# This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document -

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page. This file or an individual page shall not be considered a certified document.

#### SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

#### **CONTENTS**

5703

R

REFERENCE

| <u>SHEET</u> | <b>DESCRIPTION</b>      |
|--------------|-------------------------|
| I            | TITLE SHEET             |
| 2            | LEGEND                  |
| 3            | PLAN SHEET              |
| 4 - 5        | PROFILES                |
| 6 - II       | BORING LOGS             |
| 12 - 43      | LABORATORY TEST RESULTS |

#### STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT** 

# **STRUCTURE** SUBSURFACE INVESTIGATION

COUNTY LENOIR

PROJECT DESCRIPTION C.F. HARVEY PARKWAY AND NC 58 TO INTERSECTION OF NC 11 AND GRANGER STATION ROAD GRADING, PAVING, DRAINAGE, STRUCTURES AND SIGNALS SITE DESCRIPTION BRIDGE NO. 210 AND NO. 211 ON -L-(FELIX HARVEY PARKWAY) OVER -Y3- (HUGO ROAD)

## **INVENTORY**

| STATE | STATE PROJECT REFERENCE NO. | SHEET<br>NO. | TOTAL<br>SHEETS |
|-------|-----------------------------|--------------|-----------------|
| N.C.  | R-5703                      | 1            | 43              |

#### CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE INCLUDED IN THE REQUEST FOR PROPOSAL. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVEMED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919/107-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

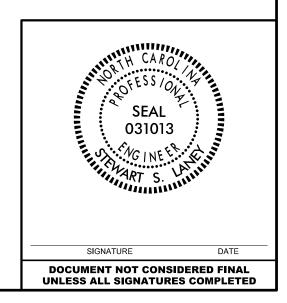
SOIL AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON GEOTECHNICAL INTERPRETATION UNLESS ENCOUNTERED IN A SAMPLE. INTERPRETED BOUNDARIES MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN SAMPLED STRATA AND BOREHOLE INFORMATION MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABULTY INHERENT IN THE STADNARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL WOISTURE CONDITIONS. BINICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING THMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONS TO BE ENCOUNTERED ON THE EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL COMPENSATION OF FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SIDER FRING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION,

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE. PERSONNEL

PERSONNEL

S. LANEY K. HILL S. MITCHELL S. TIERNAN C. CHANDLER F. WRIGHT E. BLONSHINE J. PEELE M. RAWLS


INVESTIGATED BY \_\_\_\_\_\_.

DRAWN BY \_C. CHANDLER

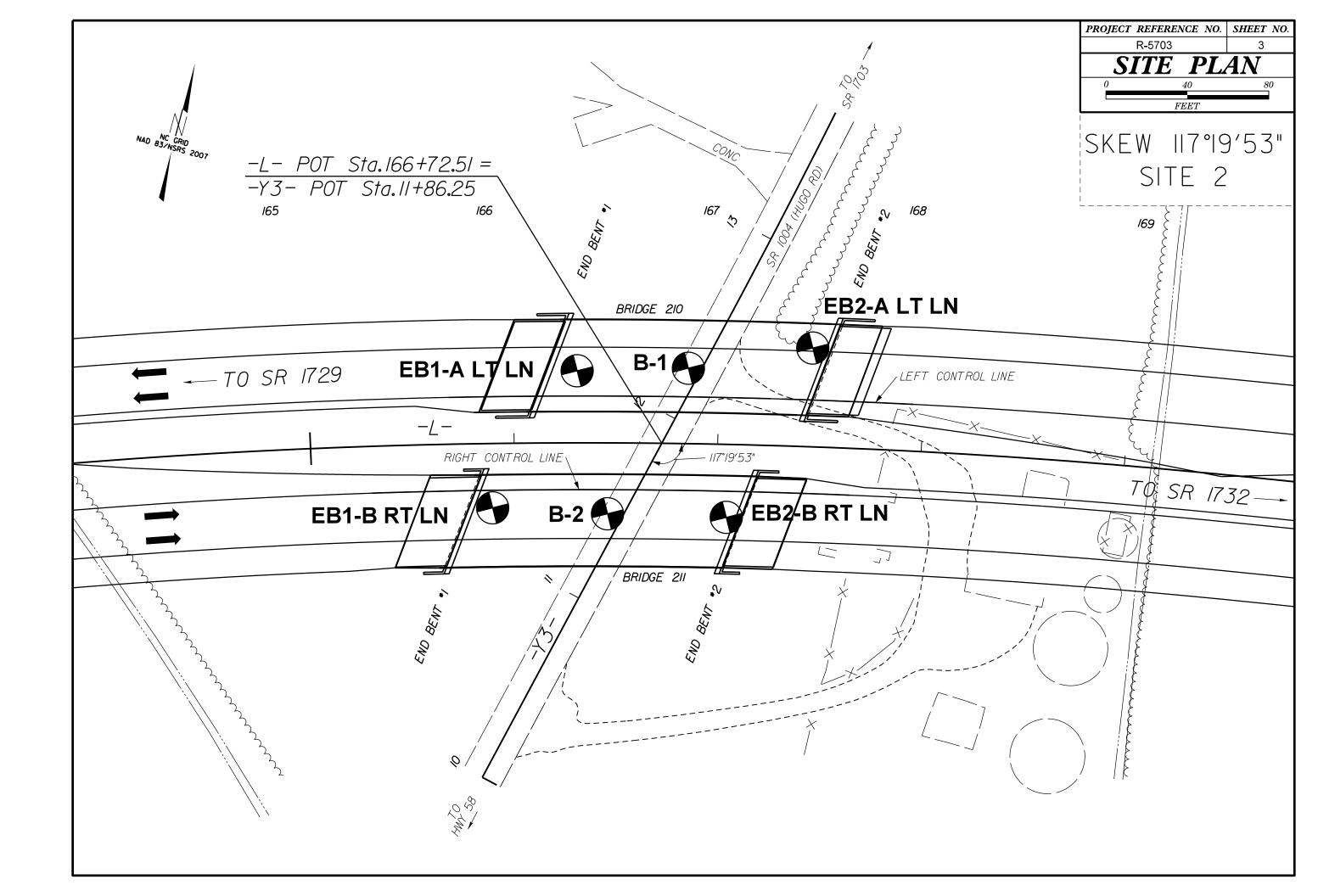
CHECKED BY S. MITCHELL

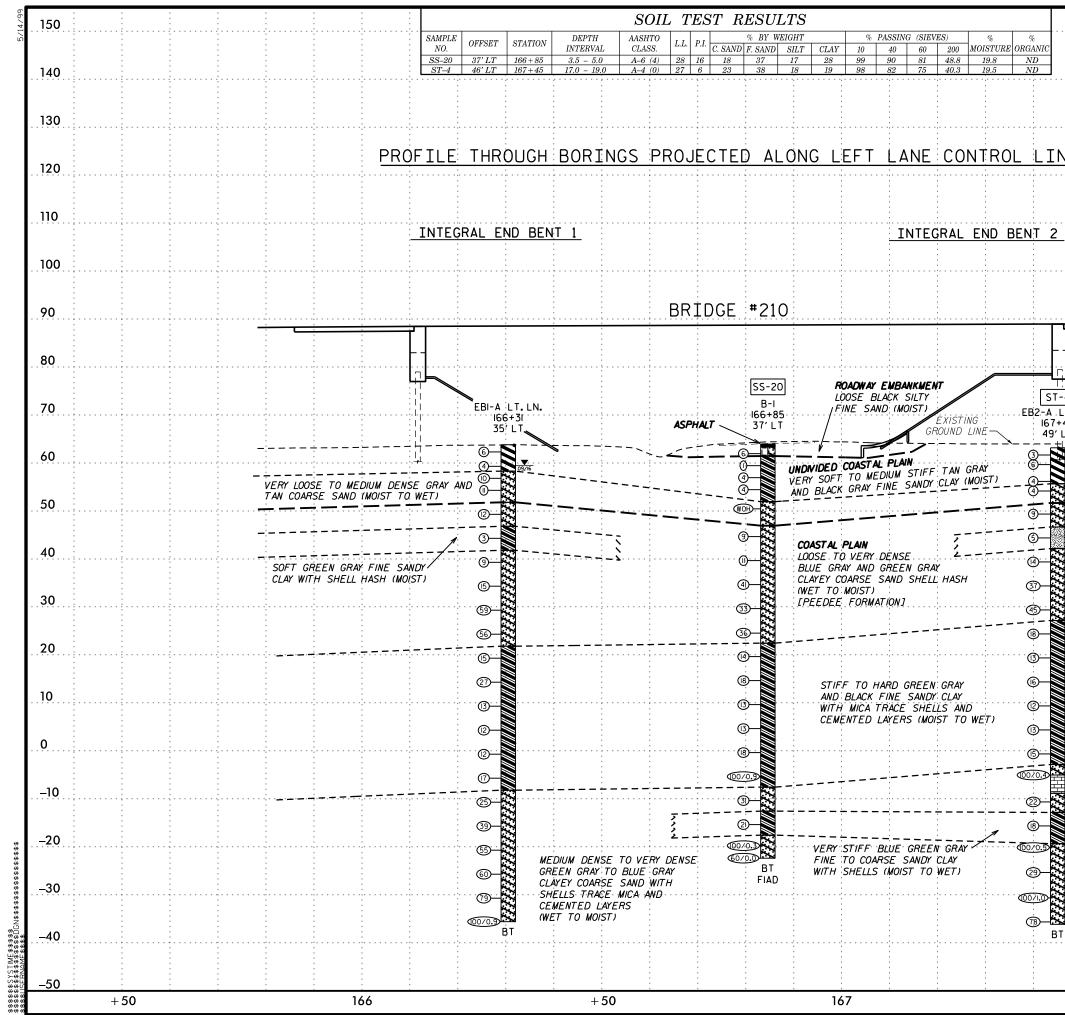
SUBMITTED BY S&ME, INC.

DATE \_\_\_\_\_\_ 2017



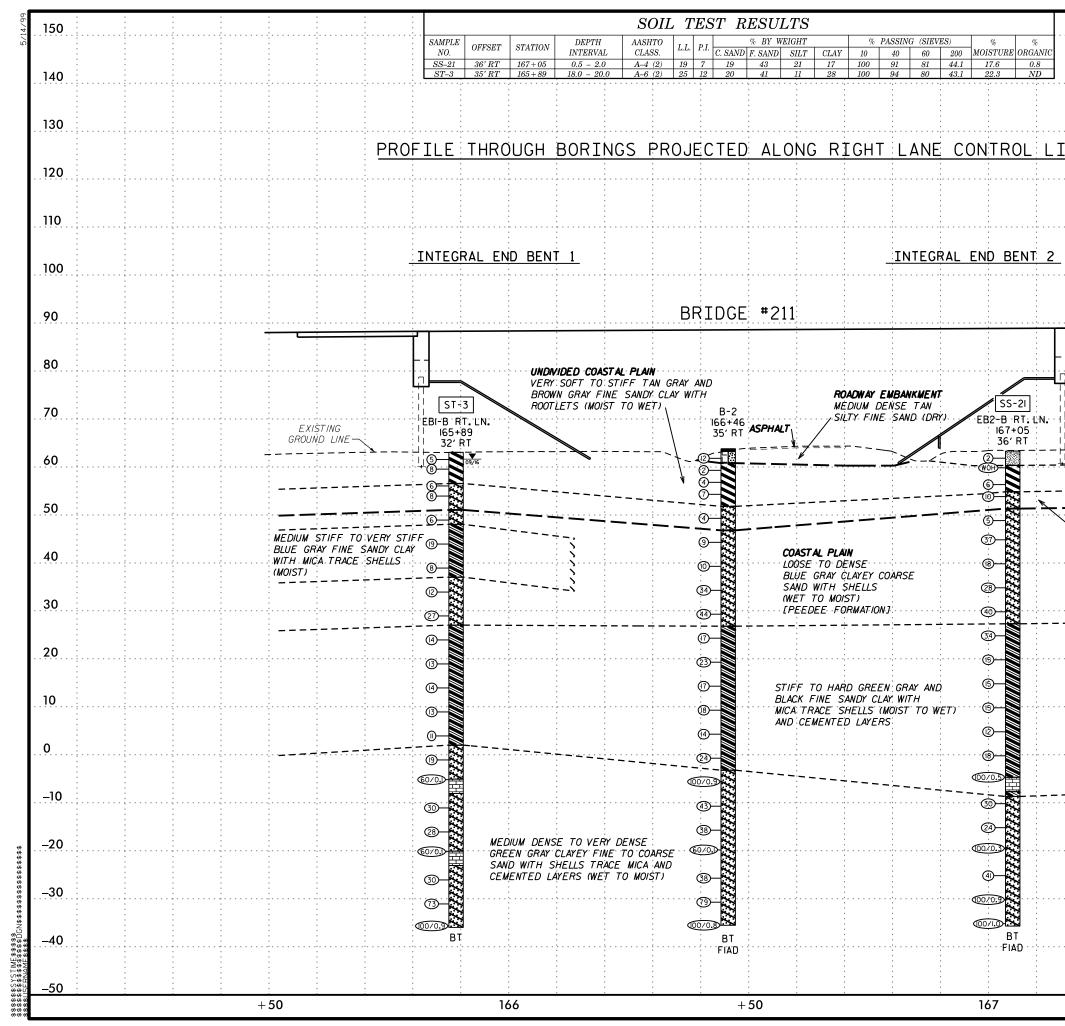
# NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION


SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS


|                                                              | SOIL                                                                                                                       | DESCRIPTION                                                                          |                                                                               |                                                            | GRADATION                                                                                                           |                                                          |                                                     |                                                                 | ROCK DESCR                                                | RIPTION                                                                                                                             |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| BE PENETRATED<br>ACCORDING TO<br>IS BASED O                  | DERED UNCONSOLIDATED, SEMI-CO<br>WITH A CONTINUOUS FLIGHT PO<br>THE STANDARD PENETRATION TH<br>ON THE AASHTO SYSTEM. BASIC | DWER AUGER AND YIELD LESS<br>EST (AASHTO T 206, ASTM DI<br>DESCRIPTIONS GENERALLY IN | THAN 100 BLOWS PER FOOT<br>586). SOIL CLASSIFICATION<br>ICLUDE THE FOLLOWING: | UNIFORMLY GRADED - IN                                      | TES A GOOD REPRESENTATION OF PARTICI<br>NDICATES THAT SOIL PARTICLES ARE ALL<br>S A MIXTURE OF UNIFORM PARTICLE SIZ | APPROXIMATELY THE SAME SIZE.<br>ES OF TWO OR MORE SIZES. | ROCK LINE INDIC<br>SPT REFUSAL IS<br>BLOWS IN NON-C | CATES THE LEVEL AT<br>PENETRATION BY A S<br>COASTAL PLAIN MATER | WHICH NON-COASTAL<br>PLIT SPOON SAMPL<br>RIAL, THE TRANSI | D YIELD SPT REFUSAL IF TESTED.<br>L PLAIN MATERIAL WOULD YIELD S<br>ER EQUAL TO OR LESS THAN 0.1 F<br>TION BETWEEN SOIL AND ROCK IS |
|                                                              | OLOR, TEXTURE, MOISTURE, AASHT<br>RALOGICAL COMPOSITION, ANGULA                                                            |                                                                                      |                                                                               |                                                            | ANGULARITY OF GRAIN                                                                                                 |                                                          | REPRESENTED BY<br>ROCK MATERIALS                    | Y A ZONE OF WEATHER<br>G ARE TYPICALLY DIVIO                    | ED ROCK.<br>DED AS FOLLOWS:                               |                                                                                                                                     |
|                                                              | TIFF.GRAY.SILTY CLAY.MOIST WITH IN                                                                                         | TERBEDDED FINE SAND LAYERS                                                           | HIGHLY PLASTIC.A-7-6                                                          |                                                            | Y OR ROUNDNESS OF SOIL GRAINS IS DE<br>NGULAR, SUBROUNDED, OR ROUNDED.                                              | SIGNATED BY THE TERMS:                                   | WEATHERED                                           |                                                                 |                                                           | ATERIAL THAT WOULD YIELD SPT N                                                                                                      |
| GENERAL                                                      | SOIL LEGEND AND<br>GRANULAR MATERIALS                                                                                      | AASHTO CLASSIFI                                                                      | CATION                                                                        | -                                                          | MINERALOGICAL COMPOSI                                                                                               | TION                                                     | ROCK (WR)                                           | 100 100                                                         | BLOWS PER FOOT                                            | IF TESTED.<br>N IGNEOUS AND METAMORPHIC ROCK                                                                                        |
| CLASS.                                                       | $(\leq 35\% \text{ PASSING } = 200)$                                                                                       | ( > 35% PASSING *200)                                                                | ORGANIC MATERIALS                                                             |                                                            | MES SUCH AS QUARTZ, FELDSPAR, MICA, TA                                                                              |                                                          | CRYSTALLINE<br>ROCK (CR)                            | UN WOL                                                          | JLD YIELD SPT REF                                         | USAL IF TESTED, ROCK TYPE INCL                                                                                                      |
| GROUP A-1<br>CLASS. A-1-a A-                                 |                                                                                                                            | A-4 A-5 A-6 A-7                                                                      | A-1, A-2 A-4, A-5<br>A-3 A-6, A-7                                             | ARE USED IN                                                | N DESCRIPTIONS WHEN THEY ARE CONSIDE<br>COMPRESSIBILITY                                                             | ERED OF SIGNIFICANCE.                                    | NON-CRYSTALLIN                                      |                                                                 |                                                           | N METAMORPHIC AND NON-COASTAL                                                                                                       |
| 0000000                                                      |                                                                                                                            |                                                                                      | H-3 H-6, H-7                                                                  | SLIG                                                       | HTLY COMPRESSIBLE                                                                                                   | LL < 31                                                  | ROCK (NCR)                                          |                                                                 | K TYPE INCLUDES                                           | AT WOULD YEILD SPT REFUSAL IF PHYLLITE, SLATE, SANDSTONE, ETC.                                                                      |
| SYMBOL 00000000                                              |                                                                                                                            |                                                                                      |                                                                               | MODE<br>HIGH                                               | RATELY COMPRESSIBLE<br>LY COMPRESSIBLE                                                                              | LL = 31 - 50<br>LL > 50                                  | COASTAL PLAIN<br>SEDIMENTARY RO                     |                                                                 | STAL PLAIN SEDIME<br>REFUSAL, ROCK T                      | ENTS CEMENTED INTO ROCK, BUT MA<br>YPE INCLUDES LIMESTONE, SANDSTO                                                                  |
| % PASSING<br>■10 50 MX                                       |                                                                                                                            |                                                                                      | GRANULAR SILT- MUCK,                                                          |                                                            | PERCENTAGE OF MATER                                                                                                 |                                                          | (CP)                                                |                                                                 | LL BEDS, ETC.                                             |                                                                                                                                     |
|                                                              | i0 MX 51 MN<br>5 MX 10 MX 35 MX 35 MX 35 MX 35                                                                             | MX 36 MN 36 MN 36 MN 36 MN                                                           | SOILS SOILS PEAT                                                              | ORGANIC MATERIAL                                           | GRANULAR SILT - CLAY<br>SOILS SOILS                                                                                 | OTHER MATERIAL                                           | FRESH RO                                            |                                                                 | WEATHER                                                   | AINO<br>MAY SHOW SLIGHT STAINING. ROCK RI                                                                                           |
| MATERIAL                                                     |                                                                                                                            |                                                                                      |                                                                               | TRACE OF ORGANIC M                                         | ATTER 2 - 3% 3 - 5%                                                                                                 | TRACE 1 - 10%                                            |                                                     | MMER IF CRYSTALLINE.                                            | IOHI, FEW JUINIS M                                        | HI SHOW SEIGHT STHINING, NUCK HI                                                                                                    |
| PASSING #40<br>LL -<br>PI 6 MX                               |                                                                                                                            | MN 40 MX 41 MN 40 MX 41 MN<br>MN 10 MX 10 MX 11 MN 11 MN                             | SOILS WITH<br>LITTLE OR<br>MODERATE                                           | LITTLE ORGANIC MAT<br>MODERATELY ORGANIC<br>HIGHLY ORGANIC | 5 - 10% 12 - 20%<br>> 10% > 20%                                                                                     | LITTLE 10 - 20%<br>SOME 20 - 35%<br>HIGHLY 35% AND ABOVE | (V SLI.) CR                                         |                                                                 | PECIMEN FACE SHINE                                        | E JOINTS MAY SHOW THIN CLAY COA<br>E BRIGHTLY. ROCK RINGS UNDER HAM                                                                 |
| GROUP INDEX Ø                                                | 0 0 4 MX                                                                                                                   | 8 MX 12 MX 16 MX NO MX                                                               | AMOUNTS OF URGANIL                                                            |                                                            | GROUND WATER                                                                                                        |                                                          |                                                     |                                                                 |                                                           | DISCOLORATION EXTENDS INTO ROCK                                                                                                     |
| USUAL TYPES STONE FR<br>OF MAJOR GRAVEL, 4<br>MATERIALS SAND | AND SAND GRAVEL AND SAND                                                                                                   | SILTY CLAYEY<br>SOILS SOILS                                                          | ORGANIC SOLES<br>MATTER                                                       | $\nabla$                                                   | WATER LEVEL IN BORE HOLE IMMEDIA<br>STATIC WATER LEVEL AFTER H                                                      |                                                          | CR                                                  | YSTALS ARE DULL AND                                             | DISCOLORED. CRYSTA                                        | GRANITOID ROCKS SOME OCCASIONAL  <br>ALLINE ROCKS RING UNDER HAMMER E<br>ORATION AND WEATHERING EFFECTS.                            |
| GEN. RATING                                                  |                                                                                                                            | 5410 70 0000                                                                         | FAIR TO DOOD UNDUTTED                                                         |                                                            | PERCHED WATER, SATURATED ZONE, OR                                                                                   | WATER BEARING STRATA                                     | (MOD.) GR                                           | ANITOID ROCKS, MOST F                                           | ELDSPARS ARE DULL                                         | AND DISCOLORED, SOME SHOW CLAY.                                                                                                     |
| AS SUBGRADE                                                  | EXCELLENT TO GOOD                                                                                                          | FAIR TO POOR                                                                         | POOR POOR UNSUITABL                                                           |                                                            | SPRING OR SEEP                                                                                                      |                                                          |                                                     | LL SOUND UNDER HAMME<br>TH FRESH ROCK.                          | R BLUWS AND SHUW                                          | S SIGNIFICANT LOSS OF STRENGTH A                                                                                                    |
|                                                              |                                                                                                                            | - 30 ; PI OF A-7-6 SUBGROUP IS                                                       | > LL - 30                                                                     | 0.00                                                       |                                                                                                                     |                                                          |                                                     |                                                                 |                                                           | AINED. IN GRANITOID ROCKS, ALL FEL                                                                                                  |
|                                                              |                                                                                                                            | RANGE OF STANDARD                                                                    | RANGE OF UNCONFINED                                                           |                                                            | MISCELLANEOUS SYMBO                                                                                                 | L5                                                       | (MOD. SEV.) AN                                      | D CAN BE EXCAVATED W                                            | ITH A GEOLOGIST'S                                         | INIZATION, ROCK SHOWS SEVERE LOS<br>PICK, ROCK GIVES "CLUNK" SOUND WH                                                               |
| PRIMARY SOIL TY                                              | YPE COMPACTNESS OR<br>CONSISTENCY                                                                                          | PENETRATION RESISTENCE<br>(N-VALUE)                                                  | COMPRESSIVE STRENGTH<br>(TONS/FT <sup>2</sup> )                               | L ROADWAY EME                                              | ANKMENT (RE) 25/025 DIP & DIP DIRE                                                                                  |                                                          | _                                                   | TESTED, WOULD YIELD                                             |                                                           |                                                                                                                                     |
|                                                              | VERY LOOSE                                                                                                                 | < 4                                                                                  |                                                                               | ╡╚╁                                                        | 577 ST                                                                                                              |                                                          |                                                     |                                                                 |                                                           | AINED. ROCK FABRIC CLEAR AND EVI<br>RANITOID ROCKS ALL FELDSPARS ARE                                                                |
| GENERALLY<br>GRANULAR                                        | LOOSE<br>MEDIUM DENSE                                                                                                      | 4 TO 10<br>10 TO 30                                                                  | NZA                                                                           | SOIL SYMBOL                                                | DPT DMT TEST BOR                                                                                                    |                                                          |                                                     | SOME EXTENT. SOME F<br>TESTED, WOULD YIELD                      |                                                           | NG ROCK USUALLY REMAIN.<br>7 <i>BPF</i>                                                                                             |
| MATERIAL<br>(NON-COHESIVE)                                   | DENSE                                                                                                                      | 30 TO 50                                                                             | N/A                                                                           |                                                            | ILL (AF) OTHER AUGER BORING                                                                                         | CONE PENETROMETER                                        |                                                     |                                                                 |                                                           | AINED. ROCK FABRIC ELEMENTS ARE                                                                                                     |
|                                                              | VERY DENSE                                                                                                                 | > 50                                                                                 | ( 0.05                                                                        |                                                            | IL BOUNDARY                                                                                                         |                                                          |                                                     |                                                                 |                                                           | STATUS, WITH ONLY FRAGMENTS OF S<br>CK WEATHERED TO A DEGREE THAT O                                                                 |
| GENERALLY                                                    | VERY SOFT<br>SOFT                                                                                                          | < 2<br>2 TO 4                                                                        | < 0.25<br>0.25 TO 0.5                                                         | - INFERRED SO                                              |                                                                                                                     |                                                          |                                                     |                                                                 |                                                           | IF TESTED, WOULD YIELD SPT N VAL                                                                                                    |
| SILT-CLAY<br>MATERIAL                                        | MEDIUM STIFF<br>STIFF                                                                                                      | 4 TO 8<br>8 TO 15                                                                    | 0.5 TO 1.0<br>1 TO 2                                                          | INFERRED ROOM                                              | CK LINE MONITORING WE                                                                                               |                                                          |                                                     |                                                                 |                                                           | SCERNIBLE, OR DISCERNIBLE ONLY IN<br>PRESENT AS DIKES OR STRINGERS. S                                                               |
| (COHESIVE)                                                   | VERY STIFF<br>HARD                                                                                                         | 15 TO 30<br>> 30                                                                     | 2 TO 4<br>> 4                                                                 | ALLUVIAL SO                                                | IL BOUNDARY A PIEZOMETER                                                                                            | - SPT N-VALUE                                            |                                                     | SO AN EXAMPLE.                                                  |                                                           |                                                                                                                                     |
|                                                              |                                                                                                                            | OR GRAIN SIZE                                                                        | 74                                                                            |                                                            | RECOMMENDATION SYMB                                                                                                 | S S                                                      |                                                     |                                                                 | ROCK HAR                                                  | DNESS                                                                                                                               |
| U.S. STD. SIEVE SIZ                                          |                                                                                                                            | 40 60 200                                                                            | 270                                                                           |                                                            | UNCLASSIFIED EXCAVATION -                                                                                           |                                                          |                                                     | NNOT BE SCRATCHED BY<br>VERAL HARD BLOWS OF                     |                                                           | ICK. BREAKING OF HAND SPECIMENS F                                                                                                   |
| OPENING (MM)                                                 | 4.76 2.00                                                                                                                  |                                                                                      |                                                                               |                                                            | UNSUITABLE WASTE                                                                                                    | ACCEPTABLE, BUT NOT TO BE                                | HARD CA                                             | N BE SCRATCHED BY KN                                            | IFE OR PICK ONLY W                                        | WITH DIFFICULTY. HARD HAMMER BLO                                                                                                    |
| BOULDER                                                      | COBBLE GRAVEL                                                                                                              | COARSE FINE<br>SAND SAND                                                             | SILT CLAY                                                                     | UNDERCUT                                                   | ACCEPTABLE DEGRADABLE ROCK                                                                                          | EMBANKMENT OR BACKFILL                                   |                                                     | DETACH HAND SPECIME                                             |                                                           |                                                                                                                                     |
| (BLDR.)                                                      | (COB.) (GR.)                                                                                                               | (CSE. SD.) (F SD.                                                                    |                                                                               |                                                            | ABBREVIATIONS                                                                                                       |                                                          | HARD EX                                             | CAVATED BY HARD BLOW                                            |                                                           | S OR GROOVES TO 0.25 INCHES DEEF<br>PICK. HAND SPECIMENS CAN BE DET                                                                 |
| GRAIN MM 305<br>SIZE IN. 12                                  |                                                                                                                            | 0.25                                                                                 | 0.05 0.005                                                                    | AR - AUGER REFUSAL<br>BT - BORING TERMINATE                | MED MEDIUM<br>D MICA MICACEOUS                                                                                      | VST - VANE SHEAR TEST<br>WEA WEATHERED                   |                                                     | MODERATE BLOWS.                                                 |                                                           |                                                                                                                                     |
| SIZE IN. 12                                                  |                                                                                                                            |                                                                                      | TEDMC                                                                         | CL CLAY                                                    | MOD MODERATELY                                                                                                      | $\gamma$ - unit weight                                   | HARD CA                                             | N BE EXCAVATED IN SM                                            | ALL CHIPS TO PEICE                                        | EP BY FIRM PRESSURE OF KNIFE OR<br>ES 1 INCH MAXIMUM SIZE BY HARD BL                                                                |
| SOIL MOISTU                                                  |                                                                                                                            | CORRELATION OF                                                                       |                                                                               | CPT - CONE PENETRATIO<br>CSE COARSE                        | N TEST NP - NON PLASTIC<br>ORG ORGANIC                                                                              | $\gamma_{ m d}$ - dry unit weight                        |                                                     | INT OF A GEOLOGIST'S                                            |                                                           |                                                                                                                                     |
| (ATTERBERG                                                   |                                                                                                                            |                                                                                      | TELD MOISTURE DESCRIPTION                                                     | DMT - DILATOMETER TES                                      | T PMT - PRESSUREMETER TE                                                                                            |                                                          | FR                                                  | OM CHIPS TO SEVERAL                                             | INCHES IN SIZE BY                                         | E OR PICK. CAN BE EXCAVATED IN FF<br>MODERATE BLOWS OF A PICK POINT.                                                                |
|                                                              | - SATUF                                                                                                                    |                                                                                      | UUID; VERY WET, USUALLY                                                       | DPT - DYNAMIC PENETRA<br>e - VOID RATIO                    | TION TEST SAP SAPROLITIC<br>SD SAND, SANDY                                                                          | S - BULK<br>SS - SPLIT SPOON                             |                                                     | ECES CAN BE BROKEN B                                            |                                                           | TED READILY WITH POINT OF PICK. PI                                                                                                  |
|                                                              | (SAT                                                                                                                       | .) FROM BELOW                                                                        | THE GROUND WATER TABLE                                                        | F - FINE<br>FOSS FOSSILIFEROUS                             | SL SILT, SILTY<br>SLI SLIGHTLY                                                                                      | ST - SHELBY TUBE<br>RS - ROCK                            | SOFT OR                                             | MORE IN THICKNESS C                                             |                                                           | INGER PRESSURE. CAN BE SCRATCHED                                                                                                    |
| PLASTIC<br>RANGE <                                           |                                                                                                                            | SEMISOLID; R                                                                         | EQUIRES DRYING TO                                                             | FRAC FRACTURED, FRAC                                       | TURES TCR - TRICONE REFUSAL                                                                                         | RT - RECOMPACTED TRIAXIAL                                |                                                     | NGERNAIL.                                                       | <u> </u>                                                  | DEDDING                                                                                                                             |
| (PI)                                                         | - WET -                                                                                                                    | ATTAIN OPTI                                                                          | MUM MOISTURE                                                                  | FRAGS FRAGMENTS<br>HI HIGHLY                               | w - MOISTURE CONTENT<br>V - VERY                                                                                    | CBR - CALIFORNIA BEARING<br>RATIO                        | TERM                                                | ACTURE SPACIN                                                   |                                                           | <u>BEDDING</u>                                                                                                                      |
|                                                              |                                                                                                                            |                                                                                      | R NEAR OPTIMUM MOISTURE                                                       | EQ                                                         | UIPMENT USED ON SUBJECT                                                                                             | PROJECT                                                  | VERY WIDE                                           | MORE THAN                                                       | N 10 FEET                                                 | VERY THICKLY BEDDED                                                                                                                 |
|                                                              | TIMUM MOISTURE - MOIST<br>RINKAGE LIMIT                                                                                    | - (M) SOLID; HT OF                                                                   | NEHR OF IMOM MOISIONE                                                         | DRILL UNITS:                                               | ADVANCING TOOLS:                                                                                                    | HAMMER TYPE:                                             | WIDE<br>MODERATELY                                  | 3 TO 10<br>CLOSE 1 TO 3                                         |                                                           | THICKLY BEDDED 1.5<br>THINLY BEDDED 0.16                                                                                            |
|                                                              |                                                                                                                            | REQUIRES AD                                                                          | DITIONAL WATER TO                                                             | CME-45C                                                    | CLAY BITS                                                                                                           | X AUTOMATIC MANUAL                                       | CLOSE<br>VERY CLOSE                                 | 0.16 TO<br>LESS THAN                                            |                                                           | VERY THINLY BEDDED 0.03<br>THICKLY LAMINATED 0.008                                                                                  |
|                                                              | - DRY -                                                                                                                    |                                                                                      | MUM MOISTURE                                                                  | CME-55                                                     | 6. CONTINUOUS FLIGHT AUGER                                                                                          | CORE SIZE:                                               |                                                     | 2200 1111                                                       |                                                           | THINLY LAMINATED < 0.                                                                                                               |
|                                                              | PL                                                                                                                         | ASTICITY                                                                             |                                                                               |                                                            | 8" HOLLOW AUGERS                                                                                                    | В                                                        |                                                     |                                                                 | INDURAT                                                   |                                                                                                                                     |
|                                                              |                                                                                                                            | TICITY INDEX (PI)                                                                    | DRY STRENGTH                                                                  | X CME-550                                                  | HARD FACED FINGER BITS                                                                                              | -N                                                       |                                                     |                                                                 |                                                           | OF MATERIAL BY CEMENTING, HEAT<br>GER FREES NUMEROUS GRAINS:                                                                        |
| NON PLAST<br>SLIGHTLY F                                      |                                                                                                                            | Ø-5<br>6-15                                                                          | VERY LOW<br>SLIGHT                                                            | VANE SHEAR TEST                                            | TUNGCARBIDE INSERTS                                                                                                 | HAND TOOLS:                                              | FRIABLE                                             |                                                                 |                                                           | HAMMER DISINTEGRATES SAMPLE.                                                                                                        |
|                                                              | LY PLASTIC                                                                                                                 | 16-25<br>26 OR MORE                                                                  | MEDIUM<br>HIGH                                                                |                                                            | X CASING W/ ADVANCER                                                                                                | POST HOLE DIGGER                                         | MODERATE                                            |                                                                 |                                                           | PARATED FROM SAMPLE WITH STEE                                                                                                       |
|                                                              |                                                                                                                            | COLOR                                                                                |                                                                               | PORTABLE HOIST                                             | X TRICONE 2 15/16" STEEL TEETH                                                                                      | HAND AUGER                                               |                                                     |                                                                 |                                                           | EN HIT WITH HAMMER.                                                                                                                 |
|                                                              |                                                                                                                            |                                                                                      |                                                                               | X                                                          | TRICONE TUNGCARB.                                                                                                   | SOUNDING ROD                                             | INDURATE                                            |                                                                 | GRAINS ARE DIFFIC<br>DIFFICULT TO BREA                    | CULT TO SEPARATE WITH STEEL PR<br>AK WITH HAMMER.                                                                                   |
|                                                              | MAY INCLUDE COLOR OR COLOF<br>RS SUCH AS LIGHT,DARK,STRE                                                                   |                                                                                      |                                                                               | <br>X D-50                                                 |                                                                                                                     | VANE SHEAR TEST                                          | FXTREME                                             |                                                                 |                                                           | DWS REQUIRED TO BREAK SAMPLE;                                                                                                       |
| •                                                            |                                                                                                                            |                                                                                      |                                                                               | X <u>D-50</u>                                              |                                                                                                                     |                                                          | 1                                                   |                                                                 | SAMPLE BREAKS AC                                          | HUSS GRAINS.                                                                                                                        |





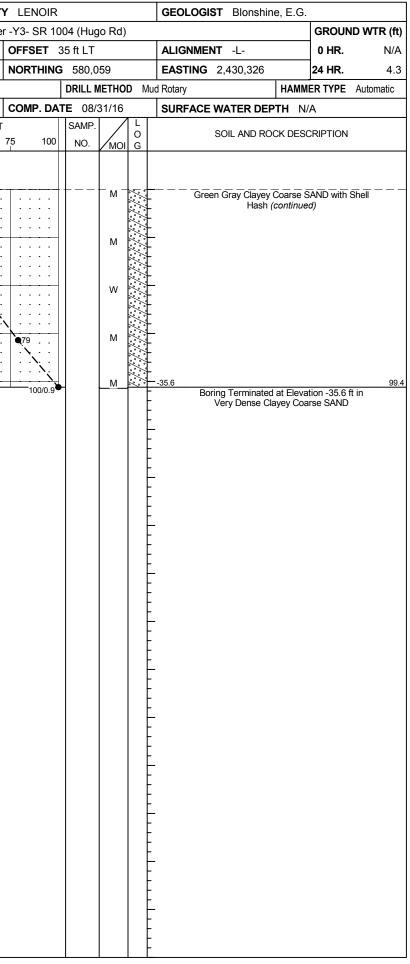

|                                                                      | TERMS AND DEFINITIONS                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TED. AN INFERRED<br>D SPT REFUSAL.<br>11 FOOT PER 60<br>IS OFTEN     | <u>ALLUVIUM (ALLUV.)</u> - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.<br><u>ADUIFER</u> - A WATER BEARING FORMATION OR STRATA.<br><u>ARENACEOUS</u> - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.                                                                                      |
| PT N VALUES >                                                        | ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING<br>A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.<br>ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT                                                    |
| ROCK THAT<br>NCLUDES GRANITE,                                        | WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.                                                                                                                                                                                                                       |
| TAL PLAIN<br>IF TESTED.<br>TC.                                       | <u>CALCAREOUS (CALC.)</u> - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.<br><u>COLLUVIUM</u> - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM<br>OF SLOPE.                                                                                                              |
| T MAY NOT YIELD<br>DSTONE, CEMENTED                                  | CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED<br>BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.                                                                                                                                                             |
|                                                                      | DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.                                                                                                                                                                                                       |
| RINGS UNDER                                                          | DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.                                                                                                                                                                                                                          |
| COATINGS IF OPEN.<br>HAMMER BLOWS IF                                 | DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.                                                                                                                                                                                  |
| OCK UP TO<br>AL FELDSPAR<br>ER BLOWS.                                | FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE<br>SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.<br>FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.                                                                                           |
| TS. IN<br>AY. ROCK HAS                                               | <u>FIGATE</u> - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM<br>PARENT MATERIAL.                                                                                                                                                                                                      |
| H AS COMPARED                                                        | FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.<br>FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE                                                                                                                                     |
| FELDSPARS DULL<br>LOSS OF STRENGTH<br>WHEN STRUCK.                   | FIELD.<br>J <u>DINT</u> - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.                                                                                                                                                                                                                       |
| EVIDENT BUT<br>ARE KAOLINIZED                                        | <u>LEDGE</u> - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO<br>ITS LATERAL EXTENT.<br>LENS - A BODY OF SOLL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.                                                                                                                     |
| RE DISCERNIBLE                                                       | MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.                                                                                                                                                                   |
| OF STRONG ROCK<br>MT ONLY MINOR<br>VALUES < 100 BPF                  | PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE<br>OF AN INTERVENING IMPERVIOUS STRATUM.                                                                                                                                                                                      |
| ' IN SMALL AND<br>RS. SAPROLITE IS                                   | <u>RESIDUAL (RES.) SOIL</u> - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.<br><u>ROCK QUALITY DESIGNATION (RQD)</u> - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF<br>ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE                                             |
| NS REQUIRES                                                          | RUN AND EXPRESSED AS A PERCENTAGE.<br><u>SAPPOLITE (SAP.)</u> - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT<br>ROCK.                                                                                                                                                                    |
| BLOWS REQUIRED                                                       | <u>SILL</u> - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND<br>RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO<br>THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.                                                                                |
| DEEP CAN BE<br>DETACHED                                              | <u>SLICKENSIDE</u> - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT<br>OR SLIP PLANE.                                                                                                                                                                                                      |
| OR PICK POINT.<br>D BLOWS OF THE                                     | STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT)- NUMBER OF BLOWS (N OR BPF)OF<br>A 140 LB.HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL<br>WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL<br>TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. |
| N FRAGMENTS<br>NT. SMALL, THIN                                       | <u>STRATA CORE RECOVERY (SREC.)</u> - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY<br>TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.                                                                                                                                                               |
| K. PIECES 1 INCH<br>CHED READILY BY                                  | STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL<br>LENGTH OF ROCK SECMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY<br>THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.                                                                        |
|                                                                      | TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.                                                                                                                                                                                                                                                   |
| THICKNEES                                                            | BENCH MARK: 538.99 FEET RIGHT -L- 168+93 BM 13 RR SPIKE IN BASE                                                                                                                                                                                                                                                    |
| THICKNESS<br>4 FEET<br>1.5 - 4 FEET                                  | OF 24* CYPRESS<br>N 580,461.7410 E 2,430,741.9690 ELEVATION: 68.35 FEET                                                                                                                                                                                                                                            |
| 0.16 - 1.5 FEET<br>03 - 0.16 FEET<br>008 - 0.03 FEET<br>< 0.008 FEET | NOTES:<br>FIAD - FILLED IMMEDIATLEY AFTER DRILLING                                                                                                                                                                                                                                                                 |
| EAT, PRESSURE, ETC.                                                  |                                                                                                                                                                                                                                                                                                                    |
|                                                                      |                                                                                                                                                                                                                                                                                                                    |
| TEEL PROBE:                                                          |                                                                                                                                                                                                                                                                                                                    |
| PROBE:                                                               |                                                                                                                                                                                                                                                                                                                    |





\_\_\_\_

|                                           | 1 1<br>1 1<br>1 1                                                  | PROJECT REFERENCE N                   | 0. SHEET NO. 4                       |
|-------------------------------------------|--------------------------------------------------------------------|---------------------------------------|--------------------------------------|
|                                           | · · · · · · · · · · · · · · · · · · ·                              | ROADWAY DESIGN<br>ENGINEER            | HYDRAULICS<br>ENGINEER               |
|                                           | 1 1<br>1 1<br>1 1<br>1                                             |                                       |                                      |
|                                           | ;                                                                  | INCOMPLE<br>DO NOT USE FOR            | TE PLANS                             |
|                                           | 1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1 |                                       |                                      |
|                                           |                                                                    |                                       |                                      |
|                                           | :                                                                  |                                       |                                      |
| ١E                                        | · · · · · · · · · · · · · · · · · · ·                              |                                       | CONSIDERED FINAL<br>ATURES COMPLETED |
| <u></u>                                   | ;                                                                  |                                       | 120                                  |
|                                           |                                                                    | VE                                    | 1:1                                  |
|                                           |                                                                    |                                       | 110                                  |
|                                           | ;                                                                  | · <del>(</del>                        |                                      |
| -                                         |                                                                    |                                       |                                      |
|                                           |                                                                    |                                       | 100                                  |
|                                           |                                                                    |                                       |                                      |
|                                           |                                                                    |                                       | 90                                   |
| ·····                                     |                                                                    |                                       | 70                                   |
|                                           |                                                                    |                                       |                                      |
| ļ                                         |                                                                    |                                       | 80                                   |
| J                                         | · · · · · · · · · · · · · · · · · · ·                              |                                       |                                      |
| 4                                         |                                                                    |                                       | 70                                   |
| .T. LN                                    |                                                                    | . <u>.</u>                            |                                      |
| _T<br>                                    |                                                                    |                                       |                                      |
| 09/16                                     | · · · · · · · · · · · · · · · · · · ·                              | , , , , , , , , , , , , , , , , , , , | 60                                   |
| 0.9218                                    | · · · · · · · · · · · · · · · · · · ·                              |                                       |                                      |
|                                           |                                                                    |                                       | 50                                   |
|                                           |                                                                    |                                       |                                      |
| MEDIUM STIFF GREEN<br>SANDY SILT WITH SHE |                                                                    |                                       |                                      |
| SANDY SILT WITH SHE                       | <u>LLS (WET)</u>                                                   | ÷                                     | 40                                   |
|                                           | 1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1 | :                                     |                                      |
|                                           |                                                                    |                                       | 30                                   |
|                                           | ÷ · · · · · · · · · · · · · · · · · · ·                            | · · · · · · · · · · · · · · · · · · · |                                      |
|                                           |                                                                    |                                       |                                      |
|                                           |                                                                    |                                       | 20                                   |
|                                           | · · · · · · · · · · · · · · · · · · ·                              |                                       |                                      |
|                                           |                                                                    |                                       | 10                                   |
|                                           |                                                                    |                                       | ·····                                |
|                                           |                                                                    |                                       |                                      |
|                                           | ÷                                                                  | · · · · · · · · · · · · · · · · · · · | 0                                    |
|                                           |                                                                    |                                       |                                      |
|                                           |                                                                    |                                       | -10                                  |
|                                           | • • • • • • • • • • • • • • • • • • •                              |                                       |                                      |
|                                           |                                                                    |                                       |                                      |
|                                           |                                                                    |                                       | -20                                  |
|                                           |                                                                    | NE ALONG LEFT LA                      |                                      |
|                                           |                                                                    | FEET LEFT OF -L                       |                                      |
|                                           | FOR BRIDGE ON C                                                    | LF. HARVEY PARKWA<br>TWEEN SR 1729 AN | ΔY                                   |
| 3                                         | SR 1732 LEFT LA                                                    |                                       |                                      |
|                                           |                                                                    | STRATIGRAPHY IS                       | DRAWN -40                            |
|                                           | THROUGH THE BO<br>PROJECTED ONTO                                   | RINGS WITH BOTH                       |                                      |
|                                           |                                                                    |                                       | -50                                  |
| + 50                                      |                                                                    | 168                                   |                                      |



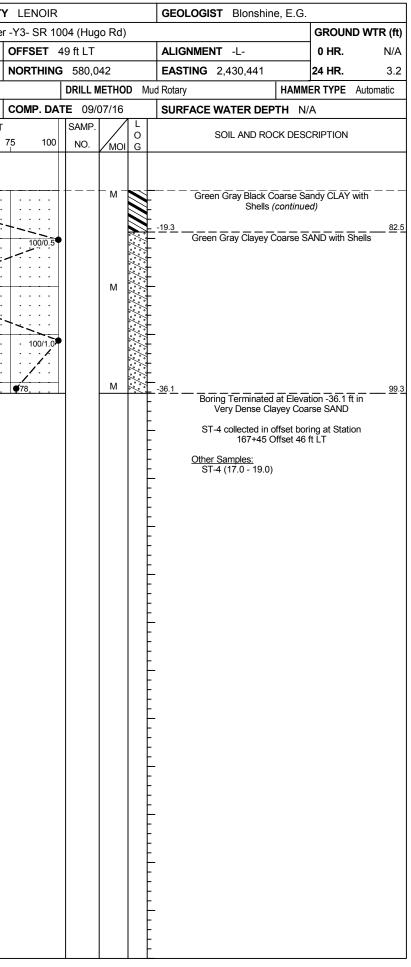

\_\_\_\_

|      |                        |            |         |                        |                  | REFERENCE NO | ).                    | SHEET NO.           |
|------|------------------------|------------|---------|------------------------|------------------|--------------|-----------------------|---------------------|
|      |                        |            |         |                        |                  | -5703        |                       | 5                   |
|      |                        |            |         |                        | ROADWAY<br>ENGIN |              | HY<br>Et              | DRAULICS<br>NGINEER |
|      |                        |            |         |                        |                  |              |                       |                     |
| :    |                        |            |         |                        | IN               | COMPLE       | ге рі                 | LANS                |
|      |                        |            |         |                        | DO               | NOT USE FOR  | R/W ACO               | UISITION            |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       |                     |
| ;    |                        |            |         |                        |                  |              |                       |                     |
| NE   | -                      |            |         |                        | DOCUM            |              |                       |                     |
| INL  | =                      |            |         |                        |                  |              |                       | COMPLETED           |
|      |                        |            |         |                        |                  |              |                       | : 120               |
|      |                        | ,<br>,     |         |                        | <u>۱</u>         | VE 1         | .1                    |                     |
|      |                        | ,<br>,     |         | ,<br>,                 |                  | V L J        | Ļīl                   |                     |
|      |                        |            |         |                        |                  |              |                       | 110                 |
|      |                        | ,          |         | ,<br>'                 |                  |              | :                     |                     |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       | 100                 |
|      |                        |            |         |                        |                  |              |                       | 100                 |
|      |                        |            |         |                        |                  |              |                       | :                   |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       | 90                  |
| F    |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       |                     |
| 1    |                        |            |         |                        |                  |              |                       | 80                  |
| ]``` |                        |            |         |                        |                  |              |                       |                     |
| -    |                        | D COASTA   |         |                        |                  |              |                       |                     |
|      |                        | FT BROWN   |         |                        |                  |              |                       | 70                  |
| ;    |                        | NDY. SILT. |         |                        |                  |              |                       | /0                  |
| į    | ROUTLET                | S (MOIST)  |         |                        |                  |              |                       |                     |
| /-   |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            | ÷       |                        |                  |              |                       | 60                  |
|      |                        |            |         |                        |                  |              |                       | ÷                   |
|      |                        |            |         | ,<br>,                 |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       | 50                  |
| LO   | DSE GRAY               | AND BLAC   | ĸ       |                        |                  |              |                       |                     |
| CL   | AYEY FINE<br>DIST TO W | TO COAR    | SE SAND |                        |                  |              |                       |                     |
| (MC  |                        |            |         |                        |                  |              |                       | 40                  |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       | 30                  |
| }    |                        |            |         |                        |                  |              |                       |                     |
| :    |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            | ;<br>;  |                        |                  |              |                       | 20                  |
|      |                        |            |         |                        |                  |              |                       | 1                   |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       | 10                  |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       | 0                   |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            | :       |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       | _10                 |
|      |                        |            |         |                        |                  |              |                       | -10                 |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            |         |                        |                  |              |                       | -20                 |
|      |                        |            |         |                        |                  |              | ;<br>' <b>-</b> • • • | _ :                 |
|      |                        |            |         |                        | NDLINE AI        |              |                       |                     |
|      |                        |            |         |                        | VINARY G         |              |                       |                     |
|      |                        |            | FOF     | R BRIDGE               | ON C.F.H         | ARVEY P      | ARKWA                 | Y                   |
|      |                        |            |         | ER SR 100<br>1732 RIGH | 04 BETWE         | EN SR 172    | 29 ANE                |                     |
|      |                        |            | אכ      |                        | LANE             |              |                       | -40                 |
|      |                        |            |         |                        | RED STR          |              |                       | RAWN                |
|      |                        |            |         |                        |                  |              |                       |                     |
|      |                        |            | PR      | JUECIED                | ONTO THE         | , FRUFILE    |                       | 50                  |
|      |                        |            |         | 50                     |                  |              |                       | _50                 |
|      |                        |            | +       | 50                     |                  |              |                       |                     |

|         |          |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -               |               |                |        |                                        |                 |                                        |                      |      |                 |                                                |          |        |        |                 |                    |           |
|---------|----------|---------------|---------|-------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|----------------|--------|----------------------------------------|-----------------|----------------------------------------|----------------------|------|-----------------|------------------------------------------------|----------|--------|--------|-----------------|--------------------|-----------|
|         | 46375.   |               |         |       |          | IP R-5703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | Y LENOIR      |                |        |                                        | GEOLC           | GIST Blonshine, E.G.                   |                      |      | <b>5</b> 4637   |                                                |          |        |        | <b>P</b> R-5703 |                    | COUNTY    |
|         |          |               |         | -     | . 210    | on -L- (Felix Harvey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pkwy) ove       |               | -              | - ·    |                                        | ,               |                                        | GROUND WTR (ft)      |      |                 |                                                |          | -      |        | on -L- (Felix   | -                  | kwy) over |
| BORIN   | ig no.   | EB1-          | A Lt. I | _n.   | S        | <b>TATION</b> 166+31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | OFFSET        | 35 ft LT       |        |                                        | ALIGN           | MENT -L-                               | 0 HR. N/A            | BOF  | RING NO         | . EB1                                          | -A Lt. I | _n.    | SI     | TATION 16       | 66+31              |           |
| COLLA   | AR ELEN  | <b>V</b> . 63 | 8.8 ft  |       | <b>т</b> | OTAL DEPTH 99.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft              | NORTHIN       | <b>G</b> 580,0 | 059    |                                        | EASTIN          | <b>IG</b> 2,430,326                    | <b>24 HR.</b> 4.3    | COL  | LAR EL          | EV. 63                                         | 3.8 ft   |        | т      | OTAL DEPT       | r <b>H</b> 99.4 ft | ۱ I       |
| DRILL F | rig/hami | MER E         | FF./DA  | TE SM | /IE2938  | 3 CME-750 86% 02/11/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16              |               | DRILL          | METHO  | D Mu                                   | d Rotary        | HAMM                                   | ER TYPE Automatic    | DRIL | L RIG/HA        | MMER E                                         | FF./DA   | TE SM  | ME2938 | CME-750 86%     | % 02/11/2016       | 6         |
| DRILLI  | ER Mill  | ler, T.       |         |       | S        | TART DATE 08/31/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16              | COMP. DA      | ATE 08/        | /31/16 |                                        | SURFA           | CE WATER DEPTH N                       | /Α                   | DRII | LLER N          | liller, T                                      |          |        | ST     | TART DATE       | E 08/31/16         | 6         |
| ELEV    |          | DEPTH         | BLC     | OW CO | JNT      | BLOWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PER FOOT        | T             | SAMP           | . 💙/   |                                        | 1               |                                        |                      | ELEV | , DRIVE<br>ELEV | DEPTH                                          | BLC      | W CO   | UNT    |                 | BLOWS P            | PER FOOT  |
| (ft)    |          | (ft)          | 0.5ft   | 0.5ft | 0.5ft    | 0 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50              | 75 100        | NO.            | мо     | O<br>G                                 | ELEV. (ft)      | SOIL AND ROCK DES                      | DEPTH (ft)           | (ft) | ELEV<br>(ft)    | (ft)                                           | 0.5ft    | 0.5ft  | 0.5ft  | 0 2             | 25 5               | 50 7      |
|         |          |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        |                 |                                        |                      |      |                 |                                                |          |        |        |                 |                    |           |
| 65      |          |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        |                 |                                        |                      | -15  |                 |                                                |          |        |        |                 | Match              | h Line    |
|         | 63.3     | 0.5           |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        | F                                      | 63.8            | GROUND SURF                            |                      |      |                 | ŧ                                              | 9        | 12     | 27     |                 | 39                 | <u> </u>  |
|         |          |               | 3       | 3     | 3        | $\left  \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | ·   · · · · · |                | м      |                                        |                 | UNDIVIDED COASTA<br>Tan Gray Fine Sand |                      |      |                 | ŧ                                              |          |        |        |                 |                    |           |
| 60      | 60.3     | 3.5           |         | 2     | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | · · · · ·     |                |        |                                        | -               |                                        |                      | -20  | -19.7           | 83.5                                           | 10       | 19     | 36     |                 | · · · · `          | <u> </u>  |
|         | 57.8     | 6.0           |         |       | 2        | $\left \begin{array}{c cccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |               |                | —M—    |                                        | 58.3            | Gray Clayey Coarse                     | 5.5                  |      |                 | t                                              |          |        |        |                 |                    | 55        |
|         | +        |               | 3       | 4     | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                | M      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 | Gray Clayey Coarse                     | SAND                 |      |                 | ±                                              |          |        |        |                 |                    |           |
|         | 55.3 +   | 8.5           | 4       | 6     | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               | - 1            | м      | ~~~                                    | -               |                                        |                      | -25  |                 | <u>    88.5                               </u> | 16       | 24     | 36     |                 | +                  | . 60 .    |
|         | Ŧ        |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        | 51.8            |                                        | 12.0                 |      |                 | Ŧ                                              |          |        |        |                 |                    |           |
| 50      | 50.3     | 13 5          |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | .  <br>.      |                |        | <u></u>                                |                 |                                        | N                    | -30  | -29.7           | +<br>93.5                                      |          |        |        |                 |                    |           |
|         |          | 1010          | 3       | 5     | 7        | 1 . <b>.</b> 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               | 1              | w      |                                        | -               | Blue Gray Clayey Coarse S/<br>Hash     |                      |      |                 | -                                              | 16       | 24     | 55     |                 |                    |           |
|         | ±        |               |         |       |          | · / · ·   · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | .  <br>.      |                |        | ·                                      | 46.8            | [Peedee Formati                        | 17.0                 |      | · ·             | ŧ                                              |          |        |        |                 |                    |           |
| 45      | 45.3     | 18.5          | 3       |       | - 1      | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |               |                |        |                                        | _               | Green Gray Fine Sandy CL<br>Hash       | AY with Shell        | -35  | -34.7           | 98.5                                           | 40       | 60/0.4 |        |                 |                    |           |
|         | ł        |               |         | 2     | 1        | <b>4</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |               |                | M      |                                        |                 |                                        |                      |      |                 | t                                              | ++0      | 00/0.4 |        |                 |                    |           |
|         | Ŧ        |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        | 41.8            | Green Gray Clayey Coa                  | 22.0                 |      |                 | Ŧ                                              |          |        |        |                 |                    |           |
| 40      | 40.3 +   | 23.5          | 4       | 4     | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               | - 1            | м      |                                        | -               |                                        |                      |      | _               | Ŧ                                              |          |        |        |                 |                    |           |
|         | ŧ        |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        |                 |                                        |                      |      |                 | ŧ                                              |          |        |        |                 |                    |           |
| 35      | 35.3     | 28 5          |         |       |          | :::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | .  <br>.      |                |        |                                        |                 |                                        |                      |      |                 | ŧ                                              |          |        |        |                 |                    |           |
|         | <u> </u> | 20.0          | 3       | 5     | 10       | ●1 <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |               | -              | м      |                                        | -               |                                        |                      |      | -               | ŧ                                              |          |        |        |                 |                    |           |
|         | t        |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | .             |                |        | <u>.</u>                               |                 |                                        |                      |      |                 | t                                              |          |        |        |                 |                    |           |
| 30      | 30.3     | 33.5          |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        | _               |                                        |                      |      |                 | Ł                                              |          |        |        |                 |                    |           |
|         | Ŧ        |               | 20      | 26    | 33       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                | M      |                                        | -               |                                        |                      |      |                 | Ŧ                                              |          |        |        |                 |                    |           |
|         | Ŧ        |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | .             |                |        |                                        |                 |                                        |                      |      |                 | Ŧ                                              |          |        |        |                 |                    |           |
|         | 25.3     | 38.5          | 10      | 15    | 41       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                | м      |                                        | -               |                                        |                      |      | -               | ‡                                              |          |        |        |                 |                    |           |
|         | ‡        |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • 56<br>· · · · | ·   · · · · · |                |        | ~                                      |                 |                                        |                      |      |                 | ŧ                                              |          |        |        |                 |                    |           |
|         |          | 40 E          |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        | 21.8            | Green Gray Fine Sandy CL               | AY with Shells, 42.0 |      | · ·             | ŧ                                              |          |        |        |                 |                    |           |
|         | 20.3     | 43.5          | 4       | 7     | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>        | · · · · · ·   | - 1            | м      |                                        | -               | Trace Mica                             |                      |      | -               | ŧ                                              |          |        |        |                 |                    |           |
|         | ł        |               |         |       |          | $   \cdot $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | .             |                |        |                                        |                 |                                        |                      |      |                 | ł                                              |          |        |        |                 |                    |           |
| 15      | 15.3     | 48.5          |         |       |          | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | .             |                |        |                                        |                 |                                        |                      |      |                 | ł                                              |          |        |        |                 |                    |           |
|         | Ŧ        |               | 13      | 14    | 13       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                | M      |                                        |                 |                                        |                      |      | -               | f                                              | 1        |        |        |                 |                    |           |
|         | Ŧ        |               |         |       |          | :::/ ::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | .             |                |        |                                        |                 |                                        |                      |      |                 | Ŧ                                              | 1        |        |        |                 |                    |           |
| 10      | 10.3 +   | 53.5          | 6       | 6     | 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + • • • •       | · · · · · ·   |                | м      |                                        | -               |                                        |                      |      | -               | ŧ                                              | 1        |        |        |                 |                    |           |
|         | ‡        |               |         |       |          | <b>•</b> 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |               |                |        |                                        |                 |                                        |                      |      |                 | ŧ                                              |          |        |        |                 |                    |           |
| 5       | 5.3 +    | 58 F          |         |       |          | :::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |               |                |        |                                        |                 |                                        |                      |      |                 | ‡                                              | 1        |        |        |                 |                    |           |
|         | <u> </u> | 00.0          | 4       | 5     | 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +               |               | 11             | м      |                                        | -               |                                        |                      |      | -               | ŧ                                              | 1        |        |        |                 |                    |           |
|         | Ŧ        |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        |                 |                                        |                      |      |                 | t                                              | 1        |        |        |                 |                    |           |
| 0       | 0.3 Ŧ    | 63.5          |         | _     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        | _               |                                        |                      |      |                 | ł                                              | 1        |        |        |                 |                    |           |
|         | Ŧ        |               | 5       | 5     | 7        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |               | ]              | W      |                                        | -               |                                        |                      |      | -               | Ŧ                                              | 1        |        |        |                 |                    |           |
| 5       | ‡        |               |         |       |          | :: <i>[</i> :::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |               |                |        |                                        |                 |                                        |                      |      |                 | Ŧ                                              | 1        |        |        |                 |                    |           |
| -5      | -4.7 +   | 68.5          | 8       | 8     | 9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                | w      |                                        | -               |                                        |                      |      | -               | ‡                                              | 1        |        |        |                 |                    |           |
|         | ‡        |               | Ī       | -     | -        | $\left  \left  \begin{array}{c} \cdot & \cdot & \bullet^{17} \\ \cdot & \cdot & \cdot \\ \cdot & $ |                 | .  <br>.      |                |        |                                        |                 |                                        |                      |      |                 | ‡                                              | 1        |        |        |                 |                    |           |
| -10     | <u> </u> | 70 5          |         |       |          | $\left \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |               |                |        |                                        | - <u>-8.2</u> ( | Green Gray Clayey Coarse S             | SAND with Shell 72.0 |      |                 | t                                              | 1        |        |        |                 |                    |           |
| -10     | -9.7     | 13.5          | 8       | 10    | 15       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +               | · · · · · ·   |                | w      |                                        | -               | Hash                                   |                      |      | -               | ŧ                                              | 1        |        |        |                 |                    |           |
|         | Ŧ        |               |         |       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |               |                |        |                                        |                 |                                        |                      |      |                 | ł                                              | 1        |        |        |                 |                    |           |
| -15     | -14.7 +  | 78.5          |         |       |          | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |               |                |        |                                        |                 |                                        |                      |      |                 | Ŧ                                              | 1        |        |        |                 |                    |           |
|         |          |               |         |       | r        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |               |                |        | له <م. ا                               |                 |                                        |                      | L    |                 | L                                              |          | I      | L      |                 |                    |           |

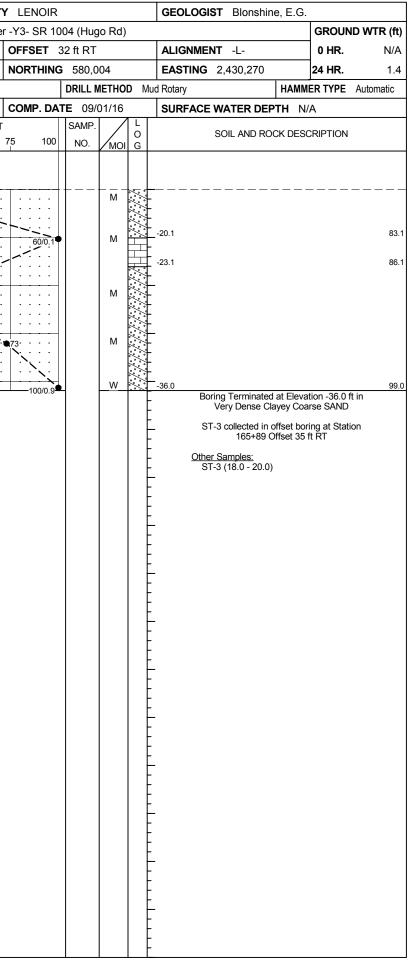
#### SHEET 6 OF 43




|              |               |                      |        |        |       |      |                           |              |                                               |                | -    |                |          |                | .06          | ,     |         |        |                  |                  |                             |               | 1                   |       |               |                    |         |        |        |              |                |           |          |
|--------------|---------------|----------------------|--------|--------|-------|------|---------------------------|--------------|-----------------------------------------------|----------------|------|----------------|----------|----------------|--------------|-------|---------|--------|------------------|------------------|-----------------------------|---------------|---------------------|-------|---------------|--------------------|---------|--------|--------|--------------|----------------|-----------|----------|
|              | 46375         |                      |        |        |       |      | R-5                       |              |                                               |                |      |                |          | NOIR           |              |       |         |        | GEOLO            | DGIST Blo        | nshine, E.G                 |               |                     |       | 46375         |                    |         |        |        | IP R-5703    |                | COUN      |          |
|              | DESCR         |                      | Bri    | dge No |       |      | -                         |              |                                               | -              | Pkwy |                |          |                | -            | -     | Rd)     |        | -1               |                  |                             |               | D WTR (ft)          |       |               |                    | Brid    | lge No |        | on -L- (Feli |                | Pkwy) ov  | /er -    |
| BOR          | NG NO         | . B-1                |        |        |       | STA  | TION                      | <b>N</b> 16  | 6+8                                           | 5              |      |                | OFF      | SET            | 37 ft L      | Т     |         |        | ALIGN            | MENT -L-         |                             | 0 HR.         | N/A                 | BOR   | NG NO.        | B-1                |         |        | S      | TATION 1     | 66+85          |           | <b>_</b> |
| COLI         | AR ELI        | <b>EV.</b> 63        | 3.9 ft |        |       | тот  | TAL C                     | DEPT         | Ή                                             | 36.3 f         | ť    |                | NOR      | THING          | <b>G</b> 580 | ,047  | 7       |        | EASTI            | <b>IG</b> 2,430, | 379                         | 24 HR.        | FIAD                | COLI  | AR ELE        | <b>EV.</b> 63      | 3.9 ft  |        | Т(     | OTAL DEP     | <b>TH</b> 86.3 | ft        | N        |
| DRILL        | . RIG/HA      | MMER E               | FF./DA | ATE H  | PC247 | 73 C | CME-5                     | 50 92        | % 12/                                         | 09/20          | 15   |                |          |                | DRILL        | ME1   | THOD    | М      | ud Rotary        |                  | HAM                         | MER TYPE      | Automatic           | DRILL | . RIG/HAI     | MMER E             | FF./DA  | TE H   | PC2473 | 3 CME-550 92 | 2% 12/09/20    | 015       |          |
| DRIL         | LER V         |                      |        |        | :     | STA  | ART D                     | DATE         | 80                                            | 3/04/1         | 6    |                | CON      | IP. DA         | TE 0         | 8/04/ | /16     |        | SURFA            | CE WATER         |                             | N/A           |                     | DRIL  | LER W         | /hite, J           |         |        | S      | TART DAT     | E 08/04/       | /16       | C        |
| ELEV         | DRIVE<br>ELEV |                      | ·      | ow co  | -     |      |                           | -            |                                               |                |      | FOOT           |          |                | SAM          | P.    |         | L<br>O |                  | SOIL AN          | D ROCK DE                   | SCRIPTION     |                     | ELEV  | DRIVE<br>ELEV | DEPTH              | ·⊢      | w co   |        |              |                | PER FOC   |          |
| (ft)         | (ft)          | (ft)                 | 0.5ft  | 0.5ft  | 0.5f  | ft   | 0                         | 2            | 25                                            |                | 50   |                | 75       | 100            | NO.          |       |         | G      | ELEV. (ft)       |                  |                             |               | DEPTH (ft)          | (ft)  | (ft)          | (ft)               | 0.5ft   | 0.5ft  | 0.5ft  | 0            | 25             | 50        | 75       |
|              |               |                      |        |        |       |      |                           |              |                                               |                |      |                |          |                |              |       |         |        |                  |                  |                             |               |                     |       |               |                    |         |        |        |              |                |           |          |
| 65           |               | ł                    |        |        |       |      |                           |              |                                               |                |      |                |          |                |              |       |         | -      | 63.9             | G                | ROUND SURI                  | FACE          | 0.0                 | -15   |               |                    |         |        | -13 -  |              | Mat            | tch Line  |          |
|              | 62.9          | 1.0                  | 11     | 4      | 2     |      | · .                       |              |                                               |                |      |                |          |                |              |       | L       |        | 63.9<br>63.3     |                  | ASPHALT                     |               | 0.0<br><u>0.8</u>   |       | -             | -                  |         |        |        |              |                |           | :        |
| 60           | 60.4          | 3.5                  |        |        |       |      | _ <b>_</b> 6 <sup>.</sup> | · ·<br>· ·   |                                               | · · ·<br>· · · |      | · · ·<br>· · · |          | · · ·          |              |       | М       | Š      | <u>- 61.4</u>    | BI               | DWAY EMBA                   | SAND          |                     | -20   | -<br>19.4 -   | - 83.3             | 100/0.3 |        |        |              |                | • • • • • | <u> </u> |
|              | 57.9          | ± 6.0                | WOH    | I WOH  | 1     |      | 1                         |              |                                               |                |      |                |          |                | SS-2         | 0 2   | 20%     |        | -                |                  | IDED COAST<br>Gray Fine Sar |               |                     |       | -             | -                  | 100/0.3 |        |        |              |                |           | -        |
|              |               | ł                    | WOH    | 1 2    | 2     |      | •4 ·                      | •••          |                                               | · · ·<br>· · · |      | · · ·          |          | · · ·          |              |       | м       |        | -                |                  |                             |               |                     |       | -22.4 -       | - <u>86.3</u><br>- | 60/0.0  |        |        |              | · · · ·        | •   • • • | ·        |
| 55           | 55.4          | + 8.5<br>-           | 1      | 2      | 2     | -    | • · ·                     |              |                                               | · · ·          |      | · · ·          | +        | · · ·          |              |       | м       |        | -                |                  |                             |               |                     |       | -             | -                  |         |        |        |              |                |           |          |
|              | -             | ŧ                    |        |        |       |      | Ĭ.                        | •••          |                                               |                | -    | · · ·<br>· · · |          | · · ·          |              |       |         |        | -<br>51.9        |                  |                             |               | 12.0                |       | -             | -                  |         |        |        |              |                |           |          |
| 50           | 51.4          | † 12.5<br>†          | WOH    | I WOH  | WO    | п    |                           | · ·<br>· ·   |                                               | · · ·<br>· · · |      | · · ·<br>· · · |          | · · ·          |              | ,     | w %     | $\sim$ |                  | Gray T           | an Clayey Coa               | arse SAND     | 12.0                |       | -             | Ē                  |         |        |        |              |                |           |          |
|              | -             | ŧ                    |        |        |       |      |                           |              |                                               |                | 1.   |                |          |                |              |       | °/° °/° | $\sim$ | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              |               | ŧ                    |        |        |       |      | - · - ·                   | •••          |                                               | · · ·<br>· · · |      | · · ·          |          | · · ·          |              |       | °/° %   |        | 46.9             |                  |                             |               | <u>17.0</u>         |       | -             | -                  |         |        |        |              |                |           |          |
| 45           | 45.6          | + 18.3<br>+          | 2      | 1      | 8     |      |                           | · ·          |                                               | · · ·          | ·    | · · ·          | +        | · · ·          |              | ,     | w %     | $\sim$ | -                | Gray Clayey      | Coarse SAND                 | with Shell H  | ash,                |       | -             | -                  |         |        |        |              |                |           |          |
|              |               | ŧ                    |        |        |       |      | • •                       | •••          |                                               |                |      |                |          |                |              |       | °/° °/° | $\sim$ | -                | []               | Peedee Forma                | ation]        |                     |       | -             | F                  |         |        |        |              |                |           |          |
| 40           | 40.6 ·        | 23.3                 | 4      | 5      | 6     |      | 1                         | •••          |                                               | · · ·          |      | · · ·<br>· · · |          | · · ·          |              |       | °/° °/° | $\sim$ | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              | -             | ŧ                    | 4      | 5      | 0     |      | ė                         | <b>``</b> `  |                                               |                |      |                |          |                |              |       | W %     | $\sim$ | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              |               | Ŧ                    |        |        |       |      | · ·<br>· ·                |              |                                               | · · ·          |      | · · ·          |          | · · ·<br>· · · |              |       | °/° °/° | $\sim$ | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
| 35           | 35.6          | <u>+ 28.3</u><br>T   | 10     | 18     | 23    |      |                           |              |                                               | •••••<br>••••  | ·    | · · ·          | +        | · · ·          |              | ,     | W %     | $\sim$ | -                |                  |                             |               |                     |       | _             | F                  |         |        |        |              |                |           |          |
|              | -             | ŧ                    |        |        |       |      | •••                       |              |                                               | :/: :          |      | · · ·          |          |                |              |       | °/° °/° | $\sim$ | -                |                  |                             |               |                     |       | -             | -                  |         |        |        |              |                |           |          |
| 30           | 30.6 ·        | - 33.3               | 14     | 14     | 19    |      | · ·<br>· ·                |              |                                               | <i>i</i>       |      | · · ·<br>· · · |          | · · ·          |              |       | °/° °/° | $\sim$ | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              | -             | ŧ                    | 14     | 14     | 19    |      |                           |              | •                                             | 33             |      |                |          |                |              |       | W %     | $\sim$ | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              |               | Ŧ                    |        |        |       |      | · ·<br>· ·                | • •          |                                               | · · ·          |      | · · ·<br>· · · |          | · · ·<br>· · · |              |       | % %     | $\sim$ | -                |                  |                             |               |                     |       | -             | -                  |         |        |        |              |                |           |          |
| 25           | 25.5          | + 38.4<br>-          | 8      | 22     | 14    |      |                           | • •          |                                               | ●36            | :-   | · · ·<br>· · · |          | · · ·          |              | ,     | w %     | $\sim$ | -                |                  |                             |               |                     |       | -             |                    |         |        |        |              |                |           |          |
|              |               | Ŧ                    |        |        |       |      | • •                       |              | /.                                            |                | -    | · · ·<br>· · · |          | <br><br>       |              |       | /° °/°  | $\sim$ | 22.4             |                  |                             |               | 41.5                |       | -             | F                  |         |        |        |              |                |           |          |
| 20           | 20.6          | 43.3                 | 5      | 6      | 8     | _    | •••                       | ./           |                                               |                |      |                |          |                |              |       |         |        | -                | Blue             | Gray Fine San               | Idy CLAY      |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              | -             | ť                    | ľ      | Ĭ      |       |      |                           | •14<br>1     |                                               |                |      |                |          |                |              |       | IVI     |        | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              | 15 6          | 48.3                 |        |        |       |      | • •                       |              |                                               | · · ·          |      |                |          | <br>           |              |       |         | Ì      | -                |                  |                             |               |                     |       | -             | Ł                  |         |        |        |              |                |           |          |
| 15           | 15.6          | +0.3                 | 9      | 8      | 10    |      |                           | <b>1</b> 8   | <u>  .</u>                                    |                | +-   | <br>           | +        |                |              |       | м       | Ì      | _                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              |               | ŧ                    |        |        |       |      | • •                       | 1            |                                               | · · ·          |      | · · ·          |          | <br>           |              |       |         |        | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
| 10           | 10.6          | 53.3                 | 5      | 5      | 8     | -    | •••                       | <u> </u>     | · ·                                           |                | ·    | · · ·          | <u> </u> | •••            |              |       |         | Ì      | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              | -             | ŧ                    |        |        |       |      |                           | 13           |                                               |                | :    |                |          |                |              |       | IVI     |        | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
| 5<br>0<br>-5 | 5.6           | _<br>_ <u>58.3</u> _ |        |        |       |      | • •                       | · ·          |                                               | <br><br>       |      | <br>           |          |                |              |       |         |        | -                |                  |                             |               |                     |       | -             | Ł                  |         |        |        |              |                |           |          |
| 5            |               |                      | 4      | 6      | 7     | 1    |                           | 13           | <u> </u>                                      |                | +:   |                | +        |                |              |       | м       | Ì      | -                |                  |                             |               |                     |       | _             | F                  |         |        |        |              |                |           |          |
| 2            |               | ŧ                    |        |        |       |      | · · ·                     | 1.           |                                               | · · ·          |      | · · ·          |          | · · ·          |              |       |         |        | -                |                  |                             |               |                     |       | -             | Ł                  |         |        |        |              |                |           |          |
| 0            | 0.6           | 63.3                 | 5      | 8      | 10    |      | •••                       | · <u> </u> · | L                                             |                | ·    | · · ·          | <u> </u> | •••            |              |       |         | Ì      | -                |                  |                             |               |                     |       | -             | F                  |         |        |        |              |                |           |          |
|              | -             | ł                    |        |        |       |      | · ·<br>· ·                | •18<br>• •   |                                               |                |      |                | · ·      |                |              |       | IVI     |        | _                |                  |                             |               |                     |       | -             |                    |         |        |        |              |                |           |          |
| 2            | -4.4          | -<br>68.3            |        |        |       |      | · ·<br>· ·                |              |                                               |                | -:-  | ·              |          | · · ·          |              |       |         | Ì      | -                |                  |                             |               |                     |       | -             | Ł                  |         |        |        |              |                |           |          |
| -5           | -4.4 -        | - 00.3               | 7      | 93/0.4 | F     |      |                           |              | <u>                                      </u> |                | +-   |                | +        | 100/0.9        | •            | 1     | w       | Ì      | -                |                  |                             |               |                     |       | _             | F                  |         |        |        |              |                |           |          |
|              |               | ŧ                    |        |        |       |      | · · ·                     |              |                                               | · · ·          |      | <br>           |          |                |              |       | 1       | Ņ      | 7.6              |                  |                             |               | <u>71.5</u>         |       | -             | F                  |         |        |        |              |                |           |          |
| -10          | -9.4          | 73.3                 | 9      | 14     | 17    | -    |                           |              | <u> </u>                                      |                |      | · · ·          |          |                |              |       | ×       | ~~~    | -                | Diue Gray Cl     | ayey Coarse S<br>Hash       | SAND, WITH S  |                     |       | -             | F                  |         |        |        |              |                |           |          |
| -10          | -             | ŧ                    | ľ      |        | ''    |      |                           |              | <b>7</b> 3                                    | 1              |      |                |          |                |              |       | W       | ~~~    | - 12.6           |                  |                             |               | 70 5                |       | -             | F                  |         |        |        |              |                |           |          |
| 222          | -14.4         | 78.3                 |        |        |       |      | •••                       |              | 1.                                            | · · ·          |      | · · ·          |          | · · ·<br>· · · |              |       |         | Ì      | <u>i2.0</u><br>E | Blue Gray Fin    | e Sandy CLA                 | 7, with Shell | <u>76.5</u><br>Hash |       | -             | Ł                  |         |        |        |              |                |           |          |
| -15          | -14.4         | T /0.3               | 1      | 1      | 1     |      |                           | · ·/         |                                               |                |      |                |          |                |              |       |         | N      | -                |                  |                             |               |                     |       | -             | Γ                  |         |        |        | <u> </u>     |                |           |          |

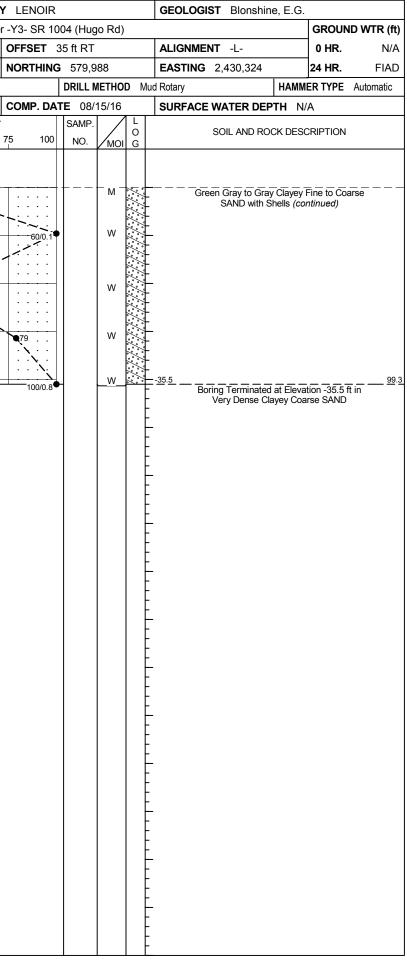
#### SHEET 7 OF 43

| LENOIR      |               |       |          | GEC    | DLOGI | ST E         | Blonshine               | e, E.G.   |                     |              |
|-------------|---------------|-------|----------|--------|-------|--------------|-------------------------|-----------|---------------------|--------------|
| -Y3- SR 100 | )4 (Hug       | o Rd) |          |        |       |              |                         |           | GROUN               | ID WTR (ft)  |
| OFFSET 3    | 7 ft LT       |       |          | ALIO   | GNME  | NT -         |                         |           | 0 HR.               | N/A          |
| NORTHING    | 580,0         | 47    |          | EAS    | TING  | 2,43         | 0,379                   |           | 24 HR.              | FIAD         |
|             | DRILL N       | IETHO | D Mu     | d Rota | у     |              |                         | HAMME     | R TYPE              | Automatic    |
| COMP. DAT   | <b>E</b> 08/0 | 04/16 |          | SUF    | FACE  | WAT          | ER DEP                  | TH N/     | ۹                   |              |
|             | SAMP.         |       | L<br>O   |        |       | SOIL         | AND ROC                 |           |                     |              |
| 75 100      | NO.           | моі   |          |        |       | OOIL         |                         | N DLOC    |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               | - w - |          |        |       |              |                         |           |                     |              |
|             |               | vv    |          | -17.6  |       |              |                         | tinued)   |                     | 81.5         |
|             |               | w     | ~        |        | Blue  | e Gray<br>Ha | Clayey Co<br>sh and Ce  | parse SA  | ND with S<br>Lavers | ihell        |
| 100/0.3     |               | vv    |          | -      |       |              |                         |           | Lajoro              |              |
| 60/0.0      |               |       | <u>-</u> | -22.4  | Bo    | ring Te      | rminated                | at Elevat | ion -22.4 1         | 86.3<br>t in |
|             |               |       |          | -      | Very  | Dense<br>Ha  | e Clayey C<br>sh and Ce | Coarse S. | AND with<br>Lavers  | Shell        |
|             |               |       |          |        |       |              |                         |           | ,                   |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          |        |       |              |                         |           |                     |              |
|             |               |       |          | -      |       |              |                         |           |                     |              |
|             |               |       | E        |        |       |              |                         |           |                     |              |
|             |               |       | F        |        |       |              |                         |           |                     |              |


|       |               |                    |         |          |        |                 |                |            |                |          |                |              |            | .06          |        |                                        |              |                                                     |                            |             |      |                |                    |         |        |        |            |                          | -                 |
|-------|---------------|--------------------|---------|----------|--------|-----------------|----------------|------------|----------------|----------|----------------|--------------|------------|--------------|--------|----------------------------------------|--------------|-----------------------------------------------------|----------------------------|-------------|------|----------------|--------------------|---------|--------|--------|------------|--------------------------|-------------------|
|       | 4637          |                    |         |          |        | IP R            |                |            |                |          |                | LEN          |            |              |        |                                        | GE           | OLOGIST Blonshine, E.G                              | -                          |             |      | <b>3</b> 46375 |                    |         |        |        | IP R-5703  |                          | COUNTY            |
|       |               | RIPTION            |         | -        | . 210  | on -L·          | - (Feli        | x Ha       | rvey F         | Pkwy     |                |              |            |              | -      | d)                                     |              |                                                     |                            | R (ft)      |      |                |                    |         | -      |        |            |                          | Pkwy) over        |
| BORI  | NG NO         | . EB2              | -A Lt.  | Ln       | s      | TATIO           | <b>DN</b> 1    | 67+4       | 45             |          |                | OFFS         | ET         | 49 ft L      | Т      |                                        | AL           | GNMENT -L-                                          | 0 HR.                      | N/A         | BOR  | ING NO         | . EB2              | -A Lt.  | Ln     | S      | TATION 1   | 167+45                   |                   |
| COLL  | AR EL         | <b>EV.</b> 63      | 3.2 ft  |          | Т      | OTAL            | DEP            | тн         | 99.3 f         | ft       |                | NOR          | THING      | <b>3</b> 580 | ,042   |                                        | EA           | <b>STING</b> 2,430,441                              | 24 HR.                     | 3.2         | COL  | LAR EL         | <b>EV.</b> 6       | 3.2 ft  |        | т      | JTAL DEP   | <b>PTH</b> 99.3          | ft                |
| DRILL | RIG/HA        | MMER E             | FF./DA  | TE SM    | ME2938 | 3 CME-          | 750 86         | 6% 02      | /11/201        | 6        |                |              |            | DRILL        | . METH | IOD                                    | Mud Rot      | ary HAMN                                            | MER TYPE Autor             | natic       | DRIL | L RIG/HA       | MMER E             | EFF./DA | TE SM  | ME2938 | CME-750 86 | 6% 02/11/20 <sup>,</sup> | 16                |
| DRIL  | LER N         | liller, T          | -       |          | S      | TART            | DAT            | <b>E</b> 0 | 9/07/1         | 16       |                | сом          | P. DA      | <b>TE</b> 09 | 9/07/1 | 6                                      | SU           | RFACE WATER DEPTH N                                 | I/A                        |             | DRIL | LER N          | 1iller, T          | -       |        | S      | FART DAT   | re 09/07/ <sup>-</sup>   | /16               |
| ELEV  | DRIVE<br>ELEV |                    | BLC     | ow co    | UNT    |                 |                | BL         | LOWS           | PER I    | -00T           |              |            | SAM          | P. 🔻   |                                        |              | SOIL AND ROCK DES                                   | CRIPTION                   |             | ELEV | DRIVE<br>ELEV  |                    | BLC     | ow co  | UNT    |            | BLOWS                    | PER FOOT          |
| (ft)  | (ft)          | (ft)               | 0.5ft   | 0.5ft    | 0.5ft  | 0               |                | 25         |                | 50       |                | 75           | 100        | NO.          | М      |                                        |              |                                                     |                            | PTH (ft)    | (ft) | (ft)           | (ft)               | 0.5ft   | 0.5ft  | 0.5ft  | 0          | 25                       | 50                |
|       |               |                    |         |          |        |                 |                |            |                |          |                |              |            |              |        |                                        |              |                                                     |                            |             |      |                |                    |         |        |        |            |                          |                   |
| 65    |               | Ļ                  |         |          |        |                 |                |            |                |          |                |              |            |              |        |                                        | L            |                                                     |                            |             | -15  |                | L                  |         |        |        |            | Mat                      | ch Line           |
|       | 62.7          | -<br>- 0.5         |         |          |        |                 |                |            |                |          |                |              |            |              |        |                                        | 63.2         | GROUND SURF                                         |                            | 0.0         |      |                | ł                  | 6       | 8      | 10     | <b>●</b> 1 | 18                       |                   |
| -     | 60.7          | 2.5                | 1       | 2        | 1      | •3              |                |            |                |          | · · ·          | · ·          | •••        |              | м      |                                        | 1            | UNDIVIDED COAST<br>Tan Gray Fine Sandy CLAY         |                            |             |      |                | <u>+</u>           |         |        |        |            |                          |                   |
| 60    | - 00.7        | T2.5               | 4       | 3        | 3      | 1               | 3 <sup></sup>  | +          |                |          |                |              |            |              | —м     |                                        | F            |                                                     |                            |             | -20  | -19.6          | <u>T 82.8</u><br>T | 100/0.  | 5      |        |            | +                        |                   |
|       | 57.2          | Ŧ 6.0              |         |          |        | i               |                | .          |                | .        |                |              |            |              |        |                                        | }            |                                                     |                            |             |      |                | Ŧ                  |         |        |        |            |                          | · · · · · · · · · |
| 55    | 55.2          | Ι                  | 2       | 2        | 2      | ]   ∳4          | · · ·          | :          | · · ·          | .        | · · ·          |              |            |              | М      |                                        | 55.7         |                                                     |                            | 7.5         | -25  | -24.3          | 87.5               |         | 40     | 47     |            | · · · · · ·              |                   |
|       |               | +                  | 2       | 2        | 2      | •4              |                | 1.         |                | ·        |                | 1            |            |              | W      |                                        | <u> </u>     | Tan Gray Clayey Coa                                 | Irse SAND                  |             |      | -              | ŧ                  | 9       | 12     | 17     |            | <b>6</b> 29              |                   |
|       |               | ‡                  |         |          |        | 1   1           | · · ·<br>· · · |            | · · ·<br>· · · |          | · · ·<br>· · · |              |            |              |        | /~/~                                   | <u>51.7</u>  |                                                     |                            | 11.5        |      |                | ŧ                  |         |        |        |            |                          |                   |
| 50    | 50.4          | 12.8               | 2       | 4        | 5      | <u> '</u>       | · · ·          | :          |                | ·        | · · ·          |              | •••        |              | w      | <i>***</i>                             | _<br>الم     | <b>COASTAL PL</b><br>Blue Gray Clayey Coarse S      |                            |             | -30  | -29.6          | 92.8               | 37      | 63/0.5 |        |            | · · · · ·                | ·   · · · · ·     |
|       |               | ŧ                  | -       |          |        | :1              | <u>9</u>       | :          | · · ·          |          | · · ·          | · ·          |            |              | **     | ~~~                                    | ,<br>,       | Blue Gray Clayey Coarse S<br>Hash<br>[Peedee Format | tion                       |             |      |                | ŧ                  |         | 00,010 |        |            |                          |                   |
|       |               | ±                  |         |          |        | . <br>          |                |            |                |          |                | · ·          |            |              |        | ~                                      | <u>46.7</u>  | Green Gray Fine Sandy S                             |                            | <u> </u>    |      |                | <u>+</u>           |         |        |        |            |                          |                   |
| 45    | 45.4          | <u>† 17.8</u><br>  | 2       | 3        | 2      |                 |                | +-         | · · · ·        | +        |                |              |            |              | w      | , 🎆                                    |              | Creen Gray Time Gardy G                             |                            |             | -35  |                | <u> </u>           | 19      | 31     | 47     |            |                          |                   |
|       |               | Ŧ                  |         |          |        |                 |                | .          |                | .        |                |              |            |              |        |                                        | 42.2         |                                                     |                            | 21.0        |      |                | Ŧ                  |         |        |        | [          |                          |                   |
| 40    | 40.4          | 22.8               |         |          |        | ] :             | λ              | :          | · · ·          |          | · · ·<br>· · · |              |            |              |        | /:/:                                   | •            | Dark Green Gray Clayey                              | Coarse SAND                |             |      |                | Ŧ                  |         |        |        |            |                          |                   |
|       | -             | ŧ                  | 4       | 5        | 9      |                 | •14            |            |                |          |                | 1            |            |              | W      | /~~                                    | <u>}</u>     |                                                     |                            |             |      | -              | ŧ                  |         |        |        |            |                          |                   |
|       |               | ‡                  |         |          |        | 1 1             | · · <b>`</b>   |            | · · ·<br>· · · |          | · · ·<br>· · · |              |            |              |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | }<br>}       |                                                     |                            |             |      |                | ŧ                  |         |        |        |            |                          |                   |
| 35    | 35.4          | 27.8               | 11      | 17       | 20     | Li              |                |            | · · ·          | ·        | · · ·          |              | •••        |              | М      | ·/~?                                   | *<br>*       |                                                     |                            |             |      | -              | ‡                  |         |        |        |            |                          |                   |
|       |               | ŧ                  |         |          |        | :               | · · ·          | :          | •37<br>. \     |          | · · ·          | · ·          |            |              |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <del>~</del> |                                                     |                            |             |      |                | ŧ                  |         |        |        |            |                          |                   |
|       |               | ±                  |         |          |        | 1 1             | · · ·          | :          | . \ .          |          | · · ·          | · ·          |            |              |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ╬╝           |                                                     |                            |             |      |                | ŧ                  |         |        |        |            |                          |                   |
| 30    | 30.4          | <u>† 32.8</u><br>  | 18      | 24       | 21     | 1               |                | +-         | <u> </u>       | 45       |                |              | • •        |              | м      |                                        |              |                                                     |                            |             |      | -              | +                  |         |        |        |            |                          |                   |
|       |               | Ŧ                  |         |          |        | 1 1             |                |            |                | Ĩ.       |                |              |            |              |        | <i></i>                                | 27.2         |                                                     |                            | 36.0        |      |                | Ŧ                  |         |        |        |            |                          |                   |
| 25    | 25.4          | 37.8               |         |          |        |                 | · · ·          | /          | · · ·          | .        | · · ·          |              |            |              |        |                                        | 1            | Black Fine Sandy CLAY                               | , Trace Mica               |             |      |                | Ŧ                  |         |        |        |            |                          |                   |
|       | -             | ŧ                  | 9       | 10       | 8      |                 | •1             | 8          |                | 1.       |                |              |            |              | M      |                                        | 1            |                                                     |                            |             |      | -              | ŧ                  |         |        |        |            |                          |                   |
|       |               | ‡                  |         |          |        | :               | : :            |            | · · ·<br>· · · |          | · · ·<br>· · · | · ·<br>  · · |            |              |        |                                        | 1            |                                                     |                            |             |      |                | ‡                  |         |        |        |            |                          |                   |
| 20    | 20.4          | 42.8               | 5       | 6        | 7      | ┨┝╧             |                | <u> </u>   |                | ·        | · · ·          | · ·          | •••        |              | Тм     |                                        |              |                                                     |                            |             |      | -              | ‡                  |         |        |        |            |                          |                   |
|       |               | ŧ                  |         |          |        | :               | .¶13.<br>• •   |            | · · ·<br>· · · |          | · · ·          | · ·          |            |              |        |                                        |              |                                                     |                            |             |      |                | ŧ                  |         |        |        |            |                          |                   |
|       | 45.4          | 1 47.0             |         |          |        | :               | : † :          |            | · · ·          |          | · · ·          |              |            |              |        |                                        |              |                                                     |                            |             |      |                | ŧ                  |         |        |        |            |                          |                   |
| 15    | 15.4          | <u>† 47.8</u><br>1 | 5       | 7        | 9      | 11              | . • 16         | ; -        |                |          |                | <u> </u>     |            |              | м      |                                        |              |                                                     |                            |             |      | -              | ŧ                  |         |        |        |            |                          |                   |
|       |               | t                  |         |          |        | 11              | . į .<br>. į   |            |                |          |                |              |            |              |        |                                        |              |                                                     |                            |             |      |                | ŧ                  |         |        |        | 1          |                          |                   |
| 10    | 10.4          | 52.8               |         | <u> </u> | _      |                 | · [· ·         |            |                |          | •••            |              |            |              |        |                                        |              |                                                     |                            |             |      |                | f                  |         |        |        | 1          |                          |                   |
|       | -             | Ŧ                  | 5       | 5        | '      |                 |                |            |                |          |                |              |            |              | M      |                                        | F            |                                                     |                            |             |      | -              | Ŧ                  |         |        |        | 1          |                          |                   |
| 5     |               | ‡                  |         |          |        | :               |                | .          | · · ·<br>· · · |          | · · ·<br>· · · |              |            |              |        |                                        | 1            |                                                     |                            |             |      |                | ŧ                  |         |        |        | 1          |                          |                   |
|       | 5.4           | 57.8               | 4       | 5        | 8      |                 | · · · ·        | ·          |                | ·        | · · ·          |              |            |              | Тм     |                                        |              |                                                     |                            |             |      | -              | ‡                  |         |        |        | 1          |                          |                   |
|       |               | ‡                  |         |          |        | :               | .¶13.          | :          | · · ·<br>· · · | .        | · · ·<br>· · · |              |            |              |        |                                        | \$           |                                                     |                            |             |      |                | ‡                  |         |        |        | 1          |                          |                   |
|       | 0.4           | -<br>- 62.8        |         |          |        | :               | .  <br>.       |            | · · ·<br>· · · |          | · · ·          | · ·<br>  · · |            |              |        |                                        |              |                                                     |                            |             |      |                | ‡                  |         |        |        | 1          |                          |                   |
| 0     | 0.4           | + 02.0             | 5       | 7        | 8      | 1 <del> .</del> | . •15          |            |                | <u> </u> |                | <u> </u>     |            |              | w      |                                        | 1            |                                                     |                            |             |      | -              | ŧ                  |         |        |        | 1          |                          |                   |
|       |               | t                  |         |          |        |                 |                | -          |                |          |                | · ·          | •••        |              |        |                                        | -2.8         |                                                     |                            | 66.0        |      |                | ŧ                  |         |        |        | 1          |                          |                   |
| -5    | -4.6          | 67.8               | 100/2   | -        |        | 11              |                | :          |                | .        | . <del>.</del> | +            |            |              |        | <i>%</i> %,                            | -5.0         | Green Gray Clayey Fine SA<br>with Cemented Sand     | ND, Trace Mica<br>d Layers | 68.2        |      |                | f                  |         |        |        | 1          |                          |                   |
|       | -             | Ŧ                  | 100/0.4 | 1        |        |                 |                | -          |                |          |                | 1            | 00/0.4     | <b> </b>     |        | Ë                                      | Ŧ            |                                                     |                            |             |      | -              | Ŧ                  |         |        |        | 1          |                          |                   |
|       |               | ‡                  |         |          |        | .               | · · ·<br>· · · |            | · · ·<br>· · · |          |                | 1            | •••<br>••• |              |        | _<br><u> </u>                          |              |                                                     |                            | 72.0        |      |                | ŧ                  |         |        |        | 1          |                          |                   |
| -10 - | -9.6          | 72.8               | 7       | 9        | 13     | ╢└╴             |                | <u> </u>   | ///            | Ţ.       | · · ·          | • •          | •••        |              | М      | <i>%</i> .,                            | ŧ            |                                                     |                            | , 2.0       |      | -              | ‡                  |         |        |        | 1          |                          |                   |
| -10 - |               | ‡                  |         |          |        |                 |                | 22         | · · ·<br>· · · | :        | <br>           | · ·          |            |              |        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | *            |                                                     |                            | 76 0        |      |                | ‡                  |         |        |        | 1          |                          |                   |
|       |               | + ^                |         |          |        |                 | · · /          |            | · · ·          |          | · · ·          | · ·          |            |              |        |                                        | <u>-12.8</u> | Green Gray Black Coarse S                           | andy CLAY with             | <u>76.0</u> |      |                | t                  |         |        |        | 1          |                          |                   |
| -15   | -14.6         | 77.8               | -       |          |        |                 | ŗ              |            |                |          |                |              |            |              |        |                                        | <u> </u>     | Shells                                              |                            |             |      |                | Ľ                  |         |        |        | L          |                          |                   |

#### SHEET 8 OF 43




|       | 4637          |                   |          |        |         | IP R-5703                                                                          |                 |           | Y LEN                  |             |         |                   |                           | GEOL        | OGIST Blonshine,                    | , E.G.   |                      | -    | <b>S</b> 4637   |               |         |        |          | <b>P</b> R-5703 |                    | COUNTY     |
|-------|---------------|-------------------|----------|--------|---------|------------------------------------------------------------------------------------|-----------------|-----------|------------------------|-------------|---------|-------------------|---------------------------|-------------|-------------------------------------|----------|----------------------|------|-----------------|---------------|---------|--------|----------|-----------------|--------------------|------------|
| SITE  | DESCR         | RIPTION           | Bric     | lge No | . 211   | on -L- (Felix                                                                      | k Harvey        | Pkwy) ove | er -Y3- S              | R 1004      | 4 (Hug  | jo Rd)            |                           |             |                                     |          | GROUND WTR (ft)      |      |                 |               |         | -      | ). 211 c | on -L- (Felix   | Harvey P           | 'kwy) over |
| BOR   | ing no        | . EB1-            | -B Rt.   | Ln.    | S       | TATION 1                                                                           | 65+89           |           | OFFSE                  | <b>T</b> 32 | ft RT   |                   |                           | ALIG        | IMENT -L-                           |          | 0 HR. N/A            | BOF  | ring no         | . EB1         | -B Rt.  | Ln.    | SI       | TATION 16       | 5+89               | (          |
| COL   | LAR EL        | <b>EV.</b> 63     | 3.0 ft   |        | т       | OTAL DEPI                                                                          | <b>FH</b> 99.0  | ft        | NORTH                  | HING        | 580,0   | 04                |                           | EAST        | ING 2,430,270                       |          | <b>24 HR.</b> 1.4    | COL  | LAR EL          | <b>EV.</b> 6  | 3.0 ft  |        | т        | OTAL DEPTH      | <b>H</b> 99.0 ft   | t   1      |
| DRILI | RIG/HA        | MMER E            | FF./DA   | TE SN  | /IE2938 | 8 CME-750 869                                                                      | % 02/11/20      | 16        |                        | 0           | ORILL N | IETHO             | DM                        | ud Rotary   | I                                   | HAMME    | RTYPE Automatic      | DRIL | .L RIG/HA       | MMER I        | EFF./DA | TE SM  | ME2938   | CME-750 86%     | 02/11/201          | 6          |
| DRIL  | LER N         | /liller, T.       |          |        | s       | TART DATE                                                                          | E 09/01/        | 16        | COMP                   | DATE        | E 09/0  | 01/16             |                           | SURF        | ACE WATER DEPT                      | H N/A    | ۹                    | DRI  | LLER N          | /liller, T    |         |        | ST       | TART DATE       | 09/01/1            | 16 0       |
| ELEV  | DRIVE<br>ELEV |                   | BLC      | ow cor | JNT     |                                                                                    | BLOWS           | PER FOO   | Г                      |             | SAMP.   | $\mathbf{\nabla}$ | L                         |             | SOIL AND ROCK                       |          |                      | ELEV | / DRIVE<br>ELEV |               | H BLC   | ow co  | UNT      |                 | BLOWS F            | PER FOOT   |
| (ft)  | (ft)          | (ft)              | 0.5ft    | 0.5ft  | 0.5ft   | 0 2                                                                                | 25              | 50        | 75                     | 100         | NO.     | моі               |                           | ELEV. (ft   |                                     | (DL00    | DEPTH (ft            | (ft) | (ft)            | (ft)          | 0.5ft   | 0.5ft  | 0.5ft    | 0 25            | 5 5                | 50 7       |
| 1     |               |                   |          |        |         |                                                                                    |                 |           |                        |             |         |                   |                           |             |                                     |          |                      |      |                 |               |         |        |          |                 |                    |            |
| 65    |               | ļ                 |          |        |         |                                                                                    |                 |           |                        |             |         |                   |                           | -           |                                     |          |                      | -15  |                 |               |         |        |          |                 | Matc               | ch Line    |
|       | 62.5          | +                 |          |        |         |                                                                                    |                 |           |                        |             |         |                   | -                         | 63.0        | GROUND                              |          |                      | 0    | -15.1           | <u>† 78.1</u> | 7       | 11     | 17       |                 | 28:                |            |
|       |               | + 0.5<br>         | 2        | 2      | 3       | -<br>•                                                                             |                 |           | .  <br>.               |             |         | M                 | $\mathbb{N}$              | -           | UNDIVIDED CC<br>Tan Gray Fine Sandy |          |                      |      |                 | Ŧ             |         |        |          |                 |                    | <b>]</b>   |
| 60    | 60.5          | <u>+ 2.5</u><br>+ | 3        | 4      | 4       |                                                                                    |                 |           | ·   · · ·              |             |         | м                 | $\mathbf{N}$              | _           |                                     | -        |                      | -20  | -20.1 .         | 83.1          | 60/0.1  | -      |          |                 |                    | +          |
|       | 57.0          | Ŧ 6.0             |          |        |         |                                                                                    |                 |           |                        |             |         |                   | $\mathbf{N}$              | -<br>- 56.5 |                                     |          | 6.5                  |      |                 | Ŧ             |         |        |          |                 |                    |            |
| 55    | 54.9          | I                 | 3        | 3      | 3       |                                                                                    |                 |           |                        |             |         | м                 |                           | - 50.5      | Gray Clayey                         | Fine S   |                      | -25  | -25.1           | T 88.1        |         |        |          |                 |                    |            |
|       | 01.0 -        | +                 | 4        | 4      | 4       | . • • 8                                                                            |                 |           |                        |             |         | м                 |                           | -           |                                     |          |                      |      |                 | +             | 10      | 11     | 19       |                 | •30 · ·            |            |
|       |               | Ŧ                 |          |        |         |                                                                                    |                 |           | .                      |             |         |                   | $\langle \rangle \rangle$ | -<br>51.0   |                                     |          | 12.0                 |      |                 | Ŧ             |         |        |          |                 |                    |            |
| 50    | 49.9          | 13.1              | 3        | 2      | 4       |                                                                                    |                 |           | ·   · · ·              |             |         |                   | /./                       |             | Blue Gray Clayey Coa                |          | N                    | -30  | -30.1           | 93.1          | 18      | 33     | 40       |                 |                    |            |
|       |               | ŧ                 | ľ        |        |         | $\begin{bmatrix} \bullet 6 & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$ |                 |           | .                      |             |         | М                 |                           | 48.0        | Ha                                  | ash      |                      |      |                 | ŧ             |         |        |          |                 | · · · · ·          |            |
| 45    |               | <b>†</b>          |          |        |         |                                                                                    |                 |           |                        |             |         |                   |                           | -           | [Peedee F<br>Blue Gray Fine Sandy   | CLAY     | with Shells and      | -35  | 05.4            | ‡             |         |        |          |                 | · · · ·<br>· · · · | · · · · ·  |
|       | 44.9          | <u> </u>          | 5        | 5      | 14      | · · • • 1!                                                                         | 9               |           |                        |             |         | м                 |                           | -           | Trace                               | Mica     |                      | -55  | -35.1 .         | 98.1          | 71      | 29/0.4 |          |                 | · · · ·            | +          |
|       |               | ‡                 |          |        |         |                                                                                    |                 |           | ·   · · · ·            |             |         |                   |                           | -           |                                     |          |                      |      |                 | ‡             |         |        |          |                 |                    |            |
| 40    | 39.9          | 23.1              |          |        |         |                                                                                    |                 |           | ·   · · ·              | •••         |         |                   |                           | -           |                                     |          |                      |      | -               | ‡             |         |        |          |                 |                    |            |
|       |               | ŧ                 | 4        | 3      | 5       |                                                                                    |                 |           |                        |             |         | м                 |                           | -           |                                     |          |                      |      |                 | ŧ             |         |        |          |                 |                    |            |
|       |               | ŧ                 |          |        |         |                                                                                    |                 |           |                        |             |         |                   |                           | <u>37.0</u> | Blue Gray Clayey Coa                |          | ND with Shell 26.0   |      |                 | ŧ             |         |        |          |                 |                    |            |
| 35    | 34.9          | 28.1              | 5        | 6      | 6       |                                                                                    |                 |           | ·   · · ·              |             |         | м                 | ///                       |             | Ha                                  | ish      |                      |      | -               | Ŧ             |         |        |          |                 |                    |            |
|       |               | ł                 |          |        |         |                                                                                    |                 |           |                        |             |         |                   | $\langle \cdot \rangle$   | -           |                                     |          |                      |      |                 | Ŧ             |         |        |          |                 |                    |            |
| 30    | 29.9          | I<br>33.1         |          |        |         |                                                                                    |                 |           |                        |             |         |                   | ///                       | -           |                                     |          |                      |      |                 | Ŧ             |         |        |          |                 |                    |            |
|       |               | +                 | 9        | 12     | 15      |                                                                                    | 27 · · ·        |           |                        |             |         | м                 | /./.                      | -           |                                     |          |                      |      |                 | Ŧ             |         |        |          |                 |                    |            |
|       |               | Ŧ                 |          |        |         |                                                                                    | 1               |           | .                      |             |         |                   |                           | 27.0        | Green Gray Fine Sar                 | ndv CLA  | <u>36.0</u>          | 4    |                 | Ŧ             |         |        |          |                 |                    |            |
| 25    | 24.9          | 38.1              | 7        | 7      | 7       | <i>-/</i>                                                                          |                 |           | ·   · · ·              |             |         | м                 |                           | -           | and Tra                             | ice Mica | l                    |      | -               | Ŧ             |         |        |          |                 |                    |            |
|       |               | Ŧ                 |          |        |         |                                                                                    |                 |           | .                      |             |         |                   |                           | -           |                                     |          |                      |      |                 | Ŧ             |         |        |          |                 |                    |            |
| 20    | 19.9          | <u>+</u><br>43.1  |          |        |         |                                                                                    |                 |           |                        |             |         |                   |                           | -           |                                     |          |                      |      |                 | Ŧ             |         |        |          |                 |                    |            |
|       | 10.0          | + +               | 5        | 6      | 7       | · · • 13·                                                                          |                 |           |                        |             |         | м                 |                           | -           |                                     |          |                      |      | -               | Ŧ             |         |        |          |                 |                    |            |
|       |               | ŧ                 | 1        |        |         |                                                                                    |                 |           | .                      |             |         |                   |                           | -           |                                     |          |                      |      |                 | Ŧ             |         |        |          |                 |                    |            |
| 15    | 14.9          | 48.1              | 5        | 6      | 8       |                                                                                    |                 | _ · · ·   | ·   · · ·              |             |         |                   |                           | -           |                                     |          |                      |      |                 | ‡             |         |        |          |                 |                    |            |
|       |               | ‡                 |          |        | 5       | <b>•</b> 14                                                                        |                 |           | .                      |             |         | M                 |                           | -           |                                     |          |                      |      |                 | ‡             |         |        |          |                 |                    |            |
| 10    |               | ‡                 | 1        |        |         |                                                                                    |                 |           |                        |             |         |                   |                           | -           |                                     |          |                      |      |                 | ‡             |         |        |          |                 |                    |            |
| 10    | 9.9 -         | 53.1<br>          | 4        | 6      | 7       | · · • 13·                                                                          |                 |           |                        |             |         | м                 |                           | -           |                                     |          |                      |      | -               | ‡             |         |        |          |                 |                    |            |
| 5     |               | ‡                 |          |        |         | :::::                                                                              |                 |           |                        |             |         |                   |                           | -           |                                     |          |                      |      |                 | ‡             |         |        |          |                 |                    |            |
|       | 4.9           | 58.1              | <u> </u> |        |         |                                                                                    |                 |           | · · · · ·              | · ·         |         |                   |                           | -           |                                     |          |                      |      | .               | ‡             |         |        |          |                 |                    |            |
|       |               | <b>‡</b>          | 5        | 5      | 6       | • • 11 •                                                                           |                 |           |                        |             |         | м                 |                           | -           |                                     |          |                      |      |                 | ‡             |         |        |          |                 |                    |            |
| 0     |               | ±                 | 1        |        |         | ::'\:                                                                              |                 |           | .  <br>.               | ::          |         |                   |                           | 2.0         | Green Gray Clayey Fi                | ine SAN  | ID with Shells, 61.0 | 41   |                 | ±             |         |        |          |                 |                    |            |
| 0     | -0.1          | 63.1              | 8        | 7      | 12      |                                                                                    |                 | +         |                        |             |         | м                 | <u>////</u>               |             | Trace Mica and Cen                  | mented   | Sand Layers          |      | -               | t             |         |        |          |                 |                    |            |
|       |               | Ŧ                 | 1        |        |         |                                                                                    |                 |           | .                      | ::          |         |                   | $\sim$                    | -           |                                     |          |                      |      |                 | Ŧ             |         |        |          |                 |                    |            |
| -5    | -5.1          | <u> </u>          | 1        |        |         |                                                                                    |                 |           |                        |             |         |                   |                           | 5.1         |                                     |          | 68.1                 |      |                 | Ŧ             |         |        |          |                 |                    |            |
|       | 0.1           | +                 | 60/0.1   | ]      |         |                                                                                    |                 |           |                        | 0/0.1       |         | M                 | 日                         | -           |                                     |          |                      |      | -               | Ŧ             |         |        |          |                 |                    |            |
| 10    |               | Ŧ                 |          |        |         |                                                                                    |                 |           | 1                      |             |         |                   | Ţ.                        | -8.1        |                                     |          | 71.1                 |      |                 | Ŧ             |         |        |          |                 |                    |            |
| -10   | -10.1 -       | 73.1              | 8        | 12     | 18      |                                                                                    |                 |           | · · · · ·              |             |         |                   | ~~~                       | -           |                                     |          |                      |      | .               | ‡             |         |        |          |                 |                    |            |
| -10   |               | ‡                 |          | '-     | 10      |                                                                                    | <b>●</b> 30 · · |           |                        |             |         | W                 |                           | -           |                                     |          |                      |      |                 | ‡             |         |        |          |                 |                    |            |
| 1     |               | ‡                 | 1        |        |         |                                                                                    | <b>i</b>        |           | ·   · · ·<br>·   · · · |             |         |                   |                           | -           |                                     |          |                      |      |                 | ‡             |         |        |          |                 |                    |            |
| -15   |               | 1                 | 1        |        |         |                                                                                    | LI              |           |                        |             |         |                   | .~~                       |             |                                     |          |                      |      |                 | 1             |         | 1      |          |                 |                    |            |

#### SHEET 9 OF 43



| -     | 46375         |                        |        |        |       | <b>TIP</b> R-5703                       |                                         |           | Y LENOIF  |                |        |      | GEOLO        | <b>DGIST</b> Blonshine, E.G.               |                    |       | <b>BS</b> 4637 |                  |         |              |        | <b>P</b> R-5703   |            | COUNTY       |
|-------|---------------|------------------------|--------|--------|-------|-----------------------------------------|-----------------------------------------|-----------|-----------|----------------|--------|------|--------------|--------------------------------------------|--------------------|-------|----------------|------------------|---------|--------------|--------|-------------------|------------|--------------|
|       |               |                        | Brid   | dge No | . 211 | on -L- (Felix Ha                        | arvey P                                 | kwy) ove  |           |                | -      | )    |              |                                            | GROUND WTR (f      |       |                |                  | N Brid  | lge No       |        | on -L- (Felix     | -          | kwy) over -  |
| BOR   | ING NO        | . B-2                  |        |        | 5     | STATION 166+                            | 46                                      |           | OFFSET    | 35 ft RT       | -      |      | ALIGN        | MENT -L-                                   | 0 HR. N//          | В     | DRING NO       | <b>).</b> В-2    |         |              | ST     | T <b>ATION</b> 16 | 6+46       | c            |
| COLI  | LAR ELI       | <b>EV.</b> 63          | 3.8 ft |        | 1     | TOTAL DEPTH                             | 99.3 ft                                 | t         | NORTHIN   | <b>G</b> 579,9 | 988    |      | EASTI        | <b>NG</b> 2,430,324                        | 24 HR. FIAI        | C     | OLLAR EL       | <b>EV.</b> 6     | 3.8 ft  |              | тс     | OTAL DEPT         | H 99.3 ft  | t <b>N</b>   |
| DRILL | RIG/HA        | MMER E                 | FF./DA | TE H   | PC027 | 9 Diedrich D50 88%                      | % 12/09/2                               | 2015      |           | DRILL I        | METHO  | DD M | ud Rotary    | HAMM                                       | IER TYPE Automatic | DF    | RILL RIG/HA    | MMER             | EFF./DA | TE HF        | PC0279 | Diedrich D50      | 88% 12/09/ | 2015         |
| DRIL  | LER C         | ain, J.                |        |        | 5     | START DATE 0                            | )8/15/1                                 | 6         | COMP. DA  | ATE 08/        | /15/16 | 6    | SURFA        | CE WATER DEPTH N                           | /A                 | D     | RILLER         | Cain, J.         |         |              | ST     | ART DATE          | 08/15/1    | 6 C          |
| ELEV  | DRIVE<br>ELEV | DEPTH                  | BLC    | ow co  | UNT   | В                                       | LOWS F                                  | PER FOOT  |           | SAMP.          | . 🔨 /  |      | •            | SOIL AND ROCK DES                          |                    | EL    |                | DEPTI            | H BLC   | w co         | JNT    |                   | BLOWS F    | PER FOOT     |
| (ft)  | (ft)          | (ft)                   | 0.5ft  | 0.5ft  | 0.5f  | 0 25                                    | 5                                       | 50        | 75 100    | NO.            | Имо    |      | ELEV. (ft)   | SOIL AND NOON DES                          | DEPTH              | t) (f | t) (ft)        | (ft)             | 0.5ft   | 0.5ft        | 0.5ft  | 0 2               | 25 5       | 50 75        |
|       |               |                        |        |        |       |                                         |                                         |           |           |                |        |      |              |                                            |                    |       |                |                  |         |              |        |                   |            |              |
| 65    |               |                        |        |        |       |                                         |                                         |           |           |                |        |      | _            |                                            |                    |       | 5              |                  |         | $\lfloor \_$ |        |                   |            | h Line       |
|       | 62.8          | - 1.0                  |        |        |       |                                         |                                         |           |           |                |        |      | 63.8<br>63.2 | GROUND SURF/<br>ASPHALT                    |                    | 0     |                | +                | 8       | 15           | 23     |                   | •38.       |              |
|       |               | ł                      | 8      | 7      | 5     |                                         |                                         |           |           |                | D      |      | -<br>- 60.8  | ROADWAY EMBAN                              |                    |       |                | Ŧ                |         |              |        |                   |            |              |
| 60    | 60.3          | <u>† 3.5</u>           | WOH    | 1      | 1     |                                         |                                         | · · · ·   |           |                | м      | N    |              | Tan Silty Fine SA                          |                    |       | 0 -19.7        | + 83.5<br>+      | 60/0.1  | -            |        |                   |            |              |
|       | 57.8          | 6.0                    | 1      | 2      | -     |                                         |                                         |           |           |                |        |      | -            | Tan Gray Fine Sand                         | y CLAY             |       |                | Ŧ                |         |              |        |                   |            |              |
| 55    | 55.3          | +<br>8.5               | 1      | 2      | 2     | 4                                       | · · ·<br>· · ·                          |           |           |                | M      |      | -            |                                            |                    |       | 5 -24.7        | +<br>+<br>- 88.5 |         |              |        |                   |            |              |
| - 55  |               | - 0.0                  | 2      | 3      | 4     |                                         |                                         |           |           | 11             | м      |      | -            |                                            |                    |       | <u> </u>       | +                | 9       | 13           | 25     |                   | . @38      |              |
|       | -             | t                      |        |        |       |                                         | · · ·<br>· · ·                          | · · · ·   |           |                |        |      | 51.8         |                                            | 12                 | D     |                | ŧ                |         |              |        |                   |            | <b>\</b> .:: |
| 50    | 50.3          | 13.5                   | 3      |        | 2     |                                         |                                         |           |           |                |        |      | -            | Black Clayey Coarse                        | e SAND             | -3    | 0 -29.7        | 93.5             | 16      | 35           | 44     |                   |            |              |
|       | -             | ł                      | 3      | 2      |       | <b>•</b> 4                              |                                         |           |           |                | W      | ///  | -            |                                            |                    |       |                | ł                | 16      | 35           | 44     |                   |            |              |
|       |               | Ŧ                      |        |        |       |                                         |                                         |           |           |                |        |      | 46.8         | COASTAL PLA                                | <u> </u>           |       |                | Ŧ                |         |              |        |                   |            |              |
| 45    | 45.3          | T 18.5                 | 3      | 2      | 7     | ┨┝╍┟╍                                   |                                         | · · · ·   | + • • • • |                | W      |      | -            | Gray Clayey Coarse SAND                    | with Shell Hash    | -3    | 5 -34.7        | 98.5             | 53      | 47/0.3       |        |                   |            |              |
|       | -             | ŧ                      |        |        |       |                                         | · · ·<br>· · ·                          |           |           |                |        | ///  | -            | [Peedee Formati                            | ionj               |       |                | ŧ                |         |              |        |                   |            |              |
| 40    | 40.3          | + 23.5                 |        |        |       |                                         | · · ·<br>· · ·                          | · · · ·   |           |                |        | ///  | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
| 40    |               | - 20.0                 | 1      | 4      | 6     |                                         |                                         |           |           |                | w      |      | -            |                                            |                    |       |                | ŧ                |         |              |        |                   |            |              |
|       |               | ł                      |        |        |       |                                         | · · ·                                   | · · · ·   |           |                |        |      | -            |                                            |                    |       |                | ŧ                |         |              |        |                   |            |              |
| 35    | 35.3          | 28.5                   |        |        |       | <u> </u>                                |                                         |           |           |                |        |      | -            |                                            |                    |       |                | ł                |         |              |        |                   |            |              |
|       |               | Ŧ                      | 10     | 12     | 22    |                                         | 34                                      |           |           |                | W      |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
|       |               | Ŧ                      |        |        |       |                                         | Ň.                                      |           |           |                |        |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
| 30    | 30.3          | 33.5                   | 15     | 21     | 23    |                                         | · \ ·                                   | · · · ·   |           |                | w      | /./. | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
|       | -             | ŧ                      |        |        |       |                                         | · · · • • • • • • • • • • • • • • • • • | 4         |           |                |        | ///  | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
|       |               |                        |        |        |       |                                         | · · · ·                                 | · · · ·   |           |                |        |      | 26.8         | Black Fine Sandy CLAY with                 | h Shells, Trace 37 |       |                | ŧ                |         |              |        |                   |            |              |
| 25    | 25.3          |                        | 7      | 8      | 9     |                                         |                                         |           |           |                | м      |      | -            | Mica                                       |                    |       |                | ŧ                |         |              |        |                   |            |              |
|       |               | ŧ                      |        |        |       | · · · <b>\</b> · ·                      | · · ·                                   | <br>      |           |                |        |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
| 20    | 20.3          | 43.5                   |        |        |       | 1 1 1 1                                 | • • •                                   |           |           |                |        |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
|       | -             | Ŧ                      | 6      | 8      | 15    |                                         |                                         |           |           | ]              | M      |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
|       |               | Ŧ                      |        |        |       |                                         | · · ·<br>· · ·                          |           |           |                |        |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
| 15    | 15.3          | 48.5                   | 6      | 8      | 9     |                                         |                                         |           | · · · ·   | 41             |        |      | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
|       | -             | ‡                      |        |        |       |                                         | · · ·<br>· · ·                          | <br>      |           |                |        |      | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
|       | 10.0          | ±                      |        |        |       |                                         | · · ·                                   |           |           |                |        |      | -            |                                            |                    |       |                | <b>±</b>         |         |              |        |                   |            |              |
| 10    | 10.3          | <u>53.5</u>            | 6      | 8      | 10    |                                         |                                         |           |           |                | м      |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
|       |               | F                      |        |        |       | $    \cdot \cdot \cdot   \cdot   \cdot$ |                                         |           |           |                |        |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
| 5     | 5.3           | -<br>58.5              |        |        |       |                                         | · · ·<br>· · ·                          |           |           |                |        |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
|       | -             | Ŧ                      | 6      | 6      | 8     |                                         |                                         |           |           | 1              | W      |      | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
|       | -             | ŧ                      |        |        |       |                                         | · · ·<br>· · ·                          | · · · · · |           |                |        |      | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
| 0     | 0.3           | 63.5                   | 8      | 10     | 14    |                                         | · · ·                                   |           | · · · ·   |                |        |      | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
|       | -             | ‡                      |        |        |       |                                         |                                         | <br>      |           |                | W      |      | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
|       |               | ±                      |        |        |       | .                                       | · · · ·                                 | <u> </u>  |           |                |        |      | -3.2         | Green Grav to Grav Clavev                  | Fine to Coarse     | 익     |                | t                |         |              |        |                   |            |              |
| -5    | -4.7          | <u>† 68.5</u>          | 83     | 17/0.4 |       |                                         |                                         |           | 100/0.9   | •              | w      |      | _            | Green Gray to Gray Clayey<br>SAND with She | ells               |       | .              | Ŧ                |         |              |        |                   |            |              |
|       |               | Ŧ                      |        |        |       |                                         |                                         |           |           |                |        | ///  | -            |                                            |                    |       |                | Ŧ                |         |              |        |                   |            |              |
| -10   | -9.7          | 735                    |        |        |       |                                         | · · ·<br>· · ·                          | · · · · / |           |                |        | /./. | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
| -10   |               | ‡ <sup>, , ,</sup> , , | 10     | 16     | 27    | 1                                       | •43                                     | <u> </u>  |           | 11             | w      | ~~~~ | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
| 2     |               | ‡                      |        |        |       |                                         | .<br>                                   | <br>      |           |                |        | /./. | -            |                                            |                    |       |                | ‡                |         |              |        |                   |            |              |
| -15   | -14.7         | 78.5                   |        |        |       |                                         | • <u>;</u> •                            |           |           |                |        |      |              |                                            |                    |       |                | +                |         |              |        |                   |            |              |
|       |               |                        |        |        |       |                                         |                                         |           |           |                |        |      |              |                                            |                    |       |                |                  |         |              |        |                   |            |              |

#### SHEET 10 OF 43



| <b>WBS</b> 46375.1.1                                                               |            | <b>TIP</b> R-5703                                             | 3                                       | -              | Y LENOIF                              |                |             | GE                                                           | OLOGIST Blonshine, E.G.                  |                               | WB           | <b>S</b> 4637           | 511                                     |         |                 | TIP      | <b>P</b> R-5703          | COUNT             | Y LENOIR                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GEOLOGIST Blonshine,       | FG                                      |
|------------------------------------------------------------------------------------|------------|---------------------------------------------------------------|-----------------------------------------|----------------|---------------------------------------|----------------|-------------|--------------------------------------------------------------|------------------------------------------|-------------------------------|--------------|-------------------------|-----------------------------------------|---------|-----------------|----------|--------------------------|-------------------|---------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|
| SITE DESCRIPTION Bri                                                               | idge No. 2 |                                                               |                                         |                |                                       |                | o Rd)       |                                                              |                                          | GROUND WTR (ft)               |              |                         |                                         | N Brid  | lge No          |          | n -L- (Felix Harve       |                   |                                       | 04 (Hu         | go Rd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | GROUND WTR (ft)                         |
| BORING NO. EB2-B Rt                                                                | -          | STATION 1                                                     | -                                       | • /            | OFFSET                                |                |             |                                                              | IGNMENT -L-                              | 0 HR. N/A                     |              | RING NO                 |                                         |         | -               |          | ATION 167+05             |                   | OFFSET 3                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALIGNMENT -L-              | 0 HR. N/A                               |
| COLLAR ELEV. 63.3 ft                                                               |            | TOTAL DEP                                                     | <b>TH</b> 99.0                          | ft             | NORTHIN                               | <b>G</b> 579,9 | 72          | EA                                                           | STING 2,430,380                          | 24 HR. FIAD                   | COL          | LAR EL                  | <b>.EV.</b> 6                           | 3.3 ft  |                 | то       | TAL DEPTH 99             | .0 ft             | NORTHING                              | <b>5</b> 579,9 | 972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EASTING 2,430,380          | 24 HR. FIAD                             |
| DRILL RIG/HAMMER EFF./D                                                            | ATE SME    | 1<br>2938 CME-750 86                                          | 5% 02/11/20                             | 16             | I                                     |                | IETHO       | D Mud Rota                                                   | ary HAMN                                 | MER TYPE Automatic            | DRIL         | L RIG/HA                | AMMER E                                 | EFF./DA | TE SN           | /E2938 C | CME-750 86% 02/11        | /2016             | ·                                     | DRILL          | METHOD M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ud Rotary                  | HAMMER TYPE Automatic                   |
| DRILLER Miller, T.                                                                 |            | START DAT                                                     | E 09/06/                                | 16             | COMP. D                               | ATE 09/        | 06/16       | SU                                                           | RFACE WATER DEPTH N                      | I/A                           | DRI          | LLER I                  | Miller, T                               |         |                 | ST       | ART DATE 09/0            | 06/16             | COMP. DAT                             | TE 09/         | 06/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SURFACE WATER DEPT         | H N/A                                   |
|                                                                                    | OW COUN    |                                                               |                                         | PER FOOT<br>50 | 75 100                                | SAMP.          |             |                                                              | SOIL AND ROCK DES                        |                               | ELEV<br>(ft) | / DRIVE<br>ELEV<br>(ft) | DEPTH<br>(ft)                           | ·       | OW COU<br>0.5ft |          | BLO <sup>1</sup><br>0 25 | NS PER FOOT<br>50 | 75 100                                | SAMP.<br>NO.   | MOI G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SOIL AND ROCK              |                                         |
| 65<br>62.8 0.5<br>60.8 2.5 1<br>60                                                 | 1          | 1<br>• 2 · · · ·                                              | · · · · ·                               | · · · ·        | · · · · · · · · · · · · · · · · · · · | SS-21          | 18%         | - 63.3<br>- 60.3                                             | UNDIVIDED COAST                          | AL PLAIN                      | -15<br>-20   | -19.2                   | - 82.5                                  |         |                 |          | ▲<br>                    |                   | · · · · · · · · · · · · · · · · · · · |                | Market Ma | Green Gray Clayey F        | ine to Coarse SAND                      |
| 57.3 6.0<br>57.3 6.0<br>55 54.8 8.5<br>50 49.8 13.5<br>50 49.8 2                   | 3          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$         |                                         |                |                                       | -              | M<br>W<br>W | 548<br>513                                                   | Gray Clayey Coarse                       | CLAY, Trace                   | -25          | -24.2                   | +                                       | 100/0.3 | 16              | 25       |                          |                   | 100/0.3                               |                | м<br><i>1,1,2,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          |                                         |
| 45 45.8 17.5 2                                                                     | 6          | 31                                                            | • • • • • • • • • • • • • • • • • • • • |                |                                       |                | w           |                                                              | Pash<br>[Peedee Format                   | tion]                         | -35          | 34.2                    | +<br>+<br>97.5<br>+<br>+                | 21      | 26              | 74/0.5   |                          |                   | 100/1.0                               | )<br>          | M M M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>                       | Elevation -35.7 ft in<br>ey Coarse SAND |
|                                                                                    | 6          | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12      | 8<br><br><br><br>                       |                |                                       |                | W<br>M      |                                                              |                                          |                               |              |                         |                                         |         |                 |          |                          |                   |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-<br>-<br>- |                                         |
| 30 30.8 32.5<br>30 25.8 37.5                                                       | 19         | 21                                                            | · · · · · · · · · · · · · · · · · · ·   |                |                                       |                | М           | 27.<br>                                                      | Black Fine Sandy CLAY, Ti                |                               |              |                         | +<br>+<br>+<br>+<br>+<br>+              |         |                 |          |                          |                   |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-<br>-      |                                         |
| 25 25.8 37.3 27<br>20 20.8 42.5 5                                                  |            | 9<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | • 34<br>•<br>·                          |                |                                       |                | M<br>M      |                                                              | Cemented Sand I                          | layers                        |              |                         |                                         |         |                 |          |                          |                   |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>                      |                                         |
| 15.8 47.5<br>5                                                                     | 6          | 9                                                             |                                         |                |                                       | _              | м           |                                                              |                                          |                               |              |                         |                                         |         |                 |          |                          |                   |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                          |                                         |
| 10<br>10.8 = 52.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |            |                                                               |                                         |                | · · · · · ·                           | _              | м           |                                                              |                                          |                               |              |                         | +<br>+<br>+<br>+                        |         |                 |          |                          |                   |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-<br>-      |                                         |
|                                                                                    | 7          |                                                               | 8.                                      |                |                                       |                | м           | 4.7                                                          |                                          | 68.0                          |              |                         |                                         |         |                 |          |                          |                   |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                         |
| -10<br>-9.2 - 72.5<br>-9.2 - 72.5<br>-9.2 - 72.5<br>                               |            | 18                                                            | • • • • • • • • • • • • • • • • • • •   |                |                                       |                | w           | -7.7<br>-7.7<br>-7.7<br>-7.7<br>-7.7<br>-7.7<br>-7.7<br>-7.7 | Green Gray Clayey Fine to<br>with Shells | 71.0<br>72.0<br>O Coarse SAND |              |                         | + + + + + + + + + + + + + + + + + + + + |         |                 |          |                          |                   |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-<br>-<br>- |                                         |

#### SHEET 11 OF 43

Revision No. 0

**Particle Size Analysis of Soils** 



Form No. TR-T88

Revision No. 0 Revision Date: 12/20/09

| Revision Date: 12                                                                                                                                       | 2/20/09                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | AASHT                                         | 9 T88 as                                                                                         | Modified                                       | by NCI                 | DOT                                                                 |                                                                                                |                                                          |                                                     |                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|
|                                                                                                                                                         | S&ME.                                                                                  | , Inc. Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | leigh.                               | 3201 Sp                                       | ring Fo                                                                                          | est Roa                                        | d, <u>R</u> ale        | eigh, North                                                         | Carolina 2                                                                                     | <i>Quality</i> 2<br><b>7616</b>                          | Assura                                              | ince                                                              |
| S&ME Project #                                                                                                                                          |                                                                                        | 35-16-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | <b>I</b> ,                                    |                                                                                                  |                                                |                        |                                                                     | ort Date:                                                                                      |                                                          | 9/20/1                                              | 6                                                                 |
| Project Name:                                                                                                                                           |                                                                                        | F. Harve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y Parkv                              | way Exte                                      | nsion R                                                                                          | -5703                                          |                        | Test                                                                | t Date(s):                                                                                     | 9/12                                                     | 2 - 9/2                                             | 20/16                                                             |
| State Project #:                                                                                                                                        | 463                                                                                    | 375.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | F.A. Pr                                       | oject No                                                                                         | N/A                                            |                        | T                                                                   | IP NO:                                                                                         | R-5703                                                   |                                                     |                                                                   |
| Client Name:                                                                                                                                            | Mi                                                                                     | chael Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ıker En                              | gineerin                                      | g                                                                                                |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| Address:                                                                                                                                                | Ral                                                                                    | leigh, NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                    |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| Boring #:                                                                                                                                               | B-1                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | Sa                                            | ample #:                                                                                         | SS-20                                          |                        |                                                                     | Sample I                                                                                       | Date:                                                    | 8/4/                                                | 16                                                                |
| Location:                                                                                                                                               | 166                                                                                    | 6+85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                               | Offset:                                                                                          | 37 LT                                          |                        |                                                                     | Depth                                                                                          | (ft):                                                    | 3.5                                                 | - 5.0                                                             |
| Sample Descript                                                                                                                                         | tion:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  | Gray                                           | Coarse                 | e to Fine Sa                                                        | ndy Silty Cl                                                                                   | LAY A                                                    | 4-6                                                 | (4)                                                               |
| 100%                                                                                                                                                    | 1.5" 1"3/4"                                                                            | 1/2'3/8"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | #4                                   | #10                                           | #20                                                                                              | #40 #60                                        | #100                   | #200 #270                                                           |                                                                                                |                                                          |                                                     |                                                                   |
|                                                                                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| 90%                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  | $\mathbf{N}$                                   |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| 80%                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +++-                                 |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| 70%                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                | $\mathbf{N}$           |                                                                     |                                                                                                |                                                          | _                                                   |                                                                   |
|                                                                                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| bercent Passing<br>A 50%                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| 50%                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        | N                                                                   |                                                                                                |                                                          |                                                     |                                                                   |
|                                                                                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +++-                                 |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| <b>й</b> 40%                                                                                                                                            |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| 30%                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
|                                                                                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +++                                  |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| 20%                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| 10%                                                                                                                                                     |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
|                                                                                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  | <u> </u>                                       |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
| 0%                                                                                                                                                      |                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | *                                             | 1                                                                                                | *                                              | 0                      | ).1                                                                 | 0.01                                                                                           |                                                          |                                                     | 0.0                                                               |
|                                                                                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               | Particle                                                                                         | Size (mm)                                      |                        |                                                                     |                                                                                                |                                                          |                                                     |                                                                   |
|                                                                                                                                                         |                                                                                        | ined by NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CDOT                                 |                                               |                                                                                                  |                                                |                        | ~ .                                                                 | $< 0^{\prime}$                                                                                 | 25 mm and                                                | > 0.05                                              | mm                                                                |
| Gravel                                                                                                                                                  | 1                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |                                               |                                                                                                  |                                                |                        | Sand                                                                |                                                                                                |                                                          |                                                     |                                                                   |
| Coorse Se                                                                                                                                               | nd                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | and $> 2.00$                                  |                                                                                                  |                                                | S                      | silt                                                                |                                                                                                | ).05 and >                                               | 0.005 n                                             | nm                                                                |
| Coarse Sa<br>Maximum Partic                                                                                                                             |                                                                                        | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00 mm                              | and > 2.00<br>n and >0.2                      | 5 mm                                                                                             | Sand                                           | S                      | ilt<br>lay                                                          | < (                                                                                            |                                                          | 0.005 n<br>mm                                       |                                                                   |
| Maximum Partic                                                                                                                                          |                                                                                        | <<br>#4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.00 mn<br>1                         |                                               | 5 mm<br>Coarse                                                                                   |                                                | S                      | ilt<br>lay<br>18%                                                   | <(<br>Silt                                                                                     | ).05 and >                                               | 0.005 n<br>mm                                       | 17%                                                               |
| Maximum Partic<br>Gravel                                                                                                                                | cle Size                                                                               | <<br>#4<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00 mm<br>4<br>%                    |                                               | 5 mm<br>Coarse<br>Fine Sa                                                                        | and                                            | S<br>C                 | ilt<br>lay<br>18%<br>37%                                            | <pre> &lt; (   Silt   Clay</pre>                                                               | 0.05 and ><br>< 0.005                                    | 0.005 n<br>mm                                       | 17%<br>28%                                                        |
| Maximum Partic<br>Gravel<br>Apparent Relativ                                                                                                            | cle Size                                                                               | <<br>#4<br>19<br>y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.00 mm<br>4<br>%<br>D               |                                               | 5 mm<br>Coarse<br>Fine Sa<br>Moistu                                                              | and<br>re Conte                                | S<br>C                 | ilt<br>lay<br>18%<br>37%<br>20%                                     | Silt<br>Clay<br>% Passin                                                                       | 0.05 and ><br>< 0.005<br>ng #200                         | 0.005 n<br>mm                                       | 17%<br>28%<br>\$8.8%                                              |
| Maximum Partic<br>Gravel<br>Apparent Relativ                                                                                                            | cle Size                                                                               | <<br>#4<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00 mm<br>4<br>%<br>D               | n and >0.2                                    | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic                                                   | and<br>re Conte                                | s<br>C                 | ilt<br>lay<br>18%<br>37%                                            | <pre> &lt; (   Silt   Clay</pre>                                                               | 0.05 and ><br>< 0.005<br>ng #200                         | 0.005 n<br>mm                                       | 17%<br>28%                                                        |
| Maximum Partic<br>Gravel<br>Apparent Relativ<br>Liquid Limit<br>Coarse S                                                                                | cle Size<br>ve Density<br>Sand                                                         | <ul> <li></li> <li>#4</li> <li>19</li> <li>y</li> <li>N1</li> <li>28</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00 mm<br>4<br>%<br>D<br>3          | n and >0.2.                                   | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic                                                   | and<br>re Conte<br>Limit                       | s<br>C                 | ilt<br>lay<br>18%<br>37%<br>20%                                     | Silt<br>Clay<br>% Passin                                                                       | 0.05 and ><br>< 0.005<br>ng #200                         | 0.005 n<br>mm<br>4                                  | 17%<br>28%<br>\$8.8%                                              |
| Maximum Partic<br>Gravel<br>Apparent Relativ<br>Liquid Limit<br>Coarse S<br>Description of S                                                            | cle Size<br>ve Density<br>Sand<br>Sand & Gra                                           | <ul> <li></li> <li>#4</li> <li>19</li> <li>y</li> <li>N1</li> <li>28</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00 mm<br>4<br>%<br>D<br>3          | n and >0.2<br>So<br>Fine                      | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic<br>pil Morta<br>e Sand<br>unded                   | and<br>re Conte<br>Limit<br>ar (-#10 S         | s<br>C                 | Silt<br>lay<br>18%<br>37%<br>20%<br>12<br>Silt                      | <pre>&lt; ( Silt Clay % Passin Plastic In 17% An</pre>                                         | 0.05 and ><br>< 0.005<br>ng #200<br>ndex<br>Cla<br>gular | 0.005 n<br>mm<br>4                                  | 17%<br>28%<br>48.8%<br>16<br>28%                                  |
| Maximum Partic<br>Gravel<br>Apparent Relativ<br>Liquid Limit<br>Coarse S                                                                                | cle Size<br>ve Density<br>Sand<br>Sand & Gra                                           | <ul> <li></li> <li>#4</li> <li>19</li> <li>y</li> <li>N1</li> <li>28</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00 mm<br>4<br>%<br>D<br>3<br>cles: | n and >0.2<br>So<br>Fine<br>Rou               | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic<br>Dil Morta<br>Sand<br>unded<br>Soft             | and<br>re Conte<br>Limit<br>ar (-#10 \$<br>37% | s<br>C                 | Silt<br>lay<br>18%<br>37%<br>20%<br>12<br>Silt                      | Silt<br>Clay<br>% Passin<br>Plastic In<br>17%                                                  | 0.05 and ><br>< 0.005<br>ng #200<br>ndex<br>Cla<br>gular | 0.005 n<br>mm<br>4                                  | 17%<br>28%<br>48.8%<br>16<br>28%<br>≰                             |
| Maximum Partic<br>Gravel<br>Apparent Relativ<br>Liquid Limit<br>Coarse S<br>Description of S<br>Hard & D                                                | cle Size<br>ve Density<br>Sand<br>Sand & Gra<br>Durable                                | <pre> &lt;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.00 mm<br>4<br>%<br>D<br>3<br>cles: | n and >0.2<br>So<br>Fine                      | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic<br>Dil Morta<br>Sand<br>unded<br>Soft             | and<br>re Conte<br>Limit<br>ar (-#10 \$<br>37% | s<br>C                 | Silt<br>lay<br>18%<br>37%<br>20%<br>12<br>Silt                      | <pre>&lt; ( Silt Clay % Passin Plastic In 17% An</pre>                                         | 0.05 and ><br>< 0.005<br>ng #200<br>ndex<br>Cla<br>gular | 0.005 n<br>mm<br>4<br>y<br>[>                       | 17%<br>28%<br>48.8%<br>16<br>28%<br>≰                             |
| Maximum Partic<br>Gravel<br>Apparent Relativ<br>Liquid Limit<br>Coarse S<br>Description of S<br>Hard & D<br>References / Comm                           | cle Size<br>ve Density<br>Sand<br>Sand & Gra<br>Durable<br>Gents / Devia               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00 mm<br>4<br>%<br>D<br>3<br>cles: | n and >0.2.<br>Sc<br>Fine<br>Rou              | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic<br>Dil Morta<br>e Sand<br>unded<br>Soft<br>mined. | and<br>re Conte<br>Limit<br>ar (-#10 \$<br>37% | s<br>C<br>nt<br>Sieve) | silt<br>lay<br>18%<br>37%<br>20%<br>12<br>Silt<br>We                | Silt<br>Clay<br>% Passin<br>Plastic In<br>17%<br>An<br>athered & Fr                            | 0.05 and ><br>< 0.005<br>ng #200<br>ndex<br>Cla<br>gular | 0.005 n<br>mm<br>4<br>y<br>∑                        | 17%<br>28%<br>48.8%<br>16<br>28%<br>≰<br>≰                        |
| Maximum Partic<br>Gravel<br>Apparent Relativ<br>Liquid Limit<br>Coarse S<br>Description of S<br>Hard & D<br>References / Comm                           | cle Size<br>ve Density<br>Sand<br>Sand & Gra<br>Durable                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00 mm<br>4<br>%<br>D<br>3<br>cles: | n and >0.2<br>Sc<br>Fine<br>Rou<br>Not Deterr | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic<br>Dil Morta<br>Sand<br>unded<br>Soft             | and<br>re Conte<br>Limit<br>ar (-#10 \$<br>37% | s<br>C<br>nt<br>Sieve) | Silt<br>lay<br>18%<br>37%<br>20%<br>12<br>Silt                      | Silt<br>Clay<br>% Passin<br>Plastic In<br>17%<br>An<br>athered & Fu                            | 0.05 and ><br>< 0.005<br>ng #200<br>ndex<br>Cla<br>gular | 0.005 n<br>mm<br>4<br>y<br>[>                       | 17%<br>28%<br>48.8%<br>16<br>28%<br>∝<br>∞<br>/2016               |
| Maximum Partic<br>Gravel<br>Apparent Relativ<br>Liquid Limit<br>Coarse S<br>Description of S<br>Hard & D<br>References / Comm<br><u>Mal K</u>           | cle Size<br>ve Density<br>Sand<br>Sand & Gra<br>Durable<br>tents / Devia<br>Krajan, ET |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00 mm<br>4<br>%<br>D<br>3<br>cles: | n and >0.2<br>Sc<br>Fine<br>Rou<br>Not Deterr | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic<br>Dil Morta<br>e Sand<br>unded<br>Soft<br>mined. | and<br>re Conte<br>Limit<br>ar (-#10 \$<br>37% | s<br>C<br>nt<br>Sieve) | ilt<br>lay<br>18%<br>37%<br>20%<br>12<br>Silt<br>We<br>Laboratory M | Silt<br>Clay<br>% Passin<br>Plastic In<br>17%<br>An<br>athered & Fu                            | 0.05 and ><br>< 0.005<br>ng #200<br>ndex<br>Cla<br>gular | 0.005 n<br>mm<br>4<br>y<br><u>y</u><br><u>9/12/</u> | 17%<br>28%<br>48.8%<br>16<br>28%<br>∝<br>∞<br>/2016               |
| Maximum Partic<br>Gravel<br>Apparent Relativ<br>Liquid Limit<br>Coarse S<br>Description of S<br>Hard & D<br>References / Comm<br><u>Mal K</u><br>Techni | cle Size<br>ve Density<br>Sand<br>Sand & Gra<br>Durable<br>tents / Devia<br>Krajan, ET | 44<br>19<br>28<br>28<br>18%<br>avel Partic<br>X<br>titions:<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>2<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>2<br>8<br>3<br>8<br>3 | 2.00 mm<br>4<br>%<br>D<br>3<br>cles: | n and >0.2<br>Sc<br>Fine<br>Rou<br>Not Deterr | 5 mm<br>Coarse<br>Fine Sa<br>Moistu<br>Plastic<br>Dil Morta<br>e Sand<br>unded<br>Soft<br>mined. | and<br>re Conte<br>Limit<br>ar (-#10 \$<br>37% | s<br>C<br>nt<br>Sieve) | ilt<br>lay<br>18%<br>37%<br>20%<br>12<br>Silt<br>We<br>Laboratory M | Silt<br>Clay<br>% Passin<br>Plastic In<br>17%<br>An<br>athered & Fi<br>Manager<br>n<br>Manager | 0.05 and ><br>< 0.005<br>ng #200<br>ndex<br>Cla<br>gular | 0.005 n<br>mm<br>4<br>y<br><u>y</u><br><u>9/12/</u> | 17%<br>28%<br>48.8%<br>16<br>28%<br>≰<br>≰<br><u>⁄2016</u><br>ute |

| S&ME,                                            | , Inc. Raleigh,                       | 3201 Spring Fore        | st Road, Ral  | eigh, North C             | arolina 2761   | 6             |          |
|--------------------------------------------------|---------------------------------------|-------------------------|---------------|---------------------------|----------------|---------------|----------|
| S&ME Project #: 62.                              | 35-16-010                             |                         |               | Repor                     | rt Date:       | 12/27         |          |
| Project Name: C.I                                | F. Harvey Park                        | way Extension R-5       |               | Test I                    | Date(s):       | 12/24 - 12    | 2/27/16  |
| State Project #: 46.                             | 375.1.1                               | F.A. Project No:        | N/A           | TIP                       | NO: R-         | 5703          |          |
| Client Name: Mi                                  | chael Baker E                         | ngineering              |               |                           |                |               |          |
| Address: Ra                                      | leigh, NC                             |                         |               |                           |                |               |          |
| Boring #: EB                                     | 2-A LT LN                             | Sample #:               | ST-4          |                           | Sample Date    | : 9/7/        | 16       |
| Location: 16                                     | 7+45                                  | Offset:                 | 46 LT         |                           | Depth (ft)     | : 17.0 -      | 19.0 ft  |
| Sample Description:                              |                                       |                         | Gray Coarse   | to Fine Sandy             | y Clayey SIL   | Г А-4         | (0)      |
| 1.5" 1"3/4"                                      | ' 1/2'3/8" #4                         | #10 #20 #               | \$40 #60 #100 | #200 #270                 |                |               |          |
|                                                  | • • • • • • • • • • • • • • • • • • • |                         | + + + +       |                           |                | 1 1 1         | <b>]</b> |
|                                                  |                                       |                         |               |                           |                |               |          |
| 90%                                              |                                       |                         |               |                           |                |               |          |
| 80%                                              |                                       | <b> </b>                |               |                           |                |               |          |
|                                                  |                                       |                         |               |                           |                |               |          |
| 70%                                              |                                       |                         |               |                           |                |               |          |
|                                                  |                                       |                         | <b>\</b>      |                           |                |               |          |
| 60%                                              |                                       |                         |               |                           |                |               |          |
| te 50%                                           |                                       |                         |               |                           |                |               |          |
| 40%                                              |                                       |                         |               |                           |                |               |          |
|                                                  |                                       |                         |               |                           |                |               |          |
| 30%                                              |                                       |                         |               |                           |                |               |          |
| 20%                                              |                                       |                         |               |                           |                |               |          |
| 20%                                              |                                       |                         |               |                           |                |               |          |
| 10%                                              |                                       |                         |               |                           |                |               |          |
| 0%                                               |                                       |                         |               |                           |                |               |          |
| 100                                              | 10                                    | 1                       |               | ).1                       | 0.01           |               | 0.0      |
|                                                  |                                       | Particle Si             | ze (mm)       |                           |                |               |          |
| As Defi                                          | ined by NCDOT                         |                         | Fine          | e Sand                    | < 0.25 m       | m and $> 0.0$ | 5 mm     |
| Gravel                                           |                                       | and $> 2.00 \text{ mm}$ | <u>s</u>      | Silt                      |                | and > 0.005   |          |
| Coarse Sand                                      |                                       | m and >0.25 mm          |               | Clay                      | -              | 0.005 mm      |          |
| Maximum Particle Size                            | 3/8"                                  | Coarse S                |               | 23%                       | Silt           |               | 18%      |
| Gravel                                           | 2%                                    | Fine San                | nd            | 38%                       | Clay           |               | 19%      |
| Apparent Relative Density                        | y ND                                  | Moisture                | e Content     | 19%                       | % Passing      | <b>#200</b>   | 40.3%    |
| Liquid Limit                                     | 27                                    | Plastic L               | .imit         | 21                        | Plastic Inde   | x             | 6        |
|                                                  |                                       | Soil Mortar             | (-#10 Sieve)  |                           |                |               |          |
| Coarse Sand                                      | 23%                                   | Fine Sand               | 39%           | Silt                      | 19%            | Clay          | 19%      |
| Description of Sand & Gra                        | avel Particles:                       | Rounded                 |               |                           | Angula         |               | X        |
| Hard & Durable                                   | X                                     | Soft                    |               | Weat                      | hered & Friabl | e             |          |
| References / Comments / Devia                    | tions: ND                             | =Not Determined.        |               |                           |                |               |          |
|                                                  |                                       |                         |               |                           |                |               |          |
| <u>Mal Krajan, ET</u>                            |                                       | <u>104-01-0703</u>      |               | Laboratory M              | anager         |               | 7/2016   |
| Technician Name                                  |                                       | Certification No.       |               | Position                  |                | Ľ             | Date     |
|                                                  |                                       | Mar                     | >             | Laboratory M              | onogor         | 0/24          | 5/2016   |
|                                                  |                                       |                         |               |                           |                |               |          |
| <u>Mal Krajan, ET</u><br>Technical Responsibilit |                                       | Signature               |               | Laboratory Ma<br>Position | allager        | -             | Date     |

3201 Spring Forest Road Raleigh, NC 27616

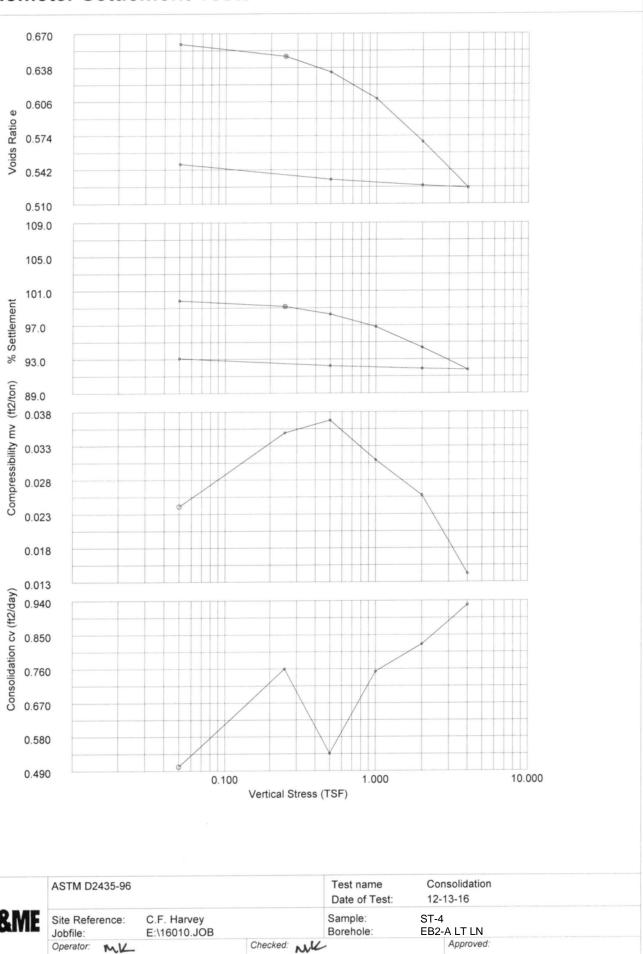
B-1 SS-20 (3.5 - 5 ft) Classification.xls

S&ME, Inc.

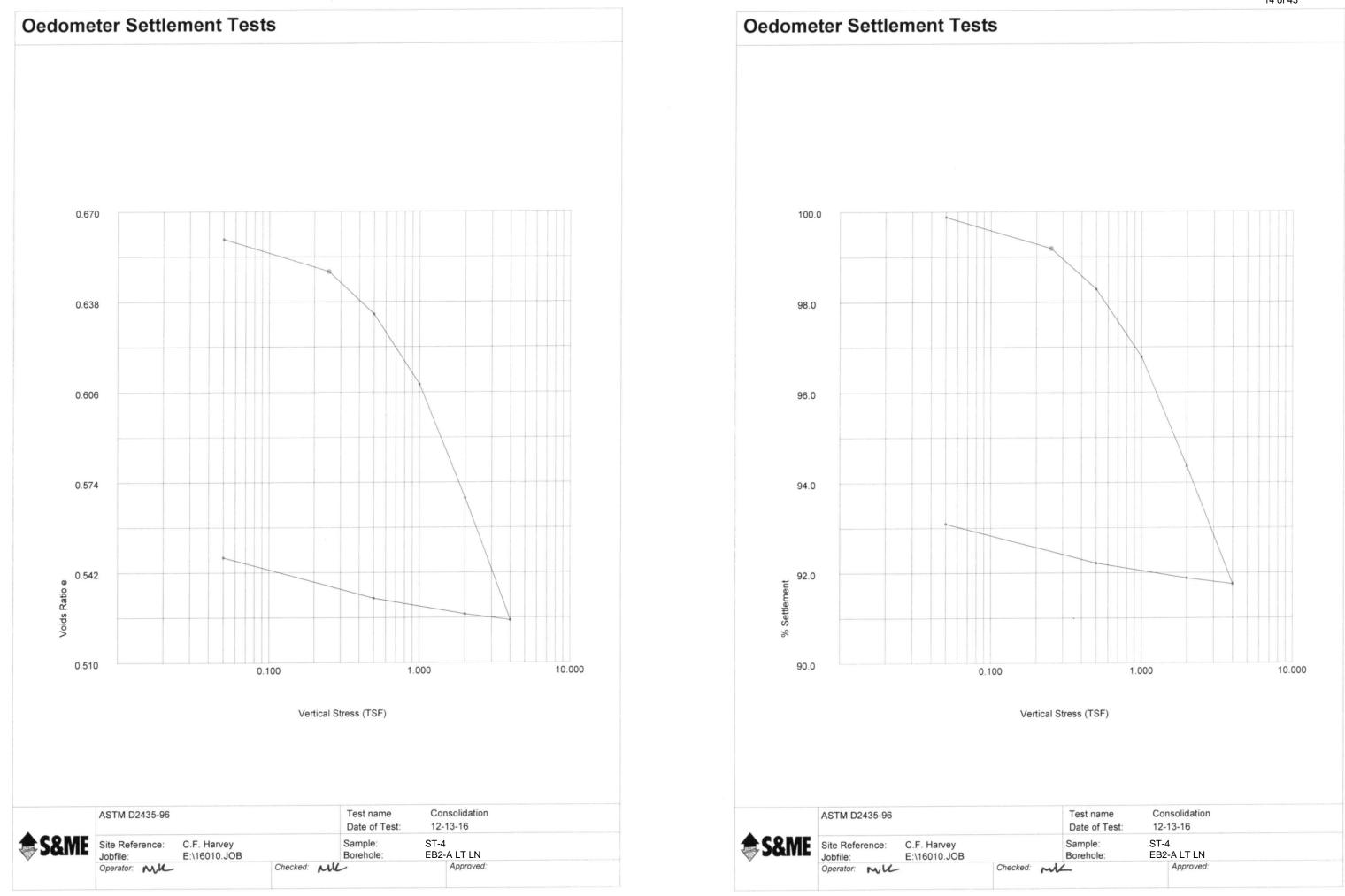
#### **Particle Size Analysis of Soils**

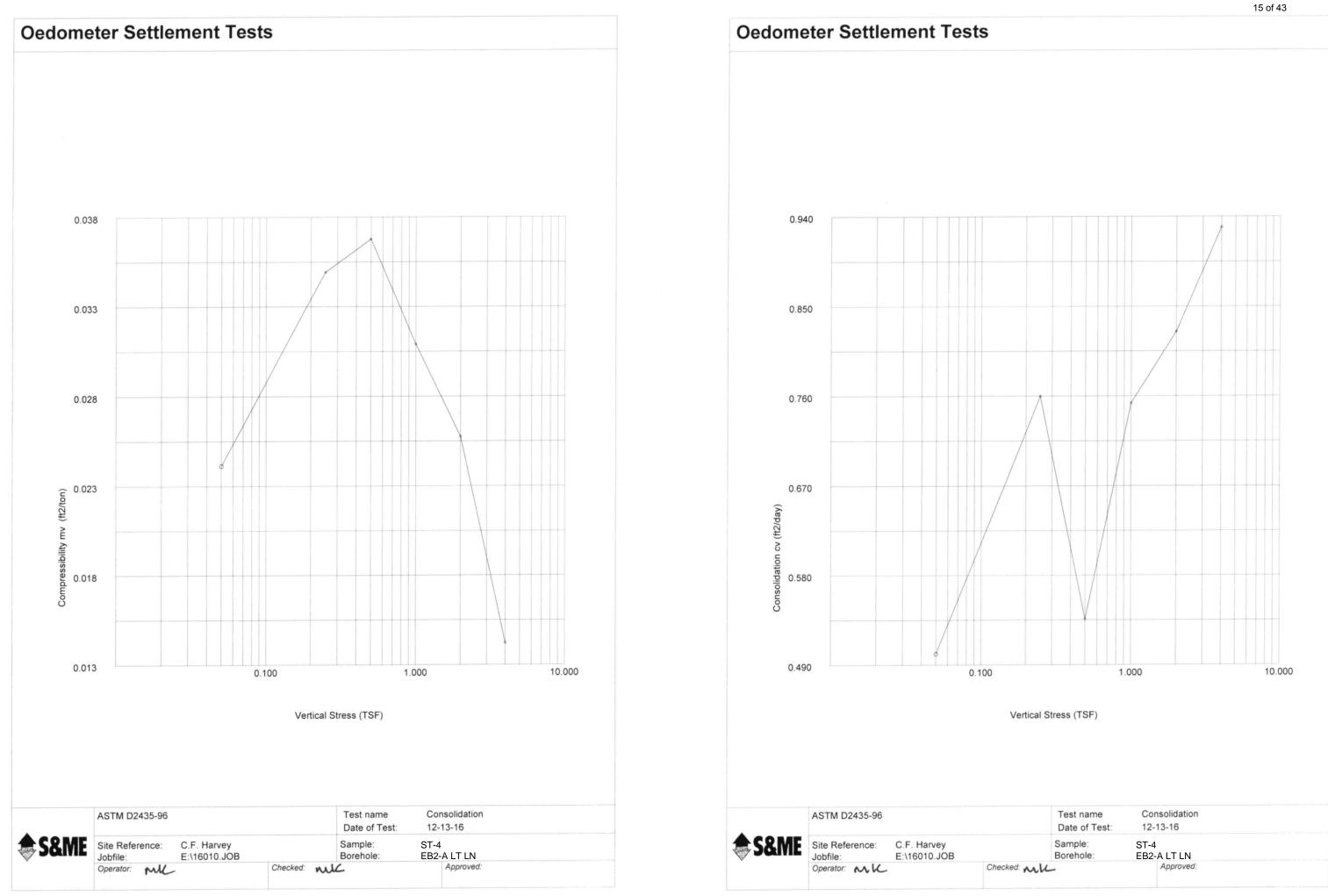


AASHTO T88 as Modified by NCDOT


| Quality Assurance |
|-------------------|
|-------------------|

3201 Spring Forest Road Raleigh, NC 27616


EB2-A Lt Ln ST-4 (17.0 - 19.0 ft) Classification.xls


| Sample details<br>Sketch showing specime<br>location in original Samp                                                                                                                                                    |                          |                                                                                                | 17 - 19 ft.<br>Gray Coarse to Fine                                      | Sandy Clayey                                 | SILT (A-4) (0)                    | )    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|------|--|
|                                                                                                                                                                                                                          | Diame<br>Weigh<br>Bulk D | t $H_0$ (in)<br>eter $D_0$ (in)<br>t $W_0$ (gr)<br>Density $\rho$ (PCF)<br>le Density $\rho_S$ | Undisturbed<br>0.996<br>2.501<br>153.13<br>119.22<br>2.658<br>(assumed) |                                              |                                   |      |  |
| Initial Conditions                                                                                                                                                                                                       |                          |                                                                                                |                                                                         |                                              |                                   |      |  |
| Settlement Channel<br>Moisture Content $w_0$ %<br>Dry Density $\rho_d$ (PCF)<br>/oids Ratio $e_0$<br>Deg of Saturation S $_0$ %<br>Swelling Pressure Ss (TS                                                              | SF)                      | 1066<br>19.5<br>99.78<br>0.6622<br>78.2<br>0.000                                               |                                                                         |                                              |                                   |      |  |
|                                                                                                                                                                                                                          |                          |                                                                                                |                                                                         |                                              |                                   |      |  |
| Final Conditions                                                                                                                                                                                                         |                          |                                                                                                |                                                                         |                                              |                                   |      |  |
| Moisture Content w <sub>f</sub> %<br>Dry Density <sub>Pd</sub> (PCF)<br>Voids Ratio e <sub>f</sub><br>Deg of Saturation S <sub>f</sub> %                                                                                 |                          | 23.5<br>107.19<br>0.5474<br>100.00<br>0.069                                                    |                                                                         |                                              |                                   |      |  |
| Moisture Content w <sub>f</sub> %<br>Dry Density $\rho_d$ (PCF)<br>Voids Ratio e <sub>f</sub><br>Deg of Saturation S <sub>f</sub> %<br>Settlement: (in)<br>Compression Index C <sub>c</sub>                              |                          | 107.19<br>0.5474<br>100.00<br>0.069<br>0.149                                                   |                                                                         | iddle portion of                             |                                   |      |  |
| Moisture Content w <sub>f</sub> %<br>Dry Density $\rho_d$ (PCF)<br>Voids Ratio e <sub>f</sub><br>Deg of Saturation S <sub>f</sub> %<br>Settlement: (in)<br>Compression Index C <sub>c</sub>                              |                          | 107.19<br>0.5474<br>100.00<br>0.069<br>0.149                                                   | n taken from the mi                                                     | iddle portion of                             | UD tube.                          |      |  |
| Moisture Content w <sub>f</sub> %<br>Dry Density $\rho_d$ (PCF)<br>/oids Ratio e <sub>f</sub><br>Deg of Saturation S <sub>f</sub> %<br>Settlement: (in)<br>Compression Index C <sub>c</sub>                              |                          | 107.19<br>0.5474<br>100.00<br>0.069<br>0.149                                                   | n taken from the mi                                                     | ddle portion of                              | UD tube.                          |      |  |
| Moisture Content w <sub>f</sub> %<br>Dry Density $\rho_d$ (PCF)<br>Voids Ratio e <sub>f</sub><br>Deg of Saturation S <sub>f</sub> %<br>Settlement: (in)<br>Compression Index C <sub>c</sub>                              |                          | 107.19<br>0.5474<br>100.00<br>0.069<br>0.149                                                   | n taken from the mi                                                     | ddle portion of                              | UD tube.                          |      |  |
| Moisture Content w <sub>f</sub> %<br>Dry Density <sub>Pd</sub> (PCF)<br>Voids Ratio e <sub>f</sub><br>Deg of Saturation S <sub>f</sub> %<br>Settlement: (in)<br>Compression Index C <sub>c</sub><br>Notes:               |                          | 107.19<br>0.5474<br>100.00<br>0.069<br>0.149                                                   |                                                                         |                                              |                                   |      |  |
| Final Conditions Moisture Content w <sub>f</sub> % Dry Density ρ <sub>d</sub> (PCF) Voids Ratio e <sub>f</sub> Deg of Saturation S <sub>f</sub> % Settlement: (in) Compression Index C <sub>c</sub> Notes: ASTM D2 SS&NE | 435-96                   | 107.19<br>0.5474<br>100.00<br>0.069<br>0.149                                                   | Т                                                                       | ddle portion of<br>est name<br>Date of Test: | UD tube.<br>Consolida<br>12-13-16 | tion |  |

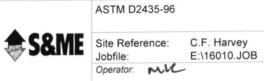
Set



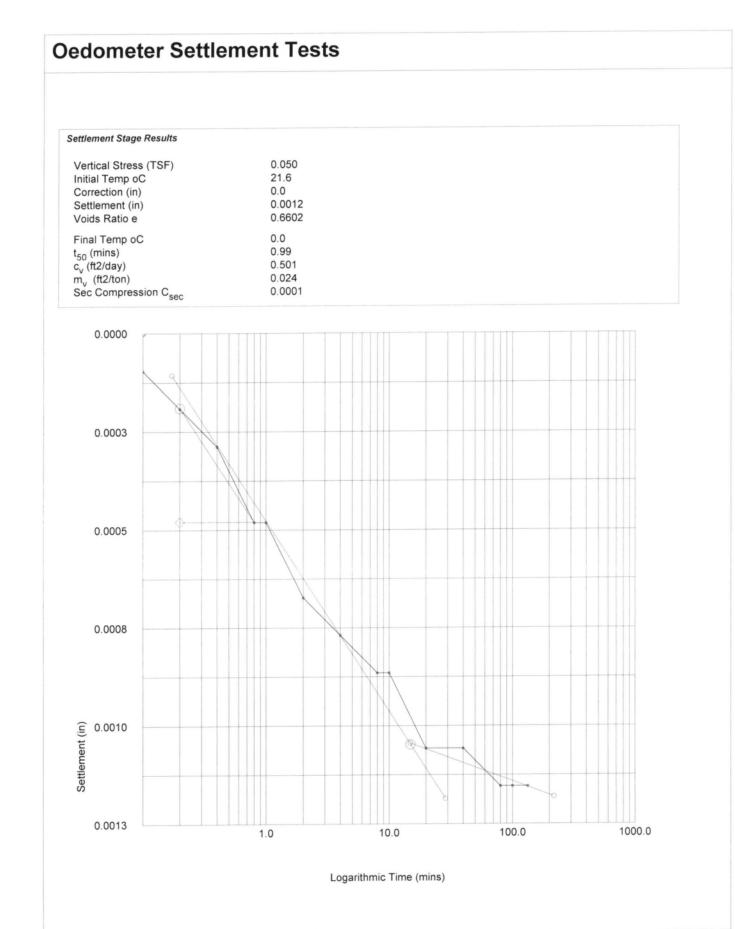
|      | ASTM D2435-96               |                             |   |
|------|-----------------------------|-----------------------------|---|
| S&ME | Site Reference:<br>Jobfile: | C.F. Harvey<br>E:\16010.JOB |   |
|      | Operator: MK                |                             | ( |






|          | Test name<br>Date of Test: | Consolidation<br>12-13-16 |  |
|----------|----------------------------|---------------------------|--|
|          | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |  |
| checked: | nik                        | Approved:                 |  |

| Stress<br>(TSF) | Initial<br>Temp. oC | Settlement<br>Total (in) | Cal Corr.<br>(in) | Final<br>Temp. oC | Voids<br>Ratio e <sub>f</sub> | t <sub>50</sub><br>(mins) | Secondary<br>Compr C <sub>sec</sub> | c <sub>v</sub><br>(ft2/day) | m <sub>v</sub><br>(ft2/ton) |
|-----------------|---------------------|--------------------------|-------------------|-------------------|-------------------------------|---------------------------|-------------------------------------|-----------------------------|-----------------------------|
| 0.050           | 21.6                | 0.0012                   | 0.0               | 21.6              | 0.6602                        | 0.989                     | 0.0001                              | 0.501                       | 0.024                       |
| 0.250           | 21.6                | 0.0081                   | 0.0               | 21.6              | 0.6487                        | 0.647                     | 0.0008                              | 0.760                       | 0.035                       |
| 0.500           | 21.6                | 0.0171                   | 0.0               | 21.6              | 0.6337                        | 0.902                     | 0.0009                              | 0.536                       | 0.037                       |
| 1.000           | 21.6                | 0.0320                   | 0.0               | 21.6              | 0.6088                        | 0.627                     | 0.0006                              | 0.753                       | 0.031                       |
| 2.000           | 21.6                | 0.0562                   | 0.0               | 21.6              | 0.5684                        | 0.549                     | 0.0011                              | 0.825                       | 0.026                       |
| 4.000           | 21.6                | 0.0822                   | 0.0               | 21.6              | 0.5250                        | 0.462                     | 0.0019                              | 0.929                       | 0.014                       |
| 2.000           | 21.6                | 0.0809                   | 0.0               | 21.6              | 0.5272                        |                           |                                     |                             | 0.001                       |
| 0.500           | 21.6                | 0.0775                   | 0.0               | 21.6              | 0.5329                        |                           |                                     |                             | 0.002                       |
| 0.050           | 21.6                | 0.0688                   | 0.0               | 21.6              | 0.5474                        |                           |                                     |                             | 0.021                       |


## **Oedometer Settlement Tests**

| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 0                      | 0.0000               | 0.0000             |
| 2   | 0.017          | 1                      | 0.0001               | 0.0001             |
| 3   | 0.033          | 1                      | 0.0001               | 0.0001             |
| 4   | 0.050          | 1                      | 0.0001               | 0.0001             |
| 5   | 0.067          | 1                      | 0.0001               | 0.0001             |
| 6   | 0.083          | 1                      | 0.0001               | 0.0001             |
| 7   | 0.100          | 1                      | 0.0001               | 0.0001             |
| 8   | 0.200          | 2                      | 0.0002               | 0.0002             |
| 9   | 0.400          | 3                      | 0.0003               | 0.0003             |
| 10  | 0.800          | 5                      | 0.0005               | 0.0005             |
| 11  | 1.000          | 5                      | 0.0005               | 0.0005             |
| 12  | 2.000          | 7                      | 0.0007               | 0.0007             |
| 13  | 4.000          | 8                      | 0.0008               | 0.0008             |
| 14  | 8.000          | 9                      | 0.0009               | 0.0009             |
| 15  | 10.000         | 9                      | 0.0009               | 0.0009             |
| 16  | 20.000         | 11                     | 0.0011               | 0.0011             |
| 17  | 40.000         | 11                     | 0.0011               | 0.0011             |
| 18  | 80.000         | 12                     | 0.0012               | 0.0012             |
| 19  | 100.000        | 12                     | 0.0012               | 0.0012             |
| 20  | 133.330        | 12                     | 0.0012               | 0.0012             |
|     |                |                        |                      |                    |

| 🗢 S&ME | ASTM D2435-96               |                             |            | Test name<br>Date of Test: | Consolidation<br>12-13-16 |  |
|--------|-----------------------------|-----------------------------|------------|----------------------------|---------------------------|--|
|        | Site Reference:<br>Jobfile: | C.F. Harvey<br>E:\16010.JOB |            | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |  |
|        | Operator: ML                | -                           | Checked: M | 12                         | Approved:                 |  |



| Checked: M | le                         | Approved:                 |                   |
|------------|----------------------------|---------------------------|-------------------|
|            | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |                   |
|            | Test name<br>Date of Test: | Consolidation<br>12-13-16 | Load: 0.050 (TSF) |



Test name

Sample:

Checked: ML

Borehole:

Date of Test:

ASTM D2435-96

Jobfile:

Site Reference: C.F. Harvey

Operator: MC

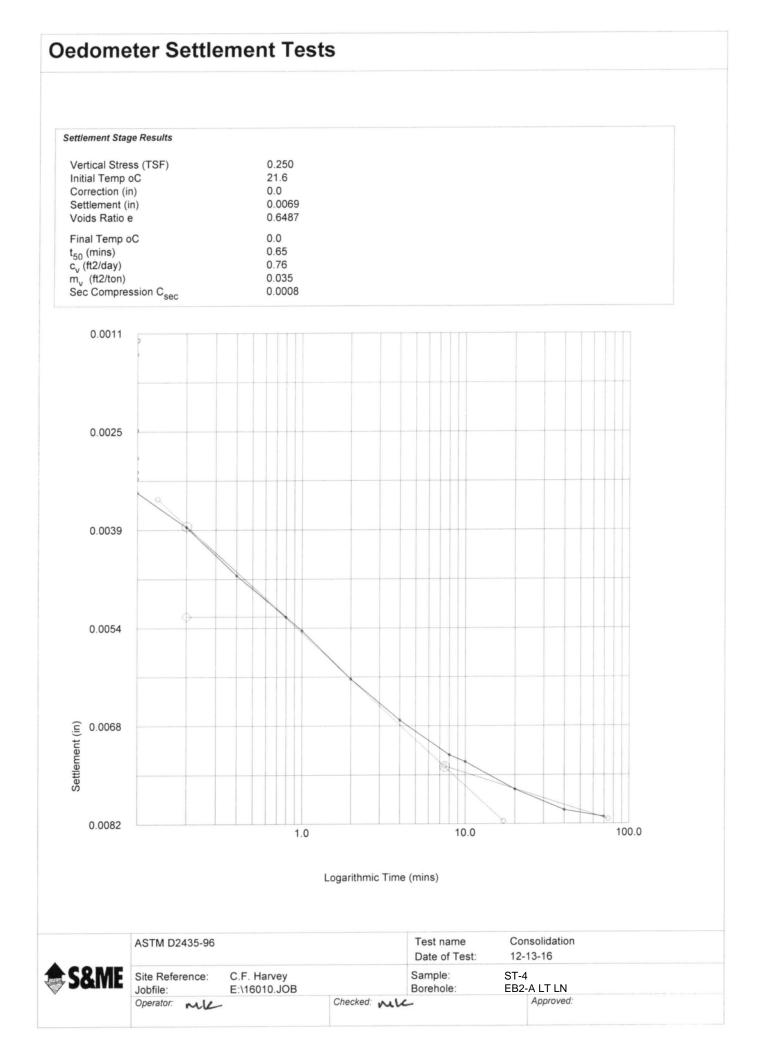
E:\16010.JOB

Consolidation

Approved:

12-13-16

ST-4 EB2-A LT LN


#### **Oedometer Settlement Tests**

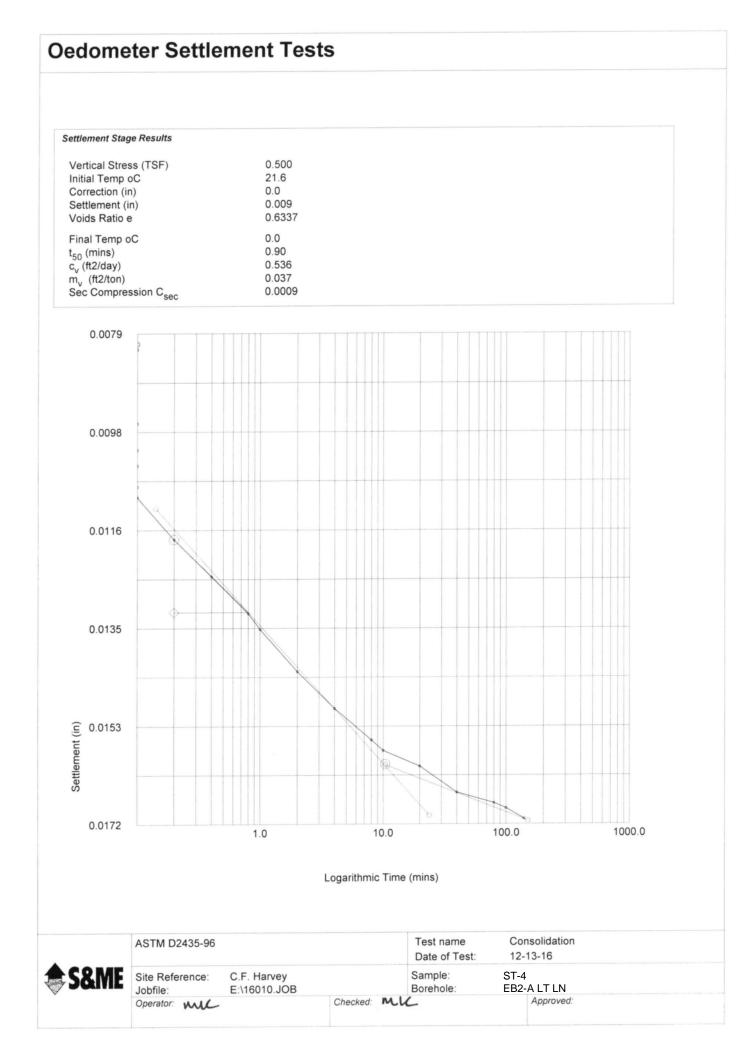
| No. | Time   | Displacement | Displacement | Settlement |
|-----|--------|--------------|--------------|------------|
| NO. | (mins) | (divs)       | (in)         | (in)       |
| 1   | 0.000  | 12           | 0.0012       | 0.0012     |
| 2   | 0.017  | 14           | 0.0014       | 0.0014     |
| 3   | 0.033  | 25           | 0.0025       | 0.0025     |
| 4   | 0.050  | 29           | 0.0029       | 0.0029     |
| 5   | 0.067  | 31           | 0.0031       | 0.0031     |
| 6   | 0.083  | 32           | 0.0032       | 0.0032     |
| 7   | 0.100  | 34           | 0.0034       | 0.0034     |
| 8   | 0.200  | 39           | 0.0039       | 0.0039     |
| 9   | 0.400  | 46           | 0.0046       | 0.0046     |
| 10  | 0.800  | 52           | 0.0052       | 0.0052     |
| 11  | 1.000  | 54           | 0.0054       | 0.0054     |
| 12  | 2.000  | 61           | 0.0061       | 0.0061     |
| 13  | 4.000  | 67           | 0.0067       | 0.0067     |
| 14  | 8.000  | 72           | 0.0072       | 0.0072     |
| 15  | 10.000 | 73           | 0.0073       | 0.0073     |
| 16  | 20.000 | 77           | 0.0077       | 0.0077     |
| 17  | 40.000 | 80           | 0.0080       | 0.0080     |
| 18  | 69.817 | 81           | 0.0081       | 0.0081     |

| ASTM | D2435-96 |
|------|----------|
|      |          |

Same Site Reference: C.F. Harvey Jobfile: Operator: ML

| Checked: MLC |                            | Approved:                 |                   |
|--------------|----------------------------|---------------------------|-------------------|
|              | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |                   |
|              | Test name<br>Date of Test: | Consolidation<br>12-13-16 | Load: 0.250 (TSF) |



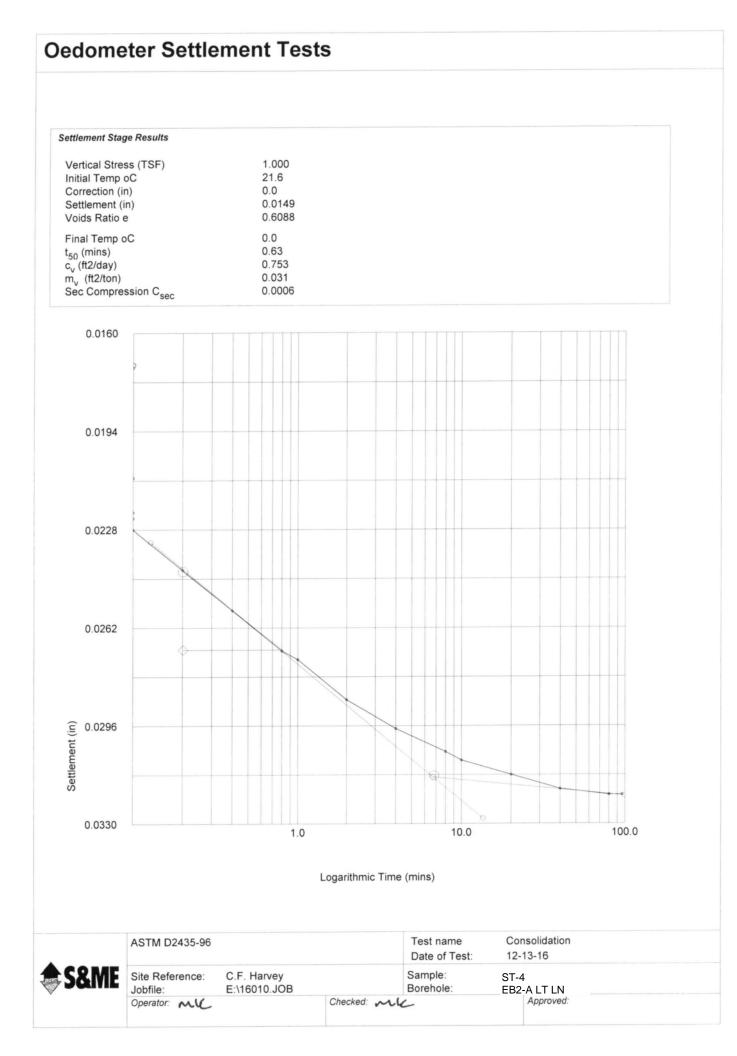

|     | _              |                        | Disalasant           | Cattlement         |
|-----|----------------|------------------------|----------------------|--------------------|
| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
| 1   | 0.000          | 81                     | 0.0081               | 0.0081             |
| 2   | 0.017          | 82                     | 0.0082               | 0.0082             |
| 3   | 0.033          | 96                     | 0.0096               | 0.0096             |
| 4   | 0.050          | 101                    | 0.0101               | 0.0101             |
| 5   | 0.067          | 104                    | 0.0104               | 0.0104             |
| 6   | 0.083          | 108                    | 0.0108               | 0.0108             |
| 7   | 0.100          | 110                    | 0.0110               | 0.0110             |
| 8   | 0.200          | 118                    | 0.0118               | 0.0118             |
| 9   | 0.400          | 125                    | 0.0125               | 0.0125             |
| 10  | 0.800          | 132                    | 0.0132               | 0.0132             |
| 11  | 1.000          | 135                    | 0.0135               | 0.0135             |
| 12  | 2.000          | 143                    | 0.0143               | 0.0143             |
| 13  | 4.000          | 150                    | 0.0150               | 0.0150             |
| 14  | 8.000          | 156                    | 0.0156               | 0.0156             |
| 15  | 10.000         | 158                    | 0.0158               | 0.0158             |
| 16  | 20.000         | 161                    | 0.0161               | 0.0161             |
| 17  | 40.000         | 166                    | 0.0166               | 0.0166             |
| 18  | 80.000         | 168                    | 0.0168               | 0.0168             |
| 19  | 100.000        | 169                    | 0.0169               | 0.0169             |
| 20  | 139.583        | 171                    | 0.0171               | 0.0171             |
|     |                |                        |                      |                    |

ASTM D2435-96

S&ME Jobfile: Operator: ML

Site Reference: C.F. Harvey E:\16010.JOB

|              | Test name<br>Date of Test: | Consolidation<br>12-13-16 | Load: 0.500 (TSF) |
|--------------|----------------------------|---------------------------|-------------------|
|              | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |                   |
| Checked: MLC |                            | Approved:                 |                   |

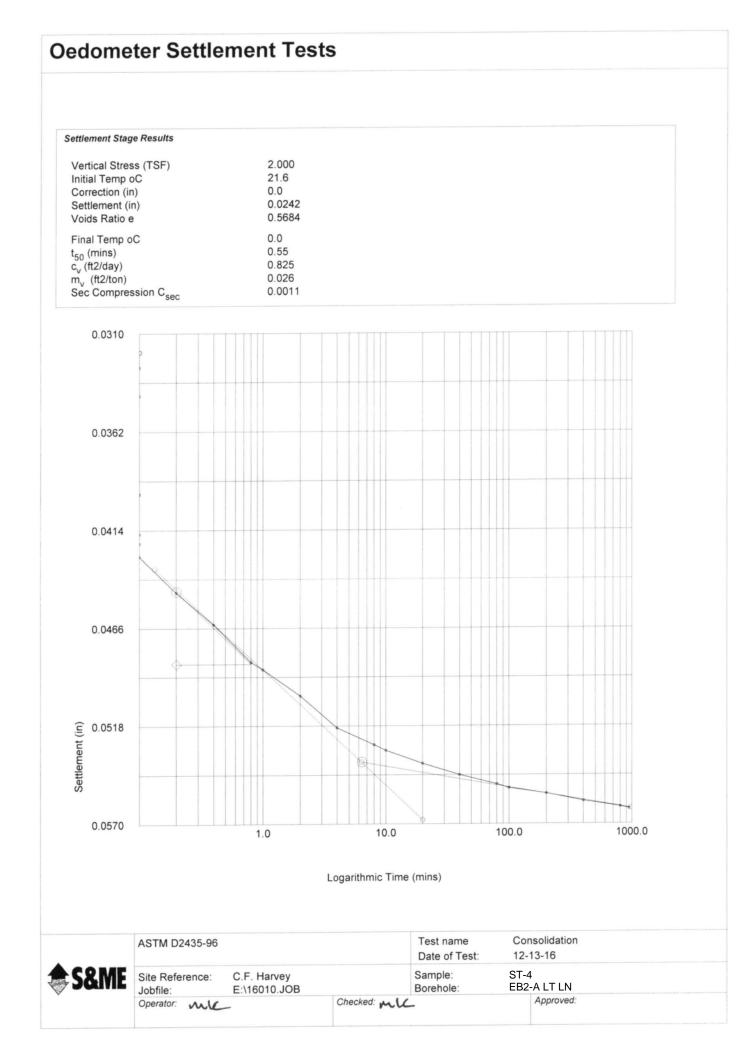



| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 171                    | 0.0171               | 0.0171             |
| 2   | 0.017          | 172                    | 0.0172               | 0.0172             |
| 3   | 0.033          | 172                    | 0.0172               | 0.0172             |
| 4   | 0.050          | 210                    | 0.0210               | 0.0210             |
| 5   | 0.067          | 222                    | 0.0222               | 0.0222             |
| 6   | 0.083          | 224                    | 0.0224               | 0.0224             |
| 7   | 0.100          | 228                    | 0.0228               | 0.0228             |
| 8   | 0.200          | 242                    | 0.0242               | 0.0242             |
| 9   | 0.400          | 256                    | 0.0256               | 0.0256             |
| 10  | 0.800          | 270                    | 0.0270               | 0.0270             |
| 11  | 1.000          | 273                    | 0.0273               | 0.0273             |
| 12  | 2.000          | 287                    | 0.0287               | 0.0287             |
| 13  | 4.000          | 297                    | 0.0297               | 0.0297             |
| 14  | 8.000          | 305                    | 0.0305               | 0.0305             |
| 15  | 10.000         | 308                    | 0.0308               | 0.0308             |
| 16  | 20.000         | 313                    | 0.0313               | 0.0313             |
| 17  | 40.000         | 318                    | 0.0318               | 0.0318             |
| 18  | 80.000         | 320                    | 0.0320               | 0.0320             |
| 19  | 96.330         | 320                    | 0.0320               | 0.0320             |
|     |                |                        |                      |                    |

ASTM D2435-96

Same Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

|              | Test name<br>Date of Test: | Consolidation<br>12-13-16 | Load: 1.000 (TSF) |
|--------------|----------------------------|---------------------------|-------------------|
|              | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |                   |
| Checked: MLC |                            | Approved:                 |                   |



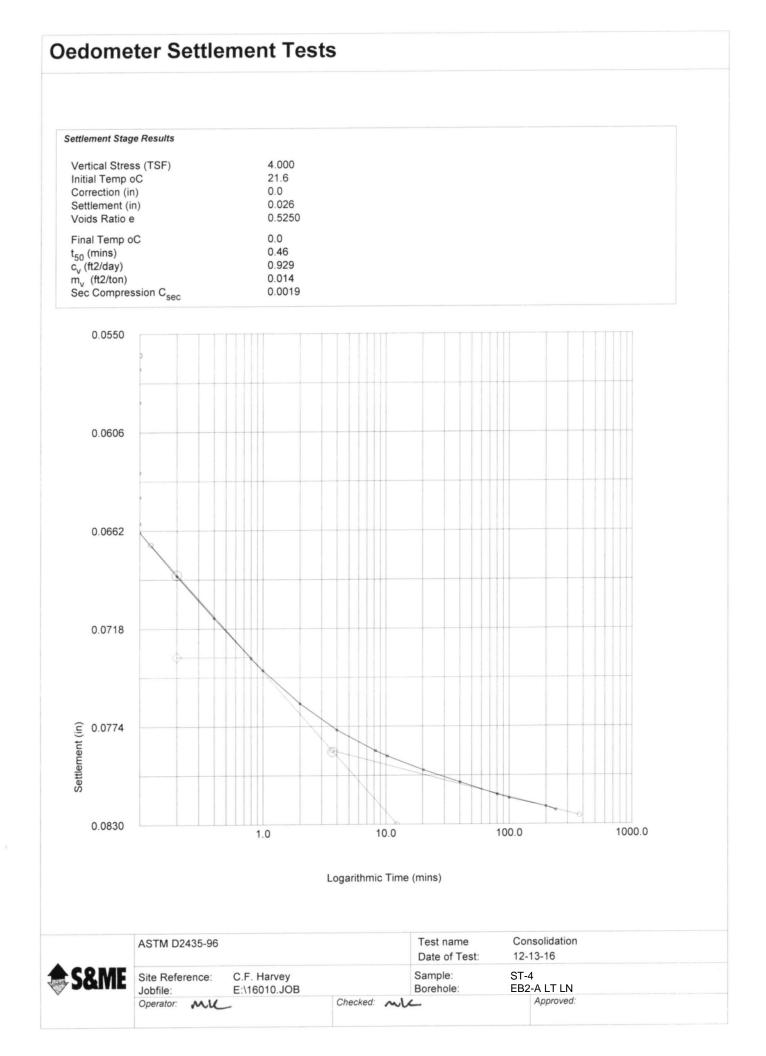

| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 320                    | 0.0320               | 0.0320             |
| 2   | 0.017          | 328                    | 0.0328               | 0.0328             |
| 3   | 0.033          | 343                    | 0.0343               | 0.0343             |
| 4   | 0.050          | 395                    | 0.0395               | 0.0395             |
| 5   | 0.067          | 416                    | 0.0416               | 0.0416             |
| 6   | 0.083          | 421                    | 0.0421               | 0.0421             |
| 7   | 0.100          | 428                    | 0.0428               | 0.0428             |
| 8   | 0.200          | 447                    | 0.0447               | 0.0447             |
| 9   | 0.400          | 464                    | 0.0464               | 0.0464             |
| 10  | 0.800          | 484                    | 0.0484               | 0.0484             |
| 11  | 1.000          | 488                    | 0.0488               | 0.0488             |
| 12  | 2.000          | 502                    | 0.0502               | 0.0502             |
| 13  | 4.000          | 519                    | 0.0519               | 0.0519             |
| 14  | 8.000          | 528                    | 0.0528               | 0.0528             |
| 15  | 10.000         | 531                    | 0.0531               | 0.0531             |
| 16  | 20.000         | 538                    | 0.0538               | 0.0538             |
| 17  | 40.000         | 544                    | 0.0544               | 0.0544             |
| 18  | 80.000         | 549                    | 0.0549               | 0.0549             |
| 19  | 100.000        | 551                    | 0.0551               | 0.0551             |
| 20  | 200.000        | 554                    | 0.0554               | 0.0554             |
| 21  | 400.000        | 558                    | 0.0558               | 0.0558             |
| 22  | 800.000        | 561                    | 0.0561               | 0.0561             |
| 23  | 950.200        | 562                    | 0.0562               | 0.0562             |
|     |                |                        |                      |                    |

ASTM D2435-96

Same Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

|              | Test name<br>Date of Test: | Consolidation<br>12-13-16 | Load: 2.000 (TSF) |
|--------------|----------------------------|---------------------------|-------------------|
|              | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |                   |
| Checked: MLC |                            | Approved:                 |                   |




| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 562                    | 0.0562               | 0.0562             |
| 2   | 0.017          | 570                    | 0.0570               | 0.0570             |
| 3   | 0.033          | 589                    | 0.0589               | 0.0589             |
| 4   | 0.050          | 629                    | 0.0629               | 0.0629             |
| 5   | 0.067          | 643                    | 0.0643               | 0.0643             |
| 6   | 0.083          | 658                    | 0.0658               | 0.0658             |
| 7   | 0.100          | 663                    | 0.0663               | 0.0663             |
| 8   | 0.200          | 688                    | 0.0688               | 0.0688             |
| 9   | 0.400          | 712                    | 0.0712               | 0.0712             |
| 10  | 0.800          | 735                    | 0.0735               | 0.0735             |
| 11  | 1.000          | 742                    | 0.0742               | 0.0742             |
| 12  | 2.000          | 761                    | 0.0761               | 0.0761             |
| 13  | 4.000          | 776                    | 0.0776               | 0.0776             |
| 14  | 8.267          | 788                    | 0.0788               | 0.0788             |
| 15  | 10.267         | 791                    | 0.0791               | 0.0791             |
| 16  | 20.267         | 799                    | 0.0799               | 0.0799             |
| 17  | 40.267         | 806                    | 0.0806               | 0.0806             |
| 18  | 80.267         | 813                    | 0.0813               | 0.0813             |
| 19  | 100.267        | 815                    | 0.0815               | 0.0815             |
| 20  | 200.267        | 820                    | 0.0820               | 0.0820             |
| 21  | 240.767        | 822                    | 0.0822               | 0.0822             |

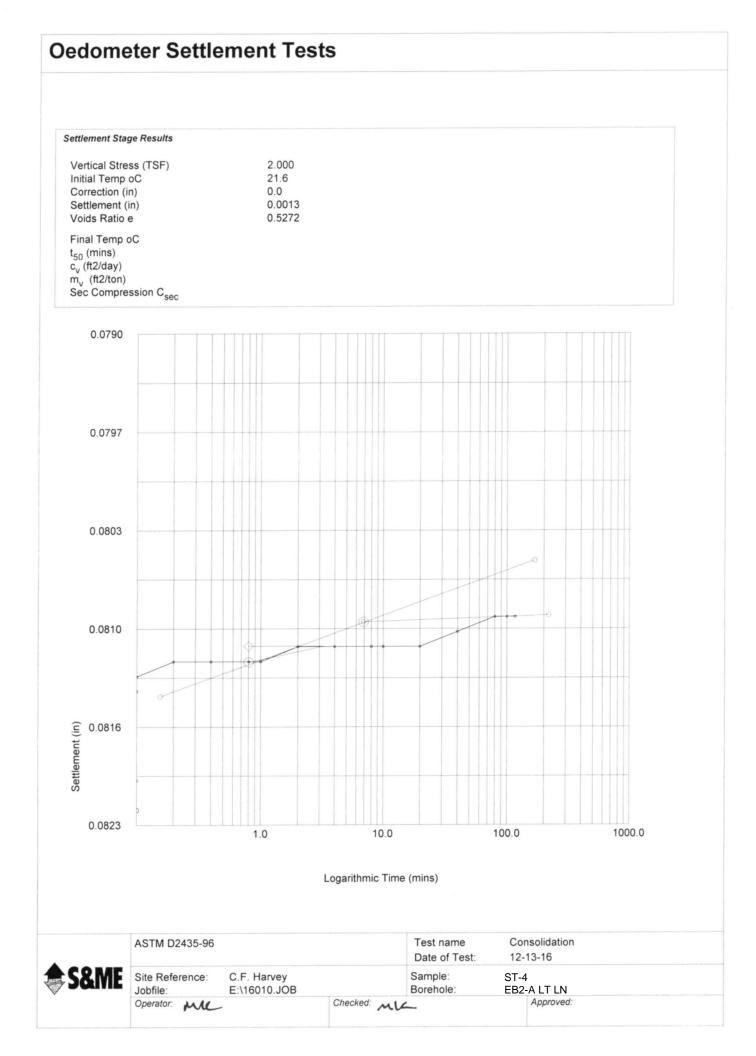
ASTM D2435-96

S&ME Jobfile: Operator: MK

Site Reference: C.F. Harvey E:\16010.JOB

| Checked: MLC |                            | Approved:                                   |  |
|--------------|----------------------------|---------------------------------------------|--|
|              | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN                         |  |
|              | Test name<br>Date of Test: | Consolidation Load: 4.000 (TSF)<br>12-13-16 |  |




| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
|     |                |                        |                      |                    |
| 1   | 0.000          | 822                    | 0.0822               | 0.0822             |
| 2   | 0.017          | 820                    | 0.0820               | 0.0820             |
| 3   | 0.033          | 814                    | 0.0814               | 0.0814             |
| 4   | 0.050          | 813                    | 0.0813               | 0.0813             |
| 5   | 0.067          | 813                    | 0.0813               | 0.0813             |
| 6   | 0.083          | 813                    | 0.0813               | 0.0813             |
| 7   | 0.100          | 813                    | 0.0813               | 0.0813             |
| 8   | 0.200          | 812                    | 0.0812               | 0.0812             |
| 9   | 0.400          | 812                    | 0.0812               | 0.0812             |
| 10  | 0.800          | 812                    | 0.0812               | 0.0812             |
| 11  | 1.000          | 812                    | 0.0812               | 0.0812             |
| 12  | 2.000          | 811                    | 0.0811               | 0.0811             |
| 13  | 4.000          | 811                    | 0.0811               | 0.0811             |
| 14  | 8.000          | 811                    | 0.0811               | 0.0811             |
| 15  | 10.000         | 811                    | 0.0811               | 0.0811             |
| 16  | 20.000         | 811                    | 0.0811               | 0.0811             |
| 17  | 40.000         | 810                    | 0.0810               | 0.0810             |
| 18  | 80.000         | 809                    | 0.0809               | 0.0809             |
| 19  | 100.000        | 809                    | 0.0809               | 0.0809             |
| 20  | 117.150        | 809                    | 0.0809               | 0.0809             |
|     |                |                        |                      |                    |

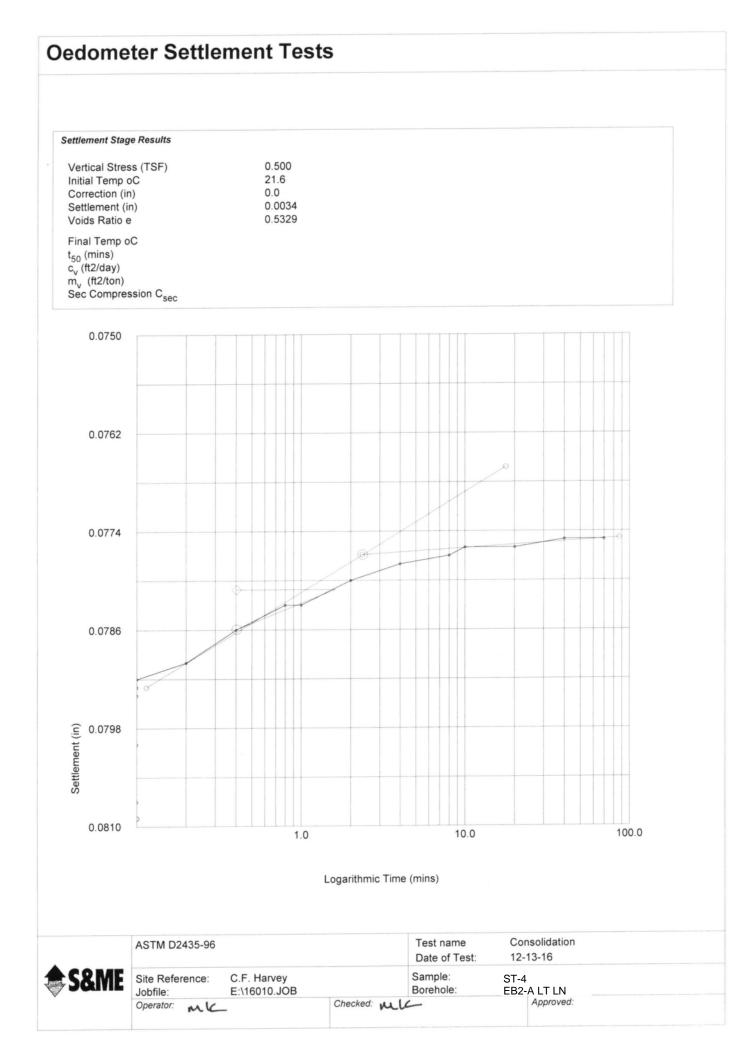
ASTM D2435-96

Same Site Reference: Jobfile: Operator:

C.F. Harvey E:\16010.JOB 22 of 43

| Checked: MK |                            | Approved                  |                     |
|-------------|----------------------------|---------------------------|---------------------|
|             | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |                     |
|             | Test name<br>Date of Test: | Consolidation<br>12-13-16 | n Load: 2.000 (TSF) |



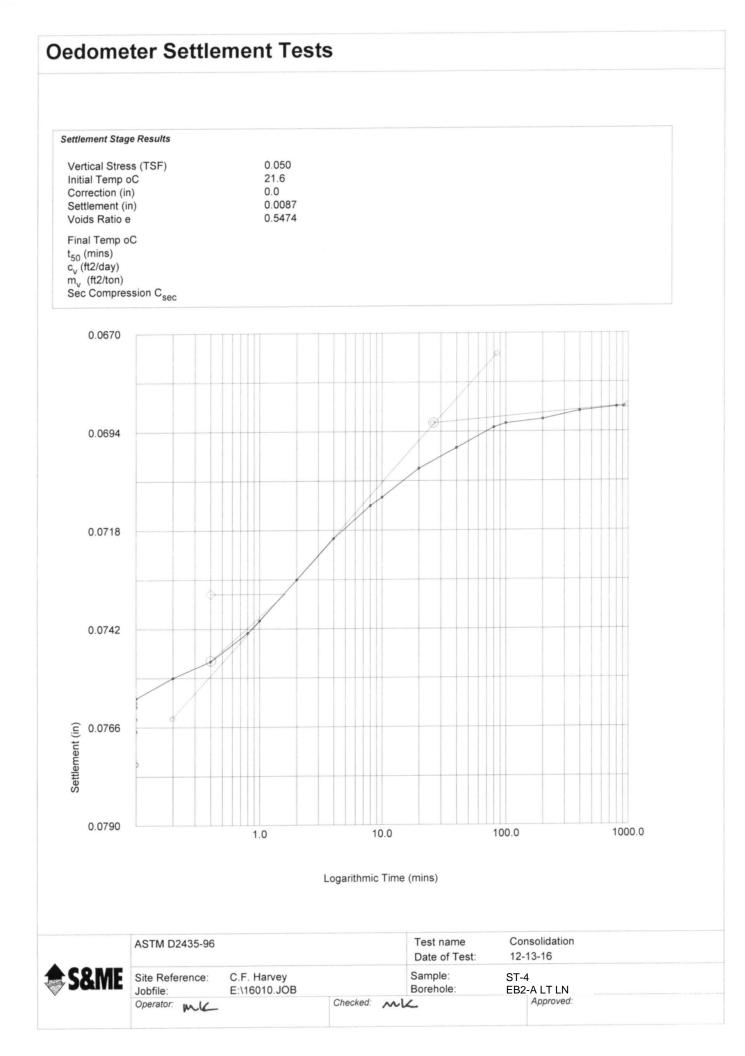

| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 809                    | 0.0809               | 0.0809             |
| 2   | 0.017          | 807                    | 0.0807               | 0.0807             |
| 3   | 0.033          | 800                    | 0.0800               | 0.0800             |
| 4   | 0.050          | 794                    | 0.0794               | 0.0794             |
| 5   | 0.067          | 793                    | 0.0793               | 0.0793             |
| 6   | 0.083          | 792                    | 0.0792               | 0.0792             |
| 7   | 0.100          | 792                    | 0.0792               | 0.0792             |
| 8   | 0.200          | 790                    | 0.0790               | 0.0790             |
| 9   | 0.400          | 786                    | 0.0786               | 0.0786             |
| 10  | 0.800          | 783                    | 0.0783               | 0.0783             |
| 11  | 1.000          | 783                    | 0.0783               | 0.0783             |
| 12  | 2.000          | 780                    | 0.0780               | 0.0780             |
| 13  | 4.000          | 778                    | 0.0778               | 0.0778             |
| 14  | 8.000          | 777                    | 0.0777               | 0.0777             |
| 15  | 10.000         | 776                    | 0.0776               | 0.0776             |
| 16  | 20.000         | 776                    | 0.0776               | 0.0776             |
| 17  | 40.000         | 775                    | 0.0775               | 0.0775             |
| 18  | 69.850         | 775                    | 0.0775               | 0.0775             |

ASTM D2435-96

S&ME Jobfile: Operator: MLC

Site Reference: C.F. Harvey E:\16010.JOB

|          | Test name<br>Date of Test: | Consolidation<br>12-13-16 | Load: 0.500 (TSF) |
|----------|----------------------------|---------------------------|-------------------|
|          | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |                   |
| Checked: | nic                        | Approved:                 |                   |




| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 775                    | 0.0775               | 0.0775             |
| 2   | 0.017          | 767                    | 0.0767               | 0.0767             |
| 3   | 0.033          | 764                    | 0.0764               | 0.0764             |
| 4   | 0.050          | 761                    | 0.0761               | 0.0761             |
| 5   | 0.067          | 760                    | 0.0760               | 0.0760             |
| 6   | 0.083          | 760                    | 0.0760               | 0.0760             |
| 7   | 0.100          | 759                    | 0.0759               | 0.0759             |
| 8   | 0.200          | 754                    | 0.0754               | 0.0754             |
| 9   | 0.400          | 750                    | 0.0750               | 0.0750             |
| 10  | 0.800          | 743                    | 0.0743               | 0.0743             |
| 11  | 1.000          | 740                    | 0.0740               | 0.0740             |
| 12  | 2.000          | 730                    | 0.0730               | 0.0730             |
| 13  | 4.000          | 720                    | 0.0720               | 0.0720             |
| 14  | 8.000          | 712                    | 0.0712               | 0.0712             |
| 15  | 10.000         | 710                    | 0.0710               | 0.0710             |
| 16  | 20.000         | 703                    | 0.0703               | 0.0703             |
| 17  | 40.000         | 698                    | 0.0698               | 0.0698             |
| 18  | 80.000         | 693                    | 0.0693               | 0.0693             |
| 19  | 100.000        | 692                    | 0.0692               | 0.0692             |
| 20  | 200.000        | 691                    | 0.0691               | 0.0691             |
| 21  | 400.000        | 689                    | 0.0689               | 0.0689             |
| 22  | 800.000        | 688                    | 0.0688               | 0.0688             |
| 23  | 925.633        | 688                    | 0.0688               | 0.0688             |
|     |                |                        |                      |                    |

ASTM D2435-96

Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

|         | Test name<br>Date of Test: | Consolidation<br>12-13-16 | Load: 0.050 (TSF) |
|---------|----------------------------|---------------------------|-------------------|
|         | Sample:<br>Borehole:       | ST-4<br>EB2-A LT LN       |                   |
| hecked: | ule                        | Approved:                 |                   |



Form No. TR-T88

Revision Date: 12/20/09

Revision No. 0

| a c                                 |                     | 2201 0 • E                              |                       |                          |                | uality Assur   | rance    |
|-------------------------------------|---------------------|-----------------------------------------|-----------------------|--------------------------|----------------|----------------|----------|
| S&ME Project #:                     | 6235-16-010         | a, 3201 Spring For                      | est Koad, Ka          | 0.                       | rt Date:       | 12/27          | /16      |
| Project Name:                       |                     | kway Extension R-                       | 5703                  | -                        | Date(s):       | 12/24 - 12     |          |
| State Project #:                    | 46375.1.1           | F.A. Project No:                        |                       |                          | . ,            | -5703          | 2/2//10  |
| Client Name:                        | Michael Baker H     | Ų                                       | 11/71                 |                          | 110. 1         | 5705           |          |
| Address:                            | Raleigh, NC         | mgmoormg                                |                       | _                        |                |                |          |
| Boring #:                           | EB1-B RT LN         | Sample #:                               | ST-3                  |                          | Sample Da      | te: 9/1        | /16      |
| Location:                           | 165+89              | Offset:                                 | 35 RT                 |                          | Depth (f       |                | 20.0 ft. |
| Sample Description:                 |                     |                                         |                       | se to Fine Sand          | <b>▲</b> ·     |                | (2)      |
|                                     | 1"3/4" 1/2'3/8" #4  | #10 #20                                 | #40 #60 #100          | #200 #270                | · ·            |                |          |
| 1.5                                 | 1"3/4" 1/2'3/8" #4  | #10 #20                                 | #40 #60 #100          | #200 #270                |                |                |          |
| 90%                                 |                     |                                         |                       |                          |                |                |          |
|                                     |                     |                                         |                       |                          |                |                |          |
| 80%                                 |                     |                                         |                       |                          |                |                |          |
| 70%                                 |                     |                                         |                       |                          |                |                |          |
|                                     |                     |                                         |                       |                          |                |                |          |
| 60%                                 |                     |                                         |                       |                          |                |                |          |
| ä 50%                               |                     |                                         |                       | X                        |                |                |          |
| erce                                |                     |                                         |                       |                          |                |                |          |
| <sup>₽</sup> 40%                    |                     |                                         |                       |                          |                |                |          |
| 30%                                 |                     |                                         |                       |                          |                |                |          |
|                                     |                     |                                         |                       |                          |                |                |          |
| 20%                                 |                     |                                         |                       |                          |                |                |          |
| 10%                                 |                     |                                         |                       |                          |                |                |          |
|                                     |                     |                                         |                       |                          |                |                |          |
| 0%                                  | 10                  | 1                                       | +                     | 0.1                      | 0.01           |                | 0.0      |
|                                     |                     | Particle S                              |                       |                          |                |                |          |
| A                                   | As Defined by NCDOT | 1                                       | Fin                   | e Sand                   | < 0.25         | mm and $> 0.0$ | )5 mm    |
| Gravel                              |                     | m and > 2.00 mm                         |                       | Silt                     | -              | 5 and > 0.005  | mm       |
| Coarse Sand                         |                     | nm and >0.25 mm                         |                       | Clay 2004                |                | < 0.005 mm     | 110/     |
| Aaximum Particle S                  |                     | Coarse                                  |                       | 20%                      | Silt           |                | 11%      |
| Gravel                              | 0%                  | Fine San                                |                       | 41%                      | Clay           | <b>112</b> 00  | 28%      |
| Apparent Relative D                 | •                   |                                         | e Content             | 22%                      | % Passing      |                | 43.1%    |
| Liquid Limit                        | 25                  | Plastic I                               | _1mit<br>(-#10 Sieve) | 13                       | Plastic Ind    | ex             | 12       |
| Coarse Sand                         | 20%                 | Fine Sand                               | 41%                   | Silt                     | 11%            | Clay           | 28%      |
| Description of Sand                 |                     | Rounded                                 |                       | biit                     | Angu           | -              | X        |
| Hard & Durab                        |                     | Soft                                    |                       | Weat                     | thered & Frial |                |          |
| References / Comments /             |                     | Not Determined.                         |                       |                          |                |                | _        |
|                                     |                     | 104.01.0702                             |                       |                          | r              | 10/0           | 7/2016   |
| <u>Mal Kraja</u><br>Technician I    |                     | <u>104-01-0703</u><br>Certification No. |                       | Laboratory M<br>Position | anager         |                | 7/2016   |
| recnnicián I                        | vuille              | Certification No.                       |                       | rosition                 |                | L              | Date     |
|                                     | ГЛ                  | N                                       | >                     | Laboratory M             | anager         | 9/26           | 5/2016   |
| Mal Kraia                           | n, El               |                                         |                       | Laborator                |                |                |          |
| <u>Mal Kraja</u><br>Technical Respo |                     | Signature                               |                       | Position                 | unuger         |                | Date     |

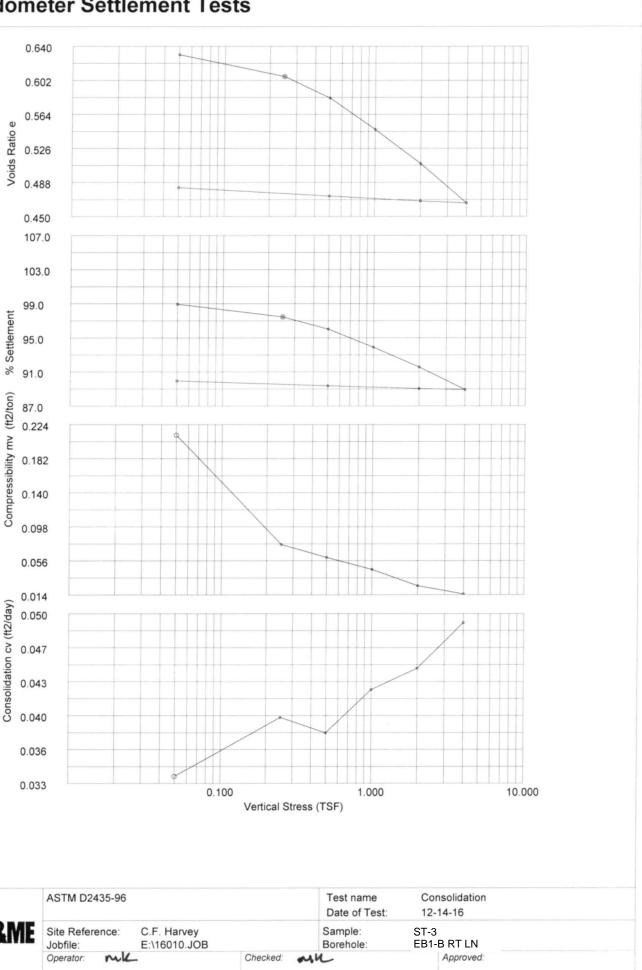
#### **Particle Size Analysis of Soils**

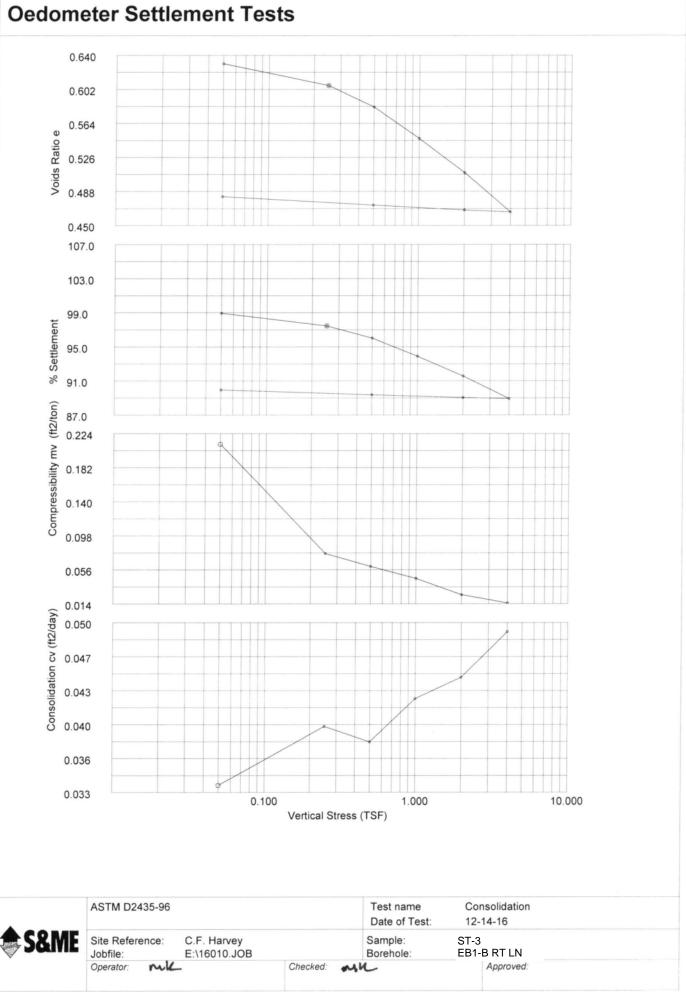


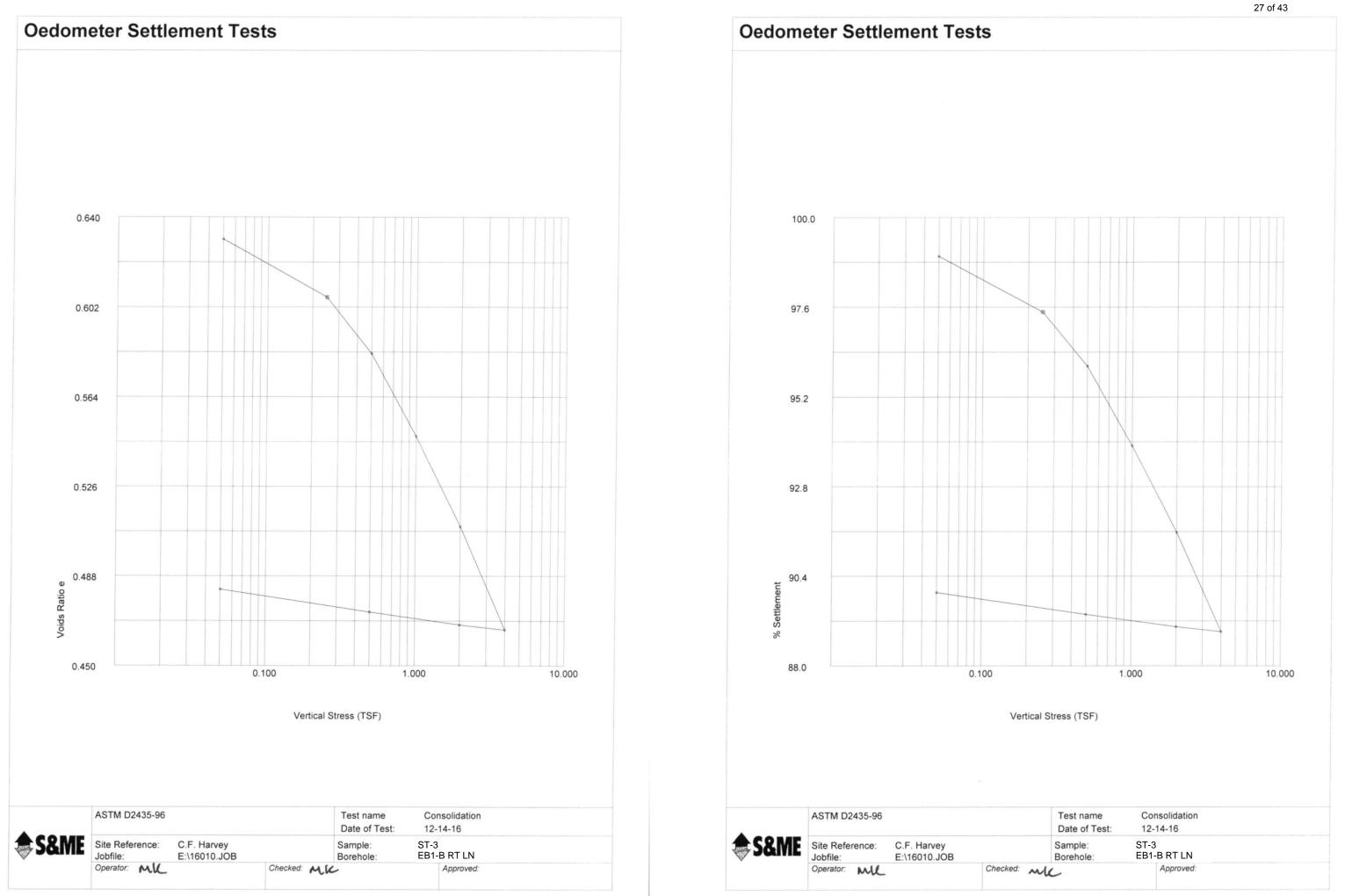
AASHTO T88 as Modified by NCDOT

| Quality Assur | rance |
|---------------|-------|
|---------------|-------|

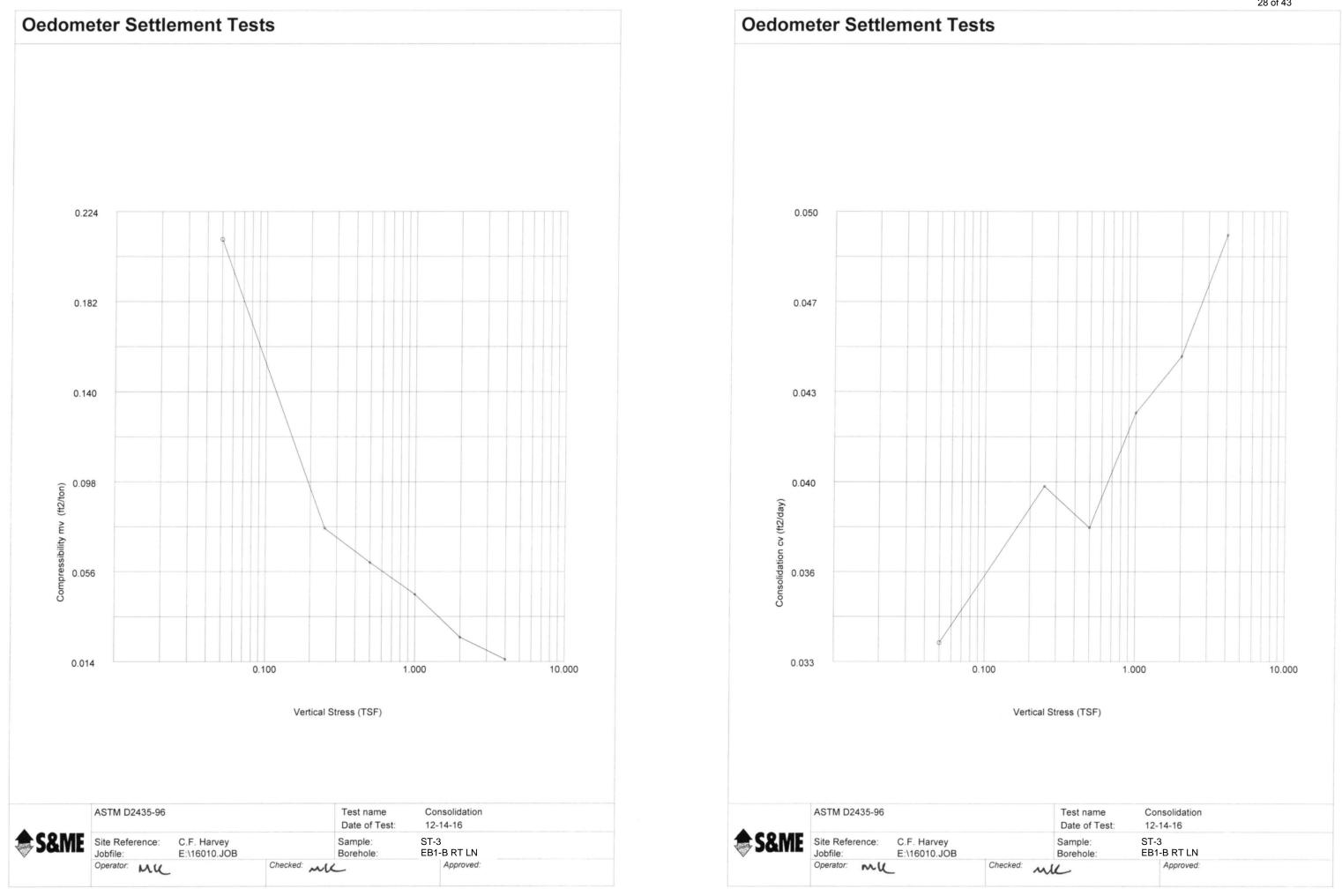
3201 Spring Forest Road Raleigh, NC 27616


EB1-B Rt Ln ST-3 (18.0 - 20.0 ft) Classification.xls


| Sample details                                                                                                                                                                        |                                                                       |                                                         |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|---------------|
| Sketch showing specimen<br>location in original Sample                                                                                                                                | Depth 18.0 - 20.<br>Description: Gray Coa                             | 0 ft.<br>rse to Fine Sandy Silty C                      | LAY (A-6) (2) |
|                                                                                                                                                                                       | $\begin{array}{llllllllllllllllllllllllllllllllllll$                  | 1<br>9                                                  |               |
| nitial Conditions                                                                                                                                                                     |                                                                       |                                                         |               |
| Settlement Channel<br>Moisture Content $w_0^{\%}$<br>Dry Density $\rho_d$ (PCF)<br>/oids Ratio $e_0$<br>Deg of Saturation S $_0^{\%}$<br>Swelling Pressure Ss (TSF)                   | 1942<br>23.8<br>100.84<br>0.6478<br>98.0<br>0.000                     |                                                         |               |
|                                                                                                                                                                                       |                                                                       |                                                         |               |
| loisture Content w <sub>f</sub> %<br>Dry Density p <sub>d</sub> (PCF)<br>oids Ratio e <sub>f</sub><br>beg of Saturation S <sub>f</sub> %                                              | 19.5<br>112.10<br>0.4824<br>100.00                                    |                                                         |               |
| Moisture Content $w_f\%$<br>Dry Density $\rho_d$ (PCF)<br>Voids Ratio $e_f$<br>Deg of Saturation $S_f\%$<br>Settlement: (in)                                                          | 112.10<br>0.4824<br>100.00<br>0.10                                    |                                                         |               |
| Final Conditions<br>Moisture Content $w_f$ %<br>Dry Density $\rho_d$ (PCF)<br>/oids Ratio $e_f$<br>Deg of Saturation $S_f$ %<br>Settlement: (in)<br>Compression Index $C_c$<br>Notes: | 112.10<br>0.4824<br>100.00<br>0.10<br>0.162                           | om the middle portion of                                | UD tube.      |
| Moisture Content $w_f\%$<br>Dry Density $\rho_d$ (PCF)<br>Yoids Ratio $e_f$<br>Deg of Saturation $S_f\%$<br>tettlement: (in)<br>compression Index $C_c$                               | 112.10<br>0.4824<br>100.00<br>0.10<br>0.162                           | om the middle portion of                                | UD tube.      |
| Moisture Content $w_f\%$<br>Dry Density $\rho_d$ (PCF)<br>Yoids Ratio $e_f$<br>Deg of Saturation $S_f\%$<br>tettlement: (in)<br>compression Index $C_c$                               | 112.10<br>0.4824<br>100.00<br>0.10<br>0.162<br>Test specimen taken fr | rom the middle portion of<br>Test name<br>Date of Test: | UD tube.      |


Checked: ML

Approved:


Operator: MK





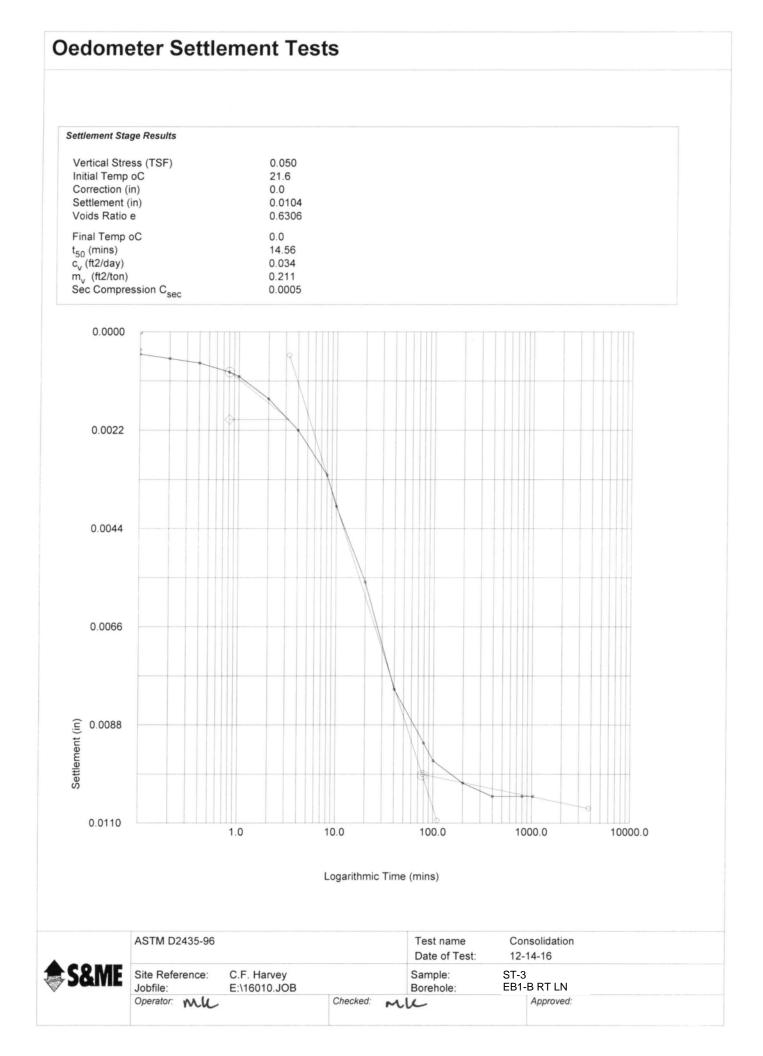


|           | Test name<br>Date of Test: | Consolidation<br>12-14-16 |  |
|-----------|----------------------------|---------------------------|--|
|           | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN       |  |
| hecked: 🔨 | nic                        | Approved:                 |  |



|         | Test name<br>Date of Test: | Consolidation<br>12-14-16 |  |
|---------|----------------------------|---------------------------|--|
|         | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN       |  |
| hecked: | ne                         | Approved:                 |  |

|     | ress<br>SF) | Initial<br>Temp. oC | Settlement<br>Total (in) | Cal Corr.<br>(in) | Final<br>Temp. oC | Voids<br>Ratio e <sub>f</sub> | t <sub>50</sub><br>(mins) |        | c <sub>v</sub><br>(ft2/day) | m <sub>v</sub><br>(ft2/ton) |
|-----|-------------|---------------------|--------------------------|-------------------|-------------------|-------------------------------|---------------------------|--------|-----------------------------|-----------------------------|
| 0.0 | 050         | 21.6                | 0.0104                   | 0.0               | 21.6              | 0.6306                        | 14.559                    | 0.0005 | 0.034                       | 0.211                       |
| 0.2 | 250         | 21.6                | 0.0252                   | 0.0               | 21.6              | 0.6061                        | 12.073                    | 0.0074 | 0.040                       | 0.076                       |
| 0.5 | 500         | 21.6                | 0.0396                   | 0.0               | 21.6              | 0.5823                        | 12.195                    | 0.0023 | 0.038                       | 0.060                       |
| 1.0 | 000         | 21.6                | 0.0608                   | 0.0               | 21.6              | 0.5472                        | 10.547                    | 0.0107 | 0.042                       | 0.045                       |
| 2.0 | 000         | 21.6                | 0.0839                   | 0.0               | 21.6              | 0.5090                        | 9.578                     | 0.0022 | 0.045                       | 0.025                       |
| 4.0 | 000         | 21.6                | 0.1104                   | 0.0               | 21.6              | 0.4652                        | 8.227                     | 0.0027 | 0.049                       | 0.015                       |
| 2.0 | 000         | 21.6                | 0.1091                   | 0.0               | 21.6              | 0.4673                        |                           |        |                             | 0.001                       |
| 0.5 | 500         | 21.6                | 0.1058                   | 0.0               | 21.6              | 0.4728                        |                           |        |                             | 0.002                       |
| 0.0 | 050         | 21.6                | 0.1000                   | 0.0               | 21.6              | 0.4824                        |                           |        |                             | 0.014                       |


## **Oedometer Settlement Tests**

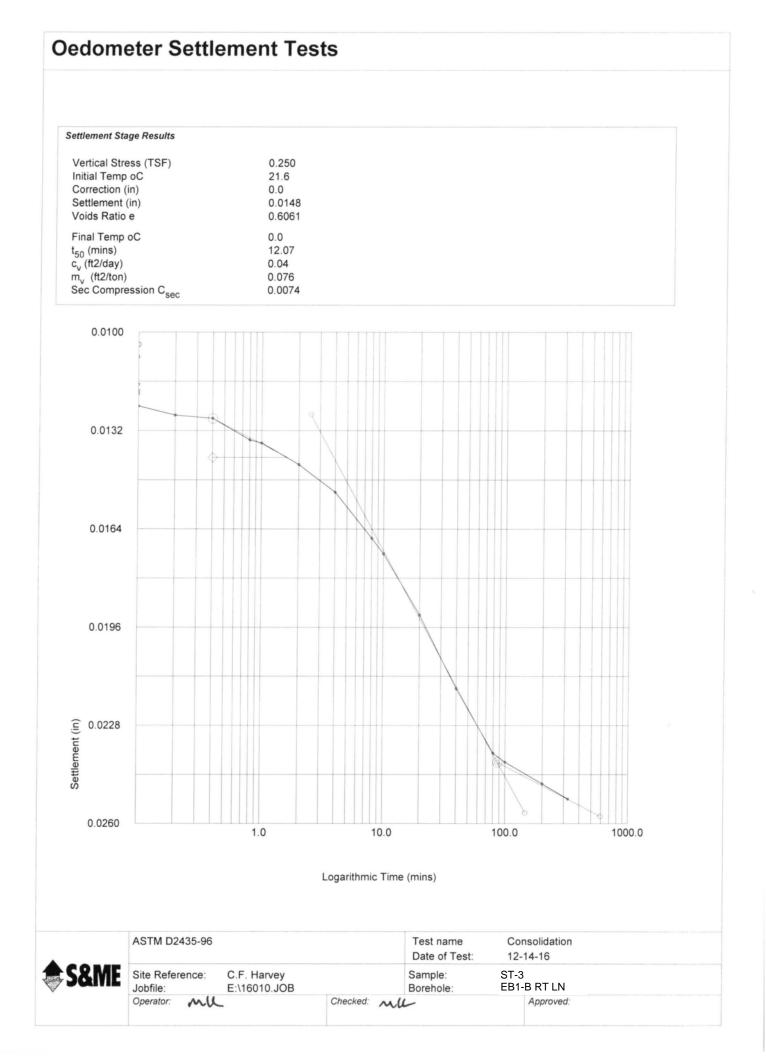
| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 0                      | 0.0000               | 0.0000             |
| 2   | 0.017          | 4                      | 0.0004               | 0.0004             |
| 3   | 0.033          | 4                      | 0.0004               | 0.0004             |
| 4   | 0.050          | 5                      | 0.0005               | 0.0005             |
| 5   | 0.067          | 5                      | 0.0005               | 0.0005             |
| 6   | 0.083          | 5                      | 0.0005               | 0.0005             |
| 7   | 0.100          | 5                      | 0.0005               | 0.0005             |
| 8   | 0.200          | 6                      | 0.0006               | 0.0006             |
| 9   | 0.400          | 7                      | 0.0007               | 0.0007             |
| 10  | 0.800          | 9                      | 0.0009               | 0.0009             |
| 11  | 1.000          | 10                     | 0.0010               | 0.0010             |
| 12  | 2.000          | 15                     | 0.0015               | 0.0015             |
| 13  | 4.000          | 22                     | 0.0022               | 0.0022             |
| 14  | 8.000          | 32                     | 0.0032               | 0.0032             |
| 15  | 10.000         | 39                     | 0.0039               | 0.0039             |
| 16  | 20.000         | 56                     | 0.0056               | 0.0056             |
| 17  | 40.000         | 80                     | 0.0080               | 0.0080             |
| 18  | 80.000         | 92                     | 0.0092               | 0.0092             |
| 19  | 100.000        | 96                     | 0.0096               | 0.0096             |
| 20  | 200.000        | 101                    | 0.0101               | 0.0101             |
| 21  | 400.000        | 104                    | 0.0104               | 0.0104             |
| 22  | 800.000        | 104                    | 0.0104               | 0.0104             |
| 23  | 1028.783       | 104                    | 0.0104               | 0.0104             |
|     |                |                        |                      |                    |

|      | ASTM D2435-96               |                             |            | Test name<br>Date of Test: | Consolidation<br>12-14-16 |  |
|------|-----------------------------|-----------------------------|------------|----------------------------|---------------------------|--|
| S&ME | Site Reference:<br>Jobfile: | C.F. Harvey<br>E:\16010.JOB |            | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN       |  |
|      | Operator: MU                | L                           | Checked: M | K                          | Approved:                 |  |



| Checked: mlc |                      | Approved:           |                   |
|--------------|----------------------|---------------------|-------------------|
|              | Sample:<br>Borehole: | ST-3<br>EB1-B RT LN |                   |
|              | Date of Test:        | 12-14-16            |                   |
|              | Test name            | Consolidation       | Load: 0.050 (TSF) |




| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 104                    | 0.0104               | 0.0104             |
| 2   | 0.017          | 108                    | 0.0108               | 0.0108             |
| 3   | 0.033          | 117                    | 0.0117               | 0.0117             |
| 4   | 0.050          | 119                    | 0.0119               | 0.0119             |
| 5   | 0.067          | 120                    | 0.0120               | 0.0120             |
| 6   | 0.083          | 120                    | 0.0120               | 0.0120             |
| 7   | 0.100          | 124                    | 0.0124               | 0.0124             |
| 8   | 0.200          | 127                    | 0.0127               | 0.0127             |
| 9   | 0.400          | 128                    | 0.0128               | 0.0128             |
| 10  | 0.800          | 135                    | 0.0135               | 0.0135             |
| 11  | 1.000          | 136                    | 0.0136               | 0.0136             |
| 12  | 2.000          | 143                    | 0.0143               | 0.0143             |
| 13  | 4.000          | 152                    | 0.0152               | 0.0152             |
| 14  | 8.000          | 167                    | 0.0167               | 0.0167             |
| 15  | 10.000         | 172                    | 0.0172               | 0.0172             |
| 16  | 20.000         | 192                    | 0.0192               | 0.0192             |
| 17  | 40.000         | 216                    | 0.0216               | 0.0216             |
| 18  | 80.000         | 237                    | 0.0237               | 0.0237             |
| 19  | 100.000        | 240                    | 0.0240               | 0.0240             |
| 20  | 200.000        | 247                    | 0.0247               | 0.0247             |
| 21  | 324.600        | 252                    | 0.0252               | 0.0252             |

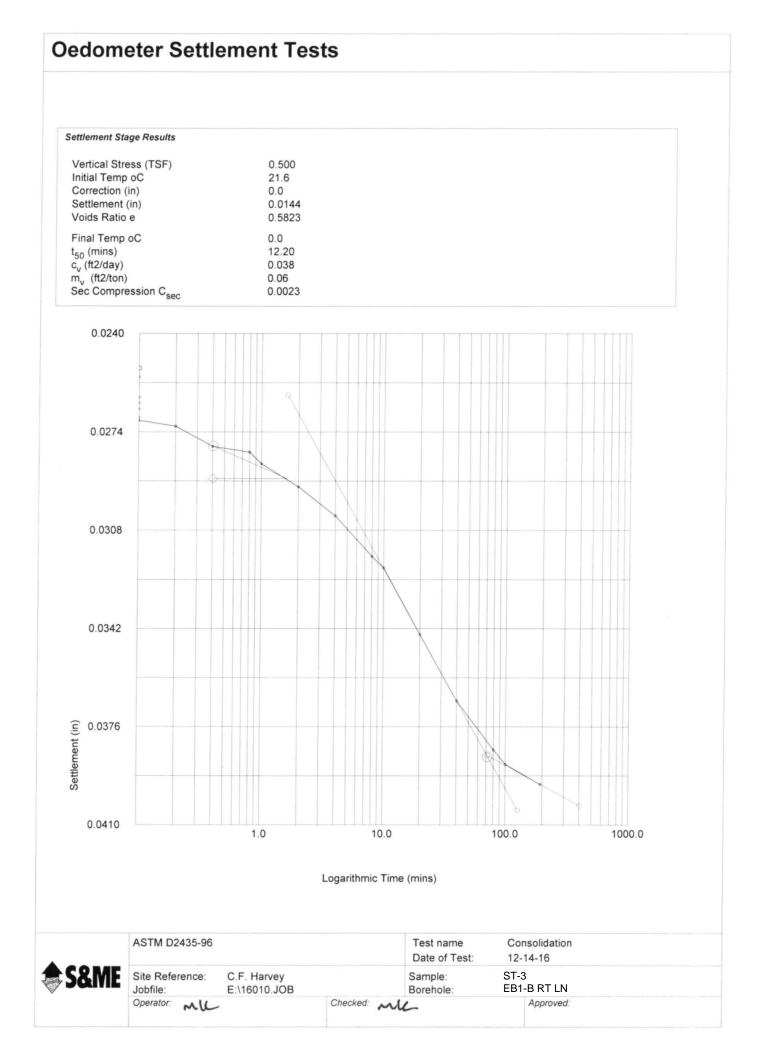
ASTM D2435-96

S&ME Site Reference: C.F. Harvey Jobfile: E:\16010.JOB Operator: ML

30 of 43

| Checked: MLC |                            | Approved:                 |                   |
|--------------|----------------------------|---------------------------|-------------------|
|              | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN       |                   |
|              | Test name<br>Date of Test: | Consolidation<br>12-14-16 | Load: 0.250 (TSF) |




| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 252                    | 0.0252               | 0.0252             |
| 2   | 0.017          | 255                    | 0.0255               | 0.0255             |
| 3   | 0.033          | 262                    | 0.0262               | 0.0262             |
| 4   | 0.050          | 264                    | 0.0264               | 0.0264             |
| 5   | 0.067          | 266                    | 0.0266               | 0.0266             |
| 6   | 0.083          | 269                    | 0.0269               | 0.0269             |
| 7   | 0.100          | 270                    | 0.0270               | 0.0270             |
| 8   | 0.200          | 272                    | 0.0272               | 0.0272             |
| 9   | 0.400          | 279                    | 0.0279               | 0.0279             |
| 10  | 0.800          | 281                    | 0.0281               | 0.0281             |
| 11  | 1.000          | 285                    | 0.0285               | 0.0285             |
| 12  | 2.000          | 293                    | 0.0293               | 0.0293             |
| 13  | 4.000          | 303                    | 0.0303               | 0.0303             |
| 14  | 8.000          | 317                    | 0.0317               | 0.0317             |
| 15  | 10.000         | 321                    | 0.0321               | 0.0321             |
| 16  | 20.000         | 344                    | 0.0344               | 0.0344             |
| 17  | 40.000         | 367                    | 0.0367               | 0.0367             |
| 18  | 80.000         | 384                    | 0.0384               | 0.0384             |
| 19  | 100.000        | 389                    | 0.0389               | 0.0389             |
| 20  | 193.133        | 396                    | 0.0396               | 0.0396             |

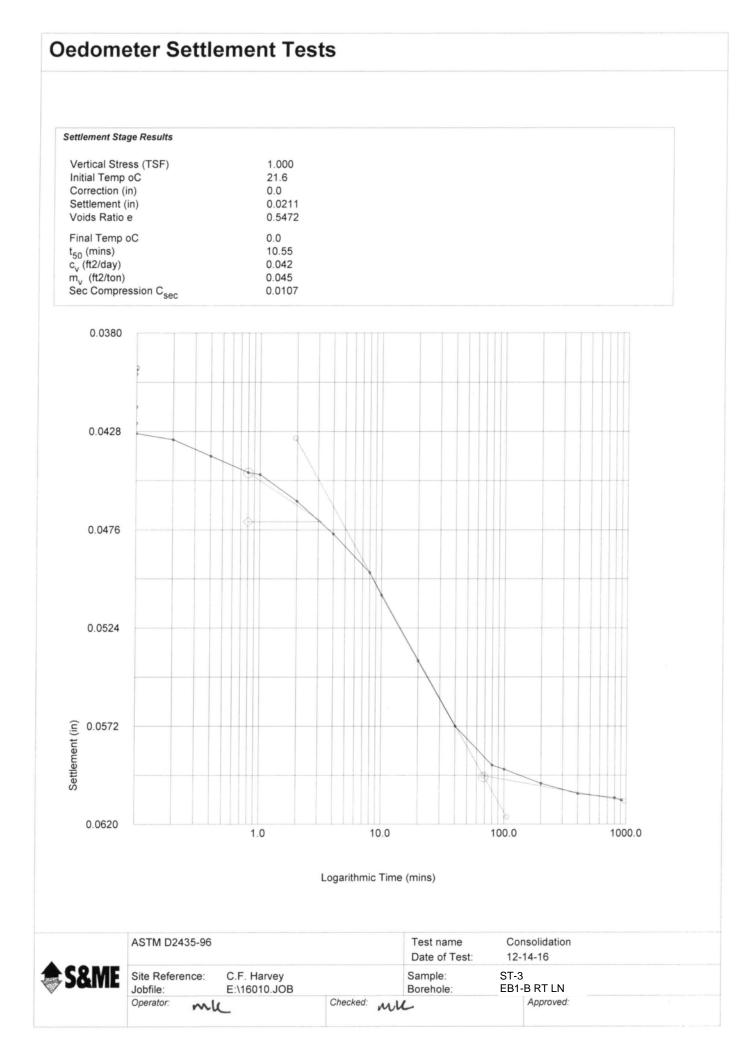
ASTM D2435-96

S&ME Site Reference: Jobfile:

C.F. Harvey E:\16010.JOB Operator: MU

|             | Test name<br>Date of Test: | Consolidation<br>12-14-16 | Load: 0.500 (TSF) |
|-------------|----------------------------|---------------------------|-------------------|
|             | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN       |                   |
| Checked: ML |                            | Approved:                 |                   |




| Oedometer Settlement Tests |     |                |                        |                      |                    |  |
|----------------------------|-----|----------------|------------------------|----------------------|--------------------|--|
|                            |     |                |                        |                      |                    |  |
|                            | No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |  |
|                            | 1   | 0.000          | 397                    | 0.0397               | 0.0397             |  |
| 1                          | 2   | 0.017          | 398                    | 0.0398               | 0.0398             |  |
| :                          | 3   | 0.033          | 398                    | 0.0398               | 0.0398             |  |
|                            | 4   | 0.050          | 400                    | 0.0400               | 0.0400             |  |
| 1                          | 5   | 0.067          | 416                    | 0.0416               | 0.0416             |  |
| 6                          | 6   | 0.083          | 424                    | 0.0424               | 0.0424             |  |
| 7                          | 7   | 0.100          | 429                    | 0.0429               | 0.0429             |  |
| 8                          | 8   | 0.200          | 432                    | 0.0432               | 0.0432             |  |
| 9                          | Э   | 0.400          | 440                    | 0.0440               | 0.0440             |  |
| 1                          | 10  | 0.800          | 448                    | 0.0448               | 0.0448             |  |
| 1                          | 11  | 1.000          | 449                    | 0.0449               | 0.0449             |  |
| 1                          | 12  | 2.000          | 462                    | 0.0462               | 0.0462             |  |
| 1                          | 13  | 4.000          | 478                    | 0.0478               | 0.0478             |  |
| 1                          | 14  | 8.000          | 497                    | 0.0497               | 0.0497             |  |
| 1                          | 15  | 10.000         | 508                    | 0.0508               | 0.0508             |  |
| 1                          | 16  | 20.000         | 540                    | 0.0540               | 0.0540             |  |
| 1                          | 17  | 40.000         | 572                    | 0.0572               | 0.0572             |  |
| 1                          | 8   | 80.000         | 591                    | 0.0591               | 0.0591             |  |
| 1                          | 19  | 100.000        | 593                    | 0.0593               | 0.0593             |  |
| 2                          | 20  | 200.000        | 600                    | 0.0600               | 0.0600             |  |
| 2                          | 21  | 400.000        | 605                    | 0.0605               | 0.0605             |  |
| 2                          | 22  | 800.000        | 607                    | 0.0607               | 0.0607             |  |
| 2                          | 3   | 917.267        | 608                    | 0.0608               | 0.0608             |  |

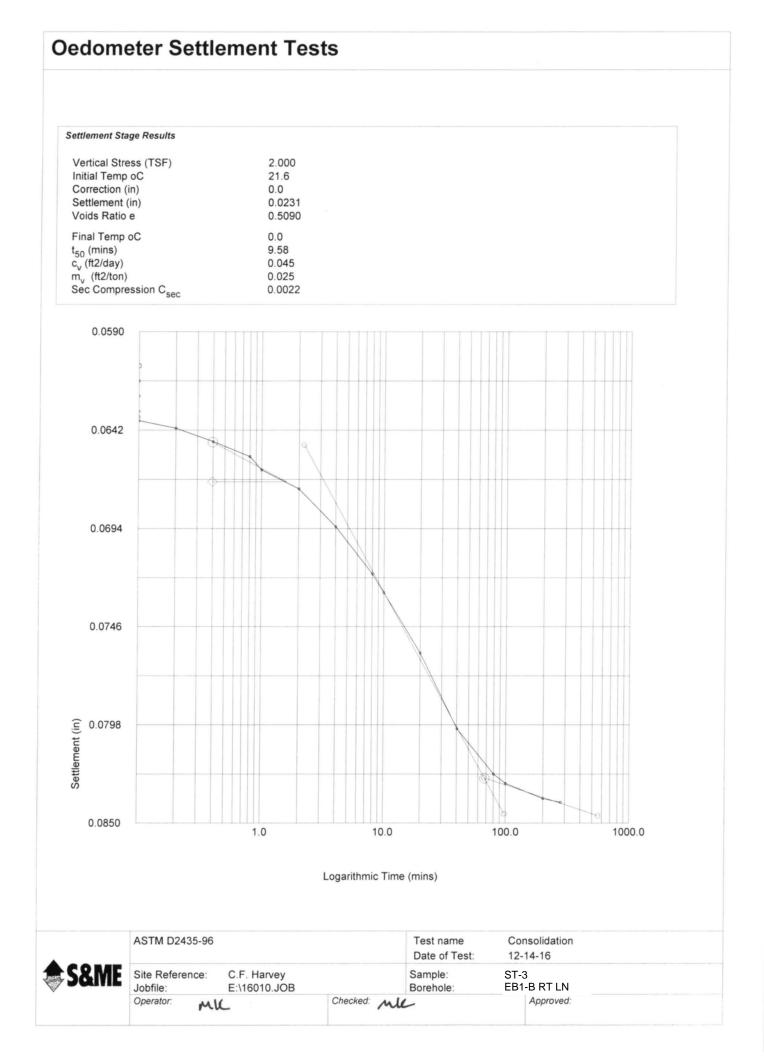
| /  | 0.100   | 429 | 0.04  |
|----|---------|-----|-------|
| 8  | 0.200   | 432 | 0.043 |
| 9  | 0.400   | 440 | 0.044 |
| 10 | 0.800   | 448 | 0.044 |
| 11 | 1.000   | 449 | 0.044 |
| 12 | 2.000   | 462 | 0.046 |
| 13 | 4.000   | 478 | 0.047 |
| 14 | 8.000   | 497 | 0.049 |
| 15 | 10.000  | 508 | 0.050 |
| 16 | 20.000  | 540 | 0.054 |
| 17 | 40.000  | 572 | 0.057 |
| 18 | 80.000  | 591 | 0.059 |
| 19 | 100.000 | 593 | 0.059 |
| 20 | 200.000 | 600 | 0.060 |
| 21 | 400.000 | 605 | 0.060 |
| 22 | 800.000 | 607 | 0.060 |
| 23 | 017 267 | 609 | 0.060 |



S&ME Site Reference: C.F. Harvey Jobfile: E:\16010.JOB Operator: ML

|             | Test name<br>Date of Test: | Consolidation<br>12-14-16 | Load: 1.000 (TSF) |
|-------------|----------------------------|---------------------------|-------------------|
|             | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN       |                   |
| checked: MC |                            | Approved:                 |                   |




| Oedometer Settlement Tests |                |                        |                      |                    |  |  |
|----------------------------|----------------|------------------------|----------------------|--------------------|--|--|
| No.                        | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |  |  |
| 1                          | 0.000          | 608                    | 0.0608               | 0.0608             |  |  |
| 2                          | 0.017          | 616                    | 0.0616               | 0.0616             |  |  |
| 3                          | 0.033          | 616                    | 0.0616               | 0.0616             |  |  |
| 4                          | 0.050          | 624                    | 0.0624               | 0.0624             |  |  |
| 5                          | 0.067          | 632                    | 0.0632               | 0.0632             |  |  |
| 6                          | 0.083          | 635                    | 0.0635               | 0.0635             |  |  |
| 7                          | 0.100          | 637                    | 0.0637               | 0.0637             |  |  |
| 8                          | 0.200          | 641                    | 0.0641               | 0.0641             |  |  |
| 9                          | 0.400          | 648                    | 0.0648               | 0.0648             |  |  |
| 10                         | 0.800          | 656                    | 0.0656               | 0.0656             |  |  |
| 11                         | 1.000          | 663                    | 0.0663               | 0.0663             |  |  |
| 12                         | 2.000          | 673                    | 0.0673               | 0.0673             |  |  |
| 13                         | 4.000          | 693                    | 0.0693               | 0.0693             |  |  |
| 14                         | 8.000          | 718                    | 0.0718               | 0.0718             |  |  |
| 15                         | 10.000         | 728                    | 0.0728               | 0.0728             |  |  |
| 16                         | 20.000         | 760                    | 0.0760               | 0.0760             |  |  |
| 17                         | 40.283         | 800                    | 0.0800               | 0.0800             |  |  |
| 18                         | 80.283         | 824                    | 0.0824               | 0.0824             |  |  |
| 19                         | 100.283        | 829                    | 0.0829               | 0.0829             |  |  |
| 20                         | 200.283        | 837                    | 0.0837               | 0.0837             |  |  |
| 21                         | 278.583        | 839                    | 0.0839               | 0.0839             |  |  |

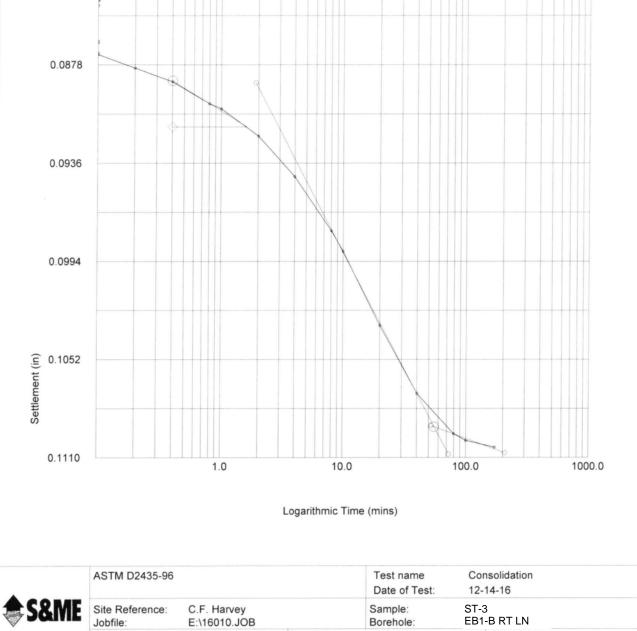


Operator:

Site Reference: C.F. Harvey Jobfile: E:\16010.JOB Me

|             | Test name<br>Date of Test: | Consolidation 12-14-16 | Load: 2.000 (TSF) |
|-------------|----------------------------|------------------------|-------------------|
|             | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN    |                   |
| Checked: ML |                            | Approved:              |                   |




| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 839                    | 0.0839               | 0.0839             |
| 2   | 0.017          | 840                    | 0.0840               | 0.0840             |
| 3   | 0.033          | 843                    | 0.0843               | 0.0843             |
| 4   | 0.050          | 864                    | 0.0864               | 0.0864             |
| 5   | 0.067          | 865                    | 0.0865               | 0.0865             |
| 6   | 0.083          | 871                    | 0.0871               | 0.0871             |
| 7   | 0.100          | 872                    | 0.0872               | 0.0872             |
| 8   | 0.200          | 880                    | 0.0880               | 0.0880             |
| 9   | 0.400          | 888                    | 0.0888               | 0.0888             |
| 10  | 0.800          | 901                    | 0.0901               | 0.0901             |
| 11  | 1.000          | 904                    | 0.0904               | 0.0904             |
| 12  | 2.000          | 920                    | 0.0920               | 0.0920             |
| 13  | 4.000          | 944                    | 0.0944               | 0.0944             |
| 14  | 8.000          | 976                    | 0.0976               | 0.0976             |
| 15  | 10.000         | 988                    | 0.0988               | 0.0988             |
| 16  | 20.000         | 1032                   | 0.1032               | 0.1032             |
| 17  | 40.000         | 1072                   | 0.1072               | 0.1072             |
| 18  | 80.000         | 1096                   | 0.1096               | 0.1096             |
| 19  | 100.000        | 1100                   | 0.1100               | 0.1100             |
| 20  | 171.167        | 1104                   | 0.1104               | 0.1104             |
|     |                |                        |                      |                    |

ASTM D2435-96

Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

|         | Test name<br>Date of Test: | Consolidation<br>12-14-16 | Load: 4.000 (TSF) |
|---------|----------------------------|---------------------------|-------------------|
|         | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN       |                   |
| hecked: | ulc                        | Approved:                 |                   |



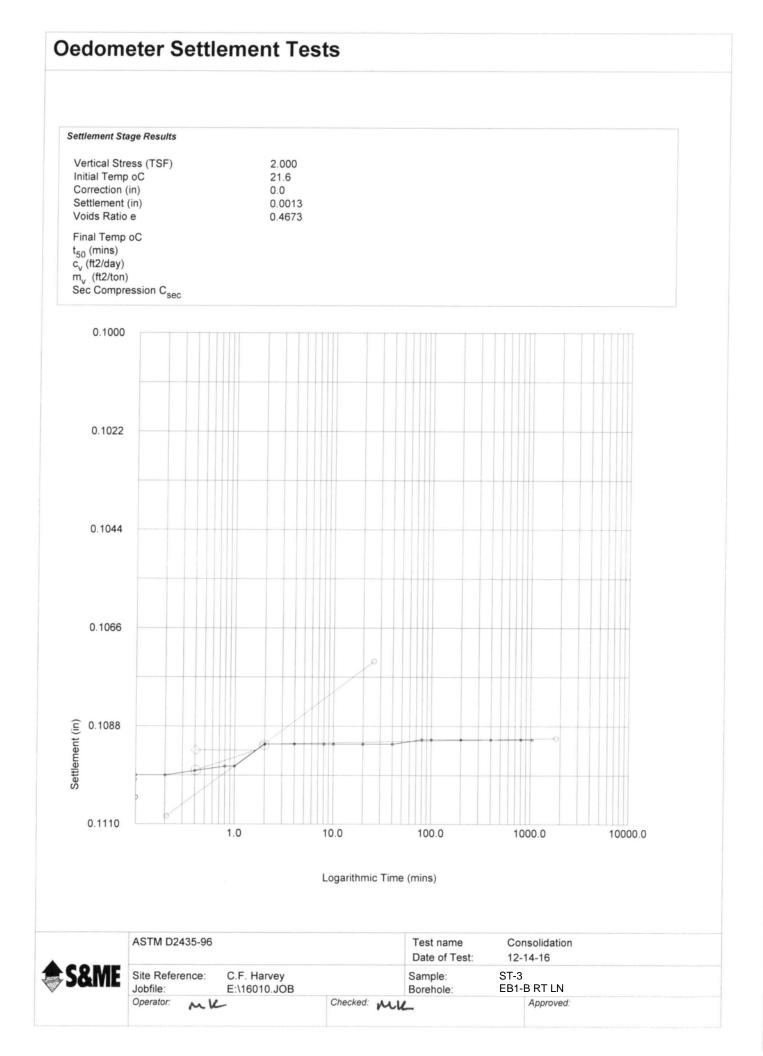


EB1-B RT LN

Approved:

Borehole:

Checked: ML


Operator:

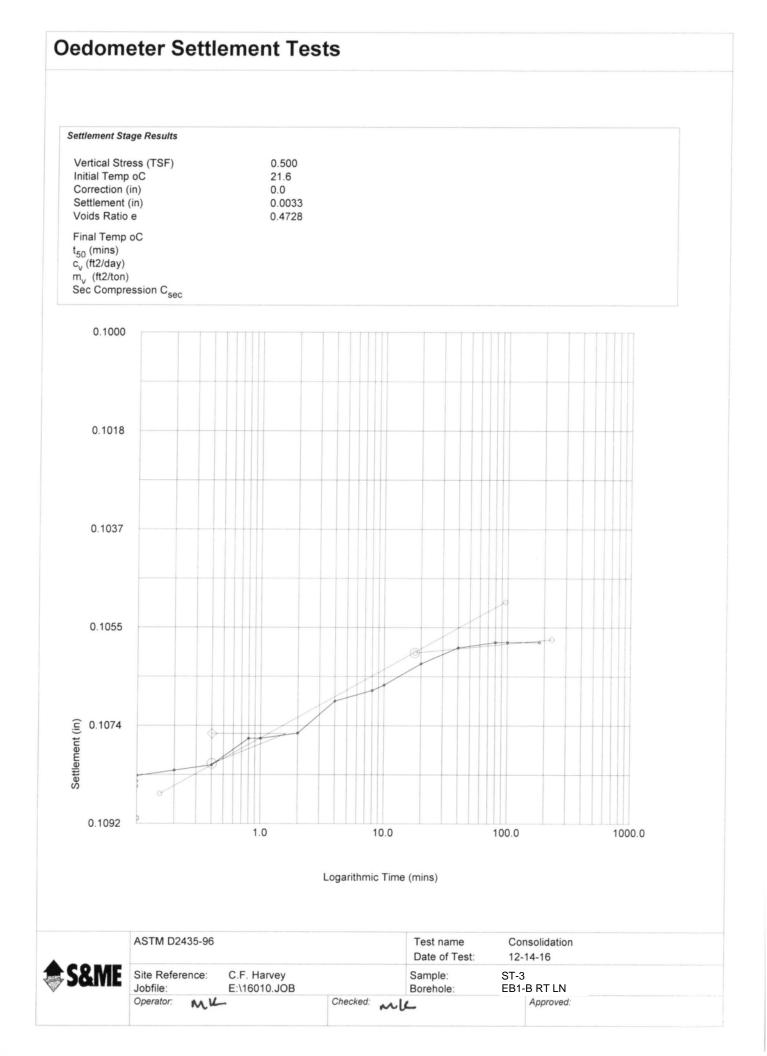
MK

| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 1104                   | 0.1104               | 0.1104             |
| 2   | 0.017          | 1100                   | 0.1100               | 0.1100             |
| 3   | 0.033          | 1100                   | 0.1100               | 0.1100             |
| 4   | 0.050          | 1100                   | 0.1100               | 0.1100             |
| 5   | 0.067          | 1099                   | 0.1099               | 0.1099             |
| 6   | 0.083          | 1099                   | 0.1099               | 0.1099             |
| 7   | 0.100          | 1099                   | 0.1099               | 0.1099             |
| 8   | 0.200          | 1099                   | 0.1099               | 0.1099             |
| 9   | 0.400          | 1098                   | 0.1098               | 0.1098             |
| 10  | 0.800          | 1097                   | 0.1097               | 0.1097             |
| 11  | 1.000          | 1097                   | 0.1097               | 0.1097             |
| 12  | 2.000          | 1092                   | 0.1092               | 0.1092             |
| 13  | 4.000          | 1092                   | 0.1092               | 0.1092             |
| 14  | 8.000          | 1092                   | 0.1092               | 0.1092             |
| 15  | 10.000         | 1092                   | 0.1092               | 0.1092             |
| 16  | 20.000         | 1092                   | 0.1092               | 0.1092             |
| 17  | 40.000         | 1092                   | 0.1092               | 0.1092             |
| 18  | 80.000         | 1091                   | 0.1091               | 0.1091             |
| 19  | 100.000        | 1091                   | 0.1091               | 0.1091             |
| 20  | 200.000        | 1091                   | 0.1091               | 0.1091             |
| 21  | 400.000        | 1091                   | 0.1091               | 0.1091             |
| 22  | 800.000        | 1091                   | 0.1091               | 0.1091             |
| 23  | 1042.500       | 1091                   | 0.1091               | 0.1091             |

|      | ASTM D2435-96               |                             |
|------|-----------------------------|-----------------------------|
| S&ME | Site Reference:<br>Jobfile: | C.F. Harvey<br>E:\16010.JOB |
|      | Operator: M                 | 16                          |

|          | Test name<br>Date of Test: | Consolidation 12-14-16 | Load: 2.000 (TSF) |
|----------|----------------------------|------------------------|-------------------|
|          | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN    |                   |
| Checked: | rk                         | Approved:              |                   |




| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 1091                   | 0.1091               | 0.1091             |
| 2   | 0.017          | 1084                   | 0.1084               | 0.1084             |
| 3   | 0.033          | 1085                   | 0.1085               | 0.1085             |
| 4   | 0.050          | 1084                   | 0.1084               | 0.1084             |
| 5   | 0.067          | 1083                   | 0.1083               | 0.1083             |
| 6   | 0.083          | 1083                   | 0.1083               | 0.1083             |
| 7   | 0.100          | 1083                   | 0.1083               | 0.1083             |
| 8   | 0.200          | 1082                   | 0.1082               | 0.1082             |
| 9   | 0.400          | 1081                   | 0.1081               | 0.1081             |
| 10  | 0.800          | 1076                   | 0.1076               | 0.1076             |
| 11  | 1.000          | 1076                   | 0.1076               | 0.1076             |
| 12  | 2.000          | 1075                   | 0.1075               | 0.1075             |
| 13  | 4.000          | 1069                   | 0.1069               | 0.1069             |
| 14  | 8.000          | 1067                   | 0.1067               | 0.1067             |
| 15  | 10.000         | 1066                   | 0.1066               | 0.1066             |
| 16  | 20.000         | 1062                   | 0.1062               | 0.1062             |
| 17  | 40.000         | 1059                   | 0.1059               | 0.1059             |
| 18  | 80.000         | 1058                   | 0.1058               | 0.1058             |
| 19  | 100.000        | 1058                   | 0.1058               | 0.1058             |
| 20  | 182.140        | 1058                   | 0.1058               | 0.1058             |

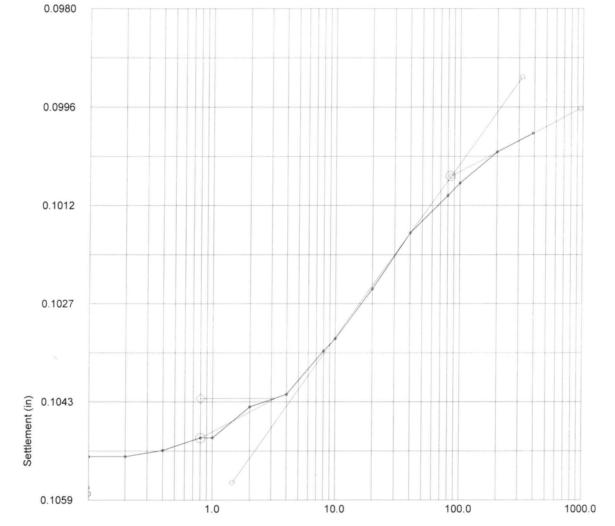
ASTM D2435-96

Same Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

С

|         | Test name<br>Date of Test: | Consolidation<br>12-14-16 | Load: 0.500 (TSF) |
|---------|----------------------------|---------------------------|-------------------|
|         | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN       |                   |
| hecked: | me                         | Approved:                 |                   |




| No. | Time<br>(mins) | Displacement<br>(divs) | Displacement<br>(in) | Settlement<br>(in) |
|-----|----------------|------------------------|----------------------|--------------------|
| 1   | 0.000          | 1058                   | 0.1058               | 0.1058             |
| 2   | 0.017          | 1057                   | 0.1057               | 0.1057             |
| 3   | 0.033          | 1052                   | 0.1052               | 0.1052             |
| 4   | 0.050          | 1052                   | 0.1052               | 0.1052             |
| 5   | 0.067          | 1052                   | 0.1052               | 0.1052             |
| 6   | 0.083          | 1052                   | 0.1052               | 0.1052             |
| 7   | 0.100          | 1052                   | 0.1052               | 0.1052             |
| 8   | 0.200          | 1052                   | 0.1052               | 0.1052             |
| 9   | 0.400          | 1051                   | 0.1051               | 0.1051             |
| 10  | 0.800          | 1049                   | 0.1049               | 0.1049             |
| 11  | 1.000          | 1049                   | 0.1049               | 0.1049             |
| 12  | 2.000          | 1044                   | 0.1044               | 0.1044             |
| 13  | 4.000          | 1042                   | 0.1042               | 0.1042             |
| 14  | 8.000          | 1035                   | 0.1035               | 0.1035             |
| 15  | 10.000         | 1033                   | 0.1033               | 0.1033             |
| 16  | 20.000         | 1025                   | 0.1025               | 0.1025             |
| 17  | 40.000         | 1016                   | 0.1016               | 0.1016             |
| 18  | 80.000         | 1010                   | 0.1010               | 0.1010             |
| 19  | 100.000        | 1008                   | 0.1008               | 0.1008             |
| 20  | 200.000        | 1003                   | 0.1003               | 0.1003             |
| 21  | 391.230        | 1000                   | 0.1000               | 0.1000             |
|     |                |                        |                      |                    |

ASTM D2435-96

Site Reference: & ME C.F. Harvey E:\16010.JOB Jobfile: Operator: MR

|          | Test name<br>Date of Test: | Consolidation Load: 0.050 (TSF) 12-14-16 |
|----------|----------------------------|------------------------------------------|
|          | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN                      |
| Checked: | ice                        | Approved:                                |





#### Logarithmic Time (mins)

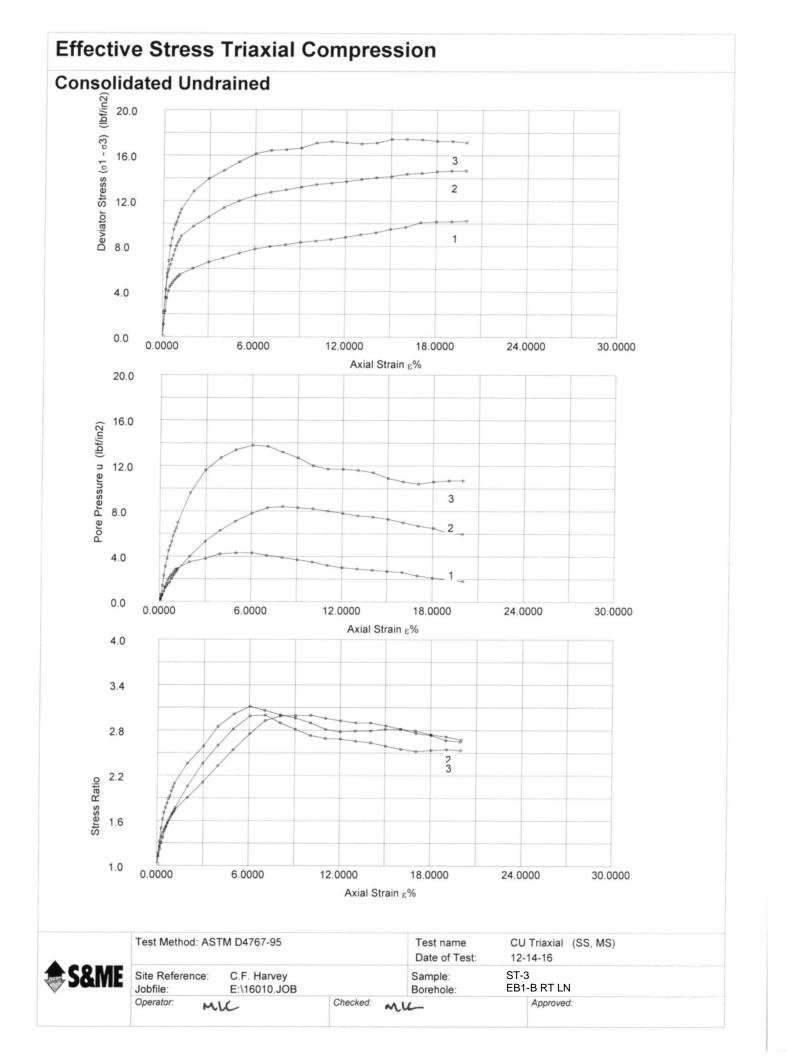
|               |            | 1 D2435-96       |                             |          |   | Test name<br>Date of Test: |             | nsolidation<br>-14-16 |  |
|---------------|------------|------------------|-----------------------------|----------|---|----------------------------|-------------|-----------------------|--|
| <b>\$</b> \$& | Site Jobfi | Reference:<br>e: | C.F. Harvey<br>E:\16010.JOB |          |   | Sample:<br>Borehole:       | ST-:<br>EB1 | 3<br>I-B RT LN        |  |
|               | Opera      | tor: M           | k                           | Checked: | M | 2                          |             | Approved:             |  |

## **Effective Stress Triaxial Compression**

## **Consolidated Undrained**

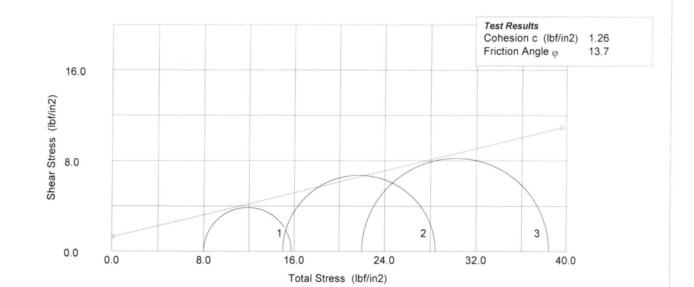
| Sample details                                         | Depth                        | 18.0 - 20.0 ft.  |                   |                |
|--------------------------------------------------------|------------------------------|------------------|-------------------|----------------|
| Sketch showing specimen<br>location in original Sample |                              | Gray Coarse to F | ine Sandy Silty ( | CLAY (A-6) (2) |
|                                                        |                              | Specimen 1       | Specimen 2        | Specimen 3     |
|                                                        | Туре                         | Undisturbed      | Undisturbed       | Undisturbed    |
|                                                        | Height H <sub>0</sub> (in)   | 5.952            | 5.801             | 5.814          |
|                                                        | Diameter D <sub>0</sub> (in) | 2.861            | 2.864             | 2.864          |
|                                                        | Weight W <sub>0</sub> (gr)   | 1275             | 1236.8            | 1226.3         |
|                                                        | Bulk Density p (PCF          | 126.94           | 126.08            | 124.73         |
|                                                        | Particle Density ps          | 2.663            | 2.663             | 2.663          |
|                                                        |                              | (measured)       | (measured)        | (measured)     |

| Initial Conditions                    |            |              |            |  |
|---------------------------------------|------------|--------------|------------|--|
|                                       | Specimen 1 | Specimen 2   | Specimen 3 |  |
| Cell Pressure $\sigma_3$ (lbf/in2)    | 8.0        | 15.0         | 22.0       |  |
| Pore Pressure u (lbf/in2)             | 0.0        | 0.0          | 0.0        |  |
| Machine Speed d <sub>r</sub> (in/min) | 0.0081     | 0.0079       | 0.0104     |  |
| No. of Membranes                      | 1          | 1            | 1          |  |
| Total Thickness (in)                  | 0.012      | 0.012        | 0.012      |  |
| Strain Channel                        | 1798       | 1798         | 1798       |  |
| oad Channel                           | 1776       | 1776         | 1776       |  |
| Pore P. Channel                       | 1779       | 1779         | 1779       |  |
| /olume Channel                        |            | Volume Chang |            |  |
| Moisture Content w <sub>0</sub> %     | 21.3       | 23.8         | 21.9       |  |
| Dry Density pd0 (PCF)                 | 104.62     | 101.88       | 102.28     |  |
| /oids Ratio e <sub>0</sub>            | 0.59       | 0.63         | 0.62       |  |
| Deg of Saturation S <sub>0</sub> %    | 96.56      | 100.00       | 93.55      |  |
| Final B Value                         | 0.95       | 0.95         | 0.98       |  |


| Final Conditions                                   |              |             |
|----------------------------------------------------|--------------|-------------|
|                                                    | Specimen 1   | Specime     |
| Moisture Content w <sub>f</sub> %                  | 19.7         | 20.1        |
| Dry Density pd (PCF)                               | 108.32       | 107.07      |
| Voids Ratio e <sub>f</sub>                         | 0.53         | 0.55        |
| Deg of Saturation S <sub>f</sub> %                 | 98.02        | 96.91       |
| Failure Criteria                                   | Mx Stress Ra | tioMx Stres |
| Axial Strain <sub>Ef</sub> %                       | 6.0          | 10.0        |
| Corr Dev Stress $(\sigma_1 - \sigma_3)f$ (lbf/in2) | 7.8          | 13.4        |
| Minor Stress ogf (lbf/in2)                         | 3.7          | 6.8         |
| Major Stress of (lbf/in2)                          | 11.5         | 20.2        |
| Stress Ratio $(\sigma_1/\sigma_3)_f$               | 3.1          | 3.0         |
| Notes:                                             |              |             |

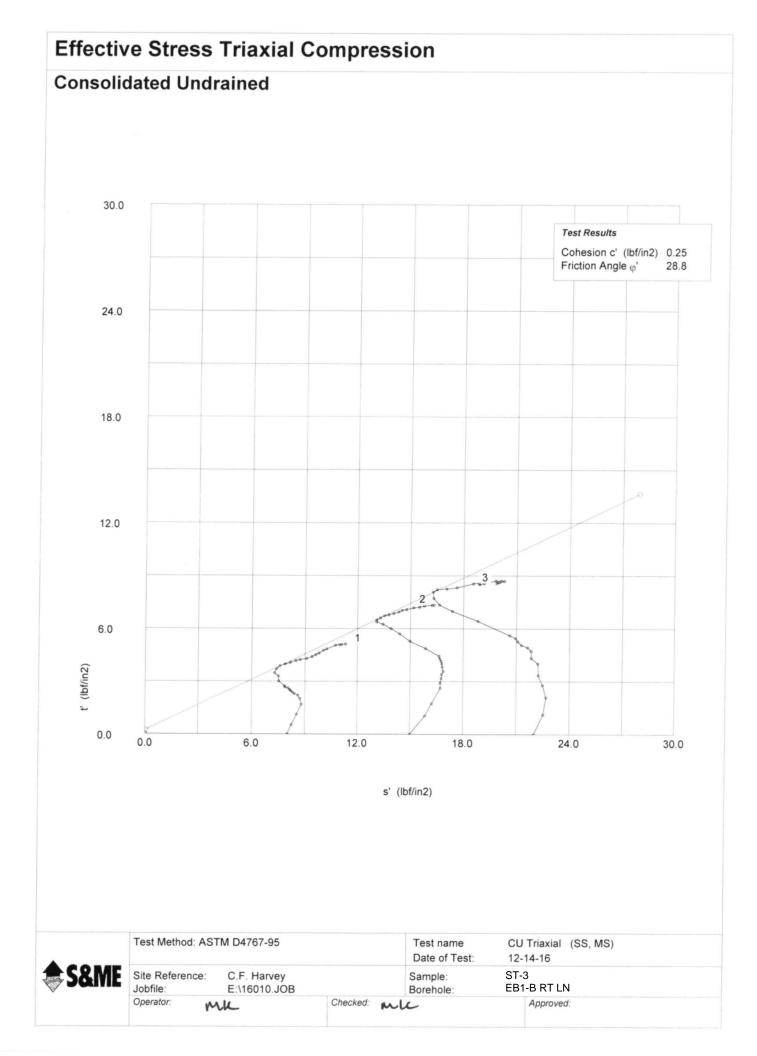
|      | Test Method: AST            | TM D4767-95                 |
|------|-----------------------------|-----------------------------|
| S&ME | Site Reference:<br>Jobfile: | C.F. Harvey<br>E:\16010.JOB |
|      |                             |                             |

C.F. Harvey E:\16010.JOB Operator: MIC


| en 2   | Specimen 3<br>18.7 | Failure Sketch      |
|--------|--------------------|---------------------|
|        | 109.24             | Sp 1 Sp 2           |
|        | 0.52               | ک کے                |
|        | 95.79              | 1 1                 |
| ss Rat | tioMx Stress Ratio | · _ >               |
|        | 7.0                |                     |
|        | 16.4               | Sp 3                |
|        | 8.3                | 5                   |
|        | 24.7               | 1                   |
|        | 3.0                |                     |
|        |                    |                     |
|        |                    | Surface Inclination |

|            | Test name<br>Date of Test: | CU Triaxial (SS, MS)<br>12-14-16 |  |
|------------|----------------------------|----------------------------------|--|
|            | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN              |  |
| Checked: M | K                          | Approved:                        |  |










|      | Test Method: AS             | TM D4767-95                 |          | Test name<br>Date of Test: | CU Triaxial<br>12-14-16 | (SS, MS) |
|------|-----------------------------|-----------------------------|----------|----------------------------|-------------------------|----------|
| S&ME | Site Reference:<br>Jobfile: | C.F. Harvey<br>E:\16010.JOB |          | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN     | I        |
|      | Operator: MU                | -                           | Checked: | me                         | Approved                | 1:       |

J.



# **Effective Stress Triaxial Compression**

#### **Consolidated Undrained Shear (Specimen 1)**

| No. | Strain<br>(divs) | Strain<br>ε% | Load<br>(divs) | Load<br>(Ibs) | Pore Prs<br>(divs) | Pore Prs<br>(lbf/in2) | D. Stress<br>(σ <sub>1</sub> - σ <sub>3</sub> ) <sub>m</sub><br>(lbf/in2) | D. Stress<br>$(\sigma_1 - \sigma_3)_c$<br>(Ibf/in2) | Minor Str<br>oʻʻ<br>(lbf/in2) | Major Str<br>σ <sub>1</sub> ΄<br>(Ibf/in2) | Ratio $\sigma_1'' \sigma_3'$ |
|-----|------------------|--------------|----------------|---------------|--------------------|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|--------------------------------------------|------------------------------|
| 1   | 24               | 0.00         | 589            | 0.0           | 0                  | 0.0                   | 0.0                                                                       | 0.0                                                 | 8.00                          | 8.00                                       | 1.00                         |
| 2   | 73               | 0.08         | 658            | 6.9           | 3                  | 0.3                   | 1.1                                                                       | 1.1                                                 | 7.70                          | 8.80                                       | 1.14                         |
| 3   | 128              | 0.18         | 732            | 14.3          | 6                  | 0.6                   | 2.3                                                                       | 2.3                                                 | 7.40                          | 9.67                                       | 1.31                         |
| 4   | 183              | 0.27         | 803            | 21.4          | 9                  | 0.9                   | 3.4                                                                       | 3.4                                                 | 7.10                          | 10.50                                      | 1.48                         |
| 5   | 240              | 0.37         | 844            | 25.5          | 13                 | 1.3                   | 4.0                                                                       | 4.0                                                 | 6.70                          | 10.74                                      | 1.60                         |
| 6   | 294              | 0.46         | 867            | 27.8          | 16                 | 1.6                   | 4.4                                                                       | 4.4                                                 | 6.40                          | 10.80                                      | 1.69                         |
| 7   | 346              | 0.55         | 889            | 30.0          | 19                 | 1.9                   | 4.7                                                                       | 4.6                                                 | 6.10                          | 10.69                                      | 1.75                         |
| 8   | 405              | 0.65         | 901            | 31.2          | 21                 | 2.1                   | 4.9                                                                       | 4.8                                                 | 5.90                          | 10.67                                      | 1.81                         |
| 9   | 458              | 0.74         | 913            | 32.4          | 23                 | 2.3                   | 5.1                                                                       | 5.0                                                 | 5.70                          | 10.66                                      | 1.87                         |
| 10  | 513              | 0.83         | 920            | 33.1          | 24                 | 2.4                   | 5.2                                                                       | 5.1                                                 | 5.60                          | 10.66                                      | 1.90                         |
| 11  | 572              | 0.93         | 933            | 34.4          | 26                 | 2.6                   | 5.4                                                                       | 5.3                                                 | 5.40                          | 10.66                                      | 1.97                         |
| 12  | 625              | 1.02         | 938            | 34.9          | 28                 | 2.8                   | 5.5                                                                       | 5.3                                                 | 5.20                          | 10.54                                      | 2.03                         |
| 13  | 680              | 1.11         | 947            | 35.8          | 29                 | 2.9                   | 5.6                                                                       | 5.5                                                 | 5.10                          | 10.57                                      | 2.07                         |
| 14  | 1177             | 1.96         | 993            | 40.4          | 35                 | 3.5                   | 6.3                                                                       | 6.0                                                 | 4.50                          | 10.52                                      | 2.34                         |
| 15  | 1793             | 3.01         | 1039           | 45.0          | 38                 | 3.8                   | 6.9                                                                       | 6.6                                                 | 4.20                          | 10.79                                      | 2.57                         |
| 16  | 2348             | 3.95         | 1075           | 48.6          | 42                 | 4.2                   | 7.4                                                                       | 7.0                                                 | 3.80                          | 10.75                                      | 2.83                         |
| 17  | 2966             | 5.00         | 1114           | 52.5          | 43                 | 4.3                   | 7.9                                                                       | 7.4                                                 | 3.70                          | 11.08                                      | 2.99                         |
| 18  | 3582             | 6.05         | 1150           | 56.1          | 43                 | 4.3                   | 8.4                                                                       | 7.8                                                 | 3.70                          | 11.45                                      | 3.09                         |
| 19  | 4150             | 7.01         | 1175           | 58.6          | 41                 | 4.1                   | 8.7                                                                       | 8.0                                                 | 3.90                          | 11.85                                      | 3.04                         |
| 20  | 4752             | 8.03         | 1199           | 61.0          | 39                 | 3.9                   | 8.9                                                                       | 8.1                                                 | 4.10                          | 12.23                                      | 2.98                         |
| 21  | 5340             | 9.03         | 1226           | 63.7          | 37                 | 3.7                   | 9.2                                                                       | 8.3                                                 | 4.30                          | 12.64                                      | 2.94                         |
| 22  | 5930             | 10.04        | 1246           | 65.7          | 35                 | 3.5                   | 9.4                                                                       | 8.4                                                 | 4.50                          | 12.95                                      | 2.88                         |
| 23  | 6518             | 11.03        | 1269           | 68.0          | 32                 | 3.2                   | 9.6                                                                       | 8.6                                                 | 4.80                          | 13.39                                      | 2.79                         |
| 24  | 7096             | 12.02        | 1297           | 70.8          | 30                 | 3.0                   | 9.9                                                                       | 8.8                                                 | 5.00                          | 13.80                                      | 2.76                         |
| 25  | 7684             | 13.02        | 1326           | 73.7          | 29                 | 2.9                   | 10.2                                                                      | 9.0                                                 | 5.10                          | 14.12                                      | 2.77                         |
| 26  | 8273             | 14.02        | 1354           | 76.5          | 28                 | 2.8                   | 10.5                                                                      | 9.2                                                 | 5.20                          | 14.41                                      | 2.77                         |
| 27  | 8857             | 15.01        | 1389           | 80.0          | 27                 | 2.7                   |                                                                           | 9.5                                                 | 5.30                          | 14.81                                      | 2.79                         |
| 28  | 9437             | 16.00        | 1416           | 82.7          | 26                 | 2.6                   |                                                                           | 9.7                                                 | 5.40                          | 15.08                                      | 2.79                         |
| 29  | 10026            | 17.00        | 1463           | 87.4          | 23                 | 2.3                   | 11.5                                                                      | 10.1                                                | 5.70                          | 15.79                                      | 2.77                         |
| 30  | 10622            | 18.01        | 1484           | 89.5          | 21                 | 2.1                   |                                                                           | 10.2                                                | 5.90                          | 16.06                                      | 2.72                         |
| 31  | 11218            | 19.02        | 1499           | 91.0          | 20                 | 2.0                   |                                                                           | 10.2                                                | 6.00                          | 16.17                                      | 2.70                         |
| 32  | 11807            | 20.02        | 1519           | 93.0          | 18                 | 1.8                   |                                                                           | 10.2                                                |                               | 16.44                                      | 2.65                         |

| Test Method: ASTM | D4767-95 |
|-------------------|----------|
|-------------------|----------|

&ME C.F. Harvey E:\16010.JOB Site Reference: Jobfile: Operator: mle

#### 40 of 43

Page 1/3

|            | Test name<br>Date of Test: | CU Triaxial (SS, MS) Shear (Specimen 1) 12-14-16 |
|------------|----------------------------|--------------------------------------------------|
|            | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN                              |
| Checked: M | le                         | Approved:                                        |

# **Effective Stress Triaxial Compression**

#### **Consolidated Undrained Shear (Specimen 2)**

|   | No. | Strain<br>(divs) | Strain<br>ε% | Load<br>(divs) | Load<br>(Ibs) | Pore Prs<br>(divs) | Pore Prs<br>(Ibf/in2) | D. Stress<br>(σ <sub>1</sub> - σ <sub>3</sub> ) <sub>m</sub><br>(lbf/in2) | D. Stress<br>(σ <sub>1</sub> - σ <sub>3</sub> ) <sub>c</sub><br>(lbf/in2) | Minor Str<br>σ <sub>3</sub> ΄<br>(lbf/in2) | Major Str<br>σ <sub>1</sub> ΄<br>(Ibf/in2) | Ratio $\sigma_1'' \sigma_3'$ |
|---|-----|------------------|--------------|----------------|---------------|--------------------|-----------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------|
|   | 1   | 70               | 0.00         | 666            | 0.0           | 0                  | 0.0                   | 0.0                                                                       | 0.0                                                                       | 15.00                                      | 15.00                                      | 1.00                         |
|   | 2   | 118              | 0.08         | 797            | 13.1          | 2                  | 0.2                   | 2.1                                                                       | 2.1                                                                       | 14.80                                      | 16.90                                      | 1.14                         |
|   | 3   | 175              | 0.18         | 883            | 21.7          | 5                  | 0.5                   | 3.5                                                                       | 3.5                                                                       | 14.50                                      | 17.98                                      | 1.24                         |
|   | 4   | 230              | 0.28         | 994            | 32.8          | 9                  | 0.9                   | 5.2                                                                       | 5.2                                                                       | 14.10                                      | 19.35                                      | 1.37                         |
| L | 5   | 286              | 0.38         | 1031           | 36.5          | 12                 | 1.2                   | 5.8                                                                       | 5.8                                                                       | 13.80                                      | 19.64                                      | 1.42                         |
|   | 6   | 345              | 0.48         | 1064           | 39.8          | 14                 | 1.4                   | 6.4                                                                       | 6.4                                                                       | 13.60                                      | 19.96                                      | 1.47                         |
|   | 7   | 399              | 0.58         | 1102           | 43.6          | 16                 | 1.6                   | 7.0                                                                       | 6.8                                                                       | 13.40                                      | 20.20                                      | 1.51                         |
|   | 8   | 454              | 0.67         | 1126           | 46.0          | 17                 | 1.7                   | 7.3                                                                       | 7.2                                                                       | 13.30                                      | 20.47                                      | 1.54                         |
|   | 9   | 514              | 0.78         | 1156           | 49.0          | 20                 | 2.0                   | 7.8                                                                       | 7.6                                                                       | 13.00                                      | 20.64                                      | 1.59                         |
|   | 10  | 567              | 0.87         | 1180           | 51.4          | 22                 | 2.2                   | 8.2                                                                       | 8.0                                                                       | 12.80                                      | 20.82                                      | 1.63                         |
|   | 11  | 622              | 0.97         | 1199           | 53.3          | 24                 | 2.4                   | 8.5                                                                       | 8.3                                                                       | 12.60                                      | 20.91                                      | 1.66                         |
|   | 12  | 684              | 1.08         | 1216           | 55.0          | 26                 | 2.6                   | 8.7                                                                       | 8.6                                                                       | 12.40                                      | 20.97                                      | 1.69                         |
|   | 13  | 739              | 1.17         | 1236           | 57.0          | 28                 | 2.8                   | 9.0                                                                       | 8.9                                                                       | 12.20                                      | 21.08                                      | 1.73                         |
|   | 14  | 1191             | 1.96         | 1303           | 63.7          | 40                 | 4.0                   | 10.0                                                                      | 9.7                                                                       | 11.00                                      | 20.74                                      | 1.89                         |
|   | 15  | 1757             | 2.96         | 1367           | 70.1          | 53                 | 5.3                   | 10.9                                                                      | 10.6                                                                      | 9.70                                       | 20.26                                      | 2.09                         |
|   | 16  | 2325             | 3.95         | 1436           | 77.0          |                    | 6.3                   | 11.9                                                                      | 11.4                                                                      | 8.70                                       | 20.09                                      | 2.31                         |
|   | 17  | 2894             | 4.95         | 1489           | 82.3          |                    | 7.1                   | 12.6                                                                      | 12.0                                                                      | 7.90                                       | 19.90                                      | 2.52                         |
|   | 18  | 3518             | 6.04         | 1536           | 87.0          | 78                 | 7.8                   | 13.1                                                                      | 12.5                                                                      | 7.20                                       | 19.68                                      | 2.73                         |
|   | 19  | 4091             | 7.05         | 1569           | 90.3          | 83                 | 8.3                   | 13.5                                                                      | 12.8                                                                      | 6.70                                       | 19.46                                      | 2.90                         |
|   | 20  | 4659             | 8.04         | 1599           | 93.3          | 84                 | 8.4                   | 13.8                                                                      |                                                                           | 6.60                                       | 19.57                                      | 2.97                         |
|   | 21  | 5227             | 9.04         | 1631           | 96.5          | 83                 | 8.3                   | 14.1                                                                      |                                                                           | 6.70                                       | 19.91                                      | 2.97                         |
|   | 22  | 5800             | 10.04        | 1663           | 99.7          |                    | 8.2                   | 14.4                                                                      |                                                                           | 6.80                                       | 20.24                                      | 2.98                         |
|   | 23  | 6367             | 11.04        | 1688           |               |                    | 8.0                   | 14.6                                                                      |                                                                           | 7.00                                       | 20.56                                      | 2.94                         |
|   | 24  | 6937             | 12.04        | 1716           | 105.0         |                    | 7.8                   | 14.8                                                                      | 13.7                                                                      | 7.20                                       | 20.91                                      | 2.90                         |
|   | 25  | 7510             | 13.04        | 1745           | 107.9         | 76                 | 7.6                   | 15.1                                                                      | 13.9                                                                      | 7.40                                       | 21.28                                      | 2.88                         |
|   | 26  | 8079             | 14.04        | 1776           | 111.0         | 75                 | 7.5                   | 15.3                                                                      |                                                                           |                                            |                                            | 2.87                         |
|   | 27  | 8647             | 15.03        | 1800           | 113.4         | 73                 | 7.3                   | 15.5                                                                      | 14.2                                                                      |                                            |                                            | 2.84                         |
|   | 28  | 9222             | 16.04        | 1834           | 116.8         | 70                 | 7.0                   | 15.7                                                                      | 14.4                                                                      |                                            |                                            | 2.80                         |
|   | 29  | 9791             | 17.04        | 1859           | 119.3         | 67                 | 6.7                   | 15.9                                                                      | 14.4                                                                      | 8.30                                       | 22.74                                      | 2.74                         |
|   | 30  | 10362            | 18.04        | 1889           | 122.3         | 65                 | 6.5                   | 16.1                                                                      | 14.6                                                                      | 8.50                                       |                                            | 2.71                         |
|   | 31  | 10906            | 18.99        | 1912           |               |                    | 6.1                   | 16.2                                                                      |                                                                           |                                            |                                            | 2.65                         |
|   | 32  | 11456            | 19.96        | 1932           | 126.6         | 60                 | 6.0                   |                                                                           |                                                                           |                                            |                                            | 2.63                         |
|   |     |                  |              |                |               |                    |                       |                                                                           |                                                                           |                                            |                                            |                              |

| Effective Stress Tri | axiai | Com |
|----------------------|-------|-----|
|----------------------|-------|-----|

**Consolidated Undrained Shear (Specimen 3)** 

|   |     | onidatio         | u onu        | annou          | oncui         |                    |                       |                                                                           |      |                                            |                                           |                              |
|---|-----|------------------|--------------|----------------|---------------|--------------------|-----------------------|---------------------------------------------------------------------------|------|--------------------------------------------|-------------------------------------------|------------------------------|
|   | No. | Strain<br>(divs) | Strain<br>ε% | Load<br>(divs) | Load<br>(Ibs) | Pore Prs<br>(divs) | Pore Prs<br>(Ibf/in2) | D. Stress<br>(σ <sub>1</sub> - σ <sub>3</sub> ) <sub>m</sub><br>(lbf/in2) |      | Minor Str<br>σ <sub>3</sub> '<br>(Ibf/in2) | Major Str<br><sup>σ</sup> 1΄<br>(Ibf/in2) | Ratio $\sigma_1'' \sigma_3'$ |
|   | 1   | 72               | 0.00         | 689            | 0.0           | 0                  | 0.0                   | 0.0                                                                       | 0.0  | 22.00                                      | 22.00                                     | 1.00                         |
|   | 2   | 126              | 0.09         | 828            | 13.9          | 6                  | 0.6                   | 2.3                                                                       | 2.3  | 21.40                                      | 23.65                                     | 1.11                         |
|   | 3   | 184              | 0.20         | 947            | 25.8          | 14                 | 1.4                   | 4.2                                                                       | 4.2  | 20.60                                      | 24.78                                     | 1.20                         |
|   | 4   | 237              | 0.29         | 1034           | 34.5          | 23                 | 2.3                   | 5.6                                                                       | 5.6  | 19.70                                      | 25.28                                     | 1.28                         |
|   | 5   | 290              | 0.38         | 1103           | 41.4          | 31                 | 3.1                   | 6.7                                                                       | 6.7  | 18.90                                      | 25.59                                     | 1.35                         |
|   | 6   | 350              | 0.49         | 1186           | 49.7          | 38                 | 3.8                   | 8.0                                                                       | 8.0  | 18.20                                      | 26.22                                     | 1.44                         |
|   | 7   | 403              | 0.58         | 1236           | 54.7          | 45                 | 4.5                   | 8.8                                                                       | 8.7  | 17.50                                      | 26.16                                     | 1.50                         |
|   | 8   | 458              | 0.68         | 1286           | 59.7          | 49                 | 4.9                   | 9.6                                                                       | 9.5  | 17.10                                      | 26.56                                     | 1.55                         |
|   | 9   | 518              | 0.78         | 1311           | 62.2          | 53                 | 5.3                   | 10.0                                                                      | 9.9  | 16.70                                      | 26.55                                     | 1.59                         |
|   | 10  | 571              | 0.88         | 1329           | 64.0          | 58                 | 5.8                   | 10.3                                                                      | 10.1 | 16.20                                      | 26.33                                     | 1.63                         |
|   | 11  | 625              | 0.97         | 1355           | 66.6          | 62                 | 6.2                   | 10.7                                                                      | 10.5 | 15.80                                      | 26.34                                     | 1.67                         |
|   | 12  | 685              | 1.08         | 1379           | 69.0          | 65                 | 6.5                   | 11.1                                                                      | 10.9 | 15.50                                      | 26.41                                     | 1.70                         |
|   | 13  | 739              | 1.17         | 1400           | 71.1          | 70                 | 7.0                   | 11.4                                                                      | 11.2 | 15.00                                      | 26.24                                     | 1.75                         |
|   | 14  | 1193             | 1.97         | 1514           | 82.5          | 96                 | 9.6                   | 13.1                                                                      | 12.8 | 12.40                                      | 25.24                                     | 2.04                         |
|   | 15  | 1756             | 2.96         | 1598           | 90.9          | 116                | 11.6                  | 14.3                                                                      | 14.0 | 10.40                                      | 24.35                                     | 2.34                         |
|   | 16  | 2320             | 3.95         | 1662           | 97.3          | 127                | 12.7                  | 15.2                                                                      | 14.7 | 9.30                                       | 23.98                                     | 2.58                         |
|   | 17  | 2889             | 4.95         | 1726           | 103.7         | 134                | 13.4                  | 16.0                                                                      | 15.4 | 8.60                                       | 24.03                                     | 2.79                         |
|   | 18  | 3510             | 6.04         | 1790           | 110.1         | 138                | 13.8                  | 16.8                                                                      | 16.1 | 8.20                                       | 24.34                                     | 2.97                         |
|   | 19  | 4080             | 7.05         | 1826           | 113.7         | 137                | 13.7                  | 17.1                                                                      | 16.4 | 8.30                                       | 24.73                                     | 2.98                         |
|   | 20  | 4645             | 8.04         | 1848           | 115.9         | 132                | 13.2                  | 17.3                                                                      | 16.5 | 8.80                                       | 25.29                                     | 2.87                         |
|   | 21  | 5210             | 9.03         | 1876           | 118.7         | 127                | 12.7                  | 17.5                                                                      | 16.6 | 9.30                                       | 25.94                                     | 2.79                         |
|   | 22  | 5782             | 10.04        | 1926           | 123.7         | 120                | 12.0                  | 18.1                                                                      | 17.1 | 10.00                                      | 27.10                                     | 2.71                         |
|   | 23  | 6349             | 11.03        | 1954           | 126.5         | 117                | 11.7                  | 18.3                                                                      | 17.2 | 10.30                                      | 27.52                                     | 2.67                         |
|   | 24  | 6916             | 12.03        | 1967           | 127.8         | 117                | 11.7                  | 18.2                                                                      | 17.1 | 10.30                                      | 27.42                                     | 2.66                         |
|   | 25  | 7487             | 13.03        | 1979           | 129.0         | 116                | 11.6                  | 18.2                                                                      | 17.0 | 10.40                                      | 27.42                                     | 2.64                         |
|   | 26  | 8055             | 14.03        | 2006           | 131.7         | 114                | 11.4                  | 18.4                                                                      | 17.1 | 10.60                                      | 27.71                                     | 2.61                         |
|   | 27  | 8623             | 15.03        | 2048           | 135.9         | 109                | 10.9                  | 18.7                                                                      | 17.4 | 11.10                                      | 28.52                                     | 2.57                         |
| 1 | 28  | 9194             | 16.04        | 2070           | 138.1         | 106                | 10.6                  | 18.8                                                                      | 17.4 | 11.40                                      | 28.83                                     | 2.53                         |
|   | 29  | 9762             | 17.03        | 2089           | 140.0         | 104                | 10.4                  | 18.8                                                                      | 17.4 | 11.60                                      | 28.99                                     | 2.50                         |
|   | 30  | 10331            | 18.03        | 2101           | 141.2         | 106                | 10.6                  | 18.8                                                                      | 17.3 | 11.40                                      | 28.66                                     | 2.51                         |
|   | 31  | 10905            | 19.04        | 2120           | 143.1         | 107                | 10.7                  | 18.8                                                                      | 17.2 | 11.30                                      | 28.54                                     | 2.53                         |
|   | 32  | 11433            | 19.97        | 2131           | 144.2         | 107                | 10.7                  | 18.7                                                                      | 17.1 | 11.30                                      | 28.43                                     | 2.52                         |

|      | Test Method: AS             | TM D4767-95                 |            | Test name<br>Date of Test: | CU Triaxial<br>12-14-16 | (SS, MS) Shear (Specimen 2) |
|------|-----------------------------|-----------------------------|------------|----------------------------|-------------------------|-----------------------------|
| S&ME | Site Reference:<br>Jobfile: | C.F. Harvey<br>E:\16010.JOB |            | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LI     | N                           |
|      | Operator: MK                | -                           | Checked: M | 4                          | Approve                 | ed:                         |



S&ME Site Reference: C.F. Harvey E:\16010.JOB Jobfile: Operator: MLC

#### 41 of 43

Page 3 / 3

#### npression

|            | Test name<br>Date of Test: | CU Triaxial (SS, MS) Shear (Specimen 3) 12-14-16 |
|------------|----------------------------|--------------------------------------------------|
|            | Sample:<br>Borehole:       | ST-3<br>EB1-B RT LN                              |
| Checked: M | IL                         | Approved:                                        |

#### Form No: TR-T289-1

Revision No. 0

Revision Date: 07/10/08

#### pH of Soil



|                 |                | A                  | ASHTO T2           | 89             |                | Quality  | Assurance |
|-----------------|----------------|--------------------|--------------------|----------------|----------------|----------|-----------|
|                 | S&ME, Inc. R   | aleigh, 3201 Sprin | ng Forest <b>H</b> | Road, Raleigh, | , North Caroli | na 27616 |           |
| Project #:      | 6235-16-010    |                    |                    |                | Report Date:   | 1        | 1/7/16    |
| Project Name:   | C.F. Harvey Pa | arkway Extension I | R-5703             |                | Test Date(s):  | 11/5     | - 11/7/16 |
| Client Name:    | Michael Baker  | Engineering        |                    |                |                |          |           |
| Client Address: | Raleigh, NC    |                    |                    |                |                |          |           |
| Boring #: EE    | B2-B RT LN     | Sample             | e #: SS-2          | 1              | Sample D       | ate:     | 9/6/16    |
| Location: 16    | 7+05           | Offs               | set: 36 RT         |                | Depth          | (ft):    | 0.5 - 2.0 |
| Sample Descript | tion: Light    | Gray Coarse to Fin | ne Sandy C         | layey SILT (A  | -4) (0)        |          |           |
| Equipment:      |                |                    |                    |                |                |          |           |
| Balance         |                | S&ME ID#           | 1024               | Cal. Date:     | 11/6/16        | Due:     | 11/6/17   |
| Sieve:          | #10            | S&ME ID#           | 13223              | Cal. Date:     | 6/11/16        | Due:     | 6/11/17   |
| pH Meter:       |                | S&ME ID#           | 1365               | Cal. Date:     | 11/7/16        | Due:     | NA        |

pH Meter Calibration

| Buffer Solution                   | Results |
|-----------------------------------|---------|
| pH buffer 7.0                     | 7.02    |
| pH buffer 4.01                    | 4.01    |
| pH buffer 10.0                    | 10.03   |
| Buffer Temperature <sup>0</sup> C | 22.4    |

#### Measuring pH of Soil

| Measurement                 | S     |
|-----------------------------|-------|
| Weigtht of Air Dry Soil (g) | 30.02 |
| Distilled Water (g)         | 30.04 |
| Temperature <sup>0</sup> C  | 21.7  |
| pH Readings                 | 5.43  |

Notes / Deviations / References:

AASHTO T-289: Determining pH of Soil for Use in Corrosion Testing

| <u>Mal Krajan, ET</u>    | M                                              | Laboratory Manager                    | <u>11/14/2016</u> |
|--------------------------|------------------------------------------------|---------------------------------------|-------------------|
| Technical Responsibility | Signature                                      | Position                              | Date              |
| This report s            | shall not be reproduced, except in full, witho | ut the written approval of S&ME, Inc. |                   |

| Form No. TR-T88         |
|-------------------------|
| Revision No. 0          |
| Revision Date: 12/20/09 |

|                       | &ME. Inc. Ra      | aleigh, 3201 Sr                       | oring Fore           | st Road I  | Raleigh, North                         | Carolina 276    | 16                                                 |                 |  |
|-----------------------|-------------------|---------------------------------------|----------------------|------------|----------------------------------------|-----------------|----------------------------------------------------|-----------------|--|
| S&ME Project #:       | 6235-16-01        |                                       | ing rore             | st Roau, I | 0,                                     | ort Date:       |                                                    | 4/16            |  |
| Project Name:         |                   | -                                     | ay Extension R-5703  |            | 1                                      | 1               |                                                    | 10/7 - 11/14/16 |  |
| State Project #:      | 46375.1.1         |                                       | F.A. Project No: N/A |            |                                        | × /             | -5703                                              |                 |  |
| Client Name:          |                   | aker Engineerir                       | 5                    |            |                                        |                 |                                                    |                 |  |
| Address:              | Raleigh, N        | Ű,                                    | 0                    |            |                                        |                 |                                                    |                 |  |
| Boring #:             | EB2-B RT          |                                       | Sample #:            | SS-21      |                                        | Sample Dat      | e:                                                 | 9/6/16          |  |
| Location:             | 167+05            |                                       | Offset:              | 36 RT      |                                        | Depth (f        |                                                    | ).5 - 2.0       |  |
| Sample Description    | 1:                |                                       | Ligh                 | t Gray Coa | arse to Fine Sand                      | A               |                                                    | (0)             |  |
| 1.5                   | " 1"3/4" 1/2'3/8" | #4 #10                                |                      | 40 #60 #1  |                                        | <u> </u>        |                                                    |                 |  |
| 100%                  | • • • • •         | ***                                   | #20 #                | +          | ······································ |                 |                                                    |                 |  |
|                       |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 90%                   |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 80%                   |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
|                       |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 70%                   |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| .ig 60%               |                   |                                       |                      | +          | -                                      |                 |                                                    |                 |  |
| beccent bassing       |                   |                                       |                      |            | <u> </u>                               |                 |                                                    |                 |  |
| 50%                   |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 40%                   |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
|                       |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 30%                   |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 20%                   |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
|                       |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 10%                   |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 0%                    |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| 100                   | 10                |                                       | 1<br>D. C. L. S'     |            | 0.1                                    | 0.01            |                                                    | 0.0             |  |
|                       |                   |                                       | Particle Si          | ze (mm)    |                                        |                 |                                                    |                 |  |
|                       | As Defined by N   |                                       |                      |            | Fine Sand                              |                 | mm and $> 0$                                       |                 |  |
| Gravel<br>Coarse Sand |                   | < 75 mm and > 2.0<br>2.00 mm and >0.2 |                      |            | Silt<br>Clay                           |                 | $\frac{5 \text{ and } > 0.00}{< 0.005 \text{ mm}}$ |                 |  |
| Maximum Particle      |                   | 10                                    | Coarse S             | and        | 19%                                    | Silt            | < 0.005 mm                                         | 21%             |  |
| Gravel                | 09                |                                       | Fine San             |            | 43%                                    | Clay            |                                                    | 17%             |  |
| Apparent Relative I   |                   |                                       |                      | e Content  | 18%                                    | % Passing       | #200                                               | 44.1%           |  |
| Liquid Limit          | 19 19             |                                       | Plastic L            |            | 12                                     | Plastic Inde    |                                                    | 7               |  |
|                       | 1,                |                                       | oil Mortar           |            |                                        | - lastic ind    |                                                    | ,               |  |
| Coarse Sand           | 1 19%             |                                       | e Sand               | 43%        | Silt                                   | 21%             | Clay                                               | 17%             |  |
| Description of San    |                   |                                       | ounded               |            |                                        | Angu            |                                                    |                 |  |
| Hard & Dura           |                   |                                       | Soft                 |            | Wea                                    | athered & Friat |                                                    |                 |  |
| References / Comments | s / Deviations:   | ND=Not Deter                          | mined.               |            |                                        |                 |                                                    |                 |  |
|                       |                   |                                       |                      |            |                                        |                 |                                                    |                 |  |
| <u>Mal Kraj</u>       |                   |                                       | 01-0703              |            | Laboratory N                           | -               | <u>11/</u>                                         | 14/2016         |  |
| Techniciar            | n Name            | Certifi                               | ication No.          |            | Position                               | ı               |                                                    | Date            |  |
| Mal Krai              | an FT             | M                                     | the second           | >          | Laboratory                             | lanager         | 11/                                                | /14/2016        |  |
| <u>Mal Krajan, ET</u> |                   |                                       |                      |            |                                        |                 | 11/                                                | 14/2010         |  |
| Technical Res         |                   | Sie                                   | gnature              |            | Position                               | -               |                                                    | Date            |  |

3201 Spring Forest Road Raleigh, NC.. 27616

EB2-B Rt Ln SS-21 (0.5 - 2 ft) pH.xls Page 1 of 1

#### **Particle Size Analysis of Soils**



AASHTO T88 as Modified by NCDOT

| Quality Assurance | Ou | ality | Assu | rance |
|-------------------|----|-------|------|-------|
|-------------------|----|-------|------|-------|

3201 Spring Forest Road Raleigh, NC 27616

EB2-B Rt Ln SS-21 (0.5 - 2 ft) Classification.xls

Form No: TR-T267

Revision No. 0

Revision Date: 07/10/08

Moisture, Ash, and Organic Matter



|                                                        |              |                            |                        | O T-267          |                              | Quality As        | ssurance  |
|--------------------------------------------------------|--------------|----------------------------|------------------------|------------------|------------------------------|-------------------|-----------|
| Ducient #                                              |              |                            | h, 3201 Spring Fore    | st Raod, Raleigh |                              | <b>27616</b> 10/2 | 1/16      |
| Project #                                              |              | 235-16-010                 | Extension D 5702       |                  | Report Date:                 |                   |           |
| Project N<br>Client Na                                 |              | Iichael Baker Eng          | ay Extension R-5703    |                  | Test Date(s):                | 10/18 - 1         | 0/21/10   |
| Client Ad                                              |              | aleigh, NC                 | meering                |                  |                              |                   |           |
| Boring #:                                              |              | B2-B RT LN                 | Sample #:              | SS-21            | Sample                       | e Date:           | 9/6/16    |
| Location:                                              |              | 67+05                      | Offset:                | 36 RT            | <u>^</u>                     | oth (ft):         | 0.5 - 2.0 |
|                                                        | Description: |                            | arse to Fine Sandy Cla |                  | -                            | , iii (11).       | 0.5 2.0   |
| Equipmen                                               | 1            |                            | ability, 500g. Minimum |                  | (*)                          |                   |           |
| Balance:                                               |              | E ID #: 1024               |                        | 1/06/16 Due:     | 11/06/17                     |                   |           |
| Metho                                                  | od A: Mois   | sture Content De           | etermination           | Required         | Oven Temperatur              | e:105 <u>+</u> 5° | С         |
| Γ                                                      |              | Oven Tempe                 | rature: 105 °C         |                  | <i>Tare</i> #                | V                 |           |
|                                                        | t            | Tare Weight (1             | Dish plus Aluminum F   | oil Cover)       | grams                        | 47.97             |           |
|                                                        | а            | Mass of As-Re              | ceived Specimen + T    | are Wt.          | grams                        | 99.48             |           |
| -                                                      | b            | Mass of Oven               | Dry Specimen + Tare    | Wt.              | grams                        | 91.78             |           |
| -                                                      | W            | Water Weight               |                        |                  | ( <i>a</i> - <i>b</i> )      | 7.70              |           |
| -                                                      | Α            | Mass of As-Re              | ceived Specimen        |                  | ( <i>a</i> - <i>t</i> )      | 51.51             |           |
|                                                        | В            | Mass of Oven               | Dry Specimen           |                  | ( <i>b</i> - <i>t</i> )      | 43.81             |           |
| % Moisture Content as a % of As Received or Total Mass |              |                            | (w/A)*100              | 14.9%            |                              |                   |           |
| Γ                                                      | %            | 6 Moisture Conter          | nt as a % of Oven-dri  | ed Mass          | (w/B)*100                    | 17.6%             |           |
| Oven                                                   | S&ME         | E ID #: 1454               | Cal. Date: 1           | 0/7/16 Due:      | 10/7/17                      |                   | <u> </u>  |
|                                                        | Me           | thod C (440° C) a          | or D (750° C): Ash Co  | ontent and Organ | nic Matter Detern            | nination          |           |
| Γ                                                      |              | Muffle Fu                  | rnace: 455 °C          |                  | <i>Tare</i> #                | 30                |           |
| Γ                                                      | t            | Tare Weight (1             | Dish plus Aluminum F   | oil Cover)       | grams                        | 49.02             |           |
|                                                        | b            | Mass of Oven               | Dry Specimen + Tare    | Wt.              | grams                        | 87.18             |           |
|                                                        |              |                            | Tare Wt                |                  | grams                        | 86.87             |           |
| ŀ                                                      | с            | Ash Weight +               |                        |                  | Ũ                            |                   |           |
| -                                                      | c<br>C       | Ash Weight +<br>Ash Weight |                        |                  | c-t                          | 37.85             |           |
| -                                                      |              |                            |                        |                  |                              | 37.85<br>38.16    |           |
| -                                                      | С            | Ash Weight                 |                        |                  | c-t                          |                   | _         |
| -                                                      | C<br>B       | Ash Weight                 | Dry Specimen           |                  | <i>c-t</i><br>( <i>b-t</i> ) | 38.16             |           |

Signature This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

S&ME, Inc. - Corporate

3201 Spring Forest Road Raleigh, NC. 27616

EB2-B Rt Ln SS-21 (0.5 - 2 ft) Organic.xls Page 1 of 1 43 of 43