PRELIMINARY SITE ASSESSMENT PARCEL 007, STATE PROJECT B-4490 WBS ELEMENT 33727.1.1, CUMBERLAND COUNTY

REPLACE BRIDGE NO. 116 OVER CXS RAILROAD, NORTH SOUTH RAILROAD, AND HILLSBORO STREET ON NC 24-210, FAYETTEVILLE, NORTH CAROLINA

Schnabel Project 11821014.33 April 8, 2014

April 8, 2014

Mr. Mohammed A. Mulla, P.E., CPM, MCE NCDOT, Geotechnical Engineering Unit 1020 Birch Ridge Drive Raleigh, NC 27610

RE: State Project: B-4490

WBS Element: 33727.1.1 County: Cumberland

Description: Replace Bridge No. 116 over CSX Railroad, North South Railroad, and

Hillsboro Street on NC 24-210 in Fayetteville

Subject: Preliminary Site Assessment for Parcel 007, Fayetteville, NC

Schnabel Engineering Project 11821014.33

Dear Mr. Mulla:

SCHNABEL ENGINEERING SOUTH, P.C. (Schnabel) is pleased to submit our report for this project. This study was performed in accordance with our proposal dated January 23, 2014 as authorized by the Notice to Proceed on January 24, 2014 and was conducted under our June 2, 2011 Agreement with the NCDOT.

We appreciate the opportunity to be of service for this project. Please call us if you have any questions regarding this report.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

Benjam J. Beadley

Benjamin L. Bradley, GIT

Project Scientist

Gregory B. Kuntz, LG Senior Associate Scientist

BB/GK

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION PRELIMINARY SITE ASSESSMENT FOR PARCEL 007

STATE PROJECT B-4490, WBS ELEMENT 33727.1.1

REPLACE BRIDGE NO. 116 OVER CSX RAILROAD, NORTH SOUTH RAILROAD, AND HILLSBORO STREET ON NC 24-210 FAYETTEVILLE, CUMBERLAND COUNTY, NORTH CAROLINA

TABLE OF CONTENTS

1.0	INTRODUCTION	2
2.0	BACKGROUND AND SITE DESCRIPTION	2
3.0	FIELD METHODOLOGY	2
4.0	GROUNDWATER MONITORING WELLS OR REMEDIATION WELLS	3
5.0	DISCUSSION OF RESULTS	3
6.0	CONCLUSIONS	4
7.0	RECOMMENDATIONS	5
8.0	LIMITATIONS	5

LIST OF TABLES

Table 1, Sampling Intervals and Field Volatile Measurements

Table 2, Summary of Laboratory Results

LIST OF FIGURES

Figure 1, Vicinity Map

Figure 2, Site Map

Figure 3, Soil Impact Map

Figure 4 and 4A, Boring Locations and Legend

APPENDICES

Appendix A, Photographs

Appendix B, Geophysics Report

Appendix C, Soil Boring Logs

Appendix D, Soil Boring GPS Coordinates

Appendix E, UVF Analysis Results

Appendix F, Laboratory Analytical Results

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is replacing a bridge over CSX Railroad, North South Railroad, and Hillsboro Street on Highway 24/210 (W. Rowan Street) in the town of Fayetteville, located in Cumberland County, North Carolina. Acquisition of properties within the right-of-way (ROW) is necessary prior to road and bridge construction. Schnabel Engineering conducted Preliminary Site Assessments (PSAs) on 10 sites (thirteen parcels) located within the proposed ROW that are of concern to the NCDOT.

This report summarizes the results of field activities conducted during the PSA for the proposed property acquisition area (Study Area) identified by NCDOT on Parcel 007. The property is located on 636 W. Rowan Street and is occupied by Eddie's Transmissions, currently owned by Edmund George (Figure 1). The property line and topography are shown on Figure 2. The approximate NCDOT project limits that delineate the property acquisition area are shown on Figure 3.

The scope of work executed at the site was performed in general accordance with our cost proposal dated January 23, 2014 and was initiated based on a Notice to Proceed issued by the NCDOT Geotechnical Engineering Unit on January 24, 2014 under contract 7000012208, dated June 2, 2011.

2.0 BACKGROUND AND SITE DESCRIPTION

A one-story cinder block building is located on Parcel 007. The surface of the ROW is covered with an asphalt parking lot, two concrete islands, and some grassy areas. In addition, a partially full 55-gallon drum (labelled "Used Oil Filters") and one small above-ground storage tank (AST, labelled "Used Oil") were observed on the eastern part of the parcel. Multiple 5-gallon un-lidded buckets with black material were observed near the northeastern corner of the building. Dark stains on the ground surface were observed on the eastern part of the parcel. Several utilities cross the site including buried water and storm sewer lines, and overhead electric lines are located along the ROW. The information regarding prior site use provided to Schnabel Engineering by NCDOT was that this parcel formerly operated as a gas station, and that an underground storage tank (UST) bed was observed near the southeast corner of the building approximately 40 feet north from the edge of pavement of W. Rowan Street. This PSA is for the investigation of the entire parcel. Photographs of the Study Area are presented in Appendix A.

3.0 FIELD METHODOLOGY

Prior to mobilizing to the site to conduct the field investigation, Schnabel Engineering contacted North Carolina One Call to locate underground utilities in the Study Area of the site. Schnabel Engineering mobilized a geophysical crew to the site on January 29, 2014 and performed an electromagnetic survey of the subsurface in the proposed ROW area within the parcel. The electromagnetic survey equipment (EM61-MK2) identified various magnetic anomalies within the Study Area. The Schnabel geophysical crew returned to the Study Area on February 10, 2014 to perform ground penetrating radar (GPR) survey with a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna. Results of the survey suggested the presence of buried utility lines or conduits, and four probable USTs within the Study Area.

After reviewing the background information and geophysical data, Schnabel returned to Parcel 007 to conduct field screening of soils from within the Study Area. Eleven soil borings designated B-07-01 through B-07-11 were advanced by SAEDACCO of Fort Mill, SC along Rowan Street on February 18 and 20, 2014. Five borings were advanced near the location of the probable USTs, three borings were advanced near the concrete islands, and three borings were advanced to define the extent of petroleum

NCDOT Geotechnical Engineering Unit State Project B-4490, Cumberland County

impact. The location of the soil borings are shown on Figure 3. The borings were advanced to a total depth of 10 feet below ground surface (bgs). The borings drilled within the Study Area were advanced utilizing a track-mounted Geoprobe[®] (Model 7822-DT) with direct push probe technology. At the completion of the sampling activities, the borings were backfilled with soil removed from the boring during sampling and/or bentonite chips.

Soils for field screening were obtained from the borings using a MacroCore[®] sampler fitted with a new, single-use, five foot long disposable polyvinyl chloride (PVC) liner. A portion of each 2-foot interval was placed in a separate re-sealable plastic bag. These bags were sealed and placed at ambient temperature for field screening with a MiniRAE Plus photo ionization detector (PID). Volatiles were allowed to accumulate in the headspace of each bag for approximately 15 minutes, and then the headspace of each sealed bag was scanned with the PID. Headspace screening of the soil samples indicated concentrations that ranged from 0 to 1,469 ppm at each boring location at intervals of two, four, six, eight, and ten feet bgs (Table 1, Sampling Intervals and Field Volatile Measurements). The PID was calibrated on February 18 and 20, 2014 in general accordance with the manufacturer's recommended calibration procedures. The PID readings were recorded with the soil descriptions and indications of staining or odors, if present. Logs for each boring are presented in Appendix C.

Ultra Violet Fluorescence (UVF) was performed at Parcel 07 because the PID indicated readings over 10 ppm at the majority of the borings advanced on the parcel. Confirmatory soil samples were submitted for laboratory analysis at B-07-02 (8 FT) and B-07-06 (10FT) and submitted to Pace Analytical in Hampstead, NC. Sample information was recorded on the Chain-of-Custody form and the samples were submitted for chemical analysis of chromium and lead by Method 6010, total petroleum hydrocarbons-diesel range organics (TPH-DRO), total petroleum hydrocarbons-gasoline range organics (TPH-GRO), volatile organic compounds (VOCs) by EPA Method 8260, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and MADEP EPH and VPH. The Summary of Laboratory Results is shown on Table 2.

Four additional borings (B-07-08 through B-07-11) were advanced on Parcel 007 to delineate the extent of soil impact. Fill ports for one of the USTs were visible but could not be pried open because it appeared that they had been sealed shut with concrete.

Not including overburden, the estimated volume of impacted soil is about 460 cubic yards and is estimated based on borehole data.

Soils collected from borings within the Study Area generally consisted of orangish brown Silty Sand (SM), orangish brown Clayey Sand (SC), or light gray Sandy Lean Clay (CL). GPS coordinates for each boring were obtained using a Trimble Pro-XRS DGPS system (Appendix D) with coordinates reported in US State Plane 1983 system, North Carolina 3200 zone, using the NAD 83 datum, with units in US survey feet.

4.0 GROUNDWATER MONITORING WELLS OR REMEDIATION WELLS

Groundwater monitoring wells and remediation wells were not observed within the proposed ROW or easement on this parcel.

5.0 DISCUSSION OF RESULTS

NCDOT Geotechnical Engineering Unit State Project B-4490, Cumberland County

The EM data obtained during the geophysical survey contained multiple anomalies that were investigated with GPR, most of which appear to be the result of buried utilities, reinforced concrete, or other metal objects at the ground surface or at shallow depths. GPR data was collected over several EM anomalies of an unknown cause. The GPR data collected near the northeastern corner of the building on Parcel 007 indicated the presence of a probable UST. The GPR data collected near the southeastern corner of the building on Parcel 007 indicated the presence of three additional probable USTs.

At B-07-04 the PID showed low readings of 8.4 to 18.3 ppm from 2 to 10 feet. UVF analyses showed degraded PHC below 10 mg/kg TPH at 4 feet, and background organics from 6 to 10 feet. Background organics were also detected at B-07-05 at four feet with a PID reading of 14.2 ppm. B-07-01 and B-07-07 both showed PID reading between 3.9 and 10.7 ppm. Based on soil core observations and PID reading from previous borings both of these locations are likely below 10 mg/kg TPH. B-07-08 is an upgradient location that indicated the absence of petroleum constituents in the soil based on a PID reading of 0 ppm. B-07-11 is a downgradient location that indicated the absence of petroleum constituents in the soil based on a PID reading of 1 ppm and no staining or odor in the soil core.

At B-07-02 the PID showed readings of 481 to 1,469 ppm from 2 to 10 feet. UVF analyses showed that degraded fuel was detected at B-07-06 from 4 to 10 feet at concentrations above 10 mg/kg TPH. At B-07-03 the PID showed readings of 6.4 to 12.2 ppm between 2 and 8 feet and 921 ppm at ten feet. UVF analyses showed that TPH was not detected at B-07-03 at 2 and 4 feet and degraded kerosene and gas was detected at B-07-03 at 10 feet above 10 mg/kg TPH. At B-07-06 the PID showed readings of 11 ppm at 8 feet and 33.5 ppm at 10 feet. UVF analyses showed that degraded fuel was detected at B-07-06 at 8 feet at a concentration below 10 mg/kg TPH and polyaromatic hydrocarbons (PAHs) at 10 feet, however laboratory confirmation sampling indicated the TPH GRO was detected at 10.3 mg/kg. At B-07-09 and B-07-10 the PID showed readings of 1,134 ppm at 4 feet and 270 ppm at 8 feet, respectively. UVF analyses showed that degraded gas was detected at B-07-09 at 4 feet and B-07-10 at 8 feet, both of which were above 10 mg/kg TPH. UVF results are included in Appendix E.

Analytical results from the laboratory show that TPH-DRO, TPH-GRO, chromium, and various other petroleum related constituents were detected in B-07-02 at 8 feet at concentrations that exceed the TPH action level and maximum soil contaminant concentration levels (MSCCs). TPH-GRO and chromium exceeded the MSCCs in B-07-06 10'. Analytical results are included in Appendix F.

6.0 CONCLUSIONS

The geophysical survey conducted at the site indicated the presence of four probable USTs on the northeastern part of Parcel 007 as well as the presence of buried utility lines and conduits. Also observed on the property was one used oil AST, one 55-gallon drum containing used oil filters, numerous fivegallon buckets with black material, and ground surface staining. Field screening and UVF results showed that impacted soils are present in this area. Eleven soil borings B-07-01 through B-07-11 were advanced to evaluate potential petroleum impact within the Study Area, and to document soil conditions.

UVF showed that TPH-DRO was detected in the soil at B-07-02 4 FT at 31.4 ppm, B-07-02 8 FT at 308 ppm, B-07-02 10FT at 12.9 ppm, B-07-03 10FT at 154 ppm, B-07-10 8 FT at 13.5 ppm, and B-07-09 4 FT at 48.4 ppm. UVF showed that TPH-GRO was detected in the soil at B-07-02 8 FT at 157 ppm, B-07-03 10 FT at 55.3 ppm, B-07-10 8 FT at 35.1 ppm, and B-07-09 4 FT at 153 ppm. These results exceed the TPH Action Level of 10 mg/Kg for DRO and GRO (Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases, Division of Waste Management, UST Section, December 1, 2013).

NCDOT Geotechnical Engineering Unit State Project B-4490, Cumberland County

Laboratory analytical results for B-07-02 8' show that TPH-DRO is 559 mg/Kg and TPH-GRO is 3,760 mg/Kg which exceed the TPH Action Level of 10 mg/Kg. Various other constituents were detected in B-07-02 8' which exceed the MSCC Levels. TPH-GRO was detected in B-07-06 10' at a concentration of 10.3 mg/Kg.

Geochemical background levels of chromium in the Eastern United States show that the mean range of chromium in soil is 33 mg/kg and the range is 1 to 1,000 mg/kg, suggesting that the concentration of chromium encountered on Parcel 007 may be naturally occurring and at background levels (Element Concentrations in Soils and Other Surficial Material of the Conterminous United States, Hansford Shacklette and Josephine Boerngen, US Geological Survey Professional Paper 1270, 1984).

7.0 RECOMMENDATIONS

Soil impact can be expected to be encountered if excavation activities occur in the proposed ROW of Parcel 007. Approximately 460 cubic yards of impacted soil is present, not including overburden. The NCDOT should properly transport and dispose of the excavated soil in the vicinity of these soil borings. Because groundwater is shallow in this area, it is also a possibility that free product is present. Groundwater sampling should be performed in this area if groundwater is expected to be intercepted during excavation activities.

8.0 LIMITATIONS

This PSA was prepared for the use of the NCDOT. The scope of work performed at the site is limited to the tasks described in our cost proposal dated January 23, 2014. This report is not intended to represent an exhaustive research of all potential hazards that may exist. Schnabel makes no other declarations, or any express or implied warranty, as to the professional services provided under the terms of the agreement.

TABLES

Table 1, Sampling Intervals and Field Volatile Measurements
Table2, Summary of Laboratory Results

TABLE 1 SAMPLING INTERVALS AND FIELD VOLATILE MEASUREMENTS PARCEL 007 NCDOT B-4490, CUMBERLAND COUNTY

Sample Depth			Soil Borings								
Below Ground	B-07-01	B-07-02	B-07-03	B-07-04	B-07-05	B-07-06	B-07-07	B-07-08	B-07-09	B-07-10	B-07-11
0 - 2 feet	4.4	6.1	10.1*	8.4	2.8	2.9	7.7	0.0	8.1	5.4	0.0
2 - 4 feet	3.9	481.0*	12.2*	15.3*	14.2*	3.5	10.7	0.0	1134.0*	10.4	0.0
4 - 6 feet	4.1	1469.0*	6.4	15.3*	4.4	7.2	7.0	0.0	92.7	8.1	1.0
6 - 8 feet	4.7	1325.0*	7.5	18.3*	8.2	11.0*	6.8	0.0	4.5	270.0*	0.0
8 - 10 feet	5.3	672.0*	921.0*	11.5*	5.4	33.5*	7.6	0.0	1.7	6.6	0.0

Notes:

Shaded cells were submitted for laboratory analysis

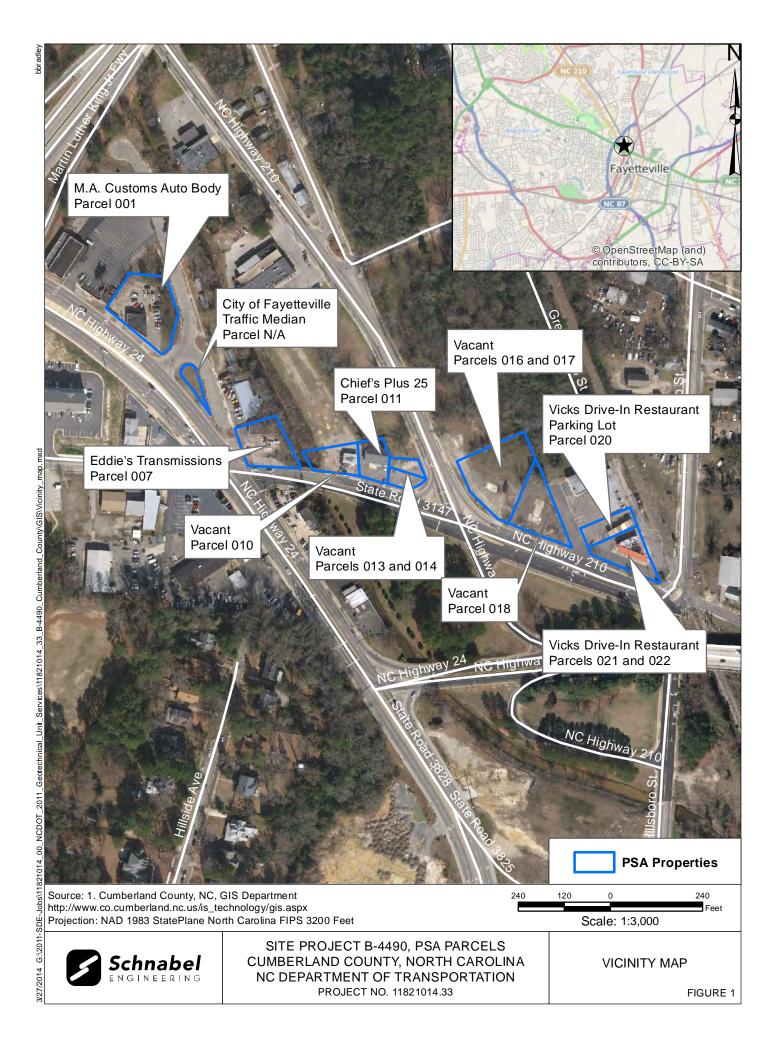
*: Ultra Violet Fluorescence (UVF) performed

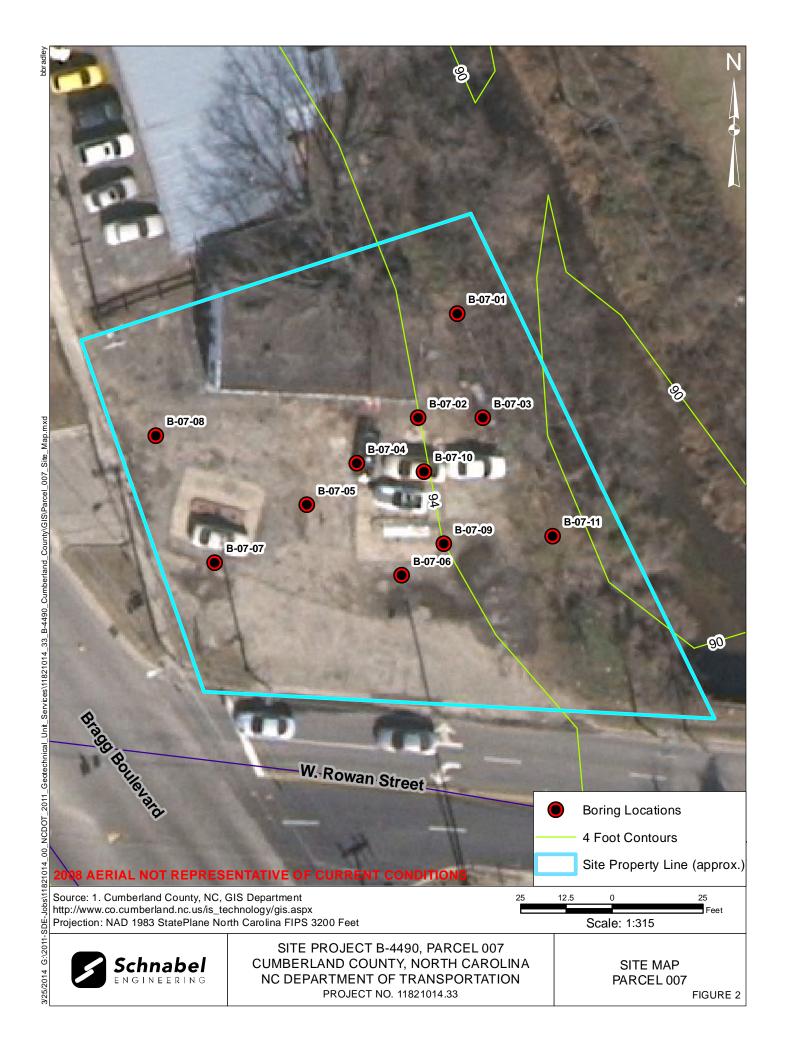
Field volatile measurements obtained with a MiniRae Photo Ionization Detector

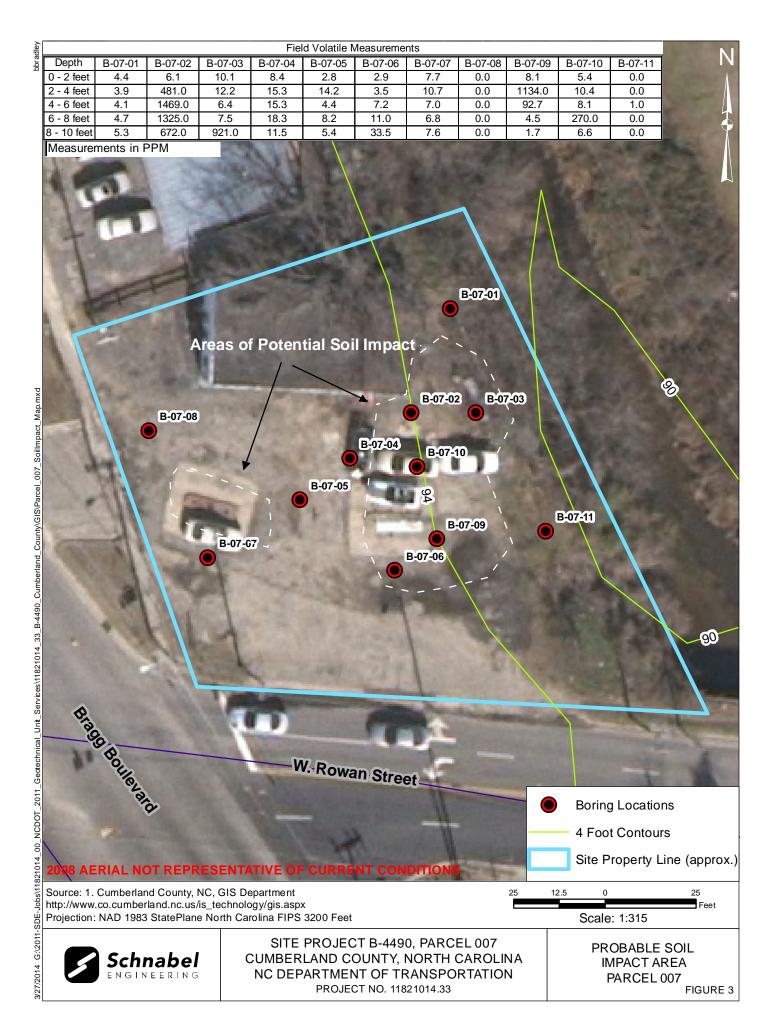
Measurements in parts per million (ppm)

TABLE 2 SUMMARY OF LABORATORY RESULTS PARCEL 007 NCDOT B-4490, CUMBERLAND COUNTY

Sample ID:	TPH-GRO and DRO Action	Soil to Groundwater	Commercial/Industrial	B-07-02 8'	B-07-06 10'	
Matrix: Sampled Date:	Level MSCC		MSCC	Soil 2/18/2014	Soil 2/18/2014	
EPA Method 8015 TPH-DRO				2/16/2014	2/10/2014	
Diesel Range Organics	10	NA	NA	559	ND	
MADEP EPH	.0				.,,5	
Aliphatic (C09-C18)	NA	540	40.000	202	ND	
Aliphatic (C19-C36)	NA	NA	810,000	ND	ND	
Aromatic (C11-C22)	NA	31	12.264	90.0	ND	
EPA Method 8015 TPH-GRO			,			
Gasoline Range Organics	10	NA	NA	3,760	10.3	
MADEP VPH						
Aliphatic (C05-C08)	NA	68	24,528	280	ND	
Aliphatic (C09-C12)	NA	540	40,000	1,260	ND	
Aromatic (C09-C10)	NA	31	12,264	743	ND	
Metals Method 6010						
Chromium	NA	5.4	1,226	5.5	5.4	
Lead	NA	270	400	34.8	9.0	
EPA Method 8270 Semi-volatile Organic Compounds (SVOCs)						
1-Methylnaphthalene	NA	0.004	100	8.22	ND	
2- Methylnaphthalene	NA	3.6	1,635	15.1	ND	
Naphthalene	NA	0.16	8,176	23.8	ND	
EPA Method 8260 Volatile Organic Compounds (VOCs)						
n-Butylbenzene	NA	4.3	16,350	30.5	ND	
Ethylbenzene	NA	4.9	40,000	81.3	ND	
Isopropylbenzene (Cumene)	NA	1.7	40,880	30.7	ND	
p-Isopropytoluene	NA	0.12	4,000	22.0	ND	
Naphthalene	NA	0.16	8,176	41.3	ND	
n-Propylbenzene	NA	1.7	16,350	68.0	0.119	
Toluene	NA	4.3	32,000	36.7	ND	
1,2,4-Trimethylbenzene	NA	8.5	20,440	329	ND	
1,3,5-Trimethylbenzene	NA	8.3	20,440	109	ND	
Xylene (Total)	NA	4.6	81,760	285	ND	
m&p-Xylene	NA	4.6	81,760	196	ND	
o-Xylene	NA	4.6	81,760	89.6	ND	


Notes:


Notes.
Units in mg/Kg
ND: Not Detected
NA: Not Applicable
Action Level and Maximum Soil Concentration Levels (MSCC) from Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases,
March 1, 2007 Version Change 5, Effective December 1, 2013


Bold exceeds the standard

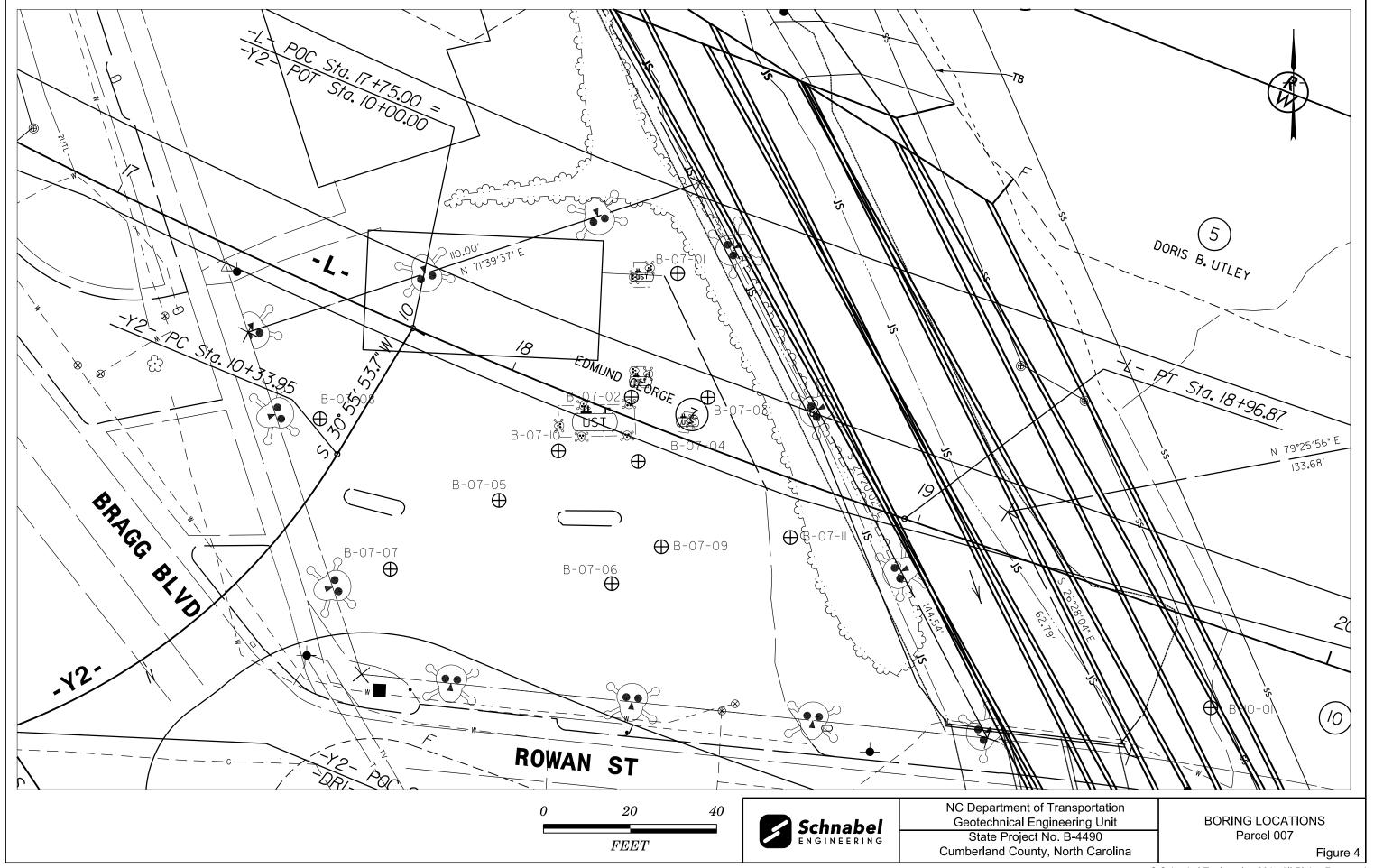
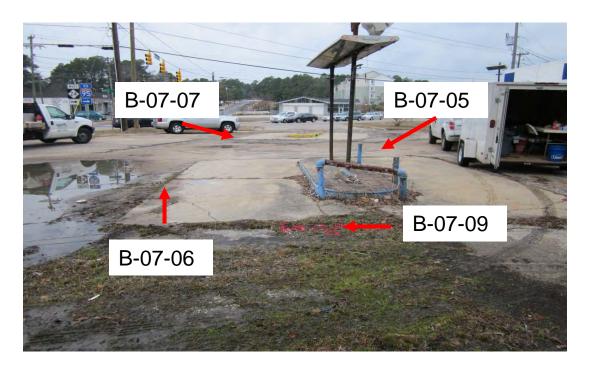

FIGURES

Figure 1, Vicinity Map
Figure 2, Site Map
Figure 3, Soil Impact Map
Figure 4 and 4A, Boring Locations and Legend

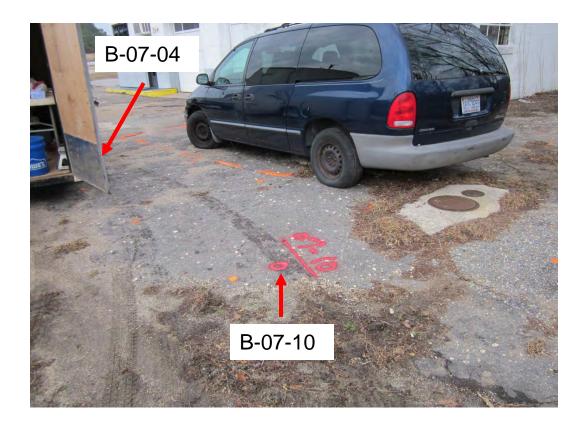


*S.U.E. = Subsurface Utility Engineering

CONVENTIONAL PLAN SHEET SYMBOLS

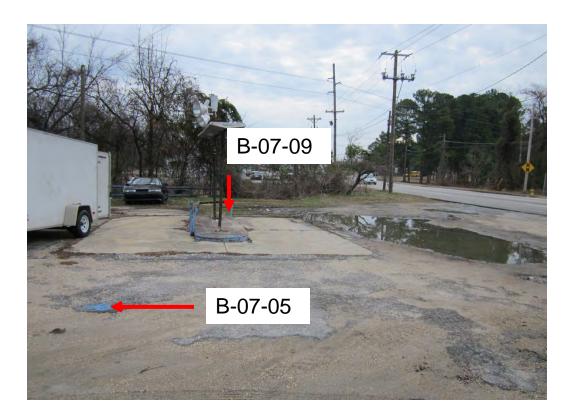
BOUNDARIES AND PROPERTY	Y:					WATER:	
State Line —						Water Manhole —————	W
County Line		RAILROADS:				Water Meter —	0
Township Line		Standard Gauge ————	CSX TRANSPORTATION			Water Valve —————	⊗
City Line		RR Signal Milepost —	€ MILEPOST 35	Orchard —	& & & &	Water Hydrant —	❖
Reservation Line		Switch —	SWITCH	Vineyard ————————————————————————————————————	Vineyard	Recorded U/G Water Line ————	
Property Line		RR Abandoned	<i>SWITCH</i> → → →	THE COURSE OF TH		Designated U/G Water Line (S.U.E.*)	
Existing Iron Pin		RR Dismantled		EXISTING STRUCTURES:		Above Ground Water Line (5.5.1.)	
Property Corner		RIGHT OF WAY:		MAJOR:		Above Ground Water Line	0 110101
Property Monument —		Baseline Control Point		Bridge, Tunnel or Box Culvert ————		TV:	
Parcel/Sequence Number			_	Bridge Wing Wall, Head Wall and End Wall –) CONC WW (TV Satellite Dish ————————————————————————————————————	K
Existing Fence Line		Existing Right of Way Marker	\triangle	MINOR:		TV Pedestal —	•
		Existing Right of Way Line		Head and End Wall —————	CONC HW		
Proposed Woven Wire Fence		Proposed Right of Way Line ————		Pipe Culvert ————		TV Tower	\otimes
Proposed Chain Link Fence		Proposed Right of Way Line with Iron Pin and Cap Marker	─	Footbridge	·	U/G TV Cable Hand Hole —————	H _H
Proposed Barbed Wire Fence		Proposed Right of Way Line with		Drainage Box: Catch Basin, DI or JB ———	СВ	Recorded U/G TV Cable ————	
Existing Wetland Boundary		Concrete or Granite Marker		Paved Ditch Gutter		Designated U/G TV Cable (S.U.E.*)———	
Proposed Wetland Boundary		Existing Control of Access	——(Ē)——	Storm Sewer Manhole ————	S	Recorded U/G Fiber Optic Cable ————	ту ғо
Existing Endangered Animal Boundary ——	EAB	Proposed Control of Access ————		Storm Sewer —		Designated U/G Fiber Optic Cable (S.U.E.*)—	TV FO
Existing Endangered Plant Boundary ——	ЕРВ	Existing Easement Line	——E——				
Known Soil Contamination: Boundary or Sit	е	Proposed Temporary Construction Easement -	Е	UTILITIES:		GAS:	
Potential Soil Contamination: Boundary or S	ite 🏋	Proposed Temporary Drainage Easement —	TDE	POWER:		Gas Valve	
BUILDINGS AND OTHER CUI	LTURE:	Proposed Permanent Drainage Easement ——		Existing Power Pole —	_	Gas Meter ————	\Diamond
Gas Pump Vent or U/G Tank Cap		Proposed Permanent Drainage / Utility Easement		Proposed Power Pole —	Ĭ	Recorded U/G Gas Line ————	с
Sign —		Proposed Permanent Utility Easement ———		Existing Joint Use Pole	J	Designated U/G Gas Line (S.U.E.*)———	
Well —	•	Proposed Temporary Utility Easement ———		Proposed Joint Use Pole	V	Above Ground Gas Line	A/G Gas
Small Mine		Proposed Aerial Utility Easement ————		Power Manhole —	-		
Foundation —		·	AUE——		⊕ N	SANITARY SEWER:	
Area Outline		Proposed Permanent Easement with Iron Pin and Cap Marker		Power Line Tower	\boxtimes	Sanitary Sewer Manhole	(
Cemetery —		ROADS AND RELATED FEATURE	•	Power Transformer —	Ø	Sanitary Sewer Cleanout —————	Ĥ
•				U/G Power Cable Hand Hole ————		U/G Sanitary Sewer Line —————	
bollaring		Existing Edge of Pavement		H-Frame Pole	•••	Above Ground Sanitary Sewer ————	
		Existing Curb		Recorded U/G Power Line ————	P	Recorded SS Forced Main Line	A76 Sdillidry Sewer
Church —	_ 4	Proposed Slope Stakes Cut ————		Designated U/G Power Line (S.U.E.*) ———			FSS———
Dam -		Proposed Slope Stakes Fill —————				Designated SS Forced Main Line (S.U.E.*) —	FSS
HYDROLOGY:		Proposed Curb Ramp	CR	TELEPHONE:			
Stream or Body of Water —		Curb Cut Future Ramp	CCFR	Existing Telephone Pole —————	-•-	MISCELLANEOUS:	
Hydro, Pool or Reservoir ————————————————————————————————————		Existing Metal Guardrail		Proposed Telephone Pole —————	- 0-	Utility Pole —————	•
Jurisdictional Stream		Proposed Guardrail —————		Telephone Manhole	①	Utility Pole with Base —————	
Buffer Zone 1		Existing Cable Guiderail		Telephone Booth	3	Utility Located Object —————	⊙
Buffer Zone 2		Proposed Cable Guiderail		Telephone Pedestal ———————	T	Utility Traffic Signal Box —————	S
Flow Arrow		Equality Symbol ——————	•	Telephone Cell Tower	, J ,	Utility Unknown U/G Line —————	
Disappearing Stream —		Pavement Removal ——————		U/G Telephone Cable Hand Hole —	HH	U/G Tank; Water, Gas, Oil —————	
Spring —		VEGETATION:		Recorded U/G Telephone Cable ————		Underground Storage Tank, Approx. Loc. ——	UST
Wetland		Single Tree	÷	Designated U/G Telephone Cable (S.U.E.*)		A/G Tank; Water, Gas, Oil —————	
Proposed Lateral, Tail, Head Ditch		Single Shrub	•	Recorded U/G Telephone Conduit		Geoenvironmental Boring ———————	**
-	← FLOW	Hedge —				U/G Test Hole (S.U.E.*)	•
False Sump —	$ \Leftrightarrow$	Woods Line ————		Designated U/G Telephone Conduit (S.U.E.*)		Abandoned According to Utility Records ——	AATUR
		110003 LINE		Recorded U/G Fiber Optics Cable —		End of Information —	E.O.I.
				Designated U/G Fiber Optics Cable (S.U.E.*)-	t FO		2.0.1.

APPENDIX A PHOTOGRAPHS



Parcel 007, facing west toward B-07-05, 06, 07, and 09.

Parcel 007, facing east toward B-07-11



Parcel 007, facing northwest toward B-07-10 and 04.

Parcel 007, facing north toward B-07-08.

Parcel 007, facing east toward B-07-05 and 09.

Parcel 007, facing north toward B-07-01, 02, and 03.

Parcel 007, facing northwest toward B-07-02.

Parcel 007, facing east. 55-gallon drum with "Used Oil Filters" sticker on drum.

Parcel 007, facing east. Above-ground storage tank with staining at base and "Used Oil" sticker on tank.

Parcel 007, facing west. Five-gallon buckets with black substance oozing from buckets and ground staining.

APPENDIX B GEOPHYSICS REPORT

March 27, 2014

Mr. Mohammed A. Mulla, P.E., CPM, MCE NCDOT, Geotechnical Engineering Unit 1020 Birch Ridge Drive Raleigh, NC 27610

RE: State Project: B-4490

WBS Element: 33727.1.1 County: Cumberland

Description: Replace Bridge No. 116 over CSX Railroad, North South Railroad, and

Hillsboro Street on NC 24-210

Subject: Project 11821014.33, Report on Geophysical Surveys

Parcel 007, Edmund George Property, Fayetteville, North Carolina

Dear Mr. Mulla:

SCHNABEL ENGINEERING SOUTH, PC (Schnabel) is pleased to present this report on the geophysical surveys we performed on the subject property. The report includes two 11x17 inch color figures and five 8.5x11 inch color figures. This study was performed in accordance with our proposal for Geophysical Surveys to Locate Possible USTs dated December 26, 2013, as approved by Terry Farr on January 24, 2014, and our existing agreement dated June 2, 2011. Gordon Box provided a verbal notice to proceed on January 23, 2014.

INTRODUCTION

The field work described in this report was performed on January 29, 2014 and February 11, 2014, by Schnabel. The purpose of the geophysical surveys was to evaluate the potential presence of metal underground storage tanks (USTs) in the accessible areas of Parcel 007. Photographs of the property are included on Figure 1. The property is located in the northeast quadrant of the intersection of NC 24 (Bragg Boulevard) and NC 210 (Rowan Street) in Fayetteville, NC.

The geophysical surveys consisted of an electromagnetic (EM) induction survey and a ground penetrating radar (GPR) survey. The EM survey was performed using a Geonics EM61-MK2 (EM61) instrument. The EM61 is a time domain metal detector that stores data digitally for later processing and review. Sensitivity to metallic objects is dependent on the size, depth, and orientation of the buried object and the amount of noise (i.e. response from spurious metallic objects) in the area. The EM61 can generally observe a single

NCDOT, Geotechnical Engineering Unit State Project B-4490, Cumberland County

buried 55 gallon drum at a depth of 10 feet or less. The EM61 makes measurements by creating an electromagnetic pulse and then measuring the response from metallic objects over time after the pulse is generated. We measured and recorded the response at several time increments after the pulse to help evaluate relative size and depth of metallic objects in the subsurface.

The GPR survey was performed over selected EM61 anomalies using a Geophysical Survey Systems SIR-3000 system equipped with a 400 MHz antenna to further investigate and evaluate EM responses that could indicate a potential UST. The depth penetration of the GPR signal, when using a 400 MHz antenna, is normally limited to 6 feet or less.

Photographs of the equipment used are shown on Figure 2.

FIELD METHODOLOGY

We obtained locations of geophysical data points using a sub-meter Trimble Pro-XRS differential global positioning system (DGPS). References to direction and location in this report are based on the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 83 datum, with units in US survey feet. We also recorded the locations of existing site features (signs, guy wires, etc.) with the DGPS for later correlation with the geophysical data and a site plan provided by the NCDOT. The Microstation data provided by the NCDOT appears to be offset from the DGPS data we collected. The amount (approximately 5 feet) and direction (WNW) of offset of the Microstation data appear to be consistent for all parcels where we collected data for this project.

The EM61 data were collected along parallel survey lines spaced approximately 2.5 feet apart. The EM61 and DGPS data were recorded digitally using a field computer and later transferred to a desktop computer for data processing. The GPR data were collected along survey lines spaced approximately one to two feet apart in orthogonal directions over anomalous EM readings not attributed to cultural features. The GPR data were reviewed in the field to evaluate the possible presence of USTs. The GPR data also were recorded digitally and later transferred to a desktop computer for further review.

DISCUSSION OF RESULTS

The contoured EM61 data collected over Parcel 007 and the GPR survey area locations are shown on Figure 3, EM61 Early Time Gate Response, and Figure 4, EM61 Differential Response. Areas outside the colored, contoured EM61 data were not surveyed. Early time data refer to the response measured at a short time after the initial EM pulse is generated. Early time data typically contain responses from all metal objects, small or large and shallow or deep, within the sensitivity range of the instrument. Differential data represent the difference in response between the top and bottom coils of the EM61 instrument at a later time after the initial pulse than early time data. Differential data naturally tend to filter out the effect of surface and very shallowly buried metallic objects. Typically, the differential response emphasizes anomalies from deeper and larger objects such as USTs.

We were able to access most of the planned survey area with the exception of thick vegetation along the eastern side of the property and obstacles near the northeast corner of the building. The EM data contain multiple anomalies that we investigated with GPR (as shown on Figures 3 and 4), most of which appear to be the result of buried utilities, reinforced concrete, or other metal objects at the ground surface or at

shallow depths. We collected GPR data over several EM anomalies of an unknown cause as shown on Figures 3 and 4 to further investigate the EM anomalies. The GPR data collected near the northeastern corner of the building on Parcel 007 indicated the presence of a probable UST, as shown on Figures 3 and 4. The GPR data collected near the southeastern corner of the building on Parcel 007 indicated the presence of three additional probable USTs, as shown on Figures 3 and 4. The identification of Probable UST Nos. 1, 2, 3, and 4 was selected in accordance with the anomaly categories provided by the NCDOT in their letter, dated May 19, 2009, entitled "Geophysical Surveys to Identify USTs". Example GPR images from lines oriented over the marked locations of Probable UST Nos. 1, 2, 3, and 4 are shown on Figure 5. The GPR data suggest the tops of Probable UST Nos. 1 and 2 are approximately 4.5 to 5.5 feet below ground surface and 1.0 to 2.0 feet below ground surface, respectively. Probable UST No. 1 is about 4 feet in diameter and about 6 feet long, equivalent to a capacity of a 550 gallon UST. Probable UST No. 2 is about 3 feet in diameter and about 5 feet long, equivalent to a capacity of a 270 gallon UST. The GPR data suggest the tops of Probable UST Nos. 3 and 4 are approximately 4.5 to 5.5 feet below ground surface and 3.0 to 4.0 below ground surface, respectively. Probable UST No. 3 is about 3.5 feet in diameter and about 7.5 feet long, equivalent to a capacity of a 560 gallon UST. Probable UST No. 4 is estimated to be about 8 feet in diameter and about 16 feet long, equivalent to a capacity of a 6,000 gallon UST. We were unable to collect data over most of suspected location of Probable UST No. 4 due to the presence of a vehicle we could not arrange to be moved. A metal lid likely related to the probable UST was observed under the vehicle. Photographs of the approximate locations of the probable USTs that were marked in the field are included on Figures 6 and 7.

CONCLUSIONS

As shown in Figures 3 and 4, the EM data we collected over Parcel 007 did not cover portions of the planned survey area due to the presence of thick vegetation and other obstacles within the planned survey area. The EM data include responses from several visible metallic objects at grade (e.g. guy wires, signs, etc.).

The geophysical data indicate the presence of four probable USTs outside the existing right-of-way on Parcel 007. The EM and GPR data suggest Probable UST Nos. 1, 2, 3, and 4 are about the size of a 550-gallon capacity UST, a 270-gallon capacity UST, a 560-gallon capacity UST, and a 6,000-gallon capacity UST, respectively. The tops of Probable UST Nos. 1, 2, 3, and 4 are about 4.5 to 5.5 feet, 1.0 to 2.0 feet, 4.5 to 5.5 feet, and 3.0 to 4.0 feet below ground surface, respectively.

LIMITATIONS

These services have been performed and this report prepared for the North Carolina Department of Transportation in accordance with generally accepted guidelines for conducting geophysical surveys. It is generally recognized that the results of geophysical surveys are non-unique and may not represent actual subsurface conditions.

NCDOT, Geotechnical Engineering Unit State Project B-4490, Cumberland County

We appreciate the opportunity to have provided these services. Please call if you need additional information or have any questions.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

James W. Whitt, LG Senior Staff Geophysicist

Gregory B. Kuntz, LG Senior Associate

JWW:JCD:GBK

Attachments: Figures (7) CC: NCDOT, Gordon Box

FILE: G\:2011-SDE-JOBS\11821014_00_NCDOT_2011_GEOTECHNICAL_UNIT_SERVICES\11821014_33_B-4490_CUMBERLAND_COUNTY\REPORT\GEOPHYSICS\PARCEL 07\SCHNABEL GEOPHYSICAL REPORT ON PARCEL 7 (B-4490) FINALDOCX

Attachments:

Figure 1 - Parcel 007 Site Photos

Figure 2 - Photos of Geophysical Equipment Used

Figure 3 - EM61 Early Time Gate Response

Figure 4 - EM61 Differential Response

Figure 5 - Parcel 007 Example GPR Images

Figure 6 - Parcel 007 Photos of Probable UST Locations

Figure 7 - Parcel 007 Additional Photos of Probable UST Locations

Parcel 007 (Edmund George Property), looking north

Parcel 007 (Edmund George Property), looking east

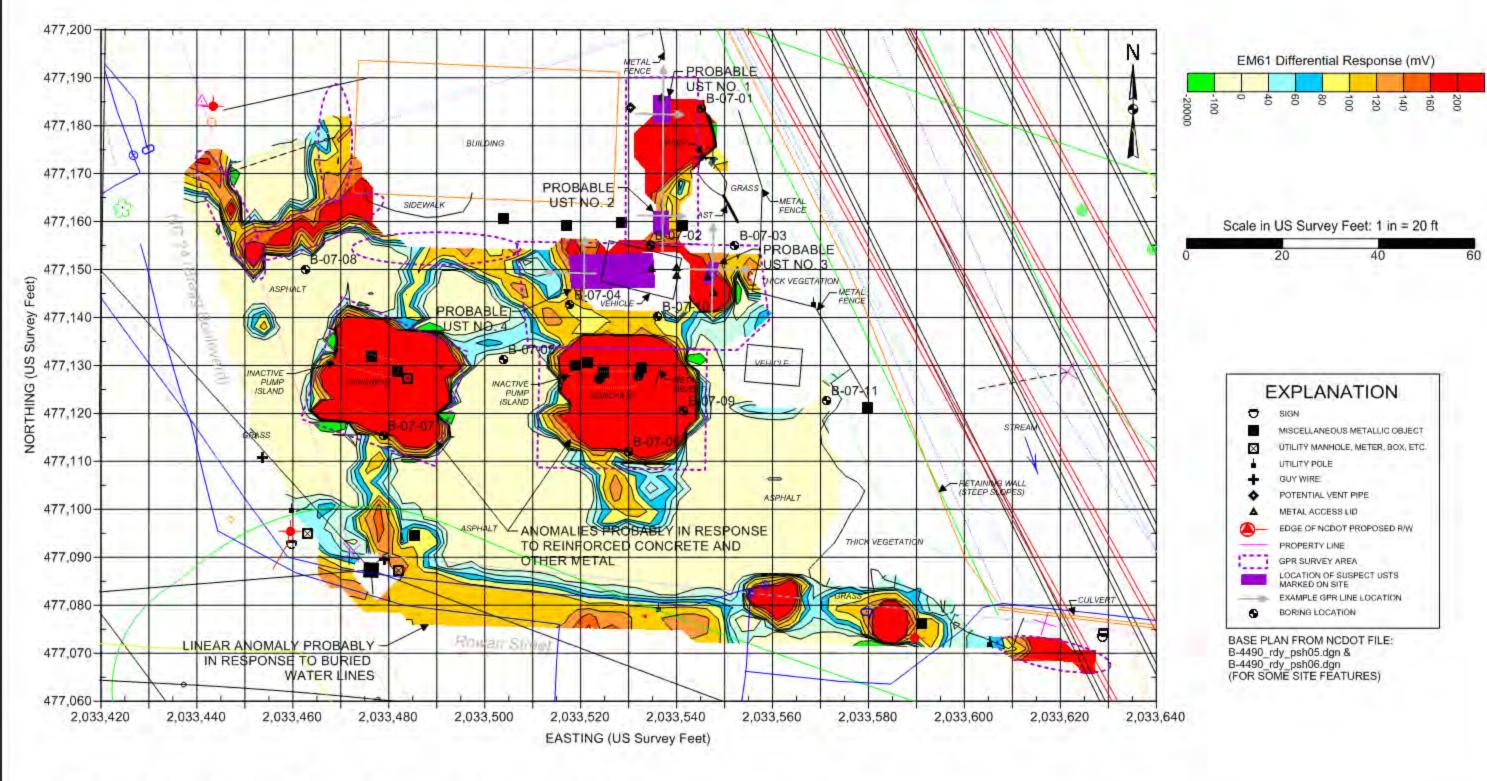
STATE PROJECT B-4490 NC DEPT. OF TRANSPORTATION CUMBERLAND CO., NORTH CAROLINA PROJECT NO. 11821014.33

PARCEL 007 SITE PHOTOS

FIGURE 1

Geonics EM61-MK2 Metal Detector with Trimble DGPS Unit

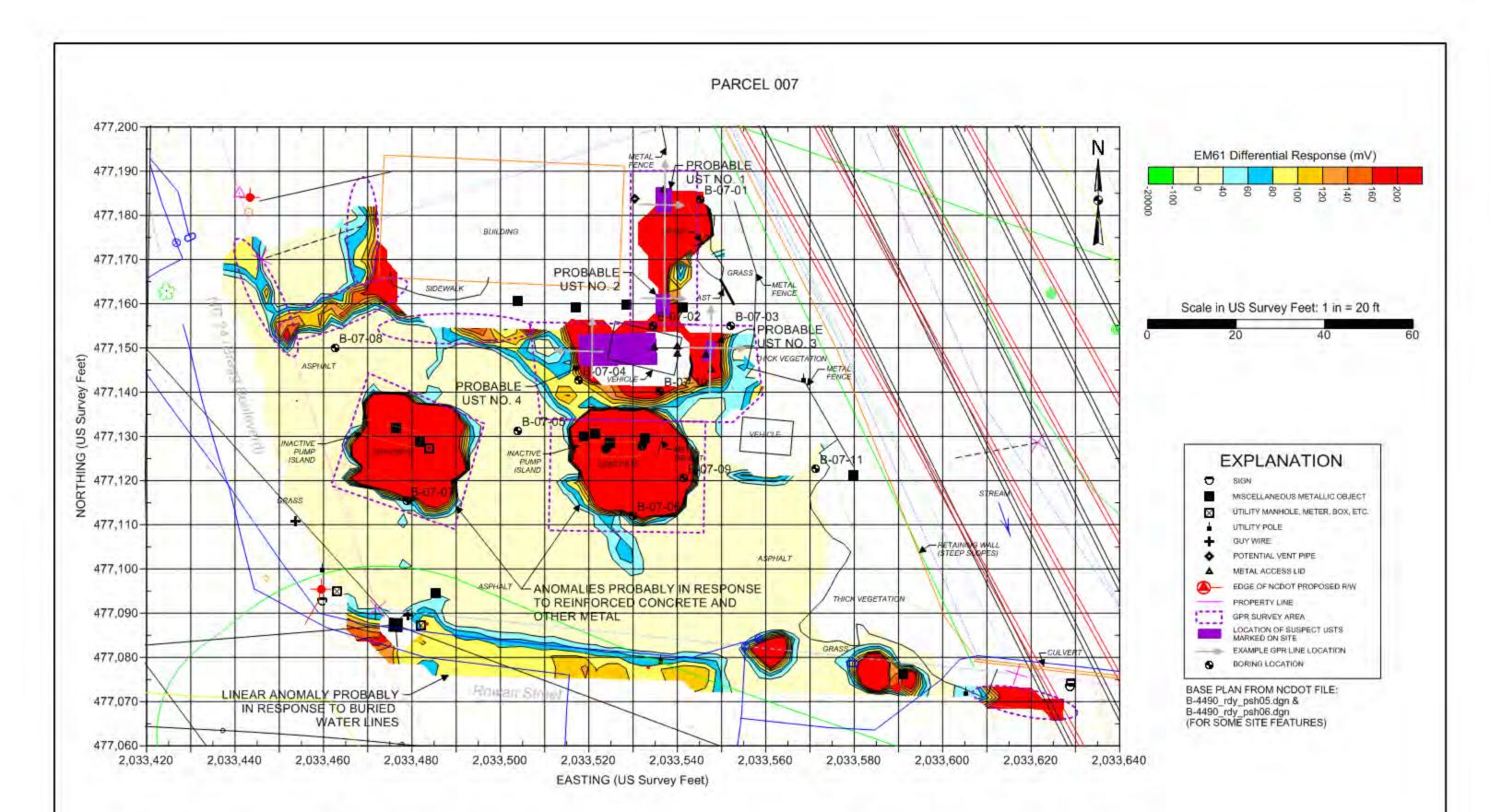
GSSI SIR-3000 Ground-Penetrating Radar with 400 MHz Antenna


Note: Stock photographs – not taken on site.

STATE PROJECT B-4490 NC DEPT. OF TRANSPORTATION CUMBERLAND CO., NORTH CAROLINA PROJECT NO. 11821014.33 PHOTOS OF GEOPHYSICAL EQUIPMENT USED

FIGURE 2

PARCEL 007



Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on January 29, 2014, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on February 11, 2014, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

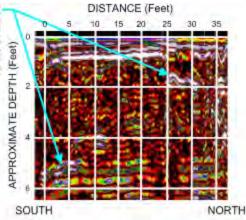
STATE PROJECT B-4490
NC DEPARTMENT OF TRANSPORTATION
CUMBERLAND COUNTY, NC
PROJECT NO. 11821014.33

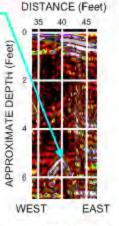
EM61 EARLY TIME GATE RESPONSE

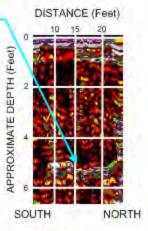


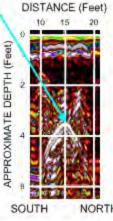
Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on January 29, 2014, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on February 11, 2014, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

STATE PROJECT B-4490
NC DEPARTMENT OF TRANSPORTATION
CUMBERLAND COUNTY, NC
PROJECT NO. 11821014.33


EM61 DIFFERENTIAL RESPONSE


EXAMPLE GPR RESPONSE FROM THE SHORT AXIS OF PROBABLE UST NO. 1 FROM THE SHORT AXIS OF PROBABLE UST NO. 2


EXAMPLE GPR RESPONSES FROM THE LONG AXES OF PROBABLE UST NOS. 1 & 2


EXAMPLE GPR RESPONSE FROM THE SHORT AXIS OF PROBABLE UST NO. 3

EXAMPLE GPR RESPONSE FROM THE LONG AXIS OF PROBABLE UST NO. 3

EXAMPLE GPR RESPONSE FROM THE SHORT AXIS OF PROBABLE UST NO. 4

EXAMPLE PARTIAL GPR-RESPONSE FROM THE LONG AXIS OF PROBABLE UST NO. 4

STATE PROJECT B-4490
NC DEPARTMENT OF TRANSPORTATION
CUMBERLAND COUNTY, NC
PROJECT NO. 11821014.33

PARCEL 007 EXAMPLE GPR IMAGES

FIGURE 5

-0770

Parcel 007 (Edmund George Property), looking north. Photo shows approximate marked location of Probable UST No. 1 near the northeast corner of the building on Parcel 007.

Parcel 007 (Edmund George Property), looking north. Photo shows approximate marked location of Probable UST No. 2 near the southeast corner of the building on Parcel 007

STATE PROJECT B-4490 NC DEPT. OF TRANSPORTATION CUMBERLAND CO., NORTH CAROLINA PROJECT NO. 11821014.33

PARCEL 007
PHOTOS OF PROBABLE
UST LOCATIONS
FIGURE 6

Parcel 007 (Edmund George Property), looking south. Photo shows approximate marked location of Probable UST No. 3 near the southeast corner of the building on Parcel 007.

Parcel 007 (Edmund George Property), looking north. Photo shows approximate marked location of Probable UST No. 4 near the southeast corner of the building on Parcel 007

STATE PROJECT B-4490 NC DEPT. OF TRANSPORTATION CUMBERLAND CO., NORTH CAROLINA PROJECT NO. 11821014.33

PARCEL 007 ADDITIONAL PHOTOS OF PROBABLE UST LOCATIONS

APPENDIX C SOIL BORING LOGS

Project: Preliminary Site Assessments

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-01

Contract Number: B-4490 **Sheet:** 1 of 1

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall
Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT **Method:** 3-1/4" Probe Rod,

Macrocore

Hammer Type:

Dates Started: 2/18/14 Finished: 2/18/14

X: 477183.635 m Y: 2033545.193 m

	Groundwater Observations Date Time Depth Casing Caved								
	Date	Time	Depth	Casing	Caved				
Encountered ∑	2/18	2:51 PM	8.0'						

Ground Surface Elevation: Total Depth: 10.0 ft

DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SA DEPTH	AMPLING DATA	TESTS	REMARKS
0.2	Asphalt PROBABLE FILL, sampled as clayey sand; moist, reddish brown	FILL	 				PID = 4.4 ppm	
4.0 -	SILTY SAND; wet, dark grayish brown, probable RESIDUAL material	SM		-	- 5 -	_	PID = 3.9 ppm	
8.0 -	SILTY SAND WITH GRAVEL; moist, yellowish brown, probable RESIDUAL material	SM	 			_	PID = 4.1 ppm PID = 4.7 ppm	
10.0			_		L 10 L		PID = 5.3 ppm	

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth.

Boring backfilled with bentonite and cuttings upon completion.

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-02

Contract Number: B-4490 **Sheet:** 1 of 1

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT **Method:** 3-1/4" Probe Rod,

Macrocore

Hammer Type:

Dates Started: 2/18/14 Finished: 2/18/14

X: 477155.086 m Y: 2033534.507 m

Groundwater Observations											
Date	Time	Depth	Casing	Caved							
2/18	4:25 PM	8.0'									
	Date	Date Time		Date Time Depth Casing							

Ground Surface Elevation: Total Depth: 10.0 ft

DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SA DEPTH	AMPLING DATA	TESTS	REMARKS
0.2	Asphalt PROBABLE FILL, sampled as silty sand; moist, brownish gray	FILL					PID = 6.1 ppm	
4.0 -	SILTY SAND; wet, grayish brown, probable RESIDUAL material	SM	 		5 —		PID = 481 ppm PID = 1469 ppm	Staining and odor present
10.0	∇			-	10	B-07-02 8 FT	PID = 1325 ppm	

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth. Boring backfilled with bentonite and cuttings upon completion.

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-03
Contract Number: B-4490

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT

Method: 3-1/4" Probe Rod,
Macrocore

Hammer Type:

Dates Started: 2/18/14 Finished: 2/18/14

X: 477155.011 m **Y**: 2033552.164 m

Groundwater Observations											
	Date	Time	Depth	Casing	Caved						
Encountered $ abla$	2/18	4:40 PM	8.0'								
						_					

Sheet: 1 of 1

Ground Surface Elevation: Total Depth: 10.0 ft

DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SA DEPTH	AMPLING DATA	TESTS	REMARKS
0.2	Asphalt PROBABLE FILL, sampled as silty sand; moist, orangeish brown	FILL					PID = 10.1 ppm	
3.0 -	SILTY SAND; moist, gray, probable RESIDUAL material	SM		_			PID = 12.2 ppm	
5.0 — - 7.0 —	SILTY SAND; wet, dark grayish black, estimated 15 - 25% organics, probable RESIDUAL material	SM		-	5 —		PID = 6.4 ppm	
-	SILTY SAND; moist, orangeish brown, estimated 5 - 10% gravel, probable ∇	SM		-		_	PID = 7.5 ppm	Staining and odor present
10.0	1	Likili.	_	1	<u></u> 10 <u></u>		PID = 921 ppm	

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth. Boring backfilled with bentonite and cuttings upon completion.

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-04

Contract Number: B-4490 Sheet: 1 of 1

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT **Method:** 3-1/4" Probe Rod,

Macrocore

Hammer Type:

Dates Started: 2/18/14 Finished: 2/18/14

X: 477142.642 m Y: 2033517.66 m

Groundwater Observations											
	Date	Time	Depth	Casing	Caved						
Encountered ∑	2/18	3:27 PM	8.0'								

Ground Surface Elevation: Total Depth: 10.0 ft

DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SA DEPTH	AMPLING DATA	TESTS	REMARKS
0.1 - -	Asphalt PROBABLE FILL, sampled as silty sand; moist, light yellowish brown	FILL					PID = 8.4 ppm	Oder present
3.0 -	PROBABLE FILL, sampled as silty sand; moist, dark brownish gray	FILL		-	 5	_	PID = 8.4 ppm	Odor present
6.0 -	SILTY SAND; moist, gray, probable RESIDUAL material		- - - -				PID = 15.3 ppm	
10.0		Ÿ sm		-	10	_	PID = 10.3 ppm	
10.0					_ 10		PID = 11.5 ppm	

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth. Boring backfilled with bentonite and cuttings upon completion.

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-05
Contract Number: B-4490

Sheet: 1 of 1

PID = 4.4 ppm

PID = 8.2 ppm

PID = 5.4 ppm

Contractor: Saedacco, Inc. Fort Mill, South Carolina

Contractor Foreman: W. Hall
Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT

Method: 3-1/4" Probe Rod,
Macrocore

Hammer Type:

Dates Started: 2/18/14 Finished: 2/18/14

X: 477131.229 m Y: 2033503.932 m

	Ground	dwater Obse	rvations		
	Date	Time	Depth	Casing	Caved
Encountered $ abla$	2/18	3:38 PM	8.0'		

Ground Surface Elevation: Total Depth: 10.0 ft **DEPTH STRA SAMPLING ELEV SYMBOL REMARKS** MATERIAL DESCRIPTION **TESTS** TUM (ft) (ft) DEPTH DATA PROBABLE FILL, sampled as silty **FILL** sand with gravel; dry, light brown, estimated 5 - 10% gravel 1.0 PROBABLE FILL, sampled as silty FILL PID = 2.8 ppmlean clay with sand; moist, dark grayish orange, low plasticity 3.5 PROBABLE FILL, sampled as silty sand; moist, dark grayish black, **FILL** PID = 14.2 ppm estimated <5% organics 5.0 5 PROBABLE FILL, sampled as silty sand; moist, light orangeish brown

FILL

SM

 ∇

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth.

SILTY SAND; moist, gray, probable

RESIDUAL material

Boring backfilled with bentonite and cuttings upon completion.

7.5

10.0

> **Cumberland County** Fayetteville, North Carolina

B-07-06 Geo Probe Number:

Contract Number: B-4490 Sheet: 1 of 1

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT Method: 3-1/4" Probe Rod,

Macrocore

Ground Surface Elevation:

Hammer Type: Dates Started: 2/18/14 Finished: 2/18/14

X: 477111.992 m Y: 2033529.964 m

	Groundwater Observations												
	Date	Time	Depth	Casing	Caved								
Encountered ∑	2/18	3:53 PM	8.0'										

B-07-06 10 FT

PID = 33.5 ppm

Total Depth: 10.0 ft **DEPTH ELEV STRA SAMPLING MATERIAL DESCRIPTION SYMBOL REMARKS TESTS** TUM (ft) (ft) **DEPTH** DATA 0.3 Asphalt PROBABLE FILL, sampled as clayey sand with silt; moist, light yellowish gray PID = 2.9 ppmPID = 3.5 ppm5 FILL PID = 7.2 ppmOdor present ∇ PID = 11 ppm

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth.

Boring backfilled with bentonite and cuttings upon completion.

10.0

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-07

Contract Number: B-4490 Sheet: 1 of 1

PID = 7.6 ppm

Contractor: Saedacco, Inc. Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT

Method: 3-1/4" Probe Rod,
Macrocore

Hammer Type:

Dates Started: 2/25/14 Finished: 2/25/14

X: 477115.327 m **Y**: 2033478.811 m

	Groundwater Observations											
	Date	Time	Depth	Casing	Caved							
Encountered ∑	2/18	5:02 PM	8.0'									
		1		1	1							

Total Depth: 10.0 ft **Ground Surface Elevation: DEPTH STRA SAMPLING ELEV SYMBOL REMARKS MATERIAL DESCRIPTION TESTS** TUM (ft) (ft) **DEPTH** DATA 0.2 Asphalt PROBABLE FILL, sampled as sand FILL with gravel; moist, orangeish brown 2.0 CLAYEY SAND; moist, orangeish PID = 7.7 ppmbrown, probable RESIDUAL material SC 4.0 SILTY SAND; wet, black, estimated 30 PID = 10.7 ppm - 45% organics, probable RESIDUAL SM 5 material 6.0 SILTY SAND; moist to wet, grayish PID = 7.0 ppmwhite, probable RESIDUAL material ∇ SM PID = 6.8 ppm

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth.

Boring backfilled with bentonite and cuttings upon completion.

10.0

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-08

Contract Number: B-4490 **Sheet:** 1 of 1

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT **Method:** 3-1/4" Probe Rod,

Macrocore

Hammer Type:

Dates Started: 2/20/14 Finished: 2/20/14

X: 477150.064 m Y: 2033462.598 m

Groundwater Observations											
	Date	Time	Depth	Casing	Caved						
Encountered ∑	2/20	9:04 AM	8.0'								

Ground Surface Elevation: Total Depth: 10.0 ft

DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SA DEPTH	MPLING DATA	TESTS	REMARKS
0.2	PROBABLE FILL, sampled as silty sand with clay; moist, orangeish gray	FILL	-					
2.0 -	FAT CLAY; moist, orangeish gray, estimated 15 - 25% organics, probable RESIDUAL material, 2 inch organic layer from 4.9 to 5.1						PID = 0.0 ppm	
_		CH			- 5 -		PID = 0.0 ppm	
6.0 -	SILTY SAND; wet, light grayish white, probable RESIDUAL material	7	-				PID = 0.0 ppm	
- 	- 7	SM	-				PID = 0.0 ppm	
10.0		1 1111	<u> </u>	1	<u></u> 10 <u></u>	1	PID = 0.0 ppm	

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth. Boring backfilled with bentonite and cuttings upon completion.

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-09

Contract Number: B-4490 Sheet: 1 of 1

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT **Method:** 3-1/4" Probe Rod,

Macrocore

Hammer Type:

Dates Started: 2/20/14 Finished: 2/20/14

X: 477120.503 m **Y**: 2033541.414 m

	Groundwater Observations												
	Date	Time	Depth	Casing	Caved								
Encountered ∑	2/20	9:18 AM	8.5'										

Ground Surface Elevation: Total Depth: 10.0 ft

0.2 Asphalt PROBABLE FILL, sampled as sandy lean clay; moist, orangeish brown PROBABLE FILL, sampled as sandy lean clay; wet, light gray to dark brownish gray, estimated <5% wood, high plasticity FILL FILL FILL FILL	TESTS	REMARKS
PROBABLE FILL, sampled as sandy lean clay; wet, light gray to dark brownish gray, estimated <5% wood, high plasticity		
	PID = 8.1 ppi	Staining and odor present
	PID = 1134 ppm	
	PID = 92.7 p	om
	PID = 4.5 ppi	m
9.0 SILTY SAND; wet, light grayish white, probable RESIDUAL material		

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth.

Boring backfilled with bentonite and cuttings upon completion.

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-10

Contract Number: B-4490 **Sheet:** 1 of 1

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT

Method: 3-1/4" Probe Rod,
Macrocore

Hammer Type:

Dates Started: 2/20/14 Finished: 2/20/14

X: 477140.209 m Y: 2033536.082 m

Ground	dwater Obse	rvations		
Date	Time	Depth	Casing	Caved
2/20	9:27 AM	8.5'		
	Date	Date Time		Date Time Depth Casing

Ground Surface Elevation: Total Depth: 10.0 ft

DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SAI DEPTH	MPLING DATA	TESTS	REMARKS
0.2	Asphalt							
- 1.5	PROBABLE FILL, sampled as silty sand; moist, orangeish brown	FILL			_			
_	PROBABLE FILL, sampled as silty sand with clay; wet, light gray						PID = 5.4 ppm	
_								
_				-	- 5 -		PID = 10.4 ppm	
-		FILL					PID = 8.1 ppm	
_								
-	$ar{ abla}$						PID = 270 ppm	
-				1				
10.0 —		ı IXXX		1	└ 10 ┴	I.	PID = 6.6 ppm	

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth.

Boring backfilled with bentonite and cuttings upon completion.

Cumberland County
Fayetteville, North Carolina

Geo Probe Number: B-07-11
Contract Number: B-4490

Contractor: Saedacco, Inc.

Fort Mill, South Carolina

Contractor Foreman: W. Hall

Schnabel Representative: B. Bradley

Equipment: Geoprobe 7822DT **Method:** 3-1/4" Probe Rod,

Macrocore

Hammer Type:

Dates Started: 2/20/14 Finished: 2/20/14

X: 477122.654 m **Y**: 2033571.249 m

Ground Surface Elevation:	Total Depth: 10.0 ft

	Ground	lwater Obse	rvations		
	Date	Time	Depth	Casing	Caved
Encountered ∑	2/20	9:22 AM	8.5'		

Sheet: 1 of 1

DEPTH (ft)	MATERIAL DESCRIPTION	SYMBOL	ELEV (ft)	STRA TUM	SAI DEPTH	MPLING DATA	TESTS	REMARKS
-	SILTY SAND WITH CLAY; wet, orangeish gray to light brownish gray, probable RESIDUAL material, Boring nearest stream							
-			 	-			PID = 0.0 ppm	
_		SM		-	5		PID = 0.0 ppm	
-				_			PID = 1.0 ppm	
-	Ţ			-			PID = 0.0 ppm	
10.0			<u> </u>	1	└ 10 ┴─		PID = 0.0 ppm	

Bottom of Geo Probe at 10.0 ft. Boring terminated at selected depth.

Boring backfilled with bentonite and cuttings upon completion.

APPENDIX D SOIL BORING GPS COORDINATES

SOIL BORING GPS COORDINATES NCDOT B-4490, CUMBERLAND COUNTY

Soil Boring GPS Coordinates										
Boring Identification	Easting	Northing								
Doning Identification	X	Υ								
B-07-01	2033545.193	477183.635								
B-07-02	2033534.507	477155.086								
B-07-03	2033552.164	477155.011								
B-07-04	2033517.660	477142.642								
B-07-05	2033503.932	477131.229								
B-07-06	2033529.964	477111.992								
B-07-07	2033478.811	477115.327								
B-07-08	2033462.598	477150.064								
B-07-09	2033541.414	477120.503								
B-07-10	2033536.082	477140.209								
B-07-11	2033571.249	477122.654								

^{*} NC State Plane 1983 System, NC 3200 Zone, NAD 83 Datum, US Survey Feet

APPENDIX E UVF ANALYSIS RESULTS

Hydrocarbon Analysis Results

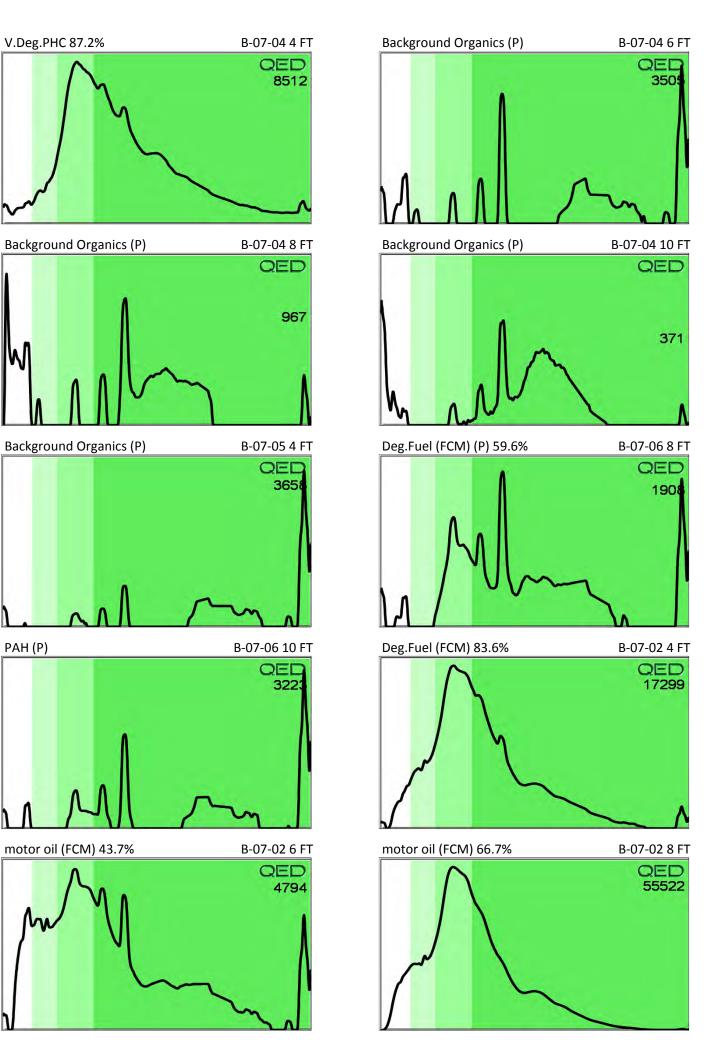
Client: NCDOT

Address:

Samples taken Samples extracted Samples analysed

Contact: Operator

Project: FAYETTEVILLE PSAS B-4490


Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match
										% light	% mid	% heavy	
S	B-07-04 4 FT	19.0	<0.2	<0.2	7.3	7.3	6.7	0.38	<0.01	46.4	33.1	20.5	V.Deg.PHC 87.2%
S	B-07-04 6 FT	24.0	3.6	3.6	<0.6	3.6	0.24	0.03	0.024	93.8	1.6	4.5	Background Organics (P)
S	B-07-04 8 FT	20.0	0.89	0.89	<0.5	0.89	0.19	<0.1	<0.01	82.9	2.7	14.4	Background Organics (P)
S	B-07-04 10 FT	13.0	<0.1	<0.1	<0.3	< 0.3	0.04	<0.1	<0.01	0	0	100	Background Organics (P)
S	B-07-05 4 FT	17.0	<0.2	<0.2	<0.4	<0.4	0.13	<0.1	<0.01	0	20.1	79.9	Background Organics (P)
S	B-07-06 8 FT	19.0	<0.2	<0.2	2.6	2.6	0.61	0.02	<0.01	0	34.1	65.9	Deg.Fuel (FCM) (P) 59.6%
S	B-07-06 10 FT	17.0	<0.2	<0.2	<0.4	<0.4	0.16	0.02	0.016	0	32.9	67.1	PAH (P)
S	B-07-02 4 FT	16.0	<0.2	<0.2	31.4	31.4	14.4	0.49	0.014	60	31.4	8.7	Deg.Fuel (FCM) 83.6%
S	B-07-02 6 FT	19.0	<0.2	6.7	9.6	16.3	6.3	0.16	0.018	84.5	6.7	8.9	motor oil (FCM) 43.7%
S	B-07-02 8 FT	20.0	95.7	157	308	465	123	4	0.11	80.7	17.6	1.7	motor oil (FCM) 66.7%

Initial Calibrator QC check OK

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

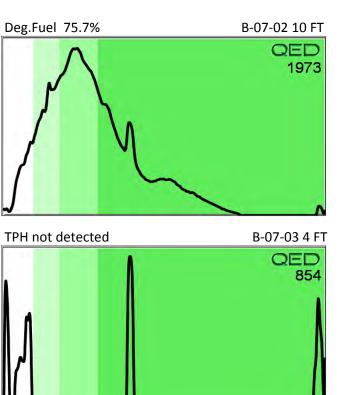
Hydrocarbon Analysis Results

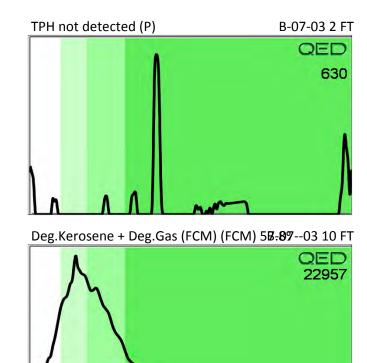
Client: NCDOT Samples taken
Address: Samples extracted

Samples analysed

Contact: Operator

Project: FAYETTEVILLE PSAS B-4490


Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		Ratios		HC Fingerprint Match
										% light	% mid	% heavy	
S	B-07-02 10 FT	19.0	<0.2	<0.2	12.9	12.9	2.6	0.09	<0.01	81.4	14.7	3.9	Deg.Fuel 75.7%
S	B-07-03 2 FT	20.0	<0.2	<0.2	<0.5	<1	<0.1	<0.1	<0.01	0	0	100	TPH not detected (P)
s	B-07-03 4 FT	19.0	<0.2	<0.2	<0.5	<1	<0.1	<0.1	<0.01	0	0	100	TPH not detected
s	B-0703 10 FT	15.0	27.9	55.3	154	209.3	52.9	1.6	0.022	96.8	2.9	0.3	Deg.Kerosene + Deg.Gas (FCM) (FCM) 57.8%


Initial Calibrator QC check OK

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

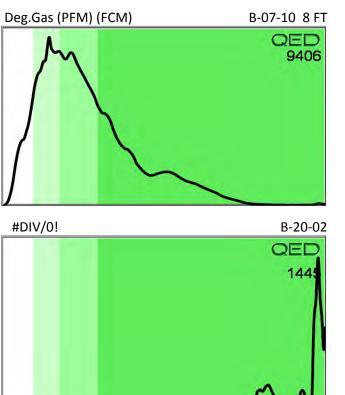
Hydrocarbon Analysis Results

Client: NCDOT Samples taken
Address: Samples extracted

Samples analysed

Contact: Operator BLB

Project: FAYETTEVILLE PSAS, B-4490


Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ratios			HC Fingerprint Match
										% light	% mid	% heavy	
S	B-07-10 8 FT	20.0	21.8	35.1	13.5	48.6	23.3	<0.1	<0.01	95.7	3.3	1.1	Deg.Gas (PFM) (FCM)
S	B-07-09 4 FT	20.0	94.9	153	48.4	201.4	37.6	1.07	0.032	98.6	1.2	0.2	Deg.Gas (FCM) 65.7%
W	B-20-02	1.0	<0.025	<0.025	#DIV/0!	#DIV/0!	0.01	<0.005	<0.005	0	0	100	#DIV/0!

Initial Calibrator QC check OK

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

APPENDIX F LABORATORY ANALYTICAL RESULTS

March 08, 2014

Chemical Testing Engineer Materials and Tests Unit 1801 Blue Ridge Road Raleigh, NC 27607

RE: Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Dear Chemical Engineer:

Enclosed are the analytical results for sample(s) received by the laboratory on February 20, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

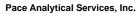
Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Godwin

kevin.godwin@pacelabs.com


Project Manager

X = Dod-

Enclosures

cc: Ben Bradley, Schnabel Engineering

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas Certification #: E-10247 Kentucky UST Certification #: 0042

Louisiana/NELAP Certification #: 04076 Ohio VAP Certification #: CL-0065 Pennsylvania Certification #: 68-04991 West Virginia Certification #: 330

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221

Asheville Certification IDs

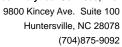
2225 Riverside Dr., Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030

North Carolina Drinking Water Certification #: 37712

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 West Virginia Certification #: 356 Virginia/VELAP Certification #: 460222

(704)875-9092

SAMPLE ANALYTE COUNT


Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92190355001	B-13-01 6FT	EPA 8015 Modified	 NU1	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	LLW	1	PASI-C
92190355002	DUPLICATE -1	EPA 8015 Modified	NU1	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	LLW	1	PASI-C
2190355003	B-16/17-01	EPA 8015 - Alcohol-Glycol	CEM	1	PASI-I
		MADEP EPH	EJK	7	PASI-C
		MADEP VPH	GAW	5	PASI-C
		EPA 6010	JMW	2	PASI-A
		EPA 625	RES	58	PASI-C
		SM 6200B	CAH	64	PASI-C
		EPA 8260	MCK	63	PASI-C
2190355004	B-18-01	EPA 8015 - Alcohol-Glycol	CEM	1	PASI-I
		MADEP EPH	EJK	7	PASI-C
		MADEP VPH	GAW	5	PASI-C
		EPA 6010	JMW	2	PASI-A
		EPA 625	RES	60	PASI-C
		SM 6200B	CAH	64	PASI-C
		EPA 8260	MCK	63	PASI-C
2190355005	DUPLICATE-2	EPA 8015 - Alcohol-Glycol	CEM	1	PASI-I
		MADEP EPH	EJK	7	PASI-C
		MADEP VPH	GAW	5	PASI-C
		EPA 6010	JMW	2	PASI-A
		EPA 625	RES	59	PASI-C
		SM 6200B	CAH	64	PASI-C
		EPA 8260	MCK	63	PASI-C
2190355006	B-07-02 8'	EPA 8015 Modified	NU1	2	PASI-C
		MADEP EPH	EJK	7	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		MADEP VPH	GAW	5	PASI-C
		EPA 6010	JMW	2	PASI-A
		EPA 8270	RES	74	PASI-C
		EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	LLW	1	PASI-C
2190355007	B-07-06 10'	EPA 8015 Modified	NU1	2	PASI-C
		MADEP EPH	EJK	7	PASI-C

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

SAMPLE ANALYTE COUNT

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8015 Modified	GAW	2	PASI-C
		MADEP VPH	GAW	5	PASI-C
		EPA 6010	JMW	2	PASI-A
		EPA 8270	RES	74	PASI-C
		EPA 8260	DLK	70	PASI-C
		ASTM D2974-87	LLW	1	PASI-C

(704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method:EPA 8015 ModifiedDescription:8015 GCS THC-DieselClient:NCDOT South EastDate:March 08, 2014

General Information:

4 samples were analyzed for EPA 8015 Modified. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

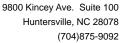
All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/26002

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92189902002


M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 1141207)
 - Diesel Components
- MSD (Lab ID: 1141208)
 - Diesel Components

R1: RPD value was outside control limits.

- MSD (Lab ID: 1141208)
 - Diesel Components
 - n-Pentacosane (S)

Additional Comments:

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: EPA 8015 - Alcohol-Glycol
Description: 8015M Glycols in water
Client: NCDOT South East
Date: March 08, 2014

General Information:

3 samples were analyzed for EPA 8015 - Alcohol-Glycol. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

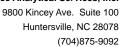
All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: **MADEP EPH**

Description: MADEP EPH NC Soil Client: NCDOT South East Date: March 08, 2014

General Information:

2 samples were analyzed for MADEP EPH. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with MADEP EPH with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: OEXT/26076

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- B-07-02 8' (Lab ID: 92190355006)
 - Nonatriacontane (S)

Method Blank:

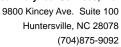
All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.


Additional Comments:

Analyte Comments:

QC Batch: OEXT/26076

N2: The lab does not hold TNI accreditation for this parameter.

- B-07-02 8' (Lab ID: 92190355006)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
- B-07-06 10' (Lab ID: 92190355007)
 - Aliphatic (C09-C18)
 - · Aliphatic (C19-C36)

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: MADEP EPH

Description: MADEP EPH NC Soil
Client: NCDOT South East
Date: March 08, 2014

Analyte Comments:

QC Batch: OEXT/26076

N2: The lab does not hold TNI accreditation for this parameter.

- B-07-06 10' (Lab ID: 92190355007)
 - Aromatic (C11-C22)
- BLANK (Lab ID: 1143989)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
- LCS (Lab ID: 1143990)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
- LCSD (Lab ID: 1143991)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)

Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: MADEP EPH

Description: MADEP EPH NC Water
Client: NCDOT South East
Date: March 08, 2014

General Information:

3 samples were analyzed for MADEP EPH. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with MADEP EPH with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

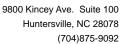
All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.


Additional Comments:

Analyte Comments:

QC Batch: OEXT/26031

N2: The lab does not hold TNI accreditation for this parameter.

- B-16/17-01 (Lab ID: 92190355003)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
- B-18-01 (Lab ID: 92190355004)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
- BLANK (Lab ID: 1142333)
 - Aliphatic (C09-C18)
 - · Aliphatic (C19-C36)

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: MADEP EPH

Description: MADEP EPH NC Water
Client: NCDOT South East
Date: March 08, 2014

Analyte Comments:

QC Batch: OEXT/26031

N2: The lab does not hold TNI accreditation for this parameter.

- BLANK (Lab ID: 1142333)
 - Aromatic (C11-C22)
- DUPLICATE-2 (Lab ID: 92190355005)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
- LCS (Lab ID: 1142334)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)
- LCSD (Lab ID: 1142335)
 - Aliphatic (C09-C18)
 - Aliphatic (C19-C36)
 - Aromatic (C11-C22)

(704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: EPA 8015 Modified

Description: Gasoline Range Organics

Client: NCDOT South East

Date: March 08, 2014

General Information:

4 samples were analyzed for EPA 8015 Modified. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 5035A/5030B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

(704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: MADEP VPH
Description: VPH NC Soil
Client: NCDOT South East
Date: March 08, 2014

General Information:

2 samples were analyzed for MADEP VPH. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with MADEP VPH with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

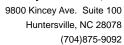
QC Batch: GCV/7860

S1: Surrogate recovery outside laboratory control limits (confirmed by re-analysis).

- B-07-02 8' (Lab ID: 92190355006)
 - 4-Bromofluorobenzene (FID) (S)
 - 4-Bromofluorobenzene (PID) (S)
- B-07-06 10' (Lab ID: 92190355007)
 - 4-Bromofluorobenzene (FID) (S)
 - 4-Bromofluorobenzene (PID) (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: MADEP VPH **Description:** VPH NC Soil Client: NCDOT South East Date: March 08, 2014

Analyte Comments:

QC Batch: GCV/7860

N2: The lab does not hold TNI accreditation for this parameter.

- B-07-02 8' (Lab ID: 92190355006)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
- B-07-06 10' (Lab ID: 92190355007)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
- BLANK (Lab ID: 1152103)
- - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
- Aromatic (C09-C10)
- LCS (Lab ID: 1152104)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
- LCSD (Lab ID: 1152105)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)

Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: MADEP VPH
Description: VPH NC Water
Client: NCDOT South East
Date: March 08, 2014

General Information:

3 samples were analyzed for MADEP VPH. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: GCV/7835

N2: The lab does not hold TNI accreditation for this parameter.

- B-16/17-01 (Lab ID: 92190355003)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
- B-18-01 (Lab ID: 92190355004)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
- BLANK (Lab ID: 1148658)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: MADEP VPH
Description: VPH NC Water
Client: NCDOT South East
Date: March 08, 2014

Analyte Comments:

QC Batch: GCV/7835

N2: The lab does not hold TNI accreditation for this parameter.

- DUPLICATE-2 (Lab ID: 92190355005)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
- LCS (Lab ID: 1148659)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)
- LCSD (Lab ID: 1148660)
 - Aliphatic (C05-C08)
 - Aliphatic (C09-C12)
 - Aromatic (C09-C10)

(704)875-9092

PROJECT NARRATIVE

FAYETTEVILLE PSA'S 33727.1.1 Project:

Pace Project No.: 92190355

Method: **EPA 6010** Description: 6010 MET ICP Client: NCDOT South East Date: March 08, 2014

General Information:

5 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: EPA 625 Description: 625 MSSV

Client: NCDOT South East Date: March 08, 2014

General Information:

3 samples were analyzed for EPA 625. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 625 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/26010

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92190065001

R1: RPD value was outside control limits.

- MSD (Lab ID: 1141553)
 - 2,4-Dimethylphenol
 - 2-Chlorophenol
 - N-Nitroso-di-n-propylamine
 - Phenol
 - bis(2-Chloroisopropyl) ether

Additional Comments:

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: EPA 8270

Description: 8270 MSSV Microwave
Client: NCDOT South East
Date: March 08, 2014

General Information:

2 samples were analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: OEXT/26015

S4: Surrogate recovery not evaluated against control limits due to sample dilution.

- B-07-02 8' (Lab ID: 92190355006)
 - Nitrobenzene-d5 (S)

Method Blank:

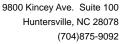
All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.


Additional Comments:

Analyte Comments:

QC Batch: OEXT/26015

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- B-07-02 8' (Lab ID: 92190355006)
 - Nitrobenzene-d5 (S)

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: SM 6200B
Description: 6200B MSV
Client: NCDOT South East
Date: March 08, 2014

General Information:

3 samples were analyzed for SM 6200B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/25905

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92190689006

R1: RPD value was outside control limits.

- MSD (Lab ID: 1145844)
 - 1,2,3-Trichloropropane
 - 1,2-Dibromo-3-chloropropane
 - Ethanol

Additional Comments:

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: EPA 8260

Description: 8260 MSV Low Level
Client: NCDOT South East
Date: March 08, 2014

General Information:

3 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: EPA 8260

Description: 8260/5035A Volatile Organics

Client: NCDOT South East Date: March 08, 2014

General Information:

2 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: MSV/25855

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- LCS (Lab ID: 1142404)
 - Bromomethane
 - Methylene Chloride

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: MSV/25855

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- B-07-06 10' (Lab ID: 92190355007)
 - Dichlorodifluoromethane

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Method: EPA 8260

Description: 8260/5035A Volatile Organics

Client: NCDOT South East Date: March 08, 2014

This data package has been reviewed for quality and completeness and is approved for release.

Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Percent Moisture

Percent Moisture

Date: 03/08/2014 12:30 PM

Sample: B-13-01 6FT	Lab ID: 92190	355001 Collected	d: 02/19/1	4 14:15	Received: 02	/20/14 09:30 N	//atrix: Solid	
Results reported on a "dry-weig	ht" basis							
Parameters	Results	Units Rep	ort Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Metho	d: EPA 8015 Modifie	ed Prepara	ation Me	thod: EPA 3546			
Diesel Components	178 mg/k	ag .	6.2	1	02/20/14 16:30	02/21/14 15:40	68334-30-5	
Surrogates n-Pentacosane (S)	56 %		41-119	1	02/20/14 16:30	02/21/14 15:40	629-99-2	
Gasoline Range Organics	Analytical Metho	d: EPA 8015 Modifie	ed Prepara	ation Me	thod: EPA 5035A	/5030B		
Gasoline Range Organics Surrogates	24.0 mg/k	g	5.3	1	02/21/14 09:04	02/21/14 16:26	8006-61-9	
4-Bromofluorobenzene (S)	124 %		70-167	1	02/21/14 09:04	02/21/14 16:26	460-00-4	

0.10 1

03/03/14 11:58

Analytical Method: ASTM D2974-87

19.5 %

Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Percent Moisture

Date: 03/08/2014 12:30 PM

Sample: DUPLICATE -1	Lab ID: 921903	55002	Collected: 02/19	/14 00:00	Received: 02	2/20/14 09:30	Matrix: Solid	
Results reported on a "dry-weig	ht" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical Method	EPA 801	5 Modified Prepa	ration Me	ethod: EPA 3546			
Diesel Components Surrogates	486 mg/kg	ı	12.0	2	02/20/14 16:30	02/21/14 17:43	8 68334-30-5	
n-Pentacosane (S)	69 %		41-119	2	02/20/14 16:30	02/21/14 17:43	3 629-99-2	
Gasoline Range Organics	Analytical Method	EPA 801	5 Modified Prepa	ration Me	ethod: EPA 5035	V5030B		
Gasoline Range Organics Surrogates	36.8 mg/kg	ı	4.8	1	02/21/14 09:04	02/21/14 17:35	5 8006-61-9	
4-Bromofluorobenzene (S)	147 %		70-167	1	02/21/14 09:04	02/21/14 17:35	5 460-00-4	
Percent Moisture	Analytical Method	: ASTM D	2974-87					

0.10

1

03/03/14 11:58

16.9 %

Project: FAYETTEVILLE PSA'S 33727.1.1

Date: 03/08/2014 12:30 PM

Sample: B-16/17-01	Lab ID: 9219	90355003	Collected: 02/19/1	14 13:00	Received: 02	2/20/14 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015M Glycols in water	Analytical Meth	od: EPA 80	015 - Alcohol-Glycol					
Ethylene glycol	ND mg	J/L	10.0	1		02/26/14 14:12	2 107-21-1	
MADEP EPH NC Water	Analytical Meth	od: MADE	P EPH Preparation N	Method:	MADEP EPH			
Aliphatic (C09-C18)	ND ug/	/L	100	1	02/21/14 10:25	02/24/14 19:13	3	N2
Aliphatic (C19-C36)	ND ug/	/L	100	1	02/21/14 10:25	02/24/14 19:13	3	N2
Aromatic (C11-C22) Surrogates	ND ug/	/L	100	1	02/21/14 10:25	02/24/14 19:13	3	N2
Nonatriacontane (S)	52 %		40-140	1	02/21/14 10:25	02/24/14 19:13	3 7194-86-7	
o-Terphenyl (S)	59 %		40-140	1		02/24/14 19:13		
2-Fluorobiphenyl (S)	43 %		40-140	1		02/24/14 19:13		
2-Bromonaphthalene (S)	62 %		40-140	1		02/24/14 19:13		
VPH NC Water	Analytical Meth	od: MADE	P VPH					
Aliphatic (C05-C08)	ND ug/	/L	50.0	1		03/02/14 01:35	5	N2
Aliphatic (C09-C12)	ND ug/	/L	50.0	1		03/02/14 01:35	5	N2
Aromatic (C09-C10) Surrogates	ND ug/	/L	50.0	1		03/02/14 01:35	5	N2
4-Bromofluorobenzene (FID) (S)	90 %		70-130	1		03/02/14 01:35	5 460-00-4	
4-Bromofluorobenzene (PID) (S)	84 %		70-130	1		03/02/14 01:35		
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EPA	A 3010			
Chromium	5.8 ug/	/L	5.0	1	02/21/14 10:00	02/21/14 22:26	7440-47-3	
Lead	ND ug/	/L	5.0	1	02/21/14 10:00	02/21/14 22:26	7439-92-1	
625 MSSV	Analytical Meth	od: EPA 62	25 Preparation Metho	od: EPA	625			
Acenaphthene	ND ug/	/L	5.0	1	02/20/14 13:00	02/28/14 03:24	83-32-9	
Acenaphthylene	ND ug/		5.0	1	02/20/14 13:00	02/28/14 03:24	208-96-8	
Anthracene	ND ug/		5.0	1		02/28/14 03:24		
Benzo(a)anthracene	ND ug/		5.0	1		02/28/14 03:24		
Benzo(a)pyrene	ND ug/		5.0	1		02/28/14 03:24		
Benzo(b)fluoranthene	ND ug/		5.0	1		02/28/14 03:24		
Benzo(g,h,i)perylene	ND ug/		5.0	1		02/28/14 03:24		
Benzo(k)fluoranthene	ND ug/		5.0	1		02/28/14 03:24		
4-Bromophenylphenyl ether	ND ug/		5.0	1		02/28/14 03:24		
Butylbenzylphthalate	ND ug/		5.0	1		02/28/14 03:24		
4-Chloro-3-methylphenol	ND ug/		5.0	1		02/28/14 03:24		
bis(2-Chloroethoxy)methane	ND ug/		10.0	1		02/28/14 03:24		
bis(2-Chloroethyl) ether	ND ug/		5.0	1		02/28/14 03:24		
bis(2-Chloroisopropyl) ether	ND ug/		5.0	1 1		02/28/14 03:24		
2-Chloronaphthalene	ND ug/		5.0 5.0	1		02/28/14 03:24 02/28/14 03:24		
2-Chlorophenol 4-Chlorophenylphenyl ether	ND ug/ ND ug/		5.0	1		02/28/14 03:24		
Chrysene	ND ug/		5.0	1		02/28/14 03:24		
Dibenz(a,h)anthracene	ND ug/		5.0	1		02/28/14 03:24		
3,3'-Dichlorobenzidine	ND ug/		25.0	1	02/20/14 13:00			

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-16/17-01	Lab ID: 92190355003	Collected: 02/19/14	13:00	Received: 02	/20/14 09:30 N	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
625 MSSV	Analytical Method: EPA 625	Preparation Method	d: EPA	625			
Diethylphthalate	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:24	84-66-2	
2,4-Dimethylphenol	ND ug/L	10.0	1	02/20/14 13:00	02/28/14 03:24	105-67-9	
Dimethylphthalate	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:24	131-11-3	
Di-n-butylphthalate	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:24	84-74-2	
1,6-Dinitro-2-methylphenol	ND ug/L	20.0	1	02/20/14 13:00	02/28/14 03:24	534-52-1	
2,4-Dinitrophenol	ND ug/L	50.0	1	02/20/14 13:00	02/28/14 03:24	51-28-5	
2,4-Dinitrotoluene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:24	121-14-2	
2,6-Dinitrotoluene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:24	606-20-2	
Di-n-octylphthalate	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:24	117-84-0	
ois(2-Ethylhexyl)phthalate	ND ug/L	5.0	1	02/20/14 13:00			
luoranthene	ND ug/L	5.0	1	02/20/14 13:00			
luorene	ND ug/L	5.0	1	02/20/14 13:00			
lexachloro-1,3-butadiene	ND ug/L	5.0	1	02/20/14 13:00			
lexachlorobenzene	ND ug/L	5.0	1	02/20/14 13:00			
lexachlorocyclopentadiene	ND ug/L	10.0	1	02/20/14 13:00			
lexachloroethane	ND ug/L	5.0	1	02/20/14 13:00			
ndeno(1,2,3-cd)pyrene	ND ug/L	5.0	1	02/20/14 13:00			
sophorone	ND ug/L	10.0	1	02/20/14 13:00			
laphthalene	ND ug/L	5.0	1	02/20/14 13:00			
litrobenzene	ND ug/L	5.0	1	02/20/14 13:00			
-Nitrophenol	ND ug/L	5.0	1	02/20/14 13:00			
•	<u> </u>	50.0	1	02/20/14 13:00			
-Nitrophenol	ND ug/L						
I-Nitrosodimethylamine	ND ug/L	5.0	1	02/20/14 13:00			
I-Nitroso-di-n-propylamine	ND ug/L	5.0	1	02/20/14 13:00			
I-Nitrosodiphenylamine	ND ug/L	10.0	1	02/20/14 13:00			
Pentachlorophenol	ND ug/L	10.0	1	02/20/14 13:00			
Phenanthrene	ND ug/L	5.0	1	02/20/14 13:00			
Phenol	ND ug/L	5.0	1	02/20/14 13:00			
Pyrene	ND ug/L	5.0	1	02/20/14 13:00			
,2,4-Trichlorobenzene	ND ug/L	5.0	1	02/20/14 13:00			
2,4,6-Trichlorophenol	ND ug/L	10.0	1	02/20/14 13:00	02/28/14 03:24	88-06-2	
Surrogates	20.0/	40.400	4	00/00/44 40:00	00/00/44 00:04	4405 00 0	
litrobenzene-d5 (S)	39 %	10-120	1	02/20/14 13:00			
-Fluorobiphenyl (S)	37 %	15-120	1	02/20/14 13:00			
erphenyl-d14 (S)	69 %	11-131	1	02/20/14 13:00			
Phenol-d6 (S)	19 %	10-120	1	02/20/14 13:00			
-Fluorophenol (S)	26 %	10-120	1	02/20/14 13:00			
,4,6-Tribromophenol (S)	59 %	10-137	1	02/20/14 13:00	02/28/14 03:24	118-79-6	
200B MSV	Analytical Method: SM 6200)B					
Benzene	ND ug/L	0.50	1		02/26/14 21:32	71-43-2	
Bromobenzene	ND ug/L	0.50	1		02/26/14 21:32	108-86-1	
Bromochloromethane	ND ug/L	0.50	1		02/26/14 21:32	74-97-5	
Bromodichloromethane	ND ug/L	0.50	1		02/26/14 21:32	75-27-4	
Bromoform	ND ug/L	0.50	1		02/26/14 21:32	75-25-2	
Bromomethane	ND ug/L	5.0	1		02/26/14 21:32	74-83-9	
n-Butylbenzene	ND ug/L	0.50	1		02/26/14 21:32		

ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-16/17-01	Lab ID: 921903550	03 Collected: 02/19/	14 13:00	Received:	02/20/14 09:30	Matrix: Water	
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6200B MSV	Analytical Method: SM	1 6200B					
sec-Butylbenzene	ND ug/L	0.50	1		02/26/14 21:32	2 135-98-8	
tert-Butylbenzene	ND ug/L	0.50	1		02/26/14 21:32	2 98-06-6	
Carbon tetrachloride	ND ug/L	0.50	1		02/26/14 21:32	2 56-23-5	
Chlorobenzene	ND ug/L	0.50	1		02/26/14 21:32	2 108-90-7	
Chloroethane	ND ug/L	1.0	1		02/26/14 21:32	2 75-00-3	
Chloroform	ND ug/L	0.50	1		02/26/14 21:32	2 67-66-3	
Chloromethane	ND ug/L	1.0	1		02/26/14 21:32	2 74-87-3	
2-Chlorotoluene	ND ug/L	0.50	1		02/26/14 21:32	2 95-49-8	
1-Chlorotoluene	ND ug/L	0.50	1		02/26/14 21:32	2 106-43-4	
,2-Dibromo-3-chloropropane	ND ug/L	1.0	1		02/26/14 21:32	2 96-12-8	
Dibromochloromethane	ND ug/L	0.50	1		02/26/14 21:32	2 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	0.50	1		02/26/14 21:32	2 106-93-4	
Dibromomethane	ND ug/L	0.50	1		02/26/14 21:32		
,2-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 21:32	2 95-50-1	
,3-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 21:32		
,4-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 21:32		
Dichlorodifluoromethane	ND ug/L	0.50	1		02/26/14 21:32		
,1-Dichloroethane	ND ug/L	0.50	1		02/26/14 21:32		
,2-Dichloroethane	ND ug/L	0.50	1		02/26/14 21:32		
,1-Dichloroethene	ND ug/L	0.50	1		02/26/14 21:32		
sis-1,2-Dichloroethene	ND ug/L	0.50	1		02/26/14 21:32		
rans-1,2-Dichloroethene	ND ug/L	0.50	1		02/26/14 21:32		
,2-Dichloropropane	ND ug/L	0.50	1		02/26/14 21:32		
,3-Dichloropropane	ND ug/L	0.50	1		02/26/14 21:32		
2,2-Dichloropropane	ND ug/L	0.50	1		02/26/14 21:32		
,1-Dichloropropene	ND ug/L	0.50	1		02/26/14 21:32		
cis-1,3-Dichloropropene	ND ug/L	0.50	1		02/26/14 21:32		
	_	0.50	1		02/26/14 21:32		
rans-1,3-Dichloropropene Diisopropyl ether	ND ug/L	0.50	1		02/26/14 21:32		
	ND ug/L		1				
Ethanol	ND ug/L	200			02/26/14 21:32		
Ethylbenzene	ND ug/L	0.50	1 1		02/26/14 21:32		
Hexachloro-1,3-butadiene	ND ug/L	2.0			02/26/14 21:32		
sopropylbenzene (Cumene)	ND ug/L	0.50	1		02/26/14 21:32		
Methylene Chloride	ND ug/L	2.0	1		02/26/14 21:32		
Methyl-tert-butyl ether	0.87 ug/L	0.50	1		02/26/14 21:32		
Naphthalene	ND ug/L	2.0	1		02/26/14 21:32		
n-Propylbenzene	ND ug/L	0.50	1		02/26/14 21:32		
Styrene	ND ug/L	0.50	1		02/26/14 21:32		
,1,1,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 21:32		
,1,2,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 21:32		
etrachloroethene	ND ug/L	0.50	1		02/26/14 21:32	-	
oluene	ND ug/L	0.50	1		02/26/14 21:32		
,2,3-Trichlorobenzene	ND ug/L	2.0	1		02/26/14 21:32		
,2,4-Trichlorobenzene	ND ug/L	2.0	1		02/26/14 21:32		
,1,1-Trichloroethane	ND ug/L	0.50	1		02/26/14 21:32		
1,1,2-Trichloroethane	ND ug/L	0.50	1		02/26/14 21:32		
Trichloroethene	0.57 ug/L	0.50	1		02/26/14 21:32	2 79-01-6	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-16/17-01	Lab ID: 92190355003	Collected: 02/19/14	13:00	Received:	02/20/14 09:30	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6200B MSV	Analytical Method: SM 620	00B					
Trichlorofluoromethane	ND ug/L	1.0	1		02/26/14 21:32	2 75-69-4	
1,2,3-Trichloropropane	ND ug/L	0.50	1		02/26/14 21:32	2 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	0.50	1		02/26/14 21:32	2 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	0.50	1		02/26/14 21:32	2 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		02/26/14 21:32	2 75-01-4	
m&p-Xylene	ND ug/L	1.0	1		02/26/14 21:32	2 179601-23-1	
o-Xylene	ND ug/L	0.50	1		02/26/14 21:32	2 95-47-6	
Surrogates							
1,2-Dichloroethane-d4 (S)	102 %	70-130	1		02/26/14 21:32	2 17060-07-0	
4-Bromofluorobenzene (S)	95 %	70-130	1		02/26/14 21:32	2 460-00-4	
Toluene-d8 (S)	101 %	70-130	1		02/26/14 21:32	2 2037-26-5	
3260 MSV Low Level	Analytical Method: EPA 82	60					
Acetone	ND ug/L	25.0	1		02/22/14 02:55	5 67-64-1	
Benzene	ND ug/L	1.0	1		02/22/14 02:55	5 71-43-2	
Bromobenzene	ND ug/L	1.0	1		02/22/14 02:55	5 108-86-1	
3romochloromethane	ND ug/L	1.0	1		02/22/14 02:55	5 74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		02/22/14 02:55	5 75-27-4	
Bromoform	ND ug/L	1.0	1		02/22/14 02:55	5 75-25-2	
Bromomethane	ND ug/L	2.0	1		02/22/14 02:55	5 74-83-9	
2-Butanone (MEK)	ND ug/L	5.0	1		02/22/14 02:55	5 78-93-3	
Carbon tetrachloride	ND ug/L	1.0	1		02/22/14 02:55	5 56-23-5	
Chlorobenzene	ND ug/L	1.0	1		02/22/14 02:55	5 108-90-7	
Chloroethane	ND ug/L	1.0	1		02/22/14 02:55	5 75-00-3	
Chloroform	ND ug/L	1.0	1		02/22/14 02:55	5 67-66-3	
Chloromethane	ND ug/L	1.0	1		02/22/14 02:55	5 74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		02/22/14 02:55	5 95-49-8	
1-Chlorotoluene	ND ug/L	1.0	1		02/22/14 02:55		
1,2-Dibromo-3-chloropropane	ND ug/L	5.0	1		02/22/14 02:55		
Dibromochloromethane	ND ug/L	1.0	1		02/22/14 02:55		
I,2-Dibromoethane (EDB)	ND ug/L	1.0	1		02/22/14 02:55	_	
Dibromomethane	ND ug/L	1.0	1		02/22/14 02:55		
I,2-Dichlorobenzene	ND ug/L	1.0	1		02/22/14 02:55		
,3-Dichlorobenzene	ND ug/L	1.0	1		02/22/14 02:55		
,4-Dichlorobenzene	ND ug/L	1.0	1		02/22/14 02:55		
Dichlorodifluoromethane	ND ug/L	1.0	1		02/22/14 02:55		
1,1-Dichloroethane	ND ug/L	1.0	1		02/22/14 02:55		
	_		1				
,2-Dichloroethane	ND ug/L	1.0	1		02/22/14 02:55 02/22/14 02:55		
,1-Dichloroethene	ND ug/L	1.0	1				
ris-1,2-Dichloroethene	ND ug/L	1.0			02/22/14 02:55		
rans-1,2-Dichloroethene	ND ug/L	1.0	1		02/22/14 02:55		
,2-Dichloropropane	ND ug/L	1.0	1		02/22/14 02:55		
,3-Dichloropropane	ND ug/L	1.0	1		02/22/14 02:55		
2,2-Dichloropropane	ND ug/L	1.0	1		02/22/14 02:55		
,1-Dichloropropene	ND ug/L	1.0	1		02/22/14 02:55		
sis-1,3-Dichloropropene	ND ug/L	1.0	1		02/22/14 02:55		
rans-1,3-Dichloropropene	ND ug/L	1.0	1		02/22/14 02:55	5 10061-02-6	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-16/17-01	Lab ID: 92190355003	Collected: 02/19/1	4 13:00	Received: 02/20/14 09:30	Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
8260 MSV Low Level	Analytical Method: EPA 83	260			
Diisopropyl ether	ND ug/L	1.0	1	02/22/14 02:5	5 108-20-3
Ethylbenzene	ND ug/L	1.0	1	02/22/14 02:5	5 100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	02/22/14 02:5	5 87-68-3
2-Hexanone	ND ug/L	5.0	1	02/22/14 02:5	5 591-78-6
p-Isopropyltoluene	ND ug/L	1.0	1	02/22/14 02:5	5 99-87-6
Methylene Chloride	ND ug/L	2.0	1	02/22/14 02:5	5 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1	02/22/14 02:5	5 108-10-1
Methyl-tert-butyl ether	ND ug/L	1.0	1	02/22/14 02:5	5 1634-04-4
Naphthalene	ND ug/L	1.0	1	02/22/14 02:5	5 91-20-3
Styrene	ND ug/L	1.0	1	02/22/14 02:5	5 100-42-5
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	02/22/14 02:5	5 630-20-6
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	02/22/14 02:5	5 79-34-5
Tetrachloroethene	ND ug/L	1.0	1	02/22/14 02:5	5 127-18-4
Toluene	ND ug/L	1.0	1	02/22/14 02:5	5 108-88-3
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	02/22/14 02:5	5 87-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	02/22/14 02:5	5 120-82-1
1,1,1-Trichloroethane	ND ug/L	1.0	1	02/22/14 02:5	5 71-55-6
1,1,2-Trichloroethane	ND ug/L	1.0	1	02/22/14 02:5	5 79-00-5
Trichloroethene	ND ug/L	1.0	1	02/22/14 02:5	5 79-01-6
Trichlorofluoromethane	ND ug/L	1.0	1	02/22/14 02:5	5 75-69-4
1,2,3-Trichloropropane	ND ug/L	1.0	1	02/22/14 02:5	5 96-18-4
Vinyl acetate	ND ug/L	2.0	1	02/22/14 02:5	5 108-05-4
Vinyl chloride	ND ug/L	1.0	1	02/22/14 02:5	5 75-01-4
Xylene (Total)	ND ug/L	2.0	1	02/22/14 02:5	5 1330-20-7
m&p-Xylene	ND ug/L	2.0	1	02/22/14 02:5	5 179601-23-1
o-Xylene	ND ug/L	1.0	1	02/22/14 02:5	5 95-47-6
Surrogates	-				
4-Bromofluorobenzene (S)	98 %	70-130	1	02/22/14 02:5	5 460-00-4
1,2-Dichloroethane-d4 (S)	96 %	70-130	1	02/22/14 02:5	5 17060-07-0
Toluene-d8 (S)	97 %	70-130	1	02/22/14 02:5	5 2037-26-5

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-18-01	Lab ID: 9219035500	4 Collected: 02/19/	14 14:30	Received: 02	2/20/14 09:30	Matrix: Water	
Parameters	Results Unit	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3015M Glycols in water	Analytical Method: EPA	8015 - Alcohol-Glycol					
Ethylene glycol	ND mg/L	10.0	1		02/26/14 14:1	7 107-21-1	
MADEP EPH NC Water	Analytical Method: MAI	DEP EPH Preparation I	Method:	MADEP EPH			
Aliphatic (C09-C18)	ND ug/L	100	1	02/21/14 10:25	02/24/14 19:4	5	N2
Aliphatic (C19-C36)	ND ug/L	100	1	02/21/14 10:25	02/24/14 19:4	5	N2
Aromatic (C11-C22) Surrogates	ND ug/L	100	1	02/21/14 10:25	02/24/14 19:4	5	N2
Nonatriacontane (S)	67 %	40-140	1	02/21/14 10:25	02/24/14 19:4	7194-86-7	
o-Terphenyl (S)	50 %	40-140	1	02/21/14 10:25	02/24/14 19:4	5 84-15-1	
2-Fluorobiphenyl (S)	61 %	40-140	1	02/21/14 10:25	02/24/14 19:4	5 321-60-8	
2-Bromonaphthalene (S)	74 %	40-140	1	02/21/14 10:25	02/24/14 19:4	5 580-13-2	
VPH NC Water	Analytical Method: MAI	DEP VPH					
Aliphatic (C05-C08)	ND ug/L	50.0	1		03/02/14 01:58	3	N2
Aliphatic (C09-C12)	ND ug/L	50.0	1		03/02/14 01:58	3	N2
Aromatic (C09-C10) Surrogates	ND ug/L	50.0	1		03/02/14 01:58	3	N2
4-Bromofluorobenzene (FID) (S)	85 %	70-130	1		03/02/14 01:58	3 460-00-4	
1-Bromofluorobenzene (PID) (S)	82 %	70-130	1		03/02/14 01:58	3 460-00-4	
6010 MET ICP	Analytical Method: EPA	6010 Preparation Met	hod: EPA	3010			
Chromium	10.4 ug/L	5.0	1	02/21/14 10:00	02/21/14 22:29	7440-47-3	
_ead	ND ug/L	5.0	1	02/21/14 10:00	02/21/14 22:29	9 7439-92-1	
S25 MSSV	Analytical Method: EPA	625 Preparation Method	od: EPA	625			
Acenaphthene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:5	1 83-32-9	
Acenaphthylene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:5	1 208-96-8	
Anthracene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:5	1 120-12-7	
Benzo(a)anthracene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 03:5	1 56-55-3	
Benzo(a)pyrene	ND ug/L	5.0	1		02/28/14 03:5		
Benzo(b)fluoranthene	ND ug/L	5.0	1		02/28/14 03:5		
Benzo(g,h,i)perylene	ND ug/L	5.0	1		02/28/14 03:5		
Benzo(k)fluoranthene	ND ug/L	5.0	1		02/28/14 03:5		
4-Bromophenylphenyl ether	ND ug/L	5.0	1		02/28/14 03:5		
Butylbenzylphthalate	ND ug/L	5.0	1		02/28/14 03:5		
4-Chloro-3-methylphenol	ND ug/L	5.0	1		02/28/14 03:5		
ois(2-Chloroethoxy)methane	ND ug/L	10.0	1		02/28/14 03:5		
ois(2-Chloroethyl) ether	ND ug/L	5.0	1		02/28/14 03:5 02/28/14 03:5		
ois(2-Chloroisopropyl) ether	ND ug/L	5.0	1 1		02/28/14 03:5		
2-Chloronaphthalene 2-Chlorophenol	ND ug/L ND ug/L	5.0 5.0	1		02/28/14 03:5		
2-Chlorophenylphenyl ether	ND ug/L	5.0	1		02/28/14 03:5		
Chrysene	ND ug/L	5.0	1		02/28/14 03:5		
Dibenz(a,h)anthracene	ND ug/L	5.0	1		02/28/14 03:5		
3,3'-Dichlorobenzidine	ND ug/L	25.0	1		02/28/14 03:5		
2,0 -DIGHIGHODEHZIGHIE	ND ug/L	23.0	1	02/20/14 13.00	02/20/14 03.3	1 31-3 4- 1	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-18-01	Lab ID: 9219	0355004	Collected: (02/19/1	4 14:30	Received: 02	/20/14 09:30	Matrix: Water	
Parameters	Results	Units	Report I	Limit	DF	Prepared	Analyzed	CAS No.	Qua
625 MSSV	Analytical Meth	od: EPA 62	25 Preparation	n Metho	od: EPA	625			
Diethylphthalate	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	84-66-2	
2,4-Dimethylphenol	ND ug/	L		10.0	1	02/20/14 13:00	02/28/14 03:51	105-67-9	
Dimethylphthalate	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	131-11-3	
Di-n-butylphthalate	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	84-74-2	
4,6-Dinitro-2-methylphenol	ND ug/	L		20.0	1	02/20/14 13:00	02/28/14 03:51	534-52-1	
2,4-Dinitrophenol	ND ug/	L		50.0	1	02/20/14 13:00	02/28/14 03:51	51-28-5	
2,4-Dinitrotoluene	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	121-14-2	
2,6-Dinitrotoluene	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	606-20-2	
Di-n-octylphthalate	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	117-84-0	
bis(2-Ethylhexyl)phthalate	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	117-81-7	
Fluoranthene	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	206-44-0	
Fluorene	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	86-73-7	
Hexachloro-1,3-butadiene	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	87-68-3	
Hexachlorobenzene	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	118-74-1	
Hexachlorocyclopentadiene	ND ug/			10.0	1	02/20/14 13:00	02/28/14 03:51	77-47-4	
Hexachloroethane	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	67-72-1	
ndeno(1,2,3-cd)pyrene	ND ug/			5.0	1	02/20/14 13:00			
sophorone	ND ug/	L		10.0	1	02/20/14 13:00	02/28/14 03:51	78-59-1	
Naphthalene	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	91-20-3	
Nitrobenzene	ND ug/			5.0	1	02/20/14 13:00	02/28/14 03:51	98-95-3	
2-Nitrophenol	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	88-75-5	
4-Nitrophenol	ND ug/			50.0	1	02/20/14 13:00			
N-Nitrosodimethylamine	ND ug/	L		5.0	1	02/20/14 13:00	02/28/14 03:51	62-75-9	
N-Nitroso-di-n-propylamine	ND ug/			5.0	1	02/20/14 13:00	02/28/14 03:51	621-64-7	
N-Nitrosodiphenylamine	ND ug/			10.0	1	02/20/14 13:00			
Pentachlorophenol	ND ug/			10.0	1	02/20/14 13:00	02/28/14 03:51	87-86-5	
Phenanthrene	ND ug/			5.0	1	02/20/14 13:00			
Phenol	ND ug/			5.0	1	02/20/14 13:00	02/28/14 03:51	108-95-2	
Pyrene	ND ug/			5.0	1	02/20/14 13:00	02/28/14 03:51	129-00-0	
1,2,4-Trichlorobenzene	ND ug/			5.0	1	02/20/14 13:00			
2,4,6-Trichlorophenol	ND ug/			10.0	1	02/20/14 13:00			
Surrogates	J								
Nitrobenzene-d5 (S)	48 %		10	0-120	1	02/20/14 13:00	02/28/14 03:51	4165-60-0	
2-Fluorobiphenyl (S)	48 %		15	5-120	1	02/20/14 13:00	02/28/14 03:51	321-60-8	
Terphenyl-d14 (S)	68 %		11	1-131	1	02/20/14 13:00	02/28/14 03:51	1718-51-0	
Phenol-d6 (S)	31 %		10	0-120	1	02/20/14 13:00	02/28/14 03:51	13127-88-3	
2-Fluorophenol (S)	35 %		10	0-120	1	02/20/14 13:00	02/28/14 03:51	367-12-4	
2,4,6-Tribromophenol (S)	61 %		10	0-137	1	02/20/14 13:00	02/28/14 03:51	118-79-6	
Tentatively Identified Compounds									
Unknown	113 ug/				1	02/20/14 13:00	02/28/14 03:51		N
Unknown	168 ug/	L			1	02/20/14 13:00	02/28/14 03:51		N
6200B MSV	Analytical Meth	od: SM 62	00B						
Benzene	ND ug/	L		0.50	1		02/26/14 21:48	3 71-43-2	
Bromobenzene	ND ug/	L		0.50	1		02/26/14 21:48	108-86-1	
Bromochloromethane	ND ug/	L		0.50	1		02/26/14 21:48	3 74-97-5	
Bromodichloromethane	ND ug/			0.50	1		02/26/14 21:48		

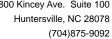
ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-18-01	Lab ID: 92190355	004 Collected: 02/19/	14 14:30	Received:	02/20/14 09:30	Matrix: Water	
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
5200B MSV	Analytical Method: S	M 6200B					
Bromoform	ND ug/L	0.50	1		02/26/14 21:48	3 75-25-2	
3romomethane	ND ug/L	5.0	1		02/26/14 21:48	3 74-83-9	
n-Butylbenzene	ND ug/L	0.50	1		02/26/14 21:48	3 104-51-8	
sec-Butylbenzene	ND ug/L	0.50	1		02/26/14 21:48	3 135-98-8	
ert-Butylbenzene	ND ug/L	0.50	1		02/26/14 21:48	3 98-06-6	
Carbon tetrachloride	ND ug/L	0.50	1		02/26/14 21:48	3 56-23-5	
Chlorobenzene	ND ug/L	0.50	1		02/26/14 21:48	3 108-90-7	
Chloroethane	ND ug/L	1.0	1		02/26/14 21:48	3 75-00-3	
Chloroform	ND ug/L	0.50	1		02/26/14 21:48	3 67-66-3	
Chloromethane	ND ug/L	1.0	1		02/26/14 21:48	3 74-87-3	
2-Chlorotoluene	ND ug/L	0.50	1		02/26/14 21:48	3 95-49-8	
I-Chlorotoluene	ND ug/L	0.50	1		02/26/14 21:48	3 106-43-4	
,2-Dibromo-3-chloropropane	ND ug/L	1.0	1		02/26/14 21:48	3 96-12-8	
Dibromochloromethane	ND ug/L	0.50	1		02/26/14 21:48	3 124-48-1	
,2-Dibromoethane (EDB)	ND ug/L	0.50	1		02/26/14 21:48	3 106-93-4	
Dibromomethane	ND ug/L	0.50	1		02/26/14 21:48	3 74-95-3	
,2-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 21:48	3 95-50-1	
,3-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 21:48	3 541-73-1	
,4-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 21:48		
Dichlorodifluoromethane	ND ug/L	0.50	1		02/26/14 21:48		
,1-Dichloroethane	ND ug/L	0.50	1		02/26/14 21:48		
,2-Dichloroethane	ND ug/L	0.50	1		02/26/14 21:48		
,1-Dichloroethene	ND ug/L	0.50	1		02/26/14 21:48		
is-1,2-Dichloroethene	8.7 ug/L	0.50	1		02/26/14 21:48		
rans-1,2-Dichloroethene	ND ug/L	0.50	1		02/26/14 21:48		
,2-Dichloropropane	ND ug/L	0.50	1		02/26/14 21:48		
,3-Dichloropropane	ND ug/L	0.50	1		02/26/14 21:48		
2,2-Dichloropropane	ND ug/L	0.50	1		02/26/14 21:48		
,1-Dichloropropene	ND ug/L	0.50	1		02/26/14 21:48		
is-1,3-Dichloropropene	ND ug/L	0.50	1		02/26/14 21:48		
rans-1,3-Dichloropropene	ND ug/L	0.50	1		02/26/14 21:48		
Diisopropyl ether	ND ug/L	0.50	1		02/26/14 21:48		
Ethanol	ND ug/L	200	1		02/26/14 21:48		
thylbenzene	ND ug/L	0.50	1		02/26/14 21:48		
lexachloro-1,3-butadiene	ND ug/L	2.0	1		02/26/14 21:48		
sopropylbenzene (Cumene)	ND ug/L	0.50	1		02/26/14 21:48		
Methylene Chloride	ND ug/L	2.0	1		02/26/14 21:48		
Methyl-tert-butyl ether	1.3 ug/L	0.50	1		02/26/14 21:48		
laphthalene	ND ug/L	2.0	1		02/26/14 21:48		
-Propylbenzene	ND ug/L	0.50	1		02/26/14 21:48		
tyrene	ND ug/L	0.50	1		02/26/14 21:48		
,1,1,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 21:48		
,1,2,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 21:48		
etrachloroethene	28.9 ug/L	0.50	1		02/26/14 21:48		
oluene	•	0.50	1		02/26/14 21:46		
	ND ug/L						
,2,3-Trichlorobenzene ,2,4-Trichlorobenzene	ND ug/L ND ug/L	2.0 2.0	1 1		02/26/14 21:48 02/26/14 21:48		



Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-18-01	Lab ID: 92190355004	Collected: 02/19/14	4 14:30	Received:	02/20/14 09:30	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6200B MSV	Analytical Method: SM 620	00B					
1,1,1-Trichloroethane	ND ug/L	0.50	1		02/26/14 21:48	3 71-55-6	
1,1,2-Trichloroethane	ND ug/L	0.50	1		02/26/14 21:48	3 79-00-5	
Trichloroethene	8.8 ug/L	0.50	1		02/26/14 21:48	3 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		02/26/14 21:48	3 75-69-4	
1,2,3-Trichloropropane	ND ug/L	0.50	1		02/26/14 21:48	3 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	0.50	1		02/26/14 21:48	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	0.50	1		02/26/14 21:48	3 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		02/26/14 21:48	3 75-01-4	
m&p-Xylene	ND ug/L	1.0	1		02/26/14 21:48	3 179601-23-1	
o-Xylene	ND ug/L	0.50	1		02/26/14 21:48		
Surrogates	3						
1,2-Dichloroethane-d4 (S)	103 %	70-130	1		02/26/14 21:48	3 17060-07-0	
4-Bromofluorobenzene (S)	96 %	70-130	1		02/26/14 21:48	3 460-00-4	
Toluene-d8 (S)	101 %	70-130	1		02/26/14 21:48	3 2037-26-5	
8260 MSV Low Level	Analytical Method: EPA 82	260					
Acetone	ND ug/L	25.0	1		02/22/14 03:10	67-64-1	
Benzene	ND ug/L	1.0	1		02/22/14 03:10	71-43-2	
Bromobenzene	ND ug/L	1.0	1		02/22/14 03:10	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		02/22/14 03:10	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		02/22/14 03:10	75-27-4	
Bromoform	ND ug/L	1.0	1		02/22/14 03:10		
Bromomethane	ND ug/L	2.0	1		02/22/14 03:10		
2-Butanone (MEK)	ND ug/L	5.0	1		02/22/14 03:10		
Carbon tetrachloride	ND ug/L	1.0	1		02/22/14 03:10		
Chlorobenzene	ND ug/L	1.0	1		02/22/14 03:10		
Chloroethane	ND ug/L	1.0	1		02/22/14 03:10		
Chloroform	ND ug/L	1.0	1		02/22/14 03:10		
Chloromethane	ND ug/L	1.0	1		02/22/14 03:10		
2-Chlorotoluene	ND ug/L	1.0	1		02/22/14 03:10		
4-Chlorotoluene	ND ug/L	1.0	1		02/22/14 03:10		
1,2-Dibromo-3-chloropropane	ND ug/L	5.0	1		02/22/14 03:10		
Dibromochloromethane	ND ug/L	1.0	1		02/22/14 03:10		
1,2-Dibromoethane (EDB)	•		1		02/22/14 03:10		
, , ,	ND ug/L ND ug/L	1.0 1.0	1		02/22/14 03:10		
Dibromomethane	_						
1,2-Dichlorobenzene	ND ug/L	1.0	1		02/22/14 03:10		
1,3-Dichlorobenzene	ND ug/L	1.0	1		02/22/14 03:10		
1,4-Dichlorobenzene	ND ug/L	1.0	1		02/22/14 03:10		
Dichlorodifluoromethane	ND ug/L	1.0	1		02/22/14 03:10		
1,1-Dichloroethane	ND ug/L	1.0	1		02/22/14 03:10		
1,2-Dichloroethane	ND ug/L	1.0	1		02/22/14 03:10		
1,1-Dichloroethene	ND ug/L	1.0	1		02/22/14 03:10		
cis-1,2-Dichloroethene	7.4 ug/L	1.0	1		02/22/14 03:10		
trans-1,2-Dichloroethene	ND ug/L	1.0	1		02/22/14 03:10		
1,2-Dichloropropane	ND ug/L	1.0	1		02/22/14 03:10	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		02/22/14 03:10	142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1		02/22/14 03:10	594-20-7	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-18-01	Lab ID: 92190355004	Collected: 02/19/1	4 14:30	Received: 02/20/14 09:30 Matrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. Qua
8260 MSV Low Level	Analytical Method: EPA 82	260		
1,1-Dichloropropene	ND ug/L	1.0	1	02/22/14 03:10 563-58-6
cis-1,3-Dichloropropene	ND ug/L	1.0	1	02/22/14 03:10 10061-01-5
trans-1,3-Dichloropropene	ND ug/L	1.0	1	02/22/14 03:10 10061-02-6
Diisopropyl ether	ND ug/L	1.0	1	02/22/14 03:10 108-20-3
Ethylbenzene	ND ug/L	1.0	1	02/22/14 03:10 100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	02/22/14 03:10 87-68-3
2-Hexanone	ND ug/L	5.0	1	02/22/14 03:10 591-78-6
p-Isopropyltoluene	ND ug/L	1.0	1	02/22/14 03:10 99-87-6
Methylene Chloride	ND ug/L	2.0	1	02/22/14 03:10 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1	02/22/14 03:10 108-10-1
Methyl-tert-butyl ether	1.1 ug/L	1.0	1	02/22/14 03:10 1634-04-4
Naphthalene	ND ug/L	1.0	1	02/22/14 03:10 91-20-3
Styrene	ND ug/L	1.0	1	02/22/14 03:10 100-42-5
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	02/22/14 03:10 630-20-6
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	02/22/14 03:10 79-34-5
Tetrachloroethene	30.1 ug/L	1.0	1	02/22/14 03:10 127-18-4
Toluene	ND ug/L	1.0	1	02/22/14 03:10 108-88-3
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	02/22/14 03:10 87-61-6
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	02/22/14 03:10 120-82-1
1,1,1-Trichloroethane	ND ug/L	1.0	1	02/22/14 03:10 71-55-6
1,1,2-Trichloroethane	ND ug/L	1.0	1	02/22/14 03:10 79-00-5
Trichloroethene	9.0 ug/L	1.0	1	02/22/14 03:10 79-01-6
Trichlorofluoromethane	ND ug/L	1.0	1	02/22/14 03:10 75-69-4
1,2,3-Trichloropropane	ND ug/L	1.0	1	02/22/14 03:10 96-18-4
Vinyl acetate	ND ug/L	2.0	1	02/22/14 03:10 108-05-4
Vinyl chloride	ND ug/L	1.0	1	02/22/14 03:10 75-01-4
Xylene (Total)	ND ug/L	2.0	1	02/22/14 03:10 1330-20-7
m&p-Xylene	ND ug/L	2.0	1	02/22/14 03:10 179601-23-1
o-Xylene	ND ug/L	1.0	1	02/22/14 03:10 95-47-6
Surrogates	· · 		•	
4-Bromofluorobenzene (S)	97 %	70-130	1	02/22/14 03:10 460-00-4
1,2-Dichloroethane-d4 (S)	95 %	70-130	1	02/22/14 03:10 17060-07-0
Toluene-d8 (S)	97 %	70-130	1	02/22/14 03:10 2037-26-5

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: DUPLICATE-2	Lab ID: 9219	0355005	Collected: 02/19/1	14 00:00	Received: 02	2/20/14 09:30	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015M Glycols in water	Analytical Metho	od: EPA 80	015 - Alcohol-Glycol					
Ethylene glycol	ND mg	/L	10.0	1		02/26/14 14:22	2 107-21-1	
MADEP EPH NC Water	Analytical Meth	od: MADE	P EPH Preparation N	Method: I	MADEP EPH			
Aliphatic (C09-C18)	ND ug/	L	100	1	02/21/14 10:25	02/24/14 20:1	7	N2
Aliphatic (C19-C36)	ND ug/	L	100	1	02/21/14 10:25	02/24/14 20:1	7	N2
Aromatic (C11-C22) Surrogates	ND ug/	L	100	1	02/21/14 10:25	02/24/14 20:1	7	N2
Nonatriacontane (S)	58 %		40-140	1	02/21/14 10:25	02/24/14 20:1	7 7194-86-7	
o-Terphenyl (S)	73 %		40-140	1	02/21/14 10:25	02/24/14 20:1	7 84-15-1	
2-Fluorobiphenyl (S)	83 %		40-140	1	02/21/14 10:25	02/24/14 20:1	7 321-60-8	
2-Bromonaphthalene (S)	104 %		40-140	1	02/21/14 10:25	02/24/14 20:1	7 580-13-2	
VPH NC Water	Analytical Methor	od: MADE	P VPH					
Aliphatic (C05-C08)	ND ug/	L	50.0	1		03/02/14 02:2	1	N2
Aliphatic (C09-C12)	ND ug/		50.0	1		03/02/14 02:2		N2
Aromatic (C09-C10) Surrogates	ND ug/		50.0	1		03/02/14 02:2	1	N2
4-Bromofluorobenzene (FID) (S)	86 %		70-130	1		03/02/14 02:2	1 460-00-4	
4-Bromofluorobenzene (PID) (S)	83 %		70-130	1		03/02/14 02:2		
6010 MET ICP	Analytical Methor	od: EPA 60	010 Preparation Met	hod: EPA	A 3010			
Chromium	ND ug/	L	5.0	1	02/21/14 10:00	02/21/14 22:3	3 7440-47-3	
Lead	ND ug/	L	5.0	1	02/21/14 10:00	02/21/14 22:33	3 7439-92-1	
S25 MSSV	Analytical Methor	od: EPA 62	25 Preparation Metho	od: EPA	625			
Acenaphthene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:17	7 83-32-9	
Acenaphthylene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:1	7 208-96-8	
Anthracene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:17	7 120-12-7	
Benzo(a)anthracene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:17	7 56-55-3	
Benzo(a)pyrene	ND ug/	L	5.0	1	02/20/14 13:00	02/28/14 04:17	7 50-32-8	
Benzo(b)fluoranthene	ND ug/		5.0	1		02/28/14 04:1		
Benzo(g,h,i)perylene	ND ug/		5.0	1		02/28/14 04:1		
Benzo(k)fluoranthene	ND ug/		5.0	1		02/28/14 04:1		
4-Bromophenylphenyl ether	ND ug/		5.0	1		02/28/14 04:1		
Butylbenzylphthalate	ND ug/		5.0	1		02/28/14 04:1		
4-Chloro-3-methylphenol	ND ug/		5.0	1		02/28/14 04:1		
ois(2-Chloroethoxy)methane	ND ug/		10.0	1		02/28/14 04:11		
ois(2-Chloroethyl) ether	ND ug/		5.0	1		02/28/14 04:11		
ois(2-Chloroisopropyl) ether	ND ug/		5.0	1		02/28/14 04:1		
2-Chloronaphthalene	ND ug/		5.0	1		02/28/14 04:17		
2-Chlorophenol	ND ug/		5.0	1		02/28/14 04:17		
4-Chlorophenylphenyl ether Chrysene	ND ug/		5.0	1		02/28/14 04:1		
JUVSPIIP	ND ug/	L	5.0	1		02/28/14 04:1		
-	NID/	ı	FΛ	4	02/20/44 42:00	00/00/44 04-4	7 52 70 2	
Dibenz(a,h)anthracene 3,3'-Dichlorobenzidine	ND ug/ ND ug/		5.0 25.0	1 1	02/20/14 13:00	02/28/14 04:11 02/28/14 04:11		

Project: FAYETTEVILLE PSA'S 33727.1.1

Date: 03/08/2014 12:30 PM

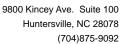
Sample: DUPLICATE-2	Lab ID: 92190355005	Collected: 02/19/14	00:00	Received: 02	/20/14 09:30 I	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
S25 MSSV	Analytical Method: EPA 625	Preparation Method	d: EPA (625			
Diethylphthalate	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	84-66-2	
2,4-Dimethylphenol	ND ug/L	10.0	1	02/20/14 13:00	02/28/14 04:17	105-67-9	
Dimethylphthalate	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	' 131-11-3	
Di-n-butylphthalate	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	84-74-2	
4,6-Dinitro-2-methylphenol	ND ug/L	20.0	1	02/20/14 13:00	02/28/14 04:17	534-52-1	
2,4-Dinitrophenol	ND ug/L	50.0	1	02/20/14 13:00	02/28/14 04:17	51-28-5	
2,4-Dinitrotoluene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	' 121-14-2	
2,6-Dinitrotoluene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	606-20-2	
Di-n-octylphthalate	ND ug/L	5.0	1	02/20/14 13:00			
pis(2-Ethylhexyl)phthalate	ND ug/L	5.0	1	02/20/14 13:00			
Fluoranthene	ND ug/L	5.0	1	02/20/14 13:00			
Fluorene	ND ug/L	5.0	1	02/20/14 13:00			
Hexachloro-1,3-butadiene	ND ug/L	5.0	1	02/20/14 13:00			
•							
Hexachlorobenzene	ND ug/L	5.0	1	02/20/14 13:00			
Hexachlorocyclopentadiene	ND ug/L	10.0	1	02/20/14 13:00			
Hexachloroethane	ND ug/L	5.0	1	02/20/14 13:00			
ndeno(1,2,3-cd)pyrene	ND ug/L	5.0	1	02/20/14 13:00			
sophorone	ND ug/L	10.0	1	02/20/14 13:00			
Naphthalene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	' 91-20-3	
Nitrobenzene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	' 98-95-3	
2-Nitrophenol	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	88-75-5	
1-Nitrophenol	ND ug/L	50.0	1	02/20/14 13:00	02/28/14 04:17	100-02-7	
N-Nitrosodimethylamine	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	62-75-9	
N-Nitroso-di-n-propylamine	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	621-64-7	
N-Nitrosodiphenylamine	ND ug/L	10.0	1	02/20/14 13:00	02/28/14 04:17	86-30-6	
Pentachlorophenol	ND ug/L	10.0	1	02/20/14 13:00	02/28/14 04:17	87-86-5	
Phenanthrene	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	85-01-8	
Phenol	ND ug/L	5.0	1	02/20/14 13:00	02/28/14 04:17	108-95-2	
Pyrene	ND ug/L	5.0	1	02/20/14 13:00			
1,2,4-Trichlorobenzene	ND ug/L	5.0	1	02/20/14 13:00			
2,4,6-Trichlorophenol	ND ug/L	10.0	1	02/20/14 13:00			
Surrogates	14D dg/L	10.0	1	02/20/14 10:00	02/20/14 04.17	30-00-2	
Nitrobenzene-d5 (S)	42 %	10-120	1	02/20/14 13:00	02/28/14 04:17	4165-60-0	
2-Fluorobiphenyl (S)	44 %	15-120	1	02/20/14 13:00			
Ferphenyl-d14 (S)	79 %	11-131	1	02/20/14 13:00			
Phenol-d6 (S)	17 %	10-120		02/20/14 13:00			
* *	26 %	10-120	1	02/20/14 13:00			
2-Fluorophenol (S)			1				
2,4,6-Tribromophenol (S)	58 %	10-137	1	02/20/14 13:00	02/28/14 04:1/	118-79-6	
Tentatively Identified Compounds Tetrachloroethylene	5.1 ug/L		1	02/20/14 13:00	02/28/14 04:17	127-18-4	N
5200B MSV	Analytical Method: SM 6200)B				-	
Benzene	ND ug/L	0.50	1		02/26/14 22:05	. 71 - /12-2	
Bromobenzene	•		1 1				
	ND ug/L	0.50			02/26/14 22:05		
Bromochloromethane	ND ug/L	0.50	1		02/26/14 22:05		
Bromodichloromethane	ND ug/L	0.50	1		02/26/14 22:05	/5-2/-4	

ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM


Sample: DUPLICATE-2	Lab ID: 92190355	005 Collected: 02/19/1	14 00:00	Received:	02/20/14 09:30	Matrix: Water	
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6200B MSV	Analytical Method: S	M 6200B					
Bromomethane	ND ug/L	5.0	1		02/26/14 22:05	74-83-9	
n-Butylbenzene	ND ug/L	0.50	1		02/26/14 22:05	104-51-8	
sec-Butylbenzene	ND ug/L	0.50	1		02/26/14 22:05	135-98-8	
tert-Butylbenzene	ND ug/L	0.50	1		02/26/14 22:05	98-06-6	
Carbon tetrachloride	ND ug/L	0.50	1		02/26/14 22:05	5 56-23-5	
Chlorobenzene	ND ug/L	0.50	1		02/26/14 22:05	108-90-7	
Chloroethane	ND ug/L	1.0	1		02/26/14 22:05	75-00-3	
Chloroform	ND ug/L	0.50	1		02/26/14 22:05	67-66-3	
Chloromethane	ND ug/L	1.0	1		02/26/14 22:05	74-87-3	
2-Chlorotoluene	ND ug/L	0.50	1		02/26/14 22:05	95-49-8	
1-Chlorotoluene	ND ug/L	0.50	1		02/26/14 22:05	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	1.0	1		02/26/14 22:05	96-12-8	
Dibromochloromethane	ND ug/L	0.50	1		02/26/14 22:05	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	0.50	1		02/26/14 22:05	5 106-93-4	
Dibromomethane	ND ug/L	0.50	1		02/26/14 22:05	74-95-3	
,2-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 22:05	95-50-1	
,3-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 22:05	5 541-73-1	
,4-Dichlorobenzene	ND ug/L	0.50	1		02/26/14 22:05	106-46-7	
Dichlorodifluoromethane	ND ug/L	0.50	1		02/26/14 22:05		
.1-Dichloroethane	ND ug/L	0.50	1		02/26/14 22:05		
,2-Dichloroethane	ND ug/L	0.50	1		02/26/14 22:05		
,1-Dichloroethene	ND ug/L	0.50	1		02/26/14 22:05		
sis-1,2-Dichloroethene	8.9 ug/L	0.50	1		02/26/14 22:05		
rans-1,2-Dichloroethene	ND ug/L	0.50	1		02/26/14 22:05		
,2-Dichloropropane	ND ug/L	0.50	1		02/26/14 22:05		
I,3-Dichloropropane	ND ug/L	0.50	1		02/26/14 22:05		
2,2-Dichloropropane	ND ug/L	0.50	1		02/26/14 22:05		
I,1-Dichloropropene	ND ug/L	0.50	1		02/26/14 22:05		
sis-1,3-Dichloropropene	ND ug/L	0.50	1		02/26/14 22:05		
rans-1,3-Dichloropropene	ND ug/L	0.50	1		02/26/14 22:05		
Diisopropyl ether	ND ug/L	0.50	1		02/26/14 22:05		
Ethanol	ND ug/L	200	1		02/26/14 22:05		
Ethylbenzene	ND ug/L	0.50	1		02/26/14 22:05		
Hexachloro-1,3-butadiene	ND ug/L	2.0	1		02/26/14 22:05		
sopropylbenzene (Cumene)	ND ug/L	0.50	1		02/26/14 22:05		
Methylene Chloride	ND ug/L	2.0	1		02/26/14 22:05		
Methyl-tert-butyl ether	1.4 ug/L	0.50	1		02/26/14 22:05		
laphthalene	ND ug/L	2.0	1		02/26/14 22:05		
-Propylbenzene	ND ug/L	0.50	1		02/26/14 22:05		
Styrene	•	0.50	1		02/26/14 22:05		
,1,1,2-Tetrachloroethane	ND ug/L	0.50	1		02/26/14 22:05		
,1,2,2-Tetrachloroethane	ND ug/L		1		02/26/14 22:05		
• • •	ND ug/L	0.50					
etrachloroethene	28.1 ug/L	0.50	1		02/26/14 22:05		
oluene	ND ug/L	0.50	1		02/26/14 22:05		
,2,3-Trichlorobenzene	ND ug/L	2.0	1		02/26/14 22:05		
,2,4-Trichlorobenzene	ND ug/L	2.0	1		02/26/14 22:05		
,1,1-Trichloroethane	ND ug/L	0.50	1		02/26/14 22:05	/1-55-6	

Project: FAYETTEVILLE PSA'S 33727.1.1

Date: 03/08/2014 12:30 PM

Sample: DUPLICATE-2	Lab ID: 92190355005	Collected: 02/19/14	1 00:00	Received: 02/20/14 09:30 Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed CAS No. C	Qua
6200B MSV	Analytical Method: SM 620	0B			
1,1,2-Trichloroethane	ND ug/L	0.50	1	02/26/14 22:05 79-00-5	
Trichloroethene	8.6 ug/L	0.50	1	02/26/14 22:05 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	02/26/14 22:05 75-69-4	
1,2,3-Trichloropropane	ND ug/L	0.50	1	02/26/14 22:05 96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	0.50	1	02/26/14 22:05 95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	0.50	1	02/26/14 22:05 108-67-8	
/inyl chloride	ND ug/L	1.0	1	02/26/14 22:05 75-01-4	
n&p-Xylene	ND ug/L	1.0	1	02/26/14 22:05 179601-23-1	
o-Xylene	ND ug/L	0.50	1	02/26/14 22:05 95-47-6	
Surrogates	9				
1,2-Dichloroethane-d4 (S)	102 %	70-130	1	02/26/14 22:05 17060-07-0	
1-Bromofluorobenzene (S)	96 %	70-130	1	02/26/14 22:05 460-00-4	
Toluene-d8 (S)	101 %	70-130	1	02/26/14 22:05 2037-26-5	
3260 MSV Low Level	Analytical Method: EPA 826	60			
Acetone	ND ug/L	25.0	1	02/22/14 03:26 67-64-1	
Benzene	ND ug/L	1.0	1	02/22/14 03:26 71-43-2	
Bromobenzene	ND ug/L	1.0	1	02/22/14 03:26 108-86-1	
Bromochloromethane	ND ug/L	1.0	1	02/22/14 03:26 74-97-5	
Bromodichloromethane	ND ug/L	1.0	1	02/22/14 03:26 75-27-4	
Bromoform	ND ug/L	1.0	1	02/22/14 03:26 75-25-2	
Bromomethane	ND ug/L	2.0	1	02/22/14 03:26 74-83-9	
2-Butanone (MEK)	ND ug/L	5.0	1	02/22/14 03:26 78-93-3	
Carbon tetrachloride	ND ug/L	1.0	1	02/22/14 03:26 56-23-5	
Chlorobenzene	ND ug/L	1.0	1	02/22/14 03:26 108-90-7	
Chloroethane	ND ug/L	1.0	1	02/22/14 03:26 75-00-3	
Chloroform	ND ug/L	1.0	1	02/22/14 03:26 67-66-3	
Chloromethane	ND ug/L	1.0	1	02/22/14 03:26 74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1	02/22/14 03:26 95-49-8	
	ND ug/L ND ug/L		1		
I-Chlorotoluene	· ·	1.0		02/22/14 03:26 106-43-4	
I,2-Dibromo-3-chloropropane	ND ug/L	5.0	1	02/22/14 03:26 96-12-8	
Dibromochloromethane	ND ug/L	1.0	1	02/22/14 03:26 124-48-1	
,2-Dibromoethane (EDB)	ND ug/L	1.0	1	02/22/14 03:26 106-93-4	
Dibromomethane	ND ug/L	1.0	1	02/22/14 03:26 74-95-3	
,2-Dichlorobenzene	ND ug/L	1.0	1	02/22/14 03:26 95-50-1	
,3-Dichlorobenzene	ND ug/L	1.0	1	02/22/14 03:26 541-73-1	
,4-Dichlorobenzene	ND ug/L	1.0	1	02/22/14 03:26 106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1	02/22/14 03:26 75-71-8	
,1-Dichloroethane	ND ug/L	1.0	1	02/22/14 03:26 75-34-3	
,2-Dichloroethane	ND ug/L	1.0	1	02/22/14 03:26 107-06-2	
,1-Dichloroethene	ND ug/L	1.0	1	02/22/14 03:26 75-35-4	
sis-1,2-Dichloroethene	7.2 ug/L	1.0	1	02/22/14 03:26 156-59-2	
rans-1,2-Dichloroethene	ND ug/L	1.0	1	02/22/14 03:26 156-60-5	
1,2-Dichloropropane	ND ug/L	1.0	1	02/22/14 03:26 78-87-5	
,3-Dichloropropane	ND ug/L	1.0	1	02/22/14 03:26 142-28-9	
2,2-Dichloropropane	ND ug/L	1.0	1	02/22/14 03:26 594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1	02/22/14 03:26 563-58-6	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: DUPLICATE-2	Lab ID: 92190355005	Collected: 02/19/1	4 00:00	Received: 02/20/14 09:30	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qua
8260 MSV Low Level	Analytical Method: EPA 8	260				
cis-1,3-Dichloropropene	ND ug/L	1.0	1	02/22/14 03:2	26 10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	1.0	1	02/22/14 03:2	26 10061-02-6	
Diisopropyl ether	ND ug/L	1.0	1	02/22/14 03:2	26 108-20-3	
Ethylbenzene	ND ug/L	1.0	1	02/22/14 03:2	26 100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	02/22/14 03:2	26 87-68-3	
2-Hexanone	ND ug/L	5.0	1	02/22/14 03:2	26 591-78-6	
p-Isopropyltoluene	ND ug/L	1.0	1	02/22/14 03:2	26 99-87-6	
Methylene Chloride	ND ug/L	2.0	1	02/22/14 03:2	26 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1	02/22/14 03:2	26 108-10-1	
Methyl-tert-butyl ether	1.1 ug/L	1.0	1	02/22/14 03:2	26 1634-04-4	
Naphthalene	ND ug/L	1.0	1	02/22/14 03:2	26 91-20-3	
Styrene	ND ug/L	1.0	1	02/22/14 03:2	26 100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0	1	02/22/14 03:2	26 630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0	1	02/22/14 03:2	26 79-34-5	
Tetrachloroethene	29.5 ug/L	1.0	1	02/22/14 03:2	26 127-18-4	
Toluene	ND ug/L	1.0	1	02/22/14 03:2	26 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0	1	02/22/14 03:2	26 87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0	1	02/22/14 03:2	26 120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0	1	02/22/14 03:2	26 71-55-6	
1,1,2-Trichloroethane	ND ug/L	1.0	1	02/22/14 03:2	26 79-00-5	
Trichloroethene	8.7 ug/L	1.0	1	02/22/14 03:2	26 79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1	02/22/14 03:2	26 75-69-4	
1,2,3-Trichloropropane	ND ug/L	1.0	1	02/22/14 03:2	26 96-18-4	
Vinyl acetate	ND ug/L	2.0	1	02/22/14 03:2	26 108-05-4	
Vinyl chloride	ND ug/L	1.0	1	02/22/14 03:2		
Xylene (Total)	ND ug/L	2.0	1	02/22/14 03:2	26 1330-20-7	
m&p-Xylene	ND ug/L	2.0	1	02/22/14 03:2	26 179601-23-1	
o-Xylene	ND ug/L	1.0	1	02/22/14 03:2		
Surrogates	ŭ					
4-Bromofluorobenzene (S)	98 %	70-130	1	02/22/14 03:2	26 460-00-4	
1,2-Dichloroethane-d4 (S)	94 %	70-130	1	02/22/14 03:2	26 17060-07-0	
Toluene-d8 (S)	97 %	70-130	1	02/22/14 03:2	26 2037-26-5	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Lab ID: 92190355006	Collected: 02/18/14 16:	20 Received: 02	2/20/14 09:30 N	/latrix: Solid	
' basis					
Results Units	Report Limit DF	Prepared	Analyzed	CAS No.	Qua
Analytical Method: EPA	8015 Modified Preparation N	Method: EPA 3546			
559 mg/kg	11.3 2	02/22/14 11:00	02/24/14 14:54	68334-30-5	
90 %	41-119 2	02/22/14 11:00	02/24/14 14:54	629-99-2	
Analytical Method: MAD	EP EPH Preparation Metho	d: MADEP EPH			
202 mg/kg	90.7 8	02/24/14 15:58	02/26/14 17:16		N2
ND mg/kg	90.7 8	02/24/14 15:58	02/26/14 17:16		N2
90.0 mg/kg	11.3 1	02/24/14 15:58	02/26/14 01:39		N2
0.9/	40.440 0	00/04/44 45.50	00/06/44 47:46	7404.06.7	C4
					S4
				580-13-2	
Analytical Method: EPA 8	8015 Modified Preparation N	Method: EPA 5035A	V5030B		
3760 mg/kg	97.6 20				
114 %	70-167 20	02/28/14 02:49	02/28/14 21:36	460-00-4	
Analytical Method: MAD	EP VPH Preparation Metho	d: MADEP VPH			
280 mg/kg	31.4 10	03/06/14 17:00	03/07/14 12:13		N2
1260 mg/kg	31.4 10	03/06/14 17:00	03/07/14 12:13		N2
743 mg/kg	31.4 10	03/06/14 17:00	03/07/14 12:13		N2
227 %	70-130 10	03/06/14 17:00	03/07/14 12:13	460-00-4	S1
244 %	70-130 10	03/06/14 17:00	03/07/14 12:13	460-00-4	S1
Analytical Method: EPA 6	6010 Preparation Method: E	EPA 3050			
5.5 mg/kg	0.44 1	02/26/14 13:05	02/27/14 02:45	7440-47-3	
34.8 mg/kg	0.44 1	02/26/14 13:05	02/27/14 02:45	7439-92-1	
Analytical Method: EPA	8270 Preparation Method: E	EPA 3546			
ND ug/kg	3740 10	02/20/14 16:05	02/26/14 19:45	83-32-9	
ND ug/kg	3740 10	02/20/14 16:05	02/26/14 19:45	208-96-8	
ND ug/kg	3740 10	02/20/14 16:05	02/26/14 19:45	62-53-3	
ND ug/kg	3740 10	02/20/14 16:05	02/26/14 19:45	120-12-7	
		02/20/14 16:05	02/26/14 19:45	56-55-3	
ND ug/kg	3740 10	02/20/14 10.03	02/20/17 10.70		
0 0					
ND ug/kg	3740 10	02/20/14 16:05	02/26/14 19:45	50-32-8	
ND ug/kg ND ug/kg	3740 10 3740 10	02/20/14 16:05 02/20/14 16:05	02/26/14 19:45 02/26/14 19:45	50-32-8 205-99-2	
ND ug/kg ND ug/kg ND ug/kg	3740 10 3740 10 3740 10	02/20/14 16:05 02/20/14 16:05 02/20/14 16:05	02/26/14 19:45 02/26/14 19:45 02/26/14 19:45	50-32-8 205-99-2 191-24-2	
ND ug/kg ND ug/kg ND ug/kg ND ug/kg	3740 10 3740 10 3740 10 3740 10	02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05	02/26/14 19:45 02/26/14 19:45 02/26/14 19:45 02/26/14 19:45	50-32-8 205-99-2 191-24-2 207-08-9	
ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	3740 10 3740 10 3740 10 3740 10 18700 10	02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05	02/26/14 19:45 02/26/14 19:45 02/26/14 19:45 02/26/14 19:45 02/26/14 19:45	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0	
ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	3740 10 3740 10 3740 10 3740 10 18700 10 7480 10	02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05	02/26/14 19:45 02/26/14 19:45 02/26/14 19:45 02/26/14 19:45 02/26/14 19:45 02/26/14 19:45	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0 100-51-6	
ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg	3740 10 3740 10 3740 10 3740 10 18700 10	02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05 02/20/14 16:05	02/26/14 19:45 02/26/14 19:45 02/26/14 19:45 02/26/14 19:45 02/26/14 19:45	50-32-8 205-99-2 191-24-2 207-08-9 65-85-0 100-51-6 101-55-3	
<u> </u>	Results Units Analytical Method: EPA 8 559 mg/kg 90 % Analytical Method: MAD 202 mg/kg ND mg/kg 90.0 mg/kg 90 % 81 % 101 % 136 % Analytical Method: EPA 8 3760 mg/kg 114 % Analytical Method: MAD 280 mg/kg 1260 mg/kg 1260 mg/kg 1260 mg/kg 1260 mg/kg 244 % Analytical Method: EPA 8 5.5 mg/kg 34.8 mg/kg Analytical Method: EPA 8 ND ug/kg ND ug/kg ND ug/kg ND ug/kg	Results Units Report Limit DF Analytical Method: EPA 8015 Modified Preparation Method 559 mg/kg 11.3 2 90 % 41-119 2 Analytical Method: MADEP EPH Preparation Method Wethod Wethod 202 mg/kg 90.7 8 ND mg/kg 90.7 8 90.0 mg/kg 11.3 1 0 % 40-140 8 81 % 40-140 1 101 % 40-140 1 136 % 40-140 1 Analytical Method: EPA 8015 Modified Preparation Method 3760 mg/kg 97.6 20 114 % 70-167 20 Analytical Method: MADEP VPH Preparation Method 280 mg/kg 31.4 10 227 % 70-130 10 244 % 70-130 10 244 % 70-130 10 Analytical Method: EPA 6010 Preparation Method: E E 5.5 mg/kg 0.44 1 Analytica	basis Results Units Report Limit DF Prepared Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 559 mg/kg 11.3 2 02/22/14 11:00 90 % 41-119 2 02/22/14 11:00 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 202 mg/kg 90.7 8 02/24/14 15:58 ND mg/kg 90.7 8 02/24/14 15:58 90.0 mg/kg 90.7 8 02/24/14 15:58 90.0 mg/kg 90.7 8 02/24/14 15:58 90.0 mg/kg 90.7 8 02/24/14 15:58 81 % 40-140 8 02/24/14 15:58 81 % 40-140 1 02/24/14 15:58 81 % 40-140 1 02/24/14 15:58 Analytical Method: EPA 8015 Modified Preparation Method: EPA 5035/4 Analytical Method: MADEP VPH Preparation Method: MADEP VPH 20 02/28/14 02:49 Analytical Method: MADEP VPH Preparation Method: MADEP VPH 227 70-130 10 03/06/14 17:00 <tr< td=""><td>Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 559 mg/kg 11.3 2 02/22/14 11:00 02/24/14 14:54 90 % 41-119 2 02/22/14 11:00 02/24/14 15:58 02/24/14 15:54 Analytical Method: MADEP EPH Preparation Method: MADEP EPH Preparation Method: MADEP EPH 02/24/14 15:58 02/26/14 17:16 ND mg/kg 90.7 8 02/24/14 15:58 02/26/14 17:16 90.0 mg/kg 11.3 1 02/24/14 15:58 02/26/14 01:39 0 % 40-140 8 02/24/14 15:58 02/26/14 01:39 101 % 40-140 1 02/24/14 15:58 02/26/14 01:39 136 % 40-140 1 02/24/14 15:58 02/26/14 01:39 Analytical Method: EPA 8015 Modified Preparation Method: EPA 5035A/5030B 3760 mg/kg 97.6 20 02/28/14 02:49 02/28/14 21:36 114 % 70-167 20 02/28/14 02:49 02/28/14 21:36 Analytical Method: MADEP VPH Preparation Method: MADEP VPH<!--</td--><td>Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 559 mg/kg 11.3 2 02/22/14 11:00 02/24/14 14:54 68334-30-5 90 % 41-119 2 02/22/14 11:00 02/24/14 14:54 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 402/24/14 15:58 02/26/14 17:16 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 8 02/24/14 15:58 02/26/14 17:16 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 8 02/24/14 15:58 02/26/14 17:16 7194-86-7 90.0 mg/kg 90.7 8 02/24/14 15:58 02/26/14 01:39 84-15-1 10 % 40-140 8 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140 1 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140 1 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140<!--</td--></td></td></tr<>	Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 559 mg/kg 11.3 2 02/22/14 11:00 02/24/14 14:54 90 % 41-119 2 02/22/14 11:00 02/24/14 15:58 02/24/14 15:54 Analytical Method: MADEP EPH Preparation Method: MADEP EPH Preparation Method: MADEP EPH 02/24/14 15:58 02/26/14 17:16 ND mg/kg 90.7 8 02/24/14 15:58 02/26/14 17:16 90.0 mg/kg 11.3 1 02/24/14 15:58 02/26/14 01:39 0 % 40-140 8 02/24/14 15:58 02/26/14 01:39 101 % 40-140 1 02/24/14 15:58 02/26/14 01:39 136 % 40-140 1 02/24/14 15:58 02/26/14 01:39 Analytical Method: EPA 8015 Modified Preparation Method: EPA 5035A/5030B 3760 mg/kg 97.6 20 02/28/14 02:49 02/28/14 21:36 114 % 70-167 20 02/28/14 02:49 02/28/14 21:36 Analytical Method: MADEP VPH Preparation Method: MADEP VPH </td <td>Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 559 mg/kg 11.3 2 02/22/14 11:00 02/24/14 14:54 68334-30-5 90 % 41-119 2 02/22/14 11:00 02/24/14 14:54 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 402/24/14 15:58 02/26/14 17:16 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 8 02/24/14 15:58 02/26/14 17:16 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 8 02/24/14 15:58 02/26/14 17:16 7194-86-7 90.0 mg/kg 90.7 8 02/24/14 15:58 02/26/14 01:39 84-15-1 10 % 40-140 8 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140 1 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140 1 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140<!--</td--></td>	Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 559 mg/kg 11.3 2 02/22/14 11:00 02/24/14 14:54 68334-30-5 90 % 41-119 2 02/22/14 11:00 02/24/14 14:54 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 402/24/14 15:58 02/26/14 17:16 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 8 02/24/14 15:58 02/26/14 17:16 629-99-2 Analytical Method: MADEP EPH Preparation Method: MADEP EPH 8 02/24/14 15:58 02/26/14 17:16 7194-86-7 90.0 mg/kg 90.7 8 02/24/14 15:58 02/26/14 01:39 84-15-1 10 % 40-140 8 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140 1 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140 1 02/24/14 15:58 02/26/14 01:39 84-15-1 101 % 40-140 </td

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-07-02 8' Lab ID: 92190355006 Collected: 02/18/14 16:20 Received: 02/20/14 09:30 Matrix: Solid

Results reported on a "drv-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	od: EPA 8270	Preparation Met	hod: EF	PA 3546			
4-Chloroaniline	ND ug	/kg	18700	10	02/20/14 16:05	02/26/14 19:45	106-47-8	
bis(2-Chloroethoxy)methane	ND ug	/kg	3740	10	02/20/14 16:05	02/26/14 19:45	111-91-1	
ois(2-Chloroethyl) ether	ND ug	/kg	3740	10	02/20/14 16:05	02/26/14 19:45	111-44-4	
ois(2-Chloroisopropyl) ether	ND ug	/kg	3740	10	02/20/14 16:05	02/26/14 19:45	108-60-1	
2-Chloronaphthalene	ND ug	/kg	3740	10	02/20/14 16:05	02/26/14 19:45	91-58-7	
2-Chlorophenol	ND ug	/kg	3740	10	02/20/14 16:05	02/26/14 19:45	95-57-8	
4-Chlorophenylphenyl ether	ND ug	/kg	3740	10	02/20/14 16:05	02/26/14 19:45	7005-72-3	
Chrysene	ND ug	/kg	3740	10	02/20/14 16:05	02/26/14 19:45	218-01-9	
Dibenz(a,h)anthracene	ND ug	-	3740	10	02/20/14 16:05	02/26/14 19:45	53-70-3	
Dibenzofuran	ND ug	-	3740	10	02/20/14 16:05	02/26/14 19:45	132-64-9	
1,2-Dichlorobenzene	ND ug	-	3740	10	02/20/14 16:05	02/26/14 19:45	95-50-1	
1,3-Dichlorobenzene	ND ug	•	3740	10		02/26/14 19:45		
1,4-Dichlorobenzene	ND ug	•	3740	10		02/26/14 19:45		
3,3'-Dichlorobenzidine	ND ug	-	18700	10		02/26/14 19:45		
2,4-Dichlorophenol	ND ug	-	3740	10		02/26/14 19:45		
Diethylphthalate	ND ug		3740	10	02/20/14 16:05	02/26/14 19:45	84-66-2	
2,4-Dimethylphenol	ND ug	-	3740	10	02/20/14 16:05	02/26/14 19:45	105-67-9	
Dimethylphthalate	ND ug	-	3740	10		02/26/14 19:45		
Di-n-butylphthalate	ND ug	•	3740	10		02/26/14 19:45		
4,6-Dinitro-2-methylphenol	ND ug	•	7480	10		02/26/14 19:45		
2,4-Dinitrophenol	ND ug	•	18700	10		02/26/14 19:45		
2,4-Dinitrotoluene	ND ug	· ·	3740	10		02/26/14 19:45		
2,6-Dinitrotoluene	ND ug	•	3740	10		02/26/14 19:45		
Di-n-octylphthalate	ND ug	-	3740	10		02/26/14 19:45		
ois(2-Ethylhexyl)phthalate	ND ug	-	3740	10		02/26/14 19:45		
Fluoranthene	ND ug		3740	10		02/26/14 19:45		
Fluorene	ND ug	-	3740	10		02/26/14 19:45		
Hexachloro-1,3-butadiene	ND ug	-	3740	10		02/26/14 19:45		
Hexachlorobenzene	ND ug	-	3740	10		02/26/14 19:45		
Hexachlorocyclopentadiene	ND ug	-	3740	10		02/26/14 19:45		
Hexachloroethane	ND ug	•	3740	10		02/26/14 19:45		
Indeno(1,2,3-cd)pyrene	ND ug	•	3740	10		02/26/14 19:45		
Isophorone	ND ug	•	3740	10		02/26/14 19:45		
1-Methylnaphthalene	8220 ug		3740	10		02/26/14 19:45		
2-Methylnaphthalene	15100 ug		3740	10		02/26/14 19:45		
2-Methylphenol(o-Cresol)	ND ug	-	3740	10		02/26/14 19:45		
3&4-Methylphenol(m&p Cresol)	ND ug	•	3740	10		02/26/14 19:45	00 10 7	
Naphthalene	23800 ug,		3740	10		02/26/14 19:45	91-20-3	
2-Nitroaniline	ND ug		18700	10		02/26/14 19:45		
3-Nitroaniline	ND ug	-	18700	10		02/26/14 19:45		
4-Nitroaniline	ND ug	-	7480	10		02/26/14 19:45		
Nitrobenzene	ND ug	· ·	3740	10		02/26/14 19:45		
2-Nitrophenol	ND ug	•	3740	10		02/26/14 19:45		
4-Nitrophenol	ND ug	-	18700	10		02/26/14 19:45		
ง-Nitropnenoi N-Nitrosodimethylamine	ND ug	-	3740	10		02/26/14 19:45		
N-Nitrosodimetriylamine N-Nitroso-di-n-propylamine	ND ug	-	3740	10	02/20/14 16:05			

ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-07-02 8' Lab ID: 92190355006 Collected: 02/18/14 16:20 Received: 02/20/14 09:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV Microwave Analytical Method: EPA 8270 Preparation Method: EPA 3546 N-Nitrosodiphenylamine ND ug/kg 3740 02/20/14 16:05 02/26/14 19:45 86-30-6 Pentachlorophenol ND ug/kg 18700 10 02/20/14 16:05 02/26/14 19:45 87-86-5 Phenanthrene ND ug/kg 3740 02/20/14 16:05 02/26/14 19:45 85-01-8 10 Phenol ND ug/kg 3740 10 02/20/14 16:05 02/26/14 19:45 108-95-2 3740 Pyrene ND ug/kg 10 02/20/14 16:05 02/26/14 19:45 129-00-0 1,2,4-Trichlorobenzene ND ug/kg 3740 10 02/20/14 16:05 02/26/14 19:45 120-82-1 3740 10 02/20/14 16:05 02/26/14 19:45 95-95-4 2,4,5-Trichlorophenol ND ug/kg 2,4,6-Trichlorophenol 3740 10 02/20/14 16:05 02/26/14 19:45 88-06-2 ND ug/kg Surrogates Nitrobenzene-d5 (S) 0 % 23-110 10 02/20/14 16:05 02/26/14 19:45 4165-60-0 D3.S4 2-Fluorobiphenyl (S) 0 % 30-110 10 02/20/14 16:05 02/26/14 19:45 321-60-8 Terphenyl-d14 (S) 0 % 28-110 10 02/20/14 16:05 02/26/14 19:45 1718-51-0 Phenol-d6 (S) 22-110 02/20/14 16:05 02/26/14 19:45 13127-88-3 0 % 10 13-110 02/20/14 16:05 02/26/14 19:45 367-12-4 2-Fluorophenol (S) 0 % 10 2,4,6-Tribromophenol (S) 0 % 27-110 10 02/20/14 16:05 02/26/14 19:45 118-79-6 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 106000 1000 02/21/14 19:24 67-64-1 Acetone ND ug/kg 02/21/14 19:24 71-43-2 Benzene 5290 1000 02/21/14 19:24 108-86-1 Bromobenzene ND ug/kg 5290 1000 Bromochloromethane ND ug/kg 5290 1000 02/21/14 19:24 74-97-5 Bromodichloromethane ND ug/kg 5290 1000 02/21/14 19:24 75-27-4 Bromoform ND ug/kg 5290 1000 02/21/14 19:24 75-25-2 **Bromomethane** ND ug/kg 10600 1000 02/21/14 19:24 74-83-9 2-Butanone (MEK) ND ug/kg 106000 1000 02/21/14 19:24 78-93-3 n-Butvlbenzene 30500 ua/ka 5290 1000 02/21/14 19:24 104-51-8 ND ug/kg 5290 1000 02/21/14 19:24 135-98-8 sec-Butylbenzene tert-Butylbenzene ND ug/kg 5290 1000 02/21/14 19:24 98-06-6 Carbon tetrachloride ND ug/kg 5290 1000 02/21/14 19:24 56-23-5 Chlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 108-90-7 Chloroethane ND ug/kg 10600 1000 02/21/14 19:24 75-00-3 Chloroform ND ug/kg 5290 1000 02/21/14 19:24 67-66-3 Chloromethane ND ug/kg 10600 1000 02/21/14 19:24 74-87-3 2-Chlorotoluene ND ug/kg 5290 1000 02/21/14 19:24 95-49-8 5290 1000 02/21/14 19:24 106-43-4 4-Chlorotoluene ND ug/kg 1,2-Dibromo-3-chloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-12-8 Dibromochloromethane ND ug/kg 5290 1000 02/21/14 19:24 124-48-1 1,2-Dibromoethane (EDB) ND ug/kg 5290 1000 02/21/14 19:24 106-93-4 1000 02/21/14 19:24 74-95-3 Dibromomethane ND ug/kg 5290 5290 1000 02/21/14 19:24 95-50-1 1.2-Dichlorobenzene ND ug/kg 1000 ND ug/kg 5290 02/21/14 19:24 541-73-1 1.3-Dichlorobenzene 1,4-Dichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 106-46-7 Dichlorodifluoromethane ND ug/kg 10600 1000 02/21/14 19:24 75-71-8 1,1-Dichloroethane ND ug/kg 5290 1000 02/21/14 19:24 75-34-3 1,2-Dichloroethane ND ug/kg 5290 1000 02/21/14 19:24 107-06-2 1,1-Dichloroethene ND ug/kg 5290 1000 02/21/14 19:24 75-35-4

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-07-02 8' Lab ID: 92190355006 Collected: 02/18/14 16:20 Received: 02/20/14 09:30 Matrix: Solid

Results reported on a "dry-weight" basis

trans-12-Dichloroethene ND ug/kg 5290 1000 022/1/14 19:24 18-6.0-5 1.3-Dichloropropane ND ug/kg 5290 1000 02/21/14 19:24 18-6.0-5 1.3-Dichloropropane ND ug/kg 5290 1000 02/21/14 19:24 542-28-9 2.2-Dichloropropane ND ug/kg 5290 1000 02/21/14 19:24 592-20-7 1.1-Dichloropropene ND ug/kg 5290 1000 02/21/14 19:24 10061-01-5 trans-1.3-Dichloropropene ND ug/kg 5290 1000 02/21/14 19:24 10061-01-5 trans-1.3-Dichloropropene ND ug/kg 5290 1000 02/21/14 19:24 10061-01-5 Elitylbenzene ND ug/kg 5290 1000 02/21/14 19:24 100-41-4 Hexachloro-1,3-butadiene ND ug/kg 5290 1000 02/21/14 19:24 100-41-4 Hexachloro-1,3-butadiene ND ug/kg 5290 1000 02/21/14 19:24 188-28-3 2-Hexanone ND ug/kg 5290 1000 02/21/14 19:24 98-7-6 <	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
trans-12-Dichloroethene ND ug/kg 5290 1000 0221/14 1924 15-60-5 1,3-Dichloropropane ND ug/kg 5290 1000 0221/14 1924 78-87-5 1,3-Dichloropropane ND ug/kg 5290 1000 0221/14 1924 78-87-5 2,2-Dichloropropane ND ug/kg 5290 1000 0221/14 1924 568-56-6 cis-1,3-Dichloropropene ND ug/kg 5290 1000 0221/14 1924 1066-10-15 trans-1,3-Dichloropropene ND ug/kg 5290 1000 0221/14 1924 1066-10-15 trans-1,3-Dichloropropene ND ug/kg 5290 1000 0221/14 1924 1066-10-15 Elitybenzene ND ug/kg 5290 1000 0221/14 1924 106-10-16 Elitybenzene ND ug/kg 5290 1000 0221/14 1924 106-10-16 Elitybenzene ND ug/kg 5290 1000 0221/14 1924 106-17-68-18 Sopropylbenzene (Cumene) 30700 ug/kg 5290 1000 0221/14 1924 19-78-68-18 So	8260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260)					
1,2-Dichloropropane	cis-1,2-Dichloroethene	ND ug	/kg	5290	1000		02/21/14 19:24	156-59-2	
1.3-Dichloropropane	trans-1,2-Dichloroethene	ND ug	/kg	5290	1000		02/21/14 19:24	156-60-5	
1.3-Dichloropropane	1,2-Dichloropropane	_	-	5290	1000		02/21/14 19:24	78-87-5	
2.2-Dichloropropane	1,3-Dichloropropane	_	-	5290			02/21/14 19:24	142-28-9	
1.1-Dichloropropene ND ug/kg 5290 1000 0221/14 19:24 563-58-6 cisc1-3-Dichloropropene ND ug/kg 5290 1000 0221/14 19:24 10061-02-6 Disopropyl ether ND ug/kg 5290 1000 0221/14 19:24 10061-02-6 Disopropyl ether ND ug/kg 5290 1000 0221/14 19:24 10061-02-6 Disopropyl ether ND ug/kg 5290 1000 0221/14 19:24 10061-02-6 Disopropyl ether ND ug/kg 5290 1000 0221/14 19:24 100-41-4 Hexachloro-1,3-butadiene ND ug/kg 5290 1000 0221/14 19:24 100-41-4 Hexachloro-1,3-butadiene ND ug/kg 5290 1000 0221/14 19:24 591-78-6 Isopropylbenzene (Cumene) 30700 ug/kg 5290 1000 0221/14 19:24 98-82-8 p-Isopropyltoluene 2000 ug/kg 5290 1000 0221/14 19:24 98-82-8 p-Isopropyltoluene ND ug/kg 5290 1000 0221/14 19:24 98-82-8 p-Isopropyltoluene ND ug/kg 5290 1000 0221/14 19:24 98-82-8 p-Isopropyltoluene ND ug/kg 5290 1000 0221/14 19:24 163-40-4 Methyl-2-pentanone (MIBK) ND ug/kg 5290 1000 0221/14 19:24 163-40-4 Methyl-1-pentanone (MIBK) ND ug/kg 5290 1000 0221/14 19:24 163-40-4 Naphthalene 41300 ug/kg 5290 1000 0221/14 19:24 163-40-4 Naphthalene 41300 ug/kg 5290 1000 0221/14 19:24 103-65-1 Styrene ND ug/kg 5290 1000	2,2-Dichloropropane	-	-	5290	1000		02/21/14 19:24	594-20-7	
cis-1,3-Dichloropropene ND ug/kg 5290 1000 02/21/14 19:24 10061-01-5 Transa-1,3-Dichloropropene ND ug/kg 5290 1000 02/21/14 19:24 10061-02-6 Diisopropyl ether ND ug/kg 5290 1000 02/21/14 19:24 100-80-3 Elhybenzene 81300 ug/kg 5290 1000 02/21/14 19:24 100-41-4 Hexachloro-1,3-butadiene ND ug/kg 5290 1000 02/21/14 19:24 97-88-3 2-Hexanone ND ug/kg 5290 1000 02/21/14 19:24 98-8-8-8 2-Hoxanone ND ug/kg 5290 1000 02/21/14 19:24 98-87-6 Methylene Chloride ND ug/kg 5290 1000 02/21/14 19:24 98-87-6 Methylene Chloride ND ug/kg 5290 1000 02/21/14 19:24 98-87-6 Methylene Chloride ND ug/kg 5290 1000 02/21/14 19:24 98-87-6 Methylene Chloride ND ug/kg 5290 1000 02/21/14 19:24 98-80-8 Methylene Chlo	1,1-Dichloropropene	_	-	5290	1000		02/21/14 19:24	563-58-6	
trans-1,3-Dichloropropene ND ug/kg 5290 1000 0221/14 19:24 10061-02-6 Diisopropyl ether ND ug/kg 5290 1000 0221/14 19:24 1008-20-3 Ethylbenzene 81300 ug/kg 5290 1000 0221/14 19:24 100-41-4 Hexachloro-1,3-butadiene ND ug/kg 5290 1000 0221/14 19:24 100-41-4 Hexachloro-1,3-butadiene ND ug/kg 5290 1000 0221/14 19:24 76-8-3 Isopropylbenzene (Cumene) 30700 ug/kg 5290 1000 0221/14 19:24 98-82-8 Isopropylbenzene (Clumene) 30700 ug/kg 5290 1000 0221/14 19:24 98-82-8 Pisopropylbenzene (MilbK) ND ug/kg 5290 1000 0221/14 19:24 98-82-8 Hethyl-tert-butyl ether ND ug/kg 5290 1000 0221/14 19:24 163-40-4 Naphthalene 41300 ug/kg 5290 1000 0221/14 19:24 163-40-4 Naphthalene 41300 ug/kg 5290 1000 0221/14 19:24 190-3-3 <		_	-				02/21/14 19:24	10061-01-5	
Disopropylether	· ·	_	-						
Ethylbenzene		_	-						
Hexachloro-1,3-butadiene		-	-						
2-Hexanone ND ug/kg 5290 1000 02/21/14 19:24 591-78-6 Isopropylbenzene (Cumene) 30700 ug/kg 5290 1000 02/21/14 19:24 98-82-8 p-isopropylbenzene (2000 ug/kg 5290 1000 02/21/14 19:24 99-87-6 Methylene Chloride ND ug/kg 5290 1000 02/21/14 19:24 75-09-2 4-Methyl-enchone (MIBK) ND ug/kg 5290 1000 02/21/14 19:24 108-10-1 Methyl-tert-butyl ether ND ug/kg 5290 1000 02/21/14 19:24 1634-04-4 Naphthalene A1300 ug/kg 5290 1000 02/21/14 19:24 1634-04-4 Naphthalene A1300 ug/kg 5290 1000 02/21/14 19:24 103-65-1 Styrene ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 630-20-6 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 107-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 108-88-3 1.2,2-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 108-88-3 1.2,2-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 108-88-3 1.1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 108-88-3 1.1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 17-61-6 1.1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 17-61-6 1.1,1-1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 17-55-6 1.1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-5 Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6		-	-						
Isopropylbenzene (Cumene) 30700 ug/kg 5290 1000 02/21/14 19:24 98-82-8 P- rsopropylbenzene 22000 ug/kg 5290 1000 02/21/14 19:24 99-87-6 Methylene Chloride ND ug/kg 21100 1000 02/21/14 19:24 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/kg 5290 1000 02/21/14 19:24 1634-04-4 Methylene there ND ug/kg 5290 1000 02/21/14 19:24 1634-04-4 Naphthalene 41300 ug/kg 5290 1000 02/21/14 19:24 1634-04-4 Naphthalene 41300 ug/kg 5290 1000 02/21/14 19:24 1634-04-4 Naphthalene ND ug/kg 5290 1000 02/21/14 19:24 103-45-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 630-20-6 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 630-20-6 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 100-42-5 1.1,1,2-Tichloroethane ND ug/kg 5290 1000 02/21/14 19:24 127-18-1 1.1,1-Tichloroethane ND ug/kg 5290 1000 02/21/14 19:24 12		•	-						
p-Isopropytoluene		-	-						
Methylene Chloride ND ug/kg 21100 1000 02/21/14 19:24 76-09-2 4-Methyl-2-pentanone (MIBK) ND ug/kg 52900 1000 02/21/14 19:24 108-10-1 Methyl-tert-butyl ether ND ug/kg 5290 1000 02/21/14 19:24 1634-04-4 Naphthalene 41300 ug/kg 5290 1000 02/21/14 19:24 103-65-1 Styrene ND ug/kg 5290 1000 02/21/14 19:24 630-20-6 1,1,2.2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 Toluene 36700 ug/kg 5290 1000 02/21/14 19:24 127-18-4 Toluene 36700 ug/kg 5290 1000 02/21/14 19:24 128-8-16 1,2,4-Trichlorobenzene ND ug/kg <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			•						
4-Methyl-2-pentanone (MIBK) ND ug/kg 5290 1000 02/21/14 19:24 108-10-1 Methyl-tert-butyl ether ND ug/kg 5290 1000 02/21/14 19:24 163-40-4 Naphthalene 41300 ug/kg 5290 1000 02/21/14 19:24 103-40-1 ND ug/kg 5290 1000 02/21/14 19:24 103-65-1 Styrene ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 Styrene ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 1,1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 Tetrachloroethene ND ug/kg 5290 1000 02/21/14 19:24 108-88-3 1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 Tetrachloroethene ND ug/kg 5290 1000 02/21/14 19:24 108-88-3 1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 108-88-3 1,2,3-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 17-8-6 1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 17-55-6 1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-5 Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trichloropenzene ND ug/kg 5290 1000		-	-						
Methyl-tert-butyl ether ND ug/kg 5290 1000 02/21/14 19:24 1634-04-4 Naphthalene 41300 ug/kg 5290 1000 02/21/14 19:24 91-20-3 Propylbenzene 68000 ug/kg 5290 1000 02/21/14 19:24 91-20-3 Styrene ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 630-20-6 1,1,2,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 70-8-8-3 1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 87-61-6 1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 71-55-6 1,1,1-Trichl	-	_	-						
Naphthalene 41300 ug/kg 5290 1000 02/21/14 19:24 91-20-3 n-Propylbenzene 68000 ug/kg 5290 1000 02/21/14 19:24 103-65-1 Styrene ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 1,1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 1,1,2,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 1,1,2,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 1,1,2,2-Tetrachloroethene ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 100-42-5 1,1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 100-42-5 1,1,1,2-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 108-88-3 1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 120-82-1 1,1,1-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 120-82-1 1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 17/1-1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 17/1-1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 17/1-1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 17/1-1,2-3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 17/1-1,2-3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trimethylbenzene 329000 ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trimethylbenzene 329000 ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 1,3,5-Trimethylbenzene 109000 ug/kg 10000 02/21/14 19:24 108-67-8 1,3,5-Trimethylbenzene 109000 ug/kg 10000 02/21/14 19:24 108-67-8 1,3,5-Trimethy		_	-						
n-Propylbenzene 68000 ug/kg 5290 1000 02/21/14 19:24 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 100-42-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-34-5 1.1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 1.1,1-1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	•								
Styrene	•								
1,1,1,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 630-20-6 1,1,2,2-Tetrachloroethane ND ug/kg 5290 1000 02/21/14 19:24 630-20-6 Tetrachloroethene ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 Toluene 36700 ug/kg 5290 1000 02/21/14 19:24 18-8-3 1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 87-61-6 1,2,4-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 120-82-1 1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 71-55-6 1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 75-69-4 1,2,3-Trimethylbenzene 329000 ug/kg 5290 1000 02		_	-						
1,1,2,2-Tetrachloroethane	•	_	•						
Tetrachloroethene ND ug/kg 5290 1000 02/21/14 19:24 127-18-4 Toluene 36700 ug/kg 5290 1000 02/21/14 19:24 108-88-3 1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 120-82-1 1,2,4-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 120-82-1 1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 71-55-6 1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,4-Trimethylbenzene 329000 ug/kg 26400 5000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 10600 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 175-01-4 Xylene Total) 285000 ug/kg 10600 1000 02/21/14 19:24 179-601-23-1 0-Xylene 89600 ug/kg 10600 1000 02/21/14 19:24 179-601-23-1 0-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 2037-26-5 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 Surrogates Toluene-d8 (S) 115 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 170-60-07-0									
Toluene 36700 ug/kg 5290 1000 02/21/14 19:24 108-88-3 1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 87-61-6 1,2,4-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 120-82-1 1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 71-55-6 1,1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 79-618-4 1,2,3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,3,5-Trimethylbenzene 32900 ug/kg 26400 5000 02/24/14 18:12 95-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 10600 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m8p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m8p-Xylene 196000 ug/kg 5290 1000 02/21/14 19:24 179601-23-1 0-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87		_	-						
1,2,3-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 87-61-6 1,2,4-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 120-82-1 1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 71-55-6 1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichloroethene ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 75-69-4 1,2,3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 75-69-4 1,2,3-Trimethylbenzene 329000 ug/kg 26400 5000 02/24/14 18:12 95-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/24/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 175-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 175-01-4 Xylene (Total) 285000 ug/kg 5290 1000 02/21/14 19:24 179-01-23-1 0-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 2037-26-5 Surrogates									
1,2,4-Trichlorobenzene ND ug/kg 5290 1000 02/21/14 19:24 120-82-1 1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 71-55-6 1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 75-69-4 1,2,3-Trichloroptopane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trichloroptopane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,4-Trimethylbenzene 32900 ug/kg 26400 5000 02/21/14 19:24 96-18-4 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 96-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 52900 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 0-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 179601-23-1 0-Xylene Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87		-	-						
1,1,1-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 71-55-6 1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichloroethene ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 75-69-4 1,2,3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,3-Trimethylbenzene 32900 ug/kg 26400 5000 02/22/14 18:22 95-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-05-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 175-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 <td< td=""><td></td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		_	-						
1,1,2-Trichloroethane ND ug/kg 5290 1000 02/21/14 19:24 79-00-5 Trichloroethene ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 75-69-4 1,2,3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,4-Trimethylbenzene 329000 ug/kg 26400 5000 02/24/14 18:12 95-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 75-01-4 xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 75-01-4 xylene (Total) 89600 ug/kg 10600 1000 02/21/14 19:24 75-01-4 xylene (S) 5290 1000 02/21/14 19:24 200-01-23-1		_	-						
Trichloroethene ND ug/kg 5290 1000 02/21/14 19:24 79-01-6 Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 75-69-4 1,2,3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,4-Trimethylbenzene 329000 ug/kg 26400 5000 02/24/14 18:12 95-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 5290 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0		_	-						
Trichlorofluoromethane ND ug/kg 5290 1000 02/21/14 19:24 75-69-4 1,2,3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,4-Trimethylbenzene 32900 ug/kg 26400 5000 02/24/14 18:12 95-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 0-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 179601-23-1 0-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 2037-26-5 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 1,2-Dichloroethane-d4 (S) Analytical Method: ASTM D2974-87									
1,2,3-Trichloropropane ND ug/kg 5290 1000 02/21/14 19:24 96-18-4 1,2,4-Trimethylbenzene 329000 ug/kg 26400 5000 02/24/14 18:12 95-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 52900 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0		-	-						
1,2,4-Trimethylbenzene 329000 ug/kg 26400 5000 02/24/14 18:12 95-63-6 1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 5290 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 70-130 1000 02/21/14 19:24 2037-26-5 Toluene-d8 (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 4-Bromofluorobenzene (S) 91 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture		_	-						
1,3,5-Trimethylbenzene 109000 ug/kg 5290 1000 02/21/14 19:24 108-67-8 Vinyl acetate ND ug/kg 52900 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0									
Vinyl acetate ND ug/kg 52900 1000 02/21/14 19:24 108-05-4 Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87		_	-						
Vinyl chloride ND ug/kg 10600 1000 02/21/14 19:24 75-01-4 Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	•	J	J						
Xylene (Total) 285000 ug/kg 10600 1000 02/21/14 19:24 1330-20-7 m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	-		•						
m&p-Xylene 196000 ug/kg 10600 1000 02/21/14 19:24 179601-23-1 o-Xylene 89600 ug/kg 5290 1000 02/21/14 19:24 95-47-6 Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	-		•						
o-Xylene	, ,								
Surrogates Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87			•						
Toluene-d8 (S) 103 % 70-130 1000 02/21/14 19:24 2037-26-5 4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87		89600 ug	/kg	5290	1000		02/21/14 19:24	95-47-6	
4-Bromofluorobenzene (S) 91 % 70-130 1000 02/21/14 19:24 460-00-4 1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87	_	100.01		70.466	4000		00/04/4440	0007.00.5	
1,2-Dichloroethane-d4 (S) 115 % 70-132 1000 02/21/14 19:24 17060-07-0 Percent Moisture Analytical Method: ASTM D2974-87									
Percent Moisture Analytical Method: ASTM D2974-87									
•	1,2-Dichloroethane-d4 (S)	115 %		70-132	1000		02/21/14 19:24	17060-07-0	
Percent Moisture 11.8 % 0.10 1 03/03/14 11:58	Percent Moisture	Analytical Meth	nod: ASTM D2	974-87					
	Percent Moisture	11.8 %		0.10	1		03/03/14 11:58		

ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-07-06 10' Lab ID: 92190355007 Collected: 02/18/14 16:10 Received: 02/20/14 09:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 **Diesel Components** ND mg/kg 5.9 02/22/14 11:00 02/24/14 10:30 68334-30-5 Surrogates 41-119 84 % 02/22/14 11:00 02/24/14 10:30 629-99-2 n-Pentacosane (S) **MADEP EPH NC Soil** Analytical Method: MADEP EPH Preparation Method: MADEP EPH 02/24/14 15:58 02/26/14 02:11 Aliphatic (C09-C18) N2 ND mg/kg 11.8 1 Aliphatic (C19-C36) ND mg/kg 11 8 02/24/14 15:58 02/26/14 02:11 N2 1 Aromatic (C11-C22) ND mg/kg 02/24/14 15:58 02/26/14 02:11 N2 11.8 1 Surrogates 40-140 Nonatriacontane (S) 72 % 1 02/24/14 15:58 02/26/14 02:11 7194-86-7 o-Terphenyl (S) 79 % 40-140 1 02/24/14 15:58 02/26/14 02:11 84-15-1 2-Fluorobiphenyl (S) 73 % 40-140 1 02/24/14 15:58 02/26/14 02:11 321-60-8 40-140 02/24/14 15:58 02/26/14 02:11 580-13-2 2-Bromonaphthalene (S) 81 % **Gasoline Range Organics** Analytical Method: EPA 8015 Modified Preparation Method: EPA 5035A/5030B 6.2 02/28/14 02:49 02/28/14 21:13 8006-61-9 Gasoline Range Organics 10.3 mg/kg Surrogates 4-Bromofluorobenzene (S) 98 % 70-167 02/28/14 02:49 02/28/14 21:13 460-00-4 VPH NC Soil Analytical Method: MADEP VPH Preparation Method: MADEP VPH Aliphatic (C05-C08) ND mg/kg 3.4 03/06/14 17:00 03/07/14 13:22 N2 Aliphatic (C09-C12) ND mg/kg 3.4 1 03/06/14 17:00 03/07/14 13:22 N2 Aromatic (C09-C10) ND mg/kg 3.4 1 03/06/14 17:00 03/07/14 13:22 N2 Surrogates S1 4-Bromofluorobenzene (FID) (S) 219 % 70-130 03/06/14 17:00 03/07/14 13:22 460-00-4 1 4-Bromofluorobenzene (PID) (S) 204 % 70-130 1 03/06/14 17:00 03/07/14 13:22 460-00-4 S1 **6010 MET ICP** Analytical Method: EPA 6010 Preparation Method: EPA 3050 5.4 mg/kg 0.57 1 02/26/14 13:05 02/27/14 02:48 7440-47-3 Chromium Lead 9.0 mg/kg 0.57 02/26/14 13:05 02/27/14 02:48 7439-92-1 1 8270 MSSV Microwave Analytical Method: EPA 8270 Preparation Method: EPA 3546 Acenaphthene ND ug/kg 390 1 02/20/14 16:05 02/26/14 20:12 83-32-9 Acenaphthylene ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 208-96-8 Aniline ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 62-53-3 1 Anthracene ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 120-12-7 ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 56-55-3 Benzo(a)anthracene 1 Benzo(a)pyrene ND ua/ka 390 02/20/14 16:05 02/26/14 20:12 50-32-8 1 Benzo(b)fluoranthene ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 205-99-2 1 Benzo(g,h,i)perylene ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 191-24-2 1 390 02/20/14 16:05 02/26/14 20:12 207-08-9 Benzo(k)fluoranthene ND ug/kg 1 Benzoic Acid ND ug/kg 1950 02/20/14 16:05 02/26/14 20:12 65-85-0 1 Benzyl alcohol ND ug/kg 780 02/20/14 16:05 02/26/14 20:12 100-51-6 1 4-Bromophenylphenyl ether ND ug/kg 390 1 02/20/14 16:05 02/26/14 20:12 101-55-3 Butylbenzylphthalate ND ug/kg 390 1 02/20/14 16:05 02/26/14 20:12 85-68-7 4-Chloro-3-methylphenol ND ug/kg 780 1 02/20/14 16:05 02/26/14 20:12 59-50-7

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-07-06 10' Lab ID: 92190355007 Collected: 02/18/14 16:10 Received: 02/20/14 09:30 Matrix: Solid

Results reported on a "drv-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV Microwave	Analytical Meth	od: EPA 8270	Preparation Met	hod: EF	PA 3546			
4-Chloroaniline	ND ug/	′kg	1950	1	02/20/14 16:05	02/26/14 20:12	106-47-8	
bis(2-Chloroethoxy)methane	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12	111-91-1	
ois(2-Chloroethyl) ether	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12	111-44-4	
ois(2-Chloroisopropyl) ether	ND ug/	kg	390	1	02/20/14 16:05	02/26/14 20:12	108-60-1	
2-Chloronaphthalene	ND ug/	-	390	1	02/20/14 16:05	02/26/14 20:12	91-58-7	
2-Chlorophenol	ND ug/	•	390	1	02/20/14 16:05	02/26/14 20:12	95-57-8	
4-Chlorophenylphenyl ether	ND ug/	•	390	1		02/26/14 20:12		
Chrysene	ND ug/	J	390	1		02/26/14 20:12		
Dibenz(a,h)anthracene	ND ug/	•	390	1		02/26/14 20:12		
Dibenzofuran	ND ug/	-	390	1		02/26/14 20:12		
1,2-Dichlorobenzene	ND ug/	•	390	1		02/26/14 20:12		
1,3-Dichlorobenzene	ND ug/	•	390	1		02/26/14 20:12		
1,4-Dichlorobenzene	ND ug/	•	390	1		02/26/14 20:12		
3,3'-Dichlorobenzidine	ND ug/	•	1950	1		02/26/14 20:12		
2,4-Dichlorophenol	ND ug/	-	390	1		02/26/14 20:12		
Diethylphthalate	ND ug/	-	390	1		02/26/14 20:12		
2,4-Dimethylphenol	ND ug/	J	390	1		02/26/14 20:12		
	-	•	390	1		02/26/14 20:12		
Dimethylphthalate	ND ug/	•						
Di-n-butylphthalate	ND ug/	-	390 780	1 1		02/26/14 20:12 02/26/14 20:12		
4,6-Dinitro-2-methylphenol	ND ug/	•				02/26/14 20:12		
2,4-Dinitrophenol	ND ug/	•	1950	1				
2,4-Dinitrotoluene	ND ug/	•	390	1		02/26/14 20:12		
2,6-Dinitrotoluene	ND ug/	•	390	1		02/26/14 20:12		
Di-n-octylphthalate	ND ug/	-	390	1		02/26/14 20:12		
ois(2-Ethylhexyl)phthalate	ND ug/	•	390	1		02/26/14 20:12		
Fluoranthene	ND ug/	•	390	1		02/26/14 20:12		
Fluorene	ND ug/	•	390	1		02/26/14 20:12		
Hexachloro-1,3-butadiene	ND ug/	•	390	1		02/26/14 20:12		
Hexachlorobenzene	ND ug/	•	390	1		02/26/14 20:12		
Hexachlorocyclopentadiene	ND ug/	′kg	390	1		02/26/14 20:12		
Hexachloroethane	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12	67-72-1	
ndeno(1,2,3-cd)pyrene	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12	193-39-5	
sophorone	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12	78-59-1	
1-Methylnaphthalene	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12	90-12-0	
2-Methylnaphthalene	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12	91-57-6	
2-Methylphenol(o-Cresol)	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12	95-48-7	
3&4-Methylphenol(m&p Cresol)	ND ug/	′kg	390	1	02/20/14 16:05	02/26/14 20:12		
Naphthalene	ND ug/		390	1	02/20/14 16:05	02/26/14 20:12	91-20-3	
2-Nitroaniline	ND ug/	′kg	1950	1	02/20/14 16:05	02/26/14 20:12	88-74-4	
3-Nitroaniline	ND ug/	•	1950	1	02/20/14 16:05	02/26/14 20:12	99-09-2	
1-Nitroaniline	ND ug/	•	780	1	02/20/14 16:05	02/26/14 20:12	100-01-6	
Nitrobenzene	ND ug/	•	390	1		02/26/14 20:12		
2-Nitrophenol	ND ug/	-	390	1		02/26/14 20:12		
4-Nitrophenol	ND ug/	•	1950	1		02/26/14 20:12		
N-Nitrosodimethylamine	ND ug/	-	390	1		02/26/14 20:12		
N-Nitroso-di-n-propylamine	ND ug/	-	390	1		02/26/14 20:12		

ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-07-06 10' Lab ID: 92190355007 Collected: 02/18/14 16:10 Received: 02/20/14 09:30 Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV Microwave Analytical Method: EPA 8270 Preparation Method: EPA 3546 N-Nitrosodiphenylamine ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 86-30-6 Pentachlorophenol ND ug/kg 1950 02/20/14 16:05 02/26/14 20:12 87-86-5 Phenanthrene ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 85-01-8 1 Phenol ND ug/kg 390 1 02/20/14 16:05 02/26/14 20:12 108-95-2 390 Pyrene ND ug/kg 1 02/20/14 16:05 02/26/14 20:12 129-00-0 1,2,4-Trichlorobenzene ND ug/kg 390 02/20/14 16:05 02/26/14 20:12 120-82-1 1 390 02/20/14 16:05 02/26/14 20:12 95-95-4 2,4,5-Trichlorophenol ND ug/kg 1 390 2,4,6-Trichlorophenol 02/20/14 16:05 02/26/14 20:12 88-06-2 ND ug/kg 1 Surrogates Nitrobenzene-d5 (S) 68 % 23-110 02/20/14 16:05 02/26/14 20:12 4165-60-0 2-Fluorobiphenyl (S) 63 % 30-110 1 02/20/14 16:05 02/26/14 20:12 321-60-8 Terphenyl-d14 (S) 54 % 28-110 1 02/20/14 16:05 02/26/14 20:12 1718-51-0 Phenol-d6 (S) 74 % 22-110 02/20/14 16:05 02/26/14 20:12 13127-88-3 1 13-110 02/20/14 16:05 02/26/14 20:12 367-12-4 2-Fluorophenol (S) 70 % 1 2,4,6-Tribromophenol (S) 84 % 27-110 02/20/14 16:05 02/26/14 20:12 118-79-6 1 8260/5035A Volatile Organics Analytical Method: EPA 8260 ND ug/kg 2280 25 02/21/14 19:43 67-64-1 Acetone Benzene ND ug/kg 114 25 02/21/14 19:43 71-43-2 02/21/14 19:43 108-86-1 Bromobenzene ND ug/kg 114 25 Bromochloromethane ND ug/kg 114 25 02/21/14 19:43 74-97-5 Bromodichloromethane ND ug/kg 114 25 02/21/14 19:43 75-27-4 Bromoform ND ug/kg 114 25 02/21/14 19:43 75-25-2 **Bromomethane** ND ug/kg 228 25 02/21/14 19:43 74-83-9 2280 25 2-Butanone (MEK) ND ug/kg 02/21/14 19:43 78-93-3 n-Butvlbenzene ND ua/ka 114 25 02/21/14 19:43 104-51-8 sec-Butylbenzene ND ug/kg 114 25 02/21/14 19:43 135-98-8 tert-Butylbenzene 114 25 ND ug/kg 02/21/14 19:43 98-06-6 Carbon tetrachloride ND ug/kg 114 25 02/21/14 19:43 56-23-5 Chlorobenzene ND ug/kg 114 25 02/21/14 19:43 108-90-7 228 25 Chloroethane ND ug/kg 02/21/14 19:43 75-00-3 25 Chloroform ND ug/kg 114 02/21/14 19:43 67-66-3 25 Chloromethane ND ug/kg 228 02/21/14 19:43 74-87-3 2-Chlorotoluene ND ug/kg 114 25 02/21/14 19:43 95-49-8 114 25 02/21/14 19:43 106-43-4 4-Chlorotoluene ND ug/kg 25 1,2-Dibromo-3-chloropropane ND ug/kg 114 02/21/14 19:43 96-12-8 Dibromochloromethane ND ug/kg 114 25 02/21/14 19:43 124-48-1 1,2-Dibromoethane (EDB) ND ug/kg 114 25 02/21/14 19:43 106-93-4 114 25 02/21/14 19:43 74-95-3 Dibromomethane ND ug/kg 114 25 02/21/14 19:43 95-50-1 1.2-Dichlorobenzene ND ug/kg 25 1,3-Dichlorobenzene ND ug/kg 114 02/21/14 19:43 541-73-1 25 1,4-Dichlorobenzene ND ug/kg 114 02/21/14 19:43 106-46-7 228 25 D3 Dichlorodifluoromethane ND ug/kg 02/21/14 19:43 75-71-8 25 1,1-Dichloroethane ND ug/kg 114 02/21/14 19:43 75-34-3 1,2-Dichloroethane ND ug/kg 114 25 02/21/14 19:43 107-06-2 1,1-Dichloroethene ND ug/kg 114 25 02/21/14 19:43 75-35-4

ANALYTICAL RESULTS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Sample: B-07-06 10' Lab ID: 92190355007 Collected: 02/18/14 16:10 Received: 02/20/14 09:30 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260/5035A Volatile Organics	Analytical Met	hod: EPA 826	0					
cis-1,2-Dichloroethene	ND uç	g/kg	114	25		02/21/14 19:43	156-59-2	
trans-1,2-Dichloroethene	ND uç	g/kg	114	25		02/21/14 19:43	156-60-5	
1,2-Dichloropropane	ND uç		114	25		02/21/14 19:43		
1,3-Dichloropropane	ND uç		114	25		02/21/14 19:43	142-28-9	
2,2-Dichloropropane	ND uç		114	25		02/21/14 19:43	594-20-7	
1,1-Dichloropropene	ND uç		114	25		02/21/14 19:43	563-58-6	
cis-1,3-Dichloropropene	ND uç		114	25		02/21/14 19:43	10061-01-5	
trans-1,3-Dichloropropene	ND uç		114	25		02/21/14 19:43		
Diisopropyl ether	ND uç		114	25		02/21/14 19:43	108-20-3	
Ethylbenzene	ND ug		114	25		02/21/14 19:43		
Hexachloro-1,3-butadiene	ND uç		114	25		02/21/14 19:43		
2-Hexanone	ND uç		1140	25		02/21/14 19:43		
Isopropylbenzene (Cumene)	ND uç		114	25		02/21/14 19:43		
p-Isopropyltoluene	ND uç		114	25		02/21/14 19:43		
Methylene Chloride	ND uç		456	25		02/21/14 19:43		
4-Methyl-2-pentanone (MIBK)	ND uç		1140	25		02/21/14 19:43		
Methyl-tert-butyl ether	ND uç		114	25		02/21/14 19:43		
Naphthalene	ND uç		114	25		02/21/14 19:43		
•	119 uç		114	25 25		02/21/14 19:43		
n-Propylbenzene Styrene	ND uç		114	25 25		02/21/14 19:43		
-			114	25 25		02/21/14 19:43		
1,1,1,2-Tetrachloroethane	ND ug			25 25				
1,1,2,2-Tetrachloroethane	ND ug		114			02/21/14 19:43		
Tetrachloroethene	ND ug		114	25		02/21/14 19:43		
Toluene	ND uç		114	25		02/21/14 19:43		
1,2,3-Trichlorobenzene	ND uç		114	25		02/21/14 19:43		
1,2,4-Trichlorobenzene	ND uç		114	25		02/21/14 19:43		
1,1,1-Trichloroethane	ND uç		114	25		02/21/14 19:43		
1,1,2-Trichloroethane	ND uç		114	25		02/21/14 19:43		
Trichloroethene	ND uç		114	25		02/21/14 19:43		
Trichlorofluoromethane	ND uç		114	25		02/21/14 19:43		
1,2,3-Trichloropropane	ND uç		114	25		02/21/14 19:43		
1,2,4-Trimethylbenzene	ND uç		114	25		02/21/14 19:43		
1,3,5-Trimethylbenzene	ND uç		114	25		02/21/14 19:43		
Vinyl acetate	ND uç		1140	25		02/21/14 19:43		
Vinyl chloride	ND uç		228	25		02/21/14 19:43		
Xylene (Total)	ND uç		228	25		02/21/14 19:43		
m&p-Xylene	ND ug		228	25		02/21/14 19:43		
o-Xylene	ND uç	g/kg	114	25		02/21/14 19:43	95-47-6	
Surrogates				0.5		00/04/: : : : : : : : : : : : : : : : : : :	0007.55.7	
Toluene-d8 (S)	98 %		70-130	25		02/21/14 19:43		
4-Bromofluorobenzene (S)	90 %		70-130	25		02/21/14 19:43		
1,2-Dichloroethane-d4 (S)	76 %)	70-132	25		02/21/14 19:43	17060-07-0	
Percent Moisture	Analytical Met	hod: ASTM D2	2974-87					
Percent Moisture	15.4 %)	0.10	1		03/03/14 11:58		

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.:

92190355

QC Batch: GCSV/12153 Analysis Method:

EPA 8015 - Alcohol-Glycol

QC Batch Method:

EPA 8015 - Alcohol-Glycol

Analysis Description:

Matrix: Water

EPA 8015 Modified

Associated Lab Samples:

92190355003, 92190355004, 92190355005

METHOD BLANK: 1052253

Blank Result

Associated Lab Samples:

Units

Reporting Limit

Analyzed Qualifiers

Ethylene glycol

mg/L

ND

10.0 02/26/14 12:29

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Parameter

1052254

Units

60163155001

Result

ND

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

79-129

Qualifiers

Ethylene glycol

Ethylene glycol

mg/L

Units

mg/L

250

218

87

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

1052255

1052256

284

MSD

250

MSD

MS % Rec

MSD % Rec

% Rec Limits

Qual

MS Spike Spike Conc. Conc.

250

MS Result

Result 261

112

67-133 103

RPD 8

Date: 03/08/2014 12:30 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: GCV/7826
QC Batch Method: EPA 5035A/5030B

Analysis Method: EPA 8015 Modified

Analysis Description: Gasoline Range Organics

Qualifiers

Associated Lab Samples: 92190355001, 92190355002

METHOD BLANK: 1142278 Matrix: Solid

Associated Lab Samples: 92190355001, 92190355002

Parameter Units Blank Reporting
Result Limit Analyzed

Range Organics mg/kg ND 6.0 02/21/14 12:12

Gasoline Range Organics mg/kg ND 6.0 02/21/14 12:12 4-Bromofluorobenzene (S) % 96 70-167 02/21/14 12:12

LABORATORY CONTROL SAMPLE: 1142279

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Gasoline Range Organics mg/kg 49.8 55.4 111 70-165 4-Bromofluorobenzene (S) 105 70-167 %

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1142280 1142281

MSD MS 92190355001 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual 24.0 Gasoline Range Organics mg/kg 44.5 44.5 77.8 89.0 121 146 47-187 13 4-Bromofluorobenzene (S) % 130 122 70-167

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1142282 1142283

MS MSD 92190355002 MS MSD MS Spike Spike MSD % Rec **RPD** Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual 36.8 Gasoline Range Organics mg/kg 40 40 91.6 95.6 137 147 47-187 4 4-Bromofluorobenzene (S) % 161 162 70-167

1800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

4-Bromofluorobenzene (S)

Date: 03/08/2014 12:30 PM

QC Batch: GCV/7833 Analysis Method: EPA 8015 Modified
QC Batch Method: EPA 5035A/5030B Analysis Description: Gasoline Range Organics

Associated Lab Samples: 92190355006, 92190355007

METHOD BLANK: 1148112 Matrix: Solid

%

Associated Lab Samples: 92190355006, 92190355007

Blank Reporting
Result Limit Analyzed Qualifiers

Gasoline Range Organics mg/kg ND 6.0 02/28/14 15:21

LABORATORY CONTROL SAMPLE: 1148113

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Gasoline Range Organics mg/kg 50 48.9 98 70-165 4-Bromofluorobenzene (S) % 98 70-167

101

70-167

02/28/14 15:21

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1148114 1148115

MSD MS 92190992004 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual ND Gasoline Range Organics mg/kg 48.6 48.6 51.6 53.5 106 110 47-187 3 4-Bromofluorobenzene (S) % 100 96 70-167

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: GCV/7860 Analysis Method: MADEP VPH
QC Batch Method: MADEP VPH Analysis Description: VPH NC Soil

Associated Lab Samples: 92190355006, 92190355007

METHOD BLANK: 1152103 Matrix: Solid

Associated Lab Samples: 92190355006, 92190355007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Aliphatic (C05-C08)	mg/kg	ND	2.5	03/06/14 19:42	N2
Aliphatic (C09-C12)	mg/kg	ND	2.5	03/06/14 19:42	N2
Aromatic (C09-C10)	mg/kg	ND	2.5	03/06/14 19:42	N2
4-Bromofluorobenzene (FID) (S)	%	121	70-130	03/06/14 19:42	
4-Bromofluorobenzene (PID) (S)	%	108	70-130	03/06/14 19:42	

LABORATORY CONTROL SAMPLE	& LCSD: 1152104		11	52105						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Aliphatic (C05-C08)	mg/kg	7.5	6.6	6.4	88	85	70-130	4	25	N2
Aliphatic (C09-C12)	mg/kg	7.5	4.3	4.1	57	55	30-130	4	25	N2
Aromatic (C09-C10)	mg/kg	2.5	ND	ND	92	87	70-130		25	N2
4-Bromofluorobenzene (FID) (S)	%				75	72	70-130			
4-Bromofluorobenzene (PID) (S)	%				81	77	70-130			

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: GCV/7835 Analysis Method: MADEP VPH
QC Batch Method: MADEP VPH Analysis Description: VPH NC Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

METHOD BLANK: 1148658 Matrix: Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers	
Aliphatic (C05-C08)	ug/L	ND	50.0	03/01/14 20:36	N2	
Aliphatic (C09-C12)	ug/L	ND	50.0	03/01/14 20:36	N2	
Aromatic (C09-C10)	ug/L	ND	50.0	03/01/14 20:36	N2	
4-Bromofluorobenzene (FID) (S)	%	92	70-130	03/01/14 20:36		
4-Bromofluorobenzene (PID) (S)	%	91	70-130	03/01/14 20:36		

LABORATORY CONTROL SAMPLE	1148660									
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Aliphatic (C05-C08)	ug/L	300	272	261	91	87	70-130	4	25	N2
Aliphatic (C09-C12)	ug/L	300	316	297	105	99	30-130	6	25	N2
Aromatic (C09-C10)	ug/L	100	108	105	108	105	70-130	3	25	N2
4-Bromofluorobenzene (FID) (S)	%				103	101	70-130			
4-Bromofluorobenzene (PID) (S)	%				103	102	70-130			

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

FAYETTEVILLE PSA'S 33727.1.1 Project:

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Lead

QC Batch: MPRP/15312 QC Batch Method: EPA 3050

Analysis Method: EPA 6010 Analysis Description: 6010 MET

Associated Lab Samples: 92190355006, 92190355007

METHOD BLANK: 1145621 Matrix: Solid

Associated Lab Samples: 92190355006, 92190355007

Blank Reporting Limit Parameter Result Qualifiers Units Analyzed Chromium ND 0.50 02/27/14 01:27 mg/kg 02/27/14 01:27 mg/kg ND 0.50

LABORATORY CONTROL SAMPLE: 1145622

Spike LCS LCS % Rec Result Parameter Units Conc. % Rec Limits Qualifiers Chromium mg/kg 50 50.7 101 80-120 Lead 50 51.5 103 80-120 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1145623 1145624 MSD MS 92190738001 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual 2.85 75-125 Chromium mg/kg 43.1 46.3 46.0 49.7 100 101 8 ug/g 0.905 Lead mg/kg 43.1 46.3 46.3 48.2 105 102 75-125 4 ug/g

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Lead

QC Batch: MPRP/15285 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET

Associated Lab Samples: 92190355003, 92190355004, 92190355005

METHOD BLANK: 1142293 Matrix: Water

ug/L

1142294

Associated Lab Samples: 92190355003, 92190355004, 92190355005

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersChromiumug/LND5.002/21/14 20:58

ND

5.0

02/21/14 20:58

LABORATORY CONTROL SAMPLE:

Date: 03/08/2014 12:30 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chromium ug/L 500 509 102 80-120 Lead ug/L 500 501 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1142295 1142296

MS MSD

	921	90489009	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Chromium	ug/L	28.9	500	500	523	523	99	99	75-125	0	
Lead	ug/L	20.4	500	500	468	469	90	90	75-125	0	

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: MSV/25905 Analysis Method: SM 6200B
QC Batch Method: SM 6200B Analysis Description: 6200B MSV

Associated Lab Samples: 92190355003, 92190355004, 92190355005

METHOD BLANK: 1145841 Matrix: Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L		0.50	02/26/14 18:47	
1,1,1-Trichloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1,2,2-Tetrachloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1,2-Trichloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1-Dichloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,1-Dichloroethene	ug/L	ND	0.50	02/26/14 18:47	
1,1-Dichloropropene	ug/L	ND	0.50	02/26/14 18:47	
1,2,3-Trichlorobenzene	ug/L	ND	2.0	02/26/14 18:47	
1,2,3-Trichloropropane	ug/L	ND	0.50	02/26/14 18:47	
1,2,4-Trichlorobenzene	ug/L	ND	2.0	02/26/14 18:47	
1,2,4-Trimethylbenzene	ug/L	ND	0.50	02/26/14 18:47	
1,2-Dibromo-3-chloropropane	ug/L	ND	1.0	02/26/14 18:47	
1,2-Dibromoethane (EDB)	ug/L	ND	0.50	02/26/14 18:47	
1,2-Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47	
1,2-Dichloroethane	ug/L	ND	0.50	02/26/14 18:47	
1,2-Dichloropropane	ug/L	ND	0.50	02/26/14 18:47	
1,3,5-Trimethylbenzene	ug/L	ND	0.50	02/26/14 18:47	
1,3-Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47	
1,3-Dichloropropane	ug/L	ND	0.50	02/26/14 18:47	
1,4-Dichlorobenzene	ug/L	ND	0.50	02/26/14 18:47	
2,2-Dichloropropane	ug/L	ND	0.50	02/26/14 18:47	
2-Chlorotoluene	ug/L	ND	0.50	02/26/14 18:47	
4-Chlorotoluene	ug/L	ND	0.50	02/26/14 18:47	
Benzene	ug/L	ND	0.50	02/26/14 18:47	
Bromobenzene	ug/L	ND	0.50	02/26/14 18:47	
Bromochloromethane	ug/L	ND	0.50	02/26/14 18:47	
Bromodichloromethane	ug/L	ND	0.50	02/26/14 18:47	
Bromoform	ug/L	ND	0.50	02/26/14 18:47	
Bromomethane	ug/L	ND	5.0	02/26/14 18:47	
Carbon tetrachloride	ug/L	ND	0.50	02/26/14 18:47	
Chlorobenzene	ug/L	ND	0.50	02/26/14 18:47	
Chloroethane	ug/L	ND	1.0	02/26/14 18:47	
Chloroform	ug/L	ND	0.50	02/26/14 18:47	
Chloromethane	ug/L	ND	1.0	02/26/14 18:47	
cis-1,2-Dichloroethene	ug/L	ND	0.50	02/26/14 18:47	
cis-1,3-Dichloropropene	ug/L	ND	0.50	02/26/14 18:47	
Dibromochloromethane	ug/L	ND	0.50	02/26/14 18:47	
Dibromomethane	ug/L	ND	0.50	02/26/14 18:47	
Dichlorodifluoromethane	ug/L	ND	0.50	02/26/14 18:47	
Diisopropyl ether	ug/L	ND	0.50	02/26/14 18:47	
Ethanol	ug/L	ND	200	02/26/14 18:47	
Ethylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Hexachloro-1,3-butadiene	ug/L	ND	2.0	02/26/14 18:47	

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

METHOD BLANK: 1145841 Matrix: Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

		Blank	Reporting		0 110
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Isopropylbenzene (Cumene)	ug/L	ND	0.50	02/26/14 18:47	
m&p-Xylene	ug/L	ND	1.0	02/26/14 18:47	
Methyl-tert-butyl ether	ug/L	ND	0.50	02/26/14 18:47	
Methylene Chloride	ug/L	ND	2.0	02/26/14 18:47	
n-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
n-Propylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Naphthalene	ug/L	ND	2.0	02/26/14 18:47	
o-Xylene	ug/L	ND	0.50	02/26/14 18:47	
sec-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Styrene	ug/L	ND	0.50	02/26/14 18:47	
tert-Butylbenzene	ug/L	ND	0.50	02/26/14 18:47	
Tetrachloroethene	ug/L	ND	0.50	02/26/14 18:47	
Toluene	ug/L	ND	0.50	02/26/14 18:47	
trans-1,2-Dichloroethene	ug/L	ND	0.50	02/26/14 18:47	
trans-1,3-Dichloropropene	ug/L	ND	0.50	02/26/14 18:47	
Trichloroethene	ug/L	ND	0.50	02/26/14 18:47	
Trichlorofluoromethane	ug/L	ND	1.0	02/26/14 18:47	
Vinyl chloride	ug/L	ND	1.0	02/26/14 18:47	
1,2-Dichloroethane-d4 (S)	%	101	70-130	02/26/14 18:47	
4-Bromofluorobenzene (S)	%	98	70-130	02/26/14 18:47	
Toluene-d8 (S)	%	101	70-130	02/26/14 18:47	

LABORATORY CONTROL SAMPLE:	1145842					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
- Faiailletei				// Nec		Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	49.0	98	60-140	
1,1,1-Trichloroethane	ug/L	50	53.7	107	60-140	
1,1,2,2-Tetrachloroethane	ug/L	50	50.2	100	60-140	
1,1,2-Trichloroethane	ug/L	50	52.9	106	60-140	
1,1-Dichloroethane	ug/L	50	49.2	98	60-140	
1,1-Dichloroethene	ug/L	50	48.0	96	60-140	
1,1-Dichloropropene	ug/L	50	51.3	103	60-140	
1,2,3-Trichlorobenzene	ug/L	50	49.1	98	60-140	
1,2,3-Trichloropropane	ug/L	50	49.8	100	60-140	
1,2,4-Trichlorobenzene	ug/L	50	49.1	98	60-140	
1,2,4-Trimethylbenzene	ug/L	50	51.4	103	60-140	
1,2-Dibromo-3-chloropropane	ug/L	50	64.7	129	60-140	
1,2-Dibromoethane (EDB)	ug/L	50	52.8	106	60-140	
1,2-Dichlorobenzene	ug/L	50	48.3	97	60-140	
1,2-Dichloroethane	ug/L	50	47.9	96	60-140	
1,2-Dichloropropane	ug/L	50	50.1	100	60-140	
1,3,5-Trimethylbenzene	ug/L	50	52.4	105	60-140	
1,3-Dichlorobenzene	ug/L	50	47.3	95	60-140	
1,3-Dichloropropane	ug/L	50	51.3	103	60-140	
1,4-Dichlorobenzene	ug/L	50	47.7	95	60-140	

QUALITY CONTROL DATA

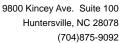
Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

LABORATORY CONTROL SAMPI	LE: 1145842	0 "				
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Qualificio
2,2-Dichloropropane	ug/L	50 50	55.4	111	60-140	
2-Chlorotoluene 4-Chlorotoluene	ug/L	50	48.4	97	60-140 60-140	
	ug/L	50 50	49.8 52.3	100	60-140	
Benzene Bromobenzene	ug/L	50 50	52.3 49.8	105 100	60-140	
Bromochloromethane	ug/L ug/L	50 50	52.0	104	60-140	
Bromodichloromethane	ug/L	50 50	55.3	111	60-140	
Bromoform	ug/L	50 50	44.8	90	60-140	
Bromomethane	ug/L	50	36.3	73	60-140	
Carbon tetrachloride	ug/L	50 50	46.6	93	60-140	
Chlorobenzene	ug/L	50	50.6	101	60-140	
Chloroethane	ug/L	50 50	48.7	97	60-140	
Chloroform	ug/L	50 50	51.2	102	60-140	
Chloromethane	ug/L	50	45.3	91	60-140	
cis-1,2-Dichloroethene	ug/L	50 50	48.1	96	60-140	
cis-1,3-Dichloropropene	ug/L	50	48.3	97	60-140	
Dibromochloromethane	ug/L	50	48.0	96	60-140	
Dibromomethane	ug/L	50	50.6	101	60-140	
Dichlorodifluoromethane	ug/L	50	38.5	77	60-140	
Diisopropyl ether	ug/L	50	50.4	101	60-140	
Ethanol	ug/L	2000	1710	85	60-140	
Ethylbenzene	ug/L	50	50.8	102	60-140	
Hexachloro-1,3-butadiene	ug/L	50	50.4	101	60-140	
sopropylbenzene (Cumene)	ug/L	50	54.0	108	60-140	
m&p-Xylene	ug/L	100	105	105	60-140	
Methyl-tert-butyl ether	ug/L	50	50.5	101	60-140	
Methylene Chloride	ug/L	50	53.9	108	60-140	
n-Butylbenzene	ug/L	50	50.8	102	60-140	
n-Propylbenzene	ug/L	50	52.7	105	60-140	
Naphthalene	ug/L	50	49.0	98	60-140	
o-Xylene	ug/L	50	52.2	104	60-140	
sec-Butylbenzene	ug/L	50	52.1	104	60-140	
Styrene	ug/L	50	55.3	111	60-140	
ert-Butylbenzene	ug/L	50	51.8	104	60-140	
Tetrachloroethene	ug/L	50	51.2	102	60-140	
Toluene	ug/L	50	50.5	101	60-140	
rans-1,2-Dichloroethene	ug/L	50	46.7	93	60-140	
rans-1,3-Dichloropropene	ug/L	50	47.5	95	60-140	
Trichloroethene	ug/L	50	49.9	100	60-140	
Trichlorofluoromethane	ug/L	50	50.3	101	60-140	
Vinyl chloride	ug/L	50	48.4	97	60-140	
1,2-Dichloroethane-d4 (S)	%			99	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			99	70-130	

Project: FAYETTEVILLE PSA'S 33727.1.1


Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

MATRIX SPIKE & MATRIX SPIR	KE DUPLICAT	E: 11458	_		1145844						
			MS	MSD							
_		190689006	Spike	Spike	MS	MSD	MS	MSD	% Rec		_
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
,1,1,2-Tetrachloroethane	ug/L	ND	20	20	17.9	14.3	89	72	60-140	22	
,1,1-Trichloroethane	ug/L	ND	20	20	21.3	17.1	106	85	60-140	22	
,1,2,2-Tetrachloroethane	ug/L	ND	20	20	20.6	15.3	103	76	60-140	30	
1,2-Trichloroethane	ug/L	ND	20	20	21.3	16.5	107	83	60-140	25	
1-Dichloroethane	ug/L	ND	20	20	21.0	16.8	105	84	60-140	22	
1-Dichloroethene	ug/L	ND	20	20	20.2	16.8	101	84	60-140	19	
1-Dichloropropene	ug/L	ND	20	20	21.4	17.2	107	86	60-140	22	
2,3-Trichlorobenzene	ug/L	ND	20	20	17.4	14.0	87	70	60-140	22	
2,3-Trichloropropane	ug/L	ND	20	20	20.3	14.8	101	74	60-140	31 R1	
2,4-Trichlorobenzene	ug/L	ND	20	20	17.4	14.0	87	70	60-140	22	
2,4-Trimethylbenzene	ug/L	ND	20	20	19.3	15.1	96	76	60-140	24	
2-Dibromo-3-chloropropane	ug/L	ND	20	20	22.5	16.2	113	81	60-140	32 R1	
2-Dibromoethane (EDB)	ug/L	ND	20	20	21.5	16.4	108	82	60-140	27	
2-Dichlorobenzene	ug/L	ND	20	20	18.2	14.2	91	71	60-140	24	
2-Dichloroethane	ug/L	2.4	20	20	23.0	18.1	103	79	60-140	24	
2-Dichloropropane	ug/L	ND	20	20	20.6	16.0	103	80	60-140	25	
3,5-Trimethylbenzene	ug/L	ND	20	20	19.5	15.5	97	77	60-140	23	
3-Dichlorobenzene	ug/L	ND	20	20	17.7	13.9	89	70	60-140	24	
3-Dichloropropane	ug/L	ND	20	20	21.2	16.2	106	81	60-140	26	
4-Dichlorobenzene	ug/L	ND	20	20	17.6	14.1	88	70	60-140	23	
2-Dichloropropane	ug/L	ND	20	20	18.8	15.5	94	78	60-140	19	
Chlorotoluene	ug/L	ND	20	20	18.7	14.9	94	74	60-140	23	
Chlorotoluene	ug/L	ND	20	20	19.0	14.9	95	74	60-140	24	
enzene	ug/L ug/L	ND	20	20	20.7	16.6	104	83	60-140	22	
romobenzene	ug/L	ND	20	20	19.0	14.8	95	74	60-140	25	
romochloromethane	-	ND	20	20	22.3	17.5	112	88	60-140	23 24	
romodichloromethane	ug/L	ND	20	20	19.5	17.5	98	78	60-140	22	
	ug/L	ND					98 78		60-140		
romoform romomethane	ug/L	ND	20 20	20 20	15.7 14.7	13.0 15.1	76 74	65 76	60-140	19 3	
	ug/L	ND									
arbon tetrachloride	ug/L	ND	20	20	17.5	15.6	88	78 79	60-140 60-140	11 24	
hlorobenzene	ug/L	ND ND	20	20	19.8	15.6	99	78 07			
hloroethane	ug/L		20	20	22.3	19.5	111	97	60-140	13	
hloroform	ug/L	ND ND	20	20	21.3	16.7	106	83	60-140	24	
hloromethane	ug/L		20	20	18.5	17.8	93	89	60-140	4	
s-1,2-Dichloroethene	ug/L	ND ND	20	20	20.4	16.2	102	81	60-140	23	
s-1,3-Dichloropropene	ug/L		20	20	16.9	13.6	85	68	60-140	21	
ibromochloromethane	ug/L	ND	20	20	17.2	13.8	86	69	60-140	22	
bromomethane	ug/L	ND	20	20	20.0	15.2	100	76	60-140	27	
ichlorodifluoromethane	ug/L	ND	20	20	15.3	17.9	77	90	60-140	16	
iisopropyl ether	ug/L	0.55	20	20	22.1	17.1	108	83	60-140	26	
hanol	ug/L	ND	800	800	772	559	97	70	60-140	32 R1	
hylbenzene	ug/L	ND	20	20	19.7	15.7	99	78	60-140	23	
exachloro-1,3-butadiene	ug/L	ND	20	20	17.6	14.2	88	71	60-140		
opropylbenzene (Cumene)	ug/L	ND	20	20	20.5	16.2	102	81	60-140	23	
&p-Xylene	ug/L	ND	40	40	39.0	31.5	97	79	60-140	21	
ethyl-tert-butyl ether	ug/L	6.6	20	20	28.2	22.8	108	81	60-140		
lethylene Chloride	ug/L	ND	20	20	21.6	16.0	108	80	60-140	30	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 11458	43		1145844						
			MS	MSD							
	92	190689006	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
n-Butylbenzene	ug/L	ND	20	20	17.8	14.6	89	73	60-140	20	
n-Propylbenzene	ug/L	ND	20	20	19.8	15.8	99	79	60-140	23	
Naphthalene	ug/L	ND	20	20	18.6	14.2	93	71	60-140	27	
o-Xylene	ug/L	ND	20	20	20.0	15.8	100	79	60-140	24	
sec-Butylbenzene	ug/L	ND	20	20	19.4	15.7	97	78	60-140	21	
Styrene	ug/L	ND	20	20	20.8	16.2	104	81	60-140	25	
tert-Butylbenzene	ug/L	ND	20	20	19.4	15.6	97	78	60-140	22	
Tetrachloroethene	ug/L	ND	20	20	19.9	16.1	99	81	60-140	21	
Toluene	ug/L	ND	20	20	19.7	15.8	99	79	60-140	22	
trans-1,2-Dichloroethene	ug/L	ND	20	20	19.3	15.6	97	78	60-140	21	
trans-1,3-Dichloropropene	ug/L	ND	20	20	16.9	13.6	85	68	60-140	21	
Trichloroethene	ug/L	ND	20	20	19.3	15.3	96	77	60-140	23	
Trichlorofluoromethane	ug/L	ND	20	20	21.3	18.2	106	91	60-140	15	
Vinyl chloride	ug/L	ND	20	20	20.1	18.6	101	93	60-140	8	
1,2-Dichloroethane-d4 (S)	%						101	100	70-130		
4-Bromofluorobenzene (S)	%						100	100	70-130		
Toluene-d8 (S)	%						100	100	70-130		

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: MSV/25862 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV Low Level

Associated Lab Samples: 92190355003, 92190355004, 92190355005

METHOD BLANK: 1142847 Matrix: Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L	ND	1.0	02/22/14 00:19	
1,1,1-Trichloroethane	ug/L	ND ND	1.0	02/22/14 00:19	
1,1,2,2-Tetrachloroethane	ug/L	ND ND	1.0	02/22/14 00:19	
1,1,2,Trichloroethane	ug/L	ND ND	1.0	02/22/14 00:19	
1,1-Dichloroethane	ug/L	ND ND	1.0	02/22/14 00:19	
1,1-Dichloroethene	ug/L	ND ND	1.0	02/22/14 00:19	
1,1-Dichloropropene	ug/L	ND ND	1.0	02/22/14 00:19	
1,2,3-Trichlorobenzene	ug/L	ND ND	1.0	02/22/14 00:19	
	-	ND ND	1.0		
1,2,3-Trichloropropane	ug/L	ND ND	_	02/22/14 00:19 02/22/14 00:19	
1,2,4-Trichlorobenzene	ug/L		1.0		
1,2-Dibromo-3-chloropropane	ug/L	ND ND	5.0	02/22/14 00:19	
1,2-Dibromoethane (EDB)	ug/L		1.0	02/22/14 00:19	
1,2-Dichlorobenzene	ug/L	ND	1.0	02/22/14 00:19	
1,2-Dichloroethane	ug/L	ND	1.0	02/22/14 00:19	
1,2-Dichloropropane	ug/L	ND	1.0	02/22/14 00:19	
1,3-Dichlorobenzene	ug/L	ND	1.0	02/22/14 00:19	
1,3-Dichloropropane	ug/L	ND	1.0	02/22/14 00:19	
1,4-Dichlorobenzene	ug/L	ND	1.0	02/22/14 00:19	
2,2-Dichloropropane	ug/L	ND	1.0	02/22/14 00:19	
2-Butanone (MEK)	ug/L	ND	5.0	02/22/14 00:19	
2-Chlorotoluene	ug/L	ND	1.0	02/22/14 00:19	
2-Hexanone	ug/L	ND	5.0	02/22/14 00:19	
4-Chlorotoluene	ug/L	ND	1.0	02/22/14 00:19	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	02/22/14 00:19	
Acetone	ug/L	ND	25.0	02/22/14 00:19	
Benzene	ug/L	ND	1.0	02/22/14 00:19	
Bromobenzene	ug/L	ND	1.0	02/22/14 00:19	
Bromochloromethane	ug/L	ND	1.0	02/22/14 00:19	
Bromodichloromethane	ug/L	ND	1.0	02/22/14 00:19	
Bromoform	ug/L	ND	1.0	02/22/14 00:19	
Bromomethane	ug/L	ND	2.0	02/22/14 00:19	
Carbon tetrachloride	ug/L	ND	1.0	02/22/14 00:19	
Chlorobenzene	ug/L	ND	1.0	02/22/14 00:19	
Chloroethane	ug/L	ND	1.0	02/22/14 00:19	
Chloroform	ug/L	ND	1.0	02/22/14 00:19	
Chloromethane	ug/L	ND	1.0	02/22/14 00:19	
cis-1,2-Dichloroethene	ug/L	ND	1.0	02/22/14 00:19	
cis-1,3-Dichloropropene	ug/L	ND	1.0	02/22/14 00:19	
Dibromochloromethane	ug/L	ND	1.0	02/22/14 00:19	
Dibromomethane	ug/L	ND	1.0	02/22/14 00:19	
Dichlorodifluoromethane	ug/L	ND	1.0	02/22/14 00:19	
Diisopropyl ether	ug/L	ND	1.0	02/22/14 00:19	
Ethylbenzene	ug/L	ND	1.0	02/22/14 00:19	

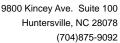
QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

METHOD BLANK: 1142847 Matrix: Water

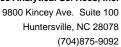

Associated Lab Samples: 92190355003, 92190355004, 92190355005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	 ug/L	ND ND	1.0	02/22/14 00:19	
m&p-Xylene	ug/L	ND	2.0	02/22/14 00:19	
Methyl-tert-butyl ether	ug/L	ND	1.0	02/22/14 00:19	
Methylene Chloride	ug/L	ND	2.0	02/22/14 00:19	
Naphthalene	ug/L	ND	1.0	02/22/14 00:19	
o-Xylene	ug/L	ND	1.0	02/22/14 00:19	
p-Isopropyltoluene	ug/L	ND	1.0	02/22/14 00:19	
Styrene	ug/L	ND	1.0	02/22/14 00:19	
Tetrachloroethene	ug/L	ND	1.0	02/22/14 00:19	
Toluene	ug/L	ND	1.0	02/22/14 00:19	
trans-1,2-Dichloroethene	ug/L	ND	1.0	02/22/14 00:19	
trans-1,3-Dichloropropene	ug/L	ND	1.0	02/22/14 00:19	
Trichloroethene	ug/L	ND	1.0	02/22/14 00:19	
Trichlorofluoromethane	ug/L	ND	1.0	02/22/14 00:19	
Vinyl acetate	ug/L	ND	2.0	02/22/14 00:19	
Vinyl chloride	ug/L	ND	1.0	02/22/14 00:19	
Xylene (Total)	ug/L	ND	2.0	02/22/14 00:19	
1,2-Dichloroethane-d4 (S)	%	96	70-130	02/22/14 00:19	
4-Bromofluorobenzene (S)	%	98	70-130	02/22/14 00:19	
Toluene-d8 (S)	%	97	70-130	02/22/14 00:19	

LABORATORY CONTROL SAMPL	.E: 1142848					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.2	100	70-130	
1,1,1-Trichloroethane	ug/L	50	43.0	86	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	48.8	98	70-130	
1,1,2-Trichloroethane	ug/L	50	48.2	96	70-130	
1,1-Dichloroethane	ug/L	50	42.1	84	70-130	
1,1-Dichloroethene	ug/L	50	40.6	81	70-132	
1,1-Dichloropropene	ug/L	50	43.0	86	70-130	
1,2,3-Trichlorobenzene	ug/L	50	46.5	93	70-135	
1,2,3-Trichloropropane	ug/L	50	49.3	99	70-130	
1,2,4-Trichlorobenzene	ug/L	50	48.2	96	70-134	
1,2-Dibromo-3-chloropropane	ug/L	50	47.6	95	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	49.8	100	70-130	
1,2-Dichlorobenzene	ug/L	50	50.1	100	70-130	
1,2-Dichloroethane	ug/L	50	43.2	86	70-130	
1,2-Dichloropropane	ug/L	50	46.5	93	70-130	
1,3-Dichlorobenzene	ug/L	50	48.8	98	70-130	
1,3-Dichloropropane	ug/L	50	50.5	101	70-130	
1,4-Dichlorobenzene	ug/L	50	49.8	100	70-130	
2,2-Dichloropropane	ug/L	50	39.4	79	58-145	
2-Butanone (MEK)	ug/L	100	87.8	88	70-145	
2-Chlorotoluene	ug/L	50	49.7	99	70-130	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

LABORATORY CONTROL SAMPL	E: 1142848	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Hexanone	ug/L	100	97.5	97	70-144	
4-Chlorotoluene	ug/L	50	51.1	102	70-130	
I-Methyl-2-pentanone (MIBK)	ug/L	100	94.2	94	70-140	
Acetone	ug/L	100	86.4	86	50-175	
Benzene	ug/L	50	47.6	95	70-130	
Bromobenzene	ug/L	50	49.8	100	70-130	
Bromochloromethane	ug/L	50	43.3	87	70-130	
Bromodichloromethane	ug/L	50	47.2	94	70-130	
Bromoform	ug/L	50	49.8	100	70-130	
romomethane	ug/L	50	43.6	87	54-130	
Carbon tetrachloride	ug/L	50	48.1	96	70-132	
Chlorobenzene	ug/L	50	48.8	98	70-130	
Chloroethane	ug/L	50	39.9	80	64-134	
Chloroform	ug/L	50	41.9	84	70-130	
Chloromethane	ug/L	50	44.1	88	64-130	
is-1,2-Dichloroethene	ug/L	50	42.1	84	70-131	
is-1,3-Dichloropropene	ug/L	50	45.0	90	70-130	
Dibromochloromethane	ug/L	50	50.4	101	70-130	
ibromomethane	ug/L	50	46.6	93	70-131	
Dichlorodifluoromethane	ug/L	50	46.0	92	56-130	
iisopropyl ether	ug/L	50	43.4	87	70-130	
thylbenzene	ug/L	50	48.4	97	70-130	
lexachloro-1,3-butadiene	ug/L	50	46.4	93	70-130	
n&p-Xylene	ug/L	100	99.8	100	70-130	
lethyl-tert-butyl ether	ug/L	50	44.4	89	70-130	
lethylene Chloride	ug/L	50	50.2	100	63-130	
laphthalene	ug/L	50	48.2	96	70-138	
-Xylene	ug/L	50	49.4	99	70-130	
-Isopropyltoluene	ug/L	50	50.0	100	70-130	
Styrene	ug/L	50	51.0	102	70-130	
etrachloroethene	ug/L	50	49.6	99	70-130	
oluene	ug/L	50	46.5	93	70-130	
rans-1,2-Dichloroethene	ug/L	50	40.9	82	70-130	
rans-1,3-Dichloropropene	ug/L	50	47.1	94	70-132	
richloroethene	ug/L	50	46.1	92	70-130	
richlorofluoromethane	ug/L	50	43.7	87	62-133	
'inyl acetate	ug/L	100	84.4	84	66-157	
'inyl chloride	ug/L	50	44.1	88	69-130	
(ylene (Total)	ug/L	150	149	99	70-130	
,2-Dichloroethane-d4 (S)	% %			95	70-130	
-Bromofluorobenzene (S)	%			96	70-130	
oluene-d8 (S)	%			97	70-130	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLICAT	E: 114359	91		1143592						
			MS	MSD							
	92	190582001	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1-Dichloroethene	ug/L	ND	50	50	45.5	44.9	91	90	70-166	1	
Benzene	ug/L	ND	50	50	50.3	50.6	101	101	70-148	1	
Chlorobenzene	ug/L	ND	50	50	51.5	52.1	103	104	70-146	1	
Toluene	ug/L	ND	50	50	48.1	48.5	96	97	70-155	1	
Trichloroethene	ug/L	ND	50	50	52.8	52.7	106	105	69-151	0	
1,2-Dichloroethane-d4 (S)	%						100	101	70-130		
4-Bromofluorobenzene (S)	%						97	96	70-130		
Toluene-d8 (S)	%						96	96	70-130		

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

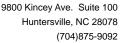
QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: MSV/25855 Analysis Method: EPA 8260


QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 92190355006, 92190355007

METHOD BLANK: 1142403 Matrix: Solid

Associated Lab Samples: 92190355006, 92190355007

		Blank	Reporting		0 115
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	02/21/14 11:34	
1,1,1-Trichloroethane	ug/kg	ND	5.0	02/21/14 11:34	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	02/21/14 11:34	
1,1,2-Trichloroethane	ug/kg	ND	5.0	02/21/14 11:34	
1,1-Dichloroethane	ug/kg	ND	5.0	02/21/14 11:34	
1,1-Dichloroethene	ug/kg	ND	5.0	02/21/14 11:34	
1,1-Dichloropropene	ug/kg	ND	5.0	02/21/14 11:34	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	02/21/14 11:34	
1,2,3-Trichloropropane	ug/kg	ND	5.0	02/21/14 11:34	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	02/21/14 11:34	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	02/21/14 11:34	
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.0	02/21/14 11:34	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	02/21/14 11:34	
1,2-Dichlorobenzene	ug/kg	ND	5.0	02/21/14 11:34	
1,2-Dichloroethane	ug/kg	ND	5.0	02/21/14 11:34	
1,2-Dichloropropane	ug/kg	ND	5.0	02/21/14 11:34	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	02/21/14 11:34	
1,3-Dichlorobenzene	ug/kg	ND	5.0	02/21/14 11:34	
1,3-Dichloropropane	ug/kg	ND	5.0	02/21/14 11:34	
1,4-Dichlorobenzene	ug/kg	ND	5.0	02/21/14 11:34	
2,2-Dichloropropane	ug/kg	ND	5.0	02/21/14 11:34	
2-Butanone (MEK)	ug/kg	ND	101	02/21/14 11:34	
2-Chlorotoluene	ug/kg	ND	5.0	02/21/14 11:34	
2-Hexanone	ug/kg	ND	50.4	02/21/14 11:34	
4-Chlorotoluene	ug/kg	ND	5.0	02/21/14 11:34	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	50.4	02/21/14 11:34	
Acetone	ug/kg	ND	101	02/21/14 11:34	
Benzene	ug/kg	ND	5.0	02/21/14 11:34	
Bromobenzene	ug/kg	ND	5.0	02/21/14 11:34	
Bromochloromethane	ug/kg	ND	5.0	02/21/14 11:34	
Bromodichloromethane	ug/kg	ND	5.0	02/21/14 11:34	
Bromoform	ug/kg	ND	5.0	02/21/14 11:34	
Bromomethane	ug/kg	ND	10.1	02/21/14 11:34	
Carbon tetrachloride	ug/kg	ND	5.0	02/21/14 11:34	
Chlorobenzene	ug/kg	ND	5.0	02/21/14 11:34	
Chloroethane	ug/kg	ND	10.1	02/21/14 11:34	
Chloroform	ug/kg	ND	5.0	02/21/14 11:34	
Chloromethane	ug/kg	ND	10.1	02/21/14 11:34	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	02/21/14 11:34	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	02/21/14 11:34	
Dibromochloromethane	ug/kg	ND	5.0	02/21/14 11:34	
Dibromomethane	ug/kg	ND	5.0	02/21/14 11:34	
Dichlorodifluoromethane	ug/kg	ND	10.1	02/21/14 11:34	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

METHOD BLANK: 1142403 Matrix: Solid

Associated Lab Samples: 92190355006, 92190355007

Demonstra		Blank	Reporting	A I I	0
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diisopropyl ether	ug/kg	ND	5.0	02/21/14 11:34	
Ethylbenzene	ug/kg	ND	5.0	02/21/14 11:34	
Hexachloro-1,3-butadiene	ug/kg	ND	5.0	02/21/14 11:34	
Isopropylbenzene (Cumene)	ug/kg	ND	5.0	02/21/14 11:34	
m&p-Xylene	ug/kg	ND	10.1	02/21/14 11:34	
Methyl-tert-butyl ether	ug/kg	ND	5.0	02/21/14 11:34	
Methylene Chloride	ug/kg	ND	20.2	02/21/14 11:34	
n-Butylbenzene	ug/kg	ND	5.0	02/21/14 11:34	
n-Propylbenzene	ug/kg	ND	5.0	02/21/14 11:34	
Naphthalene	ug/kg	ND	5.0	02/21/14 11:34	
o-Xylene	ug/kg	ND	5.0	02/21/14 11:34	
p-Isopropyltoluene	ug/kg	ND	5.0	02/21/14 11:34	
sec-Butylbenzene	ug/kg	ND	5.0	02/21/14 11:34	
Styrene	ug/kg	ND	5.0	02/21/14 11:34	
tert-Butylbenzene	ug/kg	ND	5.0	02/21/14 11:34	
Tetrachloroethene	ug/kg	ND	5.0	02/21/14 11:34	
Toluene	ug/kg	ND	5.0	02/21/14 11:34	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	02/21/14 11:34	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	02/21/14 11:34	
Trichloroethene	ug/kg	ND	5.0	02/21/14 11:34	
Trichlorofluoromethane	ug/kg	ND	5.0	02/21/14 11:34	
Vinyl acetate	ug/kg	ND	50.4	02/21/14 11:34	
Vinyl chloride	ug/kg	ND	10.1	02/21/14 11:34	
Xylene (Total)	ug/kg	ND	10.1	02/21/14 11:34	
1,2-Dichloroethane-d4 (S)	%	113	70-132	02/21/14 11:34	
4-Bromofluorobenzene (S)	%	92	70-130	02/21/14 11:34	
Toluene-d8 (S)	%	98	70-130	02/21/14 11:34	

LABORATORY CONTROL SAMPLE:	1142404					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	47.4	44.8	94	70-131	
1,1,1-Trichloroethane	ug/kg	47.4	51.2	108	70-141	
1,1,2,2-Tetrachloroethane	ug/kg	47.4	47.6	100	70-130	
1,1,2-Trichloroethane	ug/kg	47.4	44.9	95	70-132	
1,1-Dichloroethane	ug/kg	47.4	49.3	104	70-143	
1,1-Dichloroethene	ug/kg	47.4	49.2	104	70-137	
1,1-Dichloropropene	ug/kg	47.4	54.0	114	70-135	
1,2,3-Trichlorobenzene	ug/kg	47.4	50.5	106	69-153	
1,2,3-Trichloropropane	ug/kg	47.4	45.4	96	70-130	
1,2,4-Trichlorobenzene	ug/kg	47.4	51.0	108	55-171	
1,2,4-Trimethylbenzene	ug/kg	47.4	51.9	109	70-149	
1,2-Dibromo-3-chloropropane	ug/kg	47.4	45.6	96	68-141	
1,2-Dibromoethane (EDB)	ug/kg	47.4	48.1	101	70-130	
1,2-Dichlorobenzene	ug/kg	47.4	46.4	98	70-140	

QUALITY CONTROL DATA

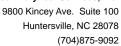
Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

LABORATORY CONTROL SAMPL	E: 1142404	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifier
1,2-Dichloroethane	ug/kg	47.4	45.9	97	70-137
1,2-Dichloropropane	ug/kg	47.4	45.5	96	70-133
1,3,5-Trimethylbenzene	ug/kg	47.4	50.0	105	70-143
1,3-Dichlorobenzene	ug/kg	47.4	45.4	96	70-144
1,3-Dichloropropane	ug/kg	47.4	46.5	98	70-132
1,4-Dichlorobenzene	ug/kg	47.4	46.5	98	70-142
2,2-Dichloropropane	ug/kg	47.4	52.1	110	68-152
2-Butanone (MEK)	ug/kg	94.9	114	120	70-149
2-Chlorotoluene	ug/kg	47.4	48.2	102	70-141
2-Hexanone	ug/kg	94.9	94.7	100	70-149
1-Chlorotoluene	ug/kg	47.4	48.8	103	70-149
1-Methyl-2-pentanone (MIBK)	ug/kg	94.9	93.5	99	70-153
Acetone	ug/kg	94.9	113	119	70-157
Benzene	ug/kg	47.4	48.2	102	70-130
Bromobenzene	ug/kg	47.4	47.1	99	70-141
Bromochloromethane	ug/kg	47.4	49.1	104	70-149
Bromodichloromethane	ug/kg	47.4	43.4	92	70-130
Bromoform	ug/kg	47.4	45.9	97	70-131
Bromomethane	ug/kg	47.4	66.1	139	64-136 L3
Carbon tetrachloride	ug/kg	47.4	42.3	89	70-154
Chlorobenzene	ug/kg ug/kg	47.4	44.6	94	70-135
Chloroethane	ug/kg	47.4	47.9	101	68-151
Chloroform	ug/kg ug/kg	47.4	48.0	101	70-130
Chloromethane		47.4 47.4	50.2	106	70-130
cis-1,2-Dichloroethene	ug/kg ug/kg	47.4 47.4	49.1	104	70-132 70-140
cis-1,3-Dichloropropene	ug/kg ug/kg	47.4 47.4	45.9	97	70-140
Dibromochloromethane		47.4 47.4	44.4	94	70-137
Dibromocriloromethane	ug/kg	47.4 47.4	44.4	94	70-130 70-136
	ug/kg			117	
Dichlorodifluoromethane	ug/kg	47.4 47.4	55.5 50.3	106	36-148 70-139
Diisopropyl ether	ug/kg				
Ethylbenzene	ug/kg	47.4 47.4	45.9 41.3	97 97	70-137
Hexachloro-1,3-butadiene	ug/kg	47.4	41.2	87	70-145
sopropylbenzene (Cumene)	ug/kg	47.4	48.3	102	70-141
n&p-Xylene	ug/kg	94.9	93.0	98 107	70-140
Methyl-tert-butyl ether	ug/kg	47.4	51.0	107	45-150
Methylene Chloride	ug/kg	47.4	71.0	150	70-133 L3
n-Butylbenzene	ug/kg	47.4	54.1	114	65-155
-Propylbenzene	ug/kg	47.4	51.1	108	70-148
Naphthalene	ug/kg	47.4	63.7	134	70-148
o-Xylene	ug/kg	47.4	46.2	97	70-141
o-Isopropyltoluene	ug/kg	47.4	51.6	109	70-148
sec-Butylbenzene	ug/kg	47.4	51.0	108	70-145
Styrene	ug/kg	47.4	47.5	100	70-138
ert-Butylbenzene	ug/kg	47.4	45.1	95	70-143
Tetrachloroethene	ug/kg	47.4	43.9	93	70-140
Toluene	ug/kg	47.4	44.6	94	70-130
rans-1,2-Dichloroethene	ug/kg	47.4	49.2	104	70-136
trans-1,3-Dichloropropene	ug/kg	47.4	44.8	94	70-138

Project: FAYETTEVILLE PSA'S 33727.1.1


Pace Project No.: 92190355

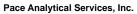
Date: 03/08/2014 12:30 PM

LABORATORY CONTROL SAME	PLE: 1142404					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Trichloroethene	ug/kg	47.4	43.5	92	70-132	
Trichlorofluoromethane	ug/kg	47.4	53.1	112	69-134	
Vinyl acetate	ug/kg	94.9	126	133	24-161	
Vinyl chloride	ug/kg	47.4	55.2	116	55-140	
Xylene (Total)	ug/kg	142	139	98	70-141	
1,2-Dichloroethane-d4 (S)	%			111	70-132	
4-Bromofluorobenzene (S)	%			87	70-130	
Toluene-d8 (S)	%			97	70-130	

MATRIX SPIKE SAMPLE:	1143264						
		92190486003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1-Dichloroethene	ug/kg	<4.5	44.4	55.8	126	49-180	
Benzene	ug/kg	<4.5	44.4	55.0	124	50-166	
Chlorobenzene	ug/kg	<4.5	44.4	49.5	112	43-169	
Toluene	ug/kg	<4.5	44.4	55.8	126	52-163	
Trichloroethene	ug/kg	<4.5	44.4	58.2	131	49-167	
1,2-Dichloroethane-d4 (S)	%				91	70-132	
4-Bromofluorobenzene (S)	%				97	70-130	
Toluene-d8 (S)	%				108	70-130	

SAMPLE DUPLICATE: 1143263 92190486001 Dup Units Result RPD Parameter Qualifiers Result 1,1,1,2-Tetrachloroethane <4.1 ND ug/kg <4.1 1,1,1-Trichloroethane ND ug/kg 1,1,2,2-Tetrachloroethane <4.1 ND ug/kg <4.1 ND 1,1,2-Trichloroethane ug/kg <4.1 ND 1,1-Dichloroethane ug/kg <4.1 ND 1,1-Dichloroethene ug/kg 1,1-Dichloropropene ug/kg <4.1 ND 1,2,3-Trichlorobenzene ug/kg <4.1 ND 1,2,3-Trichloropropane ug/kg <4.1 ND 1,2,4-Trichlorobenzene ug/kg <4.1 ND <4.1 ND 1,2,4-Trimethylbenzene ug/kg <4.1 1,2-Dibromo-3-chloropropane ND ug/kg <4.1 1,2-Dibromoethane (EDB) ND ug/kg <4.1 ND 1,2-Dichlorobenzene ug/kg <4.1 ND 1,2-Dichloroethane ug/kg <4.1 ND 1,2-Dichloropropane ug/kg 1,3,5-Trimethylbenzene ug/kg <4.1 ND <4.1 1,3-Dichlorobenzene ug/kg ND 1,3-Dichloropropane ug/kg <4.1 ND 1,4-Dichlorobenzene ug/kg <4.1 ND 2,2-Dichloropropane ug/kg <4.1 ND

Project: FAYETTEVILLE PSA'S 33727.1.1


Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Parameter	Units	92190486001 Result	Dup Result	RPD	Qualifiers
2-Butanone (MEK)	ug/kg		ND		
2-Chlorotoluene	ug/kg	<4.1	ND		
2-Hexanone	ug/kg	<41.5	ND		
4-Chlorotoluene	ug/kg	<4.1	ND		
4-Methyl-2-pentanone (MIBK)	ug/kg	<41.5	ND		
Acetone	ug/kg	<82.9	27.1J		
Benzene	ug/kg	<4.1	ND		
Bromobenzene	ug/kg	<4.1	ND		
Bromochloromethane	ug/kg	<4.1	ND		
Bromodichloromethane	ug/kg	<4.1	ND		
Bromoform	ug/kg	<4.1	ND		
Bromomethane	ug/kg	<8.3	ND		
Carbon tetrachloride	ug/kg	<4.1	ND		
Chlorobenzene	ug/kg	<4.1	ND		
Chloroethane	ug/kg	<8.3	ND		
Chloroform	ug/kg	<4.1	ND		
Chloromethane	ug/kg	<8.3	ND		
cis-1,2-Dichloroethene	ug/kg	<4.1	ND		
cis-1,3-Dichloropropene	ug/kg	<4.1	ND		
Dibromochloromethane	ug/kg	<4.1	ND		
Dibromomethane	ug/kg	<4.1	ND		
Dichlorodifluoromethane		<8.3	ND ND		
	ug/kg	<4.1	ND ND		
Diisopropyl ether	ug/kg	<4.1	ND ND		
Ethylbenzene	ug/kg	<4.1 <4.1			
Hexachloro-1,3-butadiene	ug/kg	<4.1	ND		
Isopropylbenzene (Cumene)	ug/kg		ND		
m&p-Xylene	ug/kg	<8.3	ND		
Methyl-tert-butyl ether	ug/kg	<4.1	ND		
Methylene Chloride	ug/kg	<16.6	2.6J		
n-Butylbenzene	ug/kg	<4.1	ND		
n-Propylbenzene	ug/kg	<4.1	ND		
Naphthalene	ug/kg	<4.1	ND		
o-Xylene	ug/kg	<4.1	ND		
p-Isopropyltoluene	ug/kg	<4.1	ND		
sec-Butylbenzene	ug/kg	<4.1	ND		
Styrene	ug/kg	<4.1	ND		
tert-Butylbenzene	ug/kg	<4.1	ND		
Tetrachloroethene	ug/kg	<4.1	ND		
Toluene	ug/kg	<4.1	ND		
trans-1,2-Dichloroethene	ug/kg	<4.1	ND		
trans-1,3-Dichloropropene	ug/kg	<4.1	ND		
Trichloroethene	ug/kg	<4.1	ND		
Trichlorofluoromethane	ug/kg	<4.1	ND		
√inyl acetate	ug/kg	<41.5	ND		
Vinyl chloride	ug/kg	<8.3	ND		
Xylene (Total)	ug/kg	<8.3	ND		
1,2-Dichloroethane-d4 (S)	%	117	88	2	9
4-Bromofluorobenzene (S)	%	87	92		6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

SAMPLE DUPLICATE: 1143263

92190486001 Dup

Parameter Units Result Result RPD Qualifiers

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: OEXT/26010 Analysis Method: EPA 625
QC Batch Method: EPA 625 Analysis Description: 625 MSS

Associated Lab Samples: 92190355003, 92190355004, 92190355005

METHOD BLANK: 1141550 Matrix: Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/L		5.0	02/28/14 07:26	
2,4,6-Trichlorophenol	ug/L	ND	10.0	02/28/14 07:26	
2,4-Dichlorophenol	ug/L	ND	5.0	02/28/14 07:26	
2,4-Dimethylphenol	ug/L	ND	10.0	02/28/14 07:26	
2,4-Dinitrophenol	ug/L	ND	50.0	02/28/14 07:26	
2,4-Dinitrotoluene	ug/L	ND	5.0	02/28/14 07:26	
2,6-Dinitrotoluene	ug/L	ND	5.0	02/28/14 07:26	
2-Chloronaphthalene	ug/L	ND	5.0	02/28/14 07:26	
2-Chlorophenol	ug/L	ND	5.0	02/28/14 07:26	
2-Nitrophenol	ug/L	ND	5.0	02/28/14 07:26	
3,3'-Dichlorobenzidine	ug/L	ND	25.0	02/28/14 07:26	
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	02/28/14 07:26	
4-Bromophenylphenyl ether	ug/L	ND	5.0	02/28/14 07:26	
4-Chloro-3-methylphenol	ug/L	ND	5.0	02/28/14 07:26	
4-Chlorophenylphenyl ether	ug/L	ND	5.0		
4-Nitrophenol	ug/L	ND	50.0	02/28/14 07:26	
Acenaphthene	ug/L	ND	5.0	02/28/14 07:26	
Acenaphthylene	ug/L	ND	5.0	02/28/14 07:26	
Anthracene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(a)anthracene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(a)pyrene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(b)fluoranthene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(g,h,i)perylene	ug/L	ND	5.0	02/28/14 07:26	
Benzo(k)fluoranthene	ug/L	ND	5.0	02/28/14 07:26	
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	02/28/14 07:26	
bis(2-Chloroethyl) ether	ug/L	ND	5.0	02/28/14 07:26	
bis(2-Chloroisopropyl) ether	ug/L	ND	5.0	02/28/14 07:26	
bis(2-Ethylhexyl)phthalate	ug/L	ND	5.0	02/28/14 07:26	
Butylbenzylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Chrysene	ug/L	ND	5.0	02/28/14 07:26	
Di-n-butylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Di-n-octylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Dibenz(a,h)anthracene	ug/L	ND	5.0	02/28/14 07:26	
Diethylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Dimethylphthalate	ug/L	ND	5.0	02/28/14 07:26	
Fluoranthene	ug/L	ND	5.0	02/28/14 07:26	
Fluorene	ug/L	ND	5.0	02/28/14 07:26	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	02/28/14 07:26	
Hexachlorobenzene	ug/L	ND	5.0	02/28/14 07:26	
Hexachlorocyclopentadiene	ug/L	ND	10.0	02/28/14 07:26	
Hexachloroethane	ug/L	ND	5.0	02/28/14 07:26	
Indeno(1,2,3-cd)pyrene	ug/L	ND	5.0	02/28/14 07:26	
Isophorone	ug/L	ND	10.0	02/28/14 07:26	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

METHOD BLANK: 1141550 Matrix: Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
N-Nitroso-di-n-propylamine	ug/L	ND ND	5.0	02/28/14 07:26	
N-Nitrosodimethylamine	ug/L	ND	5.0	02/28/14 07:26	
N-Nitrosodiphenylamine	ug/L	ND	10.0	02/28/14 07:26	
Naphthalene	ug/L	ND	5.0	02/28/14 07:26	
Nitrobenzene	ug/L	ND	5.0	02/28/14 07:26	
Pentachlorophenol	ug/L	ND	10.0	02/28/14 07:26	
Phenanthrene	ug/L	ND	5.0	02/28/14 07:26	
Phenol	ug/L	ND	5.0	02/28/14 07:26	
Pyrene	ug/L	ND	5.0	02/28/14 07:26	
2,4,6-Tribromophenol (S)	%	88	10-137	02/28/14 07:26	
2-Fluorobiphenyl (S)	%	74	15-120	02/28/14 07:26	
2-Fluorophenol (S)	%	46	10-120	02/28/14 07:26	
Nitrobenzene-d5 (S)	%	73	10-120	02/28/14 07:26	
Phenol-d6 (S)	%	33	10-120	02/28/14 07:26	
Terphenyl-d14 (S)	%	99	11-131	02/28/14 07:26	

LABORATORY CONTROL SAMPLE	: 1141551					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L		36.0	72	44-142	
2,4,6-Trichlorophenol	ug/L	50	19.6	39	37-144	
2,4-Dichlorophenol	ug/L	50	23.9	48	1-191	
2,4-Dimethylphenol	ug/L	50	31.7	63	32-119	
2,4-Dinitrophenol	ug/L	250	49.5J	20	1-181	
2,4-Dinitrotoluene	ug/L	50	54.3	109	39-139	
2,6-Dinitrotoluene	ug/L	50	51.3	103	50-158	
2-Chloronaphthalene	ug/L	50	34.2	68	60-118	
2-Chlorophenol	ug/L	50	23.6	47	23-134	
2-Nitrophenol	ug/L	50	20.8	42	29-182	
3,3'-Dichlorobenzidine	ug/L	100	107	107	1-262	
4,6-Dinitro-2-methylphenol	ug/L	100	34.2	34	1-181	
4-Bromophenylphenyl ether	ug/L	50	44.3	89	53-127	
4-Chloro-3-methylphenol	ug/L	100	59.7	60	22-147	
4-Chlorophenylphenyl ether	ug/L	50	48.4	97	25-158	
4-Nitrophenol	ug/L	250	48.6J	19	1-132	
Acenaphthene	ug/L	50	40.8	82	47-145	
Acenaphthylene	ug/L	50	42.0	84	33-145	
Anthracene	ug/L	50	46.2	92	1-166	
Benzo(a)anthracene	ug/L	50	45.7	91	33-143	
Benzo(a)pyrene	ug/L	50	49.2	98	17-163	
Benzo(b)fluoranthene	ug/L	50	44.9	90	24-159	
Benzo(g,h,i)perylene	ug/L	50	45.0	90	1-219	
Benzo(k)fluoranthene	ug/L	50	41.4	83	11-162	
bis(2-Chloroethoxy)methane	ug/L	50	41.6	83	33-184	
bis(2-Chloroethyl) ether	ug/L	50	44.4	89	12-158	

Project: FAYETTEVILLE PSA'S 33727.1.1

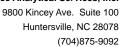
Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

ABORATORY CONTROL SAMPLE:	1141551					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
s(2-Chloroisopropyl) ether	ug/L	50	44.1	88	36-166	
s(2-Ethylhexyl)phthalate	ug/L	50	47.1	94	8-158	
ıtylbenzylphthalate	ug/L	50	45.3	91	1-152	
rysene	ug/L	50	47.2	94	17-168	
n-butylphthalate	ug/L	50	45.1	90	1-118	
n-octylphthalate	ug/L	50	54.2	108	4-146	
enz(a,h)anthracene	ug/L	50	49.3	99	1-227	
hylphthalate	ug/L	50	45.5	91	1-114	
ethylphthalate	ug/L	50	41.6	83	1-112	
ranthene	ug/L	50	50.5	101	26-137	
rene	ug/L	50	47.8	96	59-121	
achloro-1,3-butadiene	ug/L	50	32.1	64	24-116	
achlorobenzene	ug/L	50	40.0	80	1-152	
achlorocyclopentadiene	ug/L	50	25.9	52	25-150	
achloroethane	ug/L	50	33.9	68	40-113	
no(1,2,3-cd)pyrene	ug/L	50	48.5	97	1-171	
horone	ug/L	50	48.3	97	21-196	
troso-di-n-propylamine	ug/L	50	51.2	102	1-230	
trosodimethylamine	ug/L	50	18.9	38	25-150	
trosodiphenylamine	ug/L	50	34.8	70	25-150	
nthalene	ug/L	50	41.5	83	21-133	
benzene	ug/L	50	39.1	78	35-180	
tachlorophenol	ug/L	100	39.6	40	14-176	
enanthrene	ug/L	50	44.9	90	54-120	
nol	ug/L	50	15.0	30	5-112	
ene	ug/L	50	47.2	94	52-115	
6-Tribromophenol (S)	%			58	10-137	
uorobiphenyl (S)	%			75	15-120	
uorophenol (S)	%			25	10-120	
obenzene-d5 (S)	%			73	10-120	
enol-d6 (S)	%			22	10-120	
phenyl-d14 (S)	%			94	11-131	

MATRIX SPIKE & MATRIX S	PIKE DUPLICAT	E: 11415	52		1141553						
	92	190065001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,2,4-Trichlorobenzene	ug/L	ND	100	100	78.9	64.5	79	65	44-142	20	
2,4,6-Trichlorophenol	ug/L	ND	100	100	87.6	77.0	88	77	37-144	13	
2,4-Dichlorophenol	ug/L	ND	100	100	106	84.4	106	84	1-191	23	
2,4-Dimethylphenol	ug/L	ND	100	100	73.8	48.8	74	49	32-119	41 R	1
2,4-Dinitrophenol	ug/L	ND	500	500	263	286	53	57	1-181	9	
2,4-Dinitrotoluene	ug/L	ND	100	100	105	95.2	105	95	39-139	10	
2,6-Dinitrotoluene	ug/L	ND	100	100	105	97.3	105	97	50-158	7	
2-Chloronaphthalene	ug/L	ND	100	100	76.9	64.0	77	64	60-118	18	
2-Chlorophenol	ug/L	ND	100	100	114	78.3	114	78	23-134	37 R	1
2-Nitrophenol	ug/L	ND	100	100	94.9	74.9	95	75	29-182	24	

Project: FAYETTEVILLE PSA'S 33727.1.1


Pace Project No.: 92190355

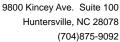
Date: 03/08/2014 12:30 PM

MATRIX SPIKE & MATRIX SPI	KE DUPLICAT	E: 11415			1141553						
			MS	MSD							
Parameter	92 ² Units	190065001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Qua
3'-Dichlorobenzidine	ug/L	ND	200	200	115	124	58	62	1-262	7	
,6-Dinitro-2-methylphenol	ug/L	ND	200	200	156	152	78	76	1-181	3	
-Bromophenylphenyl ether	ug/L	ND	100	100	95.3	87.4	95	87	53-127	9	
-Chloro-3-methylphenol	ug/L	ND	200	200	218	191	109	96	22-147	13	
-Chlorophenylphenyl ether	ug/L	ND	100	100	98.1	89.0	98	89	25-158	10	
-Nitrophenol	ug/L	ND	500	500	272	225	54	45	1-132	19	
cenaphthene	ug/L	ND	100	100	88.4	75.5	88	76	47-145	16	
cenaphthylene	ug/L	ND	100	100	91.1	77.9	91	78	33-145	16	
nthracene	ug/L	ND	100	100	93.0	81.8	93	82	1-166	13	
enzo(a)anthracene	ug/L	ND	100	100	90.0	83.6	90	84	33-143	7	
enzo(a)pyrene	ug/L	ND	100	100	96.2	87.6	96	88	17-163	9	
enzo(b)fluoranthene	ug/L	ND	100	100	94.0	86.8	94	87	24-159	8	
enzo(g,h,i)perylene	ug/L	ND	100	100	89.4	78.4	89	78	1-219	13	
enzo(k)fluoranthene	ug/L	ND	100	100	84.7	79.4	85	79	11-162	6	
s(2-Chloroethoxy)methane	ug/L ug/L	ND	100	100	92.3	74.8	92	75 75	33-184	21	
s(2-Chloroethyl) ether	ug/L	ND	100	100	97.6	78.5	98	78	12-158	22	
s(2-Chloroisopropyl) ether	ug/L	ND	100	100	97.2	70.9	97	71	36-166	31 R1	
s(2-Ethylhexyl)phthalate	ug/L	ND	100	100	90.9	86.0	91	86	8-158	5	
utylbenzylphthalate	ug/L	ND	100	100	89.1	86.1	89	86	1-152	3	
hrysene	ug/L ug/L	ND	100	100	93.5	88.6	94	89	17-168	5	
i-n-butylphthalate	ug/L ug/L	ND	100	100	87.5	79.7	88	80	1-118	9	
i-n-octylphthalate	ug/L ug/L	ND	100	100	101	91.7	101	92	4-146	10	
ibenz(a,h)anthracene	ug/L ug/L	ND	100	100	96.1	85.8	96	86	1-227	11	
iethylphthalate	ug/L ug/L	ND	100	100	86.6	80.4	87	80	1-114	7	
imethylphthalate	ug/L ug/L	ND	100	100	84.2	79.0	84	79	1-112	6	
uoranthene	ug/L ug/L	ND	100	100	97.9	82.5	98	82	26-137	17	
uorene	ug/L ug/L	ND	100	100	95.9	86.7	96	87	59-121	10	
exachloro-1,3-butadiene	-	ND	100	100	67.7	57.7	68	58	24-116	16	
exachlorobenzene	ug/L	ND	100	100	83.7	76.0	84	76	1-152	10	
	ug/L	ND				53.4					
exachlorocyclopentadiene	ug/L	ND	100	100	67.6		68	53	25-150	24	
exachloroethane	ug/L	ND ND	100	100	69.9	54.7	70	55	40-113	24	
deno(1,2,3-cd)pyrene	ug/L	ND ND	100	100	95.7	84.4	96 104	84	1-171	13	
ophorone	ug/L	ND ND	100	100	104	84.1	104	84	21-196	21 50 R1	
-Nitroso-di-n-propylamine	ug/L	ND ND	100	100	124	74.2	124	74	1-230		
-Nitrosodimethylamine	ug/L	ND ND	100	100	55.1	44.2	55 76	44	25-150	22	
-Nitrosodiphenylamine	ug/L		100	100	76.3	70.5	76	70	25-150	8	
aphthalene	ug/L	ND	100	100	91.5	73.2	92	73	21-133	22	
trobenzene	ug/L	ND	100	100	96.7	75.6	97	76	35-180	24	
entachlorophenol	ug/L	ND	200	200	168	139	84	70	14-176	19	
nenanthrene	ug/L	ND	100	100	92.6	82.6	93	83	54-120	11	
nenol	ug/L	ND	100	100	91.8	53.4	92	53	5-112	53 R1	
yrene	ug/L	ND	100	100	97.9	93.6	98	94	52-115	4	
4,6-Tribromophenol (S)	%						107	95	10-137		
Fluorobiphenyl (S)	%						84	74	15-120		
Fluorophenol (S)	%						71	55	10-120		
itrobenzene-d5 (S)	%						82	68	10-120		
henol-d6 (S)	%						84	50	10-120		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: FAYETTEVILLE PSA'S 33727.1.1


Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1141552 1141553

MS MSD

92190065001 Spike Spike MS MSD MS MSD % Rec Parameter Units Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Result

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: OEXT/26002 Analysis Method: EPA 8015 Modified
QC Batch Method: EPA 3546 Analysis Description: 8015 Solid GCSV

Associated Lab Samples: 92190355001, 92190355002

METHOD BLANK: 1141205 Matrix: Solid

Associated Lab Samples: 92190355001, 92190355002

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersDiesel Components n-Pentacosane (S)mg/kgND5.002/20/14 14:237041-11902/20/14 14:23

n-Pentacosane (S) % 70 41-119 02

LABORATORY CONTROL SAMPLE: 1141206

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Diesel Components** mg/kg 66.7 47.9 72 49-113 n-Pentacosane (S) % 79 41-119

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1141207 1141208

MSD MS 92189902002 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual 101 **Diesel Components** mg/kg 79.5 79.5 80.5 185 -25 106 10-146 79 M0,R1 n-Pentacosane (S) % 66 94 41-119 R1

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

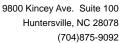
Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: OEXT/26043 Analysis Method: EPA 8015 Modified
QC Batch Method: EPA 3546 Analysis Description: 8015 Solid GCSV

Associated Lab Samples: 92190355006, 92190355007


METHOD BLANK: 1142830 Matrix: Solid

Associated Lab Samples: 92190355006, 92190355007

Blank Reporting Parameter Result Limit Qualifiers Units Analyzed **Diesel Components** ND 5.0 02/22/14 14:47 mg/kg n-Pentacosane (S) % 78 41-119 02/22/14 14:47

LABORATORY CONTROL SAMPLE & LCSD: 1142831 1142833 Spike LCS **LCSD** LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers **Diesel Components** mg/kg 66.7 51.6 52.6 77 79 49-113 2 30 n-Pentacosane (S) 88 73 41-119 %

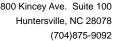
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1143312 1143313 MSD MS 92190639002 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual 90.5 **Diesel Components** mg/kg 73.9 73.9 153 125 85 47 10-146 20 n-Pentacosane (S) % 72 61 41-119

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: OEXT/26015 Analysis Method: EPA 8270


QC Batch Method: EPA 3546 Analysis Description: 8270 Solid MSSV Microwave

Associated Lab Samples: 92190355006, 92190355007

METHOD BLANK: 1141738 Matrix: Solid

Associated Lab Samples: 92190355006, 92190355007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,2,4-Trichlorobenzene	ug/kg	ND ND	330	02/25/14 15:56	
1,2-Dichlorobenzene	ug/kg	ND	330	02/25/14 15:56	
1,3-Dichlorobenzene	ug/kg	ND	330	02/25/14 15:56	
1,4-Dichlorobenzene	ug/kg	ND	330	02/25/14 15:56	
1-Methylnaphthalene	ug/kg	ND	330	02/25/14 15:56	
2,4,5-Trichlorophenol	ug/kg	ND	330	02/25/14 15:56	
2,4,6-Trichlorophenol	ug/kg	ND	330	02/25/14 15:56	
2,4-Dichlorophenol	ug/kg	ND	330	02/25/14 15:56	
2,4-Dimethylphenol	ug/kg	ND	330	02/25/14 15:56	
2,4-Dinitrophenol	ug/kg	ND	1650	02/25/14 15:56	
2,4-Dinitrotoluene	ug/kg	ND	330	02/25/14 15:56	
2,6-Dinitrotoluene	ug/kg	ND	330	02/25/14 15:56	
2-Chloronaphthalene	ug/kg	ND	330	02/25/14 15:56	
2-Chlorophenol	ug/kg	ND	330	02/25/14 15:56	
2-Methylnaphthalene	ug/kg	ND	330	02/25/14 15:56	
2-Methylphenol(o-Cresol)	ug/kg	ND	330	02/25/14 15:56	
2-Nitroaniline	ug/kg	ND	1650	02/25/14 15:56	
2-Nitrophenol	ug/kg	ND	330	02/25/14 15:56	
3&4-Methylphenol(m&p Cresol)	ug/kg	ND	330	02/25/14 15:56	
3,3'-Dichlorobenzidine	ug/kg	ND	1650	02/25/14 15:56	
3-Nitroaniline	ug/kg	ND	1650	02/25/14 15:56	
4,6-Dinitro-2-methylphenol	ug/kg	ND	660	02/25/14 15:56	
4-Bromophenylphenyl ether	ug/kg	ND	330	02/25/14 15:56	
4-Chloro-3-methylphenol	ug/kg	ND	660	02/25/14 15:56	
4-Chloroaniline	ug/kg	ND	1650	02/25/14 15:56	
4-Chlorophenylphenyl ether	ug/kg	ND	330	02/25/14 15:56	
4-Nitroaniline	ug/kg	ND	660	02/25/14 15:56	
4-Nitrophenol	ug/kg	ND	1650	02/25/14 15:56	
Acenaphthene	ug/kg	ND	330	02/25/14 15:56	
Acenaphthylene	ug/kg	ND	330	02/25/14 15:56	
Aniline	ug/kg	ND	330	02/25/14 15:56	
Anthracene	ug/kg	ND	330	02/25/14 15:56	
Benzo(a)anthracene	ug/kg	ND	330	02/25/14 15:56	
Benzo(a)pyrene	ug/kg	ND	330	02/25/14 15:56	
Benzo(b)fluoranthene	ug/kg	ND	330	02/25/14 15:56	
Benzo(g,h,i)perylene	ug/kg	ND	330	02/25/14 15:56	
Benzo(k)fluoranthene	ug/kg ug/kg	ND	330	02/25/14 15:56	
Benzoic Acid	ug/kg	ND	1650	02/25/14 15:56	
Benzyl alcohol	ug/kg	ND ND	660	02/25/14 15:56	
bis(2-Chloroethoxy)methane	ug/kg ug/kg	ND ND	330	02/25/14 15:56	
bis(2-Chloroethyl) ether	ug/kg ug/kg	ND ND	330	02/25/14 15:56	
bis(2-Chloroisopropyl) ether	ug/kg ug/kg	ND ND	330	02/25/14 15:56	
bis(2-Ethylhexyl)phthalate	ug/kg ug/kg	ND ND	330	02/25/14 15:56	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

METHOD BLANK: 1141738 Matrix: Solid

Associated Lab Samples: 92190355006, 92190355007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Butylbenzylphthalate	ug/kg	ND ND	330	02/25/14 15:56	
Chrysene	ug/kg	ND	330	02/25/14 15:56	
Di-n-butylphthalate	ug/kg	ND	330	02/25/14 15:56	
Di-n-octylphthalate	ug/kg	ND	330	02/25/14 15:56	
Dibenz(a,h)anthracene	ug/kg	ND	330	02/25/14 15:56	
Dibenzofuran	ug/kg	ND	330	02/25/14 15:56	
Diethylphthalate	ug/kg	ND	330	02/25/14 15:56	
Dimethylphthalate	ug/kg	ND	330	02/25/14 15:56	
Fluoranthene	ug/kg	ND	330	02/25/14 15:56	
Fluorene	ug/kg	ND	330	02/25/14 15:56	
Hexachloro-1,3-butadiene	ug/kg	ND	330	02/25/14 15:56	
Hexachlorobenzene	ug/kg	ND	330	02/25/14 15:56	
Hexachlorocyclopentadiene	ug/kg	ND	330	02/25/14 15:56	
Hexachloroethane	ug/kg	ND	330	02/25/14 15:56	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	330	02/25/14 15:56	
Isophorone	ug/kg	ND	330	02/25/14 15:56	
N-Nitroso-di-n-propylamine	ug/kg	ND	330	02/25/14 15:56	
N-Nitrosodimethylamine	ug/kg	ND	330	02/25/14 15:56	
N-Nitrosodiphenylamine	ug/kg	ND	330	02/25/14 15:56	
Naphthalene	ug/kg	ND	330	02/25/14 15:56	
Nitrobenzene	ug/kg	ND	330	02/25/14 15:56	
Pentachlorophenol	ug/kg	ND	1650	02/25/14 15:56	
Phenanthrene	ug/kg	ND	330	02/25/14 15:56	
Phenol	ug/kg	ND	330	02/25/14 15:56	
Pyrene	ug/kg	ND	330	02/25/14 15:56	
2,4,6-Tribromophenol (S)	%	85	27-110	02/25/14 15:56	
2-Fluorobiphenyl (S)	%	80	30-110	02/25/14 15:56	
2-Fluorophenol (S)	%	80	13-110	02/25/14 15:56	
Nitrobenzene-d5 (S)	%	73	23-110	02/25/14 15:56	
Phenol-d6 (S)	%	78	22-110	02/25/14 15:56	
Terphenyl-d14 (S)	%	105	28-110	02/25/14 15:56	

LABORATORY CONTROL SAMPLE:	1141739					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/kg	1670	1220	73	39-101	
1,2-Dichlorobenzene	ug/kg	1670	1210	73	36-110	
1,3-Dichlorobenzene	ug/kg	1670	1190	71	35-110	
1,4-Dichlorobenzene	ug/kg	1670	1210	73	35-110	
1-Methylnaphthalene	ug/kg	1670	1380	83	45-105	
2,4,5-Trichlorophenol	ug/kg	1670	1400	84	48-109	
2,4,6-Trichlorophenol	ug/kg	1670	1290	77	45-111	
2,4-Dichlorophenol	ug/kg	1670	1420	85	51-116	
2,4-Dimethylphenol	ug/kg	1670	1510	90	42-103	
2,4-Dinitrophenol	ug/kg	8330	5120	61	28-103	

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

LABORATORY CONTROL SAMPLE	E: 1141739	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2,4-Dinitrotoluene	ug/kg		1550	93	46-114	
2,6-Dinitrotoluene	ug/kg	1670	1490	89	48-112	
2-Chloronaphthalene	ug/kg	1670	1100	66	44-105	
2-Chlorophenol	ug/kg	1670	1400	84	36-110	
2-Methylnaphthalene	ug/kg	1670	1430	86	39-112	
2-Methylphenol(o-Cresol)	ug/kg	1670	1410	85	39-101	
2-Nitroaniline	ug/kg	3330	2810	84	44-111	
2-Nitrophenol	ug/kg	1670	1380	83	41-100	
3&4-Methylphenol(m&p Cresol)	ug/kg	1670	1420	85	43-103	
3,3'-Dichlorobenzidine	ug/kg	3330	2820	84	10-150	
3-Nitroaniline	ug/kg	3330	2840	85	35-110	
4,6-Dinitro-2-methylphenol	ug/kg	3330	2480	74	38-118	
4-Bromophenylphenyl ether	ug/kg	1670	1380	83	47-115	
4-Chloro-3-methylphenol	ug/kg	3330	2950	88	43-127	
4-Chloroaniline	ug/kg	3330	2750	82	34-109	
4-Chlorophenylphenyl ether	ug/kg	1670	1400	84	44-115	
4-Nitroaniline	ug/kg	3330	2980	89	37-111	
4-Nitrophenol	ug/kg	8330	6710	80	21-152	
Acenaphthene	ug/kg ug/kg	1670	1250	75	38-117	
Acenaphthylene	ug/kg ug/kg	1670	1320	79	46-107	
Aniline	ug/kg ug/kg	1670	1230	74	29-110	
Anthracene	ug/kg ug/kg	1670	1430	86	50-110	
Benzo(a)anthracene	ug/kg	1670	1380	83	47-116	
• •		1670	1470	88	47-116	
Benzo(a)pyrene	ug/kg ug/kg	1670	1470	85	47-106	
Benzo(b)fluoranthene		1670	1280	77		
Benzo(g,h,i)perylene	ug/kg		1330	80	39-115 45-117	
Benzo(k)fluoranthene	ug/kg	1670		67	45-117	
Benzoic Acid	ug/kg	8330	5600		16-110	
Benzyl alcohol	ug/kg	3330	2470	74 77	38-105	
ois(2-Chloroethoxy)methane	ug/kg	1670	1280	77	39-110	
ois(2-Chloroethyl) ether	ug/kg	1670	1320	79 74	19-119	
ois(2-Chloroisopropyl) ether	ug/kg	1670	1180	71	21-110	
ois(2-Ethylhexyl)phthalate	ug/kg	1670	1380	83	35-116	
Butylbenzylphthalate	ug/kg	1670	1420	85	38-110	
Chrysene	ug/kg	1670	1430	86	49-110	
Di-n-butylphthalate	ug/kg	1670	1310	79	43-109	
Di-n-octylphthalate	ug/kg	1670	1460	87	37-109	
Dibenz(a,h)anthracene	ug/kg	1670	1390	83	43-116	
Dibenzofuran	ug/kg	1670	1190	71	45-106	
Diethylphthalate	ug/kg	1670	1270	76	41-114	
Dimethylphthalate	ug/kg	1670	1210	72	43-110	
Fluoranthene	ug/kg	1670	1450	87	50-114	
Fluorene	ug/kg	1670	1390	83	46-114	
Hexachloro-1,3-butadiene	ug/kg	1670	1220	73	28-111	
Hexachlorobenzene	ug/kg	1670	1240	74	46-120	
Hexachlorocyclopentadiene	ug/kg	1670	995	60	18-119	
Hexachloroethane	ug/kg	1670	1160	69	33-110	
Indeno(1,2,3-cd)pyrene	ug/kg	1670	1380	83	42-115	

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

LABORATORY CONTROL SAMP	LE: 1141739					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Isophorone	ug/kg		1380	83	44-109	
N-Nitroso-di-n-propylamine	ug/kg	1670	1080	65	43-104	
N-Nitrosodimethylamine	ug/kg	1670	1100	66	29-110	
N-Nitrosodiphenylamine	ug/kg	1670	1150	69	48-113	
Naphthalene	ug/kg	1670	1330	80	41-110	
Nitrobenzene	ug/kg	1670	1320	79	38-110	
Pentachlorophenol	ug/kg	3330	2490	75	32-128	
Phenanthrene	ug/kg	1670	1380	83	50-110	
Phenol	ug/kg	1670	1460	88	28-106	
Pyrene	ug/kg	1670	1680	101	45-114	
2,4,6-Tribromophenol (S)	%			95	27-110	
2-Fluorobiphenyl (S)	%			77	30-110	
2-Fluorophenol (S)	%			87	13-110	
Nitrobenzene-d5 (S)	%			77	23-110	
Phenol-d6 (S)	%			87	22-110	
Terphenyl-d14 (S)	%			103	28-110	

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

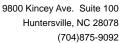
QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: OEXT/26076 Analysis Method: MADEP EPH
QC Batch Method: MADEP EPH Analysis Description: MADEP EPH NC Soil


Associated Lab Samples: 92190355006, 92190355007

METHOD BLANK: 1143989 Matrix: Solid

Associated Lab Samples: 92190355006, 92190355007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Aliphatic (C09-C18)	mg/kg	ND	10.0	02/25/14 18:45	N2
Aliphatic (C19-C36)	mg/kg	ND	10.0	02/25/14 18:45	N2
Aromatic (C11-C22)	mg/kg	ND	10.0	02/25/14 18:45	N2
2-Bromonaphthalene (S)	%	86	40-140	02/25/14 18:45	
2-Fluorobiphenyl (S)	%	79	40-140	02/25/14 18:45	
Nonatriacontane (S)	%	68	40-140	02/25/14 18:45	
o-Terphenyl (S)	%	86	40-140	02/25/14 18:45	

LABORATORY CONTROL SAME	PLE & LCSD: 1143990		11	43991						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Aliphatic (C09-C18)	mg/kg	10	ND	ND	78	81	40-140		50	N2
Aliphatic (C19-C36)	mg/kg	13.3	11.1	12.7	83	95	40-140	13	50	N2
Aromatic (C11-C22)	mg/kg	28.3	15.5	22.0	55	78	40-140	34	50	N2
2-Bromonaphthalene (S)	%				52	67	40-140			
2-Fluorobiphenyl (S)	%				47	62	40-140			
Nonatriacontane (S)	%				66	85	40-140			
o-Terphenyl (S)	%				47	68	40-140			

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

QC Batch: OEXT/26031 Analysis Method: MADEP EPH

QC Batch Method: MADEP EPH Analysis Description: MADEP EPH NC Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

METHOD BLANK: 1142333 Matrix: Water

Associated Lab Samples: 92190355003, 92190355004, 92190355005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Aliphatic (C09-C18)	ug/L	ND ND	100	02/24/14 17:37	N2
Aliphatic (C19-C36)	ug/L	ND	100	02/24/14 17:37	N2
Aromatic (C11-C22)	ug/L	ND	100	02/24/14 17:37	N2
2-Bromonaphthalene (S)	%	103	40-140	02/24/14 17:37	
2-Fluorobiphenyl (S)	%	84	40-140	02/24/14 17:37	
Nonatriacontane (S)	%	60	40-140	02/24/14 17:37	
o-Terphenyl (S)	%	77	40-140	02/24/14 17:37	

LABORATORY CONTROL SAMP	LE & LCSD: 1142334		11	42335						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Aliphatic (C09-C18)	ug/L	300	150	148	50	49	40-140	2	50	N2
Aliphatic (C19-C36)	ug/L	400	226	225	56	56	40-140	0	50	N2
Aromatic (C11-C22)	ug/L	850	583	811	69	95	40-140	33	50	N2
2-Bromonaphthalene (S)	%				83	112	40-140			
2-Fluorobiphenyl (S)	%				71	103	40-140			
Nonatriacontane (S)	%				64	66	40-140			
o-Terphenyl (S)	%				75	95	40-140			

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

QC Batch: PMST/6289 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 92190355001, 92190355002, 92190355006, 92190355007

SAMPLE DUPLICATE: 1146587

Parameter

92190355001 Dup

Result Result **RPD** Qualifiers

% 19.5 3 Percent Moisture 20.1

SAMPLE DUPLICATE: 1146588

Date: 03/08/2014 12:30 PM

92191196023 Dup Parameter Units

Units

RPD Result Result Qualifiers

Percent Moisture % 16.6 16.8 1

QUALIFIERS

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Acid preservation may not be appropriate for 2-Chloroethylvinyl ether, Styrene, and Vinyl chloride.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

Surrogate recovery not evaluated against control limits due to sample dilution.

TNI - The NELAC Institute.

LABORATORIES

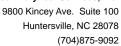
S4

Date: 03/08/2014 12:30 PM

PASI-A	Pace Analytical Services - Asheville
PASI-C	Pace Analytical Services - Charlotte
PASI-I	Pace Analytical Services - Indianapolis

ANALYTE QUALIFIERS

D3	Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
L3	Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
N	Tentatively identified compound (TIC) based on mass spectral library search
N2	The lab does not hold TNI accreditation for this parameter.
R1	RPD value was outside control limits.
S1	Surrogate recovery outside laboratory control limits (confirmed by re-analysis).


QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92190355001	B-13-01 6FT	EPA 3546		EPA 8015 Modified	GCSV/16718
92190355002	DUPLICATE -1	EPA 3546		EPA 8015 Modified	GCSV/16718
92190355006	B-07-02 8'	EPA 3546		EPA 8015 Modified	GCSV/16735
92190355007	B-07-06 10'	EPA 3546		EPA 8015 Modified	GCSV/16735
92190355003 92190355004 92190355005	B-16/17-01 B-18-01 DUPLICATE-2	EPA 8015 - Alcohol-Glycol EPA 8015 - Alcohol-Glycol EPA 8015 - Alcohol-Glycol	GCSV/12153 GCSV/12153 GCSV/12153		
92190355006	B-07-02 8'	MADEP EPH	OEXT/26076	MADEP EPH	GCSV/16765
92190355007	B-07-06 10'	MADEP EPH	OEXT/26076	MADEP EPH	GCSV/16765
92190355003	B-16/17-01	MADEP EPH	OEXT/26031	MADEP EPH	GCSV/16758
92190355004	B-18-01	MADEP EPH	OEXT/26031	MADEP EPH	GCSV/16758
92190355005	DUPLICATE-2	MADEP EPH	OEXT/26031	MADEP EPH	GCSV/16758
92190355001	B-13-01 6FT	EPA 5035A/5030B	GCV/7826	EPA 8015 Modified	GCV/7828
92190355002	DUPLICATE -1	EPA 5035A/5030B	GCV/7826	EPA 8015 Modified	GCV/7828
92190355006	B-07-02 8'	EPA 5035A/5030B	GCV/7833	EPA 8015 Modified	GCV/7834
92190355007	B-07-06 10'	EPA 5035A/5030B	GCV/7833	EPA 8015 Modified	GCV/7834
92190355006	B-07-02 8'	MADEP VPH	GCV/7860	MADEP VPH	GCV/7865
92190355007	B-07-06 10'	MADEP VPH	GCV/7860	MADEP VPH	GCV/7865
92190355003 92190355004 92190355005	B-16/17-01 B-18-01 DUPLICATE-2	MADEP VPH MADEP VPH MADEP VPH	GCV/7835 GCV/7835 GCV/7835		
92190355006	B-07-02 8'	EPA 3050	MPRP/15312		ICP/13889
92190355007	B-07-06 10'	EPA 3050	MPRP/15312		ICP/13889
92190355003	B-16/17-01	EPA 3010	MPRP/15285	EPA 6010	ICP/13867
92190355004	B-18-01	EPA 3010	MPRP/15285		ICP/13867
92190355005	DUPLICATE-2	EPA 3010	MPRP/15285		ICP/13867
92190355003	B-16/17-01	EPA 625	OEXT/26010	EPA 625	MSSV/8797
92190355004	B-18-01	EPA 625	OEXT/26010		MSSV/8797
92190355005	DUPLICATE-2	EPA 625	OEXT/26010		MSSV/8797
92190355006	B-07-02 8'	EPA 3546	OEXT/26015		MSSV/8785
92190355007	B-07-06 10'	EPA 3546	OEXT/26015		MSSV/8785
92190355003 92190355004 92190355005	B-16/17-01 B-18-01 DUPLICATE-2	SM 6200B SM 6200B SM 6200B	MSV/25905 MSV/25905 MSV/25905		
92190355003 92190355004 92190355005	B-16/17-01 B-18-01 DUPLICATE-2	EPA 8260 EPA 8260 EPA 8260	MSV/25862 MSV/25862 MSV/25862		
92190355006 92190355007	B-07-02 8' B-07-06 10'	EPA 8260 EPA 8260	MSV/25855 MSV/25855		
92190355001 92190355002	B-13-01 6FT DUPLICATE -1	ASTM D2974-87 ASTM D2974-87	PMST/6289 PMST/6289		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: FAYETTEVILLE PSA'S 33727.1.1

Pace Project No.: 92190355

Date: 03/08/2014 12:30 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92190355006 92190355007	B-07-02 8' B-07-06 10'	ASTM D2974-87 ASTM D2974-87	PMST/6289 PMST/6289		

5	Sample Condition U	pon R	eceipt (SCUR)	Page 1 of 2
/ Pace Analytical	Documen F-CHR-CS	t Numb	per:	Issuing Authority: Pace Huntersville Quality Office
Client Name: Schahel	Eng.			
Courier: Fed Ex UPS US	/			Optional Proj. Due Date:
Custody Seal on Cooler/Box Preser	nt: 🛮 yes 🗌 no	Seals	intact: yes	Proj. Name:
Packing Material: Bubble Wrap	Bubble Bags No	one 🔲	Other	
Thermometer Used: IR Gun T1102	T ₁ (301) Type of Ice:	Wet	Blue None	Samples on ice, cooling process has begun
Temp Correction Factor T1102	2: No Correction T1	301: N	lo Correction	
Corrected Cooler Temp.: 5,8 Temp should be above freezing to 6°C	C Biological 1		is Frozen: Yes No Comments:	Date and Initials of person examining contents. 222/14
Chain of Custody Present:	✓Yes □No	□N/A	1.	
Chain of Custody Filled Out:	✓Yes □No	□N/A	2.	
Chain of Custody Relinquished:	√Yes □No	□N/A	3.	
Sampler Name & Signature on COC:	ØYes □No	□N/A	4.	
Samples Arrived within Hold Time:	ØYes □No	□N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes ☑No	□N/A	6.	
Rush Turn Around Time Requested	d: □Yes □No	□N/A	7.	
Sufficient Volume:	Øyes □No	□N/A	8.	
Correct Containers Used:	√Yes □No	□N/A	9.	
-Pace Containers Used:	☑Yes □No	□N/A		
Containers Intact:	✓Yes □No	□N/A	10.	
Filtered volume received for Dissolve	ed tests	ØN/A	11.	- Mar 1 - (at FOI) and sich (s
Sample Labels match COC: -Includes date/time/ID/Analysis	✓Yes □No Matrix:			1826016: trovorch. B-07-62 8 2/18/14 64 1620
All containers needing preservation have be	een checked. Yes \(\square\) No	□N/A	135an/le#ZID-P	5-07-06 16 Z/18/14 at 1610
All containers needing preservation are for compliance with EPA recommendation.	/			
exceptions: VOA, coliform, TOC, O&G, WI-DR	tO (water) ☐Yes ☐No			
Samples checked for dechlorination:	Yes □No	□N/A	14.	
Headspace in VOA Vials (>6mm):	□Yes □No	□N/A	15.	
Trip Blank Present:	□Yes □No	ZINA	16.	
Trip Blank Custody Seals Present	□Yes □No	N/A		

Client Notification/ Resolution:

Person Contacted: Ben Bradley

Comments/ Resolution: Ben informed to analyze extra second to the contact of the contact of

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Trip Blank Lot # (if purchased):

WO#: 92190355

Field Data Required?

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

					12	1 10	9	00	7	6	Ch .	4	ω	2	_	ITEM#			Req	Phone:	Ema	3	Addr	Com	Sec	
				ADDITIONAL COMMENTS						The second second	700000	B-18-01	B-16/17-01	Duplicate - 1	18-13-01 6FT	SAMPLE ID (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Softed Tissue Other	Section D Required Client Information		Requested Due Date/TAT:	Fax:	Composition of the second		F Z MAN	Company:	Section A	www.pacelabs.com
ORIGINAL			92												14	Water WWWater WWWater WWWater WWWAter WWWAter WWWAter WWWAter WWWAter WWWAter Schillsolid Oli	O de		Project	Project Name:	3	3	Copy To:		Section B	
A			Minor (M)	REL						-	5,	5	3	20	S	MATRIX CODE (see valid codes			Project Number:		Purchase Order No.:		Š	Report To	n B	
			MA.	INQUIS						-	5	1	-	1	3	SAMPLE TYPE (G=GRAB C=C	COMP)		احق	S.	No.:		i	1	Lafore	
			1, x	HED BY / /						-		_	219	2-19	2-19	COMPOSITE START			449	2	-		N. W	\$	- Carrie	
P	SAMPLER NAME AND SIGNATORE	NAMDI ER	madka	RELINQUISHED BY / AFFILIATION							1	£:4	13:00		2:12	TIME	COLLECTED		O	0			4			
RINT Nam	NAMEA	NAME AN		Z												COMPOSITE ENDIGRAB	CTED			3						
PRINT Name of SAMPLER:	ND SIGNA	ND SIGN	2-10	DATE												RAB										
PLER:	1000	TIBI	-	Е												SAMPLE TEMP AT COLLECTION	V									
	1		6.	7										4	4	# OF CONTAINERS			Pace F	Pace Proj Manager:	Pace Quote Reference:	Address:	2007	Attention:	Secti	
			2	TIME										17		Unpreserved		1	Pace Profile #:	Project er:	Quote nce:	SS:	Z	Attention:	Section C	
		1				+										H ₂ SO ₄ HNO ₃	Pre		75				00	illiduo		
			ECE.		H	-					1		- 7			HCI NaOH	Preservatives					Herri	9	-		
			2	ACC												Na ₂ S ₂ O ₃	tives						N			
			(EPTE	H	+										Methanol Other	-						2377			
			3	DBY		_			_		_					↓ Analysis Test ↓	Y/N.					-	7			
			{	/ AFFI	П									X	×	TPH Gas TPH Diesel		R				-				
				ACCEPTED BY / AFFILIATION	H	+	-		H	H	1	×	×	1	X	Cot Dh	+	ques								
				N							X	X	V			YPH		sted ,								
			51		H	-					X	X	X			EPH	-	Analy		Site	7	7	REG			
			2/26/14	DATE		+	+	-		H	X	× .	X			62003	\vdash	/sis F	STA	Site Location	TSU	NPDES	ULA.			
				mi		1					X	文	7			Ethylene 640)		ilter	STATE:	tion		S	TOR			
			936	TIME	H	+	+			-	X	X	X			Ethano	200	ed	1		7		AG			
	L					-					•	×				TPH Gas TPH Diesel Cr+Pb YPII EPH 625+10 Tils 6200B Ethylene Gycol Ethynol Halogenated Non tal	yenar	E			RCRA	GROUND WATER	REGULATORY AGENCY		Page:	1
np ir	-		55		H	+	-	F								Residual Chlorine (Y/N)	-		-			WATER				
eive e (Y/		n	1	SAM												Pac					7	7		17	_	1
isto ed C Y/N	coole	er	1	SAMPLE CONDITIONS												Pace Project No./ Lab					OTHER	DRINKI	0	853	of.	
oles Y/N	Inta I)	act	4	TIONS					007	006	OR		20	000	3	92 Pace Project No./ Lab I.P.						DRINKING WATER		29		
	_										U			1											Page	_ 3 8

"Important Note: By signing this form you are accepting Pece's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007