Pyramid Environmental & Engineering, P.C. Project # 2014-008 Preliminary Site Assessment (PSA) – Parcel 038, Council & Williford Properties

PRELIMINARY SITE ASSESSMENT PARCEL 038, COUNCIL & WILLIFORD PROPERTIES 501 MURCHISON RD. FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA STATE PROJECT: B-4490 WBS ELEMENT: 33727.1.1 MARCH 14, 2014

Report prepared for:

Mr. Gordon Box, LG GeoEnvironmental Project Manager GeoEnvironmental Section Geotechnical Engineering Unit North Carolina Department of Transportation 1020 Birch Ridge Drive Raleigh, NC 27610

Report reviewed by:

Michael G. Jones, LG NC License #1168

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. P.O. BOX 16265 GREENSBORO, NC 27416-0265 (336) 335-3174

C-257 –Geology C-1251 - Engineering

TABLE OF CONTENTS

Executive Summary of Results	1
1.0 Introduction	3
1.1 BACKGROUND INFORMATION 1.2 Project Information	
2.0 Site History	4
3.0 Geophysical Investigation	
4.0 Soil Sampling Activities & Results	6
4.1 SOIL ASSESSMENT FIELD ACTIVITIES 4.2 SOIL SAMPLE ANALYTICAL RESULTS 4.3 TEMPORARY MONITORING WELL INSTALLATION 4.4 GROUNDWATER ANALYTICAL RESULTS	6 7
5.0 Conclusions and Recommendations	8
5.1 GEOPHYSICAL INVESTIGATION 5.2 Limited Soil Assessment 5.3 Limited Groundwater Assessment 5.4 Recommendations	8 8
6.0 Limitations	9
7.0 Closure	9

TABLE OF CONTENTS (Continued)

FIGURES

Figure 1 : Topographic Map

Figure 2: Soil Boring Locations and Estimated Area of Contamination

TABLES

Table 1 : Summary of Soil Field Screening Results

Table 2 : Summary of Soil Sample QED Analytical Results for DRO/GRO

Table 3 : Summary of Groundwater Analytical Results

APPENDICES

Appendix A : Historical Aerial Photographs

Appendix B : Geophysical Investigation Report

Appendix C : Soil Boring Logs

Appendix D : QROS QED HC-1 Hydrocarbon Analyzer

Appendix E : Laboratory Report & Chain-of-Custody Form

Appendix F : Personnel Logs

PRELIMINARY SITE ASSESSMENT PARCEL 038, COUNCIL & WILLIFORD PROPERTIES 501 MURCHISON RD. FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA

EXECUTIVE SUMMARY OF RESULTS

Pyramid Environmental & Engineering P.C. (Pyramid) has prepared this Preliminary Site Assessment (PSA) report documenting background information, field activities, assessment activities, findings, conclusions, and recommendations for Parcel 038, Council & Williford Properties. The purpose of this assessment was to determine the presence or absence of underground storage tanks (USTs) and impacted soils at the subject property within the proposed right-of-way (ROW) and/or easement and edge of pavement (State Project B-4490). The PSA was conducted with particular attention to the areas to be cut as indicated by slope stake lines and cross sections or to be excavated for the installation of drainage features. This preliminary site assessment was conducted on behalf of the North Carolina Department of Transportation (NCDOT) in accordance with Pyramid's December 20, 2013, technical proposal.

The following statements summarize the results of the PSA:

• Site History: A review of the North Carolina Department of Environment and Natural Resources (DENR) registered UST database and incident database indicated no environmental incidents were on file for the Council & Williford Properties property (Parcel 038). On January 23, 2014, Pyramid emailed the Cumberland County B-4490 parcel addresses to Mr. James Brown, the Fayetteville Region Incident Manager for the DENR UST Section, with a request to investigate any environmental incidents associated with the parcels. On January 24, 2014, Mr. Brown responded to the email and stated that site address 501 Murchison Rd. (Parcel 038) does not have any environmental incidents in the DENR database.

On January 20, 2014, Pyramid Project Manager Eric Cross performed a site visit at the property. The property contained a vacant grocery store building that was undergoing interior remodeling. A creek was observed on the west side of the property. Mr. Cross interviewed the owner of the property during a subsequent site visit. The owner indicated that the building had always operated as a grocery store since its construction, and he was not aware of any USTs at the site. No evidence of USTs was observed during the site visit.

- **Geophysical Survey:** The geophysical investigation provided no evidence of metallic USTs within the existing and proposed ROW and/or easement.
- Limited Soil Assessment: A total of four borings were performed across the property. The DENR action levels for both TPH-GRO and TPH-DRO are 10 milligrams per kilogram (mg/kg). The QED results for the soil samples at the location of boring 38-1 did not detect TPH-GRO or TPH-DRO concentrations above 10 mg/kg. However, the QED results for the soil samples at the remaining three boring locations (38-2, 38-3, and 38-4) all recorded DRO concentrations above 10 mg/kg. DRO concentrations ranging from 12.1 mg/kg to 64.9 mg/kg were recorded at these locations. No obvious source of contamination was observed at the site in connection with these borings.
- Limited Groundwater Assessment: Soil boring 38-3 was converted into a 1inch diameter temporary monitoring well to a total depth of 14 feet below land surface (BLS). The depth-to-groundwater was measured at 5.1 feet BLS. The laboratory analysis did not detect concentrations of any compounds above detection limits.

Review of the NCDOT engineering plans indicates that the NCDOT may encounter groundwater at the property during construction activities. However, no evidence of contamination was observed in the water samples collected during this investigation.

• Contaminated Soil Volumes: Pyramid's PSA investigation resulted in an estimated area of **8,906 square feet of impacted soil in the vicinity of borings 38-2, 38-3, and 38-4**. The deepest soil samples exhibiting contamination were between 4 and 6 feet in all three borings. For this reason, a maximum depth of 6 feet will be used to approximate total volumes of contaminated soil. It should be noted that this is a gross estimate based on the data available. Using a total thickness of 6 feet of contaminated soil, Pyramid estimates approximately 53,436 cubic feet, or **1,979 cubic yards of impacted soils between 0 and 6 feet BLS** at the location of borings 38-2, 38-3, and 38-4. The south and west boundaries of this area of contamination are approximate due to limited soil data.

It should be noted that, if impacted soil is encountered during road construction outside the area analyzed by this investigation, the impacted soil should be managed according to NC DENR Division of Waste Management (DWM) UST Section Guidelines and disposed of at a permitted facility.

1.0 Introduction

Pyramid Environmental & Engineering P.C. (Pyramid) has prepared this Preliminary Site Assessment (PSA) report documenting background information, field activities, assessment activities, findings, conclusions, and recommendations for Parcel 038, Council & Williford Properties The Council & Williford property currently contains a vacant grocery store building. The property is located at 501 Murchison Rd., Fayetteville, NC. This preliminary site assessment was conducted on behalf of the North Carolina Department of Transportation (NCDOT) in accordance with Pyramid's December 20, 2013, technical proposal.

The purpose of this assessment was to determine the presence or absence of underground storage tanks (USTs) and the potential for impacted soils at the subject properties within the proposed right-of-way (ROW) and/or easement and edge of pavement (State Project B-4490). The location of the subject site is shown on **Figure 1**.

1.1 Background Information

Based on the NCDOT's December 13, 2013, *Request for Technical and Cost Proposal*, the PSA was conducted in the proposed easement/proposed right of way (ROW) and the area between the existing NCDOT right of way and the edge of pavement, with emphasis on the areas to be cut as indicated by slope stake lines and cross sections or to be excavated for the installation of drainage features and/or other utilities, in accordance with the CADD files provided to Pyramid by the NCDOT. The PSA included the following:

- Research the properties for past uses and possible releases.
- Conduct a preliminary geophysical site assessment and limited soil assessment in the proposed easement/proposed right of way (ROW) and the area between the existing NCDOT right of way and the edge of pavement with emphasis on the areas to be cut as indicated by slope stake lines and cross sections or to be excavated for the installation of drainage features and/or other utilities.
- Should groundwater be encountered at a depth that might impact the NCDOT construction activities, report the depth to groundwater for that site and attempt to obtain one groundwater sample for laboratory analysis by installing a temporary monitoring well.

1.2 Project Information

Prior to field activities, a Health and Safety Plan was prepared. Prior to drilling activities, the public underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator, Northstate Utility Locating Incorporated of Colfax, North Carolina was used to mark the on-site private, buried utilities.

2.0 Site History

The NCDOT description of the parcel in the RFP provided to Pyramid on December 13, 2013, provided the following background information related to the site:

"Currently this site is vacant. The site is located on the west side of Murchison Rd. at the intersection with Durham St. The architectural style of the building suggests it may have operated as a gas station. No known NCDENR's UST Section Facility Identification Numbers or Groundwater Incidents Identification Numbers associated with this property. No evidence of USTs was observed during a site visit on April 30, 2009."

Pyramid completed a records review of the parcel, interviewed DENR personnel, interviewed property tenants, and reviewed aerial photographs to assess past uses of the property. Pyramid reviewed historical aerial photographs dating back to 1960 available from the Cumberland County Soil and Water Conservation office in Fayetteville and on Google Earth for past uses. The 1960, 1966, 1972, 1993, 2003, 2009, 2010, and 2011 aerial photographs are included in **Appendix A**. The aerial photographs indicate the current grocery building was constructed between 1960 and 1966. The 1960 aerial photograph shows two smaller structures present on the property prior to the construction of the main grocery building. An addition to the north side of the building was constructed sometime between 1972 and 1993.

City directories dated 1937, 1951, 1957, 1963, 1968, 1973, 1980, 1985, 1990, 1995, to 2000 were reviewed at the Cumberland County Public Library in Fayetteville, North Carolina. The table below includes a list of the building or subject property occupants from 1937 to 2000 based on the city directory review.

Year	Occupant
1937	No Listing
1951	V-Point Snack Shop/V-Point Grocery
1957	V-Point Supermarket/V-Point Grill/Esquire Barber Shop-Beauty Parlor
1963	Garris V-Point Grill/Esquire Barber Shop-Beauty Parlor
1968	V-Point Coin Laundry-Washerette/Esquire Barber Shop-Beauty Salon
1973	V-Point Supermarket/V-Point Washerette/Esquire Barber Shop
1980	V-Point Supermarket/V-Point Washerette/Esquire Barber Shop
1985	V-Point Supermarket/V-Point Washerette/Esquire Hair & Skin Clinic
1990	V-Point Supermarket/Esquire Hair & Skin Clinic
1995	V-Point Supermarket/Fayette Taxi/Esquire Hair & Hair Replacement Clinic
2000	V-Point Supermarket/One Thousand & One Thrift Shop/Esquire Hair Care

It should be noted that the above listings include addresses 447, 500, and 501 Murchison Road. The directories indicate that the buildings that have occupied Parcel 038 in the past have included all three of these street addresses. The above listings verify that the

site has operated as a grocery/supermarket since its commercial development sometime between 1937 and 1951. In addition to the grocery, the buildings on-site have also housed a beauty shop/barber shop with various business names. Lastly, the listings indicate that a portion of the buildings operated as a coin laundry/washerette between 1968 and 1985. These listings indicate that this facility was not a dry cleaner, but rather just a coin laundry business.

On January 23, 2014, Pyramid emailed the Cumberland County B-4490 parcel addresses to Mr. James Brown, the Fayetteville Region Incident Manager for the DENR UST Section, with a request to investigate any environmental incidents associated with the parcels. On January 24, 2014, Mr. Brown responded to the email and stated that site address 501 Murchison Rd. (Parcel 038) does not have any environmental incidents in the DENR database.

On January 20, 2014, Pyramid Project Manager Eric Cross performed a site visit at the property. The property contained a vacant grocery store building that was undergoing interior remodeling. A creek was observed on the west side of the property. Mr. Cross interviewed the owner of the property during a subsequent site visit. The owner indicated that the building had always operated as a grocery store since its construction, and he was not aware of any USTs at the site. No evidence of USTs was observed during the site visit.

3.0 Geophysical Investigation

Pyramid performed electromagnetic induction (EM61) and ground penetrating radar (GPR) surveys across the accessible portions of the Parcel. The majority of the EM features at the property were suspected to be associated with reinforced concrete, utilities, or the bus stop and sign. The GPR verified the presence of reinforced concrete on the west and south sides of the survey area, and a storm sewer pipe on the south survey boundary.

The geophysical investigation <u>did not record evidence of any metallic USTs</u> at the property.

The full details of the geophysical investigation are included in the Geophysical Investigation Report as **Appendix B**.

4.0 Soil Sampling Activities & Results

4.1 Soil Assessment Field Activities

On February 17, 2014, Pyramid mobilized to the site and drilled soil borings, installed one temporary monitoring well, and collected some of the proposed soil samples for the PSA. The soil borings and temporary well (TW) were completed using a track mounted Geoprobe® Direct-Push rig. Three (3) soil borings (38-1, 38-2, and 38-3) were advanced on the subject property. The selected locations were chosen to avoid public utilities along the adjacent roads and private utilities associated with the business while remaining in the proposed right of way and/or easement. The soil borings were installed adjacent to proposed drainage piping, as indicated by the NCDOT engineering plans, or within the proposed ROW and/or easement to obtain additional information. Subsequent to the initial contaminant analysis (see below), and additional boring (38-4) was performed on February 18, 2014, to further delineate potential soil contamination at the parcel. The locations of the borings are shown on **Figure 2**.

Soil samples were continuously collected in four-foot long disposable sleeves from each boring for geologic description, and visual examination for signs of contamination. Soil recovered from each sleeve was screened in the field using a Photo-Ionization Detector (PID) approximately every 2 feet depending on the soil recovery of each sleeve. In general, the soil sample with the highest PID reading was selected from each boring for laboratory analysis. If field screening detected an elevated reading, then additional soil samples from each boring were selectively analyzed with the QED UVF HC-1 Analyzer. The soil boring logs with the soil descriptions, visual examination, and PID screening results are included in **Appendix C**. The PID field screening results are summarized in **Table 1**. To prevent cross contamination, new disposable nitrile gloves were worn by the sampling technician during the sampling activities, and were changed between samples. No odors were detected in the borings during the field screening.

The soil samples selected for Total Petroleum Hydrocarbon (TPH) analyses were analyzed utilizing the QED UVF HC-1 Analyzer system from QROS-US. The NCDOT has indicated that this instrument is an acceptable method to provide total petroleum hydrocarbon (TPH) results for soil analysis for the PSA projects. Pyramid's QEDcertified technician performed the soil analyses. The soil samples selected for analysis using the QED Analyzer were analyzed for TPH as diesel range organics (DRO) and TPH as gasoline range organics (GRO). The soil samples selected for analysis using the QED were preserved in the field with methanol and were analyzed at the end of each day using the QED.

4.2 Soil Sample Analytical Results

QED Results

The DENR action levels for both TPH-GRO and TPH-DRO are 10 mg/kg. The QED results for the soil samples at the location of boring 38-1 did not detect TPH-GRO or

TPH-DRO concentrations above 10 mg/kg. However, the QED results for the soil samples at the remaining three boring locations (38-2, 38-3, and 38-4) all recorded DRO concentrations above 10 mg/kg. DRO concentrations ranging from 12.1 mg/kg to 64.9 mg/kg were recorded at these locations. The soil sample QED results are summarized in **Table 2**. A copy of the QED analysis report is included in **Appendix D**.

4.3 Temporary Monitoring Well Installation

On February 17, 2014, Pyramid converted soil boring 38-3 into a 1-inch diameter temporary monitoring well (TW). Soil boring 38-3(TW) was completed to a total depth of 14 feet below land surface (BLS). The temporary well was constructed with 4 feet of 1-inch diameter of schedule 80 PVC casing and 10 feet of 1-inch diameter of schedule 80 PVC slotted screen. The temporary well was set in the boring with 10 feet of slotted screen at the bottom of the well.

On February 17, 2014, the temporary monitoring well 38-3(TW) was gauged using a properly decontaminated electric water level probe. The depth-to-groundwater was measured at 5.1 feet BLS. The temporary monitoring well was sampled using a new 0.5-inch diameter disposable bailer. Upon completion of the gauging and sampling, the temporary monitoring well was properly abandoned by removing the casing, and filling the borehole with bentonite chips and portland cement.

4.4 Groundwater Analytical Results

The groundwater sample 38-3(TW) was placed in laboratory prepared containers for analysis of volatile organic compounds (VOCs) using EPA Method 6200B and semi-volatile organic compounds (SVOCs) using EPA Method 625. The samples were shipped to Pace Analytical in Huntersville, NC. The laboratory analysis did not detect concentrations of any compounds above laboratory detection limits. The groundwater results for sample 38-3(TW) are summarized in **Table 3**. A copy of the laboratory report and chain-of-custody is included in **Appendix E**.

5.0 Conclusions and Recommendations

As requested by NCDOT, Pyramid has completed a PSA at the Council & Williford Properties property located 501 Murchison Rd., Fayetteville, NC (Parcel 038). The following is a summary of the assessment activities and results. Personnel logs for all field work are included in **Appendix F.**

5.1 Geophysical Investigation

The geophysical investigation provided no evidence of metallic USTs within the existing and proposed ROW and/or easement.

5.2 Limited Soil Assessment

The DENR action levels for both TPH-GRO and TPH-DRO are 10 mg/kg. The QED results for the soil samples at the location of boring 38-1 did not detect TPH-GRO or TPH-DRO concentrations above 10 mg/kg. However, the QED results for the soil samples at the remaining three boring locations (38-2, 38-3, and 38-4) all recorded DRO concentrations above 10 mg/kg. DRO concentrations ranging from 12.1 mg/kg to 64.9 mg/kg were recorded at these locations. No obvious source of contamination was observed at the site in connection with these borings.

5.3 Limited Groundwater Assessment

Soil boring 38-3 was converted into a 1-inch diameter temporary monitoring well to a total depth of 14 feet BLS. The depth-to-groundwater was measured at 5.1 feet BLS. The laboratory analysis did not detect concentrations of any compounds above detection limits.

Review of the NCDOT engineering plans indicates that the NCDOT may encounter groundwater at the property during construction activities. However, no evidence of contamination was observed in the water samples collected during this investigation.

5.4 Recommendations

Petroleum-Impacted Soils

During road construction activities, it is possible the NCDOT may encounter petroleum impacted soil near soil borings 38-2, 38-3, and 38-4. The direct source of this petroleum was not evident in the field. Additionally, the NCDOT may also encounter shallow groundwater during construction.

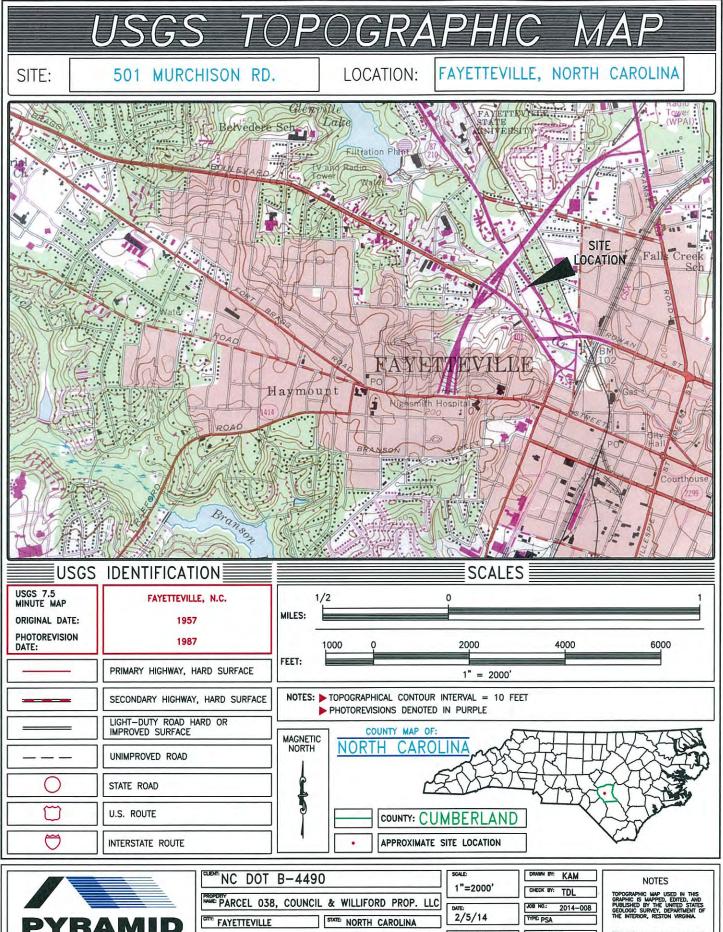
Soils with DRO above 10mg/kg were observed at the location of borings 38-2, 38-3, and 38-4. The NCDOT Microstation slope stake information does not indicate any cuts to be made in this area, however, there are potentially drainage features proposed to be constructed adjacent to the parcel that may require soil excavation.

Estimating the Area of Contamination

The estimated area of contamination is depicted on **Figure 2**. The boundaries of the area of contamination are generally estimated by applying a circular area of contamination around a boring exhibiting DRO/GRO levels above 10 mg/kg with a radius equal to half the distance between that boring and the nearest "clean" boring. In cases where this approach is not feasible, such as near property boundaries or where data does not exist to provide a definitive boundary, the area of contamination is terminated using the distance to the property boundary as a radius, or an educated approximation is applied. For this particular parcel, the distance between boring 38-4 and 38-1 was used as the diameter of contamination surrounding the three contaminated borings.

Pyramid's PSA investigation resulted in an estimated area of **8,906 square feet of impacted soil in the vicinity of borings 38-2, 38-3, and 38-4**. The deepest soil samples exhibiting contamination were between 4 and 6 feet in all three borings. For this reason, a maximum depth of 6 feet will be used to approximate total volumes of contaminated soil. It should be noted that this is a gross estimate based on the data available. Using a total thickness of 6 feet of contaminated soil, Pyramid estimates approximately 53,436 cubic feet, or **1,979 cubic yards of impacted soils between 0 and 6 feet BLS** at the location of borings 38-2, 38-3, and 38-4. The south and west boundaries of this area of contamination are approximate due to limited soil data.

It should be noted that, if impacted soil is encountered during road construction outside the area analyzed by this investigation, the impacted soil should be managed according to NC DENR Division of Waste Management (DWM) UST Section Guidelines and disposed of at a permitted facility.

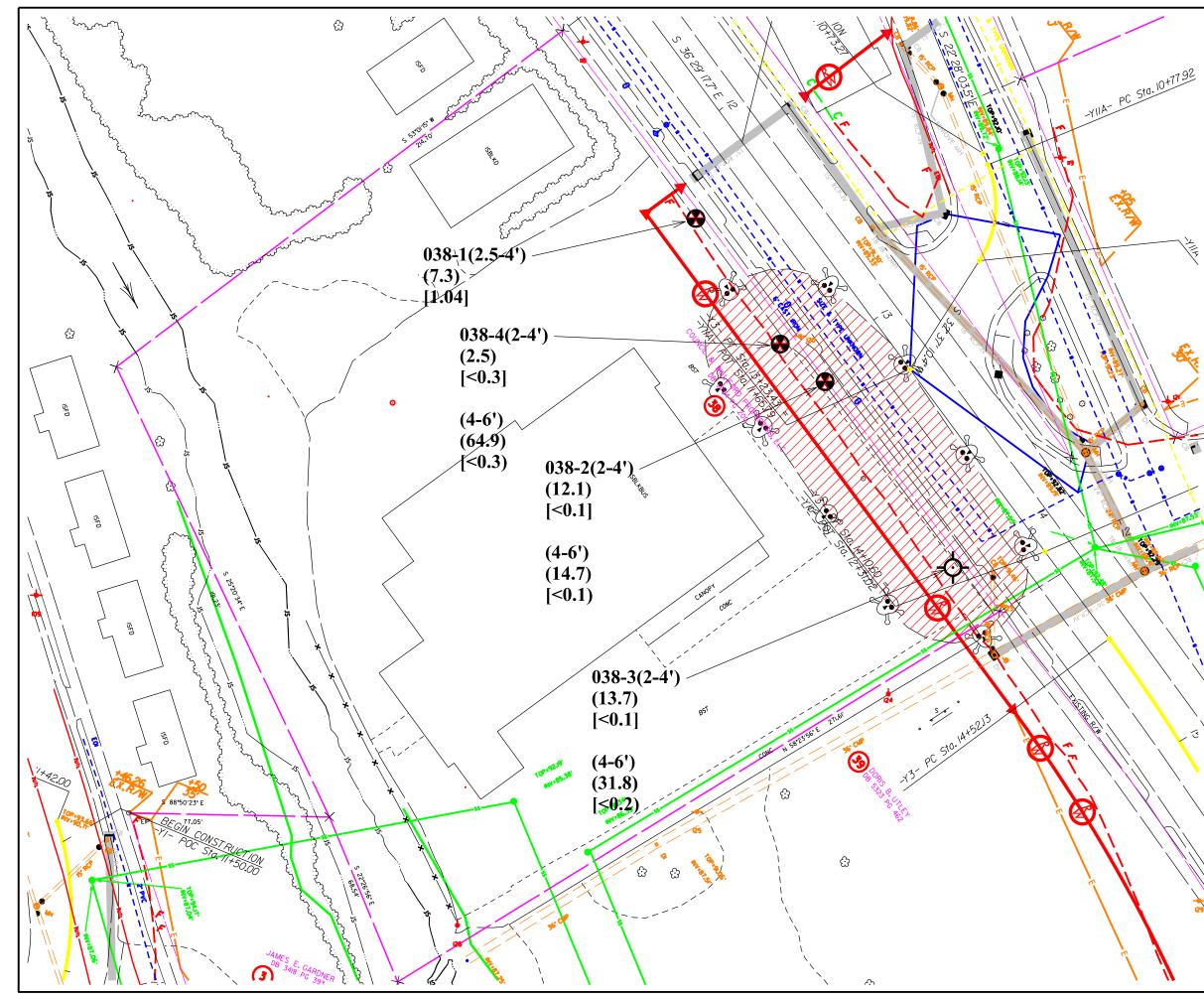

6.0 Limitations

The results of this preliminary investigation are limited to the boring locations completed during this limited assessment and presented in this report. The laboratory results only reflect the current conditions at the locations sampled on the date this PSA was performed.

7.0 Closure

This report was prepared for, and is available solely for use by NCDOT and their designees. The contents thereof may not be used or relied upon by any other person without the express written consent and authorization of Pyramid Environmental & Engineering, P.C. (Pyramid). The observations, conclusions, and recommendations documented in this report are based on site conditions and information reviewed at the time of Pyramid's investigation. Pyramid appreciates the opportunity to provide this environmental service.

FIGURES


STATE: NORTH CAROLINA DRAWING NAME: TOPOGRAPHIC MAP USGSTOPO

ENVIRONMENTAL & ENGINEERING, P.C.

THIS MAP COMPLIES WITH NATIONAL MAP ACCURACY STANDARDS.

1

FIGURE NUMBER

- PUE - PROPOSED UTILITY EASEMENT EXISTING ROW EXISTING PROPERTY BOUNDARY PROPOSED ROW PROPOSED CONST. EASEMENT DUE PROP. DRAINAGE UTIL. EASEMENT PROPOSED SS CUT LINE PROPOSED SS FILL LINE PROPOSED SS TRANSITION LINE PROPOSED DRAINAGE PIPING PROPOSED DRAINAGE EASEMENT

SOIL SAMPLE BORING LOCATION

W

BORING CONVERTED TO MW (LAB RESULTS IN TABLE 4 OF REPORT)

AREA OF CONTAMINATION (>10 PPM)

(<6.1) TPH-DRO concentration (mg/kg) [<6.1] TPH-GRO concentration (mg/kg) * DRO/GRO Analytical data collected by the method of QROS, QED Analyzer

		- <i>1</i> V -				
0	50	100				
	FEE	CT				
TITLE	SOIL BORING LO ESTIMATED AREA OF					
PROJECT	PROJECT NCDOT ROW PROJECT B-4490 (33727.1.1) COUNCIL & WILLIFORD PROPERTIES LLC - PARCEL 038 FAYETTEVILLE, CUMBERLAND COUNTY, NC					
		503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 36.335.3174 (p) 336.691.0648 (f) nse # C1251 Eng. / #C257 Geology				
DATE:	: 2-21-14	REVISION NO. 0				
PYRA	MID PROJECT NO. 2014-008	FIGURE NO. 2				

5

TABLES

TABLE 1

Summary of Soil Field Screening Results NCDOT Project B-4490 501 Murchison Rd. - Parcel 038 Fayetteville, Cumberland County, North Carolina

SOIL BORING	SAMPLE ID	DEPTH	PID
		(feet bgs)	READINGS (PPM)
	38-1(1.5-2.5)	1.5 to 2.5	20
38-1	38-1(2.5-4)	2.5 to 4	700.0
	38-1(4-6)	4 to 6	450.0
	38-1(6-8)	6 to 8	150.0
	38-2(1-2)	1 to 2	20.0
38-2	38-2(2-4)	2 to 4	140.0
	38-2(4-6)	4 to 6	340.0
	38-2(6-8)	6 to 8	25.0
	38-3(1-2)	1 to 2	50.0
38-3	38-3(2-4)	2 to 4	120.0
	38-3(4-6)	4 to 6	400.0
	38-3(6-8)	6 to 8	210.0
	38-4(1-2)	1 to 2	10.0
38-4	38-4(2-4)	2 to 4	300.0
	38-4(4-6)	4 to 6	260.0
	38-4(6-8)	6 to 8	420.0

bgs= below ground surface

PID= photo-ionization detector

PPM= parts-per-million

= sampled for lab analysis &/or QROS-QED analysis

OVA= Organic Vapor Analyzer

TABLE 2 Summary of Soil Sample QED Analytical Results for GRO/DRO NCDOT State Project B-4490 501 Murchison Rd. - Parcel 038 Fayetteville, Cumberland County, North Carolina

				QROS - QED Analysis			Laboratory A	nalysis (Pace)
SAMPLE ID	DATE	DEPTH (feet)	PID (ppm)	GRO (mg/kg) (C5-C10)	DRO (mg/kg) (C10-C35)	TPH (mg/kg) (C5-C35)	EPA Method 3550 DRO (mg/kg)	EPA Method 5035 GRO (mg/kg)
38-1(2.5-4)	2/17/2014	2.5 to 4	700.0	1.04	7.3	8.34		
38-2(2-4)	2/17/2014	2 to 4	140.0	<0.1	12.1	12.1		
38-2(4-6)	2/17/2014	4 to 6	340.0	<0.1	14.7	14.7		
38-3(2-4)	2/17/2014	2 to 4	120.0	<0.1	13.7	13.7		
38-3(4-6)	2/17/2014	4 to 6	400	<0.2	31.8	31.8		
38-4(2-4)	2/18/2014	2 to 4	300	<0.3	2.5	2.5		
38-4(4-6)	2/18/2014	4 to 6	260	<0.3	64.9	64.9		
	Action Level 5/5030-GRO;			10	10	NA	10	10
PID=	photo-ionizaton	detector	GRO=	Gasoline Range Organics	TPH= Total Petroleum		Not Applicable	

PPM= parts-per-million

DRO= Diesel Range Organics mg/kg= milligrams-per-kilogram Hydrocarbons (GRO + DRO)

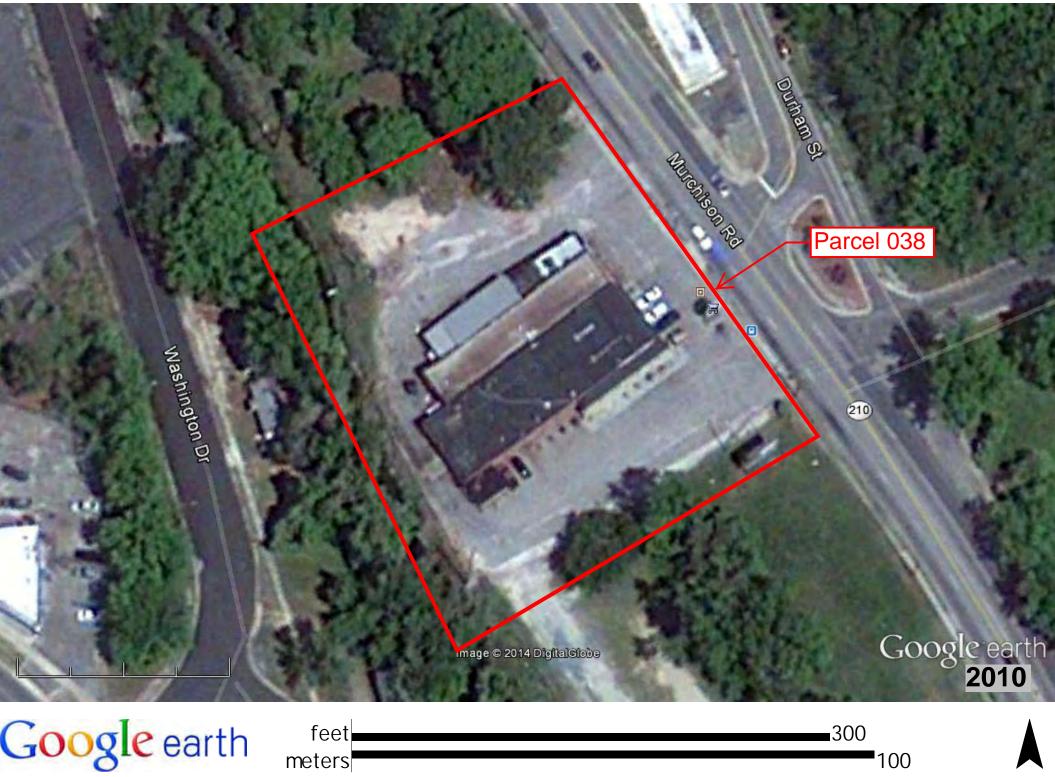
"-----" = No Laboratory Analysis

* Bold values indicate concentrations above initial action levels

TABLE 3

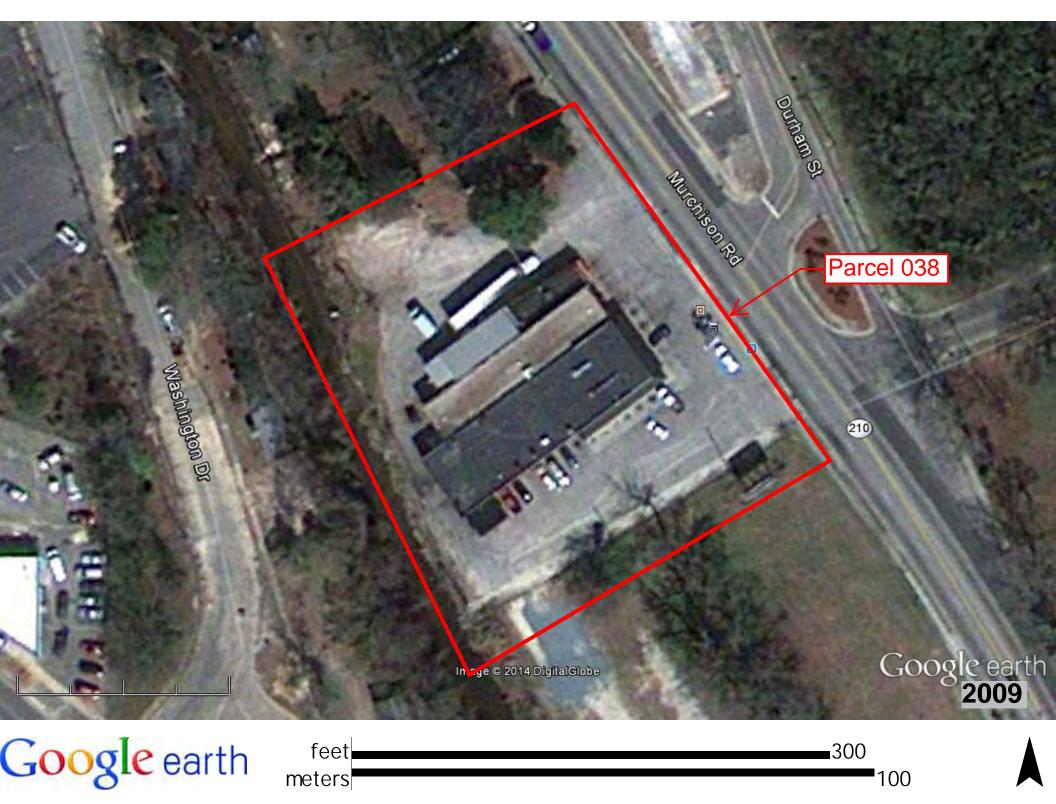
Summary of Groundwater Analytical Results NCDOT State Project B-4490 501 Murchison Rd. - Parcel 038 Fayetteville, Cumberland County, North Carolina

	UNITS	SAMPLE ID	NCAC 2L				
PARAMETER			GROUNDWATER				
		38-3(TW)	STANDARD				
EPA Method 6200B VOCs; Sample Collection Date: 2/17/14							
Benzene	ug/L	ND	1				
Chloroform	ug/L	ND	70				
Diisopropyl Ether (IPE)	ug/L	ND	70				
Ethyl Benzene	ug/L	ND	600				
Isopropylbenzene (Cumene)	ug/L	ND	70				
Naphthalene	ug/L	ND	6				
Styrene	ug/L	ND	70				
Toluene	ug/L	ND	600				
Total Xylenes	ug/L	ND	500				
n-Propylbenzene	ug/L	ND	70				
sec-Butylbenzene	ug/L	ND	70				
tert-Butyl methyl ether (MTBE)	ug/L	ND	20				
tert-Butylbenzene	ug/L	ND	70				
1,2,4-Trimethylbenzene	ug/L	ND	400				
1,2-Dichloroethane	ug/L	ND	0.4				
1,3,5-Trimethylbenzene	ug/L	ND	400				
4-Isopropyltoluene	ug/L	ND	25				
All Other Parameters	ug/L	ND	NA				
EPA Method 625 Semi-Volatile Organic Compounds							
Acenaphthene	ug/L	ND	80				
Diethylphthalate	ug/L	ND	6000				
bis(2-Ethylhexyl)phthalate	ug/L	ND	3				
Naphthalene	ug/L	ND	6				
Phenanthrene	ug/L	ND	200				
Phenol	ug/L	ND	30				
Pyrene	ug/L	ND	200				
All Other Parameters	ug/L	ND	NA				

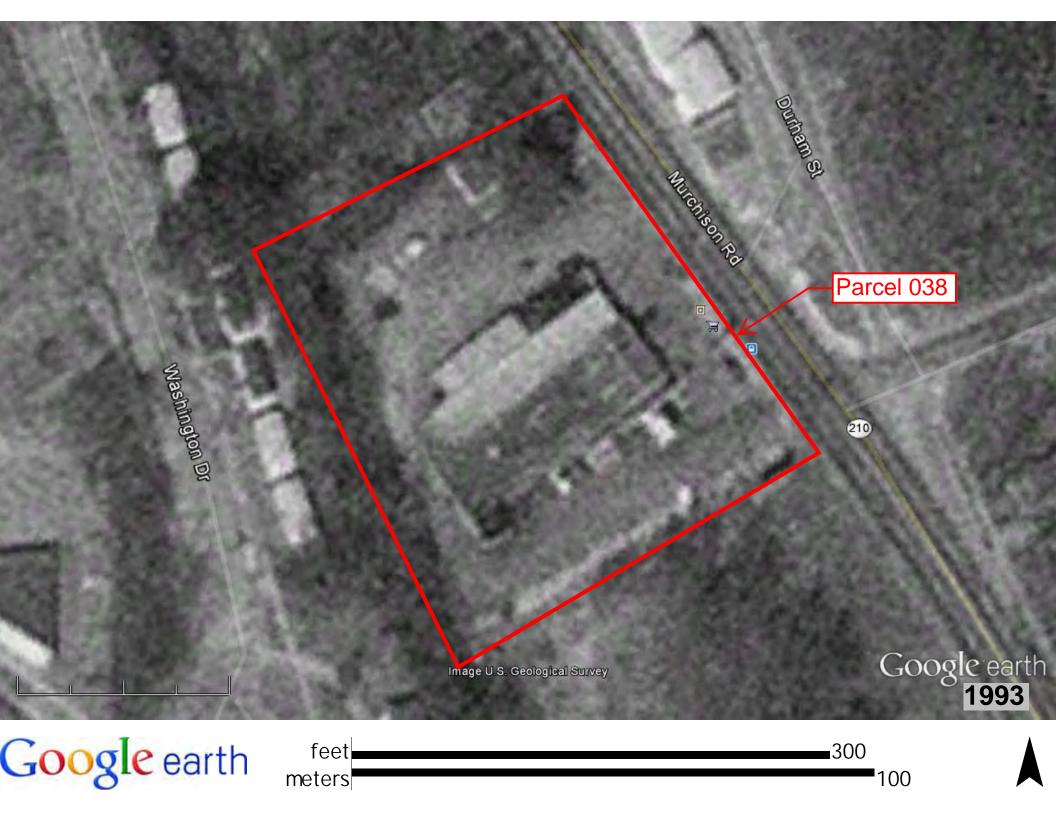

ug/L= micrograms-per-liter

ND= Not Detected at or above adjusted reporting limit.

NA= Not Applicable


APPENDIX A

e earth	feet	
	meters	



meters

APPENDIX B

GEOPHYSICAL SURVEY

PARCEL 038 – COUNCIL & WILLIFORD PROPERTIES, LLC 501 MURCHISON RD. NCDOT PROJECT B-4490 (33727.1.1)

FAYETTEVILL, CUMBERLAND COUNTY, NC

FEBRUARY 12, 2014

Report prepared for:

Mr. Gordon Box GeoEnvironmental Project Manager Geotechnical Engineering Unit 1020 Birch Ridge Drive Raleigh, NC 27610

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by: _

Douz Canavello

wed by: _____

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

Table of Contents

Executive Summary	.1
ntroduction	.2
Field Methodology	.2
Discussion of Results	
Summary and Conclusions	
Limitations	

Figures

- Figure 1 Parcel 038 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 038 EM61 Bottom Coil & Differential Results Contour Maps
- Figure 3 Parcel 038 Overlay of EM61 Contour Map On Engineering Plans
- $Figure \ 4-Parcel \ 038-GPR \ Transect \ Locations \ and \ Images$

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for the North Carolina Department of Transportation (NCDOT), at the Council & Williford Properties, LLC property, Parcel 038, 501 Murchison Rd., Fayetteville, Cumberland County, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project B-4490). The geophysical survey boundaries at the project site were designed to include the portions of the property between the existing edge of pavement and the proposed ROW and easements, whichever distance was greater. The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys.

Geophysical Results: The majority of the EM features at the property were suspected to be associated with reinforced concrete, utilities, or the bus stop and sign. The GPR verified the presence of reinforced concrete on the west and south sides of the survey area, and a storm sewer pipe on the south survey boundary. The geophysical investigation <u>did not record evidence of any metallic USTs</u> at the property.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for the North Carolina Department of Transportation (NCDOT), at the Council & Williford Properties, LLC property, Parcel 038, 501 Murchison Rd., Fayetteville, Cumberland County, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project B-4490). The geophysical survey boundaries at the project site were designed to include the portions of the property between the existing edge of pavement and the proposed ROW and easements, whichever distance was greater. The survey grid extended 40 feet from east to west and 230 feet from north to south. Conducted on January 28 and February 4, 2014, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site was a vacant grocery store building that otherwise consisted of asphalt parking space and concrete sidewalks. Aerial photographs showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

Prior to conducting the geophysical investigation, a 20-foot by 10-foot survey grid was established across the geophysical survey areas using measuring tapes and water-based marking paint. These grid marks were used as X-Y coordinates for location control when collecting the geophysical data and establishing base maps for the geophysical results.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. The EM survey was performed on January 28, 2014, using a Geonics EM61 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8 foot intervals along north-south trending or east-west trending, parallel survey lines spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics DAT61 and Surfer for Windows Version 11.0 software programs.

GPR data were acquired across select EM differential anomalies on February 4, 2014, using a Geophysical Survey Systems, Inc. (GSSI) SIR-2000 unit equipped with a 400 MHz antenna. Data were collected generally from east to west and north to south across the property. The GPR data were viewed in real time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 8 feet, based on an estimated two-way travel time of 8 nanoseconds per foot. GPR transects across specific anomalies were saved to the hard drive of the SIR unit for post-processing and figure generation.

DISCUSSION OF RESULTS

Contour plots of the EM61 bottom coil and differential results obtained across the survey area at the property are presented in **Figure 2**. The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to delineate metal conduits or utility lines; small, isolated metal objects, and areas containing insignificant metal debris. The differential results are obtained from the difference between the top and bottom coils of the EM61 instrument. The differential results focus on the larger metal objects such as drum and UST-size objects and ignore the smaller insignificant metal objects.

Discussion of EM Anomalies: The EM feature extending from south to north from Y=80 to Y=150 centered at X=25 is the result of reinforcement within the concrete observed in this area. The EM feature extending from west to east across the entire survey area at its southern boundary is the combined result of reinforced concrete underlain by an apparent storm sewer pipe. The large EM feature centered at X=50, Y=100 is the result of a sign, poles, and bus stop at this location. The EM feature centered at X=50, Y=150 is suspected to be the result of isolated debris or a utility. Lastly, the remaining east/west oriented features to the north are associated with utilities (gas and water) that were marked in the field. GPR transects were performed across the areas of reinforced concrete to verify the presence of reinforcement and determine if any structures underlay the reinforcement.

Discussion of GPR Survey: Figure 4 presents the locations of the formal GPR transects performed at the property, as well as images of the transects. GPR Transects 1 and 2 were performed across the west and south areas of reinforced concrete, respectively. Transect 1 verified the reinforcement and did not detect any structures underneath. Transect 2 indicated partial reinforcement as well as the presence of a storm sewer pipe in the subsurface. Reconnaissance transects were performed across the minor feature centered at X=50, Y=150, and no distinct reflectors or objects were observed. No evidence of any large structures such as USTs was recorded.

The geophysical investigation <u>did not record any evidence of metallic USTs</u> at the property within the survey area limits.

SUMMARY & CONCLUSIONS

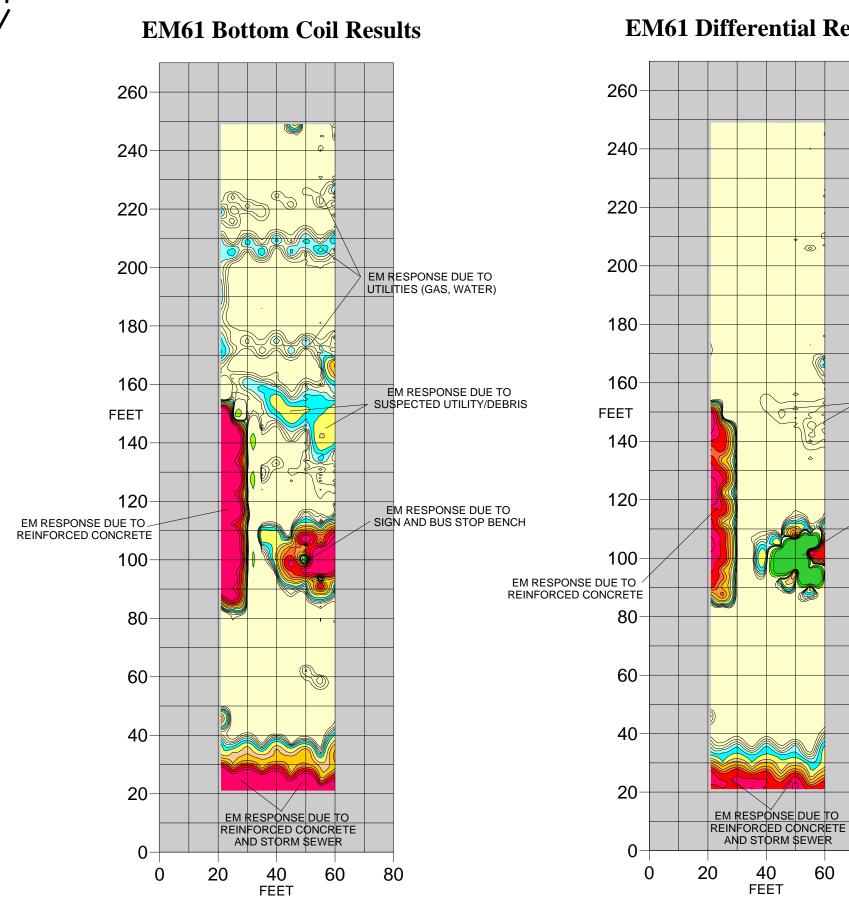
Our evaluation of the EM61 and GPR data collected across Parcel 038 in Fayetteville, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM features at the property were suspected to be associated with reinforced concrete, utilities, or the bus stop and sign.
- The GPR verified the presence of reinforced concrete on the west and south sides of the survey area, and a storm sewer pipe on the south survey boundary.
- The geophysical investigation <u>did not record evidence of any metallic USTs</u> at the property.

LIMITATIONS

Geophysical surveys have been performed and this report prepared for the NCDOT in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but that the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

Approximate Boundaries of the Geophysical Survey Area

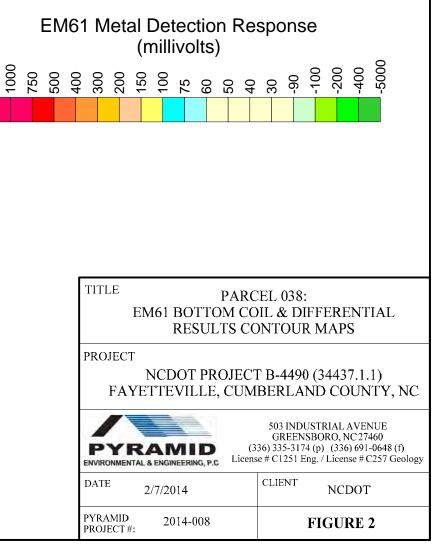

View of Survey Area (Facing Approximately North)

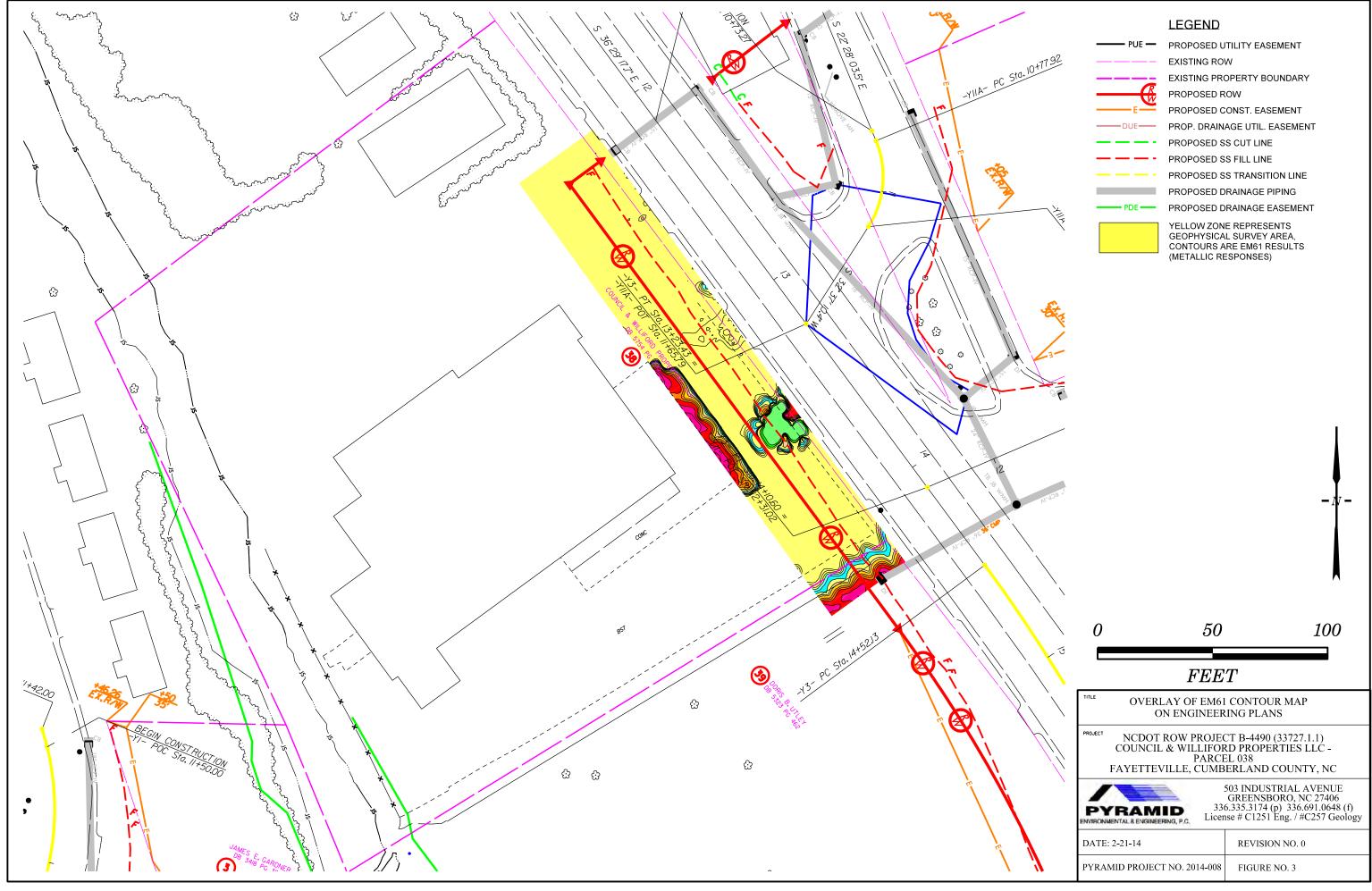
View of Survey Area (Facing Approximately South)

TITLE PARCEL 038: GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS			
PROJECT NCDOT PROJECT B-4490 (33727.1.1) FAYETTEVILLE, CUMBERLAND COUNTY, NC			
503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology			
DATE 2/7/2014	CLIENT NCDOT		
PYRAMID 2014-008 PROJECT #:	FIGURE 1		

EM61 Differential Results

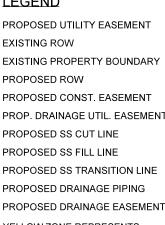
EM RESPONSE DUE TO SUSPECTED UTILITY/DEBRIS

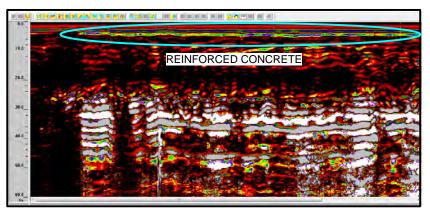

EM RESPONSE DUE TO


SIGN AND BUS STOP BENCH

80

NO EVIDENCE OF METALLIC USTs OBSERVED


The contour plots show the bottom coil (most sensitive) and differential results of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous buried, metal debris. The EM61 data were collected on January 28, 2013 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were collected on February 4, 2013, using a GSSI SIR 2000 unit coupled to a 400 MHz antennae.



Approximate Locations of GPR Transects

POSSIBLE REINFORCED CONCRETE SUSPECTED STORM SEWER PIPE

GPR Transect 1

GPR Transect 2

TITLE PARCEL 038: GPR TRANSECT LOCATIONS AND SELECT IMAGES PROJECT NCDOT PROJECT B-4490 (33727.1.1) FAYETTEVILLE, CUMBERLAND COUNTY, NC

	RAMID AL & ENGINEERING, P.C.	503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 336) 335-3174 (p) (336) 691-0648 (f) se # C1251 Eng. / License # C257 Geology
DATE	2/7/2014	CLIENT NCDOT
PYRAMID PROJECT #:	2014-008	FIGURE 4

APPENDIX C

FIELD DRILLING RECORD

PROJECT NAME: PROJECT NUMBER:	NC DOT B-4490, Parcel 38, Council & Williford, Fayetteville, NC / 2014-008	BORING/WELL NO:	38-1
SITE LOCATION:	Cumberland County, NC	BORING/WELL LOCATION:	Parcel 38, Council & Williford, NE side of parcel
START DATE:	2/17/14	COMPLETED:	2/17/14
GEOLOGIST:	Eric Cross	DRILLER:	Solutions-IES
DRILL METHOD:	Geoprobe	SAMPLE METHOD:	Macro-core
BORING DIA:	2-inch	CASING DIA:	N/A
TOTAL DEPTH:	8 feet	CASING DEPTH:	N/A

	VISUAL MANUAL SOIL CLASSIFICATION	OVA RESULTS
DEPTH	COLOR, TEXTURE, STRUCTURE, CONSISTENCY, ODOR, ETC.	PERCENT RECOVERY
(ft.)		BLOW COUNTS

		Core Sample Depths
1.5-2.5'	sand (SP); brown, fine grained, no odor	OVA=38-1(1.5-2.5): 20 PPM
2.5-4'	silt (ML); dark gray with organic debris, fine grained, no odor	OVA=38-1(2-4): 700 PPM
4-6'	silt (ML); dark gray with organic debris, fine grained, no odor, wet	OVA=38-1(4-6): 450 PPM
6-8'	sand (SP); with gravel, gray, to silt (ML); gray, fine grained, no odor	OVA=38-1(6-8): 150 PPM

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH (ft)	DEPTH (ft)		DIAMETER (in)	 MATERIAL		
SCREEN LENGTH (ft)	DEPTH (ft)		DIAMETER (in)	 MATERIAL		
DEPTH TO TOP OF SAND			BAGS OF SAND			
DEPTH TO TOP SEAL	I	BENTONITI	E USED	BAGS OF CEM	IENT USEI	<u> </u>

FIELD DRILLING RECORD

PROJECT NAME: PROJECT NUMBER:	NC DOT B-4490, Parcel 38, Council & Williford, Fayetteville, NC / 2014-008	BORING/WELL NO:	38-2
SITE LOCATION:	Cumberland County, NC	BORING/WELL LOCATION:	Parcel 38, Council & Williford, East-Central Side
START DATE:	2/17/14	COMPLETED:	2/17/14
GEOLOGIST:	Eric Cross	DRILLER:	Solutions-IES
DRILL METHOD:	Geoprobe	SAMPLE METHOD:	Macro-core
BORING DIA:	2-inch	CASING DIA:	N/A
TOTAL DEPTH:	8 feet	CASING DEPTH:	N/A

		VISUAL MANUAL SOIL CLASSIFICATION	OVA RESULTS
1	DEPTH	COLOR, TEXTURE, STRUCTURE, CONSISTENCY, ODOR, ETC.	PERCENT RECOVERY
	(ft.)		BLOW COUNTS

		Core Sample Depths
1-2'	sand (SP); brown and orange brown, fine grained, no odor	OVA=38-2(1-2): 20 PPM
2-4'	sand (SP) with gravel to silty sand (SM); gray, fine grained, no odor,	OVA=38-2(2-4): 140 PPM
	organic debris, wet	
4-6'	silty sand (SM); very dark gray with organic debris, fine grained, no odor	OVA=38-2(4-6): 340 PPM
6-8'	sandy silt (ML); gray, fine grained, no odor	OVA=38-2(6-8): 25 PPM

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH (ft)	DEPTH (ft)	DIAMETER (in)	MATERIAL
SCREEN LENGTH (ft)	DEPTH (ft)	DIAMETER (in)	MATERIAL
DEPTH TO TOP OF SAND		BAGS OF SAND	
DEPTH TO TOP SEAL	BENT	ONITE USED	BAGS OF CEMENT USED

FIELD DRILLING RECORD

PROJECT NAME: PROJECT NUMBER:	NC DOT B-4490, Parcel 38, Council & Williford, Fayetteville, NC / 2014-008	BORING/WELL NO:	38-3(TW)
SITE LOCATION:	Cumberland County, NC	BORING/WELL LOCATION:	Parcel 38, Council & Williford, SE side of parcel
START DATE:	2/17/14	COMPLETED:	2/17/14
GEOLOGIST:	Eric Cross	DRILLER:	Solutions-IES
DRILL METHOD:	Geoprobe	SAMPLE METHOD:	Macro-core
BORING DIA:	2-inch	CASING DIA:	1-inch
TOTAL DEPTH:	14 feet	CASING DEPTH:	14 feet

	VISUAL MANUAL SOIL CLASSIFICATION	OVA RESULTS
DEPTH	COLOR, TEXTURE, STRUCTURE, CONSISTENCY, ODOR, ETC.	PERCENT RECOVERY
(ft.)		BLOW COUNTS

		Core Sample Depths
1-2'	sand (SP) and silty sand (SM); brown to gray with organics, no odor	OVA=38-3(1-2): 50 PPM
2-4'	silt (ML); very dark gray, fine grained, wet @ 4', no odor	OVA=38-3(2-4): 120 PPM
4-6'	silt (ML); very dark gray, fine grained with organics, wet, no odor	OVA=38-3(4-6): 400 PPN
6-8'	sand (SP); gray, medium grained, no odor	OVA=38-3(6-8): 210 PPN
	Set 1-inch diameter temporary well at 14 feet with bottom 10 feet of	
	screen	
	Depth to groundwater = 5.1 feet below land surface	

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH (ft)4	DEPTH (ft) 0-4	DIAMETER (in) 1	MATERIAL <u>PVC</u> .
SCREEN LENGTH (ft) 10	DEPTH (ft) 4-14	DIAMETER (in) 1	MATERIAL <u>PVC</u> .
DEPTH TO TOP OF SAND		BAGS OF SAND	
DEPTH TO TOP SEAL	BENTO	ONITE USED .25	BAGS OF CEMENT USED <u>0</u> .

FIELD DRILLING RECORD

PROJECT NAME: PROJECT NUMBER:	NC DOT B-4490, Parcel 38, Council & Williford, Fayetteville, NC / 2014-008	BORING/WELL NO:	38-4
SITE LOCATION:	Cumberland County, NC	BORING/WELL LOCATION:	Parcel 38, Council & Williford, East-Central Side North of 38-2
START DATE:	2/18/14	COMPLETED:	2/18/14
GEOLOGIST:	Eric Cross	DRILLER:	Solutions-IES
DRILL METHOD:	Geoprobe	SAMPLE METHOD:	Macro-core
BORING DIA:	2-inch	CASING DIA:	N/A
TOTAL DEPTH:	8 feet	CASING DEPTH:	N/A

	VISUAL MANUAL SOIL CLASSIFICATION	OVA RESULTS
DEPTH	COLOR, TEXTURE, STRUCTURE, CONSISTENCY, ODOR, ETC.	PERCENT RECOVERY
(ft.)		BLOW COUNTS

		Core Sample Depths
1-2'	asphalt to sand (SP); brown, fine grained, no odor	OVA=38-4(1-2): 10 PPM
2-4'	sand (SP) to silty sand (SM); brown to very dark gray, fine grained,	OVA=38-4(2-4): 300 PPM
	moist, no odor	
4-6'	clay (CL) to sand (SP); gray, fine grained, wet, no odor, organic debris	OVA=38-4(4-6): 260 PPM
6-8'	sand (SP); gray, fine grained, wet, no odor	OVA=38-4(6-8): 420 PPM

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH (ft)	DEPTH (ft)		DIAMETER (in)	 MATERIAL		
SCREEN LENGTH (ft)	DEPTH (ft)		DIAMETER (in)	 MATERIAL		
DEPTH TO TOP OF SAND			BAGS OF SAND			
DEPTH TO TOP SEAL	I	BENTONITI	E USED	BAGS OF CEM	IENT USEI	<u> </u>

APPENDIX D

Hydrocarbon Analysis Results

Client: NCDOT Cumberland County - Parcel 038 Address: 501 Murchison Road - Parcel 038 Fayetteville, NC Samples taken5 (Five) Samples TakenSamples extracted5 (Five) Samples ExtractedSamples analysed5 (Five) Samples Analysed

Operator

Tim Leatherman

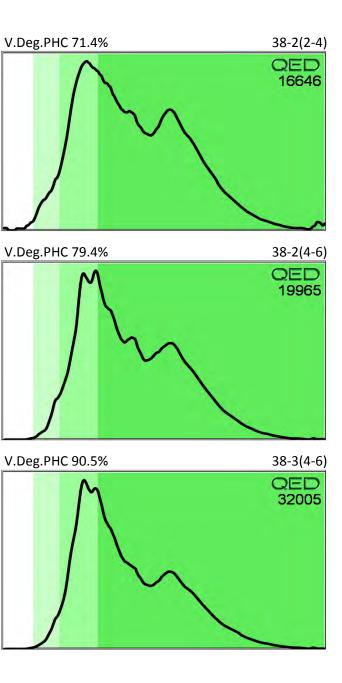
Contact:

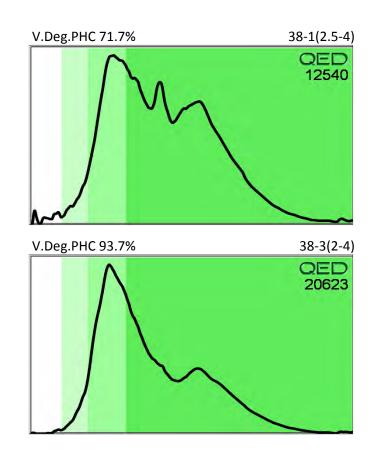
Project: NCDOT Cumberland County B-4490

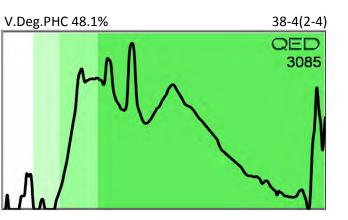
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Ratios	;	HC Fingerprint Match
										% light % mic	% heavy	
S	38-2(2-4)	14.0	<0.1	<0.1	12.1	12.1	11.3	0.6	0.01	38.5 34.3	3 27.2	V.Deg.PHC 71.4%
S	38-1(2.5-4)	13.0	1.04	1.04	7.3	8.34	6.7	0.42	<0.01	42.4 32.2	2 25.4	V.Deg.PHC 71.7%
S	38-2(4-6)	13.0	<0.1	<0.1	14.7	14.7	11.4	0.5	<0.01	29.3 47.8	3 22.9	V.Deg.PHC 79.4%
S	38-3(2-4)	14.0	<0.1	<0.1	13.7	13.7	10.7	0.45	<0.01	34.8 46.4	18.9	V.Deg.PHC 93.7%
S	38-3(4-6)	15.0	<0.2	<0.2	31.8	31.8	23.9	1.14	<0.01	21.8 57.4	20.8	V.Deg.PHC 90.5%
		Initial	Calibrator	QC check	OK							
Results gen	erated by a QED HC-1 analyser. Concentration	values in n	ng/kg for so	il samples an	d mg/L for wa	ter samples.	Soil values a	re not corre	ected for mo	isture or stone of	ontent	
Fingerprints	provide a tentative hydrocarbon identification. Th	e abbreviati	ons are:- F	CM = Results	s calculated u	sing Fundame	ental Calibratio	n Mode : %	6 = confiden	ce for sample fir	ngerprint	match to library
(SBS) or (LE	BS) = Site Specific or Library Background Subtrac	tion applied	to result : (PFM) = Poor	Fingerprint M	atch : (T) = T	urbid : (P) = Pa	articulate pr	esent			

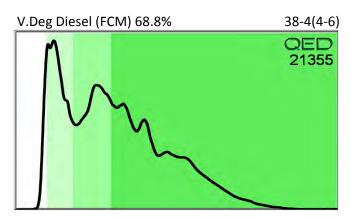
Hydrocarbon Analysis Results

Client: NCDOT Cumberland County - Parcel 038 Address: 501 Murchison Road - Parcel 038 Fayetteville, NC Samples takenTwo (2) Samples TakenSamples extractedTwo (2) Samples ExtractedSamples analysedTwo (2) Samples Analysed


Operator


Ryan Kramer


Contact:


Project: NCDOT Cumberland County B-4490

Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs		ΡΔHe	PAHs		Ratios	%	HC Fingerprint Match
										% light	% mid	heavy			
S	38-4(2-4)	27.0	<0.3	<0.3	2.5	2.5	2.2	0.06	<0.01	0	27.3	72.7	V.Deg.PHC 48.1%		
S	38-4(4-6)	26.0	<0.3	<0.3	64.9	64.9	33.3	1.4	0.057	71.2	21.8	7.1	V.Deg Diesel (FCM) 68.8%		
		Initial (Calibrator	QC check	OK										
		in including	Calibrator	QU UNCOR	OR										
Deputte com		veluee in m			d mail for	ton comple-	Coll volus	no not or	ated for	latura e e	alana	mtant			
-	erated by a QED HC-1 analyser. Concentration				•	•									
	provide a tentative hydrocarbon identification. Th					-				ce for sa	mple fing	jerprint i	match to library		
(SBS) or (LI	3S) = Site Specific or Library Background Subtrac	tion applied	to result : (I	PFM) = Poor	Fingerprint M	atch : (T) = Tι	urbid : (P) = Pa	articulate pr	esent						

Parcel 038

CHAIN-OF-CUSTODY / Analytical Request Document - QROS / QED

Page: **1** of <u>1</u>

828

Pyramid Environmental & Engineering, P.C. Company:

Company:	
Pyramid Environmental	& Engineering, P.C.

Project Name: NCDOT (umber and (ty Parce) Project Number:

Address: 503 Industrial Ave. Greensboro, NC 27406

	Greensboro, NC 27406				······				Re	l quested Anal	veie
ITEM	SAMPLE ID	Matrix	C=Comp. G=Grab	COLLI	ECTED Time	Containers	Un- preserved	Methanol			
	34 - 1(2.5 - 4) $34 - 2(2 - 4)$ $34 - 2(2 - 4)$ $34 - 2(2 - 4)$ $34 - 3(2 - 4)$ $38 - 4(2 - 4)$ $38 - 4(2 - 6)$	Soil Soil Soil Soil Soil	UC C C C C C C C C C C C C C C C C C C	Date 2-17-10 2-17-10 2-17-14 2-18-14 2-18-14 2-18-14	49995 9995 9997 9997 9997 997 997 997 997		10.55 10.33 10.69 10.69 10.69 10.69 10.59 10.59	20m1 20m1 20m1 20m2 20m2 20m2	G-RO 1.04 20.1 20.1 20.2 20.3 20.3	DRO 7,3 12.1 14.7 13.7 31.8 2.5 64.9	$ \begin{array}{c} P \\ $
	Relinquished By / Affiliation	Date	Time	Accer	oted By / Affi	iation	Date	Time			
		SAMPLER I Print Name Signature of	of Sampler:	SIGNATURE Ryav Pr	(Knu			Date Signed: 2	<i>[18]</i> 14		235.0

APPENDIX E

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

February 28, 2014

Chemical Testing Engineer Materials and Tests Unit 1801 Blue Ridge Road Raleigh, NC 27607

RE: Project: WBS33727.1.1/B-4490 Cumberland Pace Project No.: 92190303

Dear Chemical Engineer:

Enclosed are the analytical results for sample(s) received by the laboratory on February 19, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

for Budley

Jon D Bradley jon.bradley@pacelabs.com Project Manager

Enclosures

cc: Tim Leatherman, Pyramid Environmental

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221

ANALYTICAL RESULTS

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

Sample: 38-3 (TW) Lab ID: 92190303001 Collected: 02/17/14 16:00 Received: 02/19/14 17:45 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 625 MSSV Analytical Method: EPA 625 Preparation Method: EPA 625 Acenaphthene ND ua/L 8.3 1 02/20/14 13:00 02/27/14 23:50 83-32-9 Acenaphthylene ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 208-96-8 1 ND ug/L Anthracene 8.3 1 02/20/14 13:00 02/27/14 23:50 120-12-7 Benzo(a)anthracene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 56-55-3 ND ug/L Benzo(a)pyrene 8.3 1 02/20/14 13:00 02/27/14 23:50 50-32-8 Benzo(b)fluoranthene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 205-99-2 Benzo(g,h,i)perylene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 191-24-2 Benzo(k)fluoranthene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 207-08-9 4-Bromophenylphenyl ether ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 101-55-3 Butylbenzylphthalate ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 85-68-7 4-Chloro-3-methylphenol ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 59-50-7 1 bis(2-Chloroethoxy)methane ND ug/L 16.7 02/20/14 13:00 02/27/14 23:50 111-91-1 1 02/20/14 13:00 02/27/14 23:50 111-44-4 ND ug/L 8.3 bis(2-Chloroethyl) ether 1 ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 108-60-1 bis(2-Chloroisopropyl) ether 1 2-Chloronaphthalene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 91-58-7 02/20/14 13:00 02/27/14 23:50 95-57-8 2-Chlorophenol ND ug/L 8.3 1 4-Chlorophenylphenyl ether ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 7005-72-3 Chrysene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 218-01-9 Dibenz(a,h)anthracene ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 53-70-3 1 41.7 02/20/14 13:00 02/27/14 23:50 91-94-1 3,3'-Dichlorobenzidine ND ug/L 1 2,4-Dichlorophenol ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 120-83-2 Diethylphthalate ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 84-66-2 2,4-Dimethylphenol ND ug/L 16.7 02/20/14 13:00 02/27/14 23:50 105-67-9 1 Dimethylphthalate ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 131-11-3 1 Di-n-butylphthalate ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 84-74-2 1 4,6-Dinitro-2-methylphenol ND ug/L 33.3 1 02/20/14 13:00 02/27/14 23:50 534-52-1 2,4-Dinitrophenol ND ug/L 83.3 1 02/20/14 13:00 02/27/14 23:50 51-28-5 2,4-Dinitrotoluene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 121-14-2 2,6-Dinitrotoluene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 606-20-2 Di-n-octylphthalate ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 117-84-0 1 8.3 02/20/14 13:00 02/27/14 23:50 117-81-7 bis(2-Ethylhexyl)phthalate ND ug/L 1 Fluoranthene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 206-44-0 Fluorene ND ua/L 8.3 1 02/20/14 13:00 02/27/14 23:50 86-73-7 Hexachloro-1,3-butadiene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 87-68-3 Hexachlorobenzene ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 118-74-1 02/20/14 13:00 02/27/14 23:50 77-47-4 Hexachlorocyclopentadiene ND ug/L 16.7 1 Hexachloroethane ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 67-72-1 1 Indeno(1,2,3-cd)pyrene 8.3 02/20/14 13:00 02/27/14 23:50 193-39-5 ND ug/L 1 Isophorone ND ug/L 16.7 1 02/20/14 13:00 02/27/14 23:50 78-59-1 Naphthalene ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 91-20-3 1 Nitrobenzene ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 98-95-3 1 2-Nitrophenol ND ug/L 8.3 1 02/20/14 13:00 02/27/14 23:50 88-75-5 83.3 4-Nitrophenol ND ug/L 1 02/20/14 13:00 02/27/14 23:50 100-02-7 N-Nitrosodimethylamine ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 62-75-9 1 N-Nitroso-di-n-propylamine ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 621-64-7 1 N-Nitrosodiphenylamine ND ug/L 16.7 02/20/14 13:00 02/27/14 23:50 86-30-6 1 Pentachlorophenol ND ug/L 16.7 02/20/14 13:00 02/27/14 23:50 87-86-5 1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

Sample: 38-3 (TW) Lab ID: 92190303001 Collected: 02/17/14 16:00 Received: 02/19/14 17:45 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 625 MSSV Analytical Method: EPA 625 Preparation Method: EPA 625 Phenanthrene ND ua/L 83 1 02/20/14 13:00 02/27/14 23:50 85-01-8 ND ug/L 8.3 Phenol 1 02/20/14 13:00 02/27/14 23:50 108-95-2 ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 129-00-0 Pvrene 1 1,2,4-Trichlorobenzene ND ug/L 8.3 02/20/14 13:00 02/27/14 23:50 120-82-1 1 2,4,6-Trichlorophenol ND ug/L 16.7 1 02/20/14 13:00 02/27/14 23:50 88-06-2 Surrogates Nitrobenzene-d5 (S) 33 % 10-120 02/20/14 13:00 02/27/14 23:50 4165-60-0 1 2-Fluorobiphenyl (S) 34 % 15-120 02/20/14 13:00 02/27/14 23:50 321-60-8 1 Terphenyl-d14 (S) 53 % 11-131 02/20/14 13:00 02/27/14 23:50 1718-51-0 1 10-120 02/20/14 13:00 02/27/14 23:50 13127-88-3 Phenol-d6 (S) 20 % 1 26 % 10-120 2-Fluorophenol (S) 02/20/14 13:00 02/27/14 23:50 367-12-4 1 2,4,6-Tribromophenol (S) 60 % 10-137 1 02/20/14 13:00 02/27/14 23:50 118-79-6 6200B MSV Analytical Method: SM 6200B 0.50 02/26/14 20:26 71-43-2 ND ug/L 1 Benzene Bromobenzene ND ug/L 0.50 1 02/26/14 20:26 108-86-1 Bromochloromethane ND ug/L 0.50 1 02/26/14 20:26 74-97-5 Bromodichloromethane ND ug/L 0.50 1 02/26/14 20:26 75-27-4 ND ug/L 0.50 02/26/14 20:26 75-25-2 Bromoform 1 Bromomethane ND ug/L 5.0 1 02/26/14 20:26 74-83-9 n-Butylbenzene ND ug/L 0.50 02/26/14 20:26 104-51-8 1 ND ug/L 0.50 02/26/14 20:26 135-98-8 sec-Butylbenzene 1 0.50 tert-Butylbenzene ND ug/L 02/26/14 20:26 98-06-6 1 ND ug/L 0.50 02/26/14 20:26 56-23-5 Carbon tetrachloride 1 Chlorobenzene ND ug/L 0.50 02/26/14 20:26 108-90-7 1 Chloroethane ND ug/L 1.0 1 02/26/14 20:26 75-00-3 Chloroform ND ug/L 0.50 1 02/26/14 20:26 67-66-3 Chloromethane ND ug/L 1.0 02/26/14 20:26 74-87-3 1 2-Chlorotoluene ND ug/L 0.50 1 02/26/14 20:26 95-49-8 ND ug/L 0.50 02/26/14 20:26 106-43-4 4-Chlorotoluene 1 1,2-Dibromo-3-chloropropane ND ug/L 1.0 1 02/26/14 20:26 96-12-8 Dibromochloromethane ND ug/L 0.50 02/26/14 20:26 124-48-1 1 0.50 02/26/14 20:26 106-93-4 1,2-Dibromoethane (EDB) ND ug/L 1 02/26/14 20:26 74-95-3 Dibromomethane ND ug/L 0.50 1 1.2-Dichlorobenzene ND ug/L 0.50 02/26/14 20:26 95-50-1 1 1,3-Dichlorobenzene ND ug/L 0.50 1 02/26/14 20:26 541-73-1 02/26/14 20:26 106-46-7 0.50 1.4-Dichlorobenzene ND ug/L 1 Dichlorodifluoromethane ND ug/L 0.50 02/26/14 20:26 75-71-8 1 1,1-Dichloroethane ND ug/L 0.50 02/26/14 20:26 75-34-3 1 1,2-Dichloroethane ND ug/L 0.50 02/26/14 20:26 107-06-2 1 1,1-Dichloroethene 0.50 02/26/14 20:26 75-35-4 ND ug/L 1 cis-1,2-Dichloroethene ND ug/L 0.50 02/26/14 20:26 156-59-2 1 trans-1,2-Dichloroethene ND ug/L 0.50 02/26/14 20:26 156-60-5 1 ND ug/L 0.50 02/26/14 20:26 78-87-5 1,2-Dichloropropane 1 ND ug/L 0.50 02/26/14 20:26 142-28-9 1,3-Dichloropropane 1 ND ug/L 0.50 02/26/14 20:26 594-20-7 2,2-Dichloropropane 1

REPORT OF LABORATORY ANALYSIS

0.50

1

ND ug/L

1,1-Dichloropropene

02/26/14 20:26 563-58-6

ANALYTICAL RESULTS

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

Sample: 38-3 (TW)	Lab ID: 92190303001	Collected: 02/17/1	4 16:00	Received: 0	02/19/14 17:45 N	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6200B MSV	Analytical Method: SM 6	200B					
cis-1,3-Dichloropropene	ND ug/L	0.50	1		02/26/14 20:26	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	0.50	1		02/26/14 20:26	10061-02-6	
Diisopropyl ether	ND ug/L	0.50	1		02/26/14 20:26	108-20-3	
Ethylbenzene	ND ug/L	0.50	1		02/26/14 20:26	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	2.0	1		02/26/14 20:26	87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	0.50	1		02/26/14 20:26	98-82-8	
Methylene Chloride	ND ug/L	2.0	1		02/26/14 20:26	75-09-2	
Methyl-tert-butyl ether	ND ug/L	0.50	1		02/26/14 20:26	1634-04-4	
Naphthalene	ND ug/L	2.0	1		02/26/14 20:26	91-20-3	
n-Propylbenzene	ND ug/L	0.50	1		02/26/14 20:26	103-65-1	
Styrene	ND ug/L	0.50	1		02/26/14 20:26	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 20:26	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 20:26	79-34-5	
Tetrachloroethene	ND ug/L	0.50	1		02/26/14 20:26	127-18-4	
Toluene	ND ug/L	0.50	1		02/26/14 20:26	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	2.0	1		02/26/14 20:26	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	2.0	1		02/26/14 20:26	120-82-1	
1,1,1-Trichloroethane	ND ug/L	0.50	1		02/26/14 20:26	71-55-6	
1,1,2-Trichloroethane	ND ug/L	0.50	1		02/26/14 20:26	79-00-5	
Trichloroethene	ND ug/L	0.50	1		02/26/14 20:26	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		02/26/14 20:26	75-69-4	
1,2,3-Trichloropropane	ND ug/L	0.50	1		02/26/14 20:26	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	0.50	1		02/26/14 20:26	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	0.50	1		02/26/14 20:26	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		02/26/14 20:26	75-01-4	
m&p-Xylene	ND ug/L	1.0	1		02/26/14 20:26	179601-23-1	
o-Xylene	ND ug/L	0.50	1		02/26/14 20:26	95-47-6	
Surrogates	-						
1,2-Dichloroethane-d4 (S)	102 %	70-130	1		02/26/14 20:26	17060-07-0	
4-Bromofluorobenzene (S)	96 %	70-130	1		02/26/14 20:26	460-00-4	
Toluene-d8 (S)	102 %	70-130	1		02/26/14 20:26	2037-26-5	

SM 6200B

6200B MSV

Analysis Method:

Analysis Description:

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

.

QC Batch:	MSV/25905
QC Batch Method:	SM 6200B

Associated Lab Samples: 92190303001

IETHOD BLANK: 1145841		Matrix:	Water		
ssociated Lab Samples: 92190	0303001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,2-Tetrachloroethane	ug/L	ND	0.50	02/26/14 18:47	
,1-Trichloroethane	ug/L	ND	0.50	02/26/14 18:47	
,2,2-Tetrachloroethane	ug/L	ND	0.50	02/26/14 18:47	
2-Trichloroethane	ug/L	ND	0.50	02/26/14 18:47	
Dichloroethane	ug/L	ND	0.50	02/26/14 18:47	
Dichloroethene	ug/L	ND	0.50	02/26/14 18:47	
Dichloropropene	ug/L	ND	0.50	02/26/14 18:47	
3-Trichlorobenzene	ug/L	ND	2.0	02/26/14 18:47	
3-Trichloropropane	ug/L	ND	0.50	02/26/14 18:47	
4-Trichlorobenzene	ug/L	ND	2.0	02/26/14 18:47	
4-Trimethylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Dibromo-3-chloropropane	ug/L	ND	1.0	02/26/14 18:47	
Dibromoethane (EDB)	ug/L	ND	0.50	02/26/14 18:47	
Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47	
Dichloroethane	ug/L	ND	0.50	02/26/14 18:47	
Dichloropropane	ug/L	ND	0.50	02/26/14 18:47	
5-Trimethylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47	
Dichloropropane	ug/L	ND	0.50	02/26/14 18:47	
Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47	
Dichloropropane	ug/L	ND	0.50	02/26/14 18:47	
lorotoluene	ug/L	ND	0.50	02/26/14 18:47	
lorotoluene	ug/L	ND	0.50	02/26/14 18:47	
zene	ug/L	ND	0.50	02/26/14 18:47	
nobenzene	ug/L	ND	0.50	02/26/14 18:47	
mochloromethane	ug/L	ND	0.50	02/26/14 18:47	
nodichloromethane	ug/L	ND	0.50	02/26/14 18:47	
moform	ug/L	ND	0.50	02/26/14 18:47	
nomethane	ug/L	ND	5.0	02/26/14 18:47	
bon tetrachloride	ug/L	ND	0.50	02/26/14 18:47	
probenzene	ug/L	ND	0.50	02/26/14 18:47	
proethane	ug/L	ND	1.0	02/26/14 18:47	
proform	ug/L	ND	0.50	02/26/14 18:47	
promethane	ug/L	ND	1.0	02/26/14 18:47	
1,2-Dichloroethene	ug/L	ND	0.50	02/26/14 18:47	
,3-Dichloropropene	ug/L	ND	0.50	02/26/14 18:47	
omochloromethane	ug/L	ND	0.50	02/26/14 18:47	
omomethane	ug/L	ND	0.50	02/26/14 18:47	
lorodifluoromethane	ug/L	ND	0.50	02/26/14 18:47	
propyl ether	ug/L	ND	0.50	02/26/14 18:47	
lbenzene	ug/L	ND	0.50	02/26/14 18:47	
achloro-1,3-butadiene	ug/L	ND	2.0	02/26/14 18:47	
opylbenzene (Cumene)	ug/L	ND	0.50	02/26/14 18:47	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

METHOD BLANK: 1145841

Associated Lab Samples: 92190303001

Matrix: Water

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
m&p-Xylene	ug/L	ND	1.0	02/26/14 18:47	
Methyl-tert-butyl ether	ug/L	ND	0.50	02/26/14 18:47	
Methylene Chloride	ug/L	ND	2.0	02/26/14 18:47	
n-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
n-Propylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Naphthalene	ug/L	ND	2.0	02/26/14 18:47	
o-Xylene	ug/L	ND	0.50	02/26/14 18:47	
sec-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Styrene	ug/L	ND	0.50	02/26/14 18:47	
tert-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Tetrachloroethene	ug/L	ND	0.50	02/26/14 18:47	
Toluene	ug/L	ND	0.50	02/26/14 18:47	
trans-1,2-Dichloroethene	ug/L	ND	0.50	02/26/14 18:47	
trans-1,3-Dichloropropene	ug/L	ND	0.50	02/26/14 18:47	
Trichloroethene	ug/L	ND	0.50	02/26/14 18:47	
Trichlorofluoromethane	ug/L	ND	1.0	02/26/14 18:47	
Vinyl chloride	ug/L	ND	1.0	02/26/14 18:47	
1,2-Dichloroethane-d4 (S)	%	101	70-130	02/26/14 18:47	
4-Bromofluorobenzene (S)	%	98	70-130	02/26/14 18:47	
Toluene-d8 (S)	%	101	70-130	02/26/14 18:47	

LABORATORY CONTROL SAMPLE: 1145842

ABORATORY CONTROL SAMPLE:	1145842					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
,1,1,2-Tetrachloroethane	ug/L		49.0	98	60-140	
1,1-Trichloroethane	ug/L	50	53.7	107	60-140	
,1,2,2-Tetrachloroethane	ug/L	50	50.2	100	60-140	
,1,2-Trichloroethane	ug/L	50	52.9	106	60-140	
,1-Dichloroethane	ug/L	50	49.2	98	60-140	
,1-Dichloroethene	ug/L	50	48.0	96	60-140	
,1-Dichloropropene	ug/L	50	51.3	103	60-140	
,2,3-Trichlorobenzene	ug/L	50	49.1	98	60-140	
,2,3-Trichloropropane	ug/L	50	49.8	100	60-140	
,2,4-Trichlorobenzene	ug/L	50	49.1	98	60-140	
,2,4-Trimethylbenzene	ug/L	50	51.4	103	60-140	
,2-Dibromo-3-chloropropane	ug/L	50	64.7	129	60-140	
,2-Dibromoethane (EDB)	ug/L	50	52.8	106	60-140	
,2-Dichlorobenzene	ug/L	50	48.3	97	60-140	
,2-Dichloroethane	ug/L	50	47.9	96	60-140	
,2-Dichloropropane	ug/L	50	50.1	100	60-140	
,3,5-Trimethylbenzene	ug/L	50	52.4	105	60-140	
,3-Dichlorobenzene	ug/L	50	47.3	95	60-140	
,3-Dichloropropane	ug/L	50	51.3	103	60-140	
,4-Dichlorobenzene	ug/L	50	47.7	95	60-140	
2,2-Dichloropropane	ug/L	50	55.4	111	60-140	

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

LABORATORY CONTROL SAMPLE: 1145842

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
2-Chlorotoluene	ug/L		48.4	97	60-140	
4-Chlorotoluene	ug/L	50	49.8	100	60-140	
Benzene	ug/L	50	52.3	105	60-140	
Bromobenzene	ug/L	50	49.8	100	60-140	
Bromochloromethane	ug/L	50	52.0	104	60-140	
Bromodichloromethane	ug/L	50	55.3	111	60-140	
Bromoform	ug/L	50	44.8	90	60-140	
Bromomethane	ug/L	50	36.3	73	60-140	
Carbon tetrachloride	ug/L	50	46.6	93	60-140	
Chlorobenzene	ug/L	50	50.6	101	60-140	
Chloroethane	ug/L	50	48.7	97	60-140	
Chloroform	ug/L	50	51.2	102	60-140	
Chloromethane	ug/L	50	45.3	91	60-140	
cis-1,2-Dichloroethene	ug/L	50	48.1	96	60-140	
cis-1,3-Dichloropropene	ug/L	50	48.3	97	60-140	
Dibromochloromethane	ug/L	50	48.0	96	60-140	
Dibromomethane	ug/L	50	50.6	101	60-140	
Dichlorodifluoromethane	ug/L	50	38.5	77	60-140	
Diisopropyl ether	ug/L	50	50.4	101	60-140	
Ethylbenzene	ug/L	50	50.8	102	60-140	
Hexachloro-1,3-butadiene	ug/L	50	50.4	101	60-140	
sopropylbenzene (Cumene)	ug/L	50	54.0	108	60-140	
n&p-Xylene	ug/L	100	105	105	60-140	
Aethyl-tert-butyl ether	ug/L	50	50.5	101	60-140	
Methylene Chloride	ug/L	50	53.9	108	60-140	
n-Butylbenzene	ug/L	50	50.8	102	60-140	
n-Propylbenzene	ug/L	50	52.7	105	60-140	
Naphthalene	ug/L	50	49.0	98	60-140	
o-Xylene	ug/L	50	52.2	104	60-140	
sec-Butylbenzene	ug/L	50	52.1	104	60-140	
Styrene	ug/L	50	55.3	111	60-140	
ert-Butylbenzene	ug/L	50	51.8	104	60-140	
Tetrachloroethene	ug/L	50	51.2	102	60-140	
Toluene	ug/L	50	50.5	101	60-140	
rans-1,2-Dichloroethene	ug/L	50	46.7	93	60-140	
rans-1,3-Dichloropropene	ug/L	50	47.5	95	60-140	
Trichloroethene	ug/L	50	49.9	100	60-140	
Trichlorofluoromethane	ug/L	50	50.3	101	60-140	
Vinyl chloride	ug/L	50	48.4	97	60-140	
1,2-Dichloroethane-d4 (S)	%			99	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			99	70-130	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

MATRIX SPIKE & MATRIX SPI	KE DUPLICATE	11458	43		1145844						
			MS	MSD							
		90689006	Spike	Spike	MS	MSD	MS	MSD	% Rec		0
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	17.9	14.3	89	72	60-140	22	
1,1,1-Trichloroethane	ug/L	ND	20	20	21.3	17.1	106	85	60-140	22	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	20.6	15.3	103	76	60-140	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	21.3	16.5	107	83	60-140	25	
1,1-Dichloroethane	ug/L	ND	20	20	21.0	16.8	105	84	60-140	22	
1,1-Dichloroethene	ug/L	ND	20	20	20.2	16.8	101	84	60-140	19	
1,1-Dichloropropene	ug/L	ND	20	20	21.4	17.2	107	86	60-140	22	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	17.4	14.0	87	70	60-140	22	
1,2,3-Trichloropropane	ug/L	ND	20	20	20.3	14.8	101	74	60-140	31 R1	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	17.4	14.0	87	70	60-140	22	
1,2,4-Trimethylbenzene	ug/L	ND	20	20	19.3	15.1	96	76	60-140	24	
1,2-Dibromo-3-chloropropane	ug/L	ND	20	20	22.5	16.2	113	81	60-140	32 R1	
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	21.5	16.4	108	82	60-140	27	
1,2-Dichlorobenzene	ug/L	ND	20	20	18.2	14.2	91	71	60-140	24	
1,2-Dichloroethane	ug/L	2.4	20	20	23.0	18.1	103	79	60-140	24	
1,2-Dichloropropane	ug/L	ND	20	20	20.6	16.0	103	80	60-140		
1,3,5-Trimethylbenzene	ug/L	ND	20	20	19.5	15.5	97	77	60-140		
1,3-Dichlorobenzene	ug/L	ND	20	20	17.7	13.9	89	70	60-140		
1,3-Dichloropropane	ug/L	ND	20	20	21.2	16.2	106	81	60-140		
1,4-Dichlorobenzene	ug/L	ND	20	20	17.6	14.1	88	70	60-140		
2,2-Dichloropropane	ug/L	ND	20	20	18.8	15.5	94	78	60-140		
2-Chlorotoluene	ug/L	ND	20	20	18.7	14.9	94	74	60-140		
4-Chlorotoluene	ug/L	ND	20	20	19.0	14.9	95	74	60-140	-	
Benzene	ug/L	ND	20	20	20.7	16.6	104	83	60-140		
Bromobenzene	ug/L	ND	20	20	19.0	14.8	95	74	60-140		
Bromochloromethane	ug/L	ND	20	20	22.3	17.5	112	88	60-140		
Bromodichloromethane	ug/L	ND	20	20	19.5	17.5	98	78	60-140		
Bromoform	ug/L	ND	20	20	15.7	13.0	78	65	60-140		
Bromomethane	ug/L	ND	20	20	14.7	15.1	70	76	60-140 60-140		
Carbon tetrachloride	ug/L	ND	20	20	14.7	15.6	88	78	60-140 60-140		
Chlorobenzene	ug/L	ND	20 20	20 20	17.5	15.6	99	78 78	60-140 60-140	24	
Chloroethane	-	ND	20 20	20 20	22.3	19.5	99 111	78 97	60-140 60-140		
Chloroform	ug/L	ND	20 20	20	22.3	19.5	106	97 83	60-140 60-140	-	
	ug/L	ND					93				
Chloromethane	ug/L	ND	20	20	18.5	17.8		89	60-140 60-140		
cis-1,2-Dichloroethene	ug/L	ND	20	20	20.4	16.2	102	81			
cis-1,3-Dichloropropene	ug/L	ND	20	20	16.9	13.6	85	68	60-140	21	
Dibromochloromethane	ug/L		20	20	17.2	13.8	86	69	60-140		
Dibromomethane	ug/L	ND	20	20	20.0	15.2	100	76	60-140		
Dichlorodifluoromethane	ug/L	ND	20	20	15.3	17.9	77	90	60-140		
Diisopropyl ether	ug/L	0.55	20	20	22.1	17.1	108	83	60-140		
Ethylbenzene	ug/L	ND	20	20	19.7	15.7	99	78	60-140		
Hexachloro-1,3-butadiene	ug/L	ND	20	20	17.6	14.2	88	71	60-140		
Isopropylbenzene (Cumene)	ug/L	ND	20	20	20.5	16.2	102	81	60-140		
m&p-Xylene	ug/L	ND	40	40	39.0	31.5	97	79	60-140		
Methyl-tert-butyl ether	ug/L	6.6	20	20	28.2	22.8	108	81	60-140		
Methylene Chloride	ug/L	ND	20	20	21.6	16.0	108	80	60-140		
n-Butylbenzene	ug/L	ND	20	20	17.8	14.6	89	73	60-140	20	

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 114584	43		1145844						
			MS	MSD							
	92	190689006	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
n-Propylbenzene	ug/L	ND	20	20	19.8	15.8	99	79	60-140	23	
Naphthalene	ug/L	ND	20	20	18.6	14.2	93	71	60-140	27	
o-Xylene	ug/L	ND	20	20	20.0	15.8	100	79	60-140	24	
sec-Butylbenzene	ug/L	ND	20	20	19.4	15.7	97	78	60-140	21	
Styrene	ug/L	ND	20	20	20.8	16.2	104	81	60-140	25	
tert-Butylbenzene	ug/L	ND	20	20	19.4	15.6	97	78	60-140	22	
Tetrachloroethene	ug/L	ND	20	20	19.9	16.1	99	81	60-140	21	
Toluene	ug/L	ND	20	20	19.7	15.8	99	79	60-140	22	
trans-1,2-Dichloroethene	ug/L	ND	20	20	19.3	15.6	97	78	60-140	21	
trans-1,3-Dichloropropene	ug/L	ND	20	20	16.9	13.6	85	68	60-140	21	
Trichloroethene	ug/L	ND	20	20	19.3	15.3	96	77	60-140	23	
Trichlorofluoromethane	ug/L	ND	20	20	21.3	18.2	106	91	60-140	15	
Vinyl chloride	ug/L	ND	20	20	20.1	18.6	101	93	60-140	8	
1,2-Dichloroethane-d4 (S)	%						101	100	70-130		
4-Bromofluorobenzene (S)	%						100	100	70-130		
Toluene-d8 (S)	%						100	100	70-130		

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

Pace Project No.: 92190303					
QC Batch: OEXT/260)10	Analysis Meth	nod: El	PA 625	
QC Batch Method: EPA 625		Analysis Desc	cription: 62	25 MSS	
Associated Lab Samples: 921	90303001				
METHOD BLANK: 1141550		Matrix:	Water		
Associated Lab Samples: 921	90303001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	5.0	02/28/14 07:26	
2,4,6-Trichlorophenol	ug/L	ND	10.0	02/28/14 07:26	
2,4-Dichlorophenol	ug/L	ND	5.0	02/28/14 07:26	
2,4-Dimethylphenol	ug/L	ND	10.0	02/28/14 07:26	

1,2,4-Trichlorobenzene	ug/L	ND	5.0	02/28/14 07:26	
2,4,6-Trichlorophenol	ug/L	ND	10.0	02/28/14 07:26	
2,4-Dichlorophenol	ug/L	ND	5.0	02/28/14 07:26	
2,4-Dimethylphenol	ug/L	ND	10.0	02/28/14 07:26	
2,4-Dinitrophenol	ug/L	ND	50.0	02/28/14 07:26	
2,4-Dinitrotoluene	ug/L	ND	5.0	02/28/14 07:26	
2,6-Dinitrotoluene	ug/L	ND	5.0	02/28/14 07:26	
2-Chloronaphthalene	ug/L	ND	5.0	02/28/14 07:26	
2-Chlorophenol	ug/L	ND	5.0	02/28/14 07:26	
2-Nitrophenol	ug/L	ND	5.0	02/28/14 07:26	
3,3'-Dichlorobenzidine	ug/L	ND	25.0	02/28/14 07:26	
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	02/28/14 07:26	
4-Bromophenylphenyl ether	ug/L	ND	5.0	02/28/14 07:26	
4-Chloro-3-methylphenol	ug/L	ND	5.0	02/28/14 07:26	
4-Chlorophenylphenyl ether	ug/L	ND	5.0	02/28/14 07:26	
4-Nitrophenol	ug/L	ND	50.0	02/28/14 07:26	
Acenaphthene	ug/L	ND	5.0	02/28/14 07:26	
Acenaphthylene	ug/L	ND	5.0	02/28/14 07:26	
Anthracene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(a)anthracene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(a)pyrene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(b)fluoranthene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(g,h,i)perylene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(k)fluoranthene	ug/L	ND	5.0	02/28/14 07:26	
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	02/28/14 07:26	
bis(2-Chloroethyl) ether	ug/L	ND	5.0	02/28/14 07:26	
bis(2-Chloroisopropyl) ether	ug/L	ND	5.0	02/28/14 07:26	
bis(2-Ethylhexyl)phthalate	ug/L	ND	5.0	02/28/14 07:26	
Butylbenzylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Chrysene	ug/L	ND	5.0	02/28/14 07:26	
Di-n-butylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Di-n-octylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Dibenz(a,h)anthracene	ug/L	ND	5.0	02/28/14 07:26	
Diethylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Dimethylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Fluoranthene	ug/L	ND	5.0	02/28/14 07:26	
Fluorene	ug/L	ND	5.0	02/28/14 07:26	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	02/28/14 07:26	
Hexachlorobenzene	ug/L	ND	5.0	02/28/14 07:26	
Hexachlorocyclopentadiene	ug/L	ND	10.0	02/28/14 07:26	
Hexachloroethane	ug/L	ND	5.0	02/28/14 07:26	
Indeno(1,2,3-cd)pyrene	ug/L	ND	5.0	02/28/14 07:26	
Isophorone	ug/L	ND	10.0	02/28/14 07:26	

Matrix: Water

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

METHOD BLANK:	1141550	

Associated Lab Samples: 92190303001

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers N-Nitroso-di-n-propylamine ug/L ND 5.0 02/28/14 07:26 N-Nitrosodimethylamine ug/L ND 5.0 02/28/14 07:26 N-Nitrosodiphenylamine ND 10.0 02/28/14 07:26 ug/L Naphthalene ND ug/L 5.0 02/28/14 07:26 Nitrobenzene ug/L ND 5.0 02/28/14 07:26 Pentachlorophenol ug/L ND 10.0 02/28/14 07:26 Phenanthrene ug/L ND 5.0 02/28/14 07:26 Phenol ug/L ND 5.0 02/28/14 07:26 Pyrene ug/L ND 5.0 02/28/14 07:26 2,4,6-Tribromophenol (S) % 88 10-137 02/28/14 07:26 2-Fluorobiphenyl (S) % 74 15-120 02/28/14 07:26 2-Fluorophenol (S) % 46 10-120 02/28/14 07:26 % 73 Nitrobenzene-d5 (S) 10-120 02/28/14 07:26 Phenol-d6 (S) % 33 10-120 02/28/14 07:26 % Terphenyl-d14 (S) 99 11-131 02/28/14 07:26

LABORATORY CONTROL SAMPLE: 1141551

E. 1141551					
Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
ua/L		36.0	72	44-142	
•	50	19.6	39	37-144	
U	50	23.9	48	1-191	
ug/L	50	31.7	63	32-119	
ug/L	250	49.5J	20	1-181	
ug/L	50	54.3	109	39-139	
ug/L	50	51.3	103	50-158	
ug/L	50	34.2	68	60-118	
ug/L	50	23.6	47	23-134	
ug/L	50	20.8	42	29-182	
ug/L	100	107	107	1-262	
ug/L	100	34.2	34	1-181	
ug/L	50	44.3	89	53-127	
ug/L	100	59.7	60	22-147	
ug/L	50	48.4	97	25-158	
ug/L	250	48.6J	19	1-132	
ug/L	50	40.8	82	47-145	
ug/L	50	42.0	84	33-145	
ug/L	50	46.2	92	1-166	
ug/L	50	45.7	91	33-143	
ug/L	50	49.2	98	17-163	
ug/L	50	44.9	90	24-159	
ug/L	50	45.0	90	1-219	
ug/L	50	41.4	83	11-162	
ug/L	50	41.6	83	33-184	
ug/L	50	44.4	89	12-158	
	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Units Spike Conc. ug/L 50 ug/L 50	Units Spike Conc. LCS Result ug/L 50 36.0 ug/L 50 19.6 ug/L 50 23.9 ug/L 50 31.7 ug/L 50 34.2 ug/L 50 54.3 ug/L 50 51.3 ug/L 50 23.6 ug/L 50 54.3 ug/L 50 34.2 ug/L 50 23.6 ug/L 50 23.6 ug/L 50 23.6 ug/L 50 20.8 ug/L 50 20.8 ug/L 100 107 ug/L 100 34.2 ug/L 50 44.3 ug/L 50 48.4 ug/L 50 48.6J ug/L 50 46.2 ug/L 50 46.2 ug/L 50 44.3 ug/L	Units Spike Conc. LCS Result LCS % Rec ug/L 50 36.0 72 ug/L 50 19.6 39 ug/L 50 23.9 48 ug/L 50 31.7 63 ug/L 250 49.5J 20 ug/L 50 54.3 109 ug/L 50 51.3 103 ug/L 50 34.2 68 ug/L 50 23.6 47 ug/L 50 23.6 47 ug/L 50 23.6 47 ug/L 50 20.8 42 ug/L 50 20.8 42 ug/L 100 107 107 ug/L 100 34.2 34 ug/L 100 59.7 60 ug/L 50 48.6J 19 ug/L 50 48.6J 19 ug/L 50	Units Spike Conc. LCS Result LCS % Rec LCS Limits ug/L 50 36.0 72 44-142 ug/L 50 19.6 39 37-144 ug/L 50 23.9 48 1-191 ug/L 50 31.7 63 32-119 ug/L 50 54.3 109 39-139 ug/L 50 54.3 103 50-158 ug/L 50 23.6 47 23-134 ug/L 50 20.8 42 29-182 ug/L 100 107 107 1-262 ug/L 100 34.2 34 1-181 ug/L 50 44.3 89 53-127 ug/L 50 48.6J 19 1-

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

LABORATORY CONTROL SAMPLE: 1141551

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualificity
bis(2-Chloroisopropyl) ether	ug/L	50	44.1	88	36-166	
bis(2-Ethylhexyl)phthalate	ug/L	50	47.1	94	8-158	
Butylbenzylphthalate	ug/L	50	45.3	91	1-152	
Chrysene	ug/L	50	47.2	94	17-168	
Di-n-butylphthalate	ug/L	50	45.1	90	1-118	
Di-n-octylphthalate	ug/L	50	54.2	108	4-146	
Dibenz(a,h)anthracene	ug/L	50	49.3	99	1-227	
iethylphthalate	ug/L	50	45.5	91	1-114	
imethylphthalate	ug/L	50	41.6	83	1-112	
luoranthene	ug/L	50	50.5	101	26-137	
luorene	ug/L	50	47.8	96	59-121	
exachloro-1,3-butadiene	ug/L	50	32.1	64	24-116	
exachlorobenzene	ug/L	50	40.0	80	1-152	
exachlorocyclopentadiene	ug/L	50	25.9	52	25-150	
exachloroethane	ug/L	50	33.9	68	40-113	
deno(1,2,3-cd)pyrene	ug/L	50	48.5	97	1-171	
ophorone	ug/L	50	48.3	97	21-196	
Nitroso-di-n-propylamine	ug/L	50	51.2	102	1-230	
Nitrosodimethylamine	ug/L	50	18.9	38	25-150	
Nitrosodiphenylamine	ug/L	50	34.8	70	25-150	
aphthalene	ug/L	50	41.5	83	21-133	
trobenzene	ug/L	50	39.1	78	35-180	
entachlorophenol	ug/L	100	39.6	40	14-176	
nenanthrene	ug/L	50	44.9	90	54-120	
henol	ug/L	50	15.0	30	5-112	
/rene	ug/L	50	47.2	94	52-115	
4,6-Tribromophenol (S)	%			58	10-137	
Fluorobiphenyl (S)	%			75	15-120	
Fluorophenol (S)	%			25	10-120	
itrobenzene-d5 (S)	%			73	10-120	
henol-d6 (S)	%			22	10-120	
erphenyl-d14 (S)	%			94	11-131	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 11415	52		1141553						
			MS	MSD					a (B		
	-	190065001	Spike	Spike	MS	MSD	MS	MSD	% Rec		• •
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2,4-Trichlorobenzene	ug/L	ND	100	100	78.9	64.5	79	65	44-142	20	
2,4,6-Trichlorophenol	ug/L	ND	100	100	87.6	77.0	88	77	37-144	13	
2,4-Dichlorophenol	ug/L	ND	100	100	106	84.4	106	84	1-191	23	
2,4-Dimethylphenol	ug/L	ND	100	100	73.8	48.8	74	49	32-119	41 R1	i
2,4-Dinitrophenol	ug/L	ND	500	500	263	286	53	57	1-181	9	
2,4-Dinitrotoluene	ug/L	ND	100	100	105	95.2	105	95	39-139	10	
2,6-Dinitrotoluene	ug/L	ND	100	100	105	97.3	105	97	50-158	7	
2-Chloronaphthalene	ug/L	ND	100	100	76.9	64.0	77	64	60-118	18	
2-Chlorophenol	ug/L	ND	100	100	114	78.3	114	78	23-134	37 R1	l
2-Nitrophenol	ug/L	ND	100	100	94.9	74.9	95	75	29-182	24	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

MATRIX SPIKE & MATRIX SPI	52	MSD	1141553								
		MS 92190065001 Spike									
-			Spike	Spike	MS	MSD	MS	MSD	% Rec		<u> </u>
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
3,3'-Dichlorobenzidine	ug/L	ND	200	200	115	124	58	62	1-262	7	
4,6-Dinitro-2-methylphenol	ug/L	ND	200	200	156	152	78	76	1-181	3	
4-Bromophenylphenyl ether	ug/L	ND	100	100	95.3	87.4	95	87	53-127	9	
4-Chloro-3-methylphenol	ug/L	ND	200	200	218	191	109	96	22-147	13	
4-Chlorophenylphenyl ether	ug/L	ND	100	100	98.1	89.0	98	89	25-158	10	
4-Nitrophenol	ug/L	ND	500	500	272	225	54	45	1-132	19	
Acenaphthene	ug/L	ND	100	100	88.4	75.5	88	76	47-145	16	
Acenaphthylene	ug/L	ND	100	100	91.1	77.9	91	78	33-145	16	
Anthracene	ug/L	ND	100	100	93.0	81.8	93	82	1-166	13	
Benzo(a)anthracene	ug/L	ND	100	100	90.0	83.6	90	84	33-143	7	
Benzo(a)pyrene	ug/L	ND	100	100	96.2	87.6	96	88	17-163	9	
Benzo(b)fluoranthene	ug/L	ND	100	100	94.0	86.8	94	87	24-159	8	
Benzo(g,h,i)perylene	ug/L	ND	100	100	89.4	78.4	89	78	1-219	13	
Benzo(k)fluoranthene	ug/L	ND	100	100	84.7	79.4	85	79	11-162	6	
bis(2-Chloroethoxy)methane	ug/L	ND	100	100	92.3	74.8	92	75	33-184	21	
bis(2-Chloroethyl) ether	ug/L	ND	100	100	97.6	78.5	98	78	12-158	22	
bis(2-Chloroisopropyl) ether	ug/L	ND	100	100	97.2	70.9	97	71	36-166	31 R	1
bis(2-Ethylhexyl)phthalate	ug/L	ND	100	100	90.9	86.0	91	86	8-158	5	
Butylbenzylphthalate	ug/L	ND	100	100	89.1	86.1	89	86	1-152	3	
Chrysene	ug/L	ND	100	100	93.5	88.6	94	89	17-168	5	
Di-n-butylphthalate	ug/L	ND	100	100	87.5	79.7	88	80	1-118	9	
Di-n-octylphthalate	ug/L	ND	100	100	101	91.7	101	92	4-146	10	
Dibenz(a,h)anthracene	ug/L	ND	100	100	96.1	85.8	96	86	1-227	11	
Diethylphthalate	ug/L	ND	100	100	86.6	80.4	87	80	1-114	7	
Dimethylphthalate	ug/L	ND	100	100	84.2	79.0	84	79	1-112	6	
Fluoranthene	ug/L	ND	100	100	97.9	82.5	98	82	26-137	17	
Fluorene	ug/L	ND	100	100	95.9	86.7	96	87	59-121	10	
Hexachloro-1,3-butadiene	ug/L	ND	100	100	67.7	57.7	68	58	24-116	16	
Hexachlorobenzene	ug/L	ND	100	100	83.7	76.0	84	76	1-152	10	
Hexachlorocyclopentadiene	ug/L	ND	100	100	67.6	53.4	68	53	25-150	24	
Hexachloroethane	ug/L	ND	100	100	69.9	54.7	70	55	40-113	24	
Indeno(1,2,3-cd)pyrene	ug/L	ND	100	100	95.7	84.4	96	84	1-171	13	
Isophorone	ug/L	ND	100	100	104	84.1	104	84	21-196	21	
N-Nitroso-di-n-propylamine	ug/L	ND	100	100	124	74.2	124	74	1-230	50 R	1
N-Nitrosodimethylamine	ug/L	ND	100	100	55.1	44.2	55	44	25-150	22	
N-Nitrosodiphenylamine	ug/L	ND	100	100	76.3	70.5	76	70	25-150	8	
Naphthalene	ug/L	ND	100	100	91.5	73.2	92	73	21-133	22	
Nitrobenzene	ug/L	ND	100	100	96.7	75.6	97	76	35-180	24	
Pentachlorophenol	ug/L	ND	200	200	168	139	84	70	14-176	19	
Phenanthrene	ug/L	ND	100	100	92.6	82.6	93	83	54-120	11	
Phenol	ug/L	ND	100	100	91.8	53.4	92	53	5-112	53 R	1
Pyrene	ug/L	ND	100	100	97.9	93.6	98	94	52-115	4	
2,4,6-Tribromophenol (S)	%						107	95	10-137		
2-Fluorobiphenyl (S)	%						84	74	15-120		
2-Fluorophenol (S)	%						71	55	10-120		
Nitrobenzene-d5 (S)	%						82	68	10-120		
Phenol-d6 (S)	%						84	50	10-120		
	70						04	50	10-120		

Project:WBS33727.1.1/B-4490 CumberlandPace Project No.:92190303

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1141552 1141553											
			MS	MSD							
	92	Spike	Spike	MS	MSD	MS	MSD	% Rec			
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Terphenyl-d14 (S)	%						98	99	11-131		

QUALIFIERS

Project: WBS33727.1.1/B-4490 Cumberland

Pace Project No.: 92190303

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Acid preservation may not be appropriate for 2-Chloroethylvinyl ether, Styrene, and Vinyl chloride.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:WBS33727.1.1/B-4490 CumberlandPace Project No.:92190303

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch			
92190303001	38-3 (TW)	EPA 625	OEXT/26010	EPA 625	MSSV/8797			
92190303001	38-3 (TW)	SM 6200B	MSV/25905					

Pace Analytical	Sample (Condition Upon R	Receipt (SCUR)	Page 1 of 2	_
/ Pace Analytical		Document Num	ber:	Issuing Authority:	
	0	F-CHR-CS-03-re	ev.13	Pace Huntersville Quality Office	
Client Name:	Pyramid				
Courier: 🗌 Fed Ex 🗌 UPS	USPS Clien	t Commercial	Pace Other	Optional	
Custody Seal on Cooler/Box	Present: 🗌 yes	Seals	intact: ves] no Proj. Due Date: Proj. Name:	
Packing Material: 🗌 Bubble	Wrap 🗌 Bubble	ags 🗌 None 🗌	Other	Troj. Humo.	
Chermometer Used: IR Gun	0		Blue None	Samples on ice, cooling process has beg	un
Temp Correction Factor	T1102: No Correct		No Correction		_
Corrected Cooler Temp.:	U.T.C	Biological Tissue	is Frozen: Yes No N/	Date and Initials of person examinin contents: m USIIY	ng
Temp should be above freezing to			Comments:		
Chain of Custody Present:		EYes No N/A	1.		
Chain of Custody Filled Out:		Pyes No N/A	2.		
Chain of Custody Relinquishe	d:	Yes No N/A	3.		_
Sampler Name & Signature or	n COC:	Yes No N/A	4.		
Samples Arrived within Hold T	ime:	EYes No N/A	5.		
Short Hold Time Analysis (<	72hr):	Yes DNo DN/A	6.		
Rush Turn Around Time Red	quested:		7.		
Sufficient Volume:	/	Yes No N/A	8.		
Correct Containers Used:	-	Yes No N/A	9.		- 14
-Pace Containers Used:					
Containers Intact:			10.		
Filtered volume received for D	Dissolved tests		11.		_
Sample Labels match COC:	/		12.		
-Includes date/time/ID/Ana					-
All containers needing preservation	have been checked.	Yes No	13.		
All containers needing preservation					
compliance with EPA recommend		Yes No			
exceptions: VOA, coliform, TOC, O&			A 14.		-
Samples checked for dechlor					
Headspace in VOA Vials (>6	mm).				
Trip Blank Present:	aant				
Trip Blank Custody Seals Pre					
Pace Trip Blank Lot # (if purc	11a500)	_			
Client Notification/ Resolut			Time	Field Data Required? Y / N	
Person Contacted:		Date	e/Time:		
Comments/ Resolution:					
	DS Date	: 2/19/14	1101	: 92190303	
SCURF Review:					

-

1 ° 1 1450003		GROUND WATER C DRINKING WATER	C OTHER				(N/A)	Sesidual Chlorine			SAMPLE CONDITIONS	the or why 5	jer M	Temp in °C Received o Ice (Y/N) Custody Sealed Cool (Y/N) (Y/N)
Page:	Y AGENCY	V GROUN		NC	red (Y/N)						TIME	133 C		+
d accurately.	REGULATORY AGENCY	NPDES	□ UST	Site Location	Requested Analysis Filtered (Y/N)						DATE	2/12/		11911
ds must be completed			7.1.1		Requested /	1 N/A	*	Actives Test	X		BY I AFEN ATION	1 fre		DATE Signed
ocument , All relevant the matter . All relevant the matter	ame:NCDAP		NB5#3373	V.Q	1700	Preservatives		Offher Nefthanol NaSS2O3 NaOH HCI HNO3	X		ACCEPTER	10 fr		Hard I Lea
is a LEGAL DOCUME Section C Invoice Information: Attention: MC I	Company Name:	Address:		Pace Project Manager: Pace Profile #:				H ^s SO⁴ Jubleserved # OF CONTAINER	6X		TIME	1330	<u>با</u>	The second
e Chain-oi-custody is			Opty-	My Parcel 038		ED	CONFICENTION	PTA 9M9T 3J9MA2	Q:91 hi		DATE	+1/1/2 >	AME AND SIGNATURE	
The second se	A was read		Tolal / B	Anie Jens ra		COLLECTED	COMPOSITE START		a		Y / AFFILIATION	When Brear	SAMPLER NAM	PRII
Project Information:	Pyrami		WBS#33737	J	*nt	-	see valid codes		3		RELINQUISHED BY / AFFILIATION	A LINA		
le	18 -	7410	t	Project Name:		ode l	Drinking Water DW Water WT Waste Water WW Product P Soil/Solid SL	Wipe WP Air Tissue TS Other OT	N N		TS	- Mi		ORIGINAL
Pace Analytical www.pacelabs.com section A Required Client Information:	X	Freensbern, NC 2	To: TIM	Page 335.314 Fax: Requested Due Date/TATA	NOMA	Section D Required Client Information		Sample ID (A-Z, 0-9 /, -) Sample IDs MUST BE UNIQUE	38-3(TW)		ADDITIONAL COMMENTS			

APPENDIX F

FIELD PERSONNEL LOG PROJECT NAME: NCDOT Cumberland County ROW PROJECT NO.: B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44		
TASKS PERFORMED):	
<i>E. Cross:</i> On site: 9AM Mobilize to site. Perform Leave site: 3:30PM	ned site visits and owner inte	erviews.

PROJECT NAME: NCDOT Cumberland County ROW **PROJECT NO.:** B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44

Name: Eric Cross, Mika Trifunovic Date: 1/26/14 Mon Tue Wed Th Fri Sat Sun

TASKS PERFORMED:

E. Cross & M. Trifunovic: On site: 9AM Mobilize to site. Performed geophysical surveys. Leave site: 4:00PM

FIELD PERSONNEL LOG		
PROJECT NAME : NCDOT Cumberland County ROW PARCELS 6, 8, 23, 25, 29, 38 and 44	PROJECT NO.: B-4490	
Name: Eric Cross, Alan McFadden Date: 1/27/14	Mon Tue Wed Th Fri Sat Sun	
TASKS PERFORMED:		
<i>E. Cross & A. McFadden:</i> On site: 8AM Mobilize to site. Performed geophysical surveys. Leave site: ~6PM		

FIELD PERSONNEL LOG		
PROJECT NAME : NCDOT Cumberland County ROW PARCELS 6, 8, 23, 25, 29, 38 and 44	PROJECT NO.: B-4490	
Name: Eric Cross, Alan McFadden Date: 1/28/14	Mon Tue Wed Th Fri Sat Sun	
TASKS PERFORMED:		
E. Cross & A. McFadden: On site: 8AM Mobilize to site. Performed geophysical surveys. Leave site: ~6PM		

FIELD PERSONNEL LOG PROJECT NAME: NCDOT Cumberland County ROW PROJECT NO.: B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44		
TASKS PERFORMED):	
<i>E. Cross:</i> On site: 9AM Mobilize to site. Perform Leave site: ~5PM	ned geophysical surveys.	

FIELD PERSONNEL LOG			
PROJECT NAME : NCDOT Cumberland County ROW PROJECT NO.: B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44			
Name: Eric Cross	Date: 2/4/14	Mon Tu	ıe Wed Th Fri Sat Sun
TASKS PERFORMED):		
<i>E. Cross:</i> On site: 9AM Mobilize to site. Perform Leave site: ~4PM	ned geophysical survey	s.	

PROJECT NAME: NCDOT Cumberland County ROW **PROJECT NO.:** B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44

Name: Eric Cross, Tim Leatherman Date: 2/6/14 Mon Tue Wed Th Fri Sat Sun

TASKS PERFORMED:

*E. Cross & T. Leatherman:*On site: 9AMMobilize to site. Performed geophysical surveys, GPS collection, meet locators, research.Leave site: ~4PM

PROJECT NAME: NCDOT Cumberland County ROW **PROJECT NO.:** B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44

Name: Tim Leatherman, Mika Trifunovic Date: 2/14/14 Mon Tue Wed Th Fri Sat Sun

TASKS PERFORMED:

*T. Leatherman & M. Trifunovic:*On site: 9AMMobilize to site. Performed soil boring supervision and QED analysis.Leave site: ~5PM with additional evening processing

PROJECT NAME: NCDOT Cumberland County ROW **PROJECT NO.:** B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44

Name: Tim Leatherman, Eric Cross, Ryan KramerDate: 2/17/14MonTue Wed Th Fri Sat Sun

TASKS PERFORMED:

T. Leatherman, E. Cross, R. Kramer:On site: 9AMMobilize to site. Performed soil boring supervision and QED analysis.Leave site: ~5PM with additional evening processing

FIELD PERSONNEL LOG		
PROJECT NAME: NCDOT Cum PARCELS 6, 8, 23, 25, 29, 38 and 4		PROJECT NO.: B-4490
Name: Eric Cross, Ryan Kramer	Date: 2/18/14	Mon Tue Wed Th Fri Sat Sun
TASKS PERFORMED:		
<i>E. Cross, R. Kramer:</i> On site: 9AM Mobilize to site. Performed soil bor Leave site: ~5PM with additional e		ED analysis.

FIELD PERSONNEL LOG			
PROJECT NAME : NCDOT Cumberland County ROW PROJECT NO.: B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44			
Name: Ryan Kramer	Date: 2/19/14	Mon Tue Wed Th Fri Sat Sur	1
TASKS PERFORMED:			
<i>R. Kramer:</i> On site: 9AM Mobilize to site. Performe Leave site: ~2PM	ed QED analysis.		

FIELD PERSONNEL LOG		
PROJECT NAME : NCDOT Cumberland County ROW PROJECT NO.: B-4490 PARCELS 6, 8, 23, 25, 29, 38 and 44		
Name: Eric Cross	Date: 2/20/14	Mon Tue Wed Th Fri Sat Sun
TASKS PERFORMED	:	
<i>E. Cross:</i> On site: 11AM Mobilize to site. Perform Leave site: ~3PM	ned groundwater sample co	collection.