This electronic collection of documents is provided for the convenience of the user and is Not a Certified Document –

The documents contained herein were originally issued and sealed by the individuals whose names and license numbers appear on each page, on the dates appearing with their signature on that page.

This file or an individual page shall not be considered a certified document.

SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION

CONTENTS

703

S

X

REFERENCE

463

<u>SHEET</u>	DESCRIPTION
1	TITLE SHEET
2	LEGEND
3	PLAN SHEET
4 - 5	PROFILES
6 - II	BORING LOGS
12 - 42	LABORATORY TEST RESULTS

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY *LENOIR*

PROJECT DESCRIPTION C.F. HARVEY PARKWAY AND NC 58 TO INTERSECTION OF NC 11 AND GRANGER STATION ROAD GRADING, PAVING, DRAINAGE, STRUCTURES AND SIGNALS SITE DESCRIPTION BRIDGE NO. 208 AND NO. 209 ON -L-(FELIX HARVEY PARKWAY) OVER -YI- (NC 58) BETWEEN SR 1581 AND SR 1730

INVENTORY

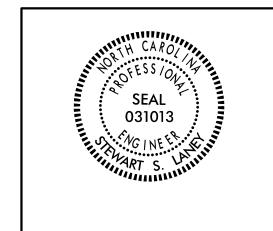
STATE PROJECT REFERENCE NO. R = 5703

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE INCLUDED IN THE REQUEST FOR PROPOSAL. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

SOIL AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON GEOTECHNICAL INTERPRETATION UNLESS ENCOUNTERED IN A SAMPLE, INTERPRETED BOUNDARIES MAY NOT NECESSARILY REFLECT ACTUAL SUBSUBFACE CONDITIONS BETWEEN SAMPLED STRATA AND BOREHOLE INFORMATION MAY NOT NECESSARILY REFLECT ACTUAL SUBSUBFACE CONDITIONS BETWEEN BORINGS. THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSUBFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DIES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.


- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

 PERCANNET

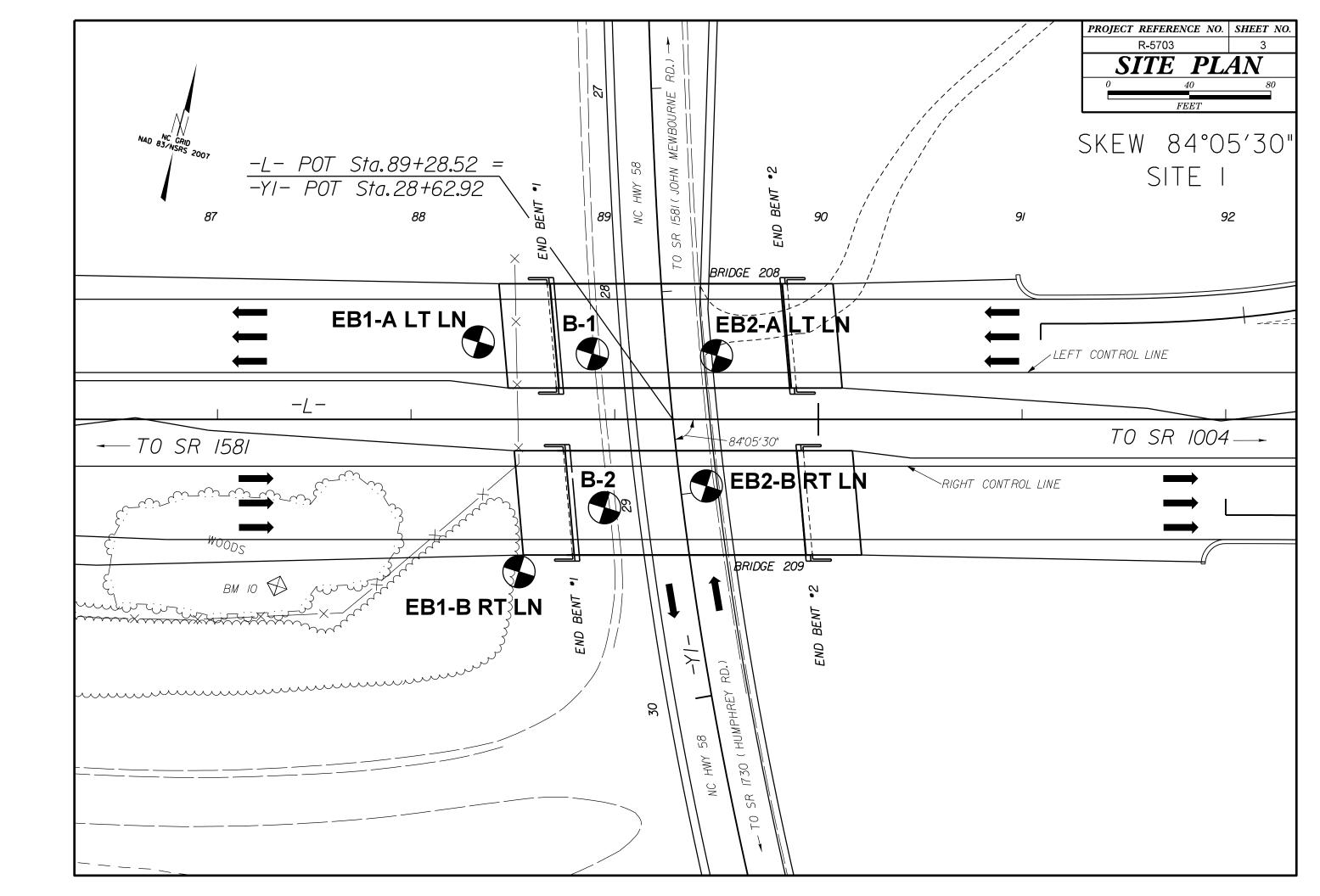
S. LANEY
K. HILL
S. MITCHELL
S. TIERNAN
C. CHANDLER
F. WRIGHT
E. BLONSHINE
I. PEELE
M. RAWLS
INVESTIGATED BY S&ME, INC.
DRAWN BY C. CHANDLER
CHECKED BY S. MITCHELL

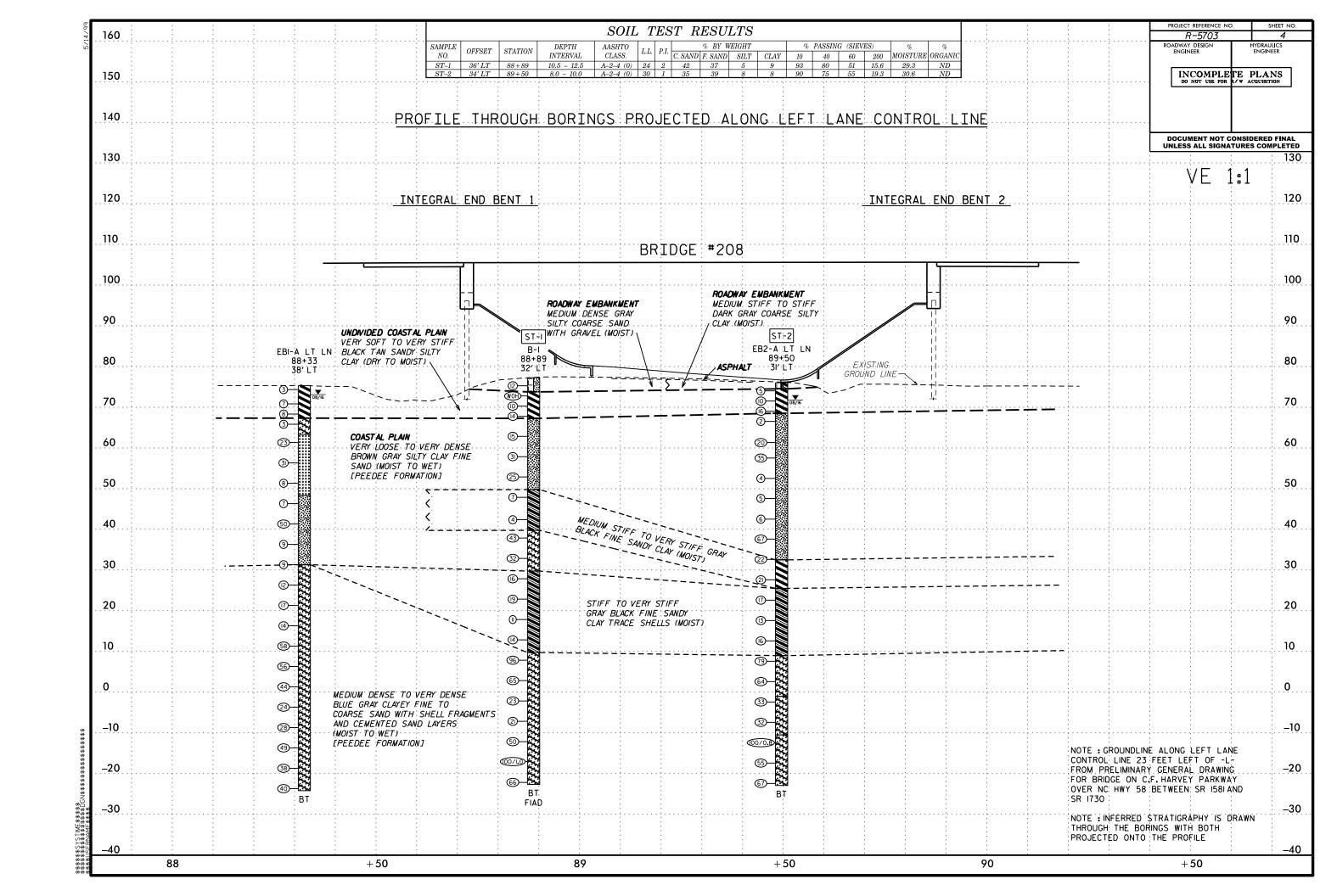
SUBMITTED BY _S&ME, INC.

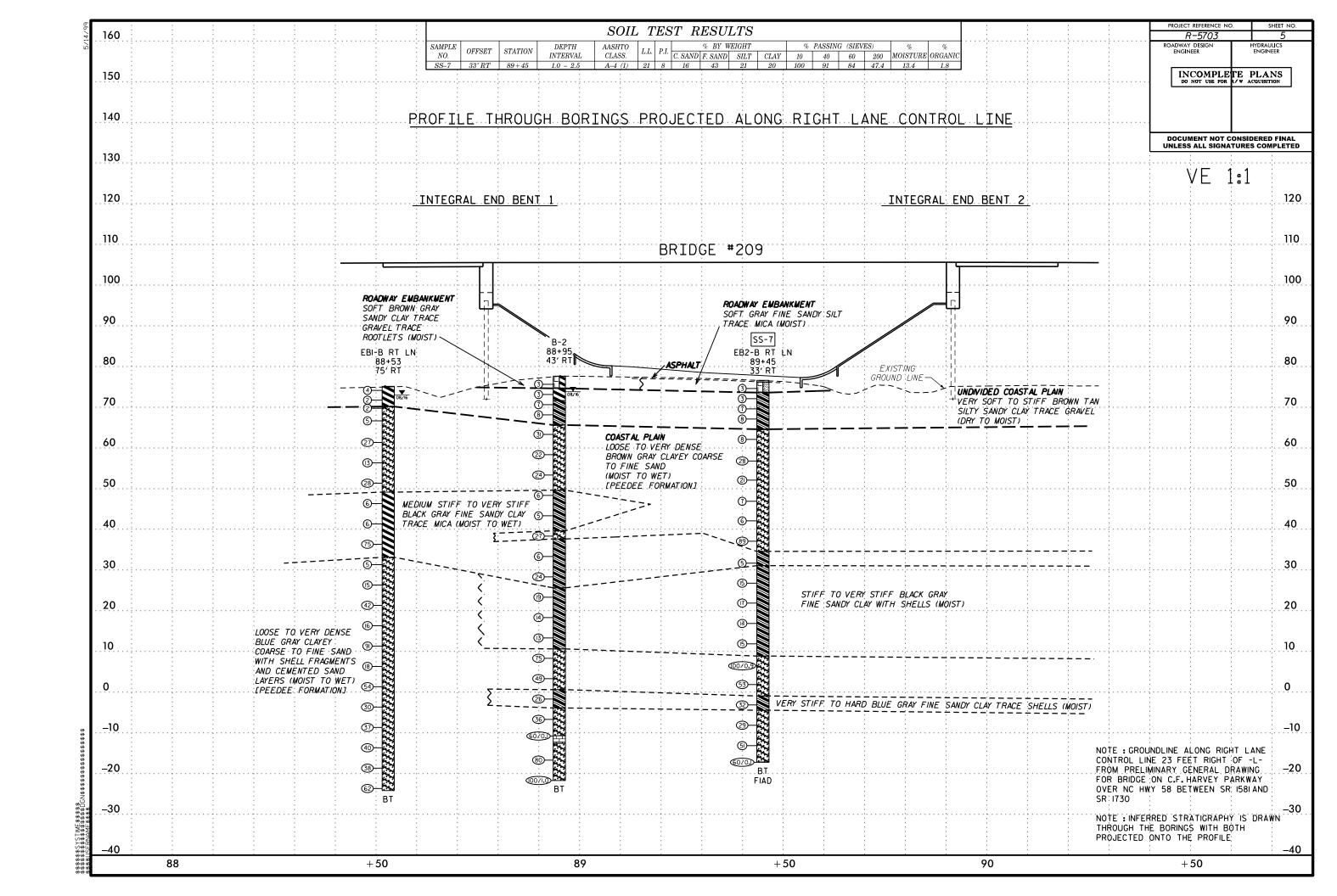
DATE __MAY 2017

SIGNATURE

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED


	511551 1161
R-5703	2


NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT


SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI556). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND DTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANOULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES >	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. ADUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.	ROCK (WR) 100 BLOWS PER FOOT IF TESTED. CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC. FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN	ARTESIAN, - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE. CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CLASS. A-1-b A-2-d A-2-5 A-2-6 A-2-7 A-3 A-6, A-7 SYMBOL 000000000000000000000000000000000000	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50	NON-CRYSTALLINE ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELLO SPT REFUSAL IF TESTED. ROCK SEDIMENTARY ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN SEDIMENTARY ROCK SPT REFUSAL ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED (CP) SHELL BEDS, ETC.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE. CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
*18 59 NX S	PERCENTAGE OF MATERIAL GRANULAR SILT - CLAY ORGANIC MATERIAL ORGANIC MATERIAL ORGANIC MATERIAL	WEATHERING FRESH ROCK FRESH, CRYSTALS BRIGHT. FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER	<u>DIKE</u> - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK. <u>DIP</u> - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE
MATERIAL PASSING *40 L 48 MX 41 MN LITTLE OR PI 6 MX NP 18 MX 18 MX 11 MN 11 MN 18 MX 18 MX 18 MX 11 MN 11 MN MODERATE	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROCKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	HORIZONTAL. <u>DIP DIRECTION (DIP AZIMUTH)</u> - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
GROUP INDEX	GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING STATIC WATER LEVEL AFTER HOURS	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
GEN_RATING EXCELLENT TO GOOD FAIR TO POOR FAIR TO POOR POOR UNSUITABLE	✓PW PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA OMN SPRING OR SEEP	(MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK. MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	PARENT MATERIAL. <u>FLOOD PLAIN (FP)</u> - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. <u>FORMATION (FM.)</u> - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE
CONSISTENCY OR DENSENESS PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY COMPACTNESS OR CONSISTENCY COMPACTNESS OR CONSISTENCY COMPACTNESS OR COMPRESSIVE STRENGTH (TONS/FT ²) (N-YALUE) (TONS/FT ²)	MISCELLANEOUS SYMBOLS ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION WITH SOIL DESCRIPTION → OF ROCK STRUCTURES	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK. IF TESTED, WOULD YIELD SPT REFUSAL SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT	FIELD. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
GENERALLY VERY LOOSE (4 CLOSE GRANULAR LOOSE 4 TO 10 M	SOIL SYMBOL SOIL SYMBOL ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT SLOPE INDICATOR INSTALLATION AUGER BORING SLOPE INDICATOR INSTALLATION AUGER BORING COMMON PENETROMETER TEST	(SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REQUICED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE
VERY SOFT	INFERRED SOIL BOUNDARY CORE BORING SOUNDING ROD TEST BORING WITH CORE	(V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTICES OF ORIGINAL ROCK FABRIC REMAIN. <u>IE TESTED, WOULD YIELD SPT. N. VALUES < 100 BPF</u> COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS	OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK OUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SECHMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE
(COHESIVE)	RECOMMENDATION SYMBOLS	ALSO AN EXAMPLE. ROCK HARDNESS	RUN AND EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
U.S. STD. SIEVE SIZE	UNDERCUT UNCLASSIFIED EXCAVATION - UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(SL.) (CD.) (CSE. SD.) (F SD.) (SL.) (CL.) (CSE. SD.) (F SD.) (SL.) (CSE. SD.) (CSE. SD	ABBRE VIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE	OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL
SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION OUTDITION OUTD	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS DPT - OYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	POINT OF A GEOLOGIST'S PICK. SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN	TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. <u>STRATA CORE RECOVERY (SREC.)</u> - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE PLASTIC - PLASTIC - DEPARTMENT - PLASTIC - PL	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK	PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY FINGERNAIL.	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
RANGE - WET - (W) SEMISOLID: REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	FRACI FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY V - VERY RATIO	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	BENCH MARK: 81.85 FEET RIGHT -L- 87+34 BM IO RR SPIKE IN BASE OF 24* PINE
OM OPTIMUM MOISTURE SL SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO	CME-45C COULDMENT USED ON SUBJECT PROJECT	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	N 577,986.3920 E 2,422,782.2840 ELEVATION: 76.99 FEET NOTES: FIAD - FILLED IMMEDIATLEY AFTER DRILLING
PLASTICITY PLASTICITY PLASTICITY INDEX (P1) DRY STRENGTH	CME-55	THINLY LAMINATED < 0.008 FEET INDURATION FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	
NON PLASTIC	VANE SHEAR TEST	FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; CENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	X _ CME-550 TRICONE TUNGCARB. SOUNDING ROD	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X D-25	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14

	_		UK		_	REP R-5703			Y LENOII			CEOL	OGIST Peele, J.E.			WPS 4	627E 1	1			TIP	P R-5703		COLINT	4 LENOIS	,		CEO	OGIST Peele,			
WBS 46			Bridge	No. 3							2)	GEOLG	JGIST Peele, J.E.	GROUND V	MTD (#\	WBS 46			Brida	o No				<u> </u>	LENOIR -Y1- (NC I			GEOL	LOGIST Peele,		ROUND V	VTD (#1)
BORING				INO. 2	_	ATION 88			OFFSET		<u> </u>	ALIGNI	MENT -L-	0 HR.	N/A	BORING						ATION 8		''	OFFSET			ALIG	NMENT -L-		HR.	N/A
					+															1.							24					
DRILL RIG				MIDE		OF DOW DOW		τ	NORTHIN			Mud Rotary	NG 2,422,839	24 HR. AMMER TYPE Aut	2.2	DRILL RIG				E MID			FH 99.5 f	t I	NORTHIN			Mud Rotary	TING 2,422,839	HAMMER	HR.	2.2
DRILLER			./DATE	IVIID	_	ART DATE		16	COMP. D				ACE WATER DEPTH		lomatic	DRILLER				E WILL			= 08/30/1	16	COMP. DA				ACE WATER DE		IIPE AU	Omalic
			BLOW	COLIN		ARIDAIE		PER FOOT			o. V L	_ SURFA							BLOV	V COLI		ARIDAI		PER FOOT	COIVIP. DA	SAMP.	51/16	L	ACE WATER DE	PIH N/A		
ELEV DRI (ft) Cff		ft) 0).5ft 0.			0 2			75 10		17/10	ELEV. (ft)	SOIL AND ROCK D		DEPTH (ft)				0.5ft			0			75 100		моі	O	SOIL AND RO	OCK DESCRIF	PTION	
											, mor	Z EEEV. (II)			DEI III (II)		,								l		, were					
80																							Mato	ch Line								
	7											F							+				. /	T	T	1			Dark Gray Fine Cla	yey Fine SAN		ī — — —
	Ŧ											F		IDEA OF		-2	2.7 † 7	78.0	9	10	14		24				w .		T raginion	no (commuca	,	
7575	3 7 0	-0	2	2	1	3			1::::	+	M	75.3	GROUND SU UNDIVIDED COAS	STAL PLAIN	0.0	-5	Ŧ						\ · · · · ·		+	-	/ <u>% % </u>					
71	8 I 3	5				1 : : :				1 1		\	Brown Silty	CLAY		7	7.7 } 8	33.0	_	44	47		\: : : : :				\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
70	+		2	2	5	7					М	\				-10	Ŧ		′	11	17		28				W					
69	3 + 6	.0	3	2	6						м	\			0.0													<u> </u>				
66	8 + 8	.5	1	1	2	1					M 🕺	67.3	COASTALT	PLAIN			2.7 † 8	38.0	13	26	23			49			w 🤅					
65	+					T ³			+	\dashv	" ",	63.3	Brown Clayey F [Peedee Forr	mation]	12.0	-15	+						· · · · /	/ 	· · · · ·	-	·					
62	3 🕇 13	3.0	5	<u> </u>	14	' <u> </u>					000	∷	Green Gray Fir	ine SAND	12.0	<u>-1</u>	7.7	93.0	14	17	21		:::/:				8					
60	‡				' ⁻	· · · · •	23				W	00-				-20	‡		' ⁻	"	-		•38.				W					
57	+ 3 † 18	30					\: : : :				000	00-				_2	2.7 † <u>9</u>	D8 N					: : <u> </u> :				[% %					
55	1	<i>.</i>	6	2	19		31				W	000						50.0	12	15	25		•40				w ŝ	-24.2				99.5
35	‡					/	<u> </u>	1	1	1	000	\$ }					‡											-	Boring Terminate Dense clayey Fr	d at Elevation fine SAND and	-24.2 ft in d Shell	
52	3 ‡ 23	3.0	4	2	6	/ . /					W	000					‡											-	Fr	agments		
50	‡					. 🕶				41							‡											<u>L</u>				
47	3 + 28	3.0									000	48.3	Dark Brown Gray	/ Silty SAND	<u>27</u> .0		‡											-				
45	+		2	3	4	7 : :					M			, - 3			‡											ļ				
10	‡									1							‡											F				
42	3 † 33 †	3.0	19 2	27	23		:	50			l w						ŧ											F				
40	‡							30	ļ · · · ·	+							‡											F				
37	3 7 38	3.0					1										Ŧ											F				
35	Ŧ		1	4	5	. •9					W						Ŧ											E				
	. Ŧ										,	•••					Ŧ											E				
	3 † 43	3.0	6	4	5 9					M 🔛	31.3	Darly Oracy Fire Olavesy Fi	in a CAND with Obel	44.0		ŧ											E				
30	+									\dashv	·/·//		Dark Gray Fine Clayey Fi Fragmer	ints With Shel	II		+											F				
27	3 + 48	3.0	4	5	7						M						‡											ţ				
25	‡		.			•12 .				4	I IVI						‡											L				
. 22	3 + 53	30															‡											-				
22	+ 5	<i>y</i> .0	6	7	10	. 17					M						‡											-				
100	‡							1	1	1	*						‡											-				
17	3 + 58	3.0	4	6	8	· · · <u> </u> · ·					M %						‡											-				
ပ္ 15	‡					. • 14				41	" %						‡											Ė				
ට ව	3 + 63	3.0] : : : :		1 1	·//·//						‡											F				
12 10 10	+	\top	5 3	35	23			. ∳58			M 🔆	**					‡											F				
S I	‡							: : : :		1	%:	,					‡											F				
8	3 † 68	3.0	20 2	28	28			.; .j .p56			w %						Ŧ											E				
2 SE	\pm							/	· · · · ·	+	/%/%						Ŧ											F				
ğ 2.	3 73	3.0	20					/ : : : :			/%/%						Ī											E				
O CD	Ŧ		20 2	20	24		<i>f</i>	14			W	\					Ŧ											F				

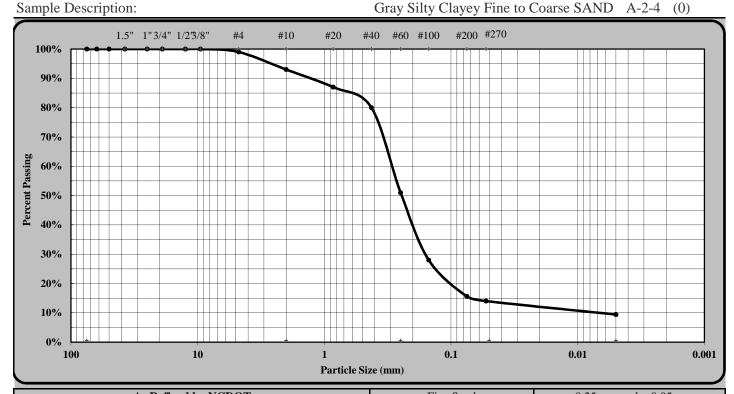
WBS 46375.1.1	TIP R-5703 CO	JNTY LENOIR	GEOLOGIST Blonshine, E.G.	WBS 46375.1.1 TIP R-5703 COUN	TY LENOIR	GEOLOGIST Blonshine, E.G.
SITE DESCRIPTION Bridge	e No. 208 on -L- (Felix Harvey Pkwy	over -Y1- (NC HWY 58)	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 208 on -L- (Felix Harvey Pkwy) ov	rer -Y1- (NC HWY 58)	GROUND WTR (ft)
BORING NO. B-1	STATION 88+89	OFFSET 32 ft LT	ALIGNMENT -L- 0 HR. N/A	BORING NO. B-1 STATION 88+89	OFFSET 32 ft LT	ALIGNMENT -L- 0 HR. N/A
COLLAR ELEV. 77.3 ft	TOTAL DEPTH 99.9 ft	NORTHING 578,142	EASTING 2,422,895 24 HR. FIAD	COLLAR ELEV. 77.3 ft TOTAL DEPTH 99.9 ft	NORTHING 578,142	EASTING 2,422,895 24 HR . FIAD
DRILL RIG/HAMMER EFF./DATE	HPC2473 CME-550 92% 12/09/2015	DRILL METHOD N	Mud Rotary HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE HPC2473 CME-550 92% 12/09/2015	DRILL METHOD M	flud Rotary HAMMER TYPE Automatic
DRILLER White, J.	START DATE 08/11/16	COMP. DATE 08/11/16	SURFACE WATER DEPTH N/A	DRILLER White, J. START DATE 08/11/16	COMP. DATE 08/11/16	SURFACE WATER DEPTH N/A
E E(/	V COUNT BLOWS PER ID 0.5ft 0.5ft 0 25 50	0	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	DRIVE DEPTH BLOW COUNT BLOWS PER FOO	T SAMP. L O NO. MOI G	SOIL AND ROCK DESCRIPTION
80				0 Match Line -1.1 78.4 7 9 14	· · · · · · W	Blue Gray Clayey Coarse SAND, Trace Shells and cemented sand (continued)
73.8 - 3.5 WOH W	voн woн	M M	ROADWAY EMBANKMENT Gray Silty Coarse SAND with Gravel 73.8 UNDIVIDED COASTAL PLAIN Tan Coarse Sandy Silty CLAY, Trace Gravel	-5 -6.1 -83.4 6 9 12	w	- - - -
68.8 8.5 7		D M	67.3	-10 -11.1 88.4 13 20 30	w	
63.9 13.4 8	9 6	w	[Peedeé Formátion]	-16.1	M M	- - - -
55	12 13		- - - -	29 38 28	66 M	Boring Terminated at Elevation -22.6 ft in Very Dense Clayey Coarse SAND ST-1 collected in offset boring at Station 88+89 Offset 36 ft LT
48.9 28.4	4 3 7		49.8			Other Samples: ST-1 (10.5 - 12.5)
45 43.4 33.9 WOR	2 2					- - - - -
38.9 T 38.4	21 22	M	39.8			
33.9 43.4 20	21 11 32 32	w				- - - -
25 23.9 - 53.4	9 10	M M	Mica			- - -
						- - - - -
15 13.9 - 63.4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 8					- - - - -
8.9 - 68.4		996 M	9.8			<u>-</u> - - -
3.9 73.4	28 37		- - - -			- - - -

WBS 46375.1.1		ITY LENOIR	GEOLOGIST Blonshine, E.G.		TY LENOIR	GEOLOGIST Blonshine, E.G.
SITE DESCRIPTION Bridge No.			GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 208 on -L- (Felix Harvey Pkwy) ov		GROUND WTR (ft)
BORING NO. EB2-A Lt. Ln.	STATION 89+50	OFFSET 31 ft LT	ALIGNMENT -L- 0 HR. N/A	BORING NO. EB2-A Lt. Ln. STATION 89+50	OFFSET 31 ft LT	ALIGNMENT -L- 0 HR. N/A
COLLAR ELEV. 76.0 ft	TOTAL DEPTH 98.9 ft	NORTHING 578,160	EASTING 2,422,953 24 HR . 4.2	COLLAR ELEV. 76.0 ft TOTAL DEPTH 98.9 ft	NORTHING 578,160	EASTING 2,422,953 24 HR. 4.2
DRILL RIG/HAMMER EFF./DATE HP		DRILL METHOD M		DRILL RIG/HAMMER EFF./DATE HPC2473 CME-550 92% 12/09/2015	DRILL METHOD MU	, '
DRILLER White, J.	START DATE 08/03/16	COMP. DATE 08/04/16	SURFACE WATER DEPTH N/A	DRILLER White, J. START DATE 08/03/16	COMP. DATE 08/04/16	SURFACE WATER DEPTH N/A
ELEV Cft) DRIVE CFT BLOW COLUMN (ft) DEPTH BLOW COLUMN (ft) 0.5ft 0.5ft		75 400	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	DRIVE	75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION
75 75.0 1.0				0 Match Line -1.4 - 77.4 8 12 21		-1.0
72.5 + 3.5 3 3 3 70 6.0 6 8	7 5	M M	Dark Gray Coarse Sandy CLAY with Gravel UNDIVIDED COASTAL PLAIN Gray Fine Sandy CLAY 68.5	-6.4 - 82.4 10 14 18 · · · · · •32 · · · · · · · · · · · · · · · · · · ·	M	10.5 Blue Gray Clayey Coarse SAND with Shell Hash, Possible Petrified Wood with Rock
67.5 + 8.5 2 1 65 - 2 1 62.3 + 13.7 WOH 8	1 2	w w	COASTAL PLAIN Dark Gray/Black Clayey Fine SAND [Peedee Formation]	-15	100/0.8 W	Hash, Possible Petrified Wood with Rock Fragments
58.5 - 17.5 14 15 55	20	M M	<u>-</u> - - -	-20 -21.4 - 97.4 49 37 30	• • • • • • • • • • • • • • • • • • •	-22.9 98.9 Boring Terminated at Elevation -22.9 ft in Very Dense, Blue Grey Clayey Charse SAND
53.5 + 22.5 3 2	2	м	-			Very Dense Blue Grey Clayey Coarse SAND with Shell Hash ST-2 collected in offset boring at Station 89+50 Offset 34 ft LT
48.6 - 27.4	3	<u></u>				Other Samples: ST-2 (8.0 - 10.0)
43.5 + 32.5 WOH 2	4	M	-			
38.6 - 37.4 19 31	36	•67 · · · · · · W	- - - -			- - - -
33.6 + 42.4 19 14	8 922	M	- 32.5 43.5 - Dark Gray/Black Fine Sandy CLAY			: : -
28.6 + 47.4 5 11	10	м	- 25.5 50.5 50.5 Dark Gray/Black Fine Sandy CLAY with Shell			- - - -
23.6 + 52.4 6 8	9	M	Hash			: - -
18.6 + 57.4 5 6 15 15 13.6 + 62.4	7 • • • • • • • • • • • • • • • • • • •	M				- -
10 86 - 674	8	M M	9.0 Rheish Dark Grav Clavey Coarse SAND with			<u>.</u>
5 3.6 - 72.4		M M	Blueish Dark Gray Clayey Coarse SAND with Shell Hash			- - -
20 31	33	64 M				

	UNTY LENOIR	GEOLOGIST Peele, J.E.		TY LENOIR	GEOLOGIST Peele, J.E.
SITE DESCRIPTION Bridge No. 209 on -L- (Felix Harvey Pkw	, , , ,	GROUND WTR (ft)	SITE DESCRIPTION Bridge No. 209 on -L- (Felix Harvey Pkwy) over		GROUND WTR (ft)
BORING NO. EB1-B Rt. Ln. STATION 88+53	OFFSET 75 ft RT	ALIGNMENT -L- 0 HR. 2.0	BORING NO. EB1-B Rt. Ln. STATION 88+53	OFFSET 75 ft RT	ALIGNMENT -L- 0 HR. 2.0
COLLAR ELEV. 75.1 ft TOTAL DEPTH 99.3 ft	NORTHING 578,029	EASTING 2,422,894 24 HR. 2.1	COLLAR ELEV. 75.1 ft TOTAL DEPTH 99.3 ft	NORTHING 578,029	EASTING 2,422,894 24 HR. 2.1
DRILL RIG/HAMMER EFF./DATE MID5152 D-25 90% 08/16/2016	DRILL METHOD Mu	· ·	DRILL RIG/HAMMER EFF./DATE MID5152 D-25 90% 08/16/2016	DRILL METHOD MU	· ·
DRILLER Fowler, A. START DATE 08/29/16	COMP. DATE 08/29/16	SURFACE WATER DEPTH N/A	DRILLER Fowler, A. START DATE 08/29/16	COMP. DATE 08/29/16	SURFACE WATER DEPTH N/A
ELEV DRIVE ELEV (ft) (ft) BLOW COUNT BLOWS PER	FOOT SAMP. L O O NO. MOI G	SOIL AND ROCK DESCRIPTION ELEV. (ft) DEPTH (ft)	DRIVE DEPTH BLOW COUNT BLOWS PER FOO	75 100 NO. MOI G	SOIL AND ROCK DESCRIPTION
65 65 7.5 4 3 2 5 8 513 17.8 2 5 8 513 17.8 513	W W W W W W W W W W W W W W W W W W W	75.1 GROUND SURFACE 0.0 UNDIVIDED COASTAL PLAIN Dark Brown Silty CLAY 70.1 COASTAL PLAIN Brown Gray Clayey Fine SAND [Peedee Formation]	0	W W	Green Gray Clayey Fine SAND with Shell Fragments (continued)
55 50 52.3 22.8 8 13 15 28	W W W W W W W W W W W W W W W W W W W	26.0 Dark Gray Fine Sandy CLAY			Boring Terminated at Elevation -24.2 ft in Very Dense Fine SAND with Clay Seams, Shell Fragments
32.3	W W W W W W W W W W W W W W W W W W W	33.1			

	S 46375				IP R-570			Y LENO				GEOLOGIST Blonshine, E.C	1	↓ ├ ──	S 4637					P R-5703			Y LENOIR			GE	DLOGIST Blo	nshine, E.		
SIT	E DESCR	IPTION	Bridge N		on -L- (Fel		Pkwy) ove						GROUND WTR (ft)	SIT	E DESC	RIPTION	l Brid	dge No				Pkwy) ove	er -Y1- (NC F						GROUNE	WTR (ft)
во	RING NO.	B-2		s	TATION 8	88+95		OFFSET	43 ft RT			ALIGNMENT -L-	0 HR . N/A	ВО	RING NO	. B-2			ST	TATION 8	8+95		OFFSET	43 ft RT	-	ALI	GNMENT -L-		0 HR.	N/A
СО	LLAR ELE	EV . 77	7.6 ft	Т	OTAL DEP	TH 99.3	ft	NORTHI	NG 578,0	072		EASTING 2,422,924	24 HR. 3.8	СО	LLAR EL	EV . 7	7.6 ft		TC	OTAL DEP	TH 99.3	ft	NORTHING				STING 2,422,9	924	24 HR.	3.8
DRI	LL RIG/HAI	MMER E	FF./DATE	HPC2473	3 CME-550 9	2% 12/09/20	15		DRILL	METHO	D Mud	Rotary HAM	MER TYPE Automatic	DRI	LL RIG/HA	MMER E	FF./DA	TE HE	PC2473	CME-550 92	2% 12/09/2	015		DRILL	METHO	D Mud Rota	ry	HA	MMER TYPE	Automatic
	ILLER V				TART DAT				DATE 08			SURFACE WATER DEPTH	N/A	↓ 	ILLER V				ST	TART DAT	E 08/10	/16	COMP. DA	TE 08/	/10/16	SUF	RFACE WATER	DEPTH	N/A	
ELE'	V DRIVE ELEV	DEPTH (ft)	0.5ft 0.5		1		PER FOOT 50				0	SOIL AND ROCK DE			V DRIVE ELEV	DEPTH (ft)		0.5ft			BLOW:	S PER FOOT 50	Γ 75 100	SAMP.	/		SOIL AN	D ROCK D	ESCRIPTION	
(11)	(ft)	(1.7)	0.511 0.5	0.511			<u> </u>	70 1	00 NO.	/ MOI	GE	ELEV. (ft)	DEPTH (ft		(ft)	(1.9)	0.510	0.511	0.511				70 100	NO.	/MO	II G				
																					Ma	tch Line								
80	_	-												0	-0.7	78.3	9	11	 15		IVIA		.				Blue Gray Fi		LAY, Trace Mic	 ca
	76.6 -	- 1.0			1				.		- 7	7.6 GROUND SUR ROADWAY EMBA		1		‡		''			Q 26	: : : :			IVI	3.0		(continue	ed)	81.5
75		Ė	5 2	1	∮ 3 · · ·		<u> </u>		·	M		Brown Gray Tan Sandy CL 74.6 _ Trace Rootle	AY, Trace Gravel, ets <u>3.0</u>	-5		83.3					<u> </u>					-5.5	Dark Gray (Clayey Coar	se SAND, Trace	<u> </u>
	74.1	F	2 1	2	3					_M_		UNDIVIDED COAST Brown Gray Tan Sa	TAL PLAIN		-5.7	+ 00.5	8	15	21		. \$36				М	; <u>,,,</u>	Snells ar	ia cemente	d sand layers	
70	71.6 -	6.0	2 3	4	1 7 : :					D	7	Tan Coarse Sandy Silty C Smoothed Granules	LAY with Larger	-10	,	‡						:]] ; ; ; ; ;								
70	69.1	8.5	3 4	4	 Ţ' ·	1	1		-			Smoothed Granules	(Pebbles)	-10	-10.7	88.3	60/0.1	-					60/0.1	 	w	-10.7				88.3
	-	_							1 1	M						‡							: : : :,/:			-12.6				90.2
65	64.3	13.3			\	<u> </u>			-		1	65.6 COASTAL PL	_AIN	-15	-15.7	93.3							/							
	-	-	11 15	16] ::::	3 1				W		Dark Gray Clayey F [Peedee Formation of the control	ine SAND ation]		10.7	‡	22	35	45				4 00		М	**				
60	_	-				/: : : :			11					-20	,	‡						: : : :				** -				
- 00	59.3	18.3	7 9	13	-	<u> </u>	1		-	w					-20.7	98.3	46	54/0.5							М	-21.7				99.3
	-	-								"						‡							100/1.0	7			Boring Term Very Der	inated at El	evation -21.7 ft Coarse SAND	in
55		23.3				<u> </u>			-						-	‡											10.7 20.	.00 0.0,0,	300.00 0, 11.2	
	-	-	11 12	12] ::::	24			.	W						‡														
50	_	-			:::/:						\					‡														
30	49.3	28.3	3 3	3		1	1 : : :		-	l w		19.6 Blue Black Fine Sa		11	-	‡														
		-							1 1	**						‡														
45	44.3	33.3			1 1		ļ · · ·		\dashv							‡														
	-	-	2 2	3	5				.	М						‡														
40	-	-			:``\`\:				:		3					‡														
10	39.3	38.3	14 15	12	 	27	1		-	l _M	3	Blue Black Coarse Cl	ayey SAND 38.0	11	-	‡														
	-	-			:::;	/ 21 · · ·			1 1	"		Black Fine Sand	<u></u>	11		‡														
35	34.3	43.3] · · · / ·		ļ : : :	· · · · ·	-							‡										-				
	-		3 3	3	4 6				-	М						‡										-				
30	-				: `\` :				.							‡														
	29.3	48.3	8 13	11		24			-	l _M					-	Ŧ														
	-					<i>]</i> [:::::	: : :				3 .	ne e	F2./			Ŧ										F				
25	24.3	53.3]	<u> </u>	+					Black-Dark Gray Fine Sar Shells, Trace	ndy CLAY, Trace	11	-	Ŧ										F				
	_	-	7 9	10	::: <i>•</i>	19			.	М		Snells, Trace	Mica			Ŧ										F				
20	_				:::;/:		: : :		.							Ŧ										F				
9	19.3	58.3	5 7	7					-	М					•	Ŧ														
5	_				:::[:::		: : :		.							Ŧ										I F				
<u>15</u>	14.3	63.3			· · · · ·		+	+							-	Ŧ										F				
5	_	Ī	5 6	'	•13.	. [: : : :	: : :		.	M						Ŧ										F				
10		<u> </u>							·]		1	0.6Blue Gray Clayey Fine SA	ND Trace Shells 67.0	1		£										E				
, L	9.3	68.3 -	18 39	36	1			. ₽75	:	М		Bidd Gray Glayey I life SA	TID, TIUGG OHGIIS			ŧ										E				
	-	E					: : ./	<u> </u>	:		\\\					Í										E				
5	4.3	73.3	10 00	07	<u> </u>		//	<u> </u>							-	<u>†</u>										[
<u> </u>	-	E	19 22	21			49		:	M						Ī										E				
3 0		-				1		.	.			0.6	77.0	1		f										F				

WBS	46375					R-5703		1	Y LENOIF	₹		GEOL	.OGIST Blonshi	ine. E.G	 Э.		WBS 4	6375.1.1	1			TIP R-57	703	COUN	TY LENOI	 ₹		GE	OLOGIST	Blonshine	E.G.		
			N Brid	dge No					r -Y1- (NC)	1		,	GROUND	WTR (ft)				Bridge				ey Pkwy) ov)					OUND WT	R (ft)
	NG NO.					ATION 89			OFFSET			ALIGN	NMENT -L-		0 HR.	N/A	BORING					STATION			OFFSET			AL	IGNMENT -	-L-	0 Н		N/A
	AR ELE					TAL DEPT			NORTHIN				ING 2,422,968		24 HR.	FIAD	COLLAR					TOTAL D			NORTHIN				ASTING 2,42		24 H		FIAD
				TE H		CME-550 92						Mud Rotary	· · ·		MER TYPE		DRILL RIC											D Mud Rot			IAMMER TY		
DRILL	ER V	/hite, J	J.		ST	ART DATE	08/08/	16	COMP. D				ACE WATER DE	EPTH N	N/A		DRILLER	R White	—— e, J.			START D	ATE 08	/08/16	COMP. D	ATE 08/	/08/16	su	JRFACE WAT	TER DEPTH	I N/A		
ELEV	DRIVE	DEPTH	BLO	ow co	UNT		BLOWS	PER FOOT		SAMP.	V /!	5	SOIL AND RO				ELEV DR	RIVE DEI	PTH	BLOW (COUNT		BLC	OWS PER FOO)T	SAMP.	. /	16	9011	_ AND ROCK	DESCRIPTI	ON	
(ft)	(ft)	(ft)	0.5ft	0.5ft	0.5ft	0 2	25	50	75 100	NO.		G ELEV. (ft))	OOK DEC	SCRIF HON	DEPTH (ft)		ft) (1	ft) 0.	5ft 0.	5ft 0.5	ift 0	25	50	75 10	NO.	MOI	ı G	3011	AND ROCK	DL3CKIF II	ON	
80	_	Ļ															0	_ + -	_	_ _				Match Line		↓	L						
	-	<u> </u>										†	CDO!	IND CLIDE	FACE		-2	2.1 + 78	3.7	10 1	4 18		· · · · ,	/ [: :::			l	0.9	Blue Gr	ay Fine Sand	y CLAY with	Shells	_ 11.5
75	75.6 -	1.0	+_			<u> </u>						- /8: 9	\ A	ND SURF SPHALT	-	<u>8:¥</u>	-5	‡	'		† '`	' : :	· · •43	2			M	-4.4					<u>81.0</u>
	73.1	Г		1	2	4 3			1	SS-7	13%	73.6	ROADWAY Gray Fine Sandy S	Y EMBAN SILT Trac	NKMENT ce Mica and lit	tle3.0		7.1 2 83	2 7				[:					···-	Blue Gray	Clayey Fine : Cemented	SAND with S d Layers	hells and	
	_	L	WOH	1	2	43					М	}	UNDIVIDED	rootlets COAST	AL PLAIN			··· + ··	2.7	9 1:	2 17	7 : :	29			1 1	М						
70	70.6 -	Г	2	4	3	7		1	· · · ·	+	D	<u>}</u>	Tan Gray Fine to 0	Coarse S Gravel	Sandy CLAY w	th	-10	Ŧ						<u> </u>		+							
-	68.1	8.5	5	4	4						D	§					1	2.1 I 88	3.7	10 1	6 35	5					w						
65	_					10]		64.6				12.0	-15	\pm									"						
	63.1	13.5	<u> </u>			.					\		COAS Blue Gray Cl	STAL PL	AIN arse SAND			7.1 1 93	3.7				 		.			-17.1					93.7
	-	<u> </u>	1	3	5						W 🔆		Blue Gray Cl [Peede	ee Forma	ation]			‡	60,	/0.1					60/0.	1		-17.2		erminated at use clayey fine	Elevation -1 to coarse s	7.2 ft in and with	93.8
60	-	_						1	1	-	%%	}						+											•	she	lls		
	57.8 - -	18.8	4	12	16		28				w 🖔							‡															
55	_	_					/ · · · ·	: : : :	1 : : : :	41	/%%							‡															
	53.1	23.5	4	9	12	::::/					/:/:	\						‡															
50	-	<u> </u>	~		'-		21				W	\\						‡															
30	-					/		1	1	1	/%%;	\						‡															
	47.9 <u>-</u>	28.7	3	3	4	√7 · ·					w %							‡										-					
45	_	<u> </u>				1			ļ · · · ·		/%//%	\						‡															
	43.1	33.5	2	2	4] : : :					M	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 						Ŧ															
40	-	F				- · · · · · · · · · · · · · · · · · · ·					"	₹						Ŧ										F					
	38.1	38.5									:%:%	∵						Ŧ										l E					
		E	12	33	56				> 89		M	$\overline{\mathbb{R}}$						Ŧ										l E					
35	-	-							1	+	%:	34.6	Black Fine Sar	ndv CLAY	Y Trace Mica	<u>42.0</u>		+															
	32.7 -	43.9	2	2	3						м	}	Black I inc Gai	nay ob ti	T Trace Wilea			‡															
30	-	_				7				4	"	31.1	Black/Dark Gray	y Fine Sai	ndy CLAY with	<u>45.5</u> I		‡															
	27.8 -	48.8	<u> </u>	<u> </u>		: \\: :						3		Sneils				‡															
25	-	‡	5	′	8	15					M	3						‡															
25	-								1	1		*						‡															
20	22.9 -	53.7	6	8	9						м	\$						‡															
20	_	<u> </u>				: : j :			ļ : : : :			\$						‡															
DOT.GDT	17.9	58.7	6	6	8)						ŧ										-					
ည် <u>15</u>	-	ļ.				• 14					M	§						Ŧ										F					
2	12.9	63.7								1		}						Ŧ															
SITE 1.GPJ	12.9 -	05.7	6	7	8	• 15					м	}						Ŧ										F					
10	_	E				<u> </u>		 	+	+		8.9				67.7		\pm										<u> </u>					
DOUBLE	7.9	68.7	31	43	57/0.4				` -:-::		M	<u> </u>	Blue Gray Clayey	Coarse S	SAND with She	ells		Ī										1 E					
O 5	-	<u> </u>							100/0.9		" %	**						Ī															
BOF	2.9	73.7							│		%%	,						‡															
CDOI	-	‡	16	26	27			53			M 🔆	\						‡										1					


Revision Date: 12/20/09

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

				Quality Assurance	
S	&ME, Inc. Raleigl	n, 3201 Spring Forest Road, Rale	eigh, North Carolina	27616	
S&ME Project #:	6235-16-010		Report Date:	12/27/16	
Project Name:	C.F. Harvey Par	kway Extension R-5703	Test Date(s):	12/24 - 12/27/16	_
State Project #:	N/A	F.A. Project No: N/A	TIP NO:	N/A	_
Client Name:	Michael Baker l	Engineering			
Address:	Raleigh, NC				
Boring #:	B-1	Sample #: ST-1	Sample	Date: N/A	_
Location:	88+89	Offset: 36 LT	Deptl	h (ft): 10.5 - 12.5 ft.	

As Define	ed by NCDOT		I	Fine Sand	< (< 0.25 mm and > 0.05 mm					
Gravel	< 75 mm a	and > 2.00 mm		Silt	<	< 0.05 and > 0.0	005 mm				
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay		< 0.005 m	m				
Maximum Particle Size	3/8"	Coarse	Sand	42%	Silt		5%				
Gravel	7%	Fine Sa	nd	37%	Clay		9%				
Apparent Relative Density	ND	Moistur	e Content	29.39	% % Pass	sing #200	15.6%				
Liquid Limit	24	Plastic l	Limit	22	Plastic	Index	2				
		Soil Morta	(-#10 Siev	e)							
Coarse Sand	45%	Fine Sand	40%	Silt	5%	Clay	10%				
Description of Sand & Grav	el Particles:	Rounded			A	ngular	X				
Hard & Durable	X	Soft		W	eathered &	Friable					
References / Comments / Deviation	ons: ND=N	Not Determined.									
Mal Krajan, ET		104-01-0703		Laboratory	Manager	<u>12</u>	<u>//27/2016</u>				

Technical Responsibility Position Signature This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Certification No.

3201 Spring Forest Road Raleigh, NC 27616

B1 ST-1 (10.5 - 12.5 ft) Classification.xls

Date

9/26/2016

Date

12 of 42

Oedometer Settlement Tests

Sketch showing specimen location in original Sample

Sample details

10.5 - 12.5 ft. Depth

Gray Silty Clayey Fine to Coarse SAND (A-2-4) (0) Description:

Undisturbed Type 0.998 Height H₀ (in) Diameter D₀ (in) 2.501 Weight W₀ (gr) 150.89 Bulk Density p (PCF) 117.24 Particle Density Ps 2.658 (measured)

Initial Conditions

1942 Settlement Channel 27.6 Moisture Content w₀% 91.91 Dry Density Pd (PCF) Voids Ratio e₀ 0.8045 Deg of Saturation S₀% 91.0 Swelling Pressure Ss (TSF) 0.000

Final Conditions

24.2 Moisture Content w_f% 100.73 Dry Density Pd (PCF) 0.6465 Voids Ratio ef Deg of Saturation S_f% 99.51 0.087 Settlement: (in) 0.150 Compression Index C_c

Operator: NUL

Test specimen takne from the middle portion of UD tube. Notes:

Site Reference:

ASTM D2435-96

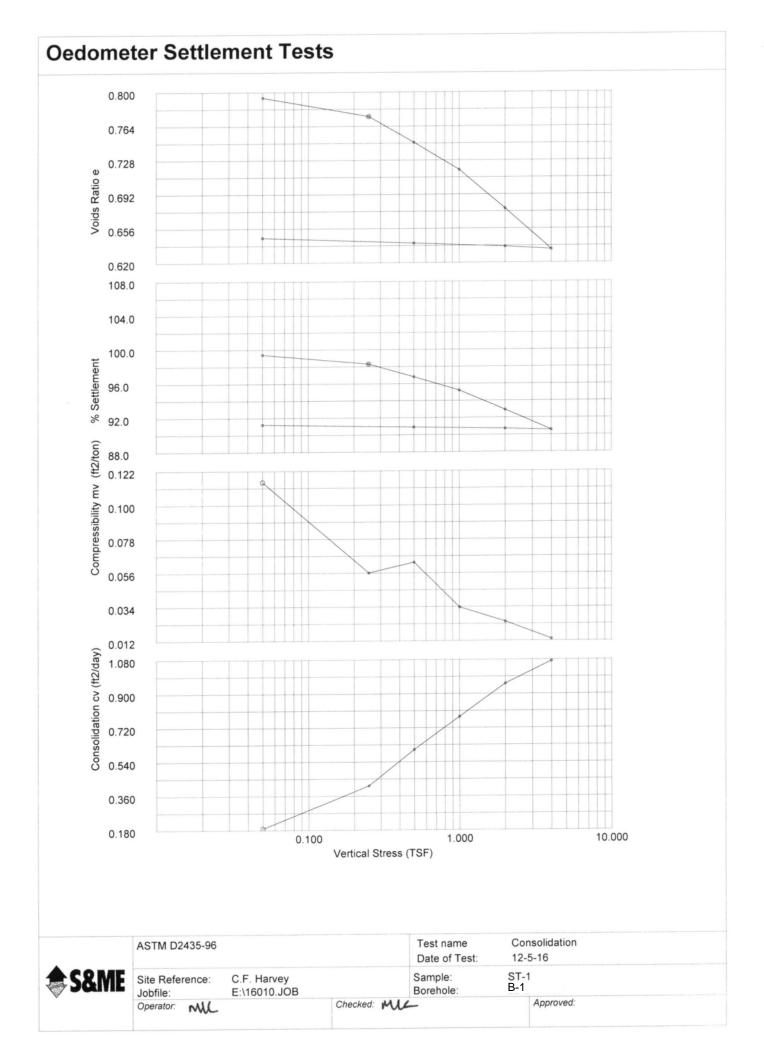
Date of Test: 12-5-16 ST-1 Sample:

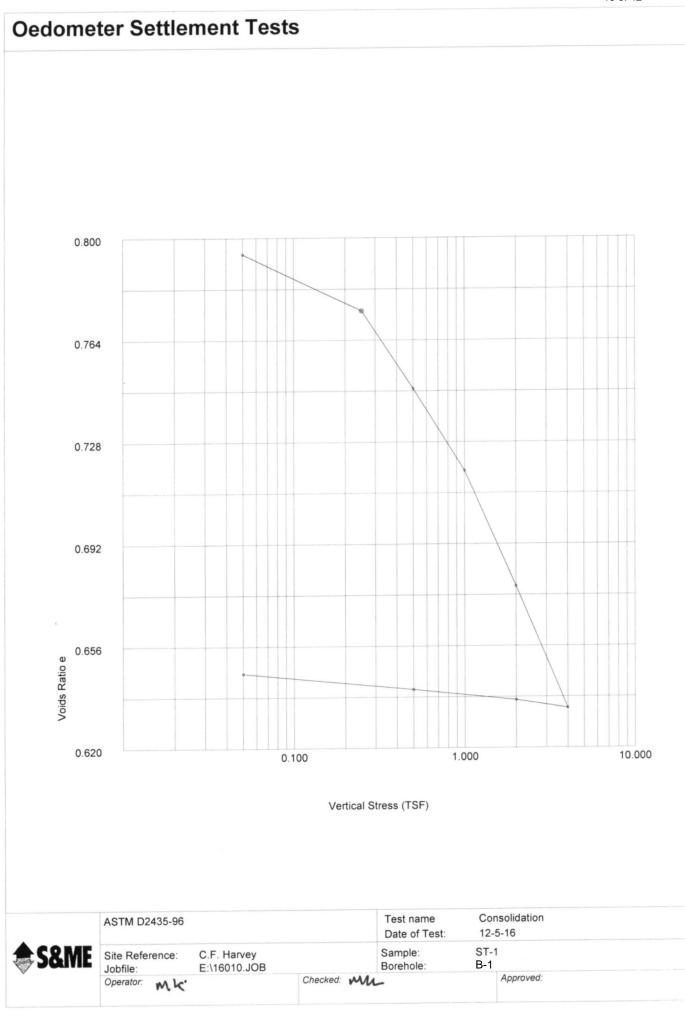
Consolidation

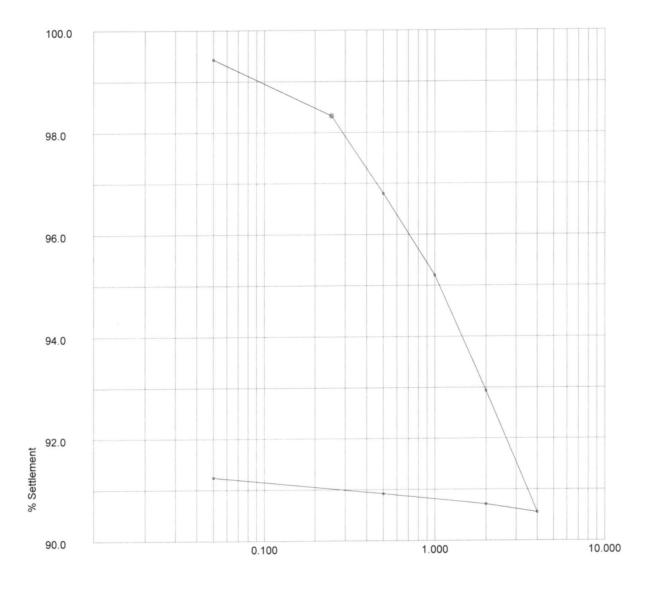
C.F. Harvey E:\16010.JOB

B-1 Borehole: Checked: MLC Approved:

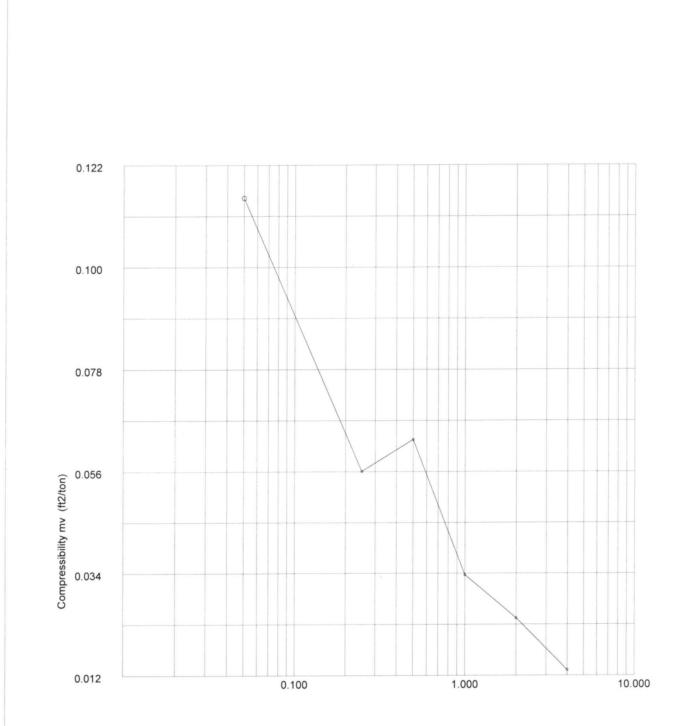
Test name


Technician Name

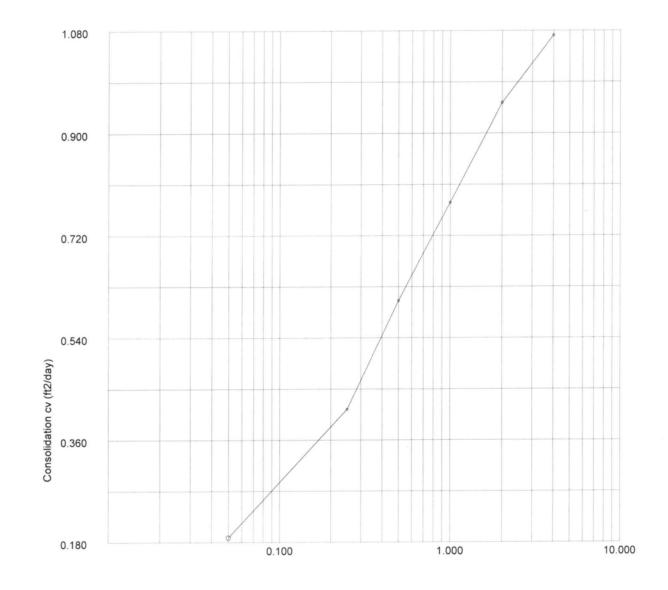

Mal Krajan, ET


Position

<u>Laboratory Manager</u>



Vertical Stress (TSF)


		Operator: NUC	Checked: M	L	Approved:		
\$58	\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
					Date of Test:	12-5-16	
		ASTM D2435-96			Test name	Consolidation	

Oedometer Settlement Tests

Vertical Stress (TSF)

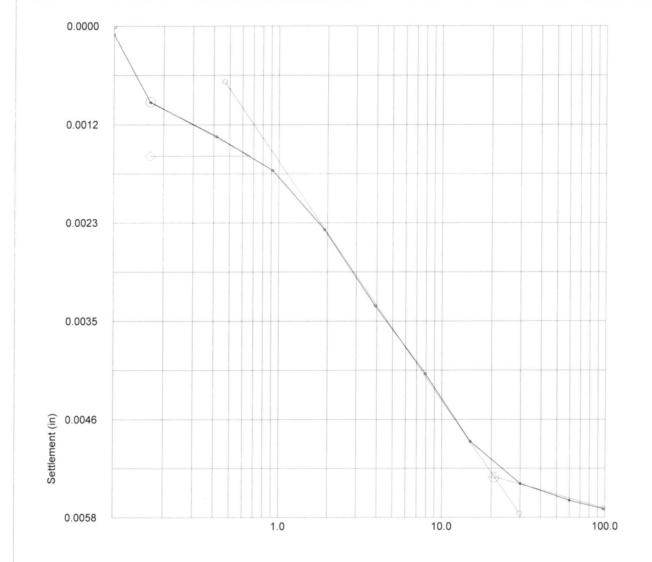
	ASTM D2435-96			Test name Date of Test:		nsolidation -5-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST- B-1	1	
	Operator: null	-	Checked: M	le		Approved:	

Vertical Stress (TSF)

				Test name Date of Test:	Consolidation 12-5-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
	Operator: NUC		Checked: M	le	Approved:	

15 of 42


Stress (TSF)	Initial Temp. oC	Settlement Total (in)	Cal Corr. (in)	Final Temp. oC	Voids Ratio e _f	t ₅₀ (mins)	Secondary Compr C _{sec}	c _v (ft2/day)	m _v (ft2/ton)
0.050	21.6	0.0057	0.0	21.6	0.7942	2.630	0.0006	0.188	0.115
0.250	21.6	0.0167	0.0	21.6	0.7743	1.175	0.0006	0.415	0.056
0.500	21.6	0.0319	0.0	21.6	0.7468	0.783	0.0008	0.605	0.063
1.000	21.6	0.0479	0.0	21.6	0.7179	0.590	0.0007	0.779	0.034
2.000	21.6	0.0705	0.0	21.6	0.6771	0.462	0.0079	0.953	0.024
4.000	21.6	0.0943	0.0	21.6	0.6340	0.391	0.0001	1.072	0.013
2.000	21.6	0.0927	0.0	21.6	0.6369				0.001
0.500	21.6	0.0906	0.0	21.6	0.6407				0.002
0.050	21.6	0.0874	0.0	21.6	0.6465				0.008


	ASTM D2435-96			Test name Date of Test:		nsolidation 5-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-	1	
*	Operator: MV	•	Checked: 🔨	L_		Approved:	

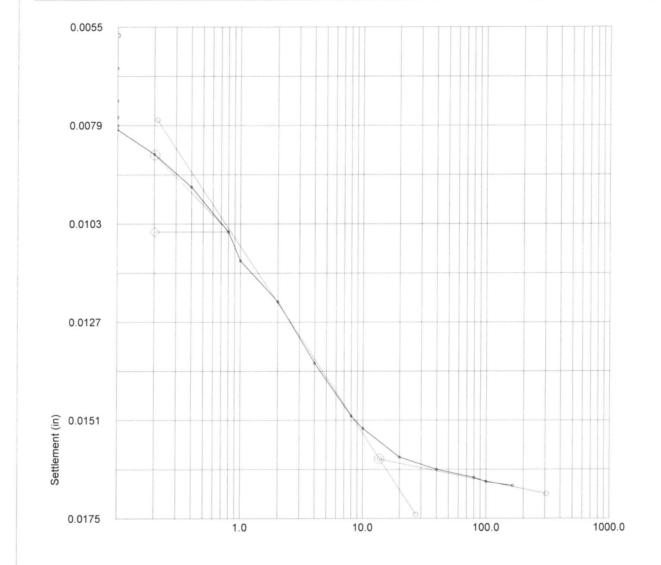
No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	0	0.0000	0.0000
2	0.017	1	0.0001	0.0001
3	0.167	9	0.0009	0.0009
4	0.417	13	0.0013	0.0013
5	0.917	17	0.0017	0.0017
6	1.917	24	0.0024	0.0024
7	3.917	33	0.0033	0.0033
8	7.917	41	0.0041	0.0041
9	14.917	49	0.0049	0.0049
10	29.917	54	0.0054	0.0054
11	59.917	56	0.0056	0.0056
12	98.200	57	0.0057	0.0057

	ASTM D2435-96			Test name Date of Test:		nsolidation Load: 0.050 (TSF) 5-16
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	1
	Operator: ML		Checked: MI	L		Approved:

16 of 42

Logarithmic Time (mins)

A	ASTM D2435-96			Test name Date of Test:		nsolidation 5-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1		
	Operator: ML		Checked: N	L		Approved:	


No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	57	0.0057	0.0057
2	0.017	65	0.0065	0.0065
3	0.033	65	0.0065	0.0065
4	0.050	73	0.0073	0.0073
5	0.067	77	0.0077	0.0077
6	0.083	79	0.0079	0.0079
7	0.100	80	0.0080	0.0080
8	0.200	86	0.0086	0.0086
9	0.400	94	0.0094	0.0094
10	0.800	105	0.0105	0.0105
11	1.000	112	0.0112	0.0112
12	2.000	122	0.0122	0.0122
13	4.000	137	0.0137	0.0137
14	8.000	150	0.0150	0.0150
15	10.000	153	0.0153	0.0153
16	20.000	160	0.0160	0.0160
17	40.000	163	0.0163	0.0163
18	80.000	165	0.0165	0.0165
19	100.000	166	0.0166	0.0166
20	163.170	167	0.0167	0.0167

	ASTM D2435-96			Test name Date of Test:	12-5-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
·	Operator: MLC		Checked: N	LL	Approved:	

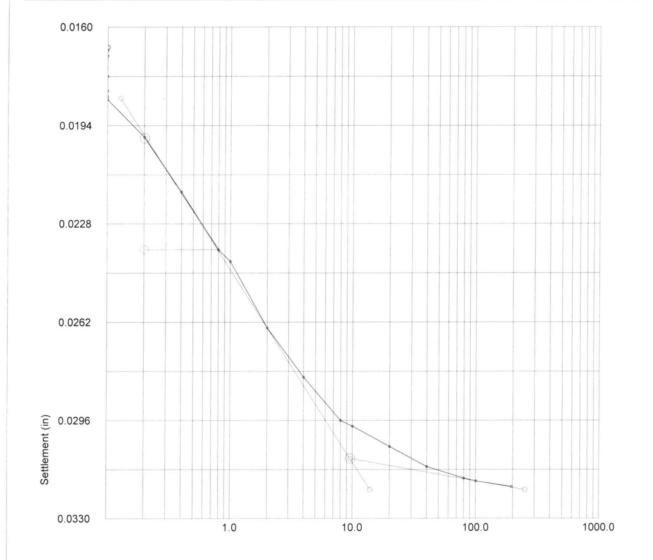
17 of 42

Oedometer Settlement Tests

Logarithmic Time (mins)

Approved:

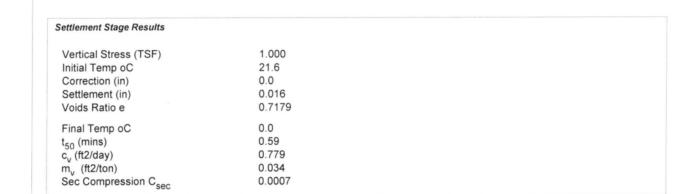
	ASTM D2435-96					nsolidation 5-16
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST- B-1	1
	Operator: ALL		Checked: MA	_		Approved:

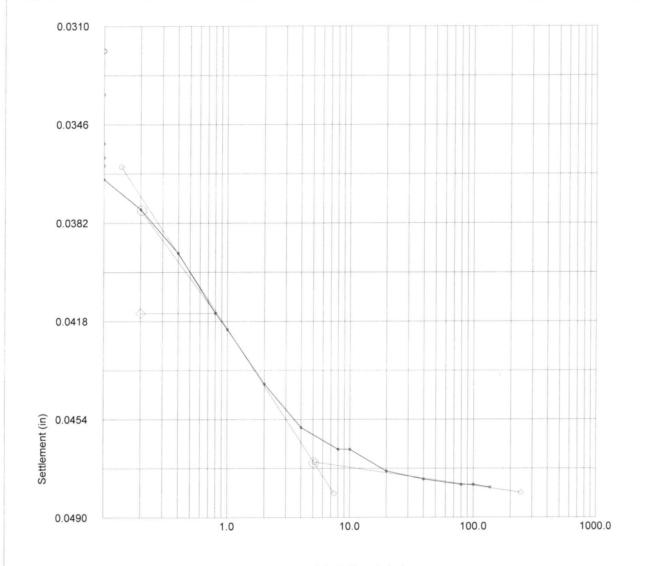

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	167	0.0167	0.0167
2	0.017	168	0.0168	0.0168
3	0.033	170	0.0170	0.0170
4	0.050	177	0.0177	0.0177
5	0.067	182	0.0182	0.0182
6	0.083	184	0.0184	0.0184
7	0.100	185	0.0185	0.0185
8	0.200	198	0.0198	0.0198
9	0.400	217	0.0217	0.0217
10	0.800	237	0.0237	0.0237
11	1.000	241	0.0241	0.0241
12	2.000	264	0.0264	0.0264
13	4.000	281	0.0281	0.0281
14	8.000	296	0.0296	0.0296
15	10.000	298	0.0298	0.0298
16	20.000	305	0.0305	0.0305
17	40.000	312	0.0312	0.0312
18	80.000	316	0.0316	0.0316
19	100.000	317	0.0317	0.0317
20	196.000	319	0.0319	0.0319

♦ S&ME	ASTM D2435-96			Test name Date of Test:	Consolidation Load: 0.500 (TSF) 12-5-16	
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
•	Operator: MV		Checked: M	6	Approved:	

18 of 42

Oedometer Settlement Tests

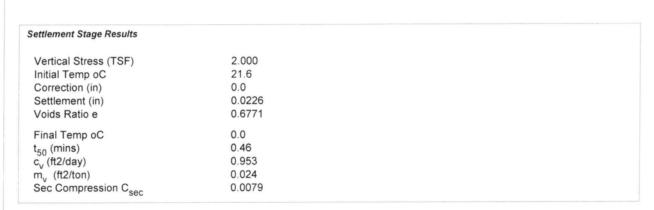

ASTM D2435-96			Test name Date of Test:	Con 12-5	solidation 5-16	
Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1		
Operator: ML		Checked: M	~		Approved:	

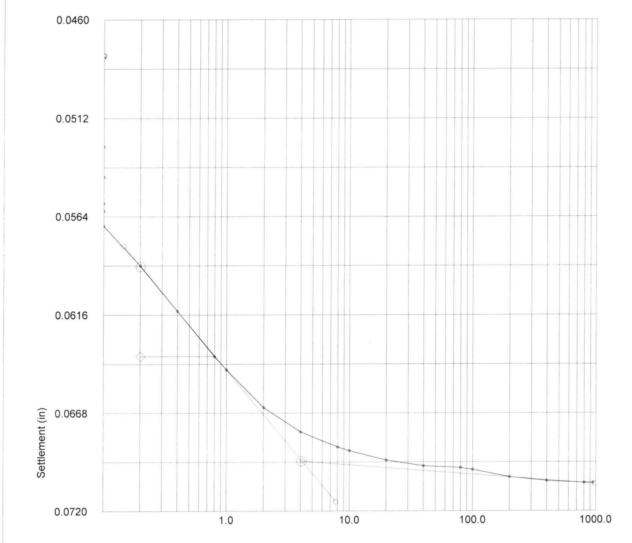

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	319	0.0319	0.0319
2	0.017	335	0.0335	0.0335
3	0.033	335	0.0335	0.0335
4	0.050	353	0.0353	0.0353
5	0.067	358	0.0358	0.0358
6	0.083	361	0.0361	0.0361
7	0.100	366	0.0366	0.0366
8	0.200	377	0.0377	0.0377
9	0.400	393	0.0393	0.0393
10	0.800	415	0.0415	0.0415
11	1.000	421	0.0421	0.0421
12	2.000	441	0.0441	0.0441
13	4.000	457	0.0457	0.0457
14	8.000	465	0.0465	0.0465
15	10.000	465	0.0465	0.0465
16	20.000	473	0.0473	0.0473
17	40.000	476	0.0476	0.0476
18	80.000	478	0.0478	0.0478
19	100.000	478	0.0478	0.0478
20	136.630	479	0.0479	0.0479
20				

♦ S&ME	ASTM D2435-96			Test name Date of Test:	Consolidation Load: 1.000 (TSF) 12-5-16	
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
	Operator: NLC		Checked: W/		Approved:	

19 of 42

Oedometer Settlement Tests



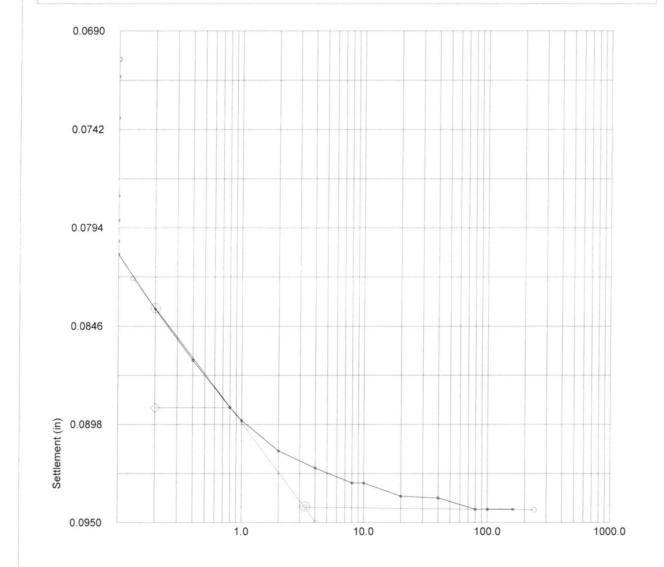

ASTM D2435-96			Test name Date of Test:	-	nsolidation 5-16	
Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1	1	
Operator: MLC	-	Checked: M	14		Approved:	

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
		479	0.0479	0.0479
1	0.000	480	0.0480	0.0480
2	0.017	527	0.0527	0.0527
3	0.033	543	0.0543	0.0543
4	0.050	557	0.0557	0.0557
5	0.067	561	0.0561	0.0561
6	0.083	569	0.0569	0.0569
7	0.100	590	0.0590	0.0590
8	0.200 0.400	614	0.0614	0.0614
9	0.800	638	0.0638	0.0638
10	1.000	645	0.0645	0.0645
11	2.000	665	0.0665	0.0665
12	4.000	678	0.0678	0.0678
13	8.000	686	0.0686	0.0686
14	10.000	688	0.0688	0.0688
15	20.000	693	0.0693	0.0693
16	40.000	696	0.0696	0.0696
17	80.000	697	0.0697	0.0697
18	100.000	698	0.0698	0.0698
19	200.000	702	0.0702	0.0702
20	400.000	704	0.0704	0.0704
21	800.000	705	0.0705	0.0705
22	949.100	705	0.0705	0.0705
23	343.100			

♦ S&ME	ASTM D2435-96			Test name Date of Test:		nsolidation Load: 2.000 (TSF) 5-16
	Site Reference: C.F. Harvey			Sample: ST-1 Borehole: B-1		
	Jobfile: Operator:		Checked: M	/		Approved:

20 of 42

Logarithmic Time (mins)


No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	705	0.0705	0.0705
2	0.017	714	0.0714	0.0714
3	0.033	736	0.0736	0.0736
4	0.050	777	0.0777	0.0777
5	0.067	790	0.0790	0.0790
6	0.083	801	0.0801	0.0801
7	0.100	808	0.0808	0.0808
8	0.200	837	0.0837	0.0837
9	0.400	864	0.0864	0.0864
10	0.800	889	0.0889	0.0889
11	1.000	896	0.0896	0.0896
12	2.000	912	0.0912	0.0912
13	4.000	921	0.0921	0.0921
14	8.000	929	0.0929	0.0929
15	10.000	929	0.0929	0.0929
16	20.000	936	0.0936	0.0936
17	40.000	937	0.0937	0.0937
18	80.000	943	0.0943	0.0943
19	100.000	943	0.0943	0.0943
20	161.130	943	0.0943	0.0943

A	ASTM D2435-96			Test name Date of Test:	Conso 12-5-1	lidation Load: 4.000 (TSF)
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
	Operator:		Checked: ML	۷	Ap	oproved:

21 of 42

Oedometer Settlement Tests

Settlement Stage Results 4.000 Vertical Stress (TSF) Initial Temp oC 21.6 Correction (in) 0.0 Settlement (in) 0.0238 Voids Ratio e 0.6340 Final Temp oC 0.0 0.39 t₅₀ (mins) c_v (ft2/day) m_v (ft2/ton) 1.072 0.013 Sec Compression C_{sec} 0.0001

ASTM D2435	5-96		Test name Date of Test:		nsolidation -5-16	
Site Reference	ce: C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST- B-1	1	
Operator:	<u>~</u>	Checked:	k		Approved:	

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	943	0.0943	0.0943
2	0.017	933	0.0933	0.0933
3	0.033	933	0.0933	0.0933
4	0.050	932	0.0932	0.0932
5	0.067	930	0.0930	0.0930
6	0.083	930	0.0930	0.0930
7	0.100	930	0.0930	0.0930
8	0.200	930	0.0930	0.0930
9	0.400	929	0.0929	0.0929
10	0.800	929	0.0929	0.0929
11	1.000	928	0.0928	0.0928
12	2.000	928	0.0928	0.0928
13	4.000	928	0.0928	0.0928
14	8.000	928	0.0928	0.0928
15	10.000	928	0.0928	0.0928
16	20.000	927	0.0927	0.0927
17	40.000	927	0.0927	0.0927
18	79.330	927	0.0927	0.0927

	ASTM D2435-96			Test name Date of Test:	12-5-16	lidation Load: 2.000 (TSF)
\$S&ME	Site Reference: C.F. Harvey Jobfile: E:\16010.JOB			Sample: Borehole:	D 4	
	Operator: MV		Checked: ML	4	Ap	proved:

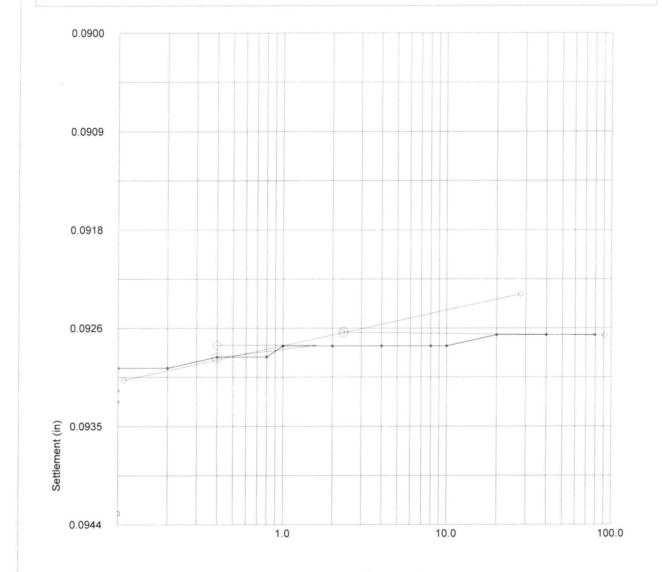
22 of 42

Oedometer Settlement Tests

Settlement Stage Results

 Vertical Stress (TSF)
 2.000

 Initial Temp oC
 21.6


 Correction (in)
 0.0

 Settlement (in)
 0.0016

 Voids Ratio e
 0.6369

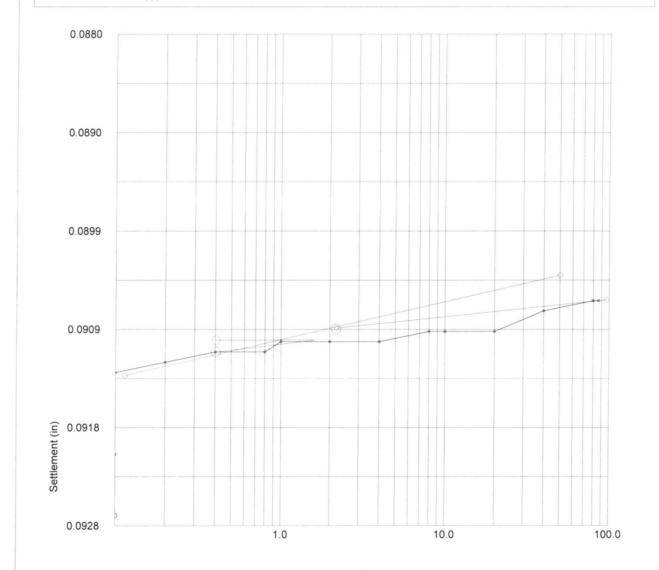
Final Temp oC t₅₀ (mins) c_v (ft2/day) m_v (ft2/ton)

Sec Compression C_{sec}

	ASTM D2435-96			Test name Date of Test:		nsolidation 5-16
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST- B-1	1
	Operator: MIC		Checked: ML	_		Approved:

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	927	0.0927	0.0927
2	0.017	921	0.0921	0.0921
3	0.033	921	0.0921	0.0921
4	0.050	913	0.0913	0.0913
5	0.067	913	0.0913	0.0913
6	0.083	913	0.0913	0.0913
7	0.100	913	0.0913	0.0913
8	0.200	912	0.0912	0.0912
9	0.400	911	0.0911	0.0911
10	0.800	911	0.0911	0.0911
11	1.000	910	0.0910	0.0910
12	2.000	910	0.0910	0.0910
13	4.000	910	0.0910	0.0910
14	8.000	909	0.0909	0.0909
15	10.000	909	0.0909	0.0909
16	20.000	909	0.0909	0.0909
17	40.000	907	0.0907	0.0907
18	80.000	906	0.0906	0.0906
19	86.333	906	0.0906	0.0906

	ASTM D2435-96			Test name Date of Test:		nsolidation Load: 0.500 (TSF) 5-16
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
	Operator: ML		Checked: MK	_		Approved:


23 of 42

Oedometer Settlement Tests

Settlement Stage Results

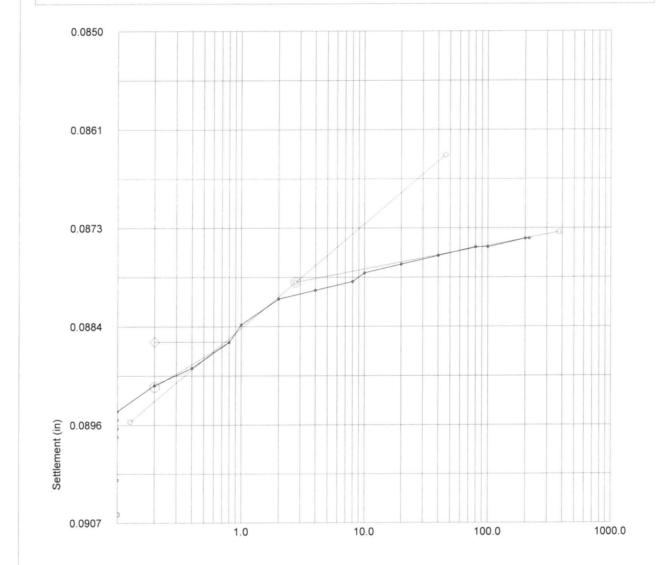
Vertical Stress (TSF) 0.500 Initial Temp oC 21.6 0.0 Correction (in) Settlement (in) 0.0021 Voids Ratio e 0.6407

Final Temp oC t₅₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec}

	ASTM D2435-96			Test name Date of Test:		nsolidation -5-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST- B-1	1	
	Operator: MC		Checked: w	4		Approved:	

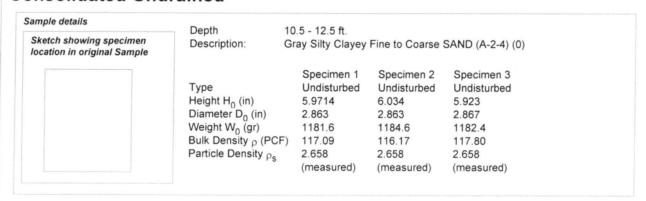
No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	906	0.0906	0.0906
2	0.017	902	0.0902	0.0902
3	0.033	902	0.0902	0.0902
4	0.050	897	0.0897	0.0897
5	0.067	896	0.0896	0.0896
6	0.083	895	0.0895	0.0895
7	0.100	894	0.0894	0.0894
8	0.200	891	0.0891	0.0891
9	0.400	889	0.0889	0.0889
10	0.800	886	0.0886	0.0886
11	1.000	884	0.0884	0.0884
12	2.000	881	0.0881	0.0881
13	4.000	880	0.0880	0.0880
14	8.000	879	0.0879	0.0879
15	10.000	878	0.0878	0.0878
16	20.000	877	0.0877	0.0877
17	40.000	876	0.0876	0.0876
18	80.000	875	0.0875	0.0875
19	100.000	875	0.0875	0.0875
20	200.000	874	0.0874	0.0874
21	216.330	874	0.0874	0.0874

	ASTM D2435-96			Test name Date of Test:	Conso 12-5-1	olidation Load: 0.050 (TSF) 16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1		
	Operator: NUC		Checked:	MLC	Α	pproved:	

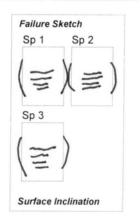

24 of 42

Oedometer Settlement Tests

Settlement Stage Results


Vertical Stress (TSF) 0.050 21.6 Initial Temp oC 0.0 Correction (in) Settlement (in) 0.0032 Voids Ratio e 0.6465

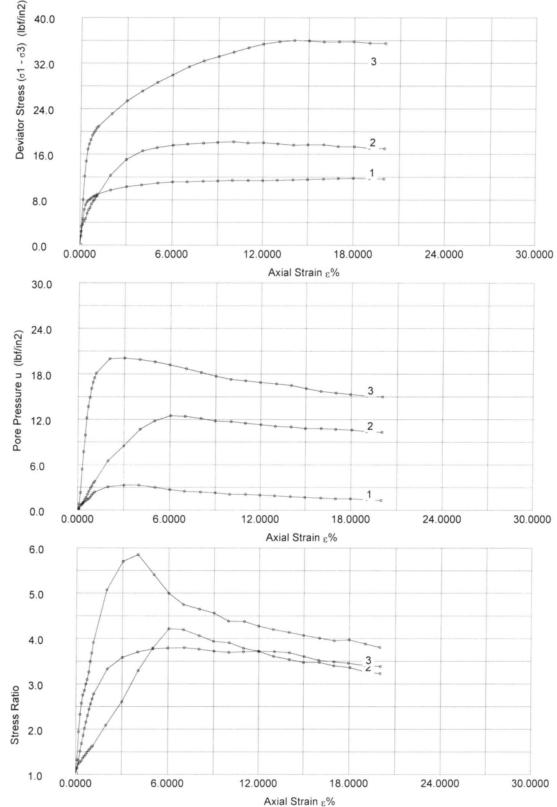
Final Temp oC t₅₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec}


	ASTM D2435-96			Test name Date of Test:		nsolidation -5-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST- B-1	1	
	Operator: MLC		Checked: NV	4		Approved:	

Consolidated Undrained

Initial Conditions	Ci 4	0	0
	Specimen 1	Specimen 2	Specimen 3
Cell Pressure _{\sigma_3} (lbf/in2)	5.5	18.0	30.0
Pore Pressure u (lbf/in2)	0.0	0.0	0.0
Machine Speed d _r (in/min)	0.0059	0.0051	0.0061
No. of Membranes	1	1	1
Total Thickness (in)	0.012	0.012	0.012
Strain Channel	1798	1798	1798
Load Channel	1776	1776	1776
Pore P. Channel	1779	1779	1779
Volume Channel	Volume Chang	Volume Chang	Volume Chang
Moisture Content w ₀ %	29.3	29.8	28.9
Dry Density Pd0 (PCF)	90.53	89.50	91.41
Voids Ratio e ₀	0.83	0.85	0.81
Deg of Saturation S ₀ %	93.74	92.85	94.22
Final B Value	0.98	0.99	0.99

Final Conditions	Specimen 1	Specimen 2	Specimen 3
Moisture Content w _f %	28.8	27.3	25.3
Dry Density Pd (PCF)	93.06	94.57	97.44
Voids Ratio e _f	0.78	0.75	0.70
Deg of Saturation S _f %	97.97	96.20	95.80
Failure Criteria	Mx Stress Rat	tioMx Stress Rat	tioMx Stress Ratio
Axial Strain Ef%	4.0	6.0	7.0
	10.6	17.6	31.4
	2.2	5.5	11.3
	10.0	23.1	42.7
	12.8	23.1	42.1



.	Test Method: AST	M D4767-95		Test name Date of Test:	CU Tr 12-5-1	iaxial (SS, MS)
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
	Operator: WL		Checked:	_	A	pproved:

25 of 42

Effective Stress Triaxial Compression

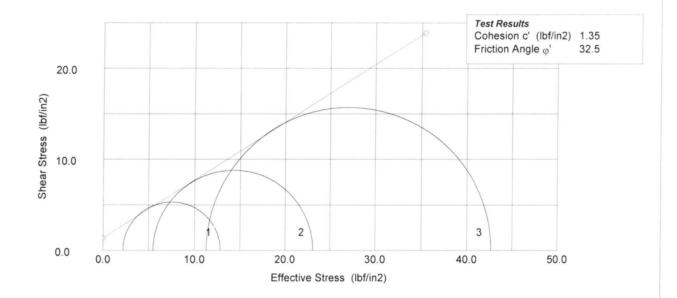
Consolidated Undrained

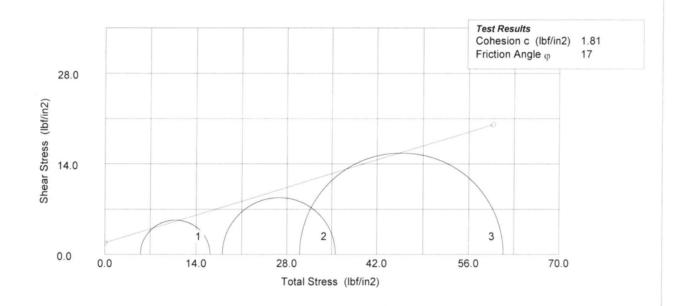
Site Reference:
Jobfile:
Operator:

Test Method: ASTM D4767-95

Site Reference: C.F. Harvey

C.F. Harvey E:\16010.JOB Test name
Date of Test:

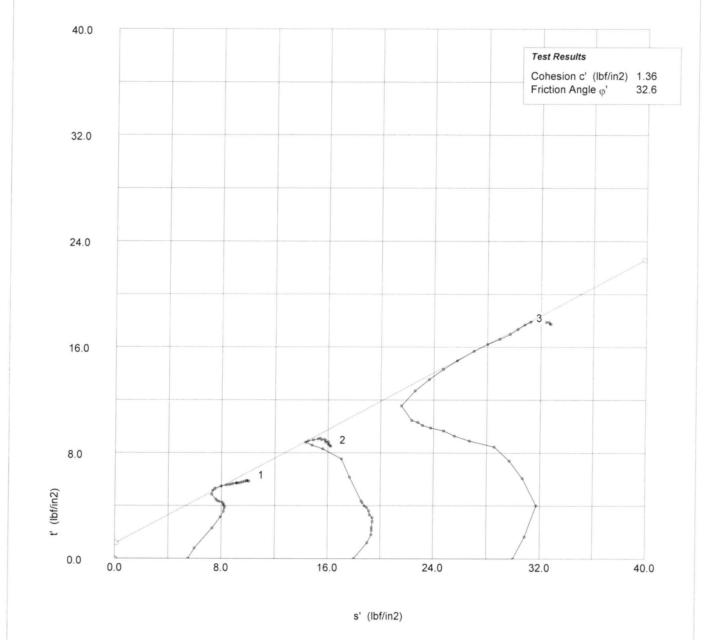

CU Triaxial (SS, MS) 12-5-16


Sample: ST-1 Borehole: B-1

Checked: Borehole: B-1

Approved:

Consolidated Undrained



	Test Method: AST	M D4767-95			Test name Date of Test:	CU Tr 12-5-1	riaxial (SS, MS) 16
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB			Sample: Borehole:	ST-1 B-1	
	Operator: MLC		Checked:	ML	_	A	pproved:

26 of 42

Effective Stress Triaxial Compression

Consolidated Undrained

A	Test Method: AS	ГМ D4767-95		Test name Date of Test:		Triaxial (SS, MS) 5-16
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	1
	Operator: MLC		Checked: ML	L		Approved:

Page 1 / 3

Consolidated Undrained Shear (Specimen 1)

No.	Strain (divs)	$\underset{\epsilon \%}{\text{Strain}}$	Load (divs)	Load (lbs)	Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_m$ (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_c$ (lbf/in2)	Minor Str σ ₃ ' (lbf/in2)	Major Str ₀₁ ' (lbf/in2)	Ratio σ_1'/σ_3'
1	41	0.00	519	0.0	0	0.0	0.0	0.0	5.50	5.50	1.00
2	91	0.08	619	10.0	3	0.3	1.6	1.6	5.20	6.78	1.30
3	145	0.18	811	29.2	5	0.5	4.6	4.6	5.00	9.61	1.92
4	201	0.27	917	39.8	7	0.7	6.3	6.3	4.80	11.08	2.31
5	252	0.36	972	45.3	9	0.9	7.1	7.1	4.60	11.74	2.55
6	306	0.45	1003	48.4	11	1.1	7.6	7.6	4.40	12.02	2.73
7	365	0.55	1031	51.2	12	1.2	8.1	7.9	4.30	12.20	2.84
8	420	0.64	1045	52.6	14	1.4	8.3	8.1	4.10	12.21	2.98
9	474	0.73	1058	53.9	15	1.5	8.5	8.3	4.00	12.31	3.08
10	534	0.83	1072	55.3	17	1.7	8.7	8.5	3.80	12.32	3.24
11	587	0.92	1081	56.2	20	2.0	8.8	8.7	3.50	12.15	3.47
12	642	1.02	1089	57.0	22	2.2	8.9	8.8	3.30	12.07	3.66
13	702	1.12	1103	58.4	24	2.4	9.1	9.0	3.10	12.08	3.90
14	1210	1.98	1164	64.5	31	3.1	10.0	9.7	2.40	12.12	5.05
15	1830	3.02	1214	69.5	33	3.3	10.7	10.3	2.20	12.51	5.68
16	2397	3.98	1250	73.1	33	3.3	11.1	10.6	2.20	12.83	5.83
17	3025	5.04	1286	76.7	30	3.0	11.5	11.0	2.50	13.47	5.39
18	3592	6.00	1311	79.2	27	2.7	11.8	11.1	2.80	13.94	4.98
19	4164	6.97	1328	80.9	25	2.5	11.9	11.2	3.00	14.19	4.73
20	4791	8.03	1347	82.8	24	2.4	12.0	11.3	3.10	14.35	4.63
21	5364	9.00	1367	84.8	23	2.3	12.2	11.3	3.20	14.53	4.54
22	5933	9.96	1389	87.0	21	2.1	12.4	11.4	3.40	14.84	4.36
23	6563	11.02	1403	88.4	21	2.1	12.4	11.4	3.40	14.81	4.36
24	7132	11.98	1417	89.8	20	2.0	12.5	11.4	3.50	14.89	4.25
25	7703	12.95	1436	91.7	19	1.9	12.6	11.5	3.60	15.05	4.18
26	8330	14.01	1459	94.0	18	1.8	12.8	11.5	3.70	15.23	4.12
27	8901	14.97	1478	95.9	17	1.7	12.9	11.6	3.80	15.39	4.05
28	9530	16.04	1500	98.1	16	1.6	13.0	11.7	3.90	15.55	3.99
29	10102	17.00	1523	100.4	15	1.5	13.2	11.7	4.00	15.73	3.93
30	10675	17.97	1545	102.6	15	1.5	13.3	11.8	4.00	15.80	3.95
31	11303	19.03	1556	103.7	14	1.4	13.3	11.7	4.10	15.83	3.86
32	11865	19.98	1569	105.0	13	1.3	13.3	11.7	4.20	15.90	3.79

	Ι.
S&ME	S
	-

Test Method: AST		Test name Date of Test:	CU Triaxial (SS, MS) Shear (Specimen 12-5-16			
Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	1	
Operator: NK		Checked: ~	_		Approved:	

27 of 42

Effective Stress Triaxial Compression

Page 2 / 3

Consolidated Undrained Shear (Specimen 2)

	No.	Strain (divs)	Strain ε%	Load (divs)	Load (lbs)	Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_m$ (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_c$ (Ibf/in2)	Minor Str σ ₃ ' (lbf/in2)	Major Str σ ₁ ΄ (lbf/in2)	Ratio σ_1^{1/σ_3}
	1	35	0.00	602	0.0	0	0.0	0.0	0.0	18.00	18.00	1.00
	2	90	0.09	753	15.1	2	0.2	2.4	2.4	17.80	20.23	1.14
	3	143	0.18	828	22.6	5	0.5	3.6	3.6	17.50	21.14	1.21
	4	201	0.28	869	26.7	8	0.8	4.3	4.3	17.20	21.49	1.25
	5	255	0.37	894	29.2	10	1.0	4.7	4.7	17.00	21.69	1.28
	6	308	0.46	952	35.0	14	1.4	5.6	5.6	16.60	22.21	1.34
	7	367	0.56	999	39.7	17	1.7	6.4	6.2	16.30	22.50	1.38
	8	421	0.65	1025	42.3	21	2.1	6.8	6.6	15.90	22.51	1.42
	9	475	0.74	1065	46.3	25	2.5	7.4	7.2	15.50	22.75	1.47
	10	534	0.84	1096	49.4	29	2.9	7.9	7.7	15.10	22.83	1.51
	11	587	0.93	1112	51.0	32	3.2	8.1	8.0	14.80	22.78	1.54
	12	642	1.02	1143	54.1	36	3.6	8.6	8.5	14.40	22.87	1.59
	13	699	1.12	1158	55.6	38	3.8	8.9	8.7	14.20	22.90	1.61
	14	1203	1.97	1399	79.7	65	6.5	12.6	12.3	11.50	23.81	2.07
	15	1811	3.00	1589	98.7	85	8.5	15.4	15.1	9.50	24.57	2.59
	16	2427	4.04	1706	110.4	107	10.7	17.1	16.6	7.30	23.90	3.27
	17	2987	4.98	1759	115.7	118	11.8	17.7	17.2	6.20	23.36	3.77
	18	3608	6.03	1806	120.4	125	12.5	18.2	17.6	5.50	23.10	4.20
	19	4168	6.98	1837	123.5	124	12.4	18.5	17.8	5.60	23.40	4.18
	20	4788	8.02	1867	126.5	121	12.1	18.8	18.0	5.90	23.85	4.04
	21	5350	8.97	1895	129.3	118	11.8	19.0	18.1	6.20	24.29	3.92
	22	5972	10.02	1923	132.1	117	11.7	19.2	18.2	6.30	24.50	3.89
	23	6537	10.97	1928	132.6	115	11.5	19.0	18.0	6.50	24.49	3.77
	24	7160	12.03	1953	135.1	113	11.3	19.2	18.0	6.70	24.74	3.69
	25	7724	12.98	1959	135.7	111	11.1	19.0	17.9	6.90	24.75	3.59
	26	8347	14.03	1964	136.2	110	11.0	18.9	17.6	7.00	24.61	3.52
	27	8913	14.98	1987	138.5	108	10.8	19.0	17.7	7.20	24.86	3.45
	28	9536	16.04	2009	140.7	108	10.8	19.0	17.7	7.20	24.86	3.45
	29	10100	16.99	2009	140.7	107	10.7	18.8	17.4	7.30	24.67	3.38
	30	10725	18.04	2028	142.6	106	10.6	18.8	17.3	7.40	24.72	3.34
	31	11293	19.00	2030	142.8	104	10.4	18.6	17.1	7.60	24.69	3.25
	32	11898	20.02	2045	144.3	103	10.3	18.6	17.0	7.70	24.71	3.21
-												

	Test Method: AST	TM D4767-95		Test name Date of Test:	CU Tr 12-5-1	riaxial (SS, MS) Shear (Specimen 2) 16
S&ME	Site Reference:	C.F. Harvey		Sample:	ST-1	
JUIL	Jobfile:	E:\16010.JOB		Borehole:	B-1	
	Operator: ML		Checked: MLC		A	pproved:

Page 3 / 3

Consolidated Undrained Shear (Specimen 3)

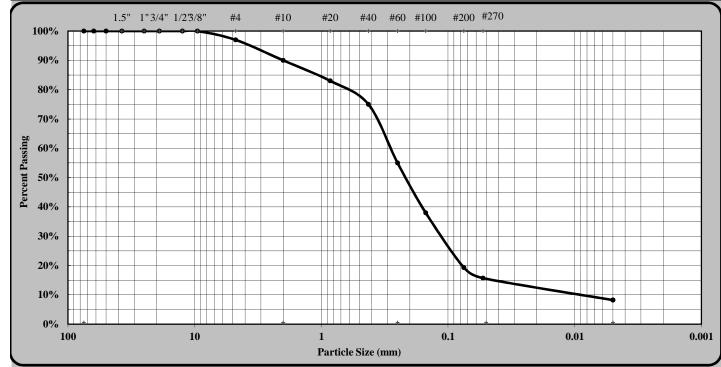
001130	maatce	Onar	annou (Jiioai	(Opcon						
No.	Strain (divs)	$\underset{\epsilon \%}{\text{Strain}}$	Load (divs)	Load (lbs)	Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_m$ (Ibf/in2)	D. Stress $(\sigma_1 - \sigma_3)_c$ (lbf/in2)	Minor Str σ ₃ (lbf/in2)	Major Str σ ₁ ' (lbf/in2)	Ratio σ_1^{1/σ_3}
1	247	0.00	688	0.0	0	0.0	0.0	0.0	30.00	30.00	1.00
2	302	0.09	894	20.6	8	0.8	3.3	3.3	29.20	32.53	1.11
3	359	0.19	1186	49.8	23	2.3	8.0	8.0	27.70	35.74	1.29
4	414	0.29	1442	75.4	54	5.4	12.2	12.2	24.60	36.76	1.49
5	468	0.38	1606	91.8	77	7.7	14.8	14.8	22.30	37.09	1.66
6	526	0.48	1739	105.1	99	9.9	16.9	16.9	20.10	37.01	1.84
7	580	0.57	1806	111.8	122	12.2	18.0	17.8	17.80	35.61	2.00
8	634	0.67	1853	116.5	137	13.7	18.7	18.6	16.30	34.85	2.14
9	694	0.77	1903	121.5	149	14.9	19.5	19.3	15.10	34.44	2.28
10	749	0.87	1931	124.3	161	16.1	19.9	19.8	13.90	33.67	2.42
11	805	0.96	1956	126.8	169	16.9	20.3	20.1	13.10	33.25	2.54
12	863	1.06	1987	129.9	175	17.5	20.8	20.6	12.50	33.12	2.65
13	919	1.16	2006	131.8	181	18.1	21.1	20.9	11.90	32.81	2.76
14	1428	2.04	2165	147.7	200	20.0	23.4	23.1	10.00	33.12	3.31
15	1994	3.01	2329	164.1	201	20.1	25.7	25.4	9.90	35.28	3.56
16	2566	4.00	2465	177.7	199	19.9	27.6	27.1	10.10	37.21	3.68
17	3134	4.98	2587	189.9	196	19.6	29.2	28.6	10.40	39.02	3.75
18	3702	5.96	2698	201.0	192	19.2	30.6	29.9	10.80	40.73	3.77
19	4330	7.04	2823	213.5	187	18.7	32.1	31.4	11.30	42.68	3.78
20	4897	8.02	2921	223.3	182	18.2	33.2	32.4	11.80	44.22	3.75
21	5472	9.01	3004	231.6	177	17.7	34.1	33.2	12.30	45.50	3.70
22	6039	9.99	3087	239.9	173	17.3	34.9	34.0	12.70	46.66	3.67
23	6609	10.97	3171	248.3	171	17.1	35.7	34.7	12.90	47.61	3.69
24	7183	11.96	3251	256.3	169	16.9	36.5	35.4	13.10	48.47	3.70
25	7808	13.04	3318	263.0	167	16.7	37.0	35.8	13.30	49.10	3.69
26	8383	14.03	3369	268.1	165	16.5	37.3	36.0	13.50	49.51	3.67
27	8952	15.01	3399	271.1	161	16.1	37.3	35.9	13.90	49.84	3.59
28	9523	16.00	3420	273.2	157	15.7	37.1	35.7	14.30	50.03	3.50
29	10100	16.99	3460	277.2	155	15.5	37.2	35.8	14.50	50.26	3.47
30	10654	17.95	3499	281.1	153	15.3	37.3	35.8	14.70	50.48	3.43
31	11260	18.99	3520	283.2	151	15.1	37.1	35.5	14.90	50.44	3.39
32	11863	20.03	3555	286.7	150	15.0	37.1	35.5	15.00	50.48	3.37

	Test Method: AST	ΓM D4767-95		Test name Date of Test:	CU Triaxial 12-5-16	(SS, MS) Shear (Specimen 3)
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B-1	
	Operator: MLL		Checked: ML	L	Approve	d:

Form No. TR-T88 Revision No. 0

S&ME, Inc.

Revision Date: 12/20/09


Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

						Quan	ty 1155th thice
S&	&ME, Inc. Raleigh	, 3201 Spring For	est Road, Ra	leigh, Nor	th Carolina	27616	
S&ME Project #:	6235-16-010			R	Report Date:		12/27/16
Project Name:	C.F. Harvey Park	way Extension R-	5703	T	'est Date(s):	12	2/24 - 12/27/16
State Project #:	N/A	F.A. Project No:	N/A		TIP NO:	N/A	
Client Name:	Michael Baker E	ngineering					
Address:	Raleigh, NC						
Boring #:	EB2-A LT LN	Sample #:	ST-2		Sample	Date:	N/A
Location:	89+50	Offset:	34 LT		Dept	h (ft):	8.0 - 10.0 ft.
Sample Description:			Gray Silty	Clayey Coa	arse to Fine S	SAND	A-2-4 (0)

As Defin	ed by NCDOT		F	ine San	d	< 0.25	< 0.25 mm and > 0.05 mm		
Gravel	< 75 mm	and > 2.00 mm		Silt		< 0.03	< 0.05 and > 0.005 mm		
Coarse Sand	< 2.00 mm	and >0.25 mm	Clay			< 0.005 mm			
Maximum Particle Size	#4	Coarse S	and		35%	Silt		8%	
Gravel	10%	Fine Sand			39%	Clay		8%	
Apparent Relative Density	ND	Content		30.6%	% Passing	#200	19.3%		
Liquid Limit	30	Plastic L	imit		29	Plastic Inde	ex	1	
		Soil Mortar	(-#10 Siev	e)					
Coarse Sand	39%	Fine Sand	44%		Silt	8%	Clay	9%	
Description of Sand & Grav	vel Particles:	Rounded				Angu	lar	X	
Hard & Durable	X	Soft			Weat	hered & Frial	ole		
References / Comments / Deviati	ons: ND=1	Not Determined.							
Mal Krajan, ET Technician Name		104-01-0703 Certification No.		Labo	oratory Ma	anager	<u>12</u>	2/27/2016 Date	
Mal Krajan, ET Technical Responsibility	_	Signature		Labo	oratory Ma	anager	9/	/ <u>26/2016</u> Date	

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

3201 Spring Forest Road Raleigh, NC 27616

EB2-A-LT LN ST-2 (8.0 - 10.0 ft) Classification.xls

Sample details Sketch showing specimen location in original Sample

8.0 - 10.0 ft. Depth

Description:

Gray Silty Clayey Coarse to Fine SAND (A-2-4) (0)

Type Height H₀ (in) Diameter D₀ (in) Undisturbed 0.997 2.501 Weight W₀ (gr) 148.43 Bulk Density p (PCF) 115.45 Particle Density Ps 2.653 (measured)

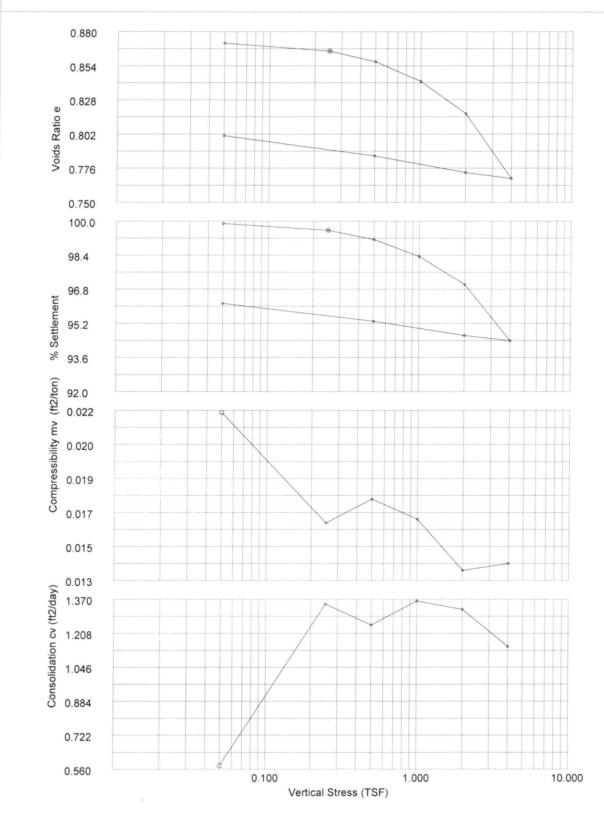
Initial Conditions

Settlement Channel 1065 30.6 Moisture Content w₀% Dry Density Pd (PCF) 88.38 Voids Ratio e₀ 0.8732 Deg of Saturation S₀% 93.1 Swelling Pressure Ss (TSF) 0.000

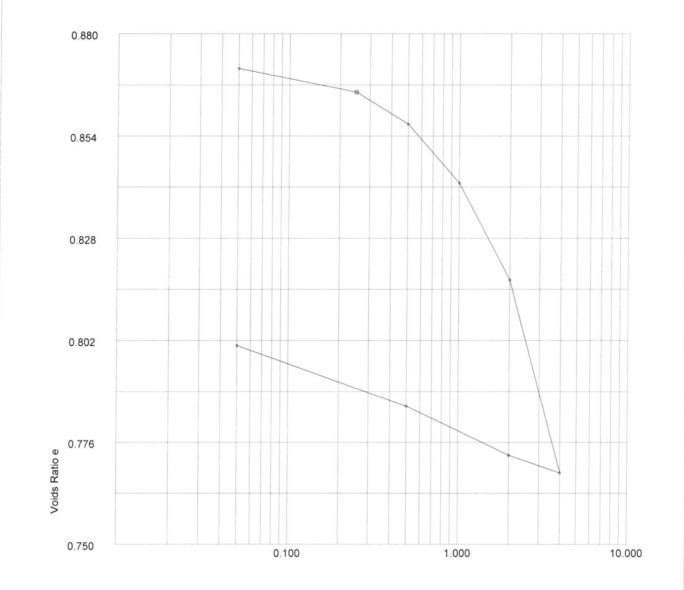
Final Conditions

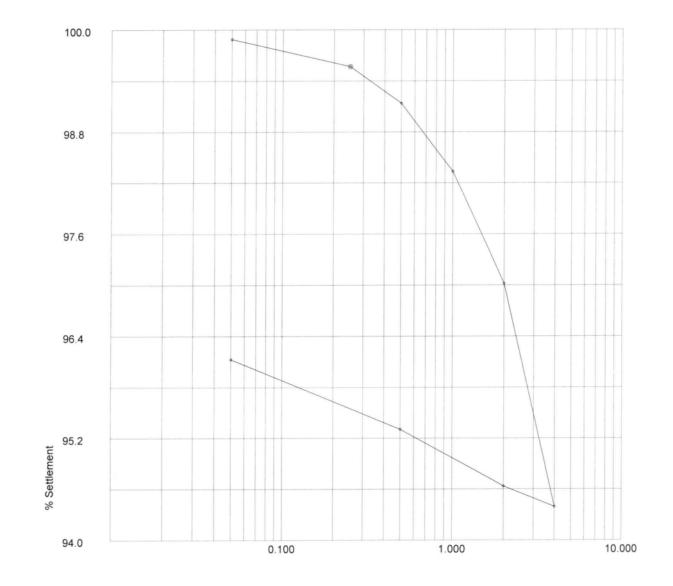
Moisture Content w_f% 34.0 Dry Density pd (PCF) 91.94 Voids Ratio ef 0.8007 Deg of Saturation S_f% 100.00 Settlement: (in) 0.039 Compression Index C 0.168

Notes:

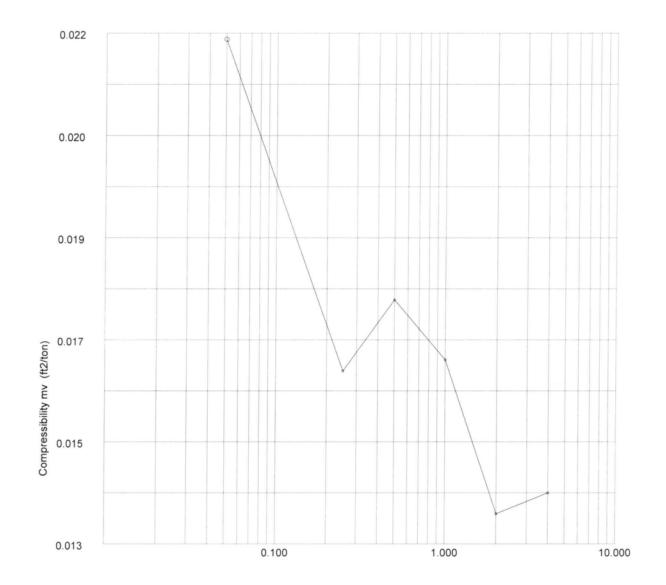

Test specimen taken from the middle portion of UD tube.

ASTM D2435-96 Consolidation Test name 12-16-16 Date of Test: Site Reference: C.F. Harvey Sample: EB2-A LT LN E:\16010.JOB Borehole: Checked: MC Operator: MLC Approved:


29 of 42

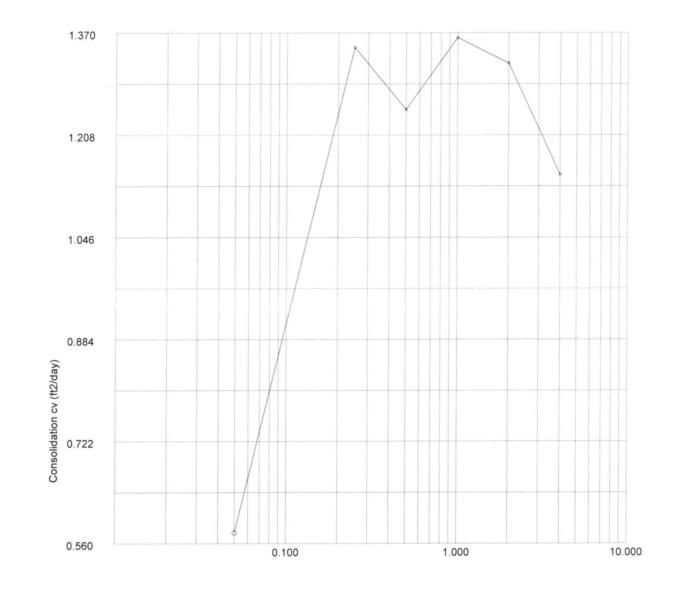

ASTM D2435-96			Test name	Cor	nsolidation	
			Date of Test:	12-	16-16	
Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2	2 -A LT LN	
Operator: ML		Checked: MC			Approved:	

Vertical Stress (TSF)


A	ASTM D2435-96			Test name Date of Test:	Consolidation 12-16-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: MLC		Checked:	K	Approved:	

Oedometer Settlement Tests

Vertical Stress (TSF)



Vertical Stress (TSF)

	Α,
\$S&ME	Si

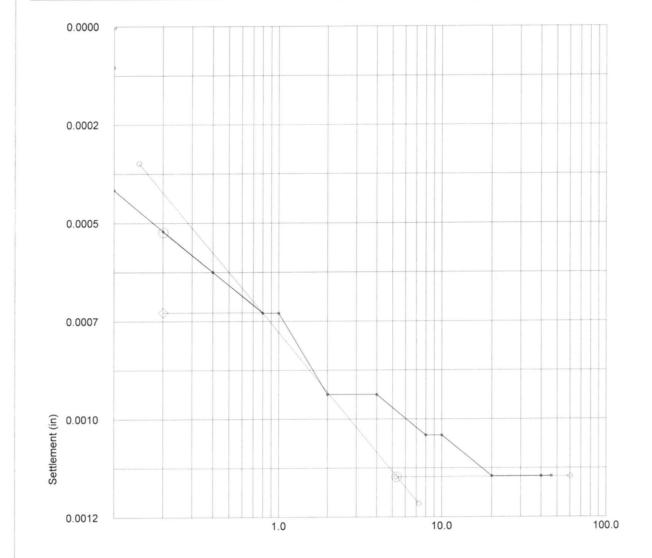
E	ASTM D2435-96			Test name Date of Test:	Consolidation 12-16-16	
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: MK		Checked:	L	Approved:	

Oedometer Settlement Tests

Vertical Stress (TSF)

		ASTM D2435-96			Test name Date of Test:		nsolidation -16-16	
,	S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-	2 2-A LT LN	
		Operator:	-	Checked: M	L		Approved:	

Stress (TSF)	Initial Temp. oC	Settlement Total (in)	Cal Corr. (in)	Final Temp. oC	Voids Ratio e _f	t ₅₀ (mins)	the same of the sa	c _v (ft2/day)	m _v (ft2/ton)
0.050	21.6	0.0011	0.0	21.6	0.8712	0.860	0.00	0.577	0.022
0.250	21.6	0.0043	0.0	21.6	0.8651	0.367	0.0001	1.347	0.016
0.500	21.6	0.0086	0.0	21.6	0.8571	0.393	0.0002	1.248	0.017
1.000	21.6	0.0166	0.0	21.6	0.8420	0.356	0.0002	1.362	0.016
2.000	21.6	0.0297	0.0	21.6	0.8174	0.359	0.0002	1.322	0.014
4.000	21.6	0.0559	0.0	21.6	0.7682	0.398	0.0011	1.145	0.014
2.000	21.6	0.0535	0.0	21.6	0.7727				0.001
0.500	21.6	0.0468	0.0	21.6	0.7853				0.005
0.050	21.6	0.0386	0.0	21.6	0.8007				0.019


	ASTM D2435-96			Test name Date of Test:	Consolidation 12-16-16	
♦S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: NC		Checked: W	Checked: wll		

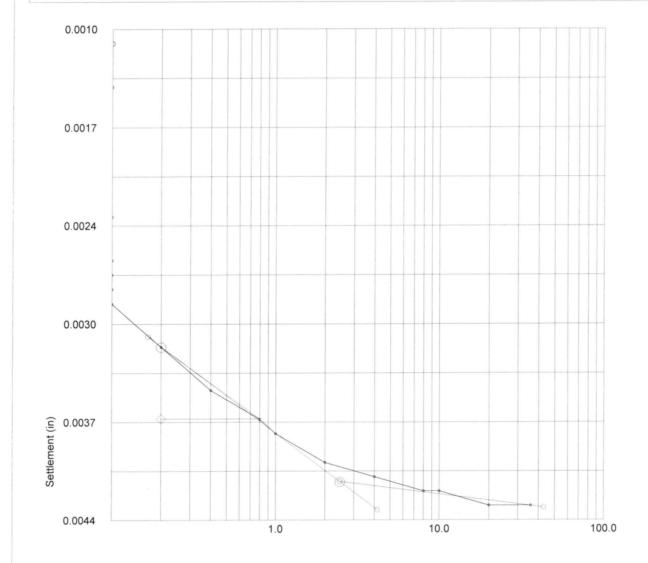
32 of 42

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	0	0.0000	0.0000
2	0.017	1	0.0001	0.0001
3	0.033	1	0.0001	0.0001
4	0.050	1	0.0001	0.0001
5	0.067	1	0.0001	0.0001
6	0.083	1	0.0001	0.0001
7	0.100	4	0.0004	0.0004
8	0.200	5	0.0005	0.0005
9	0.400	6	0.0006	0.0006
10	0.800	7	0.0007	0.0007
11	1.000	7	0.0007	0.0007
12	2.000	9	0.0009	0.0009
13	4.000	9	0.0009	0.0009
14	8.000	10	0.0010	0.0010
15	10.000	10	0.0010	0.0010
16	20.000	11	0.0011	0.0011
17	40.000	11	0.0011	0.0011
18	46.167	11	0.0011	0.0011

S&ME	ASTM D2435-96			Test name Date of Test:	Consolidation 12-16-16	Load: 0.050 (TSF)
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: ML		Checked: M	C	Approved:	

Settlement Stage Results 0.050 Vertical Stress (TSF) 21.6 Initial Temp oC Correction (in) 0.0 Settlement (in) 0.0011 0.8712 Voids Ratio e 0.0 Final Temp oC t₅₀ (mins) c_v (ft2/day) m_v (ft2/ton) 0.86 0.577 0.022 Sec Compression C_{sec} 0.00

Logarithmic Time (mins)


		ASTM D2435-96			Test name Date of Test:	Conse 12-16	solidation 6-16	
1	S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A	A LT LN	
		Operator: MC		Checked: ML		A	Approved:	

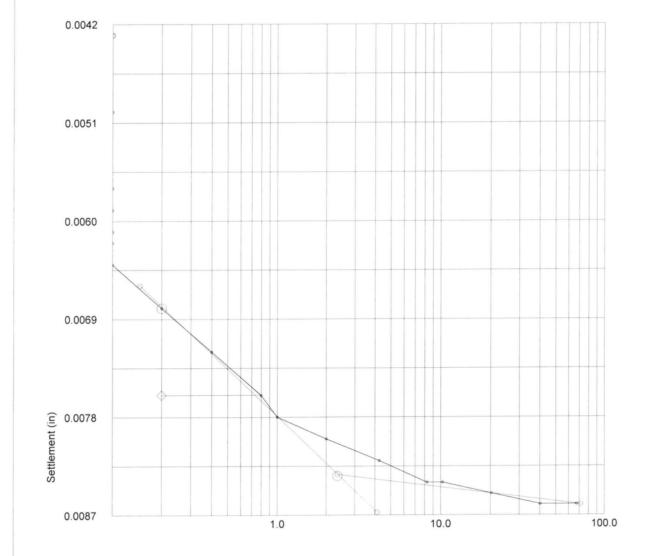
33 of 42

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	11	0.0011	0.0011
2	0.017	14	0.0014	0.0014
3	0.033	23	0.0023	0.0023
4	0.050	26	0.0026	0.0026
5	0.067	27	0.0027	0.0027
6	0.083	28	0.0028	0.0028
7	0.100	29	0.0029	0.0029
8	0.200	32	0.0032	0.0032
9	0.400	35	0.0035	0.0035
10	0.800	37	0.0037	0.0037
11	1.000	38	0.0038	0.0038
12	2.000	40	0.0040	0.0040
13	4.000	41	0.0041	0.0041
14	8.000	42	0.0042	0.0042
15	10.000	42	0.0042	0.0042
16	20.000	43	0.0043	0.0043
17	35.867	43	0.0043	0.0043

	ASTM D2435-96		Test na Date o	nsolidation Load: 0.250 (TSF) -16-16
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB	Sample Borehol	 2 2-A LT LN
	Operator: ML	_	Checked: ML	Approved:

ettlement Stage Results		
Vertical Stress (TSF)	0.250	
Initial Temp oC	21.6	
Correction (in)	0.0	
Settlement (in)	0.0032	
Voids Ratio e	0.8651	
Final Temp oC	0.0	
t ₅₀ (mins)	0.37	
c _v (ft2/day)	1.347	
m, (ft2/ton)	0.016	
Sec Compression C _{sec}	0.0001	

Logarithmic Time (mins)


	ASTM D2435-96			Test name Date of Test:		solidation 6-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-	A LT LN	
	Operator: www	•	Checked: M	K		Approved:	

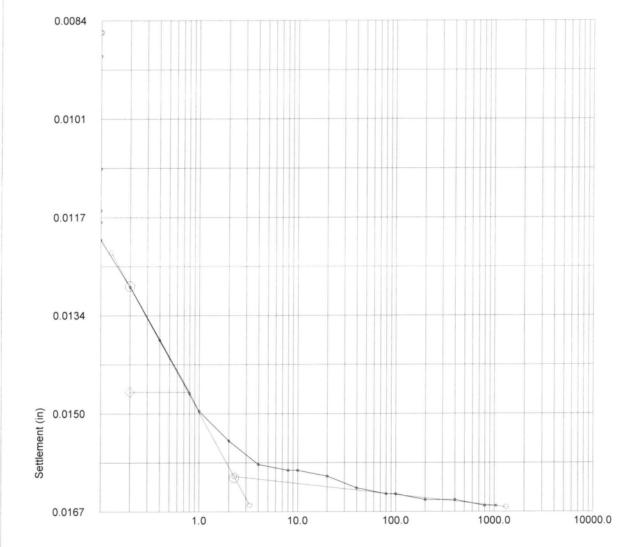
34 of 42

		Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
	1	0.000	43	0.0043	0.0043
	2	0.017	50	0.0050	0.0050
	3	0.033	57	0.0057	0.0057
	4	0.050	59	0.0059	0.0059
	5	0.067	61	0.0061	0.0061
	6	0.083	62	0.0062	0.0062
	7	0.100	64	0.0064	0.0064
	8	0.200	68	0.0068	0.0068
	9	0.400	72	0.0072	0.0072
	10	0.800	76	0.0076	0.0076
	11	1.000	78	0.0078	0.0078
	12	2.000	80	0.0080	0.0080
	13	4.250	82	0.0082	0.0082
	14	8.250	84	0.0084	0.0084
	15	10.250	84	0.0084	0.0084
	16	20.250	85	0.0085	0.0085
	17	40.250	86	0.0086	0.0086
	18	67.350	86	0.0086	0.0086

	ASTM D2435-96			Test name Date of Test:	Consolidati 12-16-16	on Load: 0.500 (TSF)
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LI	N
	Operator: ML		Checked: W	C	Approve	ed:

Settlement Stage Results 0.500 Vertical Stress (TSF) 21.6 Initial Temp oC Correction (in) 0.0 0.0043 Settlement (in) 0.8571 Voids Ratio e 0.0 Final Temp oC 0.39 t₅₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec} 1.248 0.017 0.0002

Logarithmic Time (mins)


	ASTM D2435-96			Test name Date of Test:	Consolidation 12-16-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: NUL	•	Checked: MA		Approved:	

35 of 42

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	86	0.0086	0.0086
2	0.017	90	0.0090	0.0090
3	0.033	90	0.0090	0.0090
4	0.050	109	0.0109	0.0109
5	0.067	116	0.0116	0.0116
6	0.083	118	0.0118	0.0118
7	0.100	121	0.0121	0.0121
8	0.200	129	0.0129	0.0129
9	0.400	138	0.0138	0.0138
10	0.800	147	0.0147	0.0147
11	1.000	150	0.0150	0.0150
12	2.000	155	0.0155	0.0155
13	4.000	159	0.0159	0.0159
14	8.000	160	0.0160	0.0160
15	10.000	160	0.0160	0.0160
16	20.000	161	0.0161	0.0161
17	40.000	163	0.0163	0.0163
18	80.000	164	0.0164	0.0164
19	100.000	164	0.0164	0.0164
20	200.000	165	0.0165	0.0165
21	400.000	165	0.0165	0.0165
22	800.000	166	0.0166	0.0166
23	1039.917	166	0.0166	0.0166

	ASTM D2435-96			Test name Date of Test:	Consolidation 12-16-16	Load: 1.000 (TSF)
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: MLC		Checked: ML	_	Approved:	

Logarithmic Time (mins)

\$S&ME	Si

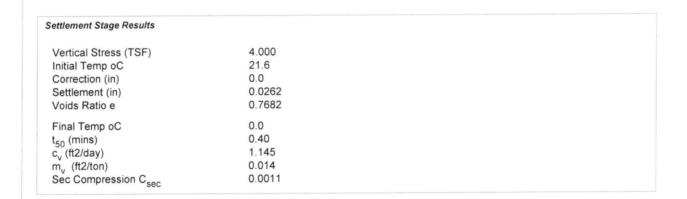
	ASTM D2435-96			Test name Date of Test:		nsolidation 16-16	
E	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2	2 2-A LT LN	
	Operator: MLC		Checked: NC			Approved:	

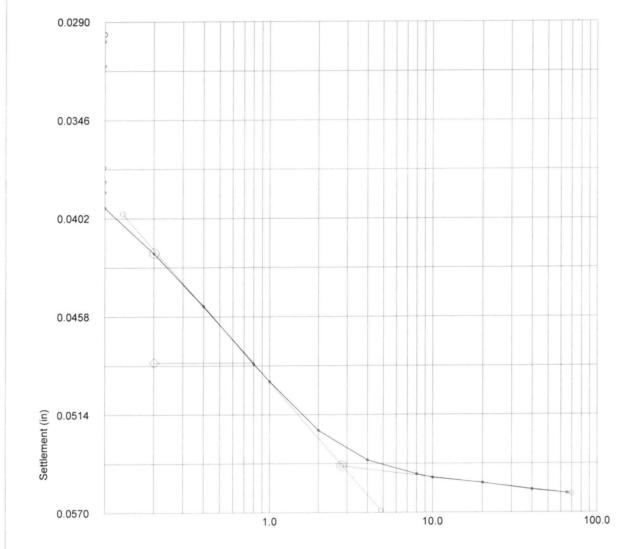
36 of 42

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	166	0.0166	0.0166
2	0.017	169	0.0169	0.0169
3	0.033	189	0.0189	0.0189
4	0.050	206	0.0206	0.0206
5	0.067	212	0.0212	0.0212
6	0.083	220	0.0220	0.0220
7	0.100	223	0.0223	0.0223
8	0.200	237	0.0237	0.0237
9	0.400	253	0.0253	0.0253
10	0.800	268	0.0268	0.0268
11	1.000	272	0.0272	0.0272
12	2.000	283	0.0283	0.0283
13	4.000	289	0.0289	0.0289
14	8.000	292	0.0292	0.0292
15	10.000	293	0.0293	0.0293
16	20.000	295	0.0295	0.0295
17	40.000	296	0.0296	0.0296
18	80.000	297	0.0297	0.0297
19	96.330	297	0.0297	0.0297

	ASTM D2435-96			Test name Date of Test:	Consolid 12-16-16	lation Load: 2.000 (TSF)
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT	ΓLN
	Operator: MLC	-	Checked: MU	_	Appr	roved:

Settlement Stage Results 2.000 Vertical Stress (TSF) 21.6 Initial Temp oC Correction (in) 0.0 0.0131 Settlement (in) Voids Ratio e 0.8174 0.0 Final Temp oC t₅₀ (mins) c_v (ft2/day) m_v (ft2/ton) Sec Compression C_{sec} 0.36 1.322 0.014 0.0002


Logarithmic Time (mins)


	ASTM D2435-96			Test name Date of Test:	Consolidation 12-16-16	
♦S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator:		Checked: ~	le	Approved:	

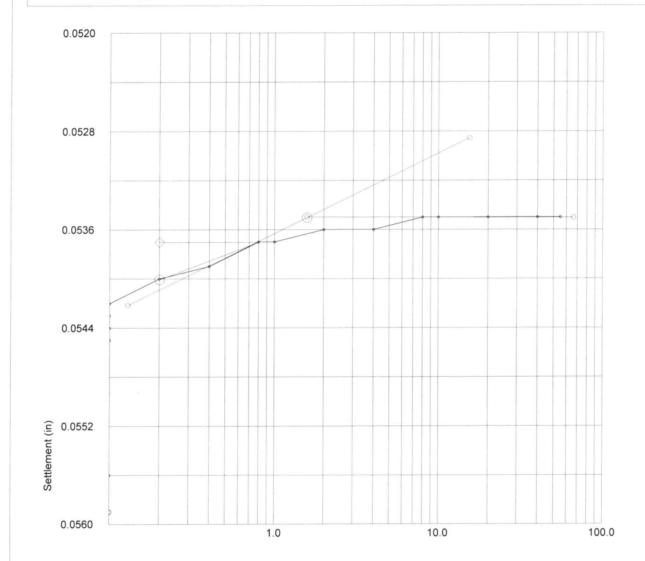
37 of 42

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	297	0.0297	0.0297
2	0.017	301	0.0301	0.0301
3	0.033	315	0.0315	0.0315
4	0.050	373	0.0373	0.0373
5	0.067	381	0.0381	0.0381
6	0.083	387	0.0387	0.0387
7	0.100	396	0.0396	0.0396
8	0.200	422	0.0422	0.0422
9	0.400	452	0.0452	0.0452
10	0.800	485	0.0485	0.0485
11	1.000	495	0.0495	0.0495
12	2.000	523	0.0523	0.0523
13	4.000	540	0.0540	0.0540
14	8.000	548	0.0548	0.0548
15	10.000	550	0.0550	0.0550
16	20.000	553	0.0553	0.0553
17	40.000	557	0.0557	0.0557
18	65.600	559	0.0559	0.0559

	ASTM D2435-96			Test name Date of Test:	Consolidation Load: 4.00 12-16-16	00 (TSF)
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: ML		Checked:	_	Approved:	

Logarithmic Time (mins)

	ASTM D2435-96			Test name Date of Test:	Consolidation 12-16-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: ML		Checked:	LC	Approved:	


38 of 42

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	559	0.0559	0.0559
2	0.017	556	0.0556	0.0556
3	0.033	556	0.0556	0.0556
4	0.050	545	0.0545	0.0545
5	0.067	544	0.0544	0.0544
6	0.083	543	0.0543	0.0543
7	0.100	542	0.0542	0.0542
8	0.200	540	0.0540	0.0540
9	0.400	539	0.0539	0.0539
10	0.800	537	0.0537	0.0537
11	1.000	537	0.0537	0.0537
12	2.000	536	0.0536	0.0536
13	4.000	536	0.0536	0.0536
14	8.000	535	0.0535	0.0535
15	10.000	535	0.0535	0.0535
16	20.000	535	0.0535	0.0535
17	40.000	535	0.0535	0.0535
18	55.167	535	0.0535	0.0535

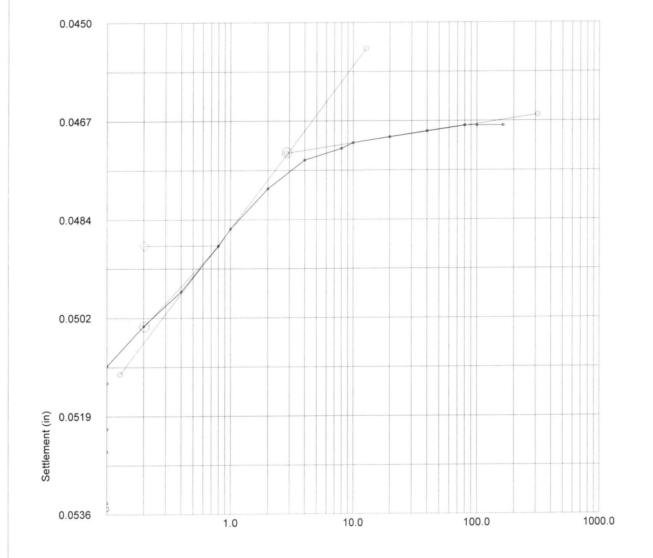
	ASTM D2435-96			Test name Date of Test:	Conso 12-16	solidation Load: 2.000 (TSF) 6-16	
\$S&ME	Site Reference: C.F. Harvey Jobfile: E:\16010.JOB		ourripio.		ST-2 EB2-A	ST-2 EB2-A LT LN	
	Operator: MV		Checked: 🛝	_	A	Approved:	

Settlement Stage Results

 $\begin{array}{llll} & \text{Vertical Stress (TSF)} & 2.000 \\ & \text{Initial Temp oC} & 21.6 \\ & \text{Correction (in)} & 0.0 \\ & \text{Settlement (in)} & 0.0024 \\ & \text{Voids Ratio e} & 0.7727 \\ & \text{Final Temp oC} \\ & t_{50} \text{ (mins)} \\ & c_{_{V}} \text{ (ft2/day)} \\ & m_{_{V}} \text{ (ft2/ton)} \\ & \text{Sec Compression C}_{\text{sec}} \end{array}$

Logarithmic Time (mins)

\$S&ME	3
W	


ASTM D2435-96			Test name Date of Test:		nsolidation 16-16	
Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2	2 -A LT LN	
Operator: NUC		Checked: MI	4		Approved:	

39 of 42

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	535	0.0535	0.0535
2	0.017	534	0.0534	0.0534
3	0.033	534	0.0534	0.0534
4	0.050	525	0.0525	0.0525
5	0.067	521	0.0521	0.0521
6	0.083	513	0.0513	0.0513
7	0.100	510	0.0510	0.0510
8	0.200	503	0.0503	0.0503
9	0.400	497	0.0497	0.0497
10	0.800	489	0.0489	0.0489
11	1.000	486	0.0486	0.0486
12	2.000	479	0.0479	0.0479
13	4.000	474	0.0474	0.0474
14	8.000	472	0.0472	0.0472
15	10.000	471	0.0471	0.0471
16	20.000	470	0.0470	0.0470
17	40.000	469	0.0469	0.0469
18	80.000	468	0.0468	0.0468
19	100.000	468	0.0468	0.0468
20	163.330	468	0.0468	0.0468

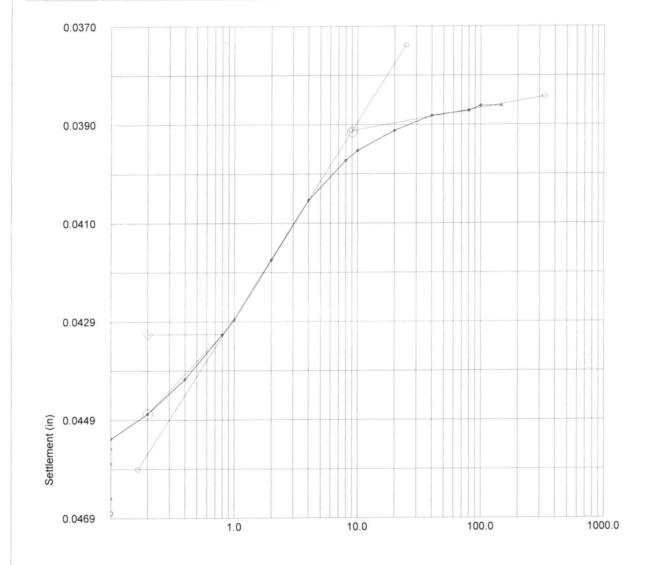
	ASTM D2435-96				Test name Date of Test:		nsolidation Load: 0.500 (TSF) -16-16	
\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB			Sample: Borehole:	ST-2 EB2	2 2-A LT LN	
	Operator: NLL		Checked:	mk	-		Approved:	

Logarithmic Time (mins)

		ASTM D2435-96			Test name Date of Test:	Conso 12-16	olidation 6-16	
	\$S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A	A LT LN	
	•	Operator: NL		Checked: wl	~	A	Approved:	

40 of 42

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	468	0.0468	0.0468
2	0.017	465	0.0465	0.0465
3	0.033	465	0.0465	0.0465
4	0.050	458	0.0458	0.0458
5	0.067	455	0.0455	0.0455
6	0.083	453	0.0453	0.0453
7	0.100	453	0.0453	0.0453
8	0.200	448	0.0448	0.0448
9	0.400	441	0.0441	0.0441
10	0.800	432	0.0432	0.0432
11	1.000	429	0.0429	0.0429
12	2.000	417	0.0417	0.0417
13	4.000	405	0.0405	0.0405
14	8.000	397	0.0397	0.0397
15	10.000	395	0.0395	0.0395
16	20.000	391	0.0391	0.0391
17	40.000	388	0.0388	0.0388
18	80.000	387	0.0387	0.0387
19	100.000	386	0.0386	0.0386
20	147,470	386	0.0386	0.0386


	ASTM D2435-96			Test name Date of Test:	Consolidation L 12-16-16	oad: 0.050 (TSF)
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2-A LT LN	
	Operator: MC	-	Checked: 🔨	le-	Approved:	

Settlement Stage Results

Vertical Stress (TSF) 0.050 21.6 Initial Temp oC 0.0 Correction (in) Settlement (in) 0.0082 Voids Ratio e 0.8007

Final Temp oC t₅₀ (mins) c_v (ft2/day) m_v (ft2/ton)

Sec Compression C_{sec}

Logarithmic Time (mins)

	ASTM D2435-96			Test name Date of Test:		nsolidation 16-16	
E	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-2 EB2	2 2-A LT LN	
	Operator: MK		Checked: M	LC		Approved:	

Form No. TR-T88

Revision Date: 12/20/09

Revision No. 0

S&ME, Inc.

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Quality Assurance

						~	2
S8	&ME, Inc. Raleigh,	3201 Spring For	est Road, Ra	aleigh, N	North Carolina	27616	
S&ME Project #:	6235-16-010				Report Date:		11/14/16
Project Name:	C.F. Harvey Park	way Extension R-	5703		Test Date(s):	10)/7 - 11/14/16
State Project #:	N/A	F.A. Project No:	N/A		TIP NO:	N/A	
Client Name:	Michael Baker E	Michael Baker Engineering					
Address:	Raleigh, NC						
Boring #:	EB2-B RT LN	Sample #:	SS-7		Sample	Date:	N/A
Location:	89+45	Offset:	33 RT		Dept	h (ft):	1.0 - 2.5
Sample Description:			Gray Coar	se to Fin	e Sandy Clayey	SILT	A-4 (1)

As Defin		Fine Sand			< 0.25 mm and > 0.05 mm					
Gravel	< 75 mm a	and > 2.00 mm		Silt		< 0.05	< 0.05 and > 0.005 mm			
Coarse Sand	< 2.00 mm	and >0.25 mm	Clay			< 0.005 mm				
Maximum Particle Size	#4	Coarse S	and		16%	Silt		21%		
Gravel	0%	Fine San	d		43%	Clay	Clay			
Apparent Relative Density	ND	ND Moisture			13.4%	% Passing #	[‡] 200	47.4%		
Liquid Limit	21	Plastic Limit 13			Plastic Index	ĸ	8			
	Soil Mortar (-#10 Sieve)									
Coarse Sand	16%	Fine Sand	43%		Silt	21%	Clay	20%		
Description of Sand & Gravel Particles:		Rounded				Angula	r			
Hard & Durable		Soft			Weat	hered & Friabl	e			
References / Comments / Deviati	ons: ND=N	Not Determined.								
Mal Krajan, ET Technician Name		104-01-0703 Certification No.		<u>Labo</u>	oratory Margarian	<u>anager</u>	11/	/14/2016 Date		
Mal Krajan, ET Technical Responsibility		Signature		Laboratory Ma Position			11.	/14/2016 Date		

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

3201 Spring Forest Road Raleigh, NC 27616

EB2-B RT LN SS-7 (0.5 - 2 ft) Classification.xls

Revision No. 0 Revision Date: 07/10/08

Moisture, Ash, and Organic Matter

AASHTO T-267

Ouality Assurance

			7 17 17	31110 1-207				Quanty	Assurance
	S&ME, In	c. Raleigh	, 3201 Spring F	Forest Raod,	Raleigh,	Nort	th Carolina	27616	
Project #:	6235-16-0	010				Rep	ort Date:	10	/21/16
Project Name:	C.F. Harve	ey Parkway	Extension R-57	703		Test	Date(s):	10/18	- 10/21/16
Client Name:	Michael B	aker Engin	eering						
Client Address	s: Raleigh, N	(C							
Boring #:	EB2-B RT	LN	Sample #:	S	S-7		Sample	Date:	N/A
Location:	89+45		Offset:	33	RT		Dept	th (ft):	1.0 - 2.5
Sample Descri	iption: Gray	Coarse to I	Fine Sandy Clay	ey SILT (A-4	(1)				
Equipment:	Balance: 0.	01 g.Readai	bility, 500g. Minir	num Capaccity	y				
Balance:	<i>S&ME ID #:</i>	1024	Cal. Date:	11/06/16	Due:	11	!/06/17		

Method A: Moisture Content Determination

Required Oven Temperature: 105 ± 5° C

	Oven Temperature: 105 °C	Tare #	h
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	45.60
а	Mass of As-Received Specimen + Tare Wt.	grams	91.99
b	Mass of Oven Dry Specimen + Tare Wt.	grams	86.51
w	Water Weight	(a-b)	5.48
A	Mass of As-Received Specimen	(a-t)	46.39
В	Mass of Oven Dry Specimen	(b-t)	40.91
% Ma	oisture Content as a % of As Received or Total Mass	(w/A)*100	11.8%
9	6 Moisture Content as a % of Oven-dried Mass	(w/B)*100	13.4%
S&M	E ID #: 1454 Cal. Date: 10/7/16 Due:	10/7/17	

Method C (440°C) or D (750°C): Ash Content and Organic Matter Determination

	Muffle Furnace: 455 °C	Tare #	84
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	49.60
b	Mass of Oven Dry Specimen + Tare Wt.	grams	85.32
С	Ash Weight + Tare Wt.	grams	84.68
С	Ash Weight	c-t	35.08
В	Mass of Oven Dry Specimen	(b-t)	35.72
D	% Ash Content	(C/B)*100	98.2%
	% Organic Matter	100-D	1.8%

Muffle Furnace: *S&ME ID #:* 00261

Notes / Deviations / References:

Oven

Mal Krajan, ET Technical Responsibility Signature

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

42 of 42

Form No: TR-T289-1

Revision No. 0

Revision Date: 07/10/08

pH of Soil

AASHTO T289 Quality Assurance

	S&ME, Inc. Ral	eigh, 3201 Sprii	ng Forest R	Road, Raleigh,	North Carolina	a 27616	
Project #:	6235-16-010				Report Date:	1	1/7/16
Project Name:	C.F. Harvey Park	way Extension l	R-5703		Test Date(s):	11/5	5 - 11/7/16
Client Name:	Michael Baker E	ngineering					
Client Address:	Raleigh, NC						
Boring #: EB	2-B RT LN	Sample	e #: SS-7		Sample Da	te:	N/A
Location: 89-	+45	Offs	set: 33 RT		Depth (f	t):	1.0 - 2.5
Sample Descript	ion: Gray C	oarse to Fine Sar	ndy Clayey	SILT (A-4) (1)			
Equipment:							
Balance		S&ME ID#	1024	Cal. Date:	11/6/16	Due:	11/6/17
Sieve:	#10	S&ME ID#	13223	Cal. Date:	6/11/16	Due:	6/11/17
pH Meter:		S&ME ID#	1365	Cal. Date:	11/7/16	Due:	NA

pH Meter Calibration

Buffer Solution	Results
pH buffer 7.0	7.02
pH buffer 4.01	4.01
pH buffer 10.0	10.03
Buffer Temperature ⁰ C	22.4

Measuring pH of Soil

Measurements		
Weigtht of Air Dry Soil (g)	30.00	
Distilled Water (g)	30.01	
Temperature ⁰ C	22.2	
pH Readings	5.69	

AASHTO T-289: Determining pH of Soil for Use in Corrosion Testing Notes / Deviations / References:

Mal Krajan, ET Technical Responsibility Signature

Laboratory Manager Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.