REFERENCE: R-5703	SEE SHEET 3 FOR PLAN SHEET LAYOUT AT TIME OF INVESTIGATION CONTENTS <u>SHEET</u> <u>DESCRIPTION</u> 1 TITLE SHEET 2 LEGEND 3 PLAN SHEET 4 - 5 PROFILES 6 - 13 BORING LOOS 14 - 33 LABORATORY TEST RESULTS	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT STRUCTOR STRUCTOR PROJECT DESCRIPTION <u>C.F. HARVEY PARKWAY AND NC 58 TO</u> INTERSECTION OF NC 11 AND GRANGER STATION ROAD GRADING, PAVING, DRAINAGE, STRUCTURES AND SIGNALS SITE DESCRIPTION <u>BRIDGE NO. 220 AND NO. 221 ON -L-</u> (FELIX HARVEY PARKWAY) OVER _Y8- (NC HWY II) NOVENDEN
PROJECT: 46375		

STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
R-5703	1	33
	state project reference no. R-5703	state project reference no. Sheet no. R-5703

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE INCLUDED IN THE REQUEST FOR PROPOSAL, THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOLI TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEICH BY CONTACTING THE N.C. DEPARTMENT OF TRANSFORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919 TOT-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOLI TEST DATA ARE NOT PART OF THE CONTRACT.

SOIL AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON GEOTECHNICAL INTERPRETATION UNLESS ENCOUNTERED IN A SAMPLE. INTERPRETED BOUNDARIES MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN SAMPLED STATA AND BOREHOLE INFORMATION MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNGS. THE LABORATION SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STROADRO TEST MATHONAR AND ENSTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION, THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERALY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING THMFEADURATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE OEDRATIMENT DOES NOT MARANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPHIONO OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONSTRUCTIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OF FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FOR MATER ACTUAL CONDENSATION FOR OF AN THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES: I. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAINS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE. PERSONNEL

PERSONNEL

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

	SOIL DE	ESCRIPTION		GRADATION	ROCK DESCRIPTION
SOIL IS CONSIDE BE PENETRATED ACCORDING TO IS BASED O CONSISTENCY, CO	ERED UNCONSOLIDATED, SEMI-CONS WITH A CONTINUOUS FLIGHT POW THE STANDARD PENETRATION TES DN THE AASHTO SYSTEM. BASIC DI DLOR, TEXTURE, MOISTURE, AASHTO DAU ODICAL COMPOSITION, ANCH ADD	OLIDATED, OR WEATHERED E ER AUGER AND YIELD LESS T (AASHTO T 206, ASTM DI ESCRIPTIONS GENERALLY IN CLASSIFICATION, AND OTHER TY, STRUCTURE DI ASTICITY	ARTH MATERIALS THAT CAN THAN 100 BLOWS PER FOOT 586). SOIL CLASSIFICATION CLUDE THE FOLLOWING: R PERTINENT FACTORS SUCH	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM F UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR M ANGULARITY OF GRAINS	INE TO COARSE. THE SAME SIZE. SAME SIZE. SAME SIZE. HARD ROCK LIS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTE ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:
VERY ST	TIFF,GRAY,SILTY CLAY,MOIST WITH INTE	RBEDDED FINE SAND LAYERS,	,ETC. FUR EXAMPLE, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	TERMS: WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPI
GENERAL	SOIL LEGEND AND A	ASHTO CLASSIFIC	CATION	MINERALOGICAL COMPOSITION	ROCK (WR) 100 BLOWS PER FOOT IF TESTED.
CLASS.	(≤ 35% PASSING *200)	(> 35% PASSING *200)	ORGANIC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC.	CRYSTALLINE ROCK (CR) CRYSTALLINE ROCK (CR) CRYSTALLINE ROCK (CR)
GROUP A-1 CLASS. A-1-a A-	A-3 A-2 A-1-b A-2-4 A-2-5 A-2-6 A-2-7	A-4 A-5 A-6 A-7	A-1, A-2 A-4, A-5 A-3 A-6, A-7	COMPRESSIBILITY	NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTA
SYMBOL				SLIGHTLY COMPRESSIBLE LL < 31	ROCK (NCR) ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETI
% PASSING			SILT-	HIGHLY COMPRESSIBLE LL > 50	SEDIMENTARY ROCK SANDS
*10 50 MX *40 30 MX 50	0 MX 51 MN		SOILS SOILS PEA	GRANULAR SILT - CLAY	WEATHERING
*200 15 MX 25 MATERIAL PASSING *40 LL —	5 MX 10 MX 35 MX 35 MX 35 MX 35 MX 35 MX	(36 MN 36 MN 36 MN 36 MN 40 MX 41 MN 40 MX 41 MN	SOILS WITH	ORGANIC MATERIAL SOILS OTHER MAT TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 1 MODERATELY ORGANIC 5 - 10% 12 - 28% SOME 2 UNCLEY ORGANIC 5 - 10% 12 - 28% SOME 2	CRIAL FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK 1 - 10% HAMMER IF CRYSTALLINE. HAMMER IF CRYSTALLINE. 0 - 20% VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY C 0 - 35% (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER H
PI 6 MX GROUP INDEX 0 USUAL TYPES STONE FR	K NP 10 MX 10 MX 11 MN 11 MN 0 0 0 4 MX RAGS- FINE SILTY OR CLAYEY 0 CLAYEY	10 MX 10 MX 11 MN 11 MN 8 MX 12 MX 16 MX N0 MX SILTY CLAYEY	MODERATE ORGAN AMOUNTS OF ORGAN ORGANIC SOIL MATTER	GROUND WATER	OF A CRYSTALLINE NATURE. OF A CRYSTALLINE NATURE. SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO RO INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONA CRYSTAL SAME DUIL JAND DISCOLORESTALINE ROCKS RIVE INDER HAMMEF
MATERIALS SAND	AND SAND GRAVEL AND SAND	SOILS SOILS		STATIC WATER LEVEL AFTER HOURS	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECT
GEN. RATING AS SUBGRADE	EXCELLENT TO GOOD	FAIR TO POOR	FAIR TO POOR UNSUIT	E VPW PERCHED WATER, SATURATED ZONE, OR WATER BEARING	STRATA (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED. SOME SHOW CLA DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH WITH FRESH ROCK.
		OR DENSENESS		MISCELLANEOUS SYMBOLS	MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL F SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE L
PRIMARY SOIL TY	YPE COMPACTNESS OR CONSISTENCY	RANGE OF STANDARD PENETRATION RESISTENCE (N-VALUE)	RANGE OF UNCONFINE COMPRESSIVE STRENGT (TONS/FT ²)	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION WITH SOIL DESCRIPTION OF ROCK STRUCTURES	(MDD.SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND IF TESTED, WOULD YIELD SPT REFUSAL SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC CLEAR AND E
GENERALLY GRANULAR	VERY LOOSE LOOSE MEDIUM DENSE	< 4 4 TO 10 10 TO 30	N/A		OPE INDICATOR (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS (STALLATION TO SOME EXTENT. SOME FRAMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF
(NON-COHESIVE)	DENSE VERY DENSE VERY SOFT SOFT	30 TO 50 > 50 < 2 2 TO 4	< 0.25 0.25 ID 0.5	THAN ROADWAY EMBANKMENT THAN ROADWAY EMBANKMENT THAN ROADWAY EMBANKMENT THAN ROADWAY TE	ST VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS AF SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OI UNDING ROD (V SEV.) REMAINING, SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N.</u>
SILT-CLAY MATERIAL (COHESIVE)	MEDIUM STIFF STIFF VERY STIFF	4 TO 8 8 TO 15 15 TO 30	0.5 TO 1.0 1 TO 2 2 TO 4	TT=TT= TT= INFERRED ROCK LINE MONITORING WELL MI TT=TT=TT= ALLUVIAL SOIL BOUNDARY ALLUVIAL SOIL BOUNDARY	ST BORING TH CORE COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS ALSO AN EXAMPLE.
)R GRAIN SIZE	> 4	RECOMMENDATION SYMBOLS	ROCK HARDNESS
U.S. STD. SIEVE SIZ	ZE 4 10	40 60 200	270		VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMEN EXCAVATION - SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK.
OPENING (MM) BOULDER	4.76 2.00 COBBLE GRAVEL	0.42 0.25 0.075 COARSE FINE	0.053 SILT CLAY	UNSUITABLE WASTE LA ACCEPTABLE, SHALLOW UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - EMBANKMENT	BUT NOT TO BE TOP 3 FEET OF OR BACKFILL TO DETACH HAND SPECIMEN.
(BLDR.) GRAIN MM 305	(COB.) (GR.) 15 75 2.0	(CSE. SD.) (F SD.) 0.25) (SL.) (CL.) 0.05 0.005	ABBRE VIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANU	MODERATELY LAN BE SURAICHED BY KNIFE OF PICK, GUDDES OF ORDUVES TO 2.25 INCHES DE HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE D SHEAR TEST BY MODERATE BLOWS.
SIZE IN. 12	SOIL MOISTURE - C	ORRELATION OF	TERMS	BI - BUHING IERMINATED MICA MICACLUUS WEA WEA CL CLAY MODE - MODERATELY γ - UNIT CPT - CONE PENETRATION TEST NP - NON PLASTIC γ_d - DRY L	HEHEU MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE C VEIGHT HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD NIT WEIGHT POINT OF A GEOLOGIST'S PICK.
ATTERBERC	G LIMITS) FIELD MUI	GUIDE FOR F		DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	ABBREVIATIONS SOFT CAN BE GROVED OR GOUGED READLY BY KNIFE OR PICK. CAN BE EXCAVATED IN FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POIN PIECES CAN BE BROKEN BY FINGER PRESSURE.
	(SAT.)	FROM BELOW	THE GROUND WATER TABL	E - VOLD HATLU SUL SHILL, SHLAN SS - SSCII F - FINE SL SIL, SILTY ST - SHEL - FOSS FOSSLIFEROUS SLI SLIGHTLY RS - ROCK ERAC - ERACTIPEE ERACTIPES TEP TRICINE PERISAL	VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCH FINGERNALL.
RANGE <	- WET - (W) ATTAIN OPTIM	MUM MOISTURE	FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALL	FORNIA BEARING FRACTURE SPACING BEDDING
	TIMUM MOISTURE - MOIST - RINKAGE LIMIT	(M) SOLID; AT OR	NEAR OPTIMUM MOISTURE	EQUIPMENT USED SUBJECT PROJECT DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:	D IERM SPACING IERM VERY WIDE MORE THAN 10 FEET VERY WIDE VERY WIDE WIDE 3 TO 10 FEET THICKLY BEDDED 1 MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.
	- DRY - ([D) REQUIRES AD	DITIONAL WATER TO MUM MOISTURE	CME-45C CLAY BITS X AUTOMATI	VERY CLOSE 0.16 TO 1 FUDI VERY THINLY BEDDED 0.0 VERY CLOSE LESS THAN 0.16 FEET THICKY LAMINATED 0.00 THICKY LAMINATED 0.00
i	PLA	STICITY			
NON PLAST SLIGHTLY I	PLASTIC PLASTIC	0-5 6-15	DRY STRENGTH VERY LOW SLIGHT	VANE SHEAR TEST	FOR SEDIMENTART ROCKS, INDURNIUM IS THE HARDENING OF MATERIAL BY DEMENTING, HE RUBBING WITH FINGER FREES NUMEROUS GRAINS; FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.
MODERATEL HIGHLY PL	LY PLASTIC ASTIC 26	16-25 OR MORE	MEDIUM HIGH		E DIGGER MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH ST BREAKS EASILY WHEN HIT WITH HAMMER.
					ROD INDURATED UHAINS ARE DIFFICULT TO SEPARATE WITH STEEL DIFFICULT TO BREAK WITH HAMMER.
MODIFIERS	S SUCH AS LIGHT, DARK, STREAK	ED, ETC. ARE USED TO DE	SCRIBE APPEARANCE.		EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE SAMPLE BREAKS ACROSS GRAINS.

O AN INCODED	TERMS AND DEFINITIONS
SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
FOOT PER 60 IS OFTEN	<u>AQUIFER</u> - A WATER BEARING FORMATION OR STRATA.
	ARENALEUUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
N VALUES >	ANUILALEUUS - APPLIED ID ALL RUCKS ON SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC.
	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.
LODES ORHNITE,	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
L PLAIN IF TESTED.	COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
MAY NOT YIELD TONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
	$\underline{\text{DIKE}}$ - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
	$\overline{\text{DIP}}$ - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
AMMER BLOWS IF	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
CK UP TO _ FELDSPAR	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
5. IN Y. ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
AS LUMPARED	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.
ELDSPARS DULL	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
WHEN STRUCK.	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
VIDENT BUT	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.
RE KAOLINIZED	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.
	MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS
E DISCERNIBLE	USUMELI INDICHTES FUUR MERHIIUN HNU EMER UF GUUU UKAINAGE. PERCHEN WATER - WATER MAINTAINEN ARNYE THE NORMAL GROUNN WATER LEVEL RY THE PRECEMPE
ONLY MINOR	OF AN INTERVENING IMPERVIOUS STRATUM.
ALUES (100 BPF	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
SAPROLITE IS	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.
5 REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
LOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
EP CAN BE ETACHED	$\underline{\text{SLICKENSIDE}}$ - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR SLIP PLANE.
R PICK POINT. BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE)(SPT) - NUMBER OF BLOWS (N OR BPF)OF A 140 LB.HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOLL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
FRAGMENTS T. SMALL, THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE.
PIECES 1 INCH	STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
ED KEADILY BY	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
	RENCH MARK BM #18 RR SPIKE IN RASE OF 24" PINE 317' RT OF
THICKNESS	STA. 40+06 -Y8-
4 FEET 5 - 4 FEET	N 577,312 E 2,449,300 ELEVATION: 56.27 FEET
6 - 1.5 FEET	NOTES:
8 - 0.03 FEET	FIAD - FILLED IMMEDIATLEY AFTER DRILLING
0.008 FEET	
HI, PRESSURE, EIC.	
EEL PROBE:	
PROBE;	
	DATE: 8-15-14

_

WBS	46375	5.1.1			TI	P R-5703	COUNT	Y LENOIR	1			GE	OLOGIST Wright,	F.K.			WBS	4637	5.1.1			TI	P R-57)3	COUNT
SITE	DESCR	RIPTION	Bric	dge No	. 220	on -L- (Felix Harvey	⊃kwy) ove	er -Y8- (NC	11)					G	ROUND WTR	(ft)	SITE	DESCR	RIPTIO	N Brid	dge No	. 220	on -L- (F	elix Harve	y Pkwy) ove
BORI	NG NO	. EB1	-A Lt L	.n.	S	TATION 363+50		OFFSET	23 ft LT			AL	IGNMENT -L-	0	HR. N	I/A	BOR	ING NO	. EB1	-A Lt L	_n.	S	TATION	363+50	
COLL	AR EL	EV. 68	3.7 ft		т	DTAL DEPTH 99.5	t	NORTHING	G 577,	737		EA	STING 2,449,219	24	HR. 2	2.7	COL	LAR EL	EV. 6	8.7 ft		т	DTAL DE	PTH 99.	5 ft
DRILL	RIG/HAI	MMER E	FF./DA	TE BF	RI9103 E	K-51 89% 05/04/2016			DRILL	METHO	DD N	Mud Rota	ary	HAMMER	TYPE Automati	с	DRILI	RIG/HA	MMER E	FF./DA	TE BR	RI9103 E	K-51 89%	05/04/2016	
DRILL	.ER E	ister, C).		S	ART DATE 08/31/	6	COMP. DA	TE 08	/31/16	6	SU	RFACE WATER DE	PTH N/A			DRIL	LER E	Eister, C	<u>.</u>		S		TE 08/31	1/16
ELEV	DRIVE ELEV	DEPTH	BLC		JNT	BLOWS	PER FOO	Т	SAMP	. 🔨			SOIL AND RC	OCK DESCRI	PTION		ELEV	DRIVE ELEV	DEPTH		SW COL	UNT		BLOW	S PER FOOT
(11)	(ft)	(ii)	0.5ft	0.5ft	0.5ft	0 25	50	75 100	NO.	/мо	I G	ELEV	′. (ft)		DEPTH	H (ft)	(11)	(ft)	(ii)	0.5ft	0.5ft	0.5ft	0	25	50
70		+										68 7	GROUN		=	0.0	-10	-10.3	79.0		<u> </u>			Ma	atch Line
	68.7 -	<u>+ 0.0</u>	2	2	2	4 · · · · · · · · · · · · · · · · · · ·	• • • •			М	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	67.2	UNDIVIDED	COASTAL P		1.5			ŧ	9	10	15		• •	
65	66.7 -	<u>= 2.0</u>	2	2	3					-M-			Tan Gray C	ine Sandy C			-15	150	‡						
	<u>64.7</u>	+ 4.0 5.6	2	4	4	•				м		F						-15.3 -	+ 84.0 +	9	10	13		· • 23 · · ·	
		- 0.0	2	3	5	$\begin{vmatrix} \cdot & \cdot & \cdot \\ \cdot & \bullet_8 & \cdot & \cdot \\ \cdot & \bullet_8 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot$		· · · · · ·		w		Ļ							ŧ					i Ni i i	· · · · · ·
60	60.0	8.7	2	4	4			· · · · ·				Ļ					-20	-20.3 -	+ 89.0		40			· \ <u>`</u>	
	-	ŧ		-	-	$\begin{vmatrix} \cdot \bullet 8 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot$		 				•							ŧ		13	20			
55	-	ŧ				; : : : : : : :		· · · · · ·				<u>56.7</u>	Brown Black	Fine clayey	SAND	<u>12.0</u>	25		ŧ				· · · · · ·	· · · · ·	
	54.7 -	+ 14.0 +	WOH	1	3					l w							-23	-25.3 -	+ 94.0 +	30	70/0.4				
		ŧ						. .				<u>51.7</u>				17.0			‡				· · · ·	· · · · ·	
50	49.7 -	+ 19.0						· · · · ·				49.5	COAS Black Gray Silty	TAL PLAIN CLAY with N	ludstone	19.2	-30	-30.3 -	+ 99.0						
	-	t	29	15	9	24				W		49.4 49.1	[Beauto	Layers	1	19.3 19.6			+	100/0.	5				
		ŧ										49.0	[200000		1	19.7			ŧ						
45	44.7 -	24.0	37	26	21						1	44.7				24.0 24.1		-	ŧ						
	-	Ł								v v		44.3 44.2				24.4 24.5			ŧ						
40	30.7 _	1 20 0										£							ŧ						
	-39.7 -	- 29.0	100/0.4	4				• 100/0.4		W		39.3 39.2				29.4 29.5			Ŧ						
	-	Ŧ						• • • • • •				F							Ŧ						
35	34.7 -	- 34.0	58	12/0 3								34.7				34.0 34.2		-	Ŧ						
	-	ŧ	50	42/0.3				100/0.8	•			34.0				34.7 34.8			Ŧ						
30		ŧ						· · · · · ·								00.0			ŧ						
		+ 39.0 +	100/0.1	1				100/0.1		W	R	29.7				39.0 39.1		-	ŧ						
	-	ŧ						. .				ļ							ŧ						
25	- 24.7 –	44.0		10/0.0		· · · · · · · · · · · · · · · · · · ·		· · · · ·				24.7				44.0		-	‡						
	-	ŧ	82	18/0.3				100/0.8				24.5 24_2_				44.2 4 <u>4.5</u>			‡						
20	-	ŧ											and T	Trace Mica					‡						
20	19.7 -	+ 49.0 +	5	7	9					м		+	[Heede	e Formation]			1	-	‡						
	-	‡				$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · ·				\$					1		‡						
15	14.7 –	- 54.0																-	ŧ						
3/9/17	-	ļ	7	9	10			.		м									ŧ						
DI	-	ŧ				$ \cdot\cdot\cdot,\dot{j} \cdot\cdot\cdot\cdot$													ŧ						
0 10	9.7 -	- 59.0	11	11	13													-	ŧ						
NC	-	ŧ				$\begin{array}{c} \cdot \cdot \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \cdot \cdot \end{array} = \begin{array}{c} \P^{24} \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \cdot \cdot \end{array}$				111		1							ŧ						
I I I I I I I I I I I I I I I I I I I	4 7											F							Ŧ						
INT.O	4./ -	- 04.0 	7	13	25	· · · · · · · • • • • • • • • • • • • •				м		F						-	Ŧ						
E 7 G	-	Í										F					1		Ŧ						
	-0.3 -	69.0	7	8	10							F					1	-	Ŧ						
JBLE	-	Ŧ	'	Ô	10	1				M		Ŧ							Ŧ						
ба 		ŧ										Ŧ					1		Ŧ						
BORE	-5.3 -	<u>+ 74.0</u> +	7	13	21	· · · · · · · · · · · · · · · · · · ·			11	м		Ŧ						-	Ŧ						
DOT	-	ŧ						· · · · · ·				ţ							‡						
迈 고 -10	-	t				/	• • • •	.			N	1							†						

SHEET 6 OF 33

WBS	3 4637	5.1.1			Т	IP R-57	703		COUN	TY LENO	R			GI	EOLOGIST Wright, F	=.K.		WE	8S 4637	5.1.1			TI	I P R-570	3	(COUNT
SITE	DESCR	RIPTION	Bric	lge No	o. 220	on -L- (F	Felix I	Harvey I	Pkwy) ov	/er -Y8- (N	C 11)						GROUND WTR (ff) SIT	E DESCR	RIPTION	Bri	dge No	. 220	on -L- (Fe	lix Harv	ey Pk	wy) ove
BOR	ING NO	. B1-A		١	S	TATION	364	1+33		OFFSET	23 ft L	Т		AL	IGNMENT -L-		0 HR. N/A	во	RING NO	. B1-А	LT L	N	S	TATION	364+33		
COL	LAR EL	EV . 68	3.4 ft		Т	OTAL D	EPTH	I 99.31	ft	NORTHI	NG 577	,670		E	STING 2,449,270		24 HR. 5.3	s co	LLAR EL	EV. 68	3.4 ft		т	OTAL DE	7H 99	9.3 ft	
DRIL	L RIG/HA	MMER E	FF./DA	TE B	RI9103 I	BK-51 89%	6 05/04	4/2016			DRILL	. METH	HOD	Mud Ro	ary	HAMM	ER TYPE Automatic	DRI	LL RIG/HA	MMER E	FF./DA	TE BF	RI9103 E	BK-51 89% (5/04/2016	6	
DRI	LER E	ister, C	Э.		S	TART D	ATE	08/31/1	16	COMP. I	DATE 0	8/31/1	16	รเ	IRFACE WATER DEF	PTH N/	/A	DR	ILLER E	Eister, G	Э.		S	TART DA	E 08/3	31/16	
ELEV	DRIVE	DEPTH	BLC	w co	UNT		l	BLOWS	PER FOC	ОТ	SAM	₽. 🔻			SOIL AND ROO	CK DES	CRIPTION	ELE		DEPTH	BLC	ow co	UNT		BLOV	NS PE	ER FOOT
(π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0	25		50	75 10	00 NO.	_/м	OI G	ELE	V. (ft)		DEPTH (ft) (π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0	25	50	
70		ł												+				-10	-10.2	78.6					N	latch	Line
	68.4	<u>† 0.0</u> †	2	2	2		•••			• • • •	·			- 68.4		D SURFA	ACE 0 IL PLAIN	.0		Ŧ		15	15		, 9 30		· · · · ·
65	66.4	<u>† 2.0</u> †	1	0	1			· · · · ·		· · · · ·		w	,		Brown Gray Tar	n Fine Sa	andy CLAY	-15	150	‡					. i		· · · · ·
	64.4	+ 4.0 +	2	1	2								7						15.2 -	+ 83.6	10	11	16		. 627 .		
	62.5	+ <u>5.9</u> +	WOH	1	1		•••	· · · · · · · ·		· · · · ·										ŧ					. <u>\</u>	· ·	· · · · ·
60	60.0	8.4	2	2	3	1 · · ·	•••											-20	-20.2 -	88.6	10	14	24		<u> </u>	•••	· · · · ·
		ŧ		-	Ŭ			· · · · ·		· · · · · · · · · · · · · · · · · · ·										ŧ		14	24		. •	38.	· · · · ·
55		ŧ						· · · · ·	· · · ·	· · · · ·				56.4	Olive Black Find	e SAND,	<u>12</u>	0		‡						•••	
- 55	54.3	14.1	WOH	1	1							6	+			,	,, ,, ,	-23	-25.2 -	+ 93.6 +	18	82/0.4					· · · ·
		ŧ					•••	· · · · ·	· · · ·	· · · · ·			II.	- 51.4			17	0		‡						· ·	· · · ·
50	49.8 -	18.6												49.6	Grav Black Silty (IN th Mudstone 18	8 -30	-30.2 -	98.6					· · ·	•••	· · · ·
		ŧ	34	11	7		•18	· · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·		\	$' \sim$	49.5	La IBeaufor	ayers	tion]	9		ŧ	33	67/0.2					
		ŧ								· · · · ·					[Deauloi	i i unnai	lonj			ŧ							
45	44.8 -	23.6	8	10	90/0.1							l w		43.8			24	6	-	ŧ							
		ł						· · · ·	· · ·	. 100/0	6			43.7			24	7		ŧ							
40	39.8 -	28.6										<u>,</u>					28	6	_	ŧ							
		t	100/0.1							. 100/0	1			39.7			28	7		ŧ							
		ł																		ŧ							
35	34.8 -	33.6	8	14	86/0.1							_w	$, \Sigma$	33.8			34	6	-	Ŧ							
		Ŧ								100/0	6			33.7			34	7		Ŧ							
30	20.8													29.8			38	6		Ŧ							
	29.0 _	- 30.0	100/0.1							. 100/0	1	^	15	29.7			38	7	-	Ŧ							
		Ŧ																		Ŧ							
25	24.8 -	43.6	25	13	57/0 1							_\					44	6	-	ŧ							
		ŧ		-10	0//0.1					<u>100/0</u>	6		ĺŻ	23.7			44	7		ŧ							
20	10.0	‡					•••		بسبيسا.					<u>- 21.4</u>			<u> </u>	0		ŧ							
	- 19.8 -	+ 48.6 +	6	7	9		•16 ⁻					M		5	Olive Gray Fine Sa and T	andy CLA race Mic	AY with Shells a		-	ŧ							
		ŧ					1 · 1 ·	· · · · ·		· · · · ·				5	[Peedee	e Formati	ion]			ŧ							
▶ 15	14.8 -	53.6	7				<u>.</u>			· · · ·				}_					-	‡							
3/9/1		ŧ	'	9	9		. 18	· · · · ·	· · · · · ·	· · · · ·		M								ŧ							
L 10		‡					:: ``	XIII	· · · · · ·	· · · · ·										ŧ							
10	9.8 -	<u> </u>	22	22	18							M							-	ŧ							
NC		ŧ					•••	Ţ,	· · · ·	· · · · ·										‡							
G 5	4.8 -	63.6					•••			· · · ·									-	‡							
SINT.		ŧ	7	15	19			, ³⁴ .	· · · ·	· · · · ·		M								ŧ							
LΕ 7,		‡					/	/ 	· · · ·	· · · · · · · ·										‡							
	-0.2 -	- 68.6 -	6	8	10				+			м							-	ŧ							
DUBL		t							· · ·											t							
ы Ш -5	-5.2	73.6							· · ·	· · · ·				Ł					-	ŧ							
BOF		t	9	18	33				51			M								ŧ							
LOQC		t																		ŧ							
ĭ <u></u> ∠-10												1										1					

SHEET 7 OF 33

WB	S 4637	5.1.1			Т	IP R	R-5703		(COUNT	Y LEI	NOIR				G	EOLOGIST Wrig	ght, F.K.			WBS	3 46375	5.1.1			TI	P R-57	03	COUNT
SIT	E DESCR	RIPTION	Bric	lge No	o. 220	on -L	(Feli	x Harve	ey Pk	wy) ove	er -Y8-	(NC	11)						GROUND	WTR (ft)	SITE	DESCR	RIPTION	Bric	dge No	. 220	on -L- (F	elix Harvey	Pkwy) ove
BO	ring no	. В-1			S	TATI	ON 3	64+89			OFFS	ΕT	23 ft LT			A	LIGNMENT -L-		0 HR.	N/A	BOR	RING NO	. B-1			S	TATION	364+89	
CO	LAR EL	EV. 68	3.7 ft		Т	OTAL	DEP	TH 99.	.6 ft		NOR	THING	G 577,	626		E	ASTING 2,449,3	304	24 HR.	FIAD	COL	LAR EL	EV. 68	3.7 ft		т	OTAL DE	. PTH 99.6	ft
DRIL	.L RIG/HA	MMER E	FF./DA	TE BI	RI9103	BK-51	89% 05	/04/2016					DRILL	METHO	DD N	Mud Ro	tary	HAN	MMER TYPE A	utomatic	DRIL	L RIG/HA	MMER E	FF./DA	TE BF	RI9103 E	3K-51 89%	05/04/2016	
DRI	LLER E	Eister, C	i.		S	TAR	T DATI	E 09/0	1/16		СОМ	P. DA	TE 09	/01/16	6	S	JRFACE WATER	DEPTH	N/A		DRII	LER E	ister, G	i.		S	TART DA	TE 09/01	/16
ELE	/ DRIVE	DEPTH	BLC	w co	UNT			BLOW	/S PE	R FOO	Т		SAMP	. 🔻			SOIL AN	D ROCK DI	ESCRIPTION		ELEV	DRIVE	DEPTH	BLC		UNT		BLOWS	PER FOOT
(π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0		25	50		75	100	NO.	/мс) G	ELE	V. (ft)			DEPTH (ft)	(π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0	25	50
70		+														L.					-10	-10.0	78.7 /	12	12	18		Ma	tch Line
	68.7	<u>+ 0.0</u> +	1	2	1	43			•			•••		м	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 08. -		DED COAS	TAL PLAIN	0.0			t in the second	12	12	10		· • • 30 ·	· · · · · ·
65	66.7	+ 2.0 +	1	4	3		· · ·		:		.	· · · ·		м		<u>- 66.</u> /	Ian Brov Gray T	an Fine Sa	oarse SAND		-15	15.0	+						· · · · · ·
	64.6	+ 4.1	1	1	3		· · · ·							м		F						- 15.0 _	+ 03./	11	11	18		· • • 29 ·	
	62.9	+ 5.8 +	3	5	6		••••••••••••••••••••••••••••••••••••••		:	· · · ·	· · · ·	· · · ·		м		ļ							ŧ						· · · · · ·
60	59.8 -	8.9				$ _{i}$	/:		·		· · ·	• •				F					-20	-20.0	88.7	20	27	32		· · · · ·	
		ŧ		2	3	Í	5		:		· · · · · ·	· · · ·		W		<u></u>	_					-	ŧ			52		· · · · · · · · · · · · · · · · · · ·	
55		‡					· · · · · ·		:		: : :	· · · ·				<u>}_56.</u> 7	Black Gra	y Fine SAN	ND, Little Clay	<u>12.0</u>	25		‡					· · · · ·	· / · · · · ·
- 55	- 54.8 -	+ 13.9 +	wон	WOH	1									w		, ,					-23	-25.0 _	93.7	15	23	19			42
		‡				[``	· · ·	· · ·	:		· · · ·	· · · ·				51.7	,			17.0			‡					· · · · · · · ·	
50	50.0	18.7	00	10	11		· \ . 	· · · ·	•			• •				49.	5 Black Gray	Silty CLAY	LAIN with Mudstone	19.2	-30	-30.0	98.7	00	00/0 4			· · · ·	
		ŧ	23	12	11	:	· · · ·	23	•		. .	· · · ·		W	Z	49.4 49.1	l [Be	Layers	mation1	19.3 19.6			<u>+</u>	38	62/0.4				
45		ŧ				:	· · ·	· · ·	-			· · · ·				49.0) [20		ilation]	19.7			ŧ						
45	45.0	23.7	8	92/0.2	-						· · 10	0/0 7		w			3			24.4		-	ŧ						
		ŧ				:	· · ·	· · ·	:		.	•••					-			24.0			ŧ						
40	40.0	28.7							•							40.0)			28.7			Ł						
		ŧ	100/0.2					· · ·	:		10	00/0 <u>.</u> 2	I			39.8	3			28.9			ł						
		Ŧ				·			•		.	•••				Ł							Ł						
35	35.0	33.7	45	32	68/0.3			+						l w	1	34.9 34.8	3			33.8 33.9		-	ł						
		Ŧ				.					10	8.0/00	•			34.4 34.3	4 3			34.3 34.4			Ŧ						
30	30.0	T 38 7				:						•••				33.8 33.7	3			34.9 35.0			Ŧ						
-	00.0 -	+	100/0.1			1.					10	00/0.1	P			29.9)			38.7 38.8		-	Ŧ						
		ŧ					· · ·		:			•••				ŧ							Ŧ						
25	25.0	43.7	100/0 -						·		· · · ·	00/0.1	•	w		25.0)			43.7 43.8		-	ŧ						
		ŧ				:	· · · ·		:							F				17.0			ŧ						
20	20.0	+				:	· · · · · ·	· · · ·			.	· · · ·			R	<u>- 21.</u>	c			<u> </u>			ŧ						
	20.0	+ +0./	3	10	8	1 .	· ·•	8					11	М		F	Olive Gray F	ine Sandy (and Trace I	ULAY with Shell	IS		-	ŧ						
		ŧ				:	· · [· · · [·		:	· · · ·	• • •	· · · ·				F	[P	eedee Forn	nation]				ŧ						
▶ 15	15.0	53.7	7	0	11		· · ŀ	· · ·	•		· · ·					F						-	‡						
3/9/1		‡	'	9		:	· · •				.	· · · ·		M									ŧ						
L 10		‡				:	· · · · · ·				· · · ·	· · · ·				Ì							ŧ						
	10.0	- <u>58.7</u>	7	45	55/0.1	1-		<u> </u>			· · · .			м								-	ŧ						
NC_		ŧ				:	· · ·	· · ·	:		·	JU/U.0	Ĩ										ŧ						
G 5	5.0	63.7				Ŀ		· · · ·	<u>_</u>			• •				Ł						· -	ŧ						
ULL.		ŧ	7	11	13	:		24 .			.	· ·		M		ł							ŧ						
TE 7 (ŧ				:	:::	· · ·	:		· · ·	· · · ·				ł							ŧ						
	0.0	68.7	9	9	9	$\left \right _{\cdot}$	6 4	8	-+					м		F						-	ŧ						
OUBLE		ŧ				$\left \right $	· · · ·		:		.	•••				Ł							ŧ						
о ш5	-5.0	+ 73.7						<u>\.</u>	•			• •				Ł						.	Ł						
BOR		ŧ	10	10	24	$\left \right $		●34	: [.			М		Ł							ŧ						
DOT		£							·							E						.	£						
≚10		ſ						\Box	-			•••				ſ							Ľ		[

SHEET 8 OF 33

LENOIR				GEOLOGIST Wright, F	.K.		
r -Y8- (NC 11	1)					GROUN	ID WTR (ft)
OFFSET 2	3 ft LT			ALIGNMENT -L-		0 HR.	N/A
NORTHING	577,6	26		EASTING 2,449,304		24 HR.	FIAD
	DRILL M	IETHO	D Mu	d Rotary	HAMME	ER TYPE	Automatic
COMP. DAT	E 09/0	01/16		SURFACE WATER DEP	TH N/	A	
75 100	SAMP. NO.	моі	L O G	SOIL AND ROC	K DESC	CRIPTION	
COMP. DAT	E 09/0 SAMP. NO.	MOI MOI M M M M		SOIL AND ROC SOIL AND ROC 	TH N/	A CRIPTION 	82.0 Day 82.0 ND 87.0 99.6 ft in ith
				- - - -			

WB	3 4637	5.1.1			T	P R-5703	C	COUNT	LENOIR				GEO	LOGIST Wrigh	t, F.K.		WB	S 4637	5.1.1			TI	P R-5703		COUNT
SITE	DESCR	RIPTION	Bric	lge No	o. 220	on -L- (Felix H	Harvey Pk	wy) ove	r -Y8- (NC ′	11)						GROUND WTR (ft) SITE	E DESCF	RIPTION	I Brio	dge No	. 220 c	on -L- (Felix	< Harvey I	Pkwy) ove
BOF	RING NO	. EB2	-A Lt. I	Ln.	S	TATION 365	5+32		OFFSET	20 ft LT			ALIG	INMENT -L-		0 HR. N/A	BOF	ring no	. EB2-	-A Lt.	Ln.	ST	ATION 36	35+32	
COL	LAR EL	EV. 68	3.4 ft		Т	OTAL DEPTH	l 100.2 ft		NORTHING	G 577,	590		EAS	TING 2,449,32	3	24 HR. FIAD	COL	LAR EL	EV. 68	3.4 ft		тс	TAL DEPT	H 100.2	ft
DRIL	L RIG/HA	MMER E	FF./DA	TE BF	RI9103 I	3K-51 89% 05/04	4/2016			DRILL I	METHO	DD N	/lud Rotary	1	HAM	MER TYPE Automatic	DRIL	L RIG/HA	MMER E	FF./DA	TE BR	RI9103 B	K-51 89% 05/	04/2016	
DRI	LER E	lister, C) .		S	TART DATE	09/01/16		COMP. DA	TE 09/	/01/16	i	SUR	FACE WATER D	EPTH N	N/A	DRI	L LER E	ister, G) .		ST	ART DATE	09/01/1	16
ELEV	DRIVE FL FV	DEPTH	BLC	w co	UNT	E	BLOWS PE	R FOOT		SAMP.	. 🔻			SOIL AND F	ROCK DES	SCRIPTION	ELEV	, DRIVE	DEPTH	BLC	ow col	JNT		BLOWS	PER FOOT
(π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0 25	50		75 100	NO.	Имо	I G	ELEV. (ft)		DEPTH (1	t) (π)	(ft)	(π)	0.5ft	0.5ft	0.5ft	0 2	.5	50
70		ł											F				-10	-10.4	78.8					Mato	h Line
	68.4	<u>† 0.0 </u>	3	2	3		• • • •	• • • •		SS-91	19%	8000	- 68.4 -	GRO UNDIVIDE	JND SURF D COAST	ACE 0 AL PLAIN	0		ļ.	10	1/	14		Ø 31	
65	66.6	+ 1.8 +	2	3	4	$\left \begin{array}{c} \mathbf{q}^{3} \cdot \cdot \cdot \\ \mathbf{b}^{7} \cdot \cdot \end{array}\right $	· · · · ·	· · · · ·			м		-	Brown Tan Fin	e Sandy S Organics	ILT with Trace	-15		ŧ					<i>.</i>	
	64.6 -	+ 3.8 +	2	4	6						м		- 64.4 -	Brown Ta	n Fine Sar	4. hdy CLAY		-15.4 -	+ 83.8 T	11	12	12		24 • • •	· · · ·
	62.7	+ 5./ +	2	3	4	 		· · · · ·			w		60.9			7	5		ŧ						
60	59.7 -	8.7		2	1								- <u></u>	Tan Gray Fine t	o Coarse S	SAND with Clay	-20	-20.4 -	88.8		45/0.4				_ · · · · ·
		ŧ	4	2		4 3 · · · ·		· · · · ·			Sat.		- -		Seams				ŧ	55	45/0.4				
55		ŧ						· · · · ·					<u>56.4</u>	Gray Black	ine SAND	D, Little Clay 12.	-25		ŧ						
	- 54.6 -	+ 13.8 +	WOH	1	2						Sat.		<u></u>	-		-		-25.4 -	+ 93.8 +	15	20	31			51
		ŧ					· · · ·	· · · · · · · ·					- 51.4			17.	0		ŧ					· · · · ·	
50	49.6 -	+ - 18.8					··· 	· · · ·					49.6	Grav Black Si	ASTAL PL	AIN vith Mudstone	8 -30	-30.4 -	- 98.8					· · · ·	
		ŧ	19	10	22		•32	· · · · · · · ·			W	R	49.5	, [Beau	Layers	18. 20. ation] 20.	9	-	ŧ	20	34	66/0.4		<u> </u>	· · · ·
45		ŧ						· · · · ·					40.2	[20.	2		ŧ						
40	44.6 -	+ 23.8 +	8	41	18			59			W		43.9			24.	5	-	ŧ						
		ŧ					· · · · ·		\cdot							27.			ŧ						
40	39.6 -	- 28.8				· · · ·		· · · ·								29.	0	-	‡						
		ŧ	100/0.2	2				· · · · ·	· 100/0.2		^{vv}	$\mathbf{\Sigma}$	39.3			29.	1		ŧ						
35		ŧ						· · · · ·					ţ.						ŧ						
00	34.6 -	+ 33.8 +	9	47	53/0.1						w		34.0			34. 34	4	-	ŧ						
		ŧ					· · · · ·	· · · · · · · ·	. 100/0.6				- 33.5 - 33.4			34. 35.	9		ŧ						
30	29.6 -	- 38.8	100/0										29.6			38.	8	-	ŧ						
		ŧ	100/0.1					· · · · ·	. 100/0.1				- 29.5 -			38.	9		ŧ						
25		ŧ						· · · · ·					-						ŧ						
20	24.6 -	+ 43.8 +	90	10/0.1					100/0.6		w		- 24.6 - 24.5			43. 43.	8	-	ŧ						
		ŧ					· · · ·	· · · · · · · ·					24.4			44. 44. 44.	1		ŧ						
20	19.6 -	+ + 48.8				- · · · F· – ·							24.0	Olive Grav Fine	Sandy CL	AIN 44	4	-	ŧ						
		ŧ	4		11			· · · · · · · ·			M			an [Pee	d Trace Mi dee Forma	ica ation1			ŧ						
15		ŧ						· · · · ·					-	1.11					ŧ						
9/17	14.6 -	+ 53.8 +	5	8	11						м		-					-	ŧ						
0T 3/		‡						· · · · ·					-						ŧ						
<u>10</u>	9.6 -	- 58.8				'							-					-	ŧ						
о С		ŧ	6	10	15	· · · · · • • • • • • • • • • • • • • •	25	· · · · · · · ·			M		-						ŧ						
Z Z		ŧ						· · · · ·					-						ŧ						
D.TN	4.6 -	+ 63.8 +	6	11	13						м		-					-	ŧ						
1 GI		ŧ				$\left \left \begin{array}{c} \cdot \cdot \cdot \cdot \cdot f \\ \cdot \cdot \cdot \cdot f \right ^{2} \right $	••••	· · · · ·]						ŧ						
O SIT	-0.4 -	68.8				/	· · · ·		+ • • • •				Ļ					-	‡						
JBLE		‡		8	9			· · · · ·			М]						‡						
DOL		‡				::::``		· · · · ·					-						‡						
SORE -2	-5.4 -	+ 73.8 +	8	23	22				· · · ·		м		-					-	ŧ						
20T E		‡						· · · · ·					-						‡						
ට 2 -10		†					/		• • • •			N							t						

SHEET 9 OF 33

LENOIR				GEOLOGIST W	right, F.K.		
r -Y8- (NC 1	1)					GROUN	ID WTR (ft)
OFFSET 2	20 ft LT			ALIGNMENT -L	-	0 HR.	N/A
NORTHING	577,5	90		EASTING 2,449	9,328	24 HR.	FIAD
	DRILL N	IETHO	D Mu	d Rotary	HAMME	ER TYPE	Automatic
COMP. DAT	FE 09/0	01/16		SURFACE WATE	R DEPTH N/	A	
75 400	SAMP.		L O	SOIL A	ND ROCK DESC	RIPTION	
75 100	NO.	/моі	G				
T		– – –			COASTAL PLA	N	
		111	\mathbf{N}	Olive Gray	Fine Sandy CLA and Trace Mica	.Y with Sh a	ells
				[Peed	ee Formation] (co	ontinued)	
· · · · ·		М					
				<u>-18.6</u> Gray Black	Fine to Coarse S	AND with	<u>87.0</u> Clay
100/0 9		w	-		Seams		
				-			
		VV					
		w		-31.8	win stad at Elsua	Ham. 04.0	100.2
			F	Very Den	se Fine to Coarse Clay Seams	e SAND w	ith
					,		
			F				
			E				
			E				
				-			
			F				
			E				
			E				
			F				
			F				
			E				
			E				

WBS 46375.1.1 TIP R-5703	COUNTY LENOIR	GEOLOGIST Wright, F.K.		WBS 46375.1.1		TIP R-5703 COUNTY
SITE DESCRIPTION Bridge No. 221 on -L- (Felix Harvey	Pkwy) over -Y8- (NC 11)		GROUND WTR (ft)	SITE DESCRIPTIO	N Bridge No. 22	1 on -L- (Felix Harvey Pkwy) over
BORING NO. EB1-B Rt. Ln. STATION 363+47	OFFSET 31 ft RT	ALIGNMENT -L-	0 HR. N/A	BORING NO. EB1	-B Rt. Ln.	STATION 363+47
COLLAR ELEV. 69.1 ft TOTAL DEPTH 99.2 f	t NORTHING 577,705	EASTING 2,449,175	24 HR. 5.3	COLLAR ELEV. 6	9.1 ft	TOTAL DEPTH 99.2 ft
DRILL RIG/HAMMER EFF./DATE BRI9103 BK-51 89% 05/04/2016	DRILL METHOD	Mud Rotary HAN	IMER TYPE Automatic	DRILL RIG/HAMMER	FF./DATE BRI910	3 BK-51 89% 05/04/2016
DRILLER Eister, G. START DATE 08/30/	6 COMP. DATE 08/31/16	SURFACE WATER DEPTH	N/A	DRILLER Eister, C	G.	START DATE 08/30/16
ELEV DRIVE DEPTH BLOW COUNT BLOWS	PER FOOT	L SOIL AND ROCK DE	ESCRIPTION		BLOW COUNT	BLOWS PER FOOT
(it) (it) 0.5ft 0.5ft 0.5ft 0 25	50 75 100 NO. MOI	G ELEV. (ft)	DEPTH (ft)	(it) (ft) (it)	0.5ft 0.5ft 0.5	ft 0 25 50 7
		69.1 GROUND SUF	RFACE 0.0	-10	9-+ 1115	Match Line
67.1 2.0 4 4	M	67.6 Tan Gray Clayey F	TAL PLAIN Fine SAND	I I I		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M	Tan Gray Fine Sa	ndy CLAY	-15 -14.6 83.7		
	<u></u>	S.		I I		,
	W	Tan Brown Clayey Fine	7.0 SAND with Clay			
	· · · · · · · · · · · · · · · · · · ·	Seams		-20 -19.6 88.7	22 25 32	9 1 1 1 1 1 1 1 1 1 1
55 55.4 13.7 2 1 2		55.1	14.0	-25 -24.6 93.7	25 28 20	
	W ••••••••••••••••••••••••••••••••••••	Brown Black Clayey	Fine SAND			´
		COASTAL P	LAIN			
	100/0.6 • W	49.9 Gray Black Silty CLAY 49.8 Layers	with Mudstone 19.2 19.3	-30 -29.6 98.7	100/0.5	
		[Beaufort Form	nation]			
45 45.4 23.7 22 88/0 4		44.6	24.5			
	· · · · · · · · · · · · · · · · · · ·	44.5	24.6			
			28.7			
	₩ 100/0.6	40.3	28.8 29.2			
		39.8	29.3			
35 35.4 33.7	100/0.1 W	35.4	33.7 33.8			
		8				
		30.4	38.7			
		30.3	38.8			
		3				
25 25.4 43.7		25.4	43.7 43.8			
		25.2 25.1	43.9 44.0			
		COASTAL P	LAIN			
	<u> </u> М	and Trace N	Aica			
			ומנוסדון	‡		
15 15.4 53.7 15 15.4 53.7		\$				
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		8		‡		
		\$				
[2] $[3]$ $[7]$ $[13]$ $[20]$ $[13]$ $[20]$ $[13]$ $[33]$ $[33]$	M	\$				
		\$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M	\$				
		8				
		8		‡		
$ \begin{array}{c c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	· · · · · · · · · · · · · · · · · · ·	₹				
		8				
	<u> </u> м	₹		‡		
		¥		‡		
Ğ2 -10 -9.6 78.7 · · · · · · · · · · · · · · · · · ·		8				

ידאנ	Y LE	NOIR	2				GEOLO	GIST	Wright, F	.K.		
ove	r -Y8	- (NC	11)							GROUN	ID WTR (ft)
	OFF	SET	3	1 ft RT			ALIGNM	ENT	-L-		0 HR.	N/A
	NOR	THIN	G	577,7	05		EASTIN	G 2,4	149,175		24 HR.	5.3
				DRILL M	IETHO	D Mu	Id Rotary			НАММ	R TYPE	Automatic
	CON	IP. DA	\T	E 08/3	31/16	-	SURFAC	E WA	TER DEP	TH N/	A	
		. 21		SAMP.	7	L	1-2-11/10	/				
	75	100		NO.	мо	0 G		SOI	L AND ROC	CK DESC	RIPTION	
					,							
e												
<u> </u>	Ţ.		† †		_ M	\mathbf{N}			COAST		N	
•••	·	 				\mathbf{N}	C	live G	ray Fine Sa and Tr	ndy CLA ace Mica	AY with Sh a	ells
•••	•					\mathbf{N}	_	[Pe	edee Form	ation] (co	ontinued)	
•••		 			VV	N	 -					
						N	<u>17.9</u>	Black	Gray Silty C	LAY wit	h Fine Sa	nd <u>87</u> .0
7	+		$\left \right $		w	N	-		Se	eams		
· 	.	· · ·				N						
· · · ·		· · · · · ·				N						
7	+.				W	N	-					
						N	- <u>-27.9</u>					97.0
	.				\٨/	F	-30.1	Bl	ack Gray Fi	ne claye	y SAND	99.2
		100/0.5				F	B	oring T	Ferminated	at Eleva	tion -30.1 Sand Se	ft in ams
							v	Siy De				
							-					
						F	-					
							-					
							_					
							-					
							_					
							-					
							-					
						F						
							-					
							_					
						-						
						F						
							-					
						F	-					

WB	S 4637	5.1.1			TI	P R-570	3	COUNT	Y LENOIR	1			GE	OLOGIST Wright, F	. К .		WB	S 4637	5.1.1			ТІ	P R-57()3	(COUNT
SIT	E DESCF	RIPTION	Brid	lge No	. 221	on -L- (Fe	elix Harvey	Pkwy) ov	er -Y8- (NC	11)						GROUND WTR (ft)	SITE	DESCR	RIPTION	Brio	dge No	. 221 0	on -L- (Fe	elix Harve	ey Pk	wy) ove
BO	ring no	. B1-E	BRT LI	N	S	TATION	364+28		OFFSET	36 ft RT	Г		ALI	GNMENT -L-		0 HR. N/A	BOF	ring no	. B1-E	B RT L	.N	SI	ATION	364+28		
CO	LAR EL	EV. 68	3.6 ft		Т	OTAL DEP	PTH 99.4	ft	NORTHING	G 577,0	638		EAS	EASTING 2,449,219 24 HR. 5.5			COLLAR ELEV. 68.6 ft TOTAL DEPTH 99.4 ft									
DRIL	L RIG/HA	MMER E	FF./DA	TE BF	RI9103 E	3K-51 89% 0	05/04/2016		DRILL METHOD Mud			Nud Rota	d Rotary HAMMER TYPE Automatic			DRILL RIG/HAMMER EFF./DATE BRI9103 BK-51 89% 05/04/2016										
DRI	LLER E	Eister, G).		S	TART DAT	TE 08/30/	16	COMP. DATE 08/30			6	SURFACE WATER DEPTH			/A	DRILLER Eister, G.				ST	START DATE 08/30/16				
ELE	/ DRIVE ELEV	DEPTH	BLC	w co			BLOWS	PER FOO	Т	SAMP	P. ▼/			SOIL AND ROO	CK DES	CRIPTION	ELEV	, DRIVE ELEV	DEPTH	BLC		UNT		BLOV	VS PE	ER FOOT
(11)	(ft)		0.5ft	0.5ft	0.5ft	0	25	50	/5 100	NO.	/м	OI G	ELEV.	. (ft)		DEPTH (f	t) (11)	(ft)	(ii)	0.5ft	0.5ft	0.5ft		25	50	
70	<u> </u>	+											68.6	GROUNE			-10	-10.4	79.0		$\frac{1}{11}$		_	- <u></u> N	latch	Line
	66.6		1	2	1	• 3 · · ·	• • • • •	•••	• • • • •		M	,,	<u>}</u>						Ŧ					• <u>26</u>		
65	64.6		1	1	2	• 3					w		5 64.9	Tan Gray Cla	ауеу гіп	e SAND 3.1	-15	15.4	Ŧ.							
	62.8	<u> </u>	WOH	1	1	4 2 · · ·				SS-85	5 239	%		Tan Gray Brown	Fine Sa	andy CLAY		- 15.4 -	- 04.0 [8	10	15		• 2 5		
	02.0	I	1	2	2	•4 · ·					w		£						Ŧ							
60	60.3	<u> 8.3 </u>	2	3	4	•7					м		-				-20	-20.4 -	89.0	10	13	25				
		Ŧ											56.6			12 (Ŧ						38	
55	54.6	I 14 0											Ē	Brown Black C	layey Fi	ine SAND	-25	25.4							•••	
		T 14.0	1	2	1	\$ 3 · · ·					w							-25.4	- 94.0 -	19	39	61/0.3			•••	
		Ŧ				I <u></u> _		_ <u></u>					<u>51.6</u>			<u> </u>	2		Ŧ							
50	49.6 -	19.0	85	15/0 5	-			+					49.6	Gray Black Silty (CLAY wi	th Mudstone 19.0	-30	-30.4 -	99.0	100/04						
		Ŧ		10/0.0					. 100/1.0	•			E	[Beaufor	t Format	tion]			Ŧ	100/0.	1					
45	116												£						E							
	44.0	1 24.0	25	75/0.1					100/0.6	•	W	\mathbf{R}	44.1 44.0			24. 24.	5		ł							
		ŧ											ł						Ł							
40	39.6 -	29.0	50	37	63/0 1			<u> </u>					39.4			29.2	2	-	ł							
		Ŧ		0.	00/011				100/0.6	•			38.9			29. 29.	7		l							
35	- 34.6 -	34.0														34.1			L							
		 	35	65/0.5							W		- 34.5 33.7			34. 34.	1		ł							
		ŧ											33.6			35.0			ŧ							
30	29.6 -	- 39.0	100/0.1				· · · · · ·	<u> </u>	100/0.1		w		29.6	Grav Black Silty S		39.1 39.1 39.1	<u>)</u>	-	ŧ							
		ŧ					. .							La	ayers				ŧ							
25	24.6 -												Ļ						Ł							
	27.0	+	31	69/0.2	1		.	· · ·	100/0.7	SS-86	5 129	%	23.9 23.8			44. 44.	7		ŧ							
		ŧ				: : :	: <u>+</u> :	<u> </u>					21.6			<u> </u>	2		ŧ							
20	19.6 -	+ 49.0	5	8	8		· · · · ·	+			N/		+	Olive Gray Sandy Cl	LAY, wit dica	h Shells, Trace		-	ŧ							
		‡				$\left \left \begin{array}{c} \cdot \cdot \cdot \P^{1} \\ \cdot \cdot \cdot \cdot \end{array} \right \right $	· · · · · ·						1	[Peedee	Format	ion]			ŧ							
15	14 6 -	+ 54 0				· · · İ	· · · · ·	· · ·					Ł					-	‡							
3/9/1		+	6	9	11						M		1						ţ							
T 10		ŧ																	ŧ							
0.10	9.6 -	59.0	8	48	27					SS-87	7 229							-	ŧ							
NC		ŧ					. .	· · · ·											ŧ							
Gg 5	4.6 -	- 64.0					· · · · ·	/	 				Ł					· ·	ŧ							
SINT.		1	6	12	19	1	: # 31 : :		· · · · · ·		M								ŧ							
TE 7 (‡					. /	· · ·					1						ţ							
	-0.4 -	+ 69.0 +	6	8	9	 	/ · · · · ·	· · · ·			M		}					-	ŧ							
OUBL		‡					X · · · ·		.				1						‡							
й ш -5	-5.4 -	+ + 74.0					· <u> </u>	· · ·	· · · · ·				Ł					· ·	ŧ							
T BOI		‡	7	11	21		: 3 2: :		· · · · · ·		M		1						‡							
		‡					: /. : : :	· · · ·	· · · · · ·				‡						‡							
< <u>10</u>	1	1	I	I	1	i 1					1		1					1	1	1	1					

WBS 46375.1.1	TIP R-5703 COUNTY LENOI	२	GEOLOGIST Wright, F.K.		WBS 46375.1.1		TIP R-5703 COUNTY				
SITE DESCRIPTION Bridge No. 22	21 on -L- (Felix Harvey Pkwy) over -Y8- (NC	11)		GROUND WTR (ft)	SITE DESCRIPTION	Bridge No. 22	21 on -L- (Felix Harvey Pkwy) ove				
BORING NO. B-2	STATION 364+85 OFFSET	31 ft RT	ALIGNMENT -L-	0 HR. N/A	BORING NO. B-2		STATION 364+85				
COLLAR ELEV. 69.0 ft	TOTAL DEPTH 99.5 ft NORTHIN	G 577,596	EASTING 2,449,258	24 HR. 6.2	COLLAR ELEV. 69	.0 ft	TOTAL DEPTH 99.5 ft				
DRILL RIG/HAMMER EFF./DATE BRI91	103 BK-51 89% 05/04/2016	DRILL METHOD Mud	Rotary HAMM	ER TYPE Automatic	DRILL RIG/HAMMER EFF./DATE BRI9103 BK-51 89% 05/04/2016						
DRILLER Eister, G.	START DATE 08/29/16 COMP. D	ATE 08/30/16	SURFACE WATER DEPTH N	DRILLER Eister, G	<u>.</u>	START DATE 08/29/16					
ELEV DRIVE DEPTH BLOW COUNT	T BLOWS PER FOOT	SAMP.	SOIL AND ROCK DES	CRIPTION	ELEV DRIVE DEPTH	BLOW COUNT	BLOWS PER FOOT				
(π) (ft) (π) 0.5ft 0.5ft 0.	.5ft 0 25 50 75 10	NO. MOI G E	ELEV. (ft)	DEPTH (ft)	(π) (ft) ^(π)	0.5ft 0.5ft 0.5	ift 0 25 50				
70 0.0			69.0 GROUND SURF	ACE 0.0	-10		Match Line				
	2	М 🚺 е	67.5 UNDIVIDED COASTA	L PLAIN			$\begin{bmatrix} \cdot \cdot \cdot \cdot \cdot \\ \cdot \cdot \cdot \cdot \end{bmatrix} \begin{bmatrix} \bullet^{(1)} \cdot \cdot \cdot \\ \bullet & \bullet \end{bmatrix} \begin{bmatrix} \bullet^{(1)} \cdot \cdot \cdot \\ \cdot \cdot \cdot \end{bmatrix} \begin{bmatrix} \bullet^{(1)} \cdot \cdot \\ \cdot \cdot \cdot \end{bmatrix}$				
65 650 40	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Gray Tan Fine Sand	y CLAY	-15 -14.8 + 83.8						
	2 4	1 ₩ ₹				10 12 13	3				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
<u>60</u> <u>60.3</u> <u>7</u> <u>8.7</u> <u>3</u> <u>1</u> <u>4</u>	4 4 4				-20 -19.3 = 00.3	21 28 18	3				
			57.0	12.0							
55 55.2 13.8			Brown Gray Clayey Fi	ne SAND	-25 -24.8 93.8						
	$2 \qquad	W 👯			Ŧ	13 30 40					
			52.0 COASTAL PLA	JN <u>17.0</u>							
50 50.2 18.8 100/0.4	100/0.4		50.0 Black Gray Silty CLAY wit 49.8 Lavers	th Mudstone 19.0 19.2	-30 -29.8 98.8	32 68/0.2					
			[Beaufort Format	tion]							
45 45.2 23.8			45.2	23.8	I I I						
	· · · · · · · · · · · · · · · · · · ·		45.0 44.7	24.0 24.3							
			44.4	24.0							
40 40.2 28.8 100/0.4	100/0.4	♦ v \	39.9 39.8	29.1 29.2							
35 35.2 33.8			35.2	33.8							
90 10/0.1			35.1	33.9							
					I I I						
30 30.2 38.8 100/0.1	100/0.	• • N	30.2 30.1	38.8 38.9	1 1						
			28.9 28.8	40.1 40.2	I I I						
25 25.2 43.8			25.2	43.8	I I I						
100/0.2	100/0.1	\mathbf{I} " \mathbf{N}^2	25.0	44.0	III						
			22.0 COASTAL PLA	<u> </u>	I I I						
	9		Olive Gray Fine Sandy CLA Peedee Formati	AY with Shells ion]							
			•								
15 15.2 53.8											
	- : : : <u>1</u> : : : : : : : : : : : :										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14										
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<i>i</i>										
	20										
	$ \begin{array}{ } \downarrow $										
ž -10 -9.8 /8.8							1				

v	VBS	46375	5.1.1			Т	P R-5703	COUN	ry Lenoir				GEOLOGIST Wright, F.ł	K.		WBS	3 4637	5.1.1			Т	P R-5703	J	COUNT	
S	ITE	DESCR	RIPTION	Brio	dge No	. 221	on -L- (Felix Harve	/ Pkwy) ov	er -Y8- (NC	11)				G	GROUND WTR (ft)	SITE	DESCR	RIPTION	I Brio	dge No	. 221 (on -L- (Feli	x Harvey	Pkwy) ove	
В	ORI	NG NO	. EB2	-B Rt.	Ln.	S	TATION 365+32		OFFSET	37 ft RT	Г		ALIGNMENT -L-	0	0 HR. N/A	BOF	RING NO	. EB2	-B Rt.	Ln.	S	STATION 365+32			
С	OLL	AR EL	EV. 68	3.7 ft		Т	OTAL DEPTH 99.9	9 ft	NORTHIN	G 577,	556		EASTING 2,449,282	24	4 HR. 6.3	COL	LAR EL	EV. 68	3.7 ft		т	DTAL DEP	TH 99.9	ft	
D	RILL	RIG/HA	MMER E	FF./DA	TE BF	RI9103 E	3K-51 89% 05/04/2016			DRILL	METHO	DD N	lud Rotary	HAMMER	R TYPE Automatic	DRIL	L RIG/HA	MMER E	FF./DA	TE BR	RI9103 E	K-51 89% 05	/04/2016		
D	RILI	.er E	ister, G).		S	TART DATE 08/20	/16	COMP. DA	TE 08	/26/16	5	SURFACE WATER DEPT	Ή N/A		DRI	LER E	ister, C).		S	START DATE 08/26/16		16	
EL	EV	DRIVE ELEV	DEPTH	BLC			BLOW	S PER FOO	T	SAMP	. ▼∕		SOIL AND ROCK	C DESCR	RIPTION	ELEV	DRIVE ELEV	DEPTH	BLC		JNT		BLOWS	PER FOOT	
_	11)	(ft)	(ii)	0.5ft	0.5ft	0.5ft	0 25	50	75 100	NO.	/мс	DI G	ELEV. (ft)		DEPTH (ft)	(it)	(ft)	(it)	0.5ft	0.5ft	0.5ft	0	<u></u>	50	
1	70	69.7	+											SURFAC	E 0.0	-10	+	+		+ 11-	-14	_	Mate	ch Line	
	F			2	3	1	• 4 · · · · · · ·				D		- UNDIVIDED CO	DASTAL P	PLAIN			Ŧ					25		
6	35	64.6		1	0	1	4 1				w		-	e oundy e	02/1	-15	-15.0	83.7							
		62.8	5.9	1	1	2					- w		-					ł	8	11	15				
				2	4	6					Ŵ							ł						+	
	50	59.7 -	9.0	3	4	6					W		_ 58.7		10.0	-20	-20.0	88.7	22	43	57/0.2		+		
		-	ŧ									<i>%</i> ?	- Tan Gray Clay	ey Fine S	SAND			ł							
ę	55	545-	- 14.2									~~~	-			-25	-25.0	93.7							
			14.2 	1	1	3					w	/	- 53.6 Olive Brown Fine SA	AND with	15.1			ŧ	54	46/0.5					
	-		ŧ				││└ <u>└</u> ╌╌┥÷÷∶	·	<u>-</u>				<u>_ 51.7</u> COASTA		<u>17.0</u>			ŧ					· · · · ·		
	50	50.0	18.7	17	67	20					м		- 49.3 Olive Gray Silty CL	AY with N	Mudstone 19.4	-30	-30.0	98.7	25	47	53/0.2		<u> </u>	<u> </u>	
			ŧ										- -	0111 01110				ŧ							
4	45	45.0	23.7			00/0.0			· · · · \				_ 44.7		24.0			ŧ							
		-	ŧ	14	14	83/0.2		· · · · ·			W	N	44.6 43.8		24.1 24.9			ŧ							
		-	ŧ					· · · · ·	· · · · · ·				- 43.7		25.0			ŧ							
	+0	40.0	28.7	83	27/0.3	-					w		39.9 39.8 20.4		28.8 28.9 20.2		-	ŧ							
		-	ŧ					 					- 39.2 -		29.5 29.5			ŧ							
3	35	35.0	33.7	100/0					· · · · ·				35.0		33.7		-	ŧ							
		-	ŧ	100/0.4				· · · · ·	: 100/0.4	•	W		34.9 - 34.7 - 34.6		33.8 34.0 34.1			ŧ							
	20		÷					· · · · ·	· · · · · ·						00.7			ŧ							
	30		38.7	100/0.4	1				· · 100/0 1	i	w	N			38.7 38.8		-	ŧ							
		-	ŧ					· · · · ·					-					+							
2	25	25.0	43.7	100/0 /	-		 	· · · ·	· · · · ·				24.9		43.8		-	ŧ							
		-	ŧ	100/0.2	1			 	: 100/0.2		W		- 24.0		43.9			ŧ							
	20	-	‡				││∶∶∶ŗ:┽÷÷:	·:	<u>-</u>			R	<u></u> COASTA		<u> </u>			ŧ							
		20.0	+ 48./ -	6	8	9	· · • • 17 · · ·			SS-88	29%		 Fine Sandy Silty CLA and Clayey Fine 	AY with Mile Sand Se	lica, Shells, Seams		-	ŧ							
		-	ŧ					· · · · ·	· · · · · ·				- [Peedee F	Formation]	1]			ŧ							
2	15	15.0	53.7	6	9	10		· · · · ·					- -				-	‡							
3/9/1		-	ŧ	ľ	Ű		$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · ·	· · · · · ·				-					ŧ							
GDT	10	10.0	+ + 				::: : : ::::		· · · · · ·				-					ŧ							
D		10.0	- 30.7	6	8	10	· · · • 18 · · ·				м		-				-	ŧ							
Ŋ		-	ŧ					· · · · ·	· · · · · ·				-					ŧ							
-GPJ	5	5.0	63.7	7	9	9							-				-	ŧ							
GINT		-	ŧ				$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · ·	· · · · · ·				-					ŧ							
ITE 7	0	0.0	1 68 7										-					Ŧ							
LE S	-	0.0	- 00.7	8	7	7	14			11	м		-				-	ŧ							
DOUB		-	Ŧ				:::X :::						-					Ŧ							
JRE [-5	-5.0	73.7	7	8	20					м		-				-	Ŧ							
DT BC		-	Ŧ				$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$											Ŧ							
- NCD(10	-10.0	T 78.7										-					Ŧ							

LENOIR			GEOLOGIST Wright, F	Ē.K.		
r -Y8- (NC 11)					GROUN	ID WTR (ft)
OFFSET 37 ft F	RT		ALIGNMENT -L-		0 HR.	N/A
NORTHING 57	7,556		EASTING 2,449,282		24 HR.	6.3
DRIL	L METHOD	Mud	Rotary	HAMME	ER TYPE	Automatic
COMP. DATE	08/26/16		SURFACE WATER DEP	PTH N/	A	
75 100 NC	иР.). мон	L O G	SOIL AND RO	CK DESC	CRIPTION	
· · · · · · · · · · · · · · · · · · ·	м		COAS Fine Sandy Silty C and Clayey F [Peedee Form	TAL PLAI LAY with ine Sand nation] (co	N Mica, Sh Seams ontinued)	ells,
	w		-18.3			87.0
100/0.7	W		Olive Grey Fine S	AND with	Clay Sea	ims
100/1.0	W					
	W	E.	-31.2			99.9
100/0.7			Boring Terminated Very Dense Olive Clay	at Eleva Grey Fin / Seams	tion -31.2 e SAND v	ft in vith

10%

0%

Particla Siza Analysis of Soils

12/27/16 12/24 - 12/27/16

8/31/16

5.0 - 7.0 ft.

Revision No. 0		Farticle Size Analysis of So		
Revision Date: 12/20/0	9	AASHTO T88 as Modified by NCD	OT	
				Quality Assurance
S&	ME, Inc. Raleigh,	3201 Spring Forest Road, Ralei	gh, North Carolina	27616
S&ME Project #:	6235-16-010		Report Date:	12/27/16
Project Name:	C.F. Harvey Park	way Extension R-5703	Test Date(s):	12/24 - 12/27/
State Project #:	46375.1.1	F.A. Project No: N/A	TIP NO:	R-5703
Client Name:	Michael Baker Er	ngineering		
Address:	Raleigh, NC			
Boring #:	B1-A LT LN	Sample #: ST-12	Sample	Date: 8/31/16
Location:	364+33	Offset: 26' LT	Dept	h (ft): 5.0 - 7.0 f
Sample Description:		Gray Coarse	to Fine Sandy Silty C	CLAY A-6 (8)
1.5"	1"2/4" 1/2"2/8" #4	#10 #20 #40 #60 #100	#200 #270	
100%	• • • • • • • •		#200 #270	
90%				
80%				
		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		
70%		+ + + \ +		
50 E 60%				
assi				
1 50%				
erce				
₽ 40%				~~
30%				
20%				

100	10	1		0.1	0.01	0.001
		Particle S	Size (mm)			
As Define	ed by NCDOT		F	Fine Sand	< 0.25 mm an	d > 0.05 mm
Gravel	< 75 mm a	and > 2.00 mm		Silt	< 0.05 and >	• 0.005 mm
Coarse Sand	< 2.00 mm	and >0.25 mm		Clay	< 0.00	5 mm
Maximum Particle Size	#4	Coarse	Sand	8%	Silt	11%
Gravel	0%	Fine Sa	nd	46%	Clay	35%
Apparent Relative Density	ND	Moistur	re Content	22%	% Passing #200	49.9%
Liquid Limit	37	Plastic 1	Limit	13	Plastic Index	24
		Soil Morta	r (-#10 Siev	e)		
Coarse Sand	8%	Fine Sand	46%	Silt	11% Cla	ay 35%
Description of Sand & Grav	el Particles:	Rounded			Angular	X
Hard & Durable	X	Soft		Wea	thered & Friable	
References / Comments / Deviation	ons: ND=N	lot Determined.				
<u>Mal Krajan, ET</u>		104-01-0703		Laboratory M	lanager	12/27/2016
Technician Name		Certification No.		Position		Date
Mal Krajan, ET		m C	\geq	Laboratory M	lanager	<u>9/26/2016</u>
Technical Responsibility		Signature		Position		Date

Technical Responsibility Signature This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

3201 Spring Forest Road

B1-A LT LN ST-12 (5.0 - 7.0 ft) Classification.xls Raleigh, NC 27616

Quality Assurance

Effective Stress Triaxial Compression

Consolidated Undrained

Sample details	Dooth	0 700						
Sketch showing specimen location in original Sample	Description:	Gray Coarse to F	ay Coarse to Fine Sandy Silty CLAY (A-6) (8)					
	Type Height H_0 (in) Diameter D_0 (in) Weight W_0 (gr) Bulk Density ρ (PCF) Particle Density ρ_s	Specimen 1 Undisturbed 5.927 2.866 1277.8 127.31 2.669 (measured)	Specimen 2 Undisturbed 5.96 2.868 1277.8 126.43 2.669 (measured)	Specimen 3 Undisturbed 5.833 2.864 1255.3 127.26 2.669 (measured)				

Initial Conditions				
	Specimen 1	Specimen 2	Specimen 3	
Cell Pressure σ_3 (lbf/in2)	4.0	14.0	24.0	
Pore Pressure u (lbf/in2)	0.0	0.0	0.0	
Machine Speed d _r (in/min)	0.0079	0.0108	0.0092	
No. of Membranes	1	1	1	
Total Thickness (in)	0.012	0.012	0.012	
Strain Channel	1798	1798	1708	
Load Channel	1776	1776	1776	
Pore P. Channel	1779	1770	1770	
Volume Channel	Volume Chang	Volume Chang	Volume Chang	
Moisture Content w_%	21.6	22.1	21.1	
Dry Density Odo (PCF)	104.68	103 53	105 10	
Voids Ratio e	0.59	0.61	0.58	
Deg of Saturation S ₂ %	97.63	96.98	96.25	
	01.00	50.50	30.23	

Final Conditions		
	Specimen 1	Specime
Moisture Content w _f %	23.5	20.6
Dry Density Pd (PCF)	105.75	105.97
Voids Ratio e _f	0.57	0.57
Deg of Saturation S _f %	100.00	96.27
Failure Criteria	Mx Stress Rat	tioMx Stres
Axial Strain _{Ef} %	5.0	5.0
Corr Dev Stress (o1 - o3)f (lbf/in2) 19.1	28.0
Minor Stress ogf (lbf/in2)	1.0	7.8
Major Stress o _{1f} (lbf/in2)	20.1	35.8
Stress Ratio $(\sigma_1/\sigma_3)_f$	20.1	4.6
Notes:		

Test Method: ASTM D4767-95

Same Site Reference: C.F. Harvey Jobfile: E:\16010.JOB Operator: ML

Che

en 2	Specimen 3	Failure Sketch
	108.69	Sp 1 Sp 2
	0.53	(5
	100.00	15
ss Rat	ioMx Stress Ratio	1 5
	6.0	
	36.4	Sp 3
	12.7	5
	49.1	5
	3.9	م م
		Surface Inclination

	Test name Date of Test:	CU Triaxial (12-3-16	SS, MS)
	Sample: Borehole:	ST-12 B1-A LT LN	
ecked: 🔉	uc	Approved:	

Effective Stress Triaxial Compression

Consolidated Undrained

ecked:	ule	Approved:	
	Sample: Borehole:	ST-12 B1-A LT LN	
	Test name Date of Test:	CU Triaxial (SS, MS) 12-3-16	

										10 01 33)
Effe	ective S	Stress	Triax	ial Co	mpres	sion				Page 1 / 3	
Con	solidate	d Und	rained	Shear	(Specir	nen 1)					
No.	Strain (divs)	Strain ε%	Load (divs)	Load (Ibs)	Pore Prs (divs)	Pore Prs (Ibf/in2)	D. Stress (σ ₁ - σ ₃) _m (Ibf/in2)	D. Stress $(\sigma_1 - \sigma_3)_c$ (lbf/in2)	Minor Str σ ₃ ΄ (lbf/in2)	Major Str ^σ 1 ['] (lbf/in2)	Ratio $\sigma_1' \sigma_3'$
1	12	0.00	647	0.0	0	0.0	0.0	0.0	4.00	4.00	1.00
2	61	0.08	833	18.6	3	0.3	2.9	2.9	3.70	6.60	1 78
3	117	0.18	911	26.4	6	0.6	4.1	4.1	3.40	7.51	2.21
4	174	0.27	953	30.6	8	0.8	4.8	4.8	3.20	7.96	2.49
5	229	0.37	986	33.9	10	1.0	5.3	5.3	3.00	8.27	2.76
6	284	0.46	1006	35.9	11	1.1	5.6	5.6	2.90	8.48	2.92
7	342	0.56	1056	40.9	13	1.3	6.3	6.2	2.70	8.89	3.29
8	396	0.65	1081	43.4	15	1.5	6.7	6.6	2.50	9.07	3.63
9	450	0.74	1108	46.1	16	1.6	7.1	7.0	2.40	9.38	3.91
10	509	0.84	1133	48.6	18	1.8	7.5	7.4	2.20	9.56	4.35
11	563	0.93	1156	50.9	19	1.9	7.9	7.7	2.10	9.81	4.67
12	617	1.02	1181	53.4	20	2.0	8.2	8.1	2.00	10.09	5.04
13	677	1.13	1209	56.2	22	2.2	8.7	8.5	1.80	10.31	5.73
14	1181	1.98	1420	77.3	28	2.8	11.8	11.5	1.20	12.75	10.62
15	1797	3.02	1637	99.0	30	3.0	15.0	14.6	1.00	15.62	15.62
16	2360	3.97	1807	116.0	31	3.1	17.4	16.9	0.90	17.81	19.78
17	2983	5.03	1975	132.8	30	3.0	19.7	19.1	1.00	20.12	20.12
18	3550	5.99	2077	143.0	29	2.9	21.0	20.3	1.10	21.44	19.49
19	4150	7.01	2150	150.3	27	2.7	21.8	21.1	1.30	22.40	17.23
20	4756	8.03	2166	151.9	25	2.5	21.8	21.0	1.50	22.51	15.00
21	5352	9.04	2223	157.6	23	2.3	22.4	21.5	1.70	23.20	13.64
22	5940	10.04	2287	164.0	21	2.1	23.0	22.1	1.90	23.97	12.62
23	6518	11.01	2315	166.8	20	2.0	23.2	22.1	2.00	24.13	12.06
24	7106	12.01	2369	172.2	18	1.8	23.6	22.5	2.20	24.73	11.24
25	7695	13.01	2388	174.1	17	1.7	23.6	22.5	2.30	24.76	10.76
26	8286	14.01	2436	178.9	16	1.6	24.0	22.8	2.40	25.15	10.48
27	8876	15.01	2489	184.2	14	1.4	24.4	23.1	2.60	25.72	9.89
28	9466	16.00	2511	186.4	12	1.2	24.4	23.1	2.80	25.86	9.23
29	10056	17.00	2574	192.7	10	1.0	25.0	23.5	3.00	26.51	8.84
30	10649	18.01	2601	195.4	8	0.8	25.0	23.5	3.20	26.69	8.34
31	11245	19.02	2643	199.6	7	0.7	25.2	23.7	3.30	26.97	8.17
32	11846	20.03	2689	204.2	5	0.5	25.5	23.9	3.50	27.39	7 83

Test	Method:	ASTM	D4767-95
1000	mounda.	/	01101 00

S&ME Site Reference: C.F. Harvey Jobfile: E:\16010.JOB Operator: MLC

	Test name Date of Test:	CU Triaxial 12-3-16	(SS, MS) Shear (Specimen 1)
	Sample: Borehole:	ST-12 B1-A LT LN	
hecked: 🔥	ric	Approved	d:

Effective Stress Triaxial Compression

Consolidated Undrained Shear (Specimen 2)

Load (divs)

686

808

942

1038

1108

1239

1328

1453

1540

1600

1688

1745

1801

2118

2384

2501

2596

2673

2757

2824

2874

2932

2962

3010

3040

3068

3093

3132

3143

3160

3174

3198

Load (Ibs)

0.0

12.2

25.6

35.2

42.2

55.3

64.2

76.7

85.4

91.4

100.2

105.9

111.5

143.2

169.8

181.5

191.0

198.7

207.1

213.8

218.8

224.6

227.6

232.4

235.4

238.2

240.7

244.6

245.7

247.4

248.8

251.2

Pore Prs Pore Prs

0.0

0.4

1.0

1.4

1.9

2.3

2.6

3.1

3.3

3.8

4.2

4.6

5.0

6.1

6.4

6.4

6.2

5.9

5.5

5.1

4.7

4.4

4.2

4.0

3.8

3.5

3.2

3.0

2.8

2.7

2.5

2.3

(lbf/in2)

(divs)

0

4

10

14

19

23

26

31

33

38

42

46

50

61

64

64

62

59

55

51

47

44

42

40

38

35

32

30

28

27

25

23

Strain (divs)

33

80

137

190

241

297

352

404

462

515

569

627

681

1188

1811

2377

3004

3572

4180

4768

5336

5966

6535

7109

7734

8308

8878

9507

10079

10648

11263

11848

No.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 24

25

26

27

28

29

30

31

32

Strain ε%

0.00

0.08

0.18

0.27

0.35

0.45

0.54

0.63

0.73

0.82

0.91

1.00

1.10

1.95

3.01

3.96

5.02

5.98

7.01

8.01

8.97

10.03

10.99

11.96

13.02

13.99

14.96

16.02

16.99

17.95

18.99

19.98

Page 2 / 3

σı

(lbf/in2)

14.00

15.52

17.02

18.12

18.71

20.36

21.28

22.72

23.87

24.29

25.25

25.72

26.18

29.70

33.14

34.53

35.76

36.83

38.06

39.03

39.74

40.41

40.62

41.05

41.21

41.45

41.67

41.92

41.82

41.70

41.64

41.71

σ1'/σ3

1.00

1.14

1.31

1.44

1.55

1.74

1.87

2.08

2.23

2.38

2.58

2.74

2.91

3.76

4.36

4.54

4.59

4.55

4.48

4.39

4.27

4.21

4.14

4.11

4.04

3.95

3.86

3.81

3.73

3.69

3.62

3.57

D. Stress D. Stress Minor Str Major Str Ratio

14.00

13.60

13.00

12.60

12.10

11.70

11.40

10.90

10.70

10.20

9.80

9.40

9.00

7.90

7.60

7.60

7.80

8.10

8.50

8.90

9.30

9.60

9.80

10.00

10.20

10.50

10.80

11.00

11.20

11.30

11.50

11.70

(lbf/in2)

 σ_3

 $(\sigma_1 - \sigma_3)_m (\sigma_1 - \sigma_3)_c$

0.0

1.9

4.0

5.5

6.6

8.7

9.9

11.8

13.2

14.1

15.5

16.3

17.2

21.8

25.5

26.9

28.0

28.7

29.6

30.1

30.4

30.8

30.8

31.1

31.0

31.0

30.9

30.9

30.6

30.4

30.1

30.0

(lbf/in2)

(lbf/in2)

0.0

1.9

4.0

5.5

6.6

8.7

10.0

12.0

13.3

14.3

15.6

16.5

17.3

22.1

25.9

27.4

28.5

29.4

30.3

30.9

31.3

31.8

31.8

32.2

32.2

32.2

32.2

32.3

32.1

31.9

31.7

31.6

Effective Stress Triaxial Compression

Consolidated Undrained Shear (Specimen 3)

No.	Strain (divs)	Strain ε%	Load (divs)	Load (Ibs)	Pore Prs (divs)	Pore Prs (lbf/in2)	D. Stress (σ ₁ - σ ₃) _m (lbf/in2)	D. Stress $(\sigma_1 - \sigma_3)_c$ (Ibf/in2)	Minor Str σ ₃ ΄ (Ibf/in2)	Major Str ^σ 1 ['] (Ibf/in2)	Ratio $\sigma_1' \sigma_3'$
1	47	0.00	717	0.0	0	0.0	0.0	0.0	24.00	24.00	1.00
2	102	0.10	864	14.7	5	0.5	2.3	2.3	23.50	25.83	1.10
3	156	0.19	967	25.0	9	0.9	4.0	4.0	23.10	27.06	1.17
4	208	0.28	1245	52.8	18	1.8	8.4	8.4	22.20	30.56	1.38
5	267	0.38	1428	71.1	23	2.3	11.2	11.2	21.70	32.94	1.52
6	320	0.47	1484	76.7	27	2.7	12.1	12.1	21.30	33.42	1.57
7	375	0.57	1642	92.5	33	3.3	14.6	14.4	20.70	35.14	1.70
8	434	0.67	1706	98.9	37	3.7	15.6	15.4	20.30	35.73	1.76
9	487	0.76	1856	113.9	42	4.2	17.9	17.8	19.80	37.58	1.90
10	543	0.86	1906	118.9	46	4.6	18.7	18.6	19.40	37.95	1.96
11	601	0.96	1967	125.0	50	5.0	19.7	19.5	19.00	38.49	2.03
12	655	1.05	2015	129.8	55	5.5	20.4	20.2	18.50	38.73	2.09
13	711	1.15	2059	134.2	58	5.8	21.1	20.9	18.20	39.10	2.15
14	1218	2.03	2429	171.2	87	8.7	26.6	26.3	15.30	41.64	2 72
15	1787	3.02	2712	199.5	103	10.3	30.7	30.4	13.70	44 05	3.22
16	2354	4.00	2904	218.7	111	11.1	33.3	32.8	12.90	45.75	3 55
17	2921	4.98	3060	234.3	113	11.3	35.3	34.8	12.70	47 48	3 74
18	3496	5.98	3196	247.9	113	11.3	37.0	36.4	12.70	49.06	3.86
19	4065	6.97	3299	258.2	109	10.9	38.1	37.4	13.10	50.51	3.86
20	4636	7.96	3396	267.9	105	10.5	39.1	38.3	13.50	51.85	3.84
21	5263	9.04	3490	277.3	99	9.9	40.0	39.2	14.10	53 26	3 78
22	5833	10.03	3568	285.1	94	9.4	40.7	39.8	14 60	54.36	3 72
23	6407	11.03	3646	292.9	89	8.9	41.4	40.3	15.10	55 43	3.67
24	6976	12.01	3713	299.6	85	8.5	41.8	40.7	15 50	56 23	3.63
25	7544	13.00	3766	304.9	80	8.0	42.1	40.9	16.00	56.93	3.56
26	8119	13.99	3843	312.6	77	7.7	42.7	41.4	16.30	57 72	3 54
27	8688	14.98	3902	318.5	73	7.3	43.0	41 7	16 70	58 37	3 50
28	9258	15.97	3936	321.9	70	7.0	42.9	41.6	17.00	58 56	3 44
29	9831	16.96	4013	329.6	68	6.8	43.4	42.0	17.20	59.20	3 44
30	10454	18.04	4057	334.0	62	6.2	43.5	41.9	17.80	59 74	3 36
31	11023	19.03	4102	338.5	60	6.0	43.5	42.0	18.00	59 95	3 33
32	11598	20.02	4113	339.6	59	5.9	43.1	41.5	18 10	59.62	3 29
											And a star with

🗢 S&ME	Test Method: AS	TM D4767-95		Test name Date of Test:	CU Tri 12-3-1	iaxial (SS, MS) Shear (Specimen 2) 6
	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-12 B1-A L	T LN
	Operator: ML	-	Checked:	ALL	Ap	pproved:

& ME Site Reference: C.F. Harvey Jobfile: E:\16010.JOB Operator: MLC

17 of 33

Page 3/3

	Test name Date of Test:	CU Triaxial (SS, MS) Shear (Specimen 3) 12-3-16
	Sample: Borehole:	ST-12 B1-A LT LN
Checked: ~	uc.	Approved:

ample details Sketch showing specimen location in original Sample	Depth 5. Description: G	.0 - 7.0 ft. iray Coarse to Fine Sandy Silty CLAY (A-6) (8)	
	Type Height H ₀ (in) Diameter D ₀ (in) Weight W ₀ (gr) Bulk Density ρ (PCF) Particle Density ρ_s	Undisturbed 0.995 2.501 162.05 126.29 2.669 (measured)	
itial Conditions			
attlement Channel oisture Content w_0 % ry Density ρ_d (PCF) oids Ratio e_0 ag of Saturation S ₀ % welling Pressure Ss (TSF)	1065 22.1 103.40 0.6107 96.8 0.000		
pisture Content w _f % y Density ρ _d (PCF)	20.5 108.07		
bisture Content w_f % y Density ρ_d (PCF) bids Ratio e_f eg of Saturation S_f % ttlement: (in)	20.5 108.07 0.5411 100.00 0.043		
inal Conditions oisture Content w_f % ry Density ρ_d (PCF) oids Ratio e_f eg of Saturation S_f % ettlement: (in) compression Index C_c otes:	20.5 108.07 0.5411 100.00 0.043 0.120 Test specimen	taken from the middle portion of UD tube.	
the formation of the second state of the seco	20.5 108.07 0.5411 100.00 0.043 0.120 Test specimen	taken from the middle portion of UD tube.	

	ASTM D2435-96		
S&ME	Site Reference:	C.F. Harvey	
	Jobfile:	E:/16010.JOB	
	Operator: MIC	-	C

Date of Test: 12-3-16
Sample: ST-1
Borehole: B1-A LT LN
Checked: MC Approvea:

Stress (TSF)	Initial Temp. oC	Settlement Total (in)	Cal Corr. (in)	Final Temp. oC	Voids Ratio e _f	t ₅₀ (mins)	Secondary Compr C _{sec}	c _v (ft2/day)	m _v (ft2/ton)
0.050	21.6	0.0012	0.0	21.6	0.6087	4.017	0.0001	0.123	0.024
0.250	21.6	0.0047	0.0	21.6	0.6031	3.156	0.0003	0.156	0.018
0.500	21.6	0.0110	0.0	21.6	0.5929	2.711	0.0005	0.180	0.026
1.000	21.6	0.0200	0.0	21.6	0.5783	2.413	0.0025	0.199	0.018
2.000	21.6	0.0355	0.0	21.6	0.5532	1.701	0.0002	0.275	0.016
4.000	21.6	0.0568	0.0	21.6	0.5187	1.789	0.0008	0.252	0.011
2.000	21.6	0.0553	0.0	21.6	0.5212				0.001
0.500	21.6	0.0508	0.0	21.6	0.5285				0.003
0.050	21.6	0.0430	0.0	21.6	0.5411				0.018

Oedometer Settlement Tests

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	0	0.0000	0.0000
2	0.017	1	0.0001	0.0001
3	0.033	2	0.0002	0.0002
4	0.050	2	0.0002	0.0002
5	0.067	2	0.0002	0.0002
6	0.083	2	0.0002	0.0002
7	0.100	2	0.0002	0.0002
8	0.200	2	0.0002	0.0002
9	0.400	3	0.0003	0.0003
10	0.800	4	0.0004	0.0004
11	1.000	4	0.0004	0.0004
12	2.000	5	0.0005	0.0005
13	4.000	6	0.0006	0.0006
14	8.000	8	0.0008	0.0008
15	10.000	9	0.0009	0.0009
16	20.000	10	0.0010	0.0010
17	40.000	11	0.0011	0.0011
18	80.000	11	0.0011	0.0011
19	100.000	12	0.0012	0.0012
20	199.170	12	0.0012	0.0012

	ASTM D2435-96			Test name Date of Test:	Consolidation 12-3-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B1-A LT LN	
	Operator: MLC		Checked: M		Approvea:	

Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

	Test name Date of Test:	Consolidation 12-3-16	Load: 0.050 (TSF)
	Sample: Borehole:	ST-1 B1-A LT LN	
hecked: 🔨	le	Approved:	

Settlement Stage Results

Vertical Stress (TSF)	0.050
Initial Temp oC	21.6
Correction (in)	0.0
Settlement (in)	0.0012
Voids Ratio e	0.6087
Final Temp oC	0.0
t_{50} (mins)	4.02
c_v (ft2/day)	0.123
m_v (ft2/ton)	0.024
Sec Compression C _{sec}	0.0001

Logarithmic Time (mins)

• • • • • • •	ASTM D2435-96			Test name Date of Test:	Consolidation 12-3-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B1-A LT LN	
	Operator: MLK	_	Checked: 🔨	n	Approvea:	

Oedometer Settlement Tests

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	12	0.0012	0.0012
2	0.017	13	0.0013	0.0013
3	0.033	13	0.0013	0.0013
4	0.050	20	0.0020	0.0020
5	0.067	20	0.0020	0.0020
6	0.083	21	0.0021	0.0021
7	0.100	21	0.0021	0.0021
8	0.200	23	0.0023	0.0023
9	0.400	25	0.0025	0.0025
10	0.800	26	0.0026	0.0026
11	1.000	27	0.0027	0.0027
12	2.000	30	0.0030	0.0030
13	4.000	34	0.0034	0.0034
14	8.000	38	0.0038	0.0038
15	10.000	40	0.0040	0.0040
16	20.000	43	0.0043	0.0043
17	40.000	46	0.0046	0.0046
18	80.000	47	0.0047	0.0047
19	99.930	47	0.0047	0.0047

ASTM D2435-96

Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

	Test name Date of Test:	Consolidation 12-3-16	Load: 0.250 (TSF)	
	Sample: Borehole:	ST-1 B1-A LT LN		
Checked:	uc	Approved:		

No	Time	Displacement	Displacement	Settlement
140.	(mins)	(divs)	(in)	(in)
1	0.000	47	0.0047	0.0047
2	0.017	52	0.0052	0.0052
3	0.033	52	0.0052	0.0052
4	0.050	63	0.0063	0.0063
5	0.067	64	0.0064	0.0064
6	0.083	66	0.0066	0.0066
7	0.100	66	0.0066	0.0066
8	0.200	69	0.0069	0.0069
9	0.400	72	0.0072	0.0072
10	0.800	75	0.0075	0.0075
11	1.000	76	0.0076	0.0076
12	2.000	80	0.0080	0.0080
13	4.000	85	0.0085	0.0085
14	8.000	91	0.0091	0.0091
15	10.000	93	0.0093	0.0093
16	20.000	98	0.0098	0.0098
17	40.000	102	0.0102	0.0102
18	80.000	104	0.0104	0.0104
19	100.000	105	0.0105	0.0105
20	200.000	106	0.0106	0.0106
21	400.000	108	0.0108	0.0108
22	800.000	110	0.0110	0.0110
23	942.950	110	0.0110	0.0110

	ASTM D2435-96	
S&ME	Site Reference:	C.F. Harve E:\16010.J

Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

	Test name Date of Test:	Consolidation 12-3-16	Load: 0.500 (TSF)
	Sample: Borehole:	ST-1 B1-A LT LN	
Checked: M	C	Approvea:	

Settlement Stage Results

Vertical Stress (TSF)	0.500
Initial Temp oC	21.6
Correction (in)	0.0
Settlement (in)	0.0063
Voids Ratio e	0.5929
Final Temp oC	0.0
t ₅₀ (mins)	2.71
c _v (ft2/day)	0.18
m _v (ft2/ton)	0.026
Sec Compression Csec	0.0005
300	

• • • • • • •	ASTM D2435-96			Test name Date of Test:	Consolidation 12-3-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B1-A LT LN	
	Operator: M	L	Checked:	LL L	Approved:	

Oedometer Settlement Tests

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	110	0.0110	0.0110
2	0.017	118	0.0118	0.0118
3	0.033	138	0.0138	0.0138
4	0.050	141	0.0141	0.0141
5	0.067	142	0.0142	0.0142
6	0.083	144	0.0144	0.0144
7	0.100	145	0.0145	0.0145
8	0.200	149	0.0149	0.0149
9	0.400	153	0.0153	0.0153
10	0.800	158	0.0158	0.0158
11	1.000	160	0.0160	0.0160
12	2.000	166	0.0166	0.0166
13	4.000	173	0.0173	0.0173
14	8.000	181	0.0181	0.0181
15	10.000	183	0.0183	0.0183
16	20.267	190	0.0190	0.0190
17	40.267	194	0.0194	0.0194
18	80.267	197	0.0197	0.0197
19	100.267	198	0.0198	0.0198
20	200.267	200	0.0200	0.0200
21	250.117	200	0.0200	0.0200

	ASTM D2435-96	
🔷 S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB
	Operator: MI	L

	Test name Date of Test:	Consolidation 12-3-16	Load: 1.000	(TSF)
	Sample: Borehole:	ST-1 B1-A LT LN		
Checked: 🔨	ĸ	Approvea:		

	Oedome	ter Sett	lement	Tests
--	--------	----------	--------	-------

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	200	0.0200	0.0200
2	0.017	201	0.0201	0.0201
3	0.033	201	0.0201	0.0201
4	0.050	205	0.0205	0.0205
5	0.067	259	0.0259	0.0259
6	0.083	266	0.0266	0.0266
7	0.100	268	0.0268	0.0268
8	0.200	277	0.0277	0.0277
9	0.400	286	0.0286	0.0286
10	0.800	295	0.0295	0.0295
11	1.000	298	0.0298	0.0298
12	2.000	309	0.0309	0.0309
13	4.000	321	0.0321	0.0321
14	8.000	332	0.0332	0.0332
15	10.000	336	0.0336	0.0336
16	20.000	345	0.0345	0.0345
17	40.000	349	0.0349	0.0349
18	80.000	353	0.0353	0.0353
19	100.000	354	0.0354	0.0354
20	200.000	355	0.0355	0.0355
21	216,170	355	0.0355	0.0355

ASTM D2435-96

Same Site Reference: C.F. Harvey Jobfile: E:\16010.JOB

	Test name Date of Test:	Consolidation 12-3-16	Load: 2.000 (TSF)
	Sample: Borehole:	ST-1 B1-A LT LN	
Checked: MUL		Approvea:	

Oedometer Settlement Tests

ttlement Stage Results				
/ertical Stress (TSF) nitial Temp oC Correction (in) Settlement (in) /oids Ratio e	2.000 21.6 0.0 0.0155 0.5532			
inal Temp oC ₅₀ (mins) ₅ (ft2/day) n _v (ft2/ton) Sec Compression C _{sec}	0.0 1.70 0.275 0.016 0.0002			
0.0190				
2				
0.0226				
0.0262				
0.0298				
0.0334				
0.0270		Q		0
0.0370	1.0	10.0	100.0	1000.0

	ASTM D2435-96			Test name Date of Test:	Consolidation 12-3-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B1-A LT LN	
	Operator: MLL	-	Checked: M	e	Approved:	

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	355	0.0355	0.0355
2	0.017	364	0.0364	0.0364
3	0.033	364	0.0364	0.0364
4	0.050	393	0.0393	0.0393
5	0.067	421	0.0421	0.0421
6	0.083	434	0.0434	0.0434
7	0.100	437	0.0437	0.0437
8	0.200	449	0.0449	0.0449
9	0.400	460	0.0460	0.0460
10	0.800	473	0.0473	0.0473
11	1.000	477	0.0477	0.0477
12	2.000	493	0.0493	0.0493
13	4.000	511	0.0511	0.0511
14	8.000	528	0.0528	0.0528
15	10.000	533	0.0533	0.0533
16	20.000	546	0.0546	0.0546
17	40.000	554	0.0554	0.0554
18	80.000	559	0.0559	0.0559
19	100.000	560	0.0560	0.0560
20	200.000	562	0.0562	0.0562
21	400.000	565	0.0565	0.0565
22	800.000	567	0.0567	0.0567
23	999.967	568	0.0568	0.0568

ASTM D2435-96

Operator: MK

Same Site Reference: C.F. Harvey E:\16010.JOB

	Test name Date of Test:	Consolidation Load: 4.000 (TS 12-3-16	SF)
	Sample:	ST-1	
	Borehole:	B1-A LT LN	
Checked: mile		Approved.	

Settlement Stage Results

Vertical Stress (TSF)	4.000
Initial Temp oC	21.6
Correction (in)	0.0
Settlement (in)	0.0213
Voids Ratio e	0.5187
Final Temp oC	0.0
t ₅₀ (mins)	1.79
c _v (ft2/day)	0.252
m _v (ft2/ton)	0.011
Sec Compression C _{sec}	0.0008

Logarithmic Time (mins)

	ASTM D2435-96			Test name Date of Test:	Consolidation 12-3-16	
S&ME	Site Reference: Jobfile:	C.F. Harvey E:\16010.JOB		Sample: Borehole:	ST-1 B1-A LT LN	
	Operator: MLC	-	Checked: MI	c	Approved:	

Oedometer Settlement Tests

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	568	0.0568	0.0568
2	0.017	565	0.0565	0.0565
3	0.033	560	0.0560	0.0560
4	0.050	559	0.0559	0.0559
5	0.067	559	0.0559	0.0559
6	0.083	559	0.0559	0.0559
7	0.100	558	0.0558	0.0558
8	0.200	558	0.0558	0.0558
9	0.400	557	0.0557	0.0557
10	0.800	556	0.0556	0.0556
11	1.000	556	0.0556	0.0556
12	2.000	555	0.0555	0.0555
13	4.000	554	0.0554	0.0554
14	8.000	554	0.0554	0.0554
15	10.000	553	0.0553	0.0553
16	20.000	553	0.0553	0.0553
17	40.000	553	0.0553	0.0553
18	80.000	553	0.0553	0.0553
19	100.000	553	0.0553	0.0553
20	169.630	553	0.0553	0.0553

ASTM D2435-96

S&ME

Site Reference: C.F. Harvey Jobfile: E:\16010.JOB 27 of 33

	Test name Date of Test:	Consolidation 12-3-16	Load: 2.000 (TSF)
	Sample: Borehole:	ST-1 B1-A LT LN	
Checked: m	le	Approved:	

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	553	0.0553	0.0553
2	0.017	552	0.0552	0.0552
3	0.033	546	0.0546	0.0546
4	0.050	545	0.0545	0.0545
5	0.067	540	0.0540	0.0540
6	0.083	538	0.0538	0.0538
7	0.100	538	0.0538	0.0538
8	0.200	535	0.0535	0.0535
9	0.400	533	0.0533	0.0533
10	0.800	530	0.0530	0.0530
11	1.000	529	0.0529	0.0529
12	2.000	525	0.0525	0.0525
13	4.000	521	0.0521	0.0521
14	8.000	516	0.0516	0.0516
15	10.000	515	0.0515	0.0515
16	20.000	511	0.0511	0.0511
17	40.000	509	0.0509	0.0509
18	80.000	508	0.0508	0.0508
19	100.000	508	0.0508	0.0508
20	174.580	508	0.0508	0.0508

ASTM D2435-96

	Test name Date of Test:	Consolidation 12-3-16	Load: 0.500 (TSF)
	Sample: Borehole:	ST-1 B1-A LT LN	
hecked:	ull	Approvea:	

No.	Time (mins)	Displacement (divs)	Displacement (in)	Settlement (in)
1	0.000	508	0.0508	0.0508
2	0.017	504	0.0504	0.0504
3	0.033	504	0.0504	0.0504
4	0.050	501	0.0501	0.0501
5	0.067	500	0.0500	0.0500
6	0.083	500	0.0500	0.0500
7	0.100	499	0.0499	0.0499
8	0.200	498	0.0498	0.0498
9	0.400	496	0.0496	0.0496
10	0.800	493	0.0493	0.0493
11	1.000	492	0.0492	0.0492
12	2.000	488	0.0488	0.0488
13	4.000	483	0.0483	0.0483
14	8.000	476	0.0476	0.0476
15	10.000	473	0.0473	0.0473
16	20.000	464	0.0464	0.0464
17	40.000	451	0.0451	0.0451
18	80.000	440	0.0440	0.0440
19	100.000	438	0.0438	0.0438
20	200.000	434	0.0434	0.0434
21	400.000	431	0.0431	0.0431
22	492.120	430	0.0430	0.0430

ASTM D2435-96

	Test name Date of Test:	Consolidation 12-3-16	Load: 0.050 (TSF)
	Sample: Borehole:	ST-1 B1-A LT LN	
Checked: /	ule	Approved:	

Form No. TR-T88 Revision No. 0

Revision Date: 12/20/09

Particle Size Analysis of Soils

											Qualit	y Assu	rance
S	&ME, 1	[nc. Ral	leigh,	3201 Spi	ring F	orest]	Road, Ral	leigh, No	orth C	arolina	27616		
S&ME Project #:	6235	5-16-010)						Repor	rt Date:		11/14	/16
Project Name:	C.F.	Harvey	Park	way Exte	nsion 1	R-570	3		Test I	Date(s):	10	/7 - 11	/14/16
State Project #:	4637	75.1.1		F.A. Pr	oject N	Io: N/	А		TIP	NO:	R-570	3	
Client Name:	Micl	hael Bal	ker Eı	ngineerin	g								
Address:	Rale	igh, NC	-										
Boring #:	EB2	-A Lt. I	Ln.	Sa	ample i	#: SS	5-91			Sample	Date:	9/	/1/16
Location:	365-	+32			Offset	: 20)' LT			Dept	h (ft):	0.0) - 1.5
Sample Description	:					G	ray Coarse	e to Fine	Sandy	y Clayey	SILT	A-4	(4)
1.5'	' 1"3/4" 1	1/2'3/8"	#4	#10	#20	#40	#60 #100	#200 #2	270				
100%		•											
90%													
80%													
70%								N					
L Pass 1 Pass 20%													
อบ 24 40%													
30%													
200/													
20%													
10%													
100		10		*	1		<u> </u>	0.1		0.0)1		0.001
					Partic	le Size (1	mm)						
	As Defin	ed by NC	DOT				Fin	e Sand		< ().25 mm a	nd > 0.0	05 mm
Gravel		<	75 mm	n and > 2.00) mm		Silt <			0.05 and	> 0.005	5 mm	
Coarse Sand		< 2	2.00 m	m and >0.2	5 mm		(Clay			< 0.0	05 mm	
Maximum Particle	Size	#1	0		Coars	se San	d	6	%	Silt			40%
Gravel		0%)		Fine	Sand		28	\$%	Clay			26%
Apparent Relative I	Density	NI)		Mois	ture C	ontent	19	9%	% Pass	ing #20	0	72.5%
Liquid Limit		28			Plasti	c Lim	it	2	0	Plastic	Index		8
				Se	oil Mor	tar (-#	10 Sieve)						
Coarse Sand		6%		Fine	Sand	28	3%	Si	ilt	40%	С	lay	26%
Description of San	d & Grav	el Partic	eles:	Rou	unded					A	ngular		
Hard & Dura	ble				Soft				Weat	hered & I	Friable		
References / Comments	/ Deviati	ons:	ND=	=Not Deterr	nined.								
<u>Mal Kraj</u> Technician	an, ET Name			<u>104-0</u> Certific	01-0703 ation No	<u>3</u>		Laborat F	ory Ma Position	anager		<u>11/1</u>	<u>4/2016</u> Date
Mal Kraj	<u>an, ET</u>			me	R	5	>	<u>Laborat</u>	ory Ma	anager		<u>11/1</u>	4/2016
Technical Resp	ponsibility			Sigr	iature			F	Position			1	Date
	This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.												

AASHTO T88 as Modified by NCDOT

3201 Spring Forest Road Raleigh, NC 27616

EB2-A Lt. Ln. SS-91 (0 - 1.5 ft) Classification.xls

Form No: TR-T267

Revision No. 0

Revision Date: 07/10/08

Moisture, Ash, and Organic Matter

		AASHTO T-267						Quality A	Assura	nce
S&ME, Inc. Raleigh, 3201 Spring Forest Raod, Raleigh, North Carolina 27616										
Project #	#:	6235-16-0	10				Report Date:	10/2	21/16	
Project N	lame:	C.F. Harve	F. Harvey Parkway Extension R-5703Test Date(s):10/18 - 10/21/16							
Client Na	ame:	e: Michael Baker Engineering								
Client Ac	nt Address: Raleigh, NC									
Boring #:		EB2-A Lt. Ln. Sample #: SS-91				-91	Sam	ple Date:	9/1/	/16
Location	:	365+32		Offset:	20'	LT	D	epth (ft):	0.0 -	1.5
Sample I	Descripti	on: Gray C	Coarse to F	ine Sandy Claye	ey SILT (A-4) (4)				
Equipmen	nt:	Balance: 0.0)1 g.Readal	oility, 500g. Minin	num Capaccity	,				
Balance:	S&	<i>ME ID #</i> :	1024	Cal. Date:	11/06/16	Due:	11/06/17			
<i>Method A: Moisture Content Determination</i> Required Oven Temperature: $105 \pm 5^{\circ}C$										
		Oven	ı Tempera	ture: 105	°C		Tare #	В		
	t	Tare W	Veight (Di.	sh plus Aluminu	m Foil Cover	·)	grams	52.79		
	а	Mass of	of As-Rece	ived Specimen	+ Tare Wt.		grams	95.22		
	b	Mass of	of Oven Di	ry Specimen + T	Tare Wt.		grams	88.59		
	w	Water Weight (a-b)				6.63				
	Α	Mass of	Mass of As-Received Specimen (a-t) 42.43							
	В	Mass of Oven Dry Specimen (b-t) 35.80								
	% N	Moisture Co	ntent as a	% of As Receiv	ed or Total M	lass	(w/A)*100	15.6%		
		% Moistur	e Content	as a % of Oven	-dried Mass		(w/B)*100	18.5%		
Oven	S&	ME ID #:	1454	Cal. Date:	10/7/16	Due:	10/7/17			

Method C (440° C) or D (750° C): Ash Content and Organic Matter Determination

	Muffle Furnace: 455 °C	Tare #	6
t	Tare Weight (Dish plus Aluminum Foil Cover)	grams	13.60
b	Mass of Oven Dry Specimen + Tare Wt.	grams	39.84
С	Ash Weight + Tare Wt.	grams	38.94
С	Ash Weight	c-t	25.34
В	Mass of Oven Dry Specimen	(<i>b</i> - <i>t</i>)	26.24
D	% Ash Content	(C/B)*100	96.6%
	% Organic Matter	100-D	3.4%
nace: S	&ME ID #: 00261		

Muffle Furnace: *S&ME ID #:*

Notes / Deviations / References:

0.17		/	7
	N	-Cr	-
		C	

Signature

<u>Mal Krajan, ET</u> Technical Responsibility Laboratory Manager

Position

11/14/2016 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No: TR-T289-1 Revision No. 0 Revision Date: 07/10/08

		AASHTO T289					Quality Assurance	
	S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616							
Project #:	6235-16	6235-16-010			Report Date:	1	1/7/16	
Project Name:	C.F. Har	vey Parkway Extension I	Test Date(s):	11/5	- 11/7/16			
Client Name:	Michael	Baker Engineering						
Client Address	s: Raleigh,	Raleigh, NC						
Boring #:	EB2-A Lt. Lr	n. Sample	#: SS-91		Sample D	ate:	9/1/16	
Location:	365+32	Offs	et: 20' LT		Depth	(ft):	0.0 - 1.5	
Sample Descr	iption:	Gray Coarse to Fine San	dy Clayey	v SILT (A-4) (4))			
Equipment:								
Balance		S&ME ID#	1024	Cal. Date:	11/6/16	Due:	11/6/17	
Sieve:	#10	S&ME ID#	13223	Cal. Date:	6/11/16	Due:	6/11/17	
pH Meter:		S&ME ID#	1365	Cal. Date:	11/7/16	Due:	NA	

pH Meter Calibration

Buffer Solution	Results
pH buffer 7.0	7.02
pH buffer 4.01	4.01
pH buffer 10.0	10.03
Buffer Temperature ⁰ C	22.4

Measuring pH of Soil

	Meas
Weigtht of Air	Dry Soil (g)
Distilled Water	(g)
Temperature ⁰ C	l ,
pH Readings	
Notes / Deviations / References:	AASHTO T-289: Deterr

<u>Mal Krajan, ET</u> Technical Responsibility

er l	t
	Signatu

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

pH of Soil

surements		
	30.03	
	30.04	
	21.8	
	5.97	

mining pH of Soil for Use in Corrosion Testing

Laboratory Manager

Position

11/14/2016

Date

S&ME, Inc.

Revision No. 0

Particle Size Analysis of Soils

Form No. TR-T88

Revision No. 0 Revision Date: 12/20/09

Revision Date: 12/	/20/09			AASHT	0 T88 a	s Mod	lified	by NCDOT	Γ				
										Quality Assurance			
S&ME, Inc. Raleigh, 3201 Spring Forest Road, Raleigh, North Carolina 27616													
S&ME Project #: 6235-16-010								Rep	Report Date: 1		10/5	0/5/16	
Project Name:	C.F.	Harvey	y Parl	kway Extension R-5703				Tes	Test Date(s): 9/28 - 10/		0/5/16		
State Project #: 46375.1.1				F.A. Project No: N/A				Т	'IP NO:	R-57	03		
Client Name: Michael Baker F				Ingineering									
Address: Raleigh, NC			U	0				_					
Boring #:	B1-B RT LN			Sample #: SS-85					_	Sample	Date:	8/.	30/16
Location:	ocation: 364+28			Offset: 36' RT					Dept	h (ft):	4.() - 5.5	
Sample Descript	ion:			Gray Coarse to F					Fine Sa	ndy Silty C	CLAY	A-6	(5)
	1 51 112/41 1	012 (011		#10	1120			1100 110	00 #270				
100%	1.5" 1" <i>3</i> /4" 1,	23/8" • •	#4	#10	#20	#40	#60	#100 #20	00 #270				
90%													
80%													
0070													_
70%													
50 F													
assi ov%													
t 50%													_
erce													
₽ 40%													
30%													_
													-
20%													
10%													
		10			1		*	0.1		0 ()1		0.001
100		10			Partic	le Size	(mm)	0.1		0.0	,1		0.001
	A D. C	11N					_	E' 0	1		0.05	1. 0.	
Gravel	As Define	a by NC	75 mr	and $> 2.00 \text{ mm}$ Silt				nd	< 0.25 mm and			0.005 mm	
Coarse Sat	nd	<	2.00 m	m and >0.2	5 mm			Clay			< 0.0)05 mm	, mm
Maximum Partic	le Size	#4			Coars	se Sar	nd		7%	Silt			18%
Gravel		0%	6		Fine	Sand			39%	Clay			36%
Apparent Relativ	ve Densitv	N	D		Mois	ture C	Conte	nt	23%	% Pass	ing #20	00	59.3%
Liquid Limit		27	,		Plasti	c Lin	nit		13	Plastic	Index		14
Soil Mortar (-#10 Sieve)													
Coarse Sa	and '	7%		Fine	Sand	3	9%	,	Silt	18%	(Clay	36%
Description of S	Sand & Grav	el Parti	cles:	Ro	unded					А	ngular	5	
Hard & D	urable				Soft				We	eathered & I	Friable		
References / Comme	ents / Deviatio	ons:	ND	=Not Deteri	nined.		_						_
<u>Ma</u> l Krajan, ET				104-0)1-0703	3		Lab	Laboratory Manager			9/1	2/2016
Technie	cian Name			Certific	cation No.				Positic	on		i	Date
				M	Q	_							
<u>Mal K</u>	<u>rajan, ET</u>		_	\subset	1			Lab	oratory]	<u>Manager</u>		9/2	6/2016
Technical Responsibility				Sign	nature				Positio	on		Ĺ	Date
This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.													

	S&ME I	nc Raleigh	3201 Spring Fore	st Road	Raleigh North (Carolina 27616	any Assurance		
S&ME Project #:	6235	-16-010	She spring i ore	st Road, I	Repo	ort Date:	10/5/16		
Project Name:	C.F.	Harvey Park	way Extension R-5	703	Test	Test Date(s): 9/28 - 10/5/16			
State Project #:	4637	5.1.1	F.A. Project No:	TI	P NO: R-5'	703			
Client Name:	Mich	ael Baker Er	ngineering						
Address:	Ralei	gh, NC							
Boring #:	B1-B	RT LN	Sample #:		Sample Date:	8/30/16			
Location:	364+	28	Offset:	36' RT	Depth (ft): 44.0 - 44.7				
Sample Description	n:		Dark	c Gray Silt	ty Clayey Coarse	to Fine SAND	A-2-4 (0)		
1.5 100%	" 1"3/4" 1/	"2"3/8" #4	#10 #20 #	40 #60 #1	100 #200 #270				
90%									
				\mathbf{N}					
80%									
70%									
50				$+$ \cdot					
tu 50%					\				
40%									
209/					- N				
30%									
20%									
10%							•		
100		10	1	*	0.1	0.01			
			Particle Si	ze (mm)					
	As Define	d by NCDOT			Fine Sand	< 0.25 mm	n and $> 0.05 \text{ mm}$		
Gravel		< 75 mm	and > 2.00 mm	d > 2.00 mm Silt			< 0.05 and > 0.005 mm		
Coarse Sand	Cina	< 2.00 mm	m and >0.25 mm	$\frac{\text{Clay}}{280/2} < 0.005 \text{ m}$			0.005 mm		
Maximum Particle	Size	#4 10/	Coarse S	and	28%	Silt	9%		
Gravel	Danaitar	1%	Fine San	lu Contont	51% 129/	Clay	12%		
Apparent Relative	Density	ND 17	Moisture Diastia I	imit	12%	% Passing #.	200 28.0%		
		17	Soil Mortar		10 ve)	Flastic Index	1		
Coarse Sand	d 2	28%	Fine Sand	51%	Silt	9%	Clay 12%		
Description of Sar	d & Grave	el Particles:	Rounded			Angular			
Hard & Dura	able		Soft		Wea	thered & Friable			
References / Comment	s / Deviatio	ns: ND=	Not Determined.						
						_			
<u>Mal Krajan, ET</u>			<u>104-01-0703</u>		Laboratory N	boratory Manager			
Technicia	п ічате		Certification No.		Position		Date		
Mal Kra	j <u>an,</u> ET		IV C	>	<u>La</u> boratory N	<u>Ianag</u> er	<u>9/26/2016</u>		
Technical Res	sponsibility	-	Signature		Position		Date		
	This	report shall not	be reproduced, except in j	full, without th	he written approval of	S&ME, Inc.			

3201 Spring Forest Road Raleigh, NC 27616

B1-B RT LN SS-85 (4 - 5.5 ft) Classification.xls

S&ME, Inc.

Particle Size Analysis of Soils

AASHTO T88 as Modified by NCDOT

Ouality	Assurance
Quanty	1100000000000

3201 Spring Forest Road Raleigh, NC 27616

B1-B RT LN SS-86 (44 - 44.7 ft) Classification.xls

Revision Date: 12/20/09

Revision No. 0

Particle Size Analysis of Soils

Form No. TR-T88 Revision No. 0

<i>Revision Dure</i> . 12/20/0	19	misino noo us iv	Tougree by NCD01		v	
					Quality Ass	suranc
Sð	&ME, Inc. Raleigh	a, 3201 Spring Fore	est Road, Raleigh	n, North Carolin	a 27616	
S&ME Project #:	6235-16-010			Report Date:	: 10/	/5/16
Project Name:	C.F. Harvey Parl	kway Extension R-5	5703	Test Date(s)	: 9/28 -	10/5/
State Project #:	46375.1.1	F.A. Project No:	N/A	TIP NO:	R-5703	
Client Name:	Michael Baker E	Engineering		_		
Address:	Raleigh, NC	~	~~ ~~	~ ~ ~		
Boring #:	EB2-B Rt. Ln.	Sample #:	SS-88	Sampl	le Date:	8/26/1
Location:	365+32	Offset:	37' RT	De	$\frac{\text{pth (ft):}}{2} = 48$	3.7 - 5
Sample Description:		Dai	rk Gray Coarse to	Fine Sandy Silty	CLAY A-/-	-6 (1
1.5"	1"3/4" 1/2'3/8" #4	#10 #20 #	#40 #60 #100 #20	00 #270		
				· · · · · · · · · · · · · · · · · · ·		
90%			\			
			\			
80%						
70%			N			
<u>م</u>			N			
·ii. 60%						
ti 50%						
erce						
30%						
20%						
10%						
0%		* + + + + + + + + + + + + + + + + + + +		* *	0.01	
100	10	1	0.1		0.01	
100	10	1 Particle S	0.1 ize (mm)		0.01	
100	10 As Defined by NCDOT	1 Particle S	0.1 ize (mm) Fine San	ıd <	< 0.25 mm and >	0.05 m
100 Gravel	10 As Defined by NCDOT <75 m	1 Particle S m and > 2.00 mm	0.1 ize (mm) Fine San Silt	id <	< 0.25 mm and > < 0.05 and > 0.0	0.05 m 005 mn
100 Gravel Coarse Sand	10 As Defined by NCDOT <75 mi <2.00 m	1 Particle S m and > 2.00 mm nm and >0.25 mm	0.1 ize (mm) Fine San Silt Clay	id <	< 0.25 mm and > < 0.05 and > 0.0 < 0.005 m	0.05 m 005 mn m
100 Gravel Coarse Sand Maximum Particle S	10 As Defined by NCDOT < 75 m	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S	0.1 ize (mm) Fine San Silt Clay Sand	1% Silt	<0.01 <0.25 mm and > <0.05 and >0.0 <0.005 m	0.05 m 005 mn m 12
100 Gravel Coarse Sand Maximum Particle S Gravel	10 As Defined by NCDOT < 75 million	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San	0.1 ize (mm) Fine San Silt Clay Sand nd	1% Silt 55% Clay	<0.01 < 0.25 mm and > < 0.05 and > 0.0 < 0.005 m	0.05 m 005 mn m 12 32
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D	10 As Defined by NCDOT < 75 minor	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur	0.1 ize (mm) Fine San Silt Clay Sand nd e Content	1% Silt 55% Clay 29% % Pas	< <u>0.25 mm and ></u> < <u>0.05 and > 0.0</u> < <u>0.005 m</u> ssing #200	0.05 m 005 mn m 12 32 56.
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit	I0 As Defined by NCDOT < 75 m	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur Plastic I	0.1 ize (mm) Fine San Silt Clay Sand ad e Content Limit	1% Silt 1% Silt 55% Clay 29% % Pas 21 Plasti	<0.01 < 0.25 mm and > < 0.05 and > 0.0 < 0.005 m < 0.005 m ssing #200 c Index	0.05 m 005 mn m 12 32 56. 3
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit	I0 As Defined by NCDOT < 75 mi	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur Plastic I Soil Mortar Fino Sond	0.1 ize (mm) Fine San Silt Clay Sand nd e Content Limit · (-#10 Sieve) 55%	1% Silt 55% Clay 29% % Pas 21 Plasti	<0.01 <0.25 mm and > <0.05 and > 0.0 <0.005 m <0.005 m ssing #200 c Index	0.05 m 005 mn m 12 32 56. 3
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit Coarse Sand Description of Sand	10As Defined by NCDOT $< 75 \text{ m}$ $< 2.00 \text{ n}$ ize#40%bensityND531%& Gravel Particles:	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine Sar Moistur Plastic I Soil Mortar Fine Sand Pounded	0.1 ize (mm) Fine San Silt Clay Sand ad e Content Limit · (-#10 Sieve) 55%	nd 1% Silt 55% Clay 29% % Pas 21 Plasti Silt 12%	<0.01 <0.25 mm and > <0.05 and > 0.0 <0.005 m <0.005 m ssing #200 c Index Clay Angular	0.05 mn 005 mn m 12 32 56. 3 32 32
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit Coarse Sand Description of Sand Hard & Durab	10As Defined by NCDOT $< 75 \text{ m}$ $< 2.00 \text{ n}$ ize#40%bensityND531%& Gravel Particles:ale	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur Plastic I Soil Mortar Fine Sand Rounded Soft	0.1 ize (mm) Fine San Silt Clay Sand nd e Content Limit · (-#10 Sieve) 55%	id 1% Silt 55% Clay 29% % Pas 21 Plasti Silt 12%	<	0.05 m 005 m m 12 32 56. 3 32 56. 32 0
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit Coarse Sand Description of Sand Hard & Durab References / Comments	10As Defined by NCDOT $< 75 \text{ m}$ $< 2.00 \text{ n}$ ize#40%bensityND531%4 & Gravel Particles:ble \Box / Deviations:ND	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur Plastic I Soil Mortar Fine Sand Rounded Soft	0.1 ize (mm) Fine San Silt Clay Sand ad e Content Limit (-#10 Sieve) 55%	Id 1% Silt 55% Clay 29% % Pas 21 Plasti Silt 12% Weathered &	<0.01 <p>(0.01) (0.025 mm and >) (0.05 and > 0.0) (0.005 m) (0.</p>	0.05 m 005 m 12 32 56. 3 32 56. 32 0 0
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit Coarse Sand Description of Sand Hard & Durab References / Comments /	10 As Defined by NCDOT As Defined by NCDOT < 2.00 n	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur Plastic I Soil Mortar Fine Sand Rounded Soft D=Not Determined.	0.1 ize (mm) Fine San Silt Clay Sand ad e Content Limit · (-#10 Sieve) 55%	id 1% Silt 55% Clay 29% % Pas 21 Plasti Silt 12% Weathered &	<	0.05 mn 005 mn m 12 32 56. 57. 57. 57. 57. 57. 57. 57. 57
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit Coarse Sand Description of Sand Hard & Durab References / Comments of Mal Kraja	10As Defined by NCDOT $< 75 miler< 2.00 niler$	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur Plastic I Soil Mortar Fine Sand Rounded Soft D=Not Determined.	0.1 ize (mm) Fine San Silt Clay Sand nd e Content Limit (-#10 Sieve) 55% Lab	id 1% Silt 55% Clay 29% % Pas 21 Plasti Silt 12% Weathered &	<0.01 <p>< 0.25 mm and > < 0.05 and > 0.0 < 0.005 m</p> ssing #200 c Index Clay Angular t Friable 9/	0.05 m 005 m 12 32 56. 3 3 2 12 12 12 12 12 12 12 12 12
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit Coarse Sand Description of Sand Hard & Durab References / Comments of Mal Kraja Technician of	10As Defined by NCDOT $< 75 miler$	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur Plastic I Soil Mortar Fine Sand Rounded Soft D=Not Determined.	0.1 ize (mm) Fine San Silt Clay Sand nd e Content Limit · (-#10 Sieve) 55% □ □ Lab	Id A A A A A A A A A A A A A A A A A A A	<	0.05 m 005 m m 12 32 56 3 3 2 12 /12/20 Date
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit Coarse Sand Description of Sand Hard & Durab References / Comments / Mal Kraja Technician	10As Defined by NCDOT $< 75 million (200 million)$	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine Sar Moistur Plastic I Soil Mortar Fine Sand Rounded Soft D=Not Determined. <u>104-01-0703</u> <i>Certification No.</i>	0.1 ize (mm) Fine San Silt Clay Sand nd e Content Limit (-#10 Sieve) 55% Lab	id 1% Silt 55% Clay 29% % Pas 21 Plasti Silt 12% Weathered & oratory Manager Position	<	0.05 n 005 m 12 32 56 3 3 2 /12/20 Date
100 Gravel Coarse Sand Maximum Particle S Gravel Apparent Relative D Liquid Limit Coarse Sand Description of Sand Hard & Durab References / Comments J Mal Kraja Technician J	10As Defined by NCDOT $< 75 miler$	1 Particle S m and > 2.00 mm nm and >0.25 mm Coarse S Fine San Moistur Plastic I Soil Mortar Fine Sand Rounded Soft D=Not Determined. <u>104-01-0703</u> Certification No.	0.1 ize (mm) Fine San Silt Clay Sand nd e Content Limit (-#10 Sieve) 55% Lab	Id 1% Silt 55% Clay 29% % Pas 21 Plasti Silt 12% Weathered & oratory Manager Position	<	0.05 m 005 mn m 12 32 56. 32 56. 32 0 12 256. 32 0 0 12 256. 32 256. 257. 256. 257. 256. 32 256. 32 256. 32 256. 32 256. 32 256. 257. 256. 257. 256. 257. 256. 257. 256. 257. 25

AASHTO T88 as Modified by NCDOT

					Quali	ty Assurance	
S&MI	E, Inc. Raleigh, 3	3201 Spring Fore	st Road, Ral	eigh, North C	arolina 27616		
S&ME Project #: 62	235-16-010	Repor	rt Date:	11/13/16			
Project Name: N	C 242 (Harvey P	arkway)	Test I	Date(s):	11/1-13/16		
State Project #: 46	5375.1.1	F.A. Project No:	N/A	TIP	NO: R-57)3	
Client Name: N	CDOT						
Address: R	aleigh, NC						
Boring #: B	1-B RT LN	Sample #:	SS-87		Sample Date:	8/30/16	
Location: 30	tion: 364+28 Offset: 36' RT					59.0-60.5'	
Sample Description:					0	A-6 (4)	
				1070			
1.5" 1"3/4	4" 1/23/8" #4	#10 #20 #	40 #60 #100	#200 #270			
90%							
80%							
0070							
70%							
50 ()							
				X			
1 1 50%							
erce							
30%							
20%					¥		
10%							
1070							
0%							
100	10	1 Particle Si	ze (mm)	0.1	0.01	0.001	
		i ui ticte Si					
As De	fined by NCDOT	1 2 00	Fine	e Sand	d < 0.25 mm and > 0.05 mm		
Gravel Coarse Sand	< 75 mm a	and $> 2.00 \text{ mm}$		Silt	< 0.05 and > 0.005 mm		
Maximum Particle Size	#20		and	21%	Silt	19%	
Gravel	0%	Eine San	d	38%	Clay	2206	
Annount Deleting Densit	070	Moisture	u Contont	21 50/	0 Deceipe #2	2270	
Apparent Relative Densit	ty 2.650	Moisture		21.5%	% Passing #20	14	
Liquid Limit	31	Plastic L	1mit	17	Plastic Index	14	
	210/	Soil Mortar	(-#10 Sieve)	011	100/	200/	
Coarse Sand	21%	Fine Sand	38%	Silt	<u>19%</u>	lay 22%	
Description of Sand & G	Rounded		***	Angular	<u> </u>		
Hard & Durable	Soft		Weat	hered & Friable			
References / Comments / Devi	ations: ND=N	Not Determined.					
17 117		110.06.0205	T	1 / 7	1 • •	11/12/2016	
Karen Warner	<u>118-06-0305</u>	<u>L</u>	aboratory lec	<u>hnician</u>	<u>11/13/2016</u>		
Technician Name		Certification No.		Position		Date	
Stewart Lanes	7			Project Man	ager		
Technical Responsibility		Signature		Position		Date	
200.mourresponsion	This report shall not be	e reproduced except in t	ull without the w	ritten approval of S	&ME_Inc	2.000	
		слеері III j	, manout the Wi	en approvai of S			

S&ME, Inc.

Particle Size Analysis of Soils

3201 Spring Forest Road Raleigh, NC 27616

EB2-B Rt. Ln. SS-88 (48.7 - 50.2 ft) Classification.xls