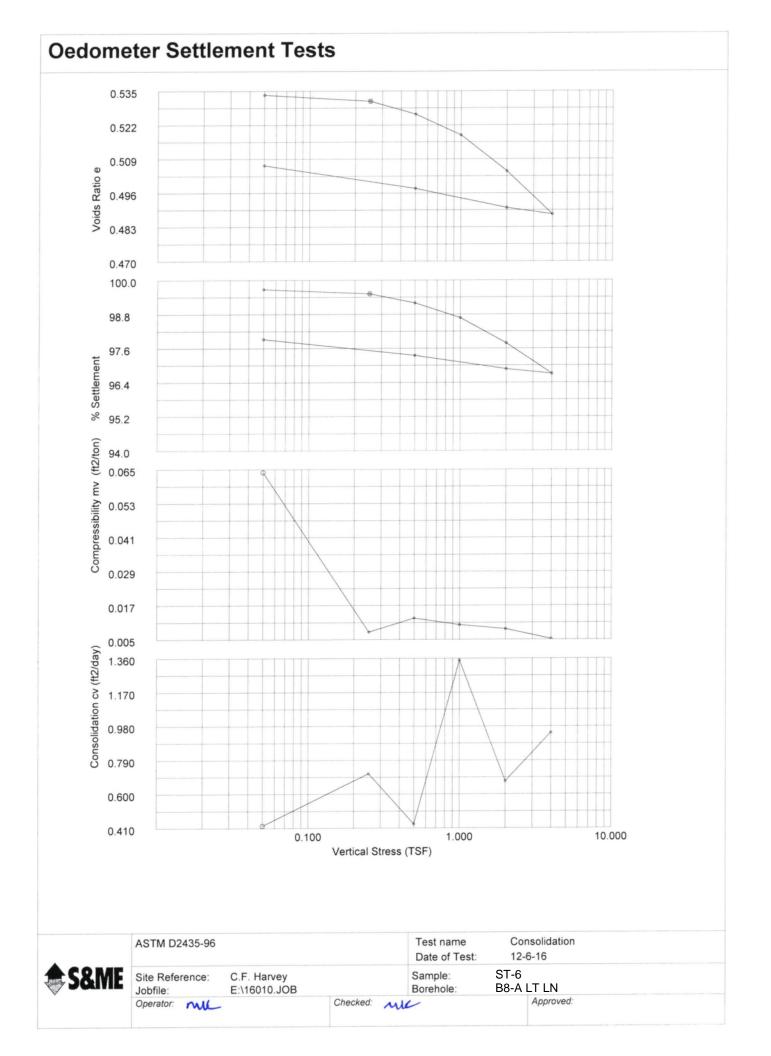
Test specimen taken from the middle portion of UD tube.

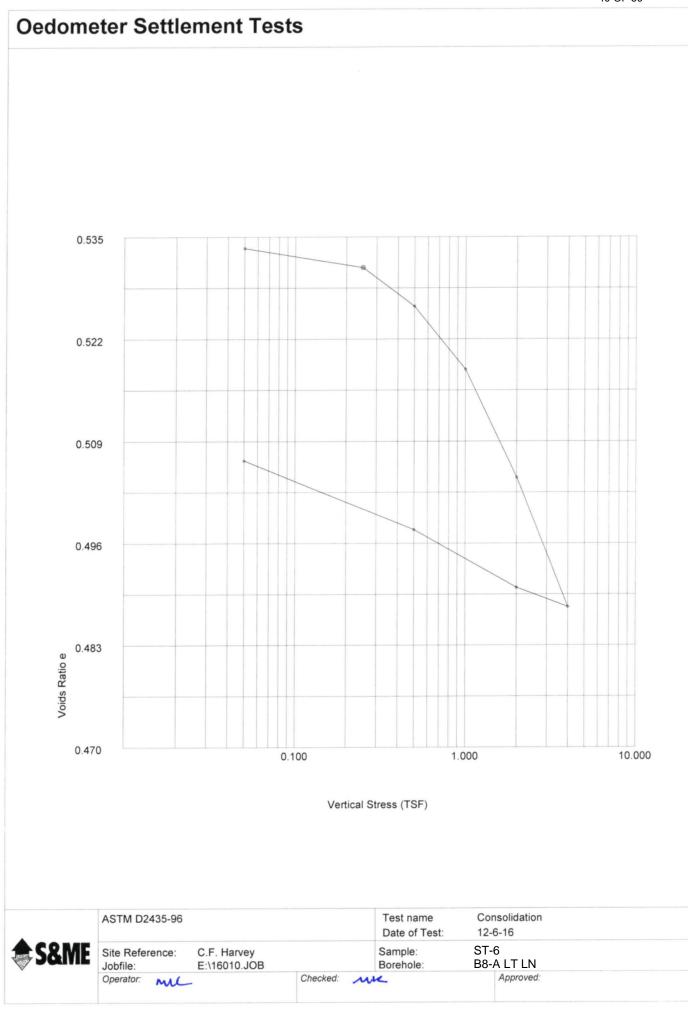
ASTM D2435-96 Site Reference: Jobfile:

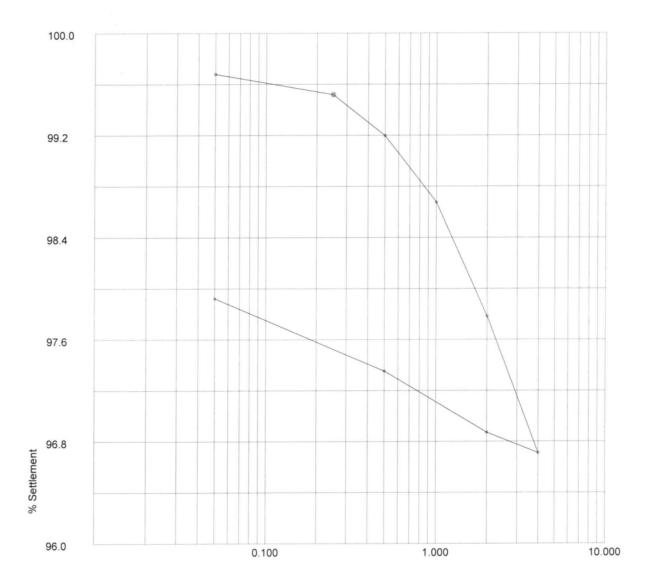
Test name Date of Test: Consolidation 12-6-16

Sample: ST-6 Borehole: B8-A LT LN

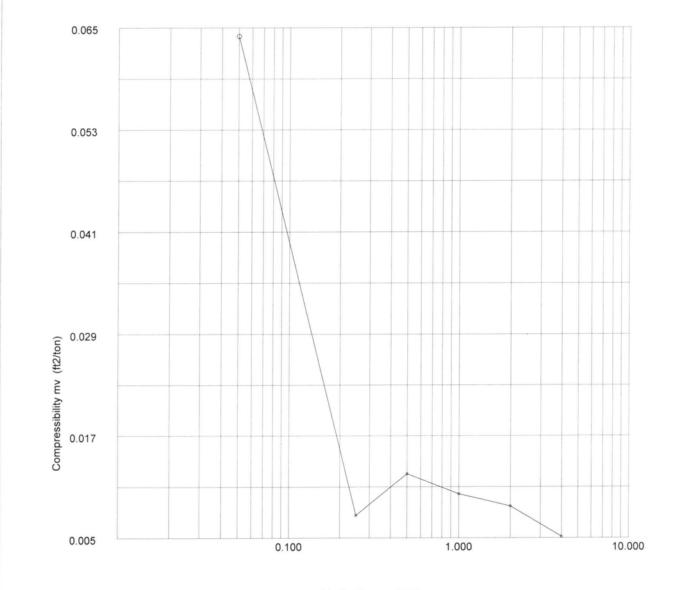
Checked:


C.F. Harvey

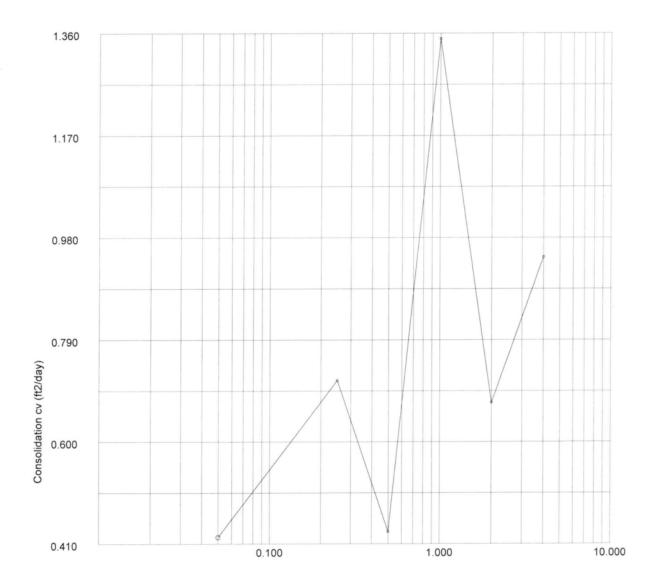

E:\16010.JOB


Approved:

S&ME, Inc.



Vertical Stress (TSF)


	ASTM D2435-96			Test name Date of Test:		nsolidation -6-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST- B8-	6 A LT LN	
	Operator:	-	Checked:	L		Approved:	

Oedometer Settlement Tests

Vertical Stress (TSF)

	ASTM D2435-96			Test name Date of Test:	-	nsolidation -6-16	
♦S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8- <i>F</i>	6 A LT LN	
	Operator: ML	-	Checked:	K		Approved:	

Vertical Stress (TSF)

ASTM D2435-96

Test name Consolidation
Date of Test: 12-6-16

Site Reference: C.F. Harvey
Jobfile: E:\16010.JOB

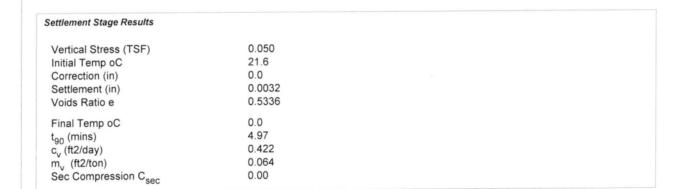
Operator: Checked: Approved:

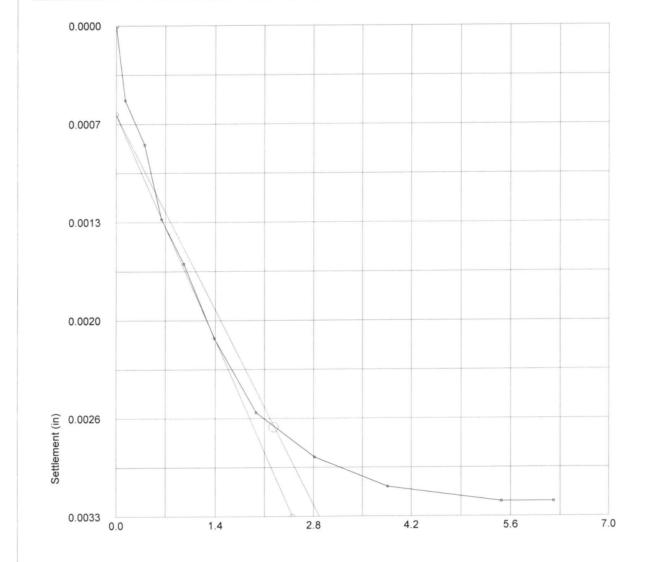
Checked: Approved:

42 OF 59

Oedometer Settlement Tests

Stress (TSF)	Initial Temp. oC	Settlement Total (in)	Cal Corr. (in)	Final Temp. oC	Voids Ratio e _f	t _{so} (mins)	Secondary Compr C _{sec}	c _v (ft2/day)	m _v (ft2/ton)
0.050	21.6	0.0032	0.0	21.6	0.5336	4.974	0.00	0.422	0.064
0.250	21.6	0.0048	0.0	21.6	0.5311	2.926	0.00	0.714	0.008
0.500	21.6	0.0080	0.0	21.6	0.5262	4.808	0.00	0.433	0.013
1.000	21.6	0.0132	0.0	21.6	0.5181	1.528	0.00	1.350	0.011
2.000	21.6	0.0221	0.0	21.6	0.5044	3.021	0.00	0.673	0.009
4.000	21.6	0.0328	0.0	21.6	0.4879	2.111	0.00	0.944	0.006
2.000	21.6	0.0312	0.0	21.6	0.4904				0.001
0.500	21.6	0.0264	0.0	21.6	0.4978				0.003
0.050	21.6	0.0207	0.0	21.6	0.5066				0.013


	ASTM D2435-96		Test name Date of Test:	-	nsolidation -6-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB	Sample: Borehole:	ST-6 B8-A	LT LN	
	Operator: ML	•	Checked: Ne		Approved:	

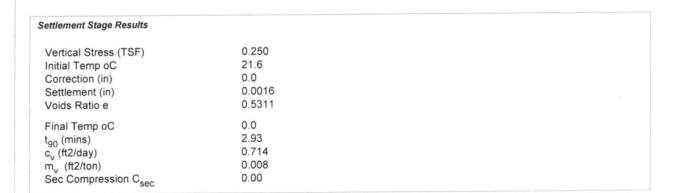

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
	(IIIIII)	(div3)	(111)	(,
1	0.000	0	0.0000	0.0000
2	0.017	5	0.0005	0.0005
3	0.167	8	0.0008	0.0008
4	0.417	13	0.0013	0.0013
5	0.917	16	0.0016	0.0016
6	1.917	21	0.0021	0.0021
7	3.917	26	0.0026	0.0026
8	7.917	29	0.0029	0.0029
9	14.917	31	0.0031	0.0031
10	29.917	32	0.0032	0.0032
11	38.567	32	0.0032	0.0032

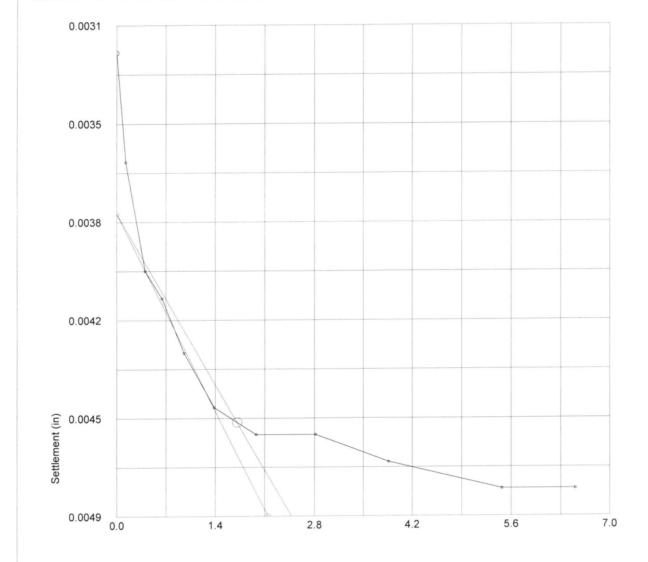
	ASTM D2435-96			Test name Date of Test:		nsolidation Load: 0.050 (TSF) 6-16
♦S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8- <i>A</i>	6 A LT LN
	Operator: MLC		Checked: NC	•		Approved:

43 OF 59

Oedometer Settlement Tests

♦ S&ME	S
	0

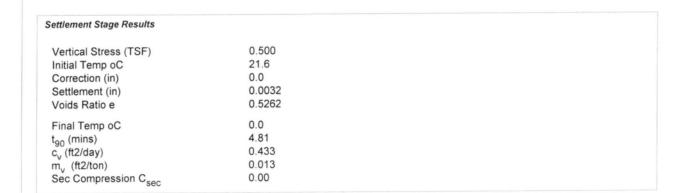

ASTM D2435-96			Test name Date of Test:	Consolidation 12-6-16	
Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
Operator: MV	-	Checked:	i	Approved:	

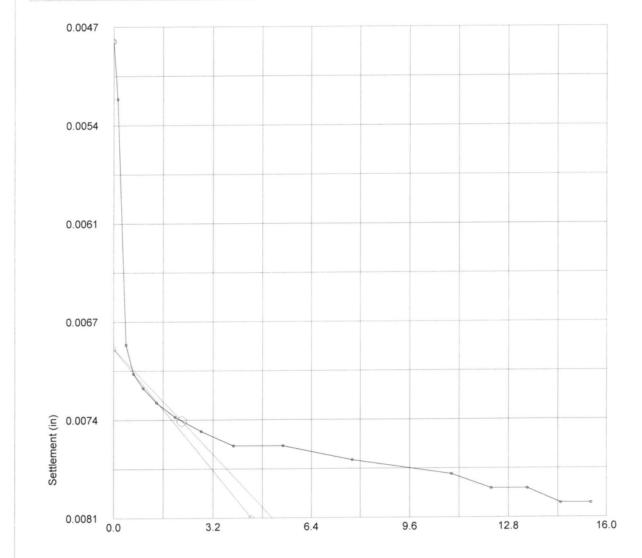

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	32	0.0032	0.0032
2	0.017	36	0.0036	0.0036
3	0.167	40	0.0040	0.0040
4	0.417	41	0.0041	0.0041
5	0.917	43	0.0043	0.0043
6	1.917	45	0.0045	0.0045
7	3.917	46	0.0046	0.0046
8	7.917	46	0.0046	0.0046
9	14.917	47	0.0047	0.0047
10	29.917	48	0.0048	0.0048
11	42.383	48	0.0048	0.0048

	ASTM D2435-96			Test name Date of Test:	Consolidation 12-6-16	Load: 0.250 (TSF)
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator: N. C.	-	Checked: NO	L	Approved:	

44 OF 59

Oedometer Settlement Tests

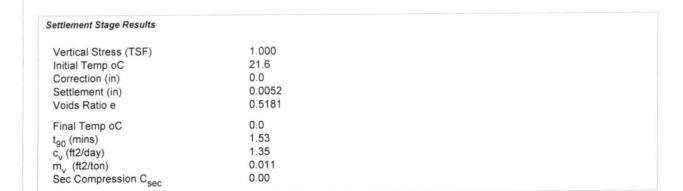

	ASTM D2435-96			Test name Date of Test:	-	nsolidation -6-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8- <i>F</i>	6 A LT LN	
	Operator:	•	Checked: ML	L		Approved:	

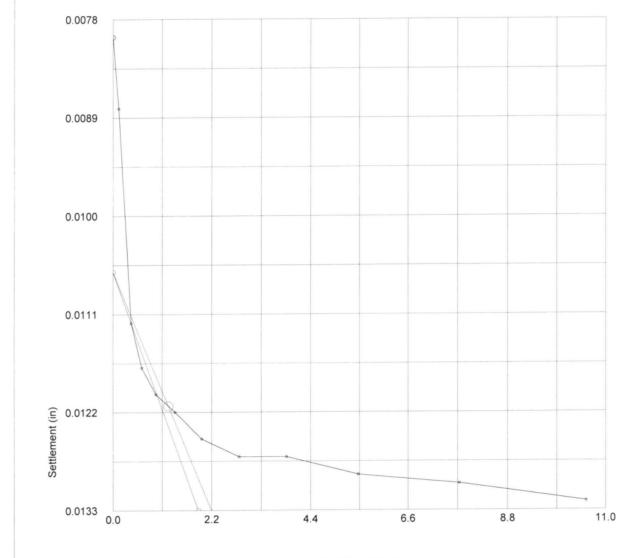

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	48	0.0048	0.0048
2	0.017	52	0.0052	0.0052
3	0.167	69	0.0069	0.0069
4	0.417	71	0.0071	0.0071
5	0.917	72	0.0072	0.0072
6	1.917	73	0.0073	0.0073
7	3.917	74	0.0074	0.0074
8	7.917	75	0.0075	0.0075
9	14.917	76	0.0076	0.0076
10	29.917	76	0.0076	0.0076
11	59.917	77	0.0077	0.0077
12	119.917	78	0.0078	0.0078
13	149.917	79	0.0079	0.0079
14	179.917	79	0.0079	0.0079
15	209.917	80	0.0080	0.0080
16	239.917	80	0.0080	0.0080

	ASTM D2435-96			Test name Date of Test:	Consolid 12-6-16	ation Load: 0.500 (TSF)
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT	LN
	Operator: MCC	•	Checked: NU	L	Appro	oved:

45 OF 59

Oedometer Settlement Tests


♦ S&ME	ASTM D2435-96			Test name Date of Test:	Consolidation 12-6-16	
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
•	Operator: MLC		Checked: N	_	Approved:	

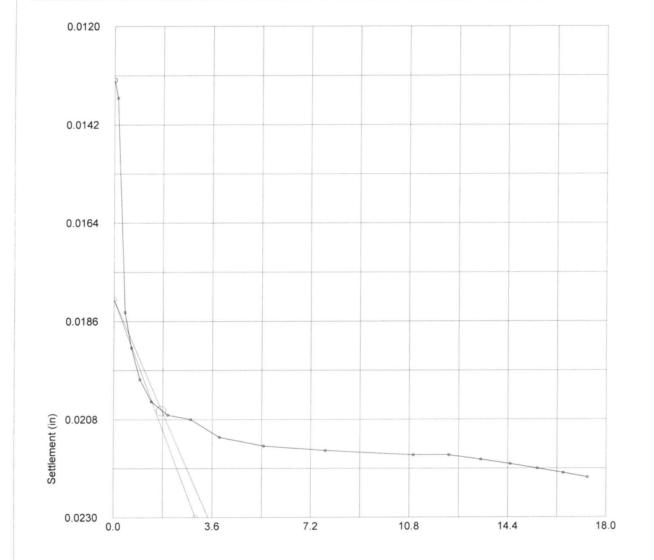

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	80	0.0080	0.0080
2	0.017	88	0.0088	0.0088
3	0.167	112	0.0112	0.0112
4	0.417	117	0.0117	0.0117
5	0.917	120	0.0120	0.0120
6	1.917	122	0.0122	0.0122
7	3.917	125	0.0125	0.0125
8	7.917	127	0.0127	0.0127
9	14.917	127	0.0127	0.0127
10	29.917	129	0.0129	0.0129
11	59.917	130	0.0130	0.0130
12	111.567	132	0.0132	0.0132

	ASTM D2435-96			Test name Date of Test:	12-6-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator: WV		Checked: NV		Approved:	

46 OF 59

Oedometer Settlement Tests

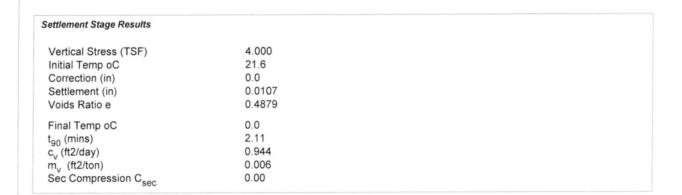
	ASTM D2435-96			Test name Date of Test:	Con: 12-6	solidation 6-16	
♦S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A	S A LT LN	
	Operator: MK		Checked:	4		Approved:	

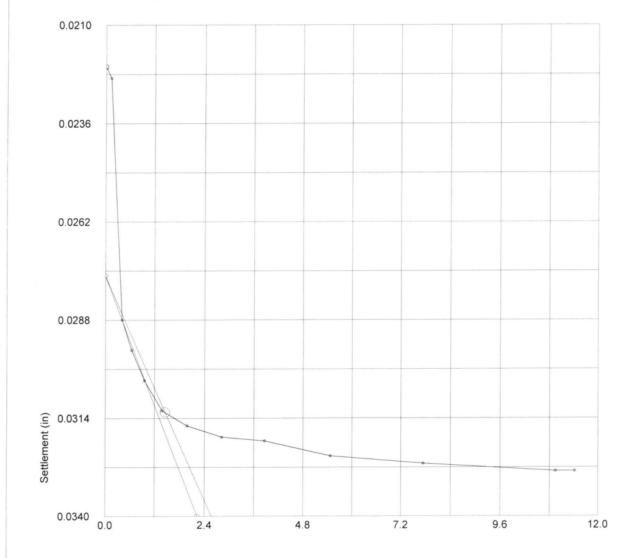

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	132	0.0132	0.0132
2	0.017	136	0.0136	0.0136
3	0.167	184	0.0184	0.0184
4	0.417	192	0.0192	0.0192
5	0.917	199	0.0199	0.0199
6	1.917	204	0.0204	0.0204
7	3.917	207	0.0207	0.0207
8	7.917	208	0.0208	0.0208
9	14.917	212	0.0212	0.0212
10	29.917	214	0.0214	0.0214
11	59.917	215	0.0215	0.0215
12	119.917	216	0.0216	0.0216
13	149.917	216	0.0216	0.0216
14	179.917	217	0.0217	0.0217
15	209.917	218	0.0218	0.0218
16	239.917	219	0.0219	0.0219
17	269.917	220	0.0220	0.0220
18	299.917	221	0.0221	0.0221

♦S&ME	ASTM D2435-96			Test name Date of Test:	Conso 12-6-1	olidation Load: 2.000 (TSF)
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A L	T LN
	Operator: MU	-	Checked: ~	اح	A	pproved:

47 OF 59

Oedometer Settlement Tests


A	ASTM D2435-96			Test name Date of Test:	Consolidat 12-6-16	ion
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT L	N
	Operator: MLC		Checked: ~~!	_	Approv	ed:

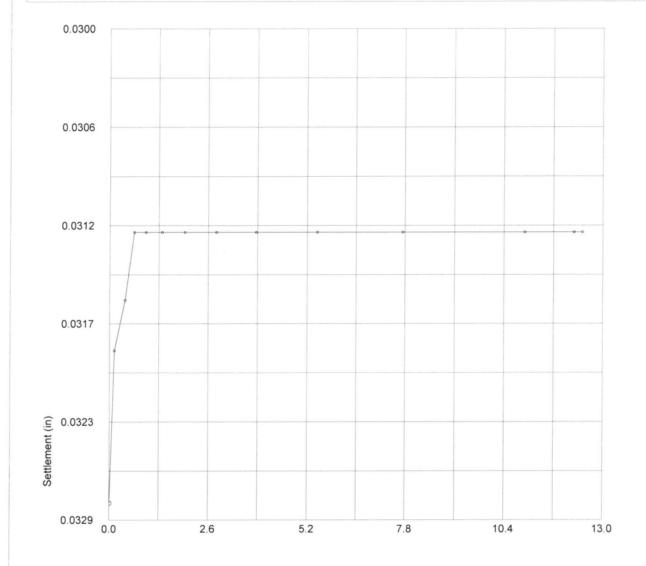

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	221	0.0221	0.0221
2	0.017	224	0.0224	0.0224
3	0.167	288	0.0288	0.0288
4	0.417	296	0.0296	0.0296
5	0.917	304	0.0304	0.0304
6	1.917	312	0.0312	0.0312
7	3.917	316	0.0316	0.0316
8	7.917	319	0.0319	0.0319
9	14.917	320	0.0320	0.0320
10	29.917	324	0.0324	0.0324
11	59.917	326	0.0326	0.0326
12	119.917	328	0.0328	0.0328
13	130.600	328	0.0328	0.0328

A	ASTM D2435-96				Test name Date of Test:		nsolidation Load: 4.000 (TSF) -6-16
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB			Sample: Borehole:	ST-6 B8- <i>A</i>	6 A LT LN
	Operator: Mu	_	Checked:	m	_		Approved:

48 OF 59

Oedometer Settlement Tests

	ASTM D2435-96			Test name Date of Test:		nsolidation 6-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-7	6 A LT LN	
	Operator: C	•	Checked: ~	ı		Approved:	


No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	328	0.0328	0.0328
2	0.017	319	0.0319	0.0319
3	0.167	316	0.0316	0.0316
4	0.417	312	0.0312	0.0312
5	0.917	312	0.0312	0.0312
6	1.917	312	0.0312	0.0312
7	3.917	312	0.0312	0.0312
8	7.917	312	0.0312	0.0312
9	14.917	312	0.0312	0.0312
10	29.917	312	0.0312	0.0312
11	59.917	312	0.0312	0.0312
12	119.917	312	0.0312	0.0312
13	149.917	312	0.0312	0.0312
14	155.283	312	0.0312	0.0312

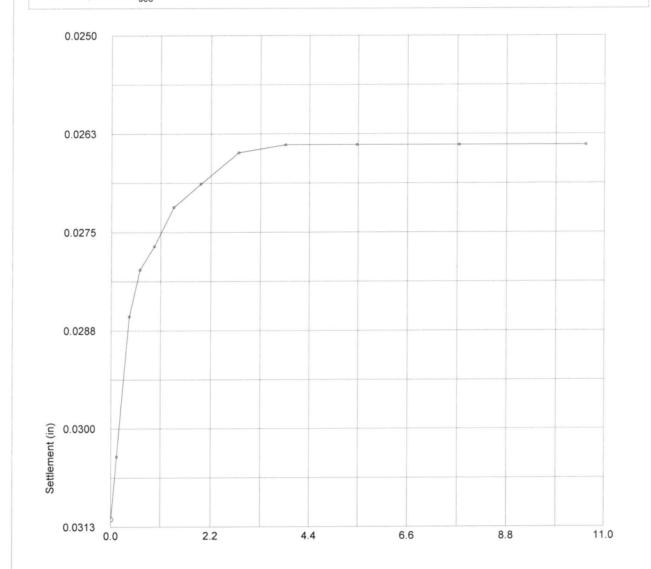
A	ASTM D2435-96			Test name Date of Test:	Consolidation L 12-6-16	oad: 2.000 (TSF)
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator:	-	Checked: ~~	L	Approved:	

49 OF 59

Oedometer Settlement Tests

A	ASTM D2435-96			Test name Date of Test:	Consolidation 12-6-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator:		Checked:	E	Approved:	

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	312	0.0312	0.0312
2	0.017	304	0.0304	0.0304
3	0.167	286	0.0286	0.0286
4	0.417	280	0.0280	0.0280
5	0.917	277	0.0277	0.0277
6	1.917	272	0.0272	0.0272
7	3.917	269	0.0269	0.0269
8	7.917	265	0.0265	0.0265
9	14.917	264	0.0264	0.0264
10	29.917	264	0.0264	0.0264
11	59.917	264	0.0264	0.0264
12	111.867	264	0.0264	0.0264


	ASTM D2435-96			Test name Date of Test:	Consolidation 12-6-16	n Load: 0.500 (TSF)
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
•	Operator: ML		Checked:	4	Approved	t:

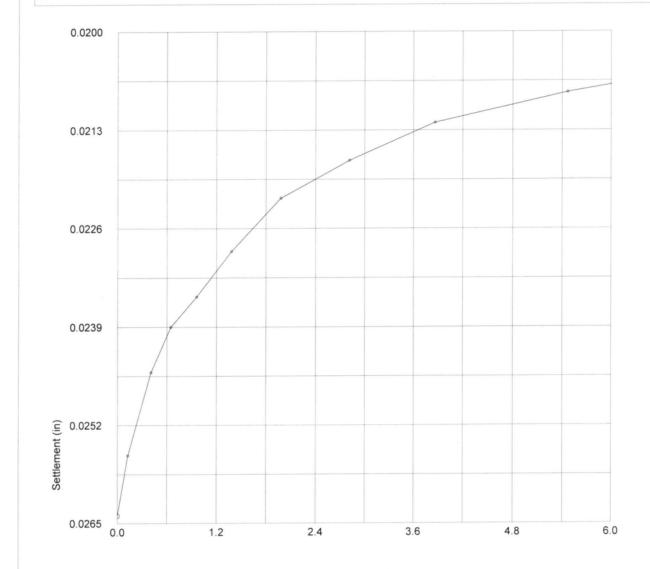
50 OF 59

Oedometer Settlement Tests

Settlement Stage Results Vertical Stress (TSF) 0.500 21.6 Initial Temp oC Correction (in) 0.0 0.0048 Settlement (in) Voids Ratio e 0.4978 Final Temp oC

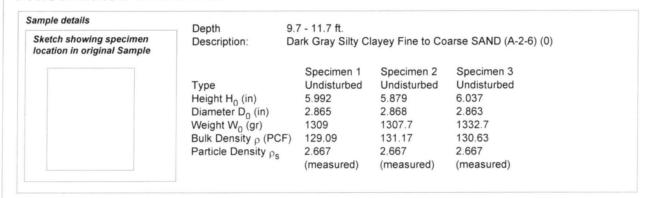
t₉₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec}

	ASTM D2435-96			Test name Consolidation Date of Test: 12-6-16			
♦ S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-7	6 A LT LN	
	Operator: ML	-	Checked: Nul			Approved:	


No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	264	0.0264	0.0264
2	0.017	256	0.0256	0.0256
3	0.167	245	0.0245	0.0245
4	0.417	239	0.0239	0.0239
5	0.917	235	0.0235	0.0235
6	1.917	229	0.0229	0.0229
7	3.917	222	0.0222	0.0222
8	7.917	217	0.0217	0.0217
9	14.917	212	0.0212	0.0212
10	29.917	208	0.0208	0.0208
11	36.117	207	0.0207	0.0207

♦S&ME	ASTM D2435-96			Test name Date of Test:	Conso 12-6-1	olidation Load: 0.050 (TSF) 16	
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:			
	Operator: MK		Checked: ^	Checked:		pproved:	

51 OF 59


Oedometer Settlement Tests

$\begin{array}{lll} \textbf{Settlement Stage Results} \\ & \textbf{Vertical Stress (TSF)} & 0.050 \\ \textbf{Initial Temp oC} & 21.6 \\ \textbf{Correction (in)} & 0.0 \\ \textbf{Settlement (in)} & 0.0057 \\ \textbf{Voids Ratio e} & 0.5066 \\ \hline \textbf{Final Temp oC} \\ \textbf{t}_{90} \text{ (mins)} \\ \textbf{c}_{\text{V}} \text{ (ft2/day)} \\ \textbf{m}_{\text{V}} \text{ (ft2/ton)} \\ \textbf{Sec Compression C}_{\text{Sec}} \\ \end{array}$

♦ S&ME	ASTM D2435-96			Test name Date of Test:	Consolidation 12-6-16	
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator: ML	•	Checked: M	,_	Approved:	

Consolidated Undrained

Initial Conditions			
	Specimen 1	Specimen 2	Specimen 3
Cell Pressure _{G3} (lbf/in2)	4.0	10.0	16.0
Pore Pressure u (lbf/in2)	0.0	0.0	0.0
Machine Speed d _r (in/min)	0.0067	0.0195	0.0068
No. of Membranes	1	1	1
Total Thickness (in)	0.012	0.012	0.012
Strain Channel	1798	1798	1798
Load Channel	1776	1776	1776
Pore P. Channel	1779	1779	1779
Volume Channel	Volume Chan	g Volume Chan	g Volume Chang
Moisture Content w ₀ %	19.8	18.6	18.4
Dry Density Pd0 (PCF)	107.80	110.62	110.32
Voids Ratio e ₀	0.54	0.50	0.51
Deg of Saturation S ₀ %	96.88	98.21	96.57
Final B Value	0.95	0.97	0.96

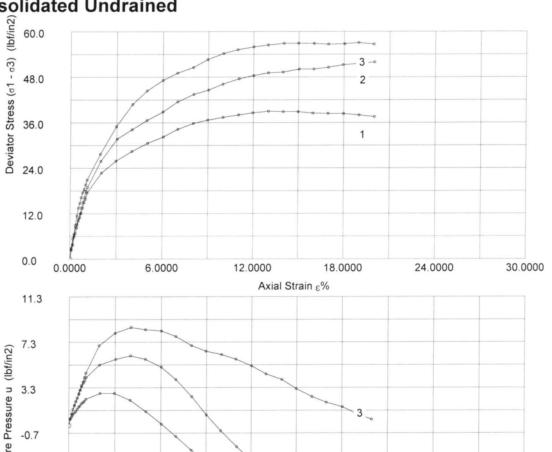
Final Conditions	Specimen 1	Specimen 2	Specimen 3	Failure Sketch
Moisture Content w _f %	20.5	19.2	19.3	
Dry Density ρ _d (PCF)	108.97	113.19	113.59	Sp 1 Sp 2
Voids Ratio e _f	0.53	0.47	0.47	
Deg of Saturation S _f %	100.00	100.00	100.00	(=)(=
Failure Criteria	Mx Stress Ra	tioMx Stress Ra	tioMx Stress Ratio	(三)(三)
Axial Strain Ef%	3.0	4.0	6.0	
Corr Dev Stress $(\sigma_1 - \sigma_3)$ f (lbf/in2)	25.9	34.2	47.2	Sp 3
Minor Stress _{G3f} (lbf/in2)	1.2	3.9	7.7	
Major Stress σ _{1f} (lbf/in2)	27.1	38.1	54.9	
Stress Ratio $(\sigma_1/\sigma_3)_f$	22.6	9.8	7.1	(三)
Notes:				
				Surface Inclination

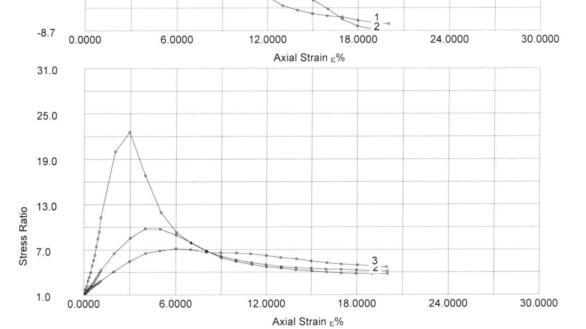
♦ S&ME	Test Method: AST	ГМ D4767-95		Test name Date of Test:	CU Triaxial (SS, MS) 12-6-16	
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator: ML		Checked: 🙏	الا	Approved:	

52 OF 59

-4.7

Test Method: ASTM D4767-95


C.F. Harvey


E:\16010.JOB

Site Reference:

Operator:

Jobfile:

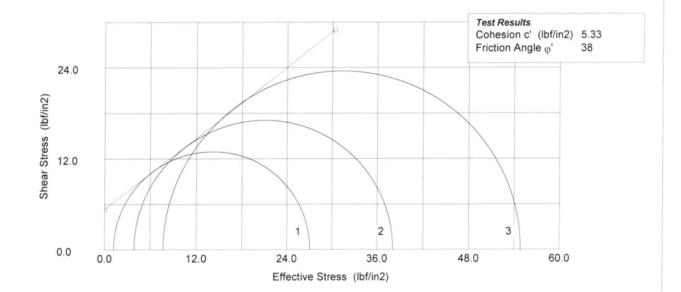
Checked:

Test name

Sample:

Borehole:

Date of Test:


CU Triaxial (SS, MS)

12-6-16

B8-A LT LN

ST-6

Consolidated Undrained

♦ S&ME	Test Method: ASTM	D4767-95		Test name Date of Test:	CU Triaxial 12-6-16	(SS, MS)
		C.F. Harvey E:\16010.JOB	Sample: ST-6 Borehole: B8-A LT LN			
	Operator:	-	Checked:	ul	Approve	ed:

53 OF 59

Effective Stress Triaxial Compression

Consolidated Undrained

	Test Method: AST	ГМ D4767-95		Test name Date of Test:	CU Tria 12-6-16		
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A L	T LN	
	Operator:	u	Checked: 🔨	u	App	proved:	

Page 1 / 3

Consolidated Undrained Shear (Specimen 1)

No.	Strain (divs)	$\underset{\epsilon \%}{\text{Strain}}$	Load (divs)	Load (lbs)	Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_m$ (Ibf/in2)	D. Stress $(\sigma_1 - \sigma_3)_c$ (Ibf/in2)	Minor Str σ_3 ' (lbf/in2)	Major Str σ ₁ ' (lbf/in2)	Ratio σ_1'/σ_3'
1	321	0.00	569	0.0	0	0.0	0.0	0.0	4.00	4.00	1.00
2	376	0.09	733	16.4	5	0.5	2.6	2.6	3.50	6.06	1.73
3	427	0.18	800	23.1	7	0.7	3.6	3.6	3.30	6.90	2.09
4	485	0.27	936	36.7	9	0.9	5.7	5.7	3.10	8.82	2.84
5	538	0.36	1002	43.3	11	1.1	6.7	6.7	2.90	9.64	3.32
6	593	0.46	1103	53.4	12	1.2	8.3	8.3	2.80	11.10	3.97
7	650	0.55	1228	65.9	14	1.4	10.2	10.1	2.60	12.68	4.88
8	705	0.64	1286	71.7	16	1.6	11.1	11.0	2.40	13.37	5.57
9	759	0.73	1359	79.0	17	1.7	12.3	12.1	2.30	14.39	6.26
10	816	0.83	1447	87.8	19	1.9	13.6	13.4	2.10	15.54	7.40
11	870	0.92	1542	97.3	20	2.0	15.1	14.9	2.00	16.90	8.45
12	922	1.01	1601	103.2	21	2.1	16.0	15.8	1.90	17.70	9.32
13	982	1.11	1708	113.9	23	2.3	17.6	17.4	1.70	19.14	11.26
14	1535	2.03	2074	150.5	28	2.8	23.0	22.8	1.20	23.96	19.96
15	2088	2.96	2299	173.0	28	2.8	26.2	25.9	1.20	27.07	22.56
16	2702	3.99	2495	192.6	22	2.2	28.9	28.4	1.80	30.21	16.79
17	3316	5.02	2666	209.7	12	1.2	31.1	30.6	2.80	33.36	11.92
18	3929	6.04	2807	223.8	1	0.1	32.9	32.2	3.90	36.12	9.26
19	4493	6.99	2976	240.7	-10	-1.0	35.0	34.3	5.00	39.26	7.85
20	5106	8.01	3115	254.6	-22	-2.2	36.6	35.8	6.20	41.99	6.77
21	5672	8.96	3210	264.1	-32	-3.2	37.6	36.7	7.20	43.89	6.10
22	6288	9.99	3296	272.7	-41	-4.1	38.3	37.4	8.10	45.49	5.62
23	6908	11.03	3379	281.0	-50	-5.0	39.1	38.0	9.00	47.02	5.22
24	7470	11.97	3454	288.5	-57	-5.7	39.7	38.6	9.70	48.26	4.98
25	8089	13.01	3524	295.5	-65	-6.5	40.2	39.0	10.50	49.48	4.71
26	8670	13.98	3554	298.5	-69	-6.9	40.1	38.9	10.90	49.76	4.56
27	9258	14.97	3594	302.5	-72	-7.2	40.2	38.9	11.20	50.07	4.47
28	9851	15.96	3606	303.7	-74	-7.4	39.9	38.5	11.40	49.90	4.38
29	10450	16.96	3640	307.1	-75	-7.5	39.8	38.4	11.50	49.89	4.34
30	11053	17.97	3681	311.2	-78	-7.8	39.9	38.4	11.80	50.17	4.25
31	11659	18.99	3691	312.2	-80	-8.0	39.5	38.0	12.00	49.96	4.16
32	12265	20.00	3702	313.3	-81	-8.1	39.2	37.6	12.10	49.66	4.10

S&ME	Test Method: AST	M D4767-95		Test name Date of Test:	CU Triaxial 12-6-16	(SS, MS) Shear (Specimen 1)
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator: NUC		Checked:	LL	Approved	d:

54 OF 59

Effective Stress Triaxial Compression

Page 2 / 3

Consolidated Undrained Shear (Specimen 2)

N				Load (divs)		Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_m$ (lbf/in2)		Minor Str σ ₃ ΄ (lbf/in2)	Major Str σ ₁ ΄ (lbf/in2)	Ratio σ_1'/σ_3'
1		127	0.00	603	0.0	0	0.0	0.0	0.0	10.00	10.00	1.00
2		183	0.10	789	18.6	5	0.5	2.9	2.9	9.50	12.42	1.31
3	- 2	236	0.19	947	34.4	10	1.0	5.4	5.4	9.00	14.40	1.60
4	- 2	289	0.28	1009	40.6			6.4	6.4	8.60	14.96	1.74
5		347	0.38	1139	53.6	18			8.4	8.20	16.59	2.02
6	4	401	0.47	1188	58.5	21	2.1	9.2	9.2	7.90	17.05	2.16
7	4	455	0.56	1293	69.0	24	2.4	10.8	10.6	7.60	18.23	2.40
8		513	0.66	1377	77.4	28	2.8	12.1	11.9	7.20	19.13	2.66
9		567	0.75	1478	87.5	31	3.1	13.7	13.5	6.90	20.39	2.96
10	0 6	621	0.85	1574	97.1	34	3.4	15.1	15.0	6.60	21.58	3.27
11	1 6	680	0.95	1658	105.5	37	3.7	16.4	16.3	6.30	22.57	3.58
12	2 7	733	1.04	1762	115.9	39	3.9	18.0	17.9	6.10	23.97	3.93
13	3 7	786	1.13	1828	122.5	42	4.2	19.0	18.9	5.80	24.68	4.26
14	4 1	1285	1.98	2297	169.4	53	5.3	26.1	25.8	4.70	30.52	6.49
15	5 1	1897	3.03	2703	210.0	58	5.8	32.0	31.7	4.20	35.85	8.54
16	3 2	2456	3.99	2899	229.6	61	6.1	34.7	34.2	3.90	38.08	9.76
17	7 3	3018	4.96	3088	248.5	58	5.8	37.1	36.6	4.20	40.77	9.71
18	3	3633	6.01	3274	267.1	51	5.1	39.5	38.8	4.90	43.73	8.92
19	9 4	1198	6.98	3491	288.8	40	4.0	42.2	41.5	6.00	47.52	7.92
20		4816	8.04	3663	306.0	25	2.5	44.2	43.4	7.50	50.94	6.79
21				3781	317.8	9	0.9	45.5	44.6	9.10	53.68	5.90
22		5945	9.97	3933	333.0	-5	-0.5	47.1	46.2	10.50	56.67	5.40
23		6568	11.04	4077	347.4	-19	-1.9	48.6	47.5	11.90	59.45	5.00
24		7135	12.01	4183	358.0	-31	-3.1	49.5	48.4	13.10	61.50	4.70
25	5 7	7701	12.98	4281	367.8	-40	-4.0	50.3	49.1	14.00	63.14	4.51
26		3273			373.8	-50	-5.0	50.6	49.3	15.00	64.30	4.29
27			15.03	4451	384.8	-60	-6.0	51.4	50.1	16.00	66.09	4.13
28	3 9	9465	16.01				-6.8	51.5	50.1	16.80	66.89	3.98
29		10030	16.97						50.6	17.70	68.26	3.86
30						-83	-8.3	52.7	51.2	18.30	69.52	3.80
31								53.1				3.77
32									52.0	18.90		3.75

	Test Method: AST	M D4767-95		Test name Date of Test:	CU Triaxial 12-6-16	(SS, MS) Shear (Specimen 2)
E	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator: WW	-	Checked: 🖊	LL	Approve	ed:

Page 3 / 3

Consolidated Undrained Shear (Specimen 3)

No.	Strain (divs)	Strain ε%	Load (divs)	Load (lbs)	Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_m$ (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_c$ (lbf/in2)	Minor Str σ ₃ ΄ (lbf/in2)	Major Str σ ₁ ' (lbf/in2)	Ratio σ_1'/σ_3'
1	289	0.00	703	0.0	0	0.0	0.0	0.0	16.00	16.00	1.00
2	343	0.09	850	14.7	6	0.6	2.3	2.3	15.40	17.73	1.15
3	394	0.18	950	24.7	10	1.0	3.9	3.9	15.00	18.91	1.26
4	453	0.27	1117	41.4	14	1.4	6.5	6.5	14.60	21.14	1.45
5	505	0.36	1270	56.7	17	1.7	8.9	8.9	14.30	23.25	1.63
6	560	0.45	1425	72.2	21	2.1	11.4	11.4	13.90	25.29	1.82
7	618	0.55	1564	86.1	24	2.4	13.6	13.4	13.60	27.01	1.99
8	673	0.64	1648	94.5	27	2.7	14.9	14.7	13.30	28.02	2.11
9	728	0.73	1745	104.2	31	3.1	16.4	16.2	12.90	29.13	2.26
10	785	0.83	1825	112.2	35	3.5	17.6	17.5	12.50	29.97	2.40
11	841	0.92	1887	118.4	38	3.8	18.6	18.4	12.20	30.62	2.51
12	895	1.01	1963	126.0	42	4.2	19.8	19.6	11.80	31.40	2.66
13	953	1.11	2045	134.2	46	4.6	21.0	20.9	11.40	32.26	2.83
14	1456	1.95	2503	180.0	70	7.0	28.0	27.7	9.00	36.68	4.08
15	2071	2.98	3003	230.0	81	8.1	35.4	35.0	7.90	42.89	5.43
16	2691	4.02	3418	271.5	86	8.6	41.3	40.8	7.40	48.20	6.51
17	3256	4.96	3688	298.5	84	8.4	44.9	44.4	7.60	51.98	6.84
18	3880	6.01	3913	321.0	83	8.3	47.8	47.2	7.70	54.86	7.12
19	4447	6.96	4082	337.9	78	7.8	49.8	49.1	8.20	57.29	6.99
20	5073	8.00	4227	352.4	70	7.0	51.4	50.6	9.00	59.56	6.62
21	5641	8.95	4413	371.0	65	6.5	53.5	52.6	9.50	62.14	6.54
22	6270	10.00	4572	386.9	62	6.2	55.2	54.2	9.80	64.00	6.53
23	6839	10.96	4691	398.8	58	5.8	56.3	55.2	10.20	65.42	6.41
24	7467	12.01	4797	409.4	52	5.2	57.1	56.0	10.80	66.75	6.18
25	8040	12.97	4883	418.0	45	4.5	57.6	56.5	11.50	67.95	5.91
26	8668	14.02	4969	426.6	40	4.0	58.1	56.9	12.00	68.85	5.74
27	9239	14.97	5025	432.2	32	3.2	58.2	56.9	12.80	69.70	5.45
28	9868	16.02	5077	437.4	25	2.5	58.2	56.8	13.50	70.31	5.21
29	10438	16.98	5122	441.9	20	2.0	58.1	56.7	14.00	70.67	5.05
30	11068	18.03	5188	448.5	16	1.6	58.2	56.7	14.40	71.13	4.94
31	11615	18.95	5268	456.5	10	1.0	58.6	57.1	15.00	72.06	4.80
32	12221	19.96	5298	459.5	5	0.5	58.3	56.7	15.50	72.17	4.66

A corr	Test Method: AST	M D4767-95		Test name Date of Test:	CU Triaxial (SS, MS 12-6-16) Shear (Specimen 3)
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-6 B8-A LT LN	
	Operator: ML		Checked:	L	Approved:	

Form No. TR-T88
Revision No. 0

S&ME, Inc.

Revision Date: 12/20/09

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

						~	
S&	&ME, Inc. Raleig	h, 3201 Spring Ford	est Road, R	aleigh, N	North Carolina	27616	
S&ME Project #:	6235-16-010				Report Date:	1	1/14/16
Project Name:	C.F. Harvey Par	.F. Harvey Parkway Extension R-5703				10/7	7 - 11/14/16
State Project #:	46375.1.1	F.A. Project No:	N/A		TIP NO:	R-5703	
Client Name:	Michael Baker	Engineering					
Address:	Raleigh, NC						
Boring #:	B4-B RT LN	Sample #:	SS-46		Sample	Date:	8/4/16
Location:	218+00	Offset:	35' RT		Dept	h (ft):	1.0 - 2.5
Sample Description:			Tan Silty	Clayey	Coarse to Fine S	AND A	-2-4 (0)

As Define	ed by NCDOT			Fine Sand	i	< 0.25	mm and > 0).05 mm	
Gravel	< 75 mm	and > 2.00 mm		Silt			< 0.05 and > 0.005 mm		
Coarse Sand	< 2.00 mi	m and >0.25 mm		Clay			< 0.005 mm		
Maximum Particle Size	#4	Coarse S	Sand		21%	Silt		13%	
Gravel	0%	Fine San	d 51%		Clay		15%		
Apparent Relative Density	ND	Moisture	e Content		16.5%	% Passing	#200	32.0%	
Liquid Limit	20	Plastic L	imit		17	Plastic Ind	ex	3	
		Soil Mortar	(-#10 Siev	ve)					
Coarse Sand	21%	Fine Sand	51%		Silt	13%	Clay	15%	
Description of Sand & Grav	el Particles:	Rounded				Angu	lar		
Hard & Durable		Soft		□ Weath		hered & Friable			
References / Comments / Deviati	ons: ND=	Not Determined.							
M 1 M 1 DD		104.01.0702		т 1	. 34		1.1	11.4/2016	
<u>Mal Krajan, ET</u>		<u>104-01-0703</u>		Labo	oratory M	<u>anager</u>	11/	<u>/14/2016</u>	
Technician Name		Certification No.			Position			Date	
		N.C							
<u>Mal Krajan, ET</u>				Labo	oratory M	<u>anager</u>	<u>11/</u>	<u>/14/2016</u>	
Technical Responsibility		Signature	Signature		Position			Date	
Thi	s report shall not	be reproduced, except in j	full, without th	e written d	approval of S	&ME, Inc.			

3201 Spring Forest Road

Raleigh, NC 27616

B4-B RT LN SS-46 (1 - 2.5 ft) Classification.xls

Revision No. 0 Revision Date: 07/10/08

Moisture, Ash, and Organic Matter

AASHTO T-267

Ouality Assurance

		MISHTO 1-207			Quality Assurance			
S&ME, Inc. Raleigh, 3201 Spring Forest Raod, Raleigh, North Carolina								
Project #:	6235-16-010				Report Date:	10	/21/16	
Project Name:	C.F. Harvey Park	way Extension R-5'	703		Test Date(s):	10/18	- 10/21/16	
Client Name:	Michael Baker E	ngineering						
Client Address:	Raleigh, NC							
Boring #:	B4-B RT LN	Sample #:	SS	5-46	Sample	Date:	8/4/16	
Location:	218+00	Offset:	35'	'RT	Dep	th (ft):	1.0 - 2.5	
Sample Descrip	otion: Tan Silty Cl	ayey Coarse to Fine	SAND (A-2-	4) (0)				
Equipment:	Balance: 0.01 g.Re	eadability, 500g. Minii	mum Capaccity	y				
Balance: S	S&ME ID #: 102	4 Cal. Date:	11/06/16	Due:	<i>11/06/17</i>			

Method A: Moisture Content Determination

Required Oven Temperature: 105 ± 5° C

	Oven Temperature: 105 °C	Tare #	am
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	48.40
а	Mass of As-Received Specimen + Tare Wt.	grams	93.53
b	Mass of Oven Dry Specimen + Tare Wt.	grams	87.24
W	Water Weight	(a-b)	6.29
A	Mass of As-Received Specimen	(a-t)	45.13
В	Mass of Oven Dry Specimen	(b-t)	38.84
% Mo	pisture Content as a % of As Received or Total Mass	(w/A)*100	13.9%
9/	6 Moisture Content as a % of Oven-dried Mass	(w/B)*100	16.2%
S&MI	E ID #: 1454 Cal. Date: 10/7/16 Due:	10/7/17	

Method C (440° C) or D (750° C): Ash Content and Organic Matter Determination

1710	Memor C (440 C) of D (750 C). Ash Comen and Organic Mance Determination								
	Muffle Furnace: 455 °C Tare # 85								
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	49.03						
b	Mass of Oven Dry Specimen + Tare Wt.	grams	87.97						
c	Ash Weight + Tare Wt.	grams	87.39						
С	Ash Weight	c-t	38.36						
В	Mass of Oven Dry Specimen	(b-t)	38.94						
D	% Ash Content	(C/B)*100	98.5%						
	% Organic Matter	100-D	1.5%						

Muffle Furnace: *S&ME ID #:* 00261

Notes / Deviations / References:

Oven

Mal Krajan, ET Technical Responsibility Signature

Laboratory Manager

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

56 OF 59

Form No: TR-T289-1

Revision No. 0

pH of Soil Revision Date: 07/10/08

AASHTO T289

Quality Assurance

	S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, N					orth Carolina 27616			
Project #:	6235-16-01	6235-16-010					11/7/16		
Project Nan	ne: C.F. Harvey	C.F. Harvey Parkway Extension R-5703				11/:	5 - 11/7/16		
Client Name	e: Michael Bal	ker Engineering							
Client Addr	ess: Raleigh, NC								
Boring #:	B4-B RT LN	Sample	e #: SS-46		Sample D	ate:	8/4/16		
Location:	218+00	Offs	set: 35' RT		Depth	(ft):	1.0 - 2.5		
Sample Des	cription: Ta	n Silty Clayey Coarse	e to Fine SA	AND (A-2-4) (0	0)				
Equipment:									
Balance		S&ME ID#	1024	Cal. Date:	11/6/16	Due:	11/6/17		
Sieve:	#10	S&ME ID#	13223	Cal. Date:	6/11/16	Due:	6/11/17		
pH Meter:		S&ME ID#	1365	Cal. Date:	11/7/16	Due:	NA		

pH Meter Calibration

Buffer Solution	Results
pH buffer 7.0	7.02
pH buffer 4.01	4.01
pH buffer 10.0	10.03
Buffer Temperature ⁰ C	22.4

Measuring pH of Soil

Measurements	
Weigtht of Air Dry Soil (g)	30.02
Distilled Water (g)	30.02
Temperature ⁰ C	22.1
pH Readings	5.88

AASHTO T-289: Determining pH of Soil for Use in Corrosion Testing Notes / Deviations / References:

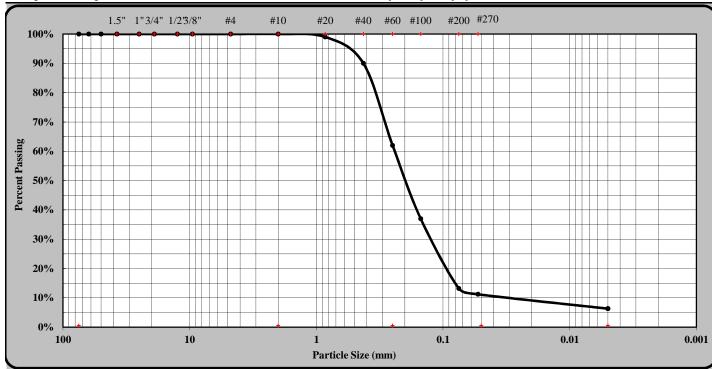
Mal Krajan, ET Technical Responsibility

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

						2	<i>J</i> 1200000 00000			
S&	S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616									
S&ME Project #:	6235-16-010]	Report Date:		11/14/16			
Project Name:	C.F. Harvey Par	rkway Extension R-	5703	r	Test Date(s):	10	/7 - 11/14/16			
State Project #:	46375.1.1	F.A. Project No:	N/A		TIP NO:	R-570)3			
Client Name:	Michael Baker	Engineering								
Address:	Raleigh, NC									
Boring #:	B4-B RT LN	Sample #:	SS-47		Sample	Date:	8/4/16			
Location:	218+00	Offset:	35' RT		Dept	h (ft):	58.1 - 59.6			
Sample Description:		Dar	k Gray Silty	Clayey Co	parse to Fine S	SAND	A-2-4 (0)			

As Defined by NCDOT			F	Fine Sand < 0.25 mm and > 0.05 mm			0.05 mm
Gravel	< 75 mm and > 2.00 mm			Silt		< 0.05 and > 0.005 mm	
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay		< 0.005 m	m
Maximum Particle Size	#4	Coarse S	Sand	38%	S	ilt	5%
Gravel	0%	Fine San	nd	51%	C	Clay	6%
Apparent Relative Density	ND	Moisture Content 27.1% %		6 Passing #200	13.2%		
Liquid Limit	20	Plastic L	imit	0	P	lastic Index	N.P.
		Soil Mortar	(-#10 Siev	e)			
Coarse Sand	38%	Fine Sand	51%	Silt	5	% Clay	6%
Description of Sand & Grav	vel Particles:	Rounded				Angular	
Hard & Durable		Soft		W	/eathe	eathered & Friable	
References / Comments / Deviati	ons: ND=N	Not Determined.					
Mal Krajan, ET		104-01-0703		Laboratory	Man	ager 11	1/14/2016
Technician Name		Certification No.		Posit	ion		Date

Signature This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No: TR-T267

Revision Date: 07/10/08

Revision No. 0

Balance:

Oven

Moisture, Ash, and Organic Matter

AASHTO T-267

Quality Assurance

57 OF 59

S&ME, Inc. Raleigh, 3201 Spring Forest Raod, Raleigh, North Carolina 27616						
Project #:	6235-16-010		Report Date:	10/21/16		
Project Name:	C.F. Harvey Parkw	vay Extension R-5703		Test Date(s):	10/18	3 - 10/21/16
Client Name:	Michael Baker Eng	gineering				
Client Address:	Raleigh, NC					
Boring #:	B4-B RT LN	Sample #:	SS-47	Sample	Date:	8/4/16
Location:	218+00	Offset:	35' RT	Dept	th (ft):	58.1 - 59.6
Sample Descript	ion: Dark Gray Sil	ty Clayey Coarse to Fi	ne SAND (A-2-4	.) (0)		
Equipment:	Balance: 0.01 g.Rea	dability, 500g. Minimum	Capaccity			

Method A: Moisture Content Determination

1024

Cal. Date:

S&ME ID #:

Required Oven Temperature: 105 ± 5° C

11/06/17

Due:

	Oven Temperature: 105 °C	Tare #	m
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	48.80
а	Mass of As-Received Specimen + Tare Wt.	grams	92.58
b	Mass of Oven Dry Specimen + Tare Wt.	grams	83.24
w	Water Weight	(a-b)	9.34
A	Mass of As-Received Specimen	(a-t)	43.78
В	Mass of Oven Dry Specimen	(b-t)	34.44
% Ма	oisture Content as a % of As Received or Total Mass	(w/A)*100	21.3%
9	6 Moisture Content as a % of Oven-dried Mass	(w/B)*100	27.1%
S&M.	E ID #: 1454 Cal. Date: 10/7/16 Due:	10/7/17	

11/06/16

Method C (440°C) or D (750°C): Ash Content and Organic Matter Determination

	Muffle Furnace: 455 °C	Tare #	49
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	49.46
b	Mass of Oven Dry Specimen + Tare Wt.	grams	83.89
С	Ash Weight + Tare Wt.	grams	83.65
С	Ash Weight	c-t	34.19
В	Mass of Oven Dry Specimen	(b-t)	34.43
D	% Ash Content	(C/B)*100	99.3%
	% Organic Matter	100-D	0.7%

S&ME ID #: 00261 Muffle Furnace:

Notes / Deviations / References:

Mal Krajan, ET Technical Responsibility

Laboratory Manager

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Mal Krajan, ET

Technical Responsibility

<u>Laboratory Manager</u>

Position

11/14/2016

Date

Form No: TR-T289-1

Revision Date: 07/10/08

Revision No. 0

pH of Soil

AASHTO T289

Quality Assurance

		-			2		
	S&ME, Inc. R	Raleigh, 3201 Sprii	ng Forest R	Road, Raleigh	, North Carolin	a 27616	
Project #:	roject #: 6235-16-010 Rej		Report Date:	te: 11/7/16			
Project Name:	C.F. Harvey P	arvey Parkway Extension R-5703		Test Date(s):	11/5 -	11/7/16	
Client Name:	Michael Baker	Engineering					
Client Address	: Raleigh, NC						
Boring #: B	84-B RT LN	Sample	e #: SS-47		Sample Da	ite:	8/4/16
Location: 2	18+00	Offs	set: 35' RT		Depth (ft): 58.1 - 59.6		
Sample Descrip	otion: Dark	Gray Silty Clayey	Coarse to F	ine SAND (A	-2-4) (0)		
Equipment:							
Balance		S&ME ID#	1024	Cal. Date:	11/6/16	Due:	11/6/17
Sieve:	#10	S&ME ID#	13223	Cal. Date:	6/11/16	Due:	6/11/17
pH Meter:		S&ME ID#	1365	Cal. Date:	11/7/16	Due:	NA

pH Meter Calibration

Buffer Solution	Results
pH buffer 7.0	7.02
pH buffer 4.01	4.01
pH buffer 10.0	10.03
Buffer Temperature ⁰ C	22.4

Measuring pH of Soil

Measurements					
Weigtht of Air Dry Soil (g)	20.00				
Distilled Water (g)	20.01				
Temperature ⁰ C	21.8				
pH Readings	6.01				

Notes / Deviations / References:	AASHTO T-289: Determining pH of Soil for Use in Corrosion Testing

Mal Krajan, ET Technical Responsibility

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

S&ME, Inc. - Corporate 3201 Spring Forest Road B4-B RT LN SS-47 (58.1 - 59.6 ft) pH.xls Raleigh, NC.. 27616

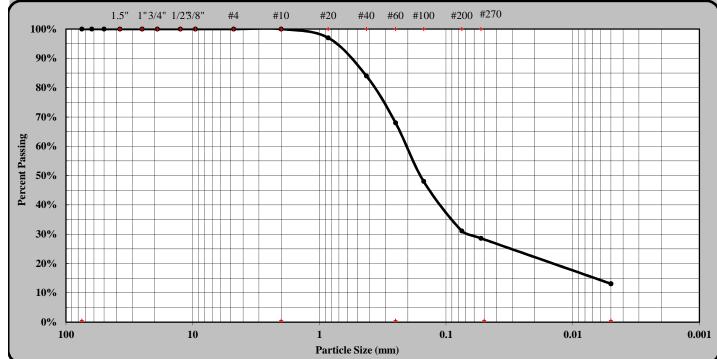
Page 1 of 1

Form No. TR-T88

Revision No. 0

S&ME, Inc.

Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

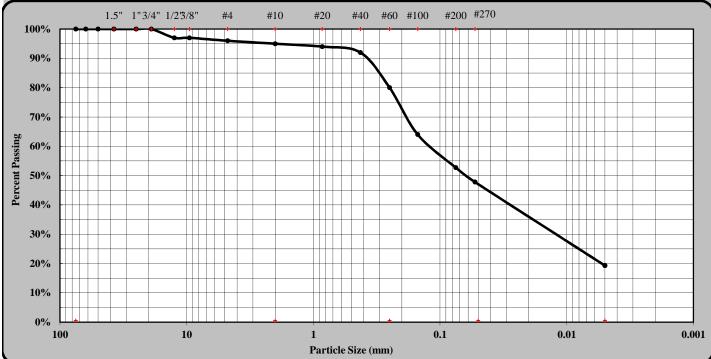
Quality Assurance

			~	
Se	&ME, Inc. Raleigl	h, 3201 Spring Forest Road, Rale	igh, North Carolina 276	16
S&ME Project #:	6235-16-010		Report Date:	11/8/16
Project Name:	C.F. Harvey Par	kway Extension R-5703	Test Date(s):	11/1-8/16
State Project #:	46375.1.1	F.A. Project No: N/A	TIP NO: R	-5703
Client Name:	Michael Baker	Engineering		
Address:	Raleigh, NC			
Boring #:	B6-B RT LN	Sample #: SS-48	Sample Dat	e: 8/11/16
Location:	220+00	Offset: 35' RT	Depth (ft	t): 4.2-5.7'
Sample Description:	;		Gray Silty SAN	D A-2-4 (0)

As Defin	ed by NCDOT			Fine Sand	< 0.25 mm	and > 0	.05 mm	
Gravel	< 75 mm a	nd > 2.00 mm		Silt	< 0.05 an	d > 0.00)5 mm	
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay	< 0.	.005 mm	mm	
Maximum Particle Size	#20	Coarse S	Sand	32%	Silt		16%	
Gravel	0%	Fine San	nd	39%	Clay		13%	
Apparent Relative Density	2.650	Moisture	e Content	24.5%	% Passing #2	.00	31.1%	
Liquid Limit	22	Plastic L	Limit	13	Plastic Index		9	
		Soil Mortar	(-#10 Sie	ve)				
Coarse Sand	32%	Fine Sand	39%	Silt	16%	Clay	13%	
Description of Sand & Grav	vel Particles:	Rounded			Angular		X	
Hard & Durable	X	Soft		Weat	hered & Friable			
References / Comments / Deviate	ions: ND=N	lot Determined.						
Karen Warner		118-06-0305		Laboratory Tec	chnician	11.	/8/2016	
Technician Name		Certification No.		Position			Date	
Stewart Laney, P.I	<u> </u>			Senior Engi	neer			
Technical Responsibility		Signature		Position			Date	

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

3201 Spring Forest Road Raleigh, NC 27616 B6-B RT LN SS-48 (4.3-5.8').xls Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

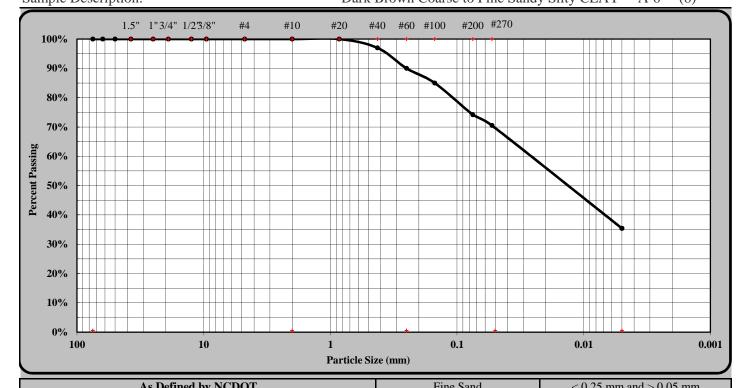
				Q_i	uainy Assurance
	S&ME, Inc. Raleig	h, 3201 Spring Forest I	Road, Ralei	gh, North Carolina 276	16
S&ME Project #:	6235-16-010			Report Date:	11/8/16
Project Name:	C.F. Harvey Pa	rkway Extension R-5703	}	Test Date(s):	11/1-8/16
State Project #:	46375.1.1	F.A. Project No: N/A	A	TIP NO: R	-5703
Client Name:	Michael Baker	Engineering			
Address:	Raleigh, NC				
Boring #:	B6-B RT LN	Sample #: SS	-49	Sample Dat	e: 8/11/16
Location:	220+00	Offset: 35	RT	Depth (fr	48.5-50.0
Sample Description	on:			Gray Silty CLA	Y A-6 (3)

As Define	ed by NCDOT			Fine Sand < 0.25 mm			and > 0.05 mm	
Gravel	< 75 mm	< 75 mm and > 2.00 mm		Silt	< 0.	0.05 and > 0.0	05 mm	
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay		< 0.005 mr	n	
Maximum Particle Size	1/2"	Coarse	Sand	15%	Silt		29%	
Gravel	5%	Fine Sa	nd	32%	Clay		19%	
Apparent Relative Density	2.650	Moistur	e Content	24.0%	% Passin	g #200	52.7%	
Liquid Limit	28	Plastic 1	Limit	16	Plastic In	dex	12	
		Soil Morta	r (-#10 Siev	/e)				
Coarse Sand	16%	Fine Sand	34%	Silt	30%	Clay	20%	
Description of Sand & Gravel Particles:		Rounded			Ang	gular	X	
Hard & Durable 区		Soft		Wea	athered & Friable			
References / Comments / Deviation	ons: ND=1	Not Determined.						
Karen Warner		118-06-0305		Laboratory Te	chnician	<u>11</u>	/8/2016	
Technician Name		Certification No.		Position			Date	
Stewart Laney, P.E				Senior Eng	ineer			
Technical Responsibility		Signature		Position			Date	

Form No. TR-T88
Revision No. 0

Revision Date: 12/20/09

S&ME, Inc.


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

					200000 110000						
S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616											
S&ME Project #:	6235-16-010			Report Date:		9/20/16					
Project Name:	C.F. Harvey Par	kway Extension R-5	703	Test Date(s):	9/	/12 - 9/20/16					
State Project #:	46375.1.1	F.A. Project No:	N/A	TIP NO:	R-570)3					
Client Name:	Michael Baker	Engineering									
Address:	Raleigh, NC										
Boring #:	B7-B RT LN	Sample #:	SS-50	Sample	Date:	8/15/16					
Location:	221+00	Offset:	35' RT	Dep	th (ft):	0.3 - 1.8					
Sample Description:		Dark	Brown Coarse	to Fine Sandy Silty	CLAY	A-6 (8)					

As Delin	ea by NCDOI	Fine Sand		< 0.25 mm and > 0.05 mm			
Gravel	< 75 mm and > 2.00 mm		Silt		< 0.05 and > 0.005 mm		
Coarse Sand	< 2.00 m	n and >0.25 mm		Clay	< 0.005 mm		
Maximum Particle Size	#4	Coarse S	Sand	10%	Silt		35%
Gravel	0%	0% Fine Sand		d 20%			35%
Apparent Relative Density	ND	Moisture	e Content	70.2%	% Passing #200		74.2%
Liquid Limit	40	Plastic L	imit	29	Plastic Inde	X	11
		Soil Mortar	(-#10 Siev	e)			
Coarse Sand	10%	Fine Sand	20%	Silt	35%	Clay	35%
Description of Sand & Gravel Particles		Rounded			Angula	ır	X
Hard & Durable	X	Soft	X	Weathered & Friable			X
References / Comments / Deviati	ons: ND:	=Not Determined.					
M-1 V ET		104 01 0702		I also wat a wa M		0	/12/2016
<u>Mal Krajan, ET</u>		<u>104-01-0703</u>		Laboratory M	<u>anager</u>	<u>9/12/2016</u>	
Technician Name		Certification No.		Position		Date	
		M					
Mal Krajan, ET				<u>Laboratory Manager</u>		<u>9/26/2016</u>	
Technical Responsibility		Signature		Position		Date	
Thi	s report shall not	he reproduced except in t	full without the	written approval of S	S&MF. Inc		

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.