PRELIMINARY SITE ASSESSMENT PARCEL 010, STATE PROJECT B-4490 WBS ELEMENT 33727.1.1, CUMBERLAND COUNTY

REPLACE BRIDGE NO. 116 OVER CXS RAILROAD, NORTH SOUTH RAILROAD, AND HILLSBORO STREET ON NC 24-210, FAYETTEVILLE, NORTH CAROLINA

Schnabel Project 11821014.33 April 8, 2014

April 8, 2014

Mr. Mohammed A. Mulla, P.E., CPM, MCE NCDOT, Geotechnical Engineering Unit 1020 Birch Ridge Drive Raleigh, NC 27610

- RE: State Project: B-4490 WBS Element: 33727.1.1 County: Cumberland Description: Replace Bridge No. 116 over CSX Railroad, North South Railroad, and Hillsboro Street on NC 24-210 in Fayetteville
- Subject:Preliminary Site Assessment for Parcel 010, Fayetteville, NCSchnabel Engineering Project 11821014.33

Dear Mr. Mulla:

SCHNABEL ENGINEERING SOUTH, P.C. (Schnabel) is pleased to submit our report for this project. This study was performed in accordance with our proposal dated January 23, 2014 as authorized by the Notice to Proceed on January 24, 2014 and was conducted under our June 2, 2011 Agreement with the NCDOT.

We appreciate the opportunity to be of service for this project. Please call us if you have any questions regarding this report.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

Benjam J. Beudley

Benjamin L. Bradley, GIT Project Scientist

regery

Gregory B. Kuntz, LG Senior Associate Scientist

BB/GK

schnabel-eng.com

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION PRELIMINARY SITE ASSESSMENT FOR PARCEL 010 STATE PROJECT B-4490, WBS ELEMENT 33727.1.1 REPLACE BRIDGE NO. 116 OVER CSX RAILROAD, NORTH SOUTH RAILROAD, AND HILLSBORO STREET ON NC 24-210 FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA

TABLE OF CONTENTS

1.0	INTRODUCTION	. 2
2.0	BACKGROUND AND SITE DESCRIPTION	.2
3.0	FIELD METHODOLOGY	. 2
4.0	GROUNDWATER MONITORING WELLS OR REMEDIATION WELLS	. 3
5.0	DISCUSSION OF RESULTS	. 3
6.0	CONCLUSIONS	.3
7.0	RECOMMENDATIONS	.4
8.0	LIMITATIONS	.4

LIST OF TABLES

Table 1, Sampling Intervals and Field Volatile Measurements Table 2, Summary of Laboratory Results

LIST OF FIGURES

Figure 1, Vicinity Map Figure 2, Site Map Figure 3 and 3A, Boring Locations and Legend

APPENDICES

Appendix A, Photographs Appendix B, Geophysics Report Appendix C, Soil Boring Logs Appendix D, Soil Boring GPS Coordinates Appendix E, Laboratory Analytical Results

NCDOT Geotechnical Engineering Unit State Project B-4490, Cumberland County

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is replacing a bridge over CSX Railroad, North South Railroad, and Hillsboro Street on Highway 24/210 (W. Rowan Street) in the town of Fayetteville, located in Cumberland County, North Carolina. Acquisition of properties within the right-ofway (ROW) is necessary prior to road and bridge construction. Schnabel Engineering conducted Preliminary Site Assessments (PSAs) on 10 sites (thirteen parcels) located within the proposed ROW that are of concern to the NCDOT.

This report summarizes the results of field activities conducted during the PSA for the proposed property acquisition area (Study Area) identified by NCDOT on Parcel 010. The property is located at 614 W. Rowan Street and is a vacant property, currently owned by Utley Rentals, LLC (Figure 1). The property line and topography are shown on Figure 2. The approximate NCDOT project limits that delineate the property acquisition area are shown on Figure 3.

The scope of work executed at the site was performed in general accordance with our cost proposal dated January 23, 2014 and was initiated based on a Notice to Proceed issued by the NCDOT Geotechnical Engineering Unit on January 24, 2014 under contract 7000012208, dated June 2, 2011.

2.0 BACKGROUND AND SITE DESCRIPTION

A one-story cinder block structure is located on Parcel 010. The surface of the proposed ROW is covered with a paved parking lot and some grassy areas. A culvert is located along the western part of the property boundary. Several utilities cross the site including buried water and storm sewer lines, and overhead electric lines are located along the ROW. The information regarding prior site use provided to Schnabel Engineering by NCDOT was that the architectural style of the building suggests the site operated as a gas station. This PSA is for the investigation of the entire parcel. Photographs of the Study Area are presented in Appendix A.

3.0 FIELD METHODOLOGY

Prior to mobilizing to the site to conduct the field investigation, Schnabel Engineering contacted North Carolina One Call to locate underground utilities in the Study Area of the site. Schnabel Engineering mobilized a geophysical crew to the site on January 29, 2014 and performed an electromagnetic survey of the subsurface in the proposed ROW area within the parcel. The electromagnetic survey equipment (EM61-MK2) identified various magnetic anomalies within the Study Area. The Schnabel geophysical crew returned to the Study Area on February 10, 2014 to perform ground penetrating radar (GPR) survey with a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna. Results of the survey suggested the presence of buried utility lines or conduits within the Study Area.

After reviewing the background information and geophysical data, Schnabel returned to Parcel 010 to conduct field screening of soils from within the Study Area. Three soil borings designated B-10-01 through B-10-03 were advanced by SAEDACCO of Fort Mill, SC along Rowan Street on February 19, 2014. The location of the soil borings are shown on Figure 3. The borings were advanced to a total depth of 10 to 12 feet below ground surface (bgs). The borings drilled within the Study Area were advanced utilizing a track-mounted Geoprobe[®] (Model 7822-DT) with direct push probe technology. At the completion of the sampling activities, the borings were backfilled with soil removed from the boring during sampling and/or bentonite chips.

NCDOT Geotechnical Engineering Unit State Project B-4490, Cumberland County

Soils for field screening were obtained from the borings using a MacroCore[®] sampler fitted with a new, single-use, five foot long disposable polyvinyl chloride (PVC) liner. A portion of each 2-foot interval was placed in a separate re-sealable plastic bag. These bags were sealed and placed at ambient temperature for field screening with a MiniRAE Plus photo ionization detector (PID). Volatiles were allowed to accumulate in the headspace of each bag for approximately 15 minutes, and then the headspace of each sealed bag was scanned with the PID. Headspace screening of the soil samples indicated a concentration of 0 ppm at each boring location at intervals of two, four, six, eight, ten, and twelve feet bgs (Table 1, Sampling Intervals and Field Volatile Measurements). The PID was calibrated on February 19, 2014 in general accordance with the manufacturer's recommended calibration procedures. The PID readings were recorded with the soil descriptions and indications of staining or odors, if present. Logs for each boring are presented in Appendix C.

Soil samples were not submitted for laboratory analysis and Ultra Violet Fluorescence (UVF) was not performed at this parcel because PID readings did not meet or exceed 10 ppm at the screened intervals noted above. A groundwater sample was collected at B-10-01 using a peristaltic GeoPump 2 with a Teflon[™]-lined polyethylene tube. A groundwater sample was collected from this boring because it was advanced in a planned cut area for a proposed culvert. The water samples were placed in laboratory-supplied containers and stored on ice pending shipment to Pace Analytical in Hampstead, NC. Sample information was recorded on the Chain-of-Custody form and the samples were submitted for chemical analysis of chromium and lead by EPA Method 6010, 602 volatiles by Method 6200, EPA Method 625 with top 10 tentatively identified compounds (TICS), MADEP EPH and VPH, and EPA Method 6200B. The Summary of Laboratory Results is shown on Table 2.

Soils collected from borings within the Study Area generally consisted of orangish brown Silty Sand with Clay (SM) or gray Sandy Lean Clay (CL). GPS coordinates for each boring were obtained using a Trimble Pro-XRS DGPS system (Appendix D) with coordinates reported in US State Plane 1983 system, North Carolina 3200 zone, using the NAD 83 datum, with units in US survey feet.

4.0 GROUNDWATER MONITORING WELLS OR REMEDIATION WELLS

Groundwater monitoring wells and remediation wells were not observed within the proposed ROW or easement on this parcel.

5.0 DISCUSSION OF RESULTS

The geophysical survey conducted at the site did not indicate the presence of probable USTs on Parcel 010. The geophysical survey did indicate the presence of buried utility lines and conduits.

Chromium was detected in the groundwater sample collected from B-10-01 at a concentration of 16.1 ug/L which exceeds the NC 2L groundwater quality standard. Lead and two unknown TICS were detected by laboratory. The detected lead is below the NC 2L groundwater quality standard. Laboratory analytical results are summarized in Table 2. The laboratory report for this sample is presented in Appendix E.

6.0 CONCLUSIONS

Anomalies were not observed in the EM or the GPR geophysical data at the subject property that we interpret to be the results of metallic USTs within about 6 feet of the ground surface.

Three soil borings B-10-01, B-10-02, and B-10-03 were advanced to evaluate potential petroleum impact within the Study Area, and to document soil conditions.

Chromium exceeds the NC 2L groundwater quality standards, however, the remainder of the results did not indicate petroleum impacts on this property.

7.0 RECOMMENDATIONS

Based on the currently available information presented in this report, additional assessment is not recommended.

8.0 LIMITATIONS

This PSA was prepared for the use of the NCDOT. The scope of work performed at the site is limited to the tasks described in our cost proposal dated January 23, 2014. This report is not intended to represent an exhaustive research of all potential hazards that may exist. Schnabel makes no other declarations, or any express or implied warranty, as to the professional services provided under the terms of the agreement.

TABLES

Table 1, Sampling Intervals and Field Volatile Measurements Table 2, Summary of Laboratory Results

TABLE 1 SAMPLING INTERVALS AND FIELD VOLATILE MEASUREMENTS PARCEL 010 NCDOT B-4490, CUMBERLAND COUNTY

Depth Below	Soil Borings								
Ground Surface	B-10-01	B-10-02	B-10-03						
0 - 2 feet	0.0	0.0	0.0						
2 - 4 feet	0.0	0.0	0.0						
4 - 6 feet	0.0	0.0	0.0						
6 - 8 feet	0.0	0.0	0.0						
8 - 10 feet	0.0	0.0	0.0						
10 - 12 feet	0.0**	NS	NS						

Notes:

Shaded cells were submitted for laboratory analysis NS: Not Screened

**: Water Sample Taken

Field volatile measurements obtained with a MiniRae Photo Ionization Detector Measurements in parts per million (ppm)

TABLE 2 SUMMARY OF LABORATORY RESULTS PARCEL 010 NCDOT B-4490, CUMBERLAND COUNTY

Sample ID:	NC 2L	B-10-01
Matrix:	Standards	Water
Sampled Date:	otanidardo	2/19/2014
Metals 6010		
Chromium	10	16.1
Lead	15	5.9
MADEP EPH		
Various	Various	ND
MADEP VPH		
Various	Various	ND
602 Volatiles by Method 6200B		
Various	Various	ND
EPA Method 625 Semi-volatile Organic Compounds (SVOCs)		
Various	Various	ND

Notes:

Units in ug/L

ND: Not Detected

Classifications and Water Quality Standards Applicable to the Groundwaters of North Carolina,

NCAC Title 15A Subchapter 2L, Amended April 1, 2013

Bold exceeds the standard

FIGURES

Figure 1, Vicinity Map Figure 2, Site Map Figure 3 and 3A, Boring Locations and Legend

PROJECT NO. 11821014.33

© Schnabel Engineering 2014 All Rights Reserved

Note: Not to Scale

*S.U.E. = Subsurface Utility Engineering

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS

CONVENTIONAL PLAN SHEET SYMBOLS

Orchard ——

BOUNDARIES AND PROPERTY:

State Line	
County Line	
Township Line	
City Line	
Reservation Line	· ·
Property Line	
Existing Iron Pin	EIP
Property Corner ———	×
Property Monument	ECM
Parcel/Sequence Number	(23)
Existing Fence Line	-xxx
Proposed Woven Wire Fence	
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	WLB
Proposed Wetland Boundary	
Existing Endangered Animal Boundary ———	EAB
Existing Endangered Plant Boundary	ЕРВ
Known Soil Contamination: Boundary or Site $-$	
Potential Soil Contamination: Boundary or Site -	X
BUILDINGS AND OTHER CULTU	VRE:
Gas Pump Vent or U/G Tank Cap	0
Sign	Ş
Well	Ŷ
Small Mine	*
Foundation	
Area Outline	
Cemetery	1
Building ———	
School ———	È
Church	طئ

HYDROLOGY:

Dam -

Stream or Body of Water	
Hydro, Pool or Reservoir —————	
Jurisdictional Stream	
Buffer Zone 1	BZ 1
Buffer Zone 2	BZ 2
Flow Arrow	
Disappearing Stream ——————	->
Spring	-0
Wetland	- ¥
Proposed Lateral, Tail, Head Ditch ————	
False Sump	\rightarrow

RAILROADS:

NAILKOADS.	
Standard Gauge	CSX TRANSPORTATION
RR Signal Milepost	⊙ MILEPOST 35
Switch	
RR Abandoned	
RR Dismantled	
RIGHT OF WAY:	
Baseline Control Point	•
Existing Right of Way Marker	\bigtriangleup
Existing Right of Way Line	
Proposed Right of Way Line	
Proposed Right of Way Line with Iron Pin and Cap Marker	
Proposed Right of Way Line with Concrete or Granite Marker	
Existing Control of Access	(<u>Ĉ</u>)
Proposed Control of Access	
Existing Easement Line	~ ——E———
Proposed Temporary Construction Easement -	E
Proposed Temporary Drainage Easement —	TDE
Proposed Permanent Drainage Easement —	PDE
Proposed Permanent Drainage / Utility Easemen	t DUE
Proposed Permanent Utility Easement	PUE
Proposed Temporary Utility Easement	TUE
Proposed Aerial Utility Easement	AUE
Proposed Permanent Fasement with	
Iron Pin and Cap Marker	\bigotimes
ROADS AND RELATED FEATURI	ES:
Existing Edge of Pavement	
Existing Curb	
Proposed Slope Stakes Cut	<u>c</u>
Proposed Slope Stakes Fill	<u>F</u>
Proposed Curb Ramp	CR
Curb Cut Future Ramp	CCFR
Existing Metal Guardrail	
Proposed Guardrail	<u> </u>
Existing Cable Guiderail	
Proposed Cable Guiderail	
Equality Symbol	G
Pavement Removal	
VEGETATION:	
Single Tree	çiş
Single Shrub	\$
Woods Line	-ന-ന-ന-ന-
TTOOUS LING	

Vineyard ————	Vineyard
EXISTING STRUCTURES:	
MAJOR:	
Bridge, Tunnel or Box Culvert ————	CONC
Bridge Wing Wall, Head Wall and End Wall-) CONC WW (
MINOR: Head and End Wall	CONC HW
Pipe Culvert	
Footbridge	
Drainage Box: Catch Basin, DI or JB	СВ
Paved Ditch Gutter	
Storm Sewer Manhole	S
Storm Sewer	s

- & & &

UTILITIES:

POWER:	
Existing Power Pole	•
Proposed Power Pole	6
Existing Joint Use Pole	
Proposed Joint Use Pole	-6-
Power Manhole	P
Power Line Tower	\boxtimes
Power Transformer	\bowtie
U/G Power Cable Hand Hole	
H-Frame Pole	••
Recorded U/G Power Line	P
Designated U/G Power Line (S.U.E.*)	P

TELEPHONE:

Existing Telephone Pole	-•-
Proposed Telephone Pole	-0-
Telephone Manhole	T
Telephone Booth	3
Telephone Pedestal	Τ
Telephone Cell Tower	, ↓ ,
U/G Telephone Cable Hand Hole	H _H
Recorded U/G Telephone Cable	T
Designated U/G Telephone Cable (S.U.E.*)—	
Recorded U/G Telephone Conduit ——— —	TC
Designated U/G Telephone Conduit (S.U.E.*)	- — — TC —
Recorded U/G Fiber Optics Cable	T F0
Designated U/G Fiber Optics Cable (S.U.E.*)	T FO-

E E	<u>8-4490</u>	51
WATER		
Water Manhole	W	
Water Meter	0	
Water Valve	&	
Water Hydrant	¢	
, Recorded U/G Water Line		
Designated U/G Water Line (S.U.E.*)		
Above Ground Water Line	A/G Wat	ter
TV:		
TV Satellite Dish	K	
TV Pedestal	C	
TV Tower	── ⊗	
U/G TV Cable Hand Hole	H _H	
Recorded U/G TV Cable	Tv	
Designated U/G TV Cable (S.U.E.*)		
Recorded U/G Fiber Optic Cable ——	TV FO	
Designated U/G Fiber Optic Cable (S.	U.E.*)— TV FO	
CAS.		
Gas Valve	∧	
Gas Meter	Ò	
Recorded U/G Gas Line	~ 	
Designated U/G Gas Line (S.U.E.*)		
Above Ground Gas Line	A/G Ga	s
SANITARY SEWER:		
Sanitary Sewer Cleanout	®	
U/G Sanitary Sower Line	——— ÷	
Above Ground Sanitary Sewer		Sa
Recorded SS Forced Main Line		Jewe
Designated SS Forced Main Line (S.U	.E.*)rss_	
-		
MISCELLANEOUS:		
Utility Pole	•	
Utility Pole with Base	·	
Utility Located Object	O	
Utility Traffic Signal Box	S	
Utility Unknown U/G Line		
U/G Tank; Water, Gas, Oil]
Underground Storage Tank, Approx. La	xc. — (<u>ust</u>)	
A/G Tank; Water, Gas, Oil]
Geoenvironmental Boring	&	
U/G Test Hole (S.U.E.*)	•••••	
	ds ььті	JR
Abandoned According to Utility Record		

APPENDIX A PHOTOGRAPHS

Parcel 010, facing north toward B-10-01.

Parcel 010, facing north toward B-10-03.

STATE PROJECT B-4490 CUMBERLAND CO. NORTH CAROLINA NC DEPT. OF TRANSPORTATION PROJECT NO. 11821014.33

SOIL BORINGS PARCEL 010

APPENDIX B GEOPHYSICS REPORT

March 27, 2014

Mr. Mohammed A. Mulla, P.E., CPM, MCE NCDOT, Geotechnical Engineering Unit 1020 Birch Ridge Drive Raleigh, NC 27610

- RE: State Project: B-4490 WBS Element: 33727.1.1 County: Cumberland Description: Replace Bridge No. 116 over CSX Railroad, North South Railroad, and Hillsboro Street on NC 24-210
- Subject:Project 11821014.33, Report on Geophysical SurveysParcel 010, Utley Rentals LLC Property, Fayetteville, North Carolina

Dear Mr. Mulla:

SCHNABEL ENGINEERING SOUTH, PC (Schnabel) is pleased to present this report on the geophysical surveys we performed on the subject property. The report includes two 11x17 inch color figures and two 8.5x11 inch color figures. This study was performed in accordance with our proposal for Geophysical Surveys to Locate Possible USTs dated December 26, 2013, as approved by Terry Farr on January 24, 2014, and our existing agreement dated June 2, 2011. Gordon Box provided a verbal notice to proceed on January 23, 2014.

INTRODUCTION

The field work described in this report was performed on January 29, 2014 and February 7 and February 11, 2014, by Schnabel under our 2011 contract with the NCDOT. The purpose of the geophysical surveys was to evaluate the potential presence of metal underground storage tanks (USTs) in the accessible areas of Parcel 010. Photographs of the property are included on Figure 1. The property is located on the north side of the NC 210 (Rowan Street) near the intersection with Murchison Road in Fayetteville, NC.

The geophysical surveys consisted of an electromagnetic (EM) induction survey and a ground penetrating radar (GPR) survey. The EM survey was performed using a Geonics EM61-MK2 (EM61) instrument. The EM61 is a time domain metal detector that stores data digitally for later processing and review. Sensitivity to metallic objects is dependent on the size, depth, and orientation of the buried object and the amount of noise (i.e. response from spurious metallic objects) in the area. The EM61 can generally observe a single

schnabel-eng.com

buried 55 gallon drum at a depth of 10 feet or less. The EM61 makes measurements by creating an electromagnetic pulse and then measuring the response from metallic objects over time after the pulse is generated. We measured and recorded the response at several time increments after the pulse to help evaluate relative size and depth of metallic objects in the subsurface.

The GPR survey was performed over selected EM61 anomalies using a Geophysical Survey Systems SIR-3000 system equipped with a 400 MHz antenna to further investigate and evaluate EM responses that could indicate a potential UST. The depth penetration of the GPR signal, when using a 400 MHz antenna, is normally limited to 6 feet or less.

Photographs of the equipment used are shown on Figure 2.

FIELD METHODOLOGY

We obtained locations of geophysical data points using a sub-meter Trimble Pro-XRS differential global positioning system (DGPS). References to direction and location in this report are based on the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 83 datum, with units in US survey feet. We also recorded the locations of existing site features (utilities, concrete, etc.) with the DGPS for later correlation with the geophysical data and a site plan provided by the NCDOT. The Microstation data provided by the NCDOT appears to be offset from the DGPS data we collected. The amount (approximately 5 feet) and direction (WNW) of offset of the Microstation data appear to be consistent for all parcels where we collected data for this project.

The EM61 data were collected along parallel survey lines spaced approximately 2.5 feet apart. The EM61 and DGPS data were recorded digitally using a field computer and later transferred to a desktop computer for data processing. The GPR data were collected along survey lines spaced approximately one to two feet apart in orthogonal directions over anomalous EM readings not attributed to cultural features. The GPR data were reviewed in the field to evaluate the possible presence of USTs. The GPR data also were recorded digitally and later transferred to a desktop computer for further review.

DISCUSSION OF RESULTS

The contoured EM61 data collected over Parcel 010 and the GPR survey area locations are shown on Figure 3, EM61 Early Time Gate Response, and Figure 4, EM61 Differential Response. Areas outside the colored, contoured EM61 data were not surveyed. Early time data refer to the response measured at a short time after the initial EM pulse is generated. Early time data typically contain responses from all metal objects, small or large and shallow or deep, within the sensitivity range of the instrument. Differential data represent the difference in response between the top and bottom coils of the EM61 instrument at a later time after the initial pulse than early time data. Differential data naturally tend to filter out the effect of surface and very shallowly buried metallic objects. Typically, the differential response emphasizes anomalies from deeper and larger objects such as USTs.

We were not able to access an area in the western portion of the planned survey area due to the presence of thick vegetation. We were unable to access another portion of the planned survey area due to the presence of vehicles that were not moved despite multiple conversations with the tenant. The EM data contain multiple anomalies that we investigated with GPR (as shown on Figures 3 and 4), all of

which appear to be the result of buried utilities, reinforced concrete, or other metal objects at the ground surface or at shallow depths. The geophysical data collected at the site do not indicate the presence of metallic USTs within the areas surveyed.

CONCLUSIONS

As shown in Figures 3 and 4, the EM data we collected over Parcel 010 did not cover portions of the planned survey area due to the presence of thick vegetation and vehicles within the planned survey area. The EM data include responses from several visible metallic objects at grade (e.g. vehicles, utility meters, etc.). We did not observe anomalies in the EM or the GPR geophysical data at the subject property that we interpret to be the results of metallic USTs within about 6 feet of the ground surface.

LIMITATIONS

These services have been performed and this report prepared for the North Carolina Department of Transportation in accordance with generally accepted guidelines for conducting geophysical surveys. It is generally recognized that the results of geophysical surveys are non-unique and may not represent actual subsurface conditions.

We appreciate the opportunity to have provided these services. Please call if you need additional information or have any questions.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

Wet

James W. Whitt, LG Senior Staff Geophysicist

oam

Gregory B. Kuntz, LG Senior Associate

JWW:JCD:GBK Attachments: Figures (4) CC: NCDOT, Gordon Box

FILE: G:/2011-SDE-JOBS/11821014_00_NCDOT_2011_GEOTECHNICAL_UNIT_SERVICES/11821014_33_B-4490_CUMBERLAND_COUNTY/REPORT/GEOPHYSICS/PARCEL 10/SCHNABEL GEOPHYSICAL REPORT ON PARCEL 10 (B-4490) FINAL.DOCX

Attachments:

Figure 1 - Parcel 010 Site Photos Figure 2 - Photos of Geophysical Equipment Used Figure 3 - EM61 Early Time Gate Response Figure 4 - EM61 Differential Response

Parcel 010 (Utley Rentals LLC Property), looking northwest

Parcel 010 (Utley Rentals LLC Property), looking northeast

STATE PROJECT B-4490 NC DEPT. OF TRANSPORTATION CUMBERLAND CO., NORTH CAROLINA PROJECT NO. 11821014.33

PARCEL 010 SITE PHOTOS

Geonics EM61-MK2 Metal Detector with Trimble DGPS Unit

GSSI SIR-3000 Ground-Penetrating Radar with 400 MHz Antenna

Note: Stock photographs – not taken on site.

STATE PROJECT B-4490 NC DEPT. OF TRANSPORTATION CUMBERLAND CO., NORTH CAROLINA PROJECT NO. 11821014.33 PHOTOS OF GEOPHYSICAL EQUIPMENT USED

Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on January 29 and February 7, 2014, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on February 11, 2014, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

STATE PROJECT B-4490 NC DEPARTMENT OF TRANSPORTATION CUMBERLAND COUNTY, NC PROJECT NO. 11821014.33 EM61 EARLY TIME GATE RESPONSE

Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on January 29 and February 7, 2014, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on February 11, 2014, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

STATE PROJECT B-4490 NC DEPARTMENT OF TRANSPORTATION CUMBERLAND COUNTY, NC PROJECT NO. 11821014.33

APPENDIX C SOIL BORING LOGS

Schnabel GEO Project: Preliminary Site A					Asse	ssmen	ts		Geo P	Geo Probe Number: B-10-01					
	ENGINEERING PROBE		Cumberla Fayettev	and Co ille, Nor	unty th Ca	arolina			Contra Sheet	Contract Number: B-4490 Sheet: 1 of 1					
Contrac	tor: Saedacco, Inc.							Ground	dwater Ok	servations					
Contrac	for Foreman: W/ Hall							Date	Time	Depth	Casing	Caved			
Schnab					En	counte	red $\underline{\nabla}$	2/19	9:28 AN	/ 8.0'					
Schlas	HREPIESEIIIalive. D. Diauley										+				
Equipin											+				
Metriou.	Macrocore														
Hamme	туре:														
Dates	Started: 2/19/14 Finished: 2	2/19/14													
X: 47708	33.321 m Y: 2033668.327 m										+				
											+				
Ground	Surface Elevation:	Total Dept	th: 12.0) ft											
DEPTH (ft)	MATERIAL DESCRIPTION	NC	SYMBO			STRA TUM	S		x	TESTS		REMARKS			
	T		r	N 12					`						
0.3		cilty			_										
	sand with clay; moist, orangeis	sh brown	Į	\otimes]									
_			FILL 🖁	× -	-	1	\vdash $+$	-	F	이D = 0.0 ppr	n				
			R	×-	-	-	┝╶┼	_							
40-					_										
7.0	SILTY SAND WITH CLAY; mo	bist, dark							F	VID = 0.0 ppr	n				
	material	JUAL			_	1	- 5 +	-							
-			SM		-	-	\vdash $+$	_		זממ 0 0 – סונ	~				
					-		L L		1	лD – 0.0 ррі					
7.5	SAND: wet orangeish white r	vrobable 🗸	SW												
8.0 -	RESIDUAL material				-	1	\vdash $+$	-	F	이D = 0.0 ppr	n				
-	SANDY LEAN CLAY; moist, gr	ray,			-	-	\vdash $+$	_							
	probable RESIDUAL material		CI												
									F	'ID = 0.0 ppr	n				
					-	1	\vdash $+$	-							
12.0			ł		-				Λc	זממ 0 0 – סונ	<u>_</u>				
								10-01-01	/ \ <u>'</u>	10 – 0.0 ppi	<u> </u>				
	Bottom of Geo Probe at 12.0 f	t.													

Boring terminated at selected depth. Boring backfilled with bentonite and cuttings upon completion.

	Schnabel GEO Project: Preliminary Site Assessments						Geo	Geo Probe Number: B-10-02						
	ENGINEERING LOG		Cumberland Fayetteville,	l Co Noi	unty rth Ca	rolina			Cont Shee	Contract Number: B-4490 Sheet: 1 of 1				
Contract	tor: Saedacco, Inc.							Ground	water O	bser	vations			
Controot	Fort Mill, South Carolina							Date	Time		Depth	Casing	Caved	
Schnabe	el Representative: B. Bradley				En	counte	red \overline{Y}	2/19	10:16 AM 8.5'					
Equipme	ent: Geoprobe 7822DT													
Method:	3-1/4" Probe Rod.									-				
	Macrocore													
Hammer	· Type:													
Dates	Started: 2/19/14 Finished: 2/1	9/14												
X: 47706	67.203 m Y: 2033751.981 m									-				
										_				
Ground	Surface Elevation:	Total Dep	oth: 10.0 ft											
DEPTH (ft)	MATERIAL DESCRIPTION		SYMBOL E		LEV (ft)	EV STRA S t) TUM DEPTH					TESTS	REMARKS		
0.2	_ • • •								`					
0.2														
_	sand with clay; moist, orangeish	brown	FILL 🕅		_									
_				$\frac{1}{2}$	-	-		_		PID :	= 0 0 ppm	n I		
3.0 -				4	-	-		_						
	SILTY SAND; wet, orangeish bro probable RESIDUAL material, G	own, ray 9												
_	to 10				-	1				PID :	= 0.0 ppm	n		
				-			- 5 -	-						
_				-	-	-	- +	_						
			SM							PID	= 0.0 ppm	1		
				[_]								
-		∇	,	-	-		- +	-		PID :	= 0.0 ppm	n		
_		-		-	_	-		_						
10.0							10							
10.0							- 10			PID :	= 0.0 ppm	า 🦯		
	Bottom of Geo Probe at 10.0 ft.													
	Boring terminated at selected de	pth.												
	Boring backnilled with bentonite a	and cutting	upon com	piet	ion.									

	Schnabel GEO	Project:	Prelimi	nary Site	Asse	ssmen	ts		Geo P	robe Numbe	r: B·	10-03
2	ENGINEERING PROBE LOG		Cumbe Fayette	rland Co ville, Nor	unty rth Ca	arolina			Contra Sheet:	t Number: 1 of 1	B-4490	
Contract	tor: Saedacco, Inc.	1						Ground	water Ob	servations		
Contract	Fort Mill, South Carolina							Date	Time	Depth	Casing	Caved
Schnabe	Depresentative: B Bradley				En	counte	red $\underline{\nabla}$	2/19	10:06 Al	VI 10.0'		
Equipme	ant: Geoprobe 7822DT											
Method:	3-1/4" Probe Rod											
wethou.	Macrocore											
	_											
Hammer	Туре:											
Dates	Started: 2/19/14 Finished: 2	2/19/14										
X : 47710	04.757 m Y: 2033712.997 m											
Ground	Surface Elevation:	Total Dep	oth: 10	.0 ft								
DEPTH (ft)	MATERIAL DESCRIPTION	ON	SYME		LEV (ft)	STRA TUM	S/ DEPTH	AMPLING		TESTS	RE	MARKS
0.2	Asphalt			\boxtimes								
_	PROBABLE FILL, sampled as	silty			-							
_	sand with clay; moist, orangeis	Sh Drown			_			_				
			FILL						F	21D = 0.0 ppr	n	
_					_							
-					-	-	\vdash $+$	_	F	21D = 0.0 ppr	n	
4.7	SILTY SAND; moist, gravish b	prown,			_	-	- 5 -	_				
	probable RESIDUAL material,	wet at										
					_		ΓΤ		F	PID = 0.0 ppr	n	
_			SM	-	-	-	\vdash $+$	-				
_					-	-	- +	_				
										טוי = טוי טוי	n	
		<u></u>	7		-							
10.0		¥	1	11:1:1		1	⊥ 10 ⊥			PID = 0.0 ppr	n	

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth. Boring backfilled with bentonite and cuttings upon completion.

TEST BORING LOG PSA.GPJ SCHNABEL DATA TEMPLATE 2008_07_06.GDT 3/27/14

APPENDIX D

SOIL BORING GPS COORDINATES

SOIL BORING GPS COORDINATES NCDOT B-4490, CUMBERLAND COUNTY

Soil Boring GPS Coordinates									
Boring Identification	Easting	Northing							
boning identification	Х	Y							
B-10-01	2033668.327	477083.321							
B-10-02	2033751.981	477067.203							
B-10-03	2033712.997	477104.757							

* NC State Plane 1983 System, NC 3200 Zone,

NAD 83 Datum, US Survey Feet

APPENDIX E

LABORATORY ANALYTICAL RESULTS

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

March 07, 2014

Chemical Testing Engineer Materials and Tests Unit 1801 Blue Ridge Road Raleigh, NC 27607

RE: Project: Fayettville PSAs 33727.1.1 Pace Project No.: 92190359

Dear Chemical Engineer:

Enclosed are the analytical results for sample(s) received by the laboratory on February 20, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

K - Dool-

Kevin Godwin kevin.godwin@pacelabs.com Project Manager

Enclosures

cc: Ben Bradley, Schnabel Engineering

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001

Asheville Certification IDs

2225 Riverside Dr., Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030 North Carolina Drinking Water Certification #: 37712 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 West Virginia Certification #: 356 Virginia/VELAP Certification #: 460222

SAMPLE ANALYTE COUNT

Project:Fayettville PSAs 33727.1.1Pace Project No.:92190359

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92190359001	B-10-01	MADEP EPH	EJK	7	PASI-C
		MADEP VPH	GAW	5	PASI-C
		EPA 6010	JMW	2	PASI-A
		EPA 625	RES	60	PASI-C
		SM 6200B	CAH	16	PASI-C
		SM 6200B	CAH	64	PASI-C

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Method: MADEP EPH

Description:MADEP EPH NC WaterClient:NCDOT South EastDate:March 07, 2014

General Information:

1 sample was analyzed for MADEP EPH. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with MADEP EPH with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: OEXT/26031

- N2: The lab does not hold TNI accreditation for this parameter.
 - B-10-01 (Lab ID: 92190359001)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
 - BLANK (Lab ID: 1142333)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
 - LCS (Lab ID: 1142334)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Method:MADEP EPHDescription:MADEP EPH NC WaterClient:NCDOT South EastDate:March 07, 2014

Analyte Comments:

QC Batch: OEXT/26031

N2: The lab does not hold TNI accreditation for this parameter.

- LCS (Lab ID: 1142334)
 - Aromatic (C11-C22)
- LCSD (Lab ID: 1142335)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Method: MADEP VPH

Description:VPH NC WaterClient:NCDOT South EastDate:March 07, 2014

General Information:

1 sample was analyzed for MADEP VPH. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: GCV/7838

- N2: The lab does not hold TNI accreditation for this parameter.
 - B-10-01 (Lab ID: 92190359001)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
 - BLANK (Lab ID: 1148803)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
 - LCS (Lab ID: 1148804)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Method:MADEP VPHDescription:VPH NC WaterClient:NCDOT South EastDate:March 07, 2014

Analyte Comments:

QC Batch: GCV/7838

N2: The lab does not hold TNI accreditation for this parameter.

- LCSD (Lab ID: 1148805)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Method: EPA 6010

Description:6010 MET ICPClient:NCDOT South EastDate:March 07, 2014

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Method: EPA 625

Description:625 MSSVClient:NCDOT South EastDate:March 07, 2014

General Information:

1 sample was analyzed for EPA 625. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 625 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/26010

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92190065001

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 1141553)
 - 2,4-Dimethylphenol
 - 2-Chlorophenol
 - N-Nitroso-di-n-propylamine
 - Phenol
 - bis(2-Chloroisopropyl) ether

Additional Comments:

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Method: SM 6200B

Description:602 Volatiles by Method 6200Client:NCDOT South EastDate:March 07, 2014

General Information:

1 sample was analyzed for SM 6200B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Method: SM 6200B

Description:6200B MSVClient:NCDOT South EastDate:March 07, 2014

General Information:

1 sample was analyzed for SM 6200B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/25905

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92190689006

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 1145844)
 - 1,2,3-Trichloropropane
 - 1,2-Dibromo-3-chloropropane
 - Ethanol

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Sample: B-10-01	Lab ID: 9219	0359001	Collected: 02/19/	14 09:45	5 Received: 02	/20/14 09:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
MADEP EPH NC Water	Analytical Meth	od: MADE	P EPH Preparation	Method:	MADEP EPH			
Aliphatic (C09-C18)	ND ug/	L	100	1	02/21/14 10:25	02/24/14 20:49		N2
Aliphatic (C19-C36)	ND ug/	L	100	1	02/21/14 10:25	02/24/14 20:49		N2
Aromatic (C11-C22)	ND ug/	L	100	1	02/21/14 10:25	02/24/14 20:49		N2
Surrogates	-							
Nonatriacontane (S)	53 %		40-140	1	02/21/14 10:25	02/24/14 20:49	7194-86-7	
o-Terphenyl (S)	61 %		40-140	1	02/21/14 10:25	02/24/14 20:49	84-15-1	
2-Fluorobiphenyl (S)	60 %		40-140	1	02/21/14 10:25	02/24/14 20:49	321-60-8	
2-Bromonaphthalene (S)	79 %		40-140	1	02/21/14 10:25	02/24/14 20:49	580-13-2	
VPH NC Water	Analytical Meth	od: MADE	P VPH					
Aliphatic (C05-C08)	ND ug/	L	50.0	1		03/03/14 11:41		N2
Aliphatic (C09-C12)	ND ug/	L	50.0	1		03/03/14 11:41		N2
Aromatic (C09-C10)	ND ug/	L	50.0	1		03/03/14 11:41		N2
Surrogates	0							
4-Bromofluorobenzene (FID) (S)	104 %		70-130	1		03/03/14 11:41	460-00-4	
4-Bromofluorobenzene (PID) (S)	79 %		70-130	1		03/03/14 11:41	460-00-4	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	thod: EP	A 3010			
Chromium	16.1 ug/	L	5.0	1	02/21/14 10:00	02/21/14 22:40	7440-47-3	
Lead	5.9 ug/	L	5.0	1	02/21/14 10:00	02/21/14 22:40	7439-92-1	
625 MSSV	Analytical Meth	od: EPA 62	25 Preparation Meth	od: EPA	625			
Acenaphthene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	83-32-9	
Acenaphthylene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	208-96-8	
Anthracene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	120-12-7	
Benzo(a)anthracene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	56-55-3	
Benzo(a)pyrene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	50-32-8	
Benzo(b)fluoranthene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	205-99-2	
Benzo(g,h,i)perylene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	191-24-2	
Benzo(k)fluoranthene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	207-08-9	
4-Bromophenylphenyl ether	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	101-55-3	
Butylbenzylphthalate	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	85-68-7	
4-Chloro-3-methylphenol	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	59-50-7	
bis(2-Chloroethoxy)methane	ND ug/	L	10.0	1	02/20/14 13:00	02/28/14 04:44	111-91-1	
bis(2-Chloroethyl) ether	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	111-44-4	
bis(2-Chloroisopropyl) ether	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	108-60-1	
2-Chloronaphthalene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	91-58-7	
2-Chlorophenol	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	95-57-8	
4-Chlorophenylphenyl ether	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	7005-72-3	
Chrvsene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	218-01-9	
Dibenz(a,h)anthracene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04 44	53-70-3	
3.3'-Dichlorobenzidine	ND ug/	– L	25.0	1	02/20/14 13:00	02/28/14 04:44	91-94-1	
2.4-Dichlorophenol	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04 44	120-83-2	
Diethylphthalate	ND ug/	- I	5.0	1	02/20/14 13:00	02/28/14 04:44	84-66-2	
2.4-Dimethylphenol	ND ug/	-	10.0	1	02/20/14 13:00	02/28/14 04:44	105-67-9	
Dimethylphthalate	ND uq/	L	5.0	1	02/20/14 13:00	02/28/14 04:44	131-11-3	

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Sample: B-10-01	Lab ID: 92190	359001	Collected:	02/19/1	4 09:45	Received: 02	Received: 02/20/14 09:30 Matrix: Wat		
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
625 MSSV	Analytical Method	d: EPA 62	25 Preparatio	on Metho	od: EPA	625			
Di-n-butylphthalate	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	84-74-2	
4,6-Dinitro-2-methylphenol	ND ug/L			20.0	1	02/20/14 13:00	02/28/14 04:44	534-52-1	
2,4-Dinitrophenol	ND ug/L			50.0	1	02/20/14 13:00	02/28/14 04:44	51-28-5	
2,4-Dinitrotoluene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	121-14-2	
2,6-Dinitrotoluene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	606-20-2	
Di-n-octylphthalate	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	117-84-0	
bis(2-Ethylhexyl)phthalate	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	117-81-7	
Fluoranthene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	206-44-0	
Fluorene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	86-73-7	
Hexachloro-1,3-butadiene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	87-68-3	
Hexachlorobenzene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	118-74-1	
Hexachlorocyclopentadiene	ND ug/L			10.0	1	02/20/14 13:00	02/28/14 04:44	77-47-4	
Hexachloroethane	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	67-72-1	
Indeno(1,2,3-cd)pyrene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	193-39-5	
Isophorone	ND ug/L			10.0	1	02/20/14 13:00	02/28/14 04:44	78-59-1	
Naphthalene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	91-20-3	
Nitrobenzene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	98-95-3	
2-Nitrophenol	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	88-75-5	
4-Nitrophenol	ND ug/L			50.0	1	02/20/14 13:00	02/28/14 04:44	100-02-7	
N-Nitrosodimethylamine	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	62-75-9	
N-Nitroso-di-n-propylamine	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	621-64-7	
N-Nitrosodiphenylamine	ND ug/L			10.0	1	02/20/14 13:00	02/28/14 04:44	86-30-6	
Pentachlorophenol	ND ug/L			10.0	1	02/20/14 13:00	02/28/14 04:44	87-86-5	
Phenanthrene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	85-01-8	
Phenol	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	108-95-2	
Pyrene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	129-00-0	
1,2,4-Trichlorobenzene	ND ug/L			5.0	1	02/20/14 13:00	02/28/14 04:44	120-82-1	
2,4,6-Trichlorophenol	ND ug/L			10.0	1	02/20/14 13:00	02/28/14 04:44	88-06-2	
Surrogates									
Nitrobenzene-d5 (S)	60 %			10-120	1	02/20/14 13:00	02/28/14 04:44	4165-60-0	
2-Fluorobiphenyl (S)	66 %			15-120	1	02/20/14 13:00	02/28/14 04:44	321-60-8	
Terphenyl-d14 (S)	79 %			11-131	1	02/20/14 13:00	02/28/14 04:44	1718-51-0	
Phenol-d6 (S)	31 %			10-120	1	02/20/14 13:00	02/28/14 04:44	13127-88-3	
2-Fluorophenol (S)	38 %			10-120	1	02/20/14 13:00	02/28/14 04:44	367-12-4	
2,4,6-Tribromophenol (S) Tentatively Identified Compounds	82 %			10-137	1	02/20/14 13:00	02/28/14 04:44	118-79-6	
Unknown	7.5 ug/L				1	02/20/14 13:00	02/28/14 04:44		Ν
Unknown	5.9 ug/L				1	02/20/14 13:00	02/28/14 04:44		Ν
602 Volatiles by Method 6200	Analytical Method	d: SM 620	00B						
Benzene	ND ug/L			1.0	1		03/05/14 13:19	71-43-2	
Chlorobenzene	ND ug/L			1.0	1		03/05/14 13:19	108-90-7	
1,2-Dichlorobenzene	ND ug/L			1.0	1		03/05/14 13:19	95-50-1	
1,3-Dichlorobenzene	ND ug/L			1.0	1		03/05/14 13:19	541-73-1	
1,4-Dichlorobenzene	ND ug/L			1.0	1		03/05/14 13:19	106-46-7	
Diisopropyl ether	ND ug/L			1.0	1		03/05/14 13:19	108-20-3	

REPORT OF LABORATORY ANALYSIS

1.0 1

ND ug/L

Ethylbenzene

03/05/14 13:19 100-41-4

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Sample: B-10-01	Lab ID: 9219035	9001 Collected: 02/19/	14 09:45	Received: 0	Received: 02/20/14 09:30 Matrix: Water			
Parameters	Results	Jnits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
602 Volatiles by Method 6200	Analytical Method:	SM 6200B						
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		03/05/14 13:19	98-82-8		
Methyl-tert-butyl ether	ND ug/L	1.0	1		03/05/14 13:19	1634-04-4		
Naphthalene	ND ug/L	2.0	1		03/05/14 13:19	91-20-3		
Toluene	ND ug/L	1.0	1		03/05/14 13:19	108-88-3		
m&p-Xylene	ND ug/L	2.0	1		03/05/14 13:19	179601-23-1		
o-Xylene	ND ug/L	1.0	1		03/05/14 13:19	95-47-6		
Surrogates	Ũ							
4-Bromofluorobenzene (S)	95 %	70-130	1		03/05/14 13:19	460-00-4		
1,2-Dichloroethane-d4 (S)	103 %	70-130	1		03/05/14 13:19	17060-07-0		
Toluene-d8 (S)	100 %	70-130	1		03/05/14 13:19	2037-26-5		
6200B MSV	Analytical Method:	SM 6200B						
Benzene	ND ua/l	0.50	1		02/26/14 22:21	71-43-2		
Bromobenzene	ND ug/L	0.50	1		02/26/14 22:21	108-86-1		
Bromochloromethane	ND ug/L	0.50	1		02/26/14 22:21	74-97-5		
Bromodichloromethane	ND ug/L	0.50	1		02/26/14 22:21	75-27-4		
Bromoform	ND ug/L	0.50	1		02/26/14 22:21	75-25-2		
Bromomethane	ND ug/L	5.0	1		02/26/14 22:21	70 20 2		
n-Butylbenzene	ND ug/L	0.50	1		02/26/14 22:21	104-51-8		
sec-Butylbenzene	ND ug/L	0.50	1		02/26/14 22:21	135-98-8		
tert-Butylbenzene	ND ug/L	0.50	1		02/26/14 22:21	98-06-6		
Carbon tetrachloride	ND ug/L	0.50	1		02/26/14 22:21	56-23-5		
Chlorobenzene	ND ug/L	0.50	1		02/26/14 22:21	108-90-7		
Chloroethane	ND ug/L	1.0	1		02/26/14 22:21	75-00-3		
Chloroform	ND ug/L	0.50	1		02/26/14 22:21	67-66-3		
Chloromethane	ND ug/L	1.0	1		02/26/14 22:21	74-87-3		
2-Chlorotoluene	ND ug/L	0.50	1		02/26/14 22:21	95-49-8		
4-Chlorotoluene	ND ug/l	0.50	1		02/26/14 22:21	106-43-4		
1.2-Dibromo-3-chloropropane	ND ug/l	1.0	1		02/26/14 22:21	96-12-8		
Dibromochloromethane	ND ug/L	0.50	1		02/26/14 22:21	124-48-1		
1.2-Dibromoethane (EDB)	ND ug/L	0.50	1		02/26/14 22:21	106-93-4		
Dibromomethane	ND ug/L	0.50	1		02/26/14 22:21	74-95-3		
1.2-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 22:21	95-50-1		
1.3-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 22:21	541-73-1		
1,4-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 22:21	106-46-7		
Dichlorodifluoromethane	ND ug/L	0.50	1		02/26/14 22:21	75-71-8		
1,1-Dichloroethane	ND ug/L	0.50	1		02/26/14 22:21	75-34-3		
1,2-Dichloroethane	ND ug/L	0.50	1		02/26/14 22:21	107-06-2		
1.1-Dichloroethene	ND ug/L	0.50	1		02/26/14 22:21	75-35-4		
cis-1,2-Dichloroethene	ND ug/L	0.50	1		02/26/14 22:21	156-59-2		
trans-1,2-Dichloroethene	ND ug/L	0.50	1		02/26/14 22:21	156-60-5		
1.2-Dichloropropane	ND ua/L	0.50	1		02/26/14 22:21	78-87-5		
1.3-Dichloropropane	ND ua/L	0.50	1		02/26/14 22:21	142-28-9		
2.2-Dichloropropane	ND ua/L	0.50	1		02/26/14 22:21	594-20-7		
1,1-Dichloropropene	ND ua/L	0.50	1		02/26/14 22:21	563-58-6		
cis-1.3-Dichloropropene	ND ua/L	0.50	1		02/26/14 22:21	10061-01-5		
trans-1,3-Dichloropropene	ND ug/L	0.50	1		02/26/14 22:21	10061-02-6		

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Sample: B-10-01	Lab ID: 9219035900	Collected: 02/19/14	4 09:45	Received: 02	/20/14 09:30	Matrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6200B MSV	Analytical Method: SM	6200B					
Diisopropyl ether	ND ug/L	0.50	1		02/26/14 22:21	108-20-3	
Ethanol	ND ug/L	200	1		02/26/14 22:21	64-17-5	
Ethylbenzene	ND ug/L	0.50	1		02/26/14 22:21	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	2.0	1		02/26/14 22:21	87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	0.50	1		02/26/14 22:21	98-82-8	
Methylene Chloride	ND ug/L	2.0	1		02/26/14 22:21	75-09-2	
Methyl-tert-butyl ether	ND ug/L	0.50	1		02/26/14 22:21	1634-04-4	
Naphthalene	ND ug/L	2.0	1		02/26/14 22:21	91-20-3	
n-Propylbenzene	ND ug/L	0.50	1		02/26/14 22:21	103-65-1	
Styrene	ND ug/L	0.50	1		02/26/14 22:21	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 22:21	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 22:21	79-34-5	
Tetrachloroethene	ND ug/L	0.50	1		02/26/14 22:21	127-18-4	
Toluene	ND ug/L	0.50	1		02/26/14 22:21	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	2.0	1		02/26/14 22:21	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	2.0	1		02/26/14 22:21	120-82-1	
1,1,1-Trichloroethane	ND ug/L	0.50	1		02/26/14 22:21	71-55-6	
1,1,2-Trichloroethane	ND ug/L	0.50	1		02/26/14 22:21	79-00-5	
Trichloroethene	ND ug/L	0.50	1		02/26/14 22:21	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		02/26/14 22:21	75-69-4	
1,2,3-Trichloropropane	ND ug/L	0.50	1		02/26/14 22:21	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	0.50	1		02/26/14 22:21	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	0.50	1		02/26/14 22:21	108-67-8	
Vinyl chloride	ND ug/L	1.0	1		02/26/14 22:21	75-01-4	
m&p-Xylene	ND ug/L	1.0	1		02/26/14 22:21	179601-23-1	
o-Xylene	ND ug/L	0.50	1		02/26/14 22:21	95-47-6	
Surrogates	5						
1,2-Dichloroethane-d4 (S)	104 %	70-130	1		02/26/14 22:21	17060-07-0	
4-Bromofluorobenzene (S)	96 %	70-130	1		02/26/14 22:21	460-00-4	
Toluene-d8 (S)	102 %	70-130	1		02/26/14 22:21	2037-26-5	

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

QC Batch: GCV/7838		Analysis Met	hod: M	ADEP VPH		
QC Batch Method: MADEP VP	Н	Analysis Des	scription: VF	PH NC Water		
Associated Lab Samples: 9219	0359001					
METHOD BLANK: 1148803		Matrix:	Water			
Associated Lab Samples: 9219	0359001					
		Blank	Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers	
Aliphatic (C05-C08)	ug/L	ND	50.0	03/03/14 10:09	N2	
Aliphatic (C09-C12)	ug/L	ND	50.0	03/03/14 10:09	N2	
Aromatic (C09-C10)	ug/L	ND	50.0	03/03/14 10:09	N2	
4-Bromofluorobenzene (FID) (S)	%	107	70-130	03/03/14 10:09		
4-Bromofluorobenzene (PID) (S)	%	81	70-130	03/03/14 10:09		
LABORATORY CONTROL SAMP	LE & LCSD: 1148804		1148805			
		Spike LC	S LCSD	LCS LCSD	% Rec	Max

		Opino	200	LOOD	200	LOOD	/01100		IVIUX	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Aliphatic (C05-C08)	ug/L	300	292	282	97	94	70-130	3	25	N2
Aliphatic (C09-C12)	ug/L	300	295	300	98	100	30-130	2	25	N2
Aromatic (C09-C10)	ug/L	100	84.9	83.9	85	84	70-130	1	25	N2
4-Bromofluorobenzene (FID) (S)	%				85	97	70-130			
4-Bromofluorobenzene (PID) (S)	%				70	81	70-130			

Project:	Fayettville PSA	33727.1	.1									
Pace Project No.:	92190359											
QC Batch:	MPRP/15285			Analysi	is Method:	E	PA 6010					
QC Batch Method:	EPA 3010			Analysi	is Descript	tion: 6	010 MET					
Associated Lab Sar	mples: 921903	59001										
METHOD BLANK:	1142293			N	latrix: Wa	ter						
Associated Lab Sar	mples: 921903	59001										
				Blank	R	eporting						
Parar	neter		Units	Result	t	Limit	Analyz	ed	Qualifiers			
Chromium		ug/L			ND	5.0	02/21/14	20:58				
Lead		ug/L			ND	5.0	02/21/14	20:58				
	NTROL SAMPLE	· 11422	94									
				Spike	LCS	5	LCS	% Re	С			
Parar	neter		Units	Conc.	Resu	ılt	% Rec	Limits	s Qı	ualifiers		
Chromium		ug/L		500		509	102	80)-120		-	
Lead		ug/L		500		501	100	80)-120			
MATRIX SPIKE & N	ATRIX SPIKE D	UPLICAT	E: 114229	95		1142296						
				MS	MSD							
		921	90489009	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parame	ter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Chromium	 ug	ı/L	28.9	500	500	523	523	99	99	75-125	0	
Lead	ug	µ∕L	20.4	500	500	468	469	90	90	75-125	0	

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

QC Batch:	MSV/25984		Analysis Met	hod:	SM 6200B	
QC Batch Method:	SM 6200B		Analysis Des	cription:	602 by 6200B	
Associated Lab Sam	ples: 92190359001					
METHOD BLANK:	1150564		Matrix:	Water		
Associated Lab Sam	ples: 92190359001					
			Blank	Reporting		
Param	eter	Units	Result	Limit	Analyzed	Qualifiers

				•
1,2-Dichlorobenzene	ug/L	ND	1.0	03/05/14 12:46
1,3-Dichlorobenzene	ug/L	ND	1.0	03/05/14 12:46
1,4-Dichlorobenzene	ug/L	ND	1.0	03/05/14 12:46
Benzene	ug/L	ND	1.0	03/05/14 12:46
Chlorobenzene	ug/L	ND	1.0	03/05/14 12:46
Diisopropyl ether	ug/L	ND	1.0	03/05/14 12:46
Ethylbenzene	ug/L	ND	1.0	03/05/14 12:46
Isopropylbenzene (Cumene)	ug/L	ND	1.0	03/05/14 12:46
m&p-Xylene	ug/L	ND	2.0	03/05/14 12:46
Methyl-tert-butyl ether	ug/L	ND	1.0	03/05/14 12:46
Naphthalene	ug/L	ND	2.0	03/05/14 12:46
o-Xylene	ug/L	ND	1.0	03/05/14 12:46
Toluene	ug/L	ND	1.0	03/05/14 12:46
1,2-Dichloroethane-d4 (S)	%	103	70-130	03/05/14 12:46
4-Bromofluorobenzene (S)	%	95	70-130	03/05/14 12:46
Toluene-d8 (S)	%	100	70-130	03/05/14 12:46

LABORATORY CONTROL SAMPLE: 1150565

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1.2-Dichlorobenzene	ua/L		52.9	106	60-140	<u> </u>
1.3-Dichlorobenzene	ug/L	50	51.3	103	60-140	
1,4-Dichlorobenzene	ug/L	50	52.6	105	60-140	
Benzene	ug/L	50	49.5	99	60-140	
Chlorobenzene	ug/L	50	51.7	103	60-140	
Diisopropyl ether	ug/L	50	51.6	103	60-140	
Ethylbenzene	ug/L	50	49.6	99	60-140	
Isopropylbenzene (Cumene)	ug/L	50	51.1	102	60-140	
m&p-Xylene	ug/L	100	104	104	60-140	
Methyl-tert-butyl ether	ug/L	50	51.8	104	60-140	
Naphthalene	ug/L	50	57.1	114	60-140	
o-Xylene	ug/L	50	52.5	105	60-140	
Toluene	ug/L	50	47.2	94	60-140	
1,2-Dichloroethane-d4 (S)	%			101	70-130	
4-Bromofluorobenzene (S)	%			98	70-130	
Toluene-d8 (S)	%			97	70-130	

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359					
QC Batch: MSV/2590	5	Analysis Meth	nod: SN	/I 6200B	
QC Batch Method: SM 6200B		Analysis Des	cription: 62	00B MSV	
Associated Lab Samples: 921	90359001				
METHOD BLANK: 1145841		Matrix:	Water		
Associated Lab Samples: 921	90359001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1,1-Trichloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1,2,2-Tetrachloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1,2-Trichloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1-Dichloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1-Dichloroethene	ug/L	ND	0.50	02/26/14 18:47	
1,1-Dichloropropene	ug/L	ND	0.50	02/26/14 18:47	
1,2,3-Trichlorobenzene	ug/L	ND	2.0	02/26/14 18:47	
1,2,3-Trichloropropane	ug/L	ND	0.50	02/26/14 18:47	
1,2,4-Trichlorobenzene	ug/L	ND	2.0	02/26/14 18:47	
1,2,4-Trimethylbenzene	ug/L	ND	0.50	02/26/14 18:47	
1,2-Dibromo-3-chloropropane	ug/L	ND	1.0	02/26/14 18:47	
1,2-Dibromoethane (EDB)	ug/L	ND	0.50	02/26/14 18:47	
1,2-Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47	

1,2-Dibromo-3-chloropropane	ug/L	ND	1.0	02/26/14 18:47
1,2-Dibromoethane (EDB)	ug/L	ND	0.50	02/26/14 18:47
1,2-Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47
1,2-Dichloroethane	ug/L	ND	0.50	02/26/14 18:47
1,2-Dichloropropane	ug/L	ND	0.50	02/26/14 18:47
1,3,5-Trimethylbenzene	ug/L	ND	0.50	02/26/14 18:47
1,3-Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47
1,3-Dichloropropane	ug/L	ND	0.50	02/26/14 18:47
1,4-Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47
2,2-Dichloropropane	ug/L	ND	0.50	02/26/14 18:47
2-Chlorotoluene	ug/L	ND	0.50	02/26/14 18:47
4-Chlorotoluene	ug/L	ND	0.50	02/26/14 18:47
Benzene	ug/L	ND	0.50	02/26/14 18:47
Bromobenzene	ug/L	ND	0.50	02/26/14 18:47
Bromochloromethane	ug/L	ND	0.50	02/26/14 18:47
Bromodichloromethane	ug/L	ND	0.50	02/26/14 18:47
Bromoform	ug/L	ND	0.50	02/26/14 18:47
Bromomethane	ug/L	ND	5.0	02/26/14 18:47
Carbon tetrachloride	ug/L	ND	0.50	02/26/14 18:47
Chlorobenzene	ug/L	ND	0.50	02/26/14 18:47
Chloroethane	ug/L	ND	1.0	02/26/14 18:47
Chloroform	ug/L	ND	0.50	02/26/14 18:47
Chloromethane	ug/L	ND	1.0	02/26/14 18:47
cis-1,2-Dichloroethene	ug/L	ND	0.50	02/26/14 18:47
cis-1,3-Dichloropropene	ug/L	ND	0.50	02/26/14 18:47
Dibromochloromethane	ug/L	ND	0.50	02/26/14 18:47
Dibromomethane	ug/L	ND	0.50	02/26/14 18:47
Dichlorodifluoromethane	ug/L	ND	0.50	02/26/14 18:47
Diisopropyl ether	ug/L	ND	0.50	02/26/14 18:47
Ethanol	ug/L	ND	200	02/26/14 18:47
Ethylbenzene	ug/L	ND	0.50	02/26/14 18:47
Hexachloro-1,3-butadiene	ug/L	ND	2.0	02/26/14 18:47

Project: Fayettville PSAs 33727.1.1 Pace Project No.: 92190359

METHOD BLANK: 1145841

Associated Lab Samples: 92190359001

Matrix: Water

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Isopropylbenzene (Cumene)	ug/L	ND	0.50	02/26/14 18:47	
m&p-Xylene	ug/L	ND	1.0	02/26/14 18:47	
Methyl-tert-butyl ether	ug/L	ND	0.50	02/26/14 18:47	
Methylene Chloride	ug/L	ND	2.0	02/26/14 18:47	
n-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
n-Propylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Naphthalene	ug/L	ND	2.0	02/26/14 18:47	
o-Xylene	ug/L	ND	0.50	02/26/14 18:47	
sec-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Styrene	ug/L	ND	0.50	02/26/14 18:47	
tert-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Tetrachloroethene	ug/L	ND	0.50	02/26/14 18:47	
Toluene	ug/L	ND	0.50	02/26/14 18:47	
trans-1,2-Dichloroethene	ug/L	ND	0.50	02/26/14 18:47	
trans-1,3-Dichloropropene	ug/L	ND	0.50	02/26/14 18:47	
Trichloroethene	ug/L	ND	0.50	02/26/14 18:47	
Trichlorofluoromethane	ug/L	ND	1.0	02/26/14 18:47	
Vinyl chloride	ug/L	ND	1.0	02/26/14 18:47	
1,2-Dichloroethane-d4 (S)	%	101	70-130	02/26/14 18:47	
4-Bromofluorobenzene (S)	%	98	70-130	02/26/14 18:47	
Toluene-d8 (S)	%	101	70-130	02/26/14 18:47	

LABORATORY CONTROL SAMPLE: 1145842

Demonster	11-2-	Spike	LCS	LCS	% Rec	O sell'É sur
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	49.0	98	60-140	
1,1,1-Trichloroethane	ug/L	50	53.7	107	60-140	
1,1,2,2-Tetrachloroethane	ug/L	50	50.2	100	60-140	
1,1,2-Trichloroethane	ug/L	50	52.9	106	60-140	
1,1-Dichloroethane	ug/L	50	49.2	98	60-140	
1,1-Dichloroethene	ug/L	50	48.0	96	60-140	
1,1-Dichloropropene	ug/L	50	51.3	103	60-140	
1,2,3-Trichlorobenzene	ug/L	50	49.1	98	60-140	
1,2,3-Trichloropropane	ug/L	50	49.8	100	60-140	
1,2,4-Trichlorobenzene	ug/L	50	49.1	98	60-140	
1,2,4-Trimethylbenzene	ug/L	50	51.4	103	60-140	
1,2-Dibromo-3-chloropropane	ug/L	50	64.7	129	60-140	
1,2-Dibromoethane (EDB)	ug/L	50	52.8	106	60-140	
1,2-Dichlorobenzene	ug/L	50	48.3	97	60-140	
1,2-Dichloroethane	ug/L	50	47.9	96	60-140	
1,2-Dichloropropane	ug/L	50	50.1	100	60-140	
1,3,5-Trimethylbenzene	ug/L	50	52.4	105	60-140	
1,3-Dichlorobenzene	ug/L	50	47.3	95	60-140	
1,3-Dichloropropane	ug/L	50	51.3	103	60-140	
1,4-Dichlorobenzene	ug/L	50	47.7	95	60-140	

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

LABORATORY CONTROL SAMPLE: 1145842

Parameter	Units	Spike Conc	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
2 2-Dichloropropage						Quantoro
2-Chlorotoluene	ug/L	50	48.4	97	60-140	
	ug/L	50	40.4	100	60 140	
A-Chilofololdene Bonzono	ug/L	50	49.0	100	60 140	
Bromohonzono	ug/L	50	JZ.J 40.9	105	60 140	
Bromoshloromethano	ug/L	50	49.0	100	60 140	
Bromodiobloromothana	ug/L	50	52.0	104	60 140	
Bromotorm	ug/L	50	55.5 44 9	111	60-140	
Bromomothana	ug/L	50	44.0	90 72	60-140	
Corbon totrochlorido	ug/L	50	30.3	73	60-140	
	ug/L	50	40.0	93	60-140	
Chloropenzene	ug/L	50	50.6	101	60-140	
Chloroform	ug/L	50	48.7	97	00-140	
Chloromothono	ug/L	50	51.2	102	60-140	
	ug/L	50	45.3	91	60 140	
	ug/L	50	48.1	96	60-140	
	ug/L	50	48.3	97	60-140	
Dibromocniorometnane	ug/L	50	48.0	96	60-140	
Dibromomethane	ug/L	50	50.6	101	60-140	
Dichlorodifluoromethane	ug/L	50	38.5	11	60-140	
	ug/L	50	50.4	101	60-140	
Ethanol	ug/L	2000	1710	85	60-140	
Ethylbenzene	ug/L	50	50.8	102	60-140	
Hexachloro-1,3-butadiene	ug/L	50	50.4	101	60-140	
Isopropylbenzene (Cumene)	ug/L	50	54.0	108	60-140	
m&p-Xylene	ug/L	100	105	105	60-140	
Methyl-tert-butyl ether	ug/L	50	50.5	101	60-140	
Methylene Chloride	ug/L	50	53.9	108	60-140	
n-Butylbenzene	ug/L	50	50.8	102	60-140	
n-Propylbenzene	ug/L	50	52.7	105	60-140	
Naphthalene	ug/L	50	49.0	98	60-140	
o-Xylene	ug/L	50	52.2	104	60-140	
sec-Butylbenzene	ug/L	50	52.1	104	60-140	
Styrene	ug/L	50	55.3	111	60-140	
tert-Butylbenzene	ug/L	50	51.8	104	60-140	
Tetrachloroethene	ug/L	50	51.2	102	60-140	
Toluene	ug/L	50	50.5	101	60-140	
trans-1,2-Dichloroethene	ug/L	50	46.7	93	60-140	
trans-1,3-Dichloropropene	ug/L	50	47.5	95	60-140	
Trichloroethene	ug/L	50	49.9	100	60-140	
Trichlorofluoromethane	ug/L	50	50.3	101	60-140	
Vinyl chloride	ug/L	50	48.4	97	60-140	
1,2-Dichloroethane-d4 (S)	%			99	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			99	70-130	

REPORT OF LABORATORY ANALYSIS

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

MATRIX SPIKE & MATRIX SPIK	E DUPLICATE	: 114584	13		1145844						
			MS	MSD							
	9219	90689006	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	17.9	14.3	89	72	60-140	22	
1,1,1-Trichloroethane	ug/L	ND	20	20	21.3	17.1	106	85	60-140	22	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	20.6	15.3	103	76	60-140	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	21.3	16.5	107	83	60-140	25	
1,1-Dichloroethane	ug/L	ND	20	20	21.0	16.8	105	84	60-140	22	
1,1-Dichloroethene	ug/L	ND	20	20	20.2	16.8	101	84	60-140	19	
1,1-Dichloropropene	ug/L	ND	20	20	21.4	17.2	107	86	60-140	22	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	17.4	14.0	87	70	60-140	22	
1,2,3-Trichloropropane	ug/L	ND	20	20	20.3	14.8	101	74	60-140	31 R1	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	17.4	14.0	87	70	60-140	22	
1,2,4-Trimethylbenzene	ug/L	ND	20	20	19.3	15.1	96	76	60-140	24	
1,2-Dibromo-3-chloropropane	ug/L	ND	20	20	22.5	16.2	113	81	60-140	32 R1	
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	21.5	16.4	108	82	60-140	27	
1,2-Dichlorobenzene	ug/L	ND	20	20	18.2	14.2	91	71	60-140	24	
1,2-Dichloroethane	ug/L	2.4	20	20	23.0	18.1	103	79	60-140	24	
1,2-Dichloropropane	ug/L	ND	20	20	20.6	16.0	103	80	60-140	25	
1,3,5-Trimethylbenzene	ug/L	ND	20	20	19.5	15.5	97	77	60-140	23	
1,3-Dichlorobenzene	ug/L	ND	20	20	17.7	13.9	89	70	60-140	24	
1,3-Dichloropropane	ug/L	ND	20	20	21.2	16.2	106	81	60-140	26	
1,4-Dichlorobenzene	ug/L	ND	20	20	17.6	14.1	88	70	60-140	23	
2,2-Dichloropropane	ug/L	ND	20	20	18.8	15.5	94	78	60-140	19	
2-Chlorotoluene	ug/L	ND	20	20	18.7	14.9	94	74	60-140	23	
4-Chlorotoluene	ug/L	ND	20	20	19.0	14.9	95	74	60-140	24	
Benzene	ug/L	ND	20	20	20.7	16.6	104	83	60-140	22	
Bromobenzene	ug/L	ND	20	20	19.0	14.8	95	74	60-140	25	
Bromochloromethane	ug/L	ND	20	20	22.3	17.5	112	88	60-140	24	
Bromodichloromethane	ug/L	ND	20	20	19.5	15.6	98	78	60-140	22	
Bromoform	ug/L	ND	20	20	15.7	13.0	78	65	60-140	19	
Bromomethane	ug/L	ND	20	20	14.7	15.1	74	76	60-140	3	
Carbon tetrachloride	ug/L	ND	20	20	17.5	15.6	88	78	60-140	11	
Chlorobenzene	ug/L	ND	20	20	19.8	15.6	99	78	60-140	24	
Chloroethane	ug/L	ND	20	20	22.3	19.5	111	97	60-140	13	
Chloroform	ug/L	ND	20	20	21.3	16.7	106	83	60-140	24	
Chloromethane	ug/L	ND	20	20	18.5	17.8	93	89	60-140	4	
cis-1,2-Dichloroethene	ug/L	ND	20	20	20.4	16.2	102	81	60-140	23	
cis-1,3-Dichloropropene	ug/L	ND	20	20	16.9	13.6	85	68	60-140	21	
Dibromochloromethane	ug/L	ND	20	20	17.2	13.8	86	69	60-140	22	
Dibromomethane	ug/L	ND	20	20	20.0	15.2	100	76	60-140	27	
Dichlorodifluoromethane	ug/L	ND	20	20	15.3	17.9	77	90	60-140	16	
Diisopropyl ether	ug/L	0.55	20	20	22.1	17.1	108	83	60-140	26	
Ethanol	ug/L	ND	800	800	772	559	97	70	60-140	32 R1	
Ethylbenzene	ug/L	ND	20	20	19.7	15.7	99	78	60-140	23	
Hexachloro-1,3-butadiene	ug/L	ND	20	20	17.6	14.2	88	71	60-140	21	
Isopropylbenzene (Cumene)	ug/L	ND	20	20	20.5	16.2	102	81	60-140	23	
m&p-Xylene	ug/L	ND	40	40	39.0	31.5	97	79	60-140	21	
Methyl-tert-butyl ether	ug/L	6.6	20	20	28.2	22.8	108	81	60-140	21	
Methylene Chloride	ug/L	ND	20	20	21.6	16.0	108	80	60-140	30	

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1145843			1145844								
			MS	MSD							
	92	190689006	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
n-Butylbenzene	ug/L	ND	20	20	17.8	14.6	89	73	60-140	20	
n-Propylbenzene	ug/L	ND	20	20	19.8	15.8	99	79	60-140	23	
Naphthalene	ug/L	ND	20	20	18.6	14.2	93	71	60-140	27	
o-Xylene	ug/L	ND	20	20	20.0	15.8	100	79	60-140	24	
sec-Butylbenzene	ug/L	ND	20	20	19.4	15.7	97	78	60-140	21	
Styrene	ug/L	ND	20	20	20.8	16.2	104	81	60-140	25	
tert-Butylbenzene	ug/L	ND	20	20	19.4	15.6	97	78	60-140	22	
Tetrachloroethene	ug/L	ND	20	20	19.9	16.1	99	81	60-140	21	
Toluene	ug/L	ND	20	20	19.7	15.8	99	79	60-140	22	
trans-1,2-Dichloroethene	ug/L	ND	20	20	19.3	15.6	97	78	60-140	21	
trans-1,3-Dichloropropene	ug/L	ND	20	20	16.9	13.6	85	68	60-140	21	
Trichloroethene	ug/L	ND	20	20	19.3	15.3	96	77	60-140	23	
Trichlorofluoromethane	ug/L	ND	20	20	21.3	18.2	106	91	60-140	15	
Vinyl chloride	ug/L	ND	20	20	20.1	18.6	101	93	60-140	8	
1,2-Dichloroethane-d4 (S)	%						101	100	70-130		
4-Bromofluorobenzene (S)	%						100	100	70-130		
Toluene-d8 (S)	%						100	100	70-130		

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

Pace Project No.: 92190.	359				
QC Batch: OEX	Г/26010	Analysis Meth	nod: EF	PA 625	
QC Batch Method: EPA	625	Analysis Desc	Analysis Description: 625 MSS		
Associated Lab Samples:	92190359001				
METHOD BLANK: 114155	50	Matrix:	Water		
Associated Lab Samples:	92190359001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	5.0	02/28/14 07:26	
2,4,6-Trichlorophenol	ug/L	ND	10.0	02/28/14 07:26	
2,4-Dichlorophenol	ug/L	ND	5.0	02/28/14 07:26	
2,4-Dimethylphenol	ug/L	ND	10.0	02/28/14 07:26	
2,4-Dinitrophenol	ug/L	ND	50.0	02/28/14 07:26	
2,4-Dinitrotoluene	ug/L	ND	5.0	02/28/14 07:26	
2,6-Dinitrotoluene	ug/L	ND	5.0	02/28/14 07:26	
2-Chloronaphthalene	ug/L	ND	5.0	02/28/14 07:26	
2-Chlorophenol	ug/L	ND	5.0	02/28/14 07:26	
2-Nitrophenol	ug/L	ND	5.0	02/28/14 07:26	
3,3'-Dichlorobenzidine	ug/L	ND	25.0	02/28/14 07:26	
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	02/28/14 07:26	

	ug/L		0.0	02/20/14 01.20
2-Chlorophenol	ug/L	ND	5.0	02/28/14 07:26
2-Nitrophenol	ug/L	ND	5.0	02/28/14 07:26
3,3'-Dichlorobenzidine	ug/L	ND	25.0	02/28/14 07:26
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	02/28/14 07:26
4-Bromophenylphenyl ether	ug/L	ND	5.0	02/28/14 07:26
4-Chloro-3-methylphenol	ug/L	ND	5.0	02/28/14 07:26
4-Chlorophenylphenyl ether	ug/L	ND	5.0	02/28/14 07:26
4-Nitrophenol	ug/L	ND	50.0	02/28/14 07:26
Acenaphthene	ug/L	ND	5.0	02/28/14 07:26
Acenaphthylene	ug/L	ND	5.0	02/28/14 07:26
Anthracene	ug/L	ND	5.0	02/28/14 07:26
Benzo(a)anthracene	ug/L	ND	5.0	02/28/14 07:26
Benzo(a)pyrene	ug/L	ND	5.0	02/28/14 07:26
Benzo(b)fluoranthene	ug/L	ND	5.0	02/28/14 07:26
Benzo(g,h,i)perylene	ug/L	ND	5.0	02/28/14 07:26
Benzo(k)fluoranthene	ug/L	ND	5.0	02/28/14 07:26
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	02/28/14 07:26
bis(2-Chloroethyl) ether	ug/L	ND	5.0	02/28/14 07:26
bis(2-Chloroisopropyl) ether	ug/L	ND	5.0	02/28/14 07:26
bis(2-Ethylhexyl)phthalate	ug/L	ND	5.0	02/28/14 07:26
Butylbenzylphthalate	ug/L	ND	5.0	02/28/14 07:26
Chrysene	ug/L	ND	5.0	02/28/14 07:26
Di-n-butylphthalate	ug/L	ND	5.0	02/28/14 07:26
Di-n-octylphthalate	ug/L	ND	5.0	02/28/14 07:26
Dibenz(a,h)anthracene	ug/L	ND	5.0	02/28/14 07:26
Diethylphthalate	ug/L	ND	5.0	02/28/14 07:26
Dimethylphthalate	ug/L	ND	5.0	02/28/14 07:26
Fluoranthene	ug/L	ND	5.0	02/28/14 07:26
Fluorene	ug/L	ND	5.0	02/28/14 07:26
Hexachloro-1,3-butadiene	ug/L	ND	5.0	02/28/14 07:26
Hexachlorobenzene	ug/L	ND	5.0	02/28/14 07:26
Hexachlorocyclopentadiene	ug/L	ND	10.0	02/28/14 07:26
Hexachloroethane	ug/L	ND	5.0	02/28/14 07:26
Indeno(1,2,3-cd)pyrene	ug/L	ND	5.0	02/28/14 07:26
Isophorone	ug/L	ND	10.0	02/28/14 07:26

Matrix: Water

Project: Fayettville PSAs 33727.1.1 Pace Project No.: 92190359

METHOD BLANK: 1141550

Associated Lab Samples: 92190359001

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers N-Nitroso-di-n-propylamine ND ug/L 5.0 02/28/14 07:26 N-Nitrosodimethylamine ug/L ND 5.0 02/28/14 07:26 N-Nitrosodiphenylamine ND 10.0 02/28/14 07:26 ug/L Naphthalene ND ug/L 5.0 02/28/14 07:26 Nitrobenzene ug/L ND 5.0 02/28/14 07:26 Pentachlorophenol ug/L ND 10.0 02/28/14 07:26 Phenanthrene ug/L ND 5.0 02/28/14 07:26 Phenol ug/L ND 5.0 02/28/14 07:26 Pyrene ug/L ND 5.0 02/28/14 07:26 2,4,6-Tribromophenol (S) % 88 10-137 02/28/14 07:26 2-Fluorobiphenyl (S) % 74 15-120 02/28/14 07:26 2-Fluorophenol (S) % 46 10-120 02/28/14 07:26 % 73 Nitrobenzene-d5 (S) 10-120 02/28/14 07:26 % Phenol-d6 (S) 33 10-120 02/28/14 07:26 Terphenyl-d14 (S) % 99 11-131 02/28/14 07:26

LABORATORY CONTROL SAMPLE: 1141551

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L		36.0	72	44-142	
2,4,6-Trichlorophenol	ug/L	50	19.6	39	37-144	
2,4-Dichlorophenol	ug/L	50	23.9	48	1-191	
2,4-Dimethylphenol	ug/L	50	31.7	63	32-119	
2,4-Dinitrophenol	ug/L	250	49.5J	20	1-181	
2,4-Dinitrotoluene	ug/L	50	54.3	109	39-139	
2,6-Dinitrotoluene	ug/L	50	51.3	103	50-158	
2-Chloronaphthalene	ug/L	50	34.2	68	60-118	
2-Chlorophenol	ug/L	50	23.6	47	23-134	
2-Nitrophenol	ug/L	50	20.8	42	29-182	
3,3'-Dichlorobenzidine	ug/L	100	107	107	1-262	
4,6-Dinitro-2-methylphenol	ug/L	100	34.2	34	1-181	
4-Bromophenylphenyl ether	ug/L	50	44.3	89	53-127	
4-Chloro-3-methylphenol	ug/L	100	59.7	60	22-147	
4-Chlorophenylphenyl ether	ug/L	50	48.4	97	25-158	
4-Nitrophenol	ug/L	250	48.6J	19	1-132	
Acenaphthene	ug/L	50	40.8	82	47-145	
Acenaphthylene	ug/L	50	42.0	84	33-145	
Anthracene	ug/L	50	46.2	92	1-166	
Benzo(a)anthracene	ug/L	50	45.7	91	33-143	
Benzo(a)pyrene	ug/L	50	49.2	98	17-163	
Benzo(b)fluoranthene	ug/L	50	44.9	90	24-159	
Benzo(g,h,i)perylene	ug/L	50	45.0	90	1-219	
Benzo(k)fluoranthene	ug/L	50	41.4	83	11-162	
bis(2-Chloroethoxy)methane	ug/L	50	41.6	83	33-184	
bis(2-Chloroethyl) ether	ug/L	50	44.4	89	12-158	

REPORT OF LABORATORY ANALYSIS

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

LABORATORY CONTROL SAMPLE: 1141551

Parameter Units Conc. Result % Rec Limits	Qualifiers
s(2-Chloroisopropyl) ether ug/L 50 44.1 88 36-166	
s(2-Ethylhexyl)phthalate ug/L 50 47.1 94 8-158	
utylbenzylphthalate ug/L 50 45.3 91 1-152	
17-168 ug/L 50 47.2 94 17-168	
-n-butylphthalate ug/L 50 45.1 90 1-118	
-n-octylphthalate ug/L 50 54.2 108 4-146	
benz(a,h)anthracene ug/L 50 49.3 99 1-227	
ethylphthalate ug/L 50 45.5 91 1-114	
methylphthalate ug/L 50 41.6 83 1-112	
uoranthene ug/L 50 50.5 101 26-137	
uorene ug/L 50 47.8 96 59-121	
exachloro-1,3-butadiene ug/L 50 32.1 64 24-116	
exachlorobenzene ug/L 50 40.0 80 1-152	
exachlorocyclopentadiene ug/L 50 25.9 52 25-150	
exachloroethane ug/L 50 33.9 68 40-113	
deno(1,2,3-cd)pyrene ug/L 50 48.5 97 1-171	
pphorone ug/L 50 48.3 97 21-196	
Nitroso-di-n-propylamine ug/L 50 51.2 102 1-230	
Nitrosodimethylamine ug/L 50 18.9 38 25-150	
Nitrosodiphenylamine ug/L 50 34.8 70 25-150	
aphthalene ug/L 50 41.5 83 21-133	
trobenzene ug/L 50 39.1 78 35-180	
antachlorophenol ug/L 100 39.6 40 14-176	
nenanthrene ug/L 50 44.9 90 54-120	
nenol ug/L 50 15.0 30 5-112	
/rene ug/L 50 47.2 94 52-115	
4,6-Tribromophenol (S) % 58 10-137	
Fluorobiphenyl (S) % 75 15-120	
Fluorophenol (S) % 25 10-120	
trobenzene-d5 (S) % 73 10-120	
nenol-d6 (S) % 22 10-120	
rphenyl-d14 (S) % 94 11-131	

MATRIX SPIKE & MATRIX SPI	KE DUPLICAT	E: 11415	52		1141553						
			MS	MSD							
	92	190065001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2,4-Trichlorobenzene	ug/L	ND	100	100	78.9	64.5	79	65	44-142	20	
2,4,6-Trichlorophenol	ug/L	ND	100	100	87.6	77.0	88	77	37-144	13	
2,4-Dichlorophenol	ug/L	ND	100	100	106	84.4	106	84	1-191	23	
2,4-Dimethylphenol	ug/L	ND	100	100	73.8	48.8	74	49	32-119	41 R	1
2,4-Dinitrophenol	ug/L	ND	500	500	263	286	53	57	1-181	9	
2,4-Dinitrotoluene	ug/L	ND	100	100	105	95.2	105	95	39-139	10	
2,6-Dinitrotoluene	ug/L	ND	100	100	105	97.3	105	97	50-158	7	
2-Chloronaphthalene	ug/L	ND	100	100	76.9	64.0	77	64	60-118	18	
2-Chlorophenol	ug/L	ND	100	100	114	78.3	114	78	23-134	37 R	1
2-Nitrophenol	ug/L	ND	100	100	94.9	74.9	95	75	29-182	24	

REPORT OF LABORATORY ANALYSIS

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

MATRIX SPIKE & MATRIX SPIK	E DUPLICATE:	11415	52		1141553						
			MS	MSD							
	9219	0065001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
3,3'-Dichlorobenzidine	ug/L	ND	200	200	115	124	58	62	1-262	7	
4,6-Dinitro-2-methylphenol	ug/L	ND	200	200	156	152	78	76	1-181	3	
4-Bromophenylphenyl ether	ug/L	ND	100	100	95.3	87.4	95	87	53-127	9	
4-Chloro-3-methylphenol	ug/L	ND	200	200	218	191	109	96	22-147	13	
4-Chlorophenylphenyl ether	ug/L	ND	100	100	98.1	89.0	98	89	25-158	10	
4-Nitrophenol	ug/L	ND	500	500	272	225	54	45	1-132	19	
Acenaphthene	ug/L	ND	100	100	88.4	75.5	88	76	47-145	16	
Acenaphthylene	ug/L	ND	100	100	91.1	77.9	91	78	33-145	16	
Anthracene	ug/L	ND	100	100	93.0	81.8	93	82	1-166	13	
Benzo(a)anthracene	ug/L	ND	100	100	90.0	83.6	90	84	33-143	7	
Benzo(a)pyrene	ug/L	ND	100	100	96.2	87.6	96	88	17-163	9	
Benzo(b)fluoranthene	ug/L	ND	100	100	94.0	86.8	94	87	24-159	8	
Benzo(a,h,i)pervlene	ug/L	ND	100	100	89.4	78.4	89	78	1-219	13	
Benzo(k)fluoranthene	ug/L	ND	100	100	84.7	79.4	85	79	11-162	6	
bis(2-Chloroethoxy)methane	ug/L	ND	100	100	92.3	74.8	92	75	33-184	21	
bis(2-Chloroethyl) ether	ug/L	ND	100	100	97.6	78.5	98	78	12-158	22	
bis(2-Chloroisopropyl) ether	ug/L	ND	100	100	97.2	70.9	97	71	36-166	31 R1	
bis(2-Ethylbexyl)phthalate	ug/l	ND	100	100	90.9	86.0	91	86	8-158	5	
Butylbenzylphthalate	ug/L	ND	100	100	89.1	86.1	89	86	1-152	3	
Chrysene	ug/L	ND	100	100	93.5	88.6	94	89	17-168	5	
Di-n-butylphthalate	ug/L	ND	100	100	87.5	79.7	88	80	1-118	9	
Di-n-octylphthalate	ug/L	ND	100	100	101	91.7	101	92	4-146	10	
Dibenz(a,h)anthracene	ug/L	ND	100	100	96.1	85.8	96	86	1-227	11	
Diethylphthalate	ug/L	ND	100	100	86.6	80.4	87	80	1-114	7	
Dimethylphthalate	ug/L	ND	100	100	84.2	79.0	84	79	1-112	6	
Fluoranthene	ug/L	ND	100	100	97.9	82.5	98	82	26-137	17	
Fluorene	ug/L	ND	100	100	95.9	86.7	96	87	59-121	10	
Hexachloro-1.3-butadiene	ug/L	ND	100	100	67.7	57.7	68	58	24-116	16	
Hexachlorobenzene	ug/L	ND	100	100	83.7	76.0	84	76	1-152	10	
Hexachlorocvclopentadiene	ug/L	ND	100	100	67.6	53.4	68	53	25-150	24	
Hexachloroethane	ug/L	ND	100	100	69.9	54.7	70	55	40-113	24	
Indeno(1.2.3-cd)pyrene	ug/L	ND	100	100	95.7	84.4	96	84	1-171	13	
Isophorone	ug/L	ND	100	100	104	84.1	104	84	21-196	21	
N-Nitroso-di-n-propylamine	ug/L	ND	100	100	124	74.2	124	74	1-230	50 R1	
N-Nitrosodimethylamine	ug/L	ND	100	100	55.1	44.2	55	44	25-150	22	
N-Nitrosodiphenvlamine	ug/L	ND	100	100	76.3	70.5	76	70	25-150	8	
Naphthalene	ug/L	ND	100	100	91.5	73.2	92	73	21-133	22	
Nitrobenzene	ug/L	ND	100	100	96.7	75.6	97	76	35-180	24	
Pentachlorophenol	ug/L	ND	200	200	168	139	84	70	14-176	19	
Phenanthrene	ug/L	ND	100	100	92.6	82.6	93	83	54-120	11	
Phenol	ug/L	ND	100	100	91.8	53.4	92	53	5-112	53 R1	
Pvrene	ug/L	ND	100	100	97.9	93.6	98	94	52-115	4	
2,4,6-Tribromophenol (S)	%						107	95	10-137		
2-Fluorobiphenvl (S)	%						84	74	15-120		
2-Fluorophenol (S)	%						71	55	10-120		
Nitrobenzene-d5 (S)	%						82	68	10-120		
Phenol-d6 (S)	%						84	50	10-120		

REPORT OF LABORATORY ANALYSIS

Project: Fayettville PSAs 33727.1.1 Pace Project No.: 92190359

MATRIX SPIKE & MATRIX SPIK		: 11415	52		1141553						
			MS	MSD							
	921	90065001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Terphenyl-d14 (S)	%						98	99	11-131		

Project: Fayettville PSAs 33727.1.1

Pace Project No.:

92190359

1 acc 1 10ject 10 521500							
QC Batch: OEXT	/26031	Analysis Metl	hod: M	ADEP EPH			
QC Batch Method: MADE	EP EPH	Analysis Des	cription: M	ADEP EPH NC W	ater		
Associated Lab Samples:	92190359001						
METHOD BLANK: 114233	3	Matrix:	Water				
Associated Lab Samples:	92190359001						
		Blank	Reporting				
Parameter	Blank Reporting Parameter Units ug/L ND 100 02/24/14 17:37 N2						
Aliphatic (C09-C18)	ug/L	ND	100	02/24/14 17:37	N2		
Aliphatic (C19-C36)	ug/L	ND	100	02/24/14 17:37	N2		
Aromatic (C11-C22)	ug/L	ND	100	02/24/14 17:37	N2		
2-Bromonaphthalene (S)	%	103	40-140	02/24/14 17:37			
2-Fluorobiphenyl (S)	%	84	40-140	02/24/14 17:37			
Nonatriacontane (S)	%	60	40-140	02/24/14 17:37			
To make a soul (C)	0/	77	40 140	02/24/14 17:27			

LABORATORY CONTROL SAMPLE &	LCSD: 1142334		11	42335						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Aliphatic (C09-C18)	ug/L	300	150	148	50	49	40-140	2	50	N2
Aliphatic (C19-C36)	ug/L	400	226	225	56	56	40-140	0	50	N2
Aromatic (C11-C22)	ug/L	850	583	811	69	95	40-140	33	50	N2
2-Bromonaphthalene (S)	%				83	112	40-140			
2-Fluorobiphenyl (S)	%				71	103	40-140			
Nonatriacontane (S)	%				64	66	40-140			
o-Terphenyl (S)	%				75	95	40-140			

QUALIFIERS

Project: Fayettville PSAs 33727.1.1

Pace Project No.: 92190359

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Acid preservation may not be appropriate for 2-Chloroethylvinyl ether, Styrene, and Vinyl chloride.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-A Pace Analytical Services - Asheville

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

- N Tentatively identified compound (TIC) based on mass spectral library search
- N2 The lab does not hold TNI accreditation for this parameter.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:Fayettville PSAs 33727.1.1Pace Project No.:92190359

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92190359001	B-10-01	MADEP EPH	OEXT/26031	MADEP EPH	GCSV/16758
92190359001	B-10-01	MADEP VPH	GCV/7838		
92190359001	B-10-01	EPA 3010	MPRP/15285	EPA 6010	ICP/13867
92190359001	B-10-01	EPA 625	OEXT/26010	EPA 625	MSSV/8797
92190359001	B-10-01	SM 6200B	MSV/25984		
92190359001	B-10-01	SM 6200B	MSV/25905		

Pace Analytical Sa	ample Condition Upon Receipt (SCUF Document Number: F-CHR-CS-03-rev.13	Page 1 of 2 Issuing Authority: Pace Huntersville Quality Office
Client Name: Schube		
Courier: 🛛 Fed Ex 🗌 UPS 🗌 USPS]	es no Proj. Due Date: Proj. Name:
Packing Material: 🗌 Bubble Wrap 📝	Bubble Bags 🗌 None 🗌 Other	
Thermometer Used: IR Gun T1102 T13	Type of Ice: We Blue None	Samples on ice, cooling process has begun
Temp Correction Factor T1102: No	Correction T1301: No Correction	
Corrected Cooler Temp.: 5,8	*C Biological Tissue is Frozen: Yes Comments:	s No MA Date and Initials of person examining contents: 20 7/16/14
Chain of Custody Present:	Yes DNO DN/A 1.	
Chain of Custody Filled Out:	Yes INO IN/A 2.	
Chain of Custody Relinquished:	Yes INO IN/A 3.	
Sampler Name & Signature on COC:	EYes DNO DN/A 4.	
Samples Arrived within Hold Time:	ZYes DNO DN/A 5.	
Short Hold Time Analysis (<72hr):	DYes No DN/A 6.	
Rush Turn Around Time Requested:	TYes No DN/A 7.	
Sufficient Volume:	DYes DNO DN/A 8.	
Correct Containers Used:	Yes INO IN/A 9.	
-Pace Containers Used:	ØYes DNO DN/A	
Containers Intact:	ŹYes □No □N/A 10.	
Filtered volume received for Dissolved tes	ts 🛛 Yes 🗆 No 🖉 N/A 11.	
Sample Labels match COC:	ØYes □No □N/A 12.	
-Includes date/time/ID/Analysis Ma	itrix:	
All containers needing preservation have been che	ecked. Yes INO IN/A 13.	
All containers needing preservation are found to compliance with EPA recommendation.		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (wat	er) Pres 🗆 No	
Samples checked for dechlorination:	Øyes DNO DN/A 14.	
Headspace in VOA Vials (>6mm):	Dyes DNO DNA 15.	
Trip Blank Present:	DYes DNO DNA 16.	
Trip Blank Custody Seals Present	DYes DNO DNA	
Pace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution:		Field Data Required? Y / N
Person Contacted:	Date/Time:	
Comments/ Resolution:		
SCURF Review:	Date: $2/20/14$ Date: $2/21/14$	JO#:92190359
Note: Whenever there is a discrepancy affect samples, a copy of this form will be sent to Certification Office (i.e out of hold, incorre- incorrect contain	cting North Carolina compliance o the North Carolina DEHNR ect preservative, out of temp, ners)	2190359

F-M	
L-Q-02	
Urev.u	
, ID-IVI	
ay-2001	2

mportant Note: by signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

							12	11	10	9	00	7	0	01	4	N	-	ITEM #	-		Req	Pho	Ema	5	Add	Con	Sec
						ADDITION											3-10-	SAMPLI (A-Z, 0-9 / Sample IDs MUST E	Section D Required Client Informatio		uested Due Date/TAT:	ne:	I TO: Shredlane	rensbory	ress: ILA Oak	pany: Schabe	www.pace
						AL COMMENTS											0	BE UNIQUE	n Dr			Fax:	Schnibel-	NC 2	Branch	Eminee	abs.com
	ORIGIN				K													aster aster aduct P pi pe pe SillSolid OL SL Sisue SL TS Sisue TS TS Sisue OT	Matrix Codes MATRIX / CODE		Project	J Project	Purchas	Lah	Dro Copy To	ANG Report	Sectio
	AL				B	RE	H	-			\vdash	+	-	+	+	-	K	MATRIX CODE (see valid cod	es to left)		Numbe	Name:	se Orde			T	n B ed Proj
					S	LINQU					\vdash	+			+		5	SAMPLE TYPE (G=GRAB C=	COMP)		3	5	er No.:			S	ect Info
					In L.	JISHED BY /											2-19	COMPO STAR DATE			111:	x retter			S	p)	ormation:
SI	PR	SAMPLER N			Brad	AFFILIATION											4:45	TIME	COLLEC		90	10 1				Yeal	
SNATURE of	INT Name of	AME AND		-	ley 2	-						-				_		END/GRAB	TED			SAS			4		
f SAMPLER:	f SAMPLER:	SIGNATUR			612	DATE	_					_			-	-		SAMPLE TEMP AT COLLECTION	IN								
		m	×		16:	П											1	# OF CONTAINERS		1	Pace F	Pace F Manag	Pace (Refere	Addre	Comp	Attent	Sect
					0	ME	-		-	_		-	-	-	-	-		Unpreserved			profile #	Project ler:	Quote nce:	Ss:	any N.	tion:	ion C
		ł			N													HNO ₃	Pre					2	ame;		mation
					K.K		\vdash	-	-	-		-	-	-	-		-	HCI NaOH	serva					Ee			5
					5	ACC												Na ₂ S ₂ O ₃	tives					S.			
					11	EPTE		-		-		-	+	+	+	-	-	Methanol Other	-								
					-1	DBY												↓Analysis Test ↓	Y/N					3			
DAT					Ge	AFFI											X	SM6200B		R				17			
ESig					C	LIATI	\vdash	-	-	-		+	+	+	+	-	X	MADEP VPH	-	que				-			
ned					2	NO								1	+		×	Cr+PD /	-	sted				-			
				-	1010												×	EPA 602 W/ Xylene	S	Ana		Sit	٦	7	RE		
				2120	23	D/		-		_		_	-	-	_	-	K	EPA 625 Base/Mart	als	lysis	S	e Lo	SU	NP	GUL		
ĺ				14	- H	TE		-	-	-		+	+	+	+	+		and Acids W/ 10	-	Filt	TATE	catio	-	DES	ATO		
		ł			9										+		6	100,001 1203		ered	- 10	3	7	-	RY		
					3	TIME											Ĩ	Ø		(YIN			RC	GR	GEN		
_		-	-	_	m		-	-	\square	_		-	-	-	-	_	-		-	-			RA	NUO	ICY		Page:
Ter	np in	°C			is					-		-	-	-	-		-	Residual Chlorine (Y/N)	-	-		•		DWA			
Rec	eived	on			6												0	0	-					TER		H	-
lc	e (Y/N)		-	F	SAMP											P	Pace					٦	7		2	
C	ustod	/			C	LECO											00	Pro					TO	PF		a	9
Jedi	(Y/N)	ordi				TIDNC											5	lect I					HER	NINKI		6	
Sam	oles Ir (Y/N)	itact		-	C	TIONS											906	Sch No./ Lab I.I						NG WATER		99	
3					1 I		1 I I	1	11 H												-						