PRELIMINARY SITE ASSESSMENT

PARCEL 74, MITTIE SHUMATE
805 ELKIN HIGHWAY (NC 268)
NORTH WILKESBORO, WILKES COUNTY, NORTH CAROLINA
STATE PROJECT: R-2603
WBS ELEMENT: 36001.1.2
July 22, 2013

Report prepared for:

Mr. Gordon Box, LG

GeoEnvironmental Project Manager

GeoEnvironmental Section Geotechnical Engineering Unit

North Carolina Department of Transportation

1020 Birch Ridge Drive Raleigh, NC 27610

Report prepared by:

Eric Cross, LG NC License #2181

" ag ag ag a

ENVIRONMENTAL & ENGINEERING, P.C.

Report reviewed by:

Michael G. Jones, LG NC License #1168

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. P.O. BOX 16265 GREENSBORO, NC 27416-0265

C-257 –Geology C-1251 - Engineering

(336) 335-3174

TABLE OF CONTENTS

Executive Summary of Results	. 1
1.0 Introduction	. 3
1.1 BACKGROUND INFORMATION	
2.0 Site History	. 4
3.0 Geophysical Investigation	. 4
4.0 Soil Sampling Activities & Results	. 4
4.1 SOIL ASSESSMENT FIELD ACTIVITIES	. 5 . 6
5.0 Conclusions and Recommendations	. 7
5.1 GEOPHYSICAL INVESTIGATION	. 7 . 7
6.0 Limitations	. 8
7.0 Closure	. 8

TABLE OF CONTENTS (Continued)

FIGURES

Figure 1: Topographic Map

Figure 2: Soil Boring Locations and Estimated Area of Contamination

TABLES

Table 1 : Summary of Soil Field Screening Results Table 2 : Summary of Soil Sample Analytical Results Table 3 : Summary of Groundwater Analytical Results

APPENDICES

Appendix A: Historical Aerial Photographs Appendix B: Geophysical Investigation Report

Appendix C : Soil Boring Logs

Appendix D: QROS QED HC-1 Hydrocarbon Analyser Appendix E: Laboratory Report & Chain-of-Custody Form

Appendix F: Personnel Logs

PRELIMINARY SITE ASSESSMENT PARCEL 74, MITTIE SHUMATE 805 ELKIN HIGHWAY (NC 286) NORTH WILKESBORO, WILKES COUNTY, NORTH CAROLINA

EXECUTIVE SUMMARY OF RESULTS

Pyramid Environmental & Engineering P.C. (Pyramid) has prepared this Preliminary Site Assessment (PSA) report documenting background information, field activities, assessment activities, findings, conclusions, and recommendations for the Parcel 74, Mittie Shumate. The purpose of this assessment was to determine the presence or absence of underground storage tanks (USTs) and impacted soils at the subject property within the proposed easement and between the existing right of way (ROW) and edge of pavement with emphasis on the areas of proposed drainage structures (State Project R-2603). This preliminary site assessment was conducted on behalf of the North Carolina Department of Transportation (NCDOT) in accordance with Pyramid's May 7, 2013, technical proposal.

The following statements summarize the results of the PSA:

• **Site History:** Historical information reviewed as part of the PSA indicated that the Mittie Shumate property has been developed since at least 1958. The photographs indicate that a mobile home trailer park likely existed at the parcel from at least 1958 until sometime between 1993 and 2006. All structures that were on the property in the past, excluding the current two buildings, were removed intermittently between 1958 and 2008. The two existing structures on the property have been in place since at least 1993.

On May 22, 2013, Pyramid emailed the Wilkes County parcel addresses to Ms. Carin Kromm, the Winston-Salem Regional Office Supervisor for the North Carolina Department of Environment and Natural Resources (NC DENR) UST Section, with a request to investigate any incidents associated with the parcels. On June 6, 2013, Ms. Kromm responded to the email and stated that site address 805 Elkin Highway does not have any environmental incidents in the DENR database.

- **Geophysical Survey:** The geophysical investigation provided no evidence of metallic USTs within the proposed ROW and/ or easement.
- **Limited Soil Assessment:** A total of four borings were performed across the property and one soil sample from each boring was analyzed with the QED UVF HC-1 Analyzer system from QROS-US for total petroleum hydrocarbons (TPH) petroleum contamination. The QED results for all of the soil samples 74-1(7.5), 74-2(10), 74-2(5), 74-3(7.5), 74-4(7.5), and 74-4(10) did not detect TPH gasoline

range organic (GRO) or TPH diesel range organic (DRO) concentrations above detection limits.

- Limited Groundwater Assessment: Soil boring 74-2 was converted into a 1-inch diameter temporary monitoring well (TW) to a total depth of 25 feet below land surface (BLS). The depth-to-groundwater was gauged to be at 15.73 feet BLS. The laboratory detected Methyl-tert-butyl ether (MTBE) at a concentration of 7.3 micrograms-per-liter (µg/l). The current NCAC 2L Groundwater Standard for MTBE is 20 µg/l. The laboratory did not detect any other compounds above laboratory detection limits in the groundwater sample.
- Contaminated Soil Volumes: No petroleum-impacted soils were encountered during the PSA investigation at Parcel 74, nor were any probable or possible USTs encountered within the proposed right of way or easement. Therefore, no recommendations are necessary for the treatment or disposal of such materials. It should be noted that, if impacted soil is encountered during road construction outside of the area analyzed by this investigation, the impacted soil should be managed according to NC DENR Division of Waste Management (DWM) UST Section Guidelines and disposed of at a permitted facility.

1.0 Introduction

Pyramid Environmental & Engineering P.C. (Pyramid) has prepared this Preliminary Site Assessment (PSA) report documenting background information, field activities, assessment activities, findings, conclusions, and recommendations for the parcel of Mittie Shumate. The Mittie Shumate property is currently a vacant commercial property, located at 805 Elkin Highway (NC 268) in North Wilkesboro, NC. This preliminary site assessment was conducted on behalf of the NCDOT in accordance with Pyramid's May 7, 2013, technical proposal.

The purpose of this assessment was to determine the presence or absence of underground storage tanks (USTs) and impacted soils at the subject properties in the proposed easement and existing right of way and edge of pavement (State Project R-2603). The location of the subject site is shown on **Figure 1**.

1.1 Background Information

Based on the NCDOT's March 22, 2013, *Request for Technical and Cost Proposal*, the PSA was conducted in the proposed easement and the area between the existing NCDOT right of way and the edge of pavement with emphasis on the areas of proposed drainage features, in accordance with the computer-aided drafting and design (CADD) files provided to Pyramid by the NCDOT. The PSA included the following:

- Research the properties for past uses and possible releases.
- Conduct a preliminary geophysical site assessment and limited soil assessment in the proposed easement and the area between the existing ROW and the edge of pavement with emphasis on the proposed drainage features.
- Report the depth to groundwater for each site and attempt to obtain one groundwater sample for each site for laboratory analysis by installing temporary monitoring wells.

1.2 Project Information

Prior to field activities, a Health and Safety Plan was prepared. Prior to drilling activities, the public underground utilities were located and marked by the North Carolina One-Call Service. A private utility locator, Northstate Utility Locating Incorporated of Colfax, North Carolina was used to mark the on-site private, buried utilities.

2.0 Site History

Pyramid completed a records review of the NC DENR file, interviewed NC DENR personnel, and reviewed aerial photographs to assess past uses of the property. It should be noted that the NCDOT directed Pyramid to <u>not</u> obtain a First Search radius report detailing the history of the site and surrounding area. For this reason, Pyramid reviewed historical aerial photographs dating back to 1958 available from the Wilkes Soil and Water Conservation office in Wilkesboro and on Google Earth for past uses. The 1958, 1966, 1993, 2006, 2008, and 2012 aerial photographs are included in **Appendix A**. Historical information reviewed as part of the PSA indicated that the Mittie Shumate property has been developed since at least 1958. The photographs indicate that a mobile home trailer park likely existed at the parcel from at least 1958 until sometime between 1993 and 2006. All structures that were on the property in the past, excluding the current two buildings, were removed intermittently between 1958 and 2008. The two existing structures on the property have been in place since at least 1993.

On May 22, 2013, Pyramid emailed the Wilkes County parcel addresses to Ms. Carin Kromm, the Winston-Salem Regional Office Supervisor for the NC DENR UST Section, with a request to investigate any incidents associated with the parcels. On June 6, 2013, Ms. Kromm responded to the email and stated that site address 805 Elkin Highway does not have any environmental incidents in the DENR database.

3.0 Geophysical Investigation

Pyramid performed electromagnetic (EM) and ground penetrating radar (GPR) surveys across the <u>accessible</u> portions of the Parcel. The majority of the EM61 anomalies detected could be attributed to visible objects at the ground surface such as fences and drainage features. The remaining EM features were minor, and were attributed to metallic debris or utilities.

The geophysical investigation provided <u>no evidence of metallic USTs</u> within the proposed ROW and/or easement.

The full details of the geophysical investigation are included in the Geophysical Investigation Report as **Appendix B**.

4.0 Soil Sampling Activities & Results

4.1 Soil Assessment Field Activities

On June 10, 2013, Pyramid mobilized to the site and drilled soil borings, installed one temporary monitoring well (TW), and collected the proposed soil samples for the PSA.

The soil borings and temporary well were completed using a track mounted Geoprobe® Direct-Push rig and hand-auger. Four (4) soil borings (74-1, 74-2, 74-3, and 74-4) were advanced on the subject property between the NCDOT proposed easement, existing ROW and edge of pavement. The selected locations were chosen to avoid public utilities along Elkin Highway, and private utilities associated with the business while remaining in the proposed right of way area. Soil borings 74-1, 74-2, 74-3, and 74-4 were all installed along the location of a proposed 15-inch drainage pipe across the property. Boring 74-2 was located between this proposed pipe and the concrete pad in front of the vacant building. The locations of the borings are shown on **Figure 2**.

Soil samples were continuously collected in five foot long disposable sleeves from each boring for geologic description, and visual examination for signs of contamination. Soil recovered from each sleeve was screened in the field using an Organic Vapor Analyzer (OVA) every 2 to 2.5 feet depending on the soil recovery of each sleeve. In general, the soil sample with the highest OVA reading was selected from each boring for laboratory analysis. The soil boring logs with the soil descriptions, visual examination, and OVA screening results are included in **Appendix C**. The OVA field screening results are summarized in **Table 1**. To prevent cross contamination, new disposable nitrile gloves were worn by the sampling technician during the sampling activities, and were changed between samples.

The soil samples selected for Total Petroleum Hydrocarbon (TPH) analyses were analyzed utilizing the QED UVF HC-1 Analyzer system from QROS-US. The NCDOT has indicated that this instrument is an acceptable method to provide total petroleum hydrocarbon (TPH) results for soil analysis for the PSA projects. Pyramid's QED-certified technician worked with Pyramid's on-site staff geologist to perform soil contaminant analysis. The soil samples selected to undergo analysis using the QED Analyzer were analyzed for TPH as diesel range organics (DRO) and TPH as gasoline range organics (GRO). The soil samples selected for analysis using the QED were preserved in the field with methanol and were analyzed at the end of each day using the QED. Additionally, 10% of soil samples collected were submitted to a laboratory for analysis to verify the QED results.

The duplicate soil samples selected for laboratory analyses were placed in laboratory prepared containers and shipped to Pace Analytical in Huntersville, NC, to be analyzed under the direction of Pace Analytical Project Manager Kevin Godwin. The selected soil samples were analyzed for TPH as gasoline range organics GRO by EPA Method 8015C/5035 and DRO by EPA Method 8015C/3541.

4.2 Soil Sample Analytical Results

The QED results for all of the soil samples 74-1(7.5), 74-2(10), 74-2(5), 74-3(7.5), 74-4(7.5), and 74-4(10) did not detect TPH-GRO or TPH-DRO concentrations above

detection limits. The soil sample QED results are summarized in **Table 2**. A copy of the QED analysis report is included in **Appendix D**.

A duplicate of soil sample 74-1(7.5) was shipped to Pace Analytical for laboratory analysis. The laboratory results for soil sample 74-1(7.5) did not detect TPH-GRO or TPH-DRO concentrations above laboratory detection limits. The soil sample laboratory results are summarized in **Table 2**. A copy of the laboratory report and chain-of-custody is included in **Appendix E**.

4.3 Temporary Monitoring Well Installation

On June 10, 2013, Pyramid converted soil boring 74-2 into a 1-inch diameter temporary monitoring well (TW). Soil boring 74-2(TW) was completed to a total depth of 25 feet below land surface (BLS). The temporary well at 74-2 was constructed with 15 feet of 1-inch diameter of schedule 80 PVC casing and 10 feet of 1-inch diameter of schedule 80 PVC slotted screen. The temporary well was set in the boring with 10 feet of slotted screen at the bottom of the well.

On June 10, 2013, the temporary monitoring well 74-2(TW) was gauged using a properly decontaminated electric water level probe. The depth-to-groundwater was measured at 15.73 feet BLS. The temporary monitoring well was sampled using new 0.5-inch disposable bailers. Upon completion of the gauging and sampling, the temporary monitoring well was properly abandoned by the drillers by removing the casing, and filling the borehole with bentonite chips and portland cement.

4.4 Groundwater Analytical Results

The groundwater sample 74-2(TW) was placed in laboratory prepared containers for analysis of volatile organic compounds (VOCs) by EPA Method 6200B, and the sample were shipped to Pace Analytical in Huntersville, NC. The analyses detected MTBE at a concentration of 7.3 μ g/l. The NCAC 2L Groundwater Standard for MTBE is 20 μ g/l. The analyses did not detect any other compounds above laboratory detection limits in the groundwater sample. The groundwater results for sample 74-2(TW) are summarized in **Table 3**. A copy of the laboratory report and chain-of-custody is included in **Appendix E**.

5.0 Conclusions and Recommendations

As requested by NCDOT, Pyramid has completed a PSA at the Mittie Shumate property located 805 Elkin Highway, North Wilkesboro, NC. The following is a summary of the assessment activities and results.

5.1 Geophysical Investigation

The geophysical investigation provided no evidence of metallic USTs within the proposed ROW and/or easement.

5.2 Limited Soil Assessment

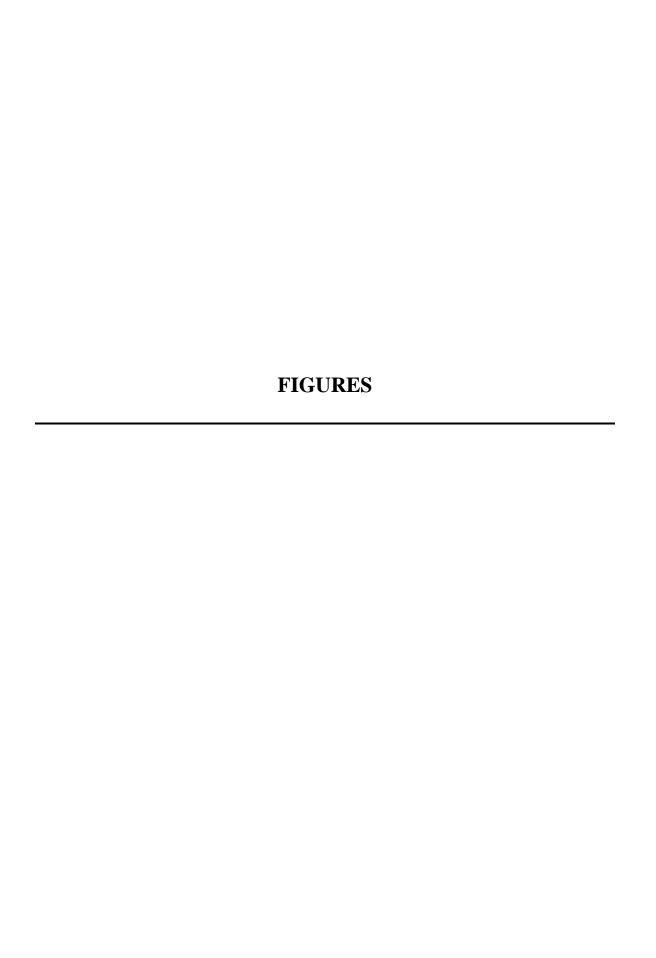
The QED results for all of the soil samples 74-1(7.5), 74-2(10), 74-2(5), 74-3(7.5), 74-4(7.5), and 74-4(10) did not detect TPH-GRO or TPH-DRO concentrations above detection limits. A duplicate of soil sample 74-1(7.5) was shipped to Pace Analytical for laboratory analysis. The laboratory results for soil sample 74-1(7.5) were below laboratory detection limits for TPH-GRO and TPH-DRO. The NCDENR action levels for TPH-GRO and TPH-DRO are both 10 mg/kg.

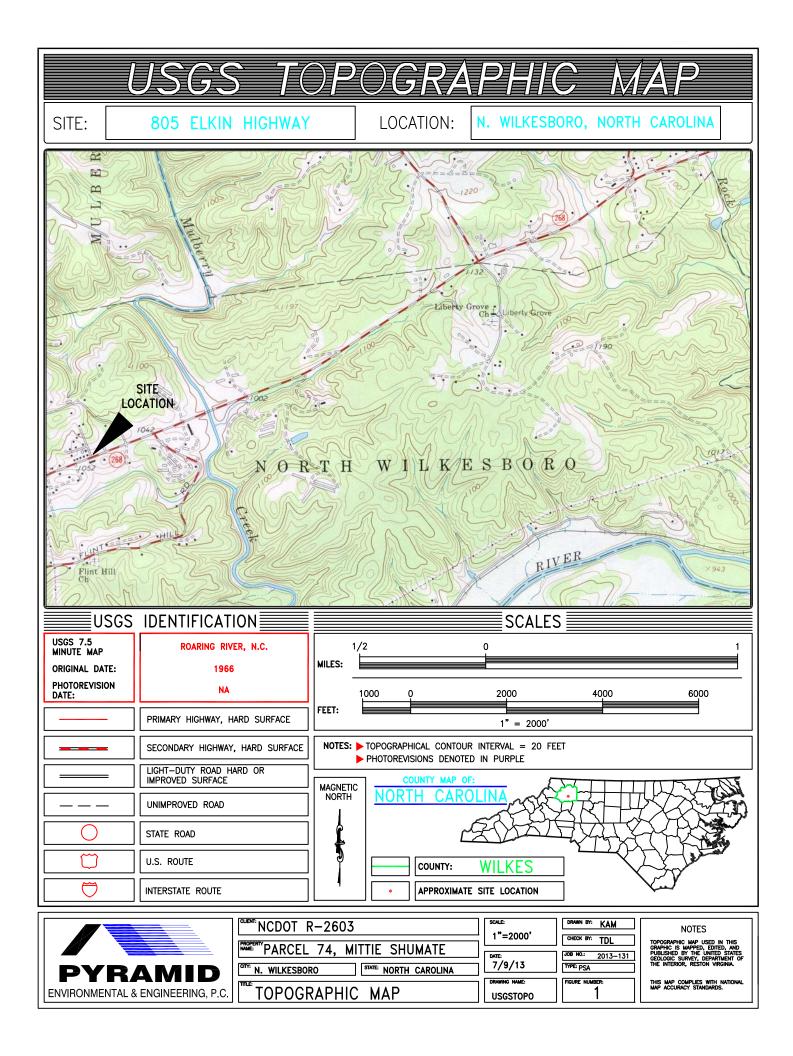
5.3 Limited Groundwater Assessment

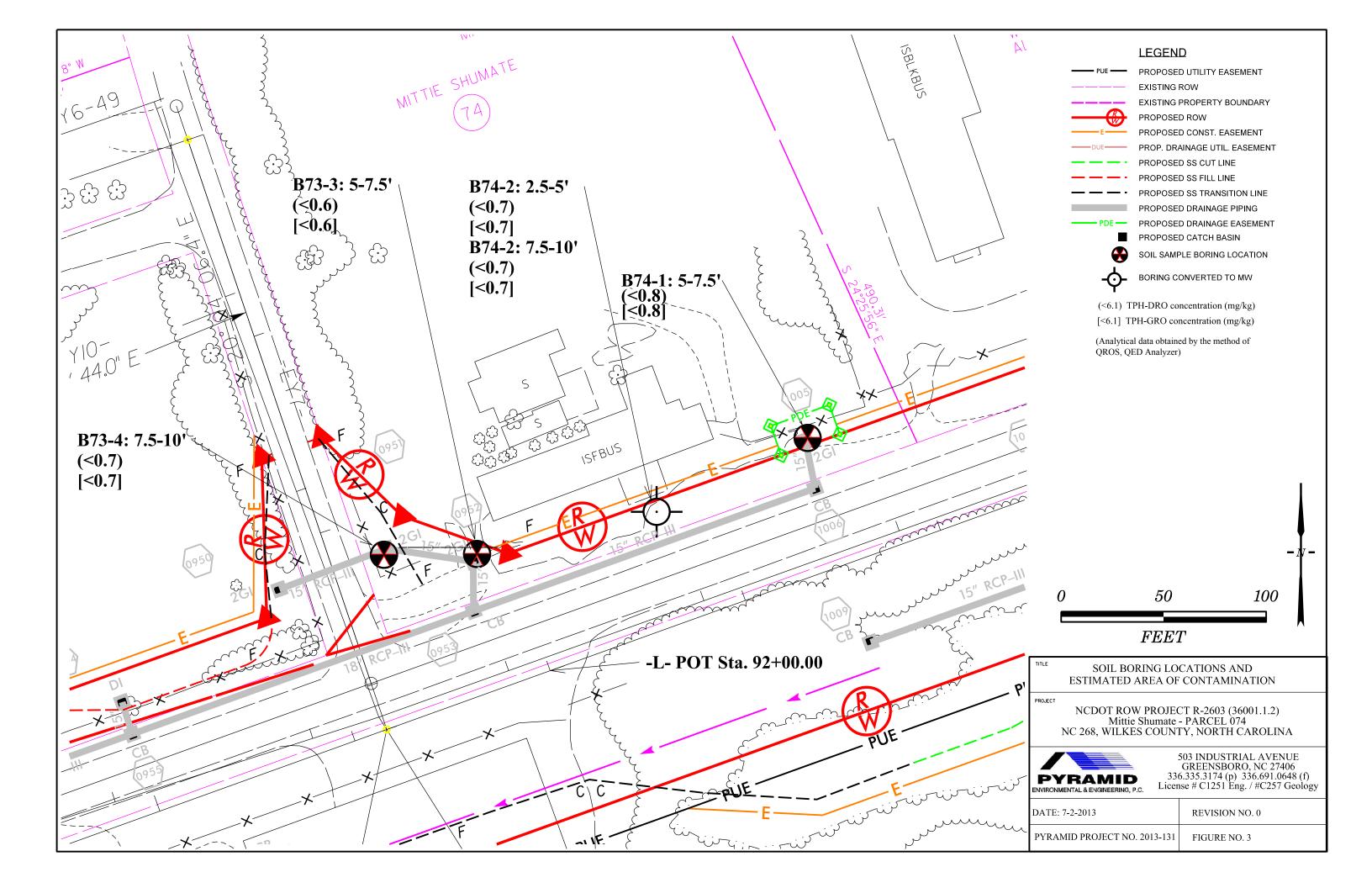
Soil boring 74-2 was converted into a 1-inch diameter temporary monitoring well to a total depth of 25 feet BLS. The depth-to-groundwater was gauged to be at 15.73 feet BLS. This temporary well was sampled and the analytical results detected MTBE at a concentration of 7.3 μ g/l. The analysis did not detect any other compounds above laboratory detection limits in the groundwater sample.

5.4 Recommendations

No petroleum-impacted soils were encountered during the PSA investigation at Parcel 74, nor were any probable or possible USTs encountered within the proposed right of way or easement. Therefore, no recommendations are necessary for the treatment or disposal of such materials.


It should be noted that, if impacted soil is encountered during road construction outside of the area analyzed by this investigation, the impacted soil should be managed according to NCDENR DWM UST Section Guidelines and disposed of at a permitted facility.


6.0 Limitations


The results of this preliminary investigation are limited to the boring locations completed during this limited assessment and presented in this report. The laboratory results only reflect the current conditions at the locations sampled on the date this PSA was performed.

7.0 Closure

This report was prepared for, and is available solely for use by NCDOT and their designees. The contents thereof may not be used or relied upon by any other person without the express written consent and authorization of Pyramid Environmental & Engineering, P.C. (Pyramid). The observations, conclusions, and recommendations documented in this report are based on site conditions and information reviewed at the time of Pyramid's investigation. Pyramid appreciates the opportunity to provide this environmental service.

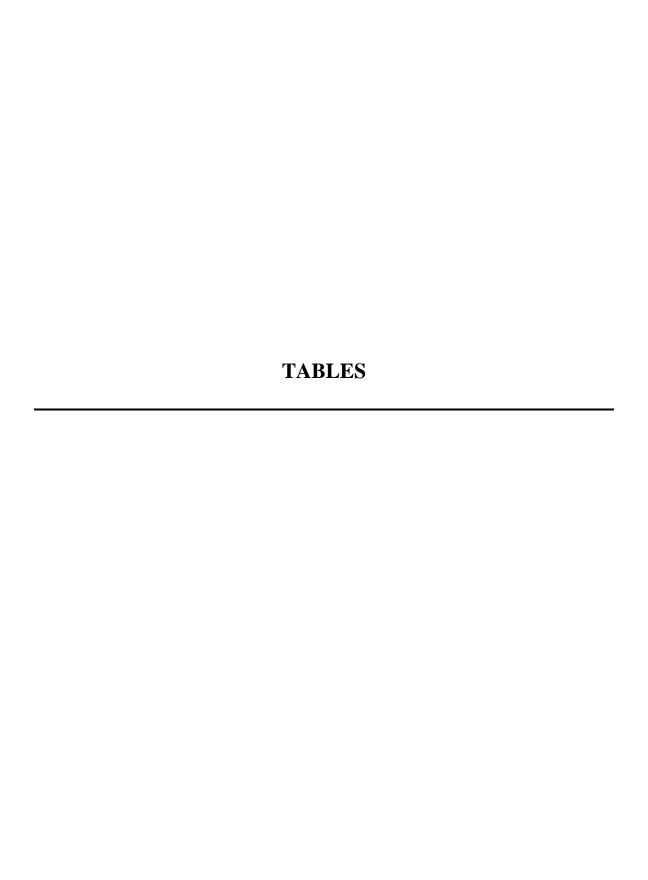


TABLE 1
Summary of Soil Field Screening Results
NCDOT Project R-2603
805 Elkin Highway (NC268) - Parcel 74
North Wilkesboro, Wilkes County, North Carolina

SOIL BORING	SAMPLE ID	DEPTH	OVA/FID
		(feet bgs)	READINGS (PPM)
	74-1(2.5)	0 to 2.5	1.0
74-1	74-1(5)	2.5 to 5	1.0
	74-1(7.5)	5 to 7.5	1.5
	74-1(10)	7.5 to 10	1.2
	74-2(2-5)	2 to 5	<1
74-2	74-2(5.0)	2.5 to 5	1.0
	74-2(7.5)	5 to 7.5	1.0
	74-2(10)	7.5 to 10	0.5
	74-3(2.5)	0 to 2.5	<1
74-3	74-3(5.0)	2.5 to 5	<1
	74-3(7.5)	5 to 7.5	1.5
	74-3(10)	7.5 to 10	1.0
	74-4(2.5)	0 to 2.5	<1
74-4	74-4(5)	2.5 to 5	<1
	74-4(7.5)	5 to 7.5	1.5
	74-4(10)	7.5 to 10	2.0

bgs= below ground surface

FID= flame-ionization detector

PPM= parts-per-million

= sampled for lab analysis &/or QROS-QED analysis

OVA= Organic Vapor Analyzer

TABLE 2

Summary of Soil Sample Analytical Results

NCDOT State Project R-2603 805 Elkin Highway (NC 268) - Parcel 74 North Wilkesboro, Wilkes County, North Carolina

_				QROS - QED Analysis			Laboratory Analysis (Pace)	
SAMPLE ID	DATE	DEPTH (feet)	FID/OVA (ppm)	GRO (mg/kg) (C5-C10)	DRO (mg/kg) (C10-C35)	TPH (mg/kg) (C5-C35)	EPA Method 3550 DRO (mg/kg)	EPA Method 5035 GRO (mg/kg)
74-1(7.5)	6/10/2013	5 to 7.5	1.5	<0.8	<0.8	<0.8	<6.1	<5.8
74-2(10)	6/10/2013	7.5 to 10	1.0	<0.7	<0.7	<0.7		
74-2(5)	6/10/2013	2.5 to 5	1.0	<0.7	<0.7	<0.7		
74-3(7.5)	6/10/2013	5 to 7.5	1.5	<0.6	<0.6	<0.6		
74-4(7.5)	6/10/2013	5 to 7.5	0.5	<0.7	<0.7	<0.7		
74-4(10)	6/10/2013			<0.7	<0.7	<0.7		
	Action Level - 5/5030-GRO;			10	10	NA	10	10

FID= flame-ionizaton detector PPM= parts-per-million

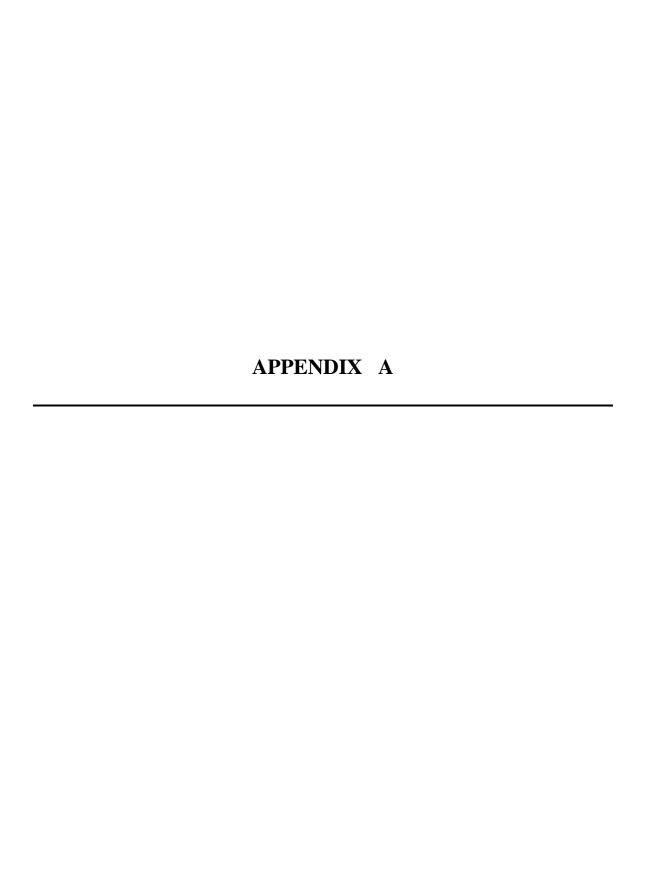
GRO= Gasoline Range Organics
DRO= Diesel Range Organics

TPH= Total Petroleum Hydrocarbons (GRO + DRO) NA= Not Applicable
"-----" = No Laboratory Analysis

mg/kg= milligrams-per-kilogram

^{*} Bold values indicate concentrations above initial action levels

TABLE 3


Summary of Groundwater Analytical Results NCDOT State Project R-2603

805 Elkin Highway (NC 268) - Parcel 74 North Wilkesboro, Wilkes County, North Carolina

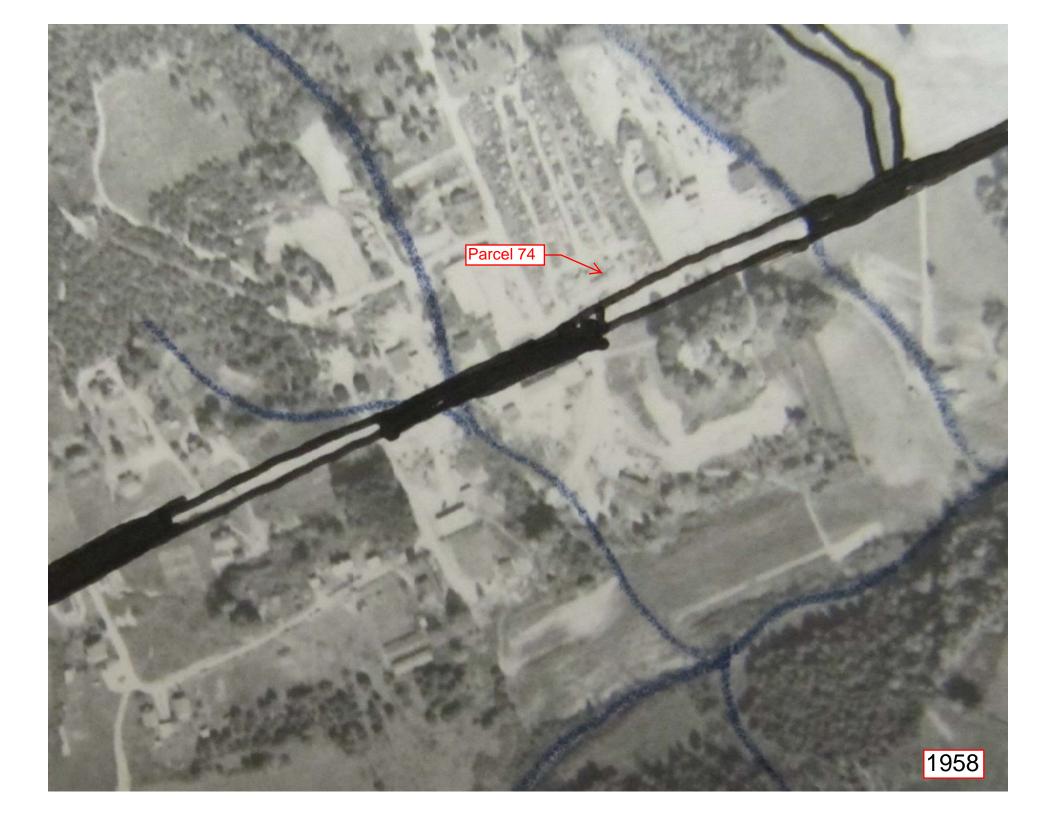
		SAMPLE ID			
PARAMETER	UNITS		GROUNDWATER		
		74-2(TW)	STANDARD		
EPA Method 6200B; Sample Collection Date: 6/10/13					
Benzene	ug/L	ND	1		
Chloroform	ug/L	ND	70		
Diisopropyl Ether (IPE)	ug/L	ND	70		
Ethyl Benzene	ug/L	ND	600		
Isopropylbenzene (Cumene)	ug/L	ND	70		
Naphthalene	ug/L	ND	6		
Styrene	ug/L	ND	70		
Toluene	ug/L	ND	600		
Total Xylenes	ug/L	ND	500		
n-Propylbenzene	ug/L	ND	70		
sec-Butylbenzene	ug/L	ND	70		
tert-Butyl methyl ether (MTBE)	ug/L	7.3	20		
tert-Butylbenzene	ug/L	ND	70		
1,2,4-Trimethylbenzene	ug/L	ND	400		
1,2-Dichloroethane	ug/L	ND	0.4		
1,3,5-Trimethylbenzene	ug/L	ND	400		
4-Isopropyltoluene	ug/L	ND	25		
All Other Parameters	ug/L	ND	NA		

ug/L= micrograms-per-liter

ND= Not Detected NA= Not Applicable

Google earth

meters 300


Google earth

300 meters

APPENDIX B

PYRAMID ENVIRONMENTAL & ENGINEERING (PROJECT 2013-131)

NCDOT PROJECT R-2603 (WBS 36000.1.1)

GEOPHYSICAL SURVEYS OF PARCEL 74 – UNDERGROUND STORAGE TANK INVESTIGATION

NORTH WILKESBORO, WILKES COUNTY, NC JULY 10, 2013

Report prepared for: Mr. Gordon Box

GeoEnvironmental Project Manager

GeoEnvironmental Section Geotechnical Engineering Unit

North Carolina Department of Transportation

1020 Birch Ridge Drive Raleigh, NC 27610

Prepared by: _

Eric C. Cross, L.G. NC License #2181

Reviewed by:

Douglas A. Canavello, L.G.

NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406

P: 3 3 6 . 3 3 5 . 3 1 7 4 F: 3 3 6 . 6 9 1 . 0 6 4 8

C 2 5 7: G E O L O G Y C 1 2 5 1: E N G I N E E R I N G

GEOPHYSICAL INVESTIGATION REPORT NCDOT PRELIMINARY SITE ASSESSMENT PARCEL 74 – 805 ELKIN HIGHWAY

North Wilkesboro, Wilkes County, North Carolina

Table of Contents

. 1
. 1
. 1
. 2
. 3
4

Figures

- Figure 1 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 74 EM61 Bottom Coil and Differential Results Contour Map
- Figure 3 GPR Transect Locations and Images

EXECUTIVE SUMMARY

- Electromagnetic (EM) and Ground Penetrating Radar (GPR) surveys were performed across the <u>accessible</u> portions of the Parcel.
- The majority of the EM61 anomalies detected could be attributed to visible objects at the ground surface such as fences and sign posts. The GPR surveys across remaining areas at the property indicated that non-cultural anomalies were likely due to buried metallic objects or utilities. No evidence was observed to indicate the presence of metallic USTs within the survey area.
- The geophysical investigation suggests that <u>no evidence of metallic USTs was recorded</u> within the proposed ROW and/or easement.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for the North Carolina Department of Transportation (NCDOT) at Parcel 74 (Mittie Shumate, JC Ellis Auto Supply), located at 805 Elkin Highway, North Wilkesboro, NC. The geophysical investigation was performed as part of the Preliminary Site Assessment (PSA) conducted by Pyramid at nine separate parcels along NC 268, and focused on the area between the current edge of pavement along NC 268 and the proposed right of way (ROW) and/or easement, whichever was greater. The survey area extended across the southern portion of the parcel, spanning a distance of approximately 240 feet along NC 268, and extending approximately 60 feet at its maximum north/south distance from NC 268 north into the property. Conducted on May 23 and June 3, 2013, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site consisted of a combination of gravel parking space and grassy open areas. Aerial photographs showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

Prior to conducting the geophysical investigation, a 20-foot by 10-foot survey grid was established across the geophysical survey areas using measuring tapes and water-based marking paint. These grid

marks were used as X-Y coordinates for location control when collecting the geophysical data and establishing base maps for the geophysical results.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. The EM survey was performed on May 23, 2013, using a Geonics EM61 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. All of the EM61 data were digitally collected at approximately 0.8 foot intervals along north-south trending or east-west trending, parallel survey lines spaced five feet apart. All of the data were downloaded to a computer and reviewed in the field and office using the Geonics DAT61 and Surfer for Windows Version 11.0 software programs.

GPR data were acquired on June 3, 2013, across selected EM61 differential anomalies using a Geophysical Survey Systems, Inc. (GSSI) SIR-2000 unit equipped with a 400 MHz antenna. Data were collected generally from east to west and north to south across specific EM61 anomalies. All of the GPR data were viewed in real time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 8 feet, based on an estimated two-way travel time of 8 nanoseconds per foot. GPR transect and image files were saved to the hard drive of the SIR unit.

DISCUSSION OF RESULTS

Contour plots of the EM61 bottom coil and differential results obtained across the survey areas at the property are presented in **Figure 2**. The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to delineate metal conduits or utility lines, small, isolated metal objects, and areas containing insignificant metal debris. The differential results are obtained from the difference between the top and bottom coils of the EM61 instrument. The differential results focus on the larger metal objects such as drum and UST-size objects and ignore the smaller insignificant metal objects.

Discussion of EM Anomalies: The east/west oriented anomalies between X=20 and X=40, and between X=200 and X=260 were the result of metal fences extending across these areas of the

property. The anomaly at X=75, Y=60 was the combined result of a metal pole and a sign post. The anomaly adjacent to the building centered at X=145, Y=45 was the result of a reinforced concrete pad. The minor anomaly at X=50, Y=40 was suspected to be the result of minor debris, and was investigated further using the GPR.

The GPR data were viewed in real time as the equipment was surveyed across the anomaly. Transects across EM anomalies were saved to the hard drive for post-processing in the office. **Figure 3** presents an aerial photograph showing the location of the GPR transects performed across the anomaly as well as the GPR images that were collected.

GPR Transects 1, 2, and 3 were performed across the anomaly at X=50, Y=40. Transect 1 recorded a feature that suggested an isolated buried object or possible utility at this location. Transects 2 and 3 did not record any significant features. The three GPR transects did not record any evidence of large objects below the ground surface, such as metallic USTs.

The geophysical investigation <u>did not record evidence of metallic USTs</u> within the proposed ROW and/or easement in the accessible areas of the parcel property.

SUMMARY & CONCLUSIONS

Our evaluation of the EM61 and GPR data collected across Parcel 74, North Wilkesboro, North Carolina provides the following summary and conclusions:

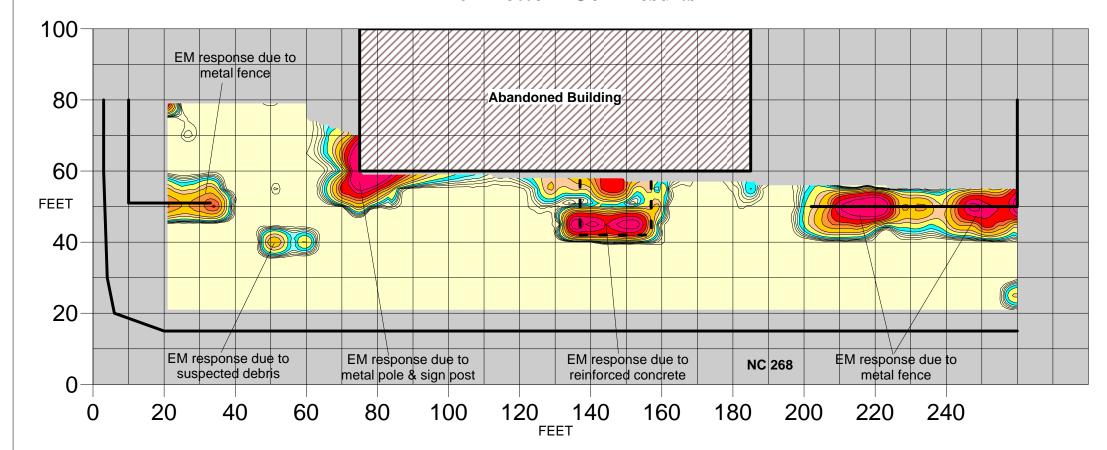
- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the geophysical survey area.
- The majority of the EM61 anomalies detected could be attributed to visible objects at the
 ground surface such as fences and sign posts. The GPR surveys across remaining areas at
 the property indicated that non-cultural anomalies were likely due to buried metallic objects
 or utilities. No evidence was observed to indicate the presence of metallic USTs within the
 survey area.
- The geophysical investigation suggests that no evidence of metallic USTs was recorded within the proposed ROW and/or easement.

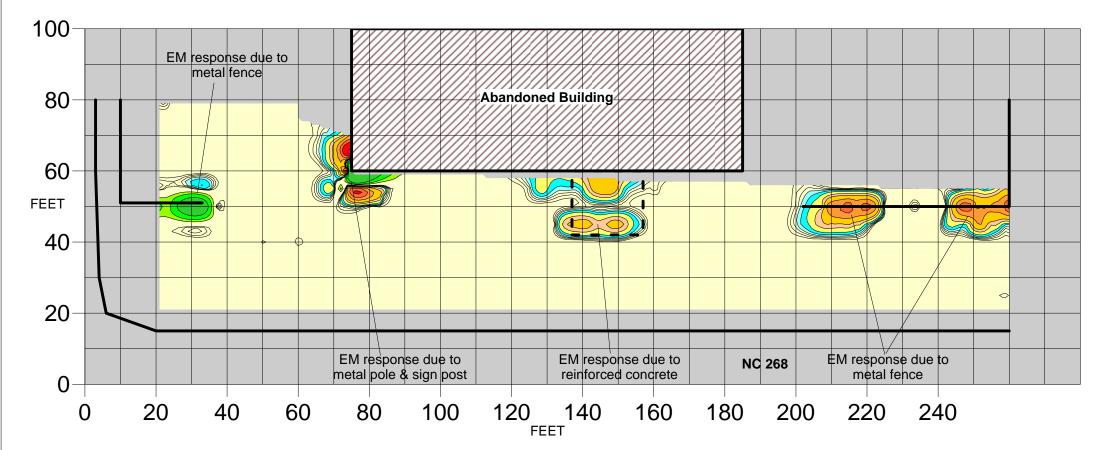
LIMITATIONS

Geophysical surveys have been performed and this report prepared for the NCDOT in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined that metallic USTs do not lie within the survey area of the Wilkes County property, but that none were detected. Additionally, it should be understood that areas containing vehicles or other restrictions to the accessibility of the geophysical instruments could not be investigated.

Aerial Photograph Showing Approximate Geophysical Survey Boundaries

Photograph of Abandoned On-Site Building (Facing Approximately North)


Geophysical Survey Area (Facing Approximately East)


PI IENT	NC DEPARTMENT OF TRANSPORTATION	07/04/13 ECC
ATI2	PARCEL 74, WILKES COUNTY (DOT ROW PROJECT)	CH'KD CH'KD
ΔIO	N. WILKESBORO	DWG
TITLE	GEOPHYSICAL RESULTS	[일 2013-131] [발]

GEOPHYSICAL SURVEY BOUNDARIES & SITE PHOTOGRAPHS FIGURE 1

EM61 Bottom Coil Results

EM61 Differential Results

NO EVIDENCE OF METALLIC USTs OBSERVED

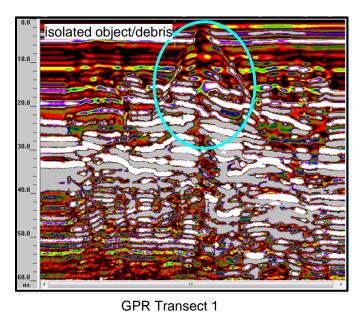
The contour plots show the bottom coil (most sensitive) and differential results of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous buried, metal debris. The EM61 data were collected on May 23, 2013 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were collected on June 3, 2013, using a GSSI SIR 2000 unit coupled to a 400 MHz antennae.

EM61 Metal Detection Response (millivolts)

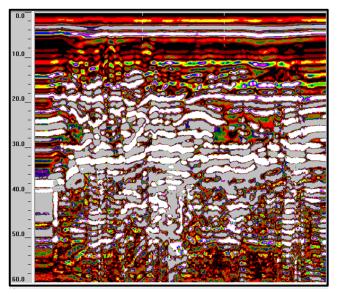
TITLE
PARCEL 74 - EM61 BOTTOM COIL &
DIFFERENTIAL RESULTS CONTOUR MAP

PROJECT

NC DEPARTMENT OF TRANSPORTATION ROW IMPROVEMENT PROJECT N. WILKESBORO, WILKES COUNTY, NC



503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology


DATE	07/04/2013	CLIENT	NCDOT
PYRAMID PROJECT #:	2013-131		FIGURE 2

GPR Transects 1, 2, and 3 were performed across the EM anomaly located at X=50 to X=60 at Y=40. The GPR results did not record any significant features, suggesting the anomaly was the result of isolated buried metallic debris. No evidence of a UST was observed. The remaining anomalies were attributed to visible objects at the ground surface or utilities.

GPR Transect 2

GPR Transect 3

TITLE

PARCEL 74 - GPR TRANSECT LOCATIONS **AND IMAGES**

PROJECT

NC DEPARTMENT OF TRANSPORTATION ROW IMPROVEMENT PROJECT N. WILKESBORO, WILKES COUNTY, NC

503 INDUSTRIAL AVENUE GREENSBORO, NC 27460

(336) 335-3174 (p) (336) 691-0648 (f)

License # C1251 Eng. / License # C257 Geology

DATE CLIENT 07/04/2013 NCDOT PYRAMID 2013-131 FIGURE 3 PROJECT #:

APPENDIX C

FIELD DRILLING RECORD

PROJECT NAME: PROJECT NUMBER:	NC DOT R-2603 Parcel 74, Mittie Shumate N. Wilkesboro, NC / 2013-131	BORING/WELL NO:	74-1
SITE LOCATION:	805 Elkin Highway Wilkes County, NC	BORING/WELL LOCATION:	Parcel 74, Mittie Shumate Property, East Side
START DATE:	6/10/13	COMPLETED:	6/10/13
GEOLOGIST:	R. Kramer	DRILLER:	Geologic Exploration
DRILL METHOD:	Geoprobe	SAMPLE METHOD:	Macro-core
BORING DIA:	2-inch	CASING DIA:	N/A
TOTAL DEPTH:	10 feet	CASING DEPTH:	N/A

DEPTH (ft.)	VISUAL MANUAL SOIL CLASSIFICATION COLOR, TEXTURE, STRUCTURE, CONSISTENCY, ODOR, ETC.	OVA RESULTS PERCENT RECOVERY BLOW COUNTS
	Depths correspond to soil type transitions	Core Sample Depths
0-5"	Concrete	
5"-3'	Reddish brown to tan, clayey-silt (CL), dry, no odor	OVA=74-1(0-2.5): 1.0 PPM
3-6'	Reddish brown to tan, clayey-silt (CL), dry, no odor	OVA=74-1(2.5-5): 1.0 PPM
6-8.5'	Reddish brown, sandy-silt (SM), dry, no odor	OVA=74-1(5-7.5): 1.5 PPM
8.5-10'	Reddish brown to tan, sandy-silt with small amount of pebbles (SM),	OVA=74-1(7.5-10): 1.2 PPM
	dry, no odor	
	MONITORING WELL INFORMATION (IF APPLIC.	ARIF)

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH (ft)	DEPTH (ft)	DIAMETER (in)	MATERIAL	
SCREEN LENGTH (ft)	DEPTH (ft)	DIAMETER (in)	MATERIAL	
DEPTH TO TOP OF SAND _		BAGS OF SAND		
DEPTH TO TOP SEAL	BENTONI	ΓE USED	BAGS OF CEMENT USED	

FIELD DRILLING RECORD

PROJECT NAME: PROJECT NUMBER:	NC DOT R-2603 Parcel 74, Mittie Shumate N. Wilkesboro, NC / 2013-131	BORING/WELL NO:	74-2(TW)
SITE LOCATION:	805 Elkin Highway Wilkes County, NC	BORING/WELL LOCATION:	Parcel 74, Mittie Shumate Property, Center
START DATE:	6/10/13	COMPLETED:	6/10/13
GEOLOGIST:	R. Kramer	DRILLER:	Geologic Exploration
DRILL METHOD:	Geoprobe	SAMPLE METHOD:	Macro-core
BORING DIA:	2-inch	CASING DIA:	1-inch
TOTAL DEPTH:	25 feet	CASING DEPTH:	25-feet

	VISUAL MANUAL SOIL CLASSIFICATION	OVA RESULTS
DEPTH (ft.)	COLOR, TEXTURE, STRUCTURE, CONSISTENCY, ODOR, ETC.	PERCENT RECOVERY BLOW COUNTS
	Depths correspond to soil type transitions	Core Sample Depths
0-3"	Concrete	
3"-4'	Reddish brown to tan, clayey-silt (CL), dry, no odor	OVA=74-2(0-2.5): <1 PPM
4-8.5'	Reddish brown to tan, clayey-silt with small quartz pebbles (CL),	OVA=74-2(2.5-5): 1.0 PPM
	dry, no odor	OVA=74-2(5-7.5): <1 PPM
8.5-13'	Reddish brown to tan (mottled), clayey-silt with sand (ML), dry, no odor	OVA=74-2(7.5-10): 0.5 PPM
13-16'	Reddish brown, silt (SC to ML), dry, no odor	
16-25'	Reddish brown to tan, silt with mica (MH), dry, no odor	
	Set 1-inch diameter temporary well at 25 feet with bottom 10 feet of	
	screen.	
	Depth to groundwater = 15.73 feet below land surface.	

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH (ft) 15	DEPTH (ft) 0-15	DIAMETER (in) 1	MATERIAL PVC .
SCREEN LENGTH (ft) 10	DEPTH (ft) 15-25	DIAMETER (in) 1	MATERIAL PVC .
DEPTH TO TOP OF SAND 1	3	BAGS OF SAND 0.5.	
DEPTH TO TOP SEAL 10	BENTONI'	TE USED 0.25	BAGS OF CEMENT USED 0 .

FIELD DRILLING RECORD

PROJECT NAME: PROJECT NUMBER:	NC DOT R-2603 Parcel 74, Mittie Shumate N. Wilkesboro, NC / 2013-131	BORING/WELL NO:	74-3
SITE LOCATION:	805 Elkin Highway Wilkes County, NC	BORING/WELL LOCATION:	Parcel 74, Mittie Shumate Property, West Side
START DATE:	6/10/13	COMPLETED:	6/10/13
GEOLOGIST:	R. Kramer	DRILLER:	Geologic Exploration
DRILL METHOD:	Geoprobe	SAMPLE METHOD:	Macro-core
BORING DIA:	2-inch	CASING DIA:	N/A
TOTAL DEPTH:	10 feet	CASING DEPTH:	N/A

DEPTH (ft.)	VISUAL MANUAL SOIL CLASSIFICATION COLOR, TEXTURE, STRUCTURE, CONSISTENCY, ODOR, ETC.	OVA RESULTS PERCENT RECOVERY BLOW COUNTS
	Taran da analas da a	
	Depths correspond to soil type transitions	Core Sample Depths
0-7'	Reddish brown, clayey-sandy-silt loam with quartz pebbles (SC),	OVA=74-3(0-2.5): <1 PPM
	dry, no odor	OVA=74-3(2.5-5): <1 PPM
7-10'	Reddish brown to tan, silt with quartz pebbles (ML), dry, no odor	OVA=74-3(5-7.5): 1.5 PPM
		OVA=74-3(7.5-10): 1.0 PPM
	MONITORING WELL INFORMATION (IF APPLICATION APPLICATIO	ABLE)

RISER LENGTH (ft)	DEPTH (ft)	DIAMETER (in)	MATERIAL
SCREEN LENGTH (ft)	DEPTH (ft)	DIAMETER (in)	MATERIAL
DEPTH TO TOP OF SAND		BAGS OF SAND	
DEPTH TO TOP SEAL	BENTONIT	E USED	BAGS OF CEMENT USED

FIELD DRILLING RECORD

PROJECT NAME: PROJECT NUMBER:	NC DOT R-2603 Parcel 74, Mittie Shumate N. Wilkesboro, NC / 2013-131	BORING/WELL NO:	74-4
SITE LOCATION:	805 Elkin Highway Wilkes County, NC	BORING/WELL LOCATION:	Parcel 74, Mittie Shumate Property, West Edge
START DATE:	6/10/13	COMPLETED:	6/10/13
GEOLOGIST:	R. Kramer	DRILLER:	Geologic Exploration
DRILL METHOD:	Geoprobe	SAMPLE METHOD:	Macro-core
BORING DIA:	2-inch	CASING DIA:	N/A
TOTAL DEPTH:	10 feet	CASING DEPTH:	N/A

Depths correspond to soil type transitions Core Sample Depths		VISUAL MANUAL SOIL CLASSIFICATION	OVA RESULTS
0-3' Brown, sandy-silt with pebbles (ML), moist, no odor 3-5' Brown, clayey-sandy-silt loam with pebbles (ML), moist, no odor 5-7' Reddish brown to tan, silt (ML), very moist, no odor 7-10' Brown, silt (ML), very moist, no odor OVA=74-4(5-7.5): 1.5 PPM OVA=74-4(7.5-10): 2.0 PPM	DEPTH (ft.)	COLOR, TEXTURE, STRUCTURE, CONSISTENCY, ODOR, ETC.	PERCENT RECOVERY BLOW COUNTS
0-3' Brown, sandy-silt with pebbles (ML), moist, no odor 3-5' Brown, clayey-sandy-silt loam with pebbles (ML), moist, no odor 5-7' Reddish brown to tan, silt (ML), very moist, no odor 7-10' Brown, silt (ML), very moist, no odor OVA=74-4(5-7.5): 1.5 PPM OVA=74-4(7.5-10): 2.0 PPM			
3-5' Brown, clayey-sandy-silt loam with pebbles (ML), moist, no odor 5-7' Reddish brown to tan, silt (ML), very moist, no odor 7-10' Brown, silt (ML), very moist, no odor OVA=74-4(5-7.5): 1.5 PPM OVA=74-4(7.5-10): 2.0 PPM			Core Sample Depths
5-7' Reddish brown to tan, silt (ML), very moist, no odor 7-10' Brown, silt (ML), very moist, no odor OVA=74-4(5-7.5): 1.5 PPM OVA=74-4(7.5-10): 2.0 PPM	0-3'	Brown, sandy-silt with pebbles (ML), moist, no odor	OVA=74-4(0-2.5): <1 PPM
7-10' Brown, silt (ML), very moist, no odor OVA=74-4(7.5-10): 2.0 PPM	3-5'	Brown, clayey-sandy-silt loam with pebbles (ML), moist, no odor	OVA=74-4(2.5-5): <1 PPM
	5-7'	Reddish brown to tan, silt (ML), very moist, no odor	OVA=74-4(5-7.5): 1.5 PPM
	7-10'	Brown, silt (ML), very moist, no odor	OVA=74-4(7.5-10): 2.0 PPM

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH (ft)	DEPTH (ft)	DIAMETER (in)	MATERIAL
SCREEN LENGTH (ft)	DEPTH (ft)	DIAMETER (in)	MATERIAL
DEPTH TO TOP OF SAND		BAGS OF SAND	
DEPTH TO TOP SEAL	BENTO	NITE USED	BAGS OF CEMENT USED

APPENDIX D

Hydrocarbon Analysis Results

Client: NC Department of Transportation

Address: 805 Elkin Highway

6 Samples analysed

Contact: Operator Tim Leatherman

Project: NCDOT R-2603, Pyramid 2013-131

							Tetal						
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		Ratios		HC Fingerprint Match
										% light % mid % heavy			
s	74-1(7.5)	15.1	<0.8	<0.8	#DIV/0!	#DIV/0!	< 0.75	< 0.08	< 0.038	0	0	100	Match not possible
s	74-1(7.5) REP	15.1	<0.8	<0.8	<0.8	<0.8	< 0.75	< 0.08	< 0.038	0	0	100	Match not possible
s	74-2(10)	14.4	<0.7	<0.7	<0.7	<0.7	< 0.72	< 0.07	< 0.036	0	100	0	#DIV/0!
s	74-2(10) REP	14.4	<0.7	<0.7	<0.7	<0.7	< 0.72	< 0.07	< 0.036	0	0	100	Match not possible
S	74-2(5)	13.1	<0.7	<0.7	<0.7	<0.7	< 0.65	< 0.07	< 0.033	0	74.3	25.7	Match not possible
S	74-3(7.5)	12.1	<0.6	<0.6	<0.6	<0.6	< 0.6	< 0.06	< 0.03	0	0	100	Match not possible
s	74-4(7.5)	14.6	<0.7	<0.7	<0.7	<0.7	< 0.73	< 0.07	< 0.036	0	0	100	Match not possible
s	74-4(10)	13.1	<0.7	<0.7	<0.7	<0.7	< 0.65	< 0.07	< 0.033	0	0	100	Match not possible

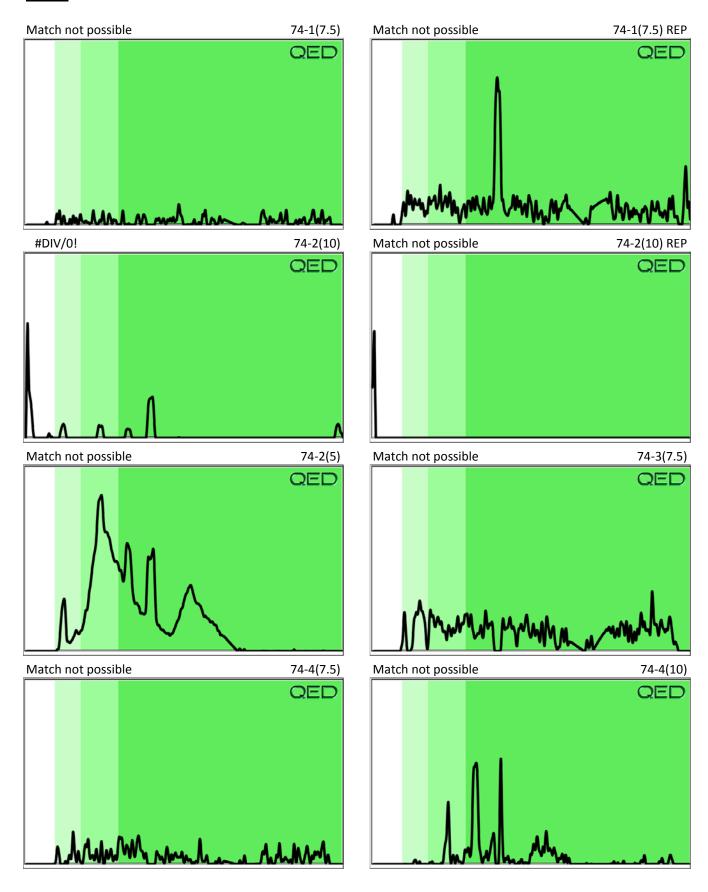
Fingerprint match abbreviations

Initial Calibrator QC check

Low Range Calibrator Final check
High Range Calibrator Final check

Results generated by a QED HC-1 analyser

Fingerprints provide a tentative hydrocarbon identification based on operator selected library matches


Concentration values in mg/kg for soil samples and mg/L for water samples.

Est = Specific calibrator not used, result estimated (PFM)= Poor library fingerprint match

Soil values are not corrected for moisture or stone content

(SBS)= site specific background subracted (LBS)= Library background subtracted

% = match confidence

APPENDIX E

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

June 24, 2013

Chemical Testing Engineer NCDOT Materials & Tests Unit 1801 Blue Ridge Road Raleigh, NC 27607

RE: Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Dear Chemical Engineer:

Enclosed are the analytical results for sample(s) received by the laboratory on June 12, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kevin Godwin

X ~ Dod-

kevin.godwin@pacelabs.com Project Manager

Enclosures

cc: Tim Leatherman, Pyramid

(336)623-8921

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

SAMPLE ANALYTE COUNT

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92161351001	74-2 (TW)	SM 6200B	CAH	64	PASI-C
92161351002	74-1 (7.5')	EPA 8015 Modified	EJK	2	PASI-C
		EPA 8015 Modified	GAW	2	PASI-C
		ASTM D2974-87	TNM	1	PASI-C

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Method: EPA 8015 Modified
Description: 8015 GCS THC-Diesel
Client: NCDOT West Central
Date: June 24, 2013

General Information:

1 sample was analyzed for EPA 8015 Modified. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Method: EPA 8015 Modified

Description: Gasoline Range Organics

Client: NCDOT West Central

Date: June 24, 2013

General Information:

1 sample was analyzed for EPA 8015 Modified. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 5035A/5030B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Method: SM 6200B Description: 6200B MSV

Client: NCDOT West Central Date: June 24, 2013

General Information:

1 sample was analyzed for SM 6200B. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/23350

A matrix spike and matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92161461003

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 995346)
 - 1,1-Dichloropropene
 - Carbon tetrachloride
 - Methylene Chloride
- MSD (Lab ID: 995347)
 - 1,1,1-Trichloroethane
 - 1,1-Dichloroethene
 - 1,1-Dichloropropene
 - 1,3-Dichloropropane
 - Carbon tetrachloride
 - Chloroform
 - Methylene Chloride
 - Vinyl chloride
 - trans-1,3-Dichloropropene

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Method: SM 6200B Description: 6200B MSV

Client: NCDOT West Central Date: June 24, 2013

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: R-2603 Parcel 74 36001.1.2

Date: 06/24/2013 01:32 PM

Sample: 74-2 (TW)	Lab ID: 9216	1351001	Collected: 06/10/1	13 14:45	Received: 06	6/12/13 15:42 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
6200B MSV	Analytical Metho	od: SM 62	00B					
Benzene	ND ug/l	L	0.50	1		06/20/13 18:02	71-43-2	
Bromobenzene	ND ug/l	L	0.50	1		06/20/13 18:02	108-86-1	
Bromochloromethane	ND ug/l	L	0.50	1		06/20/13 18:02	74-97-5	
Bromodichloromethane	ND ug/l	L	0.50	1		06/20/13 18:02	75-27-4	
Bromoform	ND ug/l	L	0.50	1		06/20/13 18:02	75-25-2	
Bromomethane	ND ug/l	L	5.0	1		06/20/13 18:02	74-83-9	
n-Butylbenzene	ND ug/l	L	0.50	1		06/20/13 18:02	104-51-8	
sec-Butylbenzene	ND ug/l	L	0.50	1		06/20/13 18:02	135-98-8	
ert-Butylbenzene	ND ug/l	L	0.50	1		06/20/13 18:02	98-06-6	
Carbon tetrachloride	ND ug/l		0.50	1		06/20/13 18:02	56-23-5	
Chlorobenzene	ND ug/l		0.50	1		06/20/13 18:02	108-90-7	
Chloroethane	ND ug/l		1.0	1		06/20/13 18:02	75-00-3	
Chloroform	ND ug/l		0.50	1		06/20/13 18:02	67-66-3	
Chloromethane	ND ug/l		1.0	1		06/20/13 18:02		
2-Chlorotoluene	ND ug/l		0.50	1		06/20/13 18:02		
4-Chlorotoluene	ND ug/l		0.50	1		06/20/13 18:02		
I,2-Dibromo-3-chloropropane	ND ug/l		1.0	1		06/20/13 18:02		
Dibromochloromethane	ND ug/l		0.50	1		06/20/13 18:02		
,2-Dibromoethane (EDB)	ND ug/l		0.50	1		06/20/13 18:02		
Dibromomethane	ND ug/l		0.50	1		06/20/13 18:02		
,2-Dichlorobenzene	_		0.50	1		06/20/13 18:02		
•	ND ug/l		0.50	1		06/20/13 18:02		
,3-Dichlorobenzene ,4-Dichlorobenzene	ND ug/l		0.50	1		06/20/13 18:02		
,	ND ug/l							
Dichlorodifluoromethane	ND ug/l		0.50	1		06/20/13 18:02		
I,1-Dichloroethane	ND ug/l		0.50	1		06/20/13 18:02		
I,2-Dichloroethane	ND ug/l		0.50	1		06/20/13 18:02		
I,1-Dichloroethene	ND ug/l		0.50	1		06/20/13 18:02		
cis-1,2-Dichloroethene	ND ug/l		0.50	1		06/20/13 18:02		
rans-1,2-Dichloroethene	ND ug/l		0.50	1		06/20/13 18:02		
1,2-Dichloropropane	ND ug/l		0.50	1		06/20/13 18:02		
1,3-Dichloropropane	ND ug/l		0.50	1		06/20/13 18:02		
2,2-Dichloropropane	ND ug/l		0.50	1		06/20/13 18:02		
1,1-Dichloropropene	ND ug/l		0.50	1		06/20/13 18:02		
sis-1,3-Dichloropropene	ND ug/l		0.50	1		06/20/13 18:02	10061-01-5	
rans-1,3-Dichloropropene	ND ug/l	L	0.50	1		06/20/13 18:02	10061-02-6	
Diisopropyl ether	ND ug/l	L	0.50	1		06/20/13 18:02	108-20-3	
Ethylbenzene	ND ug/l	L	0.50	1		06/20/13 18:02	100-41-4	
lexachloro-1,3-butadiene	ND ug/l	L	2.0	1		06/20/13 18:02	87-68-3	
sopropylbenzene (Cumene)	ND ug/l	L	0.50	1		06/20/13 18:02	98-82-8	
Methylene Chloride	ND ug/l	L	2.0	1		06/20/13 18:02	75-09-2	
Methyl-tert-butyl ether	7.3 ug/l	L	0.50	1		06/20/13 18:02	1634-04-4	
Naphthalene	ND ug/l		2.0	1		06/20/13 18:02	91-20-3	
n-Propylbenzene	ND ug/l		0.50	1		06/20/13 18:02		
Styrene	ND ug/l		0.50	1		06/20/13 18:02		
,1,1,2-Tetrachloroethane	ND ug/l		0.50	1		06/20/13 18:02		
1,1,2,2-Tetrachloroethane	ND ug/l		0.50	1		06/20/13 18:02		
Tetrachloroethene	ND ug/l		0.50	1		06/20/13 18:02		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Date: 06/24/2013 01:32 PM

Sample: 74-2 (TW)	Lab ID: 92161351	1001 Collected: 06/10/1	3 14:45	Received: 06/	/12/13 15:42 I	Matrix: Water	
Parameters	Results U	Inits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6200B MSV	Analytical Method: S	SM 6200B					
Toluene	ND ug/L	0.50	1		06/20/13 18:02	2 108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	2.0	1		06/20/13 18:02	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	2.0	1		06/20/13 18:02	2 120-82-1	
1,1,1-Trichloroethane	ND ug/L	0.50	1		06/20/13 18:02	2 71-55-6	
1,1,2-Trichloroethane	ND ug/L	0.50	1		06/20/13 18:02	2 79-00-5	
Trichloroethene	ND ug/L	0.50	1		06/20/13 18:02	79-01-6	
Trichlorofluoromethane	ND ug/L	1.0	1		06/20/13 18:02	2 75-69-4	
1,2,3-Trichloropropane	ND ug/L	0.50	1		06/20/13 18:02	96-18-4	
1,2,4-Trimethylbenzene	ND ug/L	0.50	1		06/20/13 18:02	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	0.50	1		06/20/13 18:02	2 108-67-8	
Vinyl chloride	ND ug/L	1.0	1		06/20/13 18:02	2 75-01-4	
m&p-Xylene	ND ug/L	1.0	1		06/20/13 18:02	2 179601-23-1	
o-Xylene	ND ug/L	0.50	1		06/20/13 18:02	95-47-6	
Surrogates	_						
1,2-Dichloroethane-d4 (S)	98 %	70-130	1		06/20/13 18:02	2 17060-07-0	
Dibromofluoromethane (S)	103 %	70-130	1		06/20/13 18:02	1868-53-7	
4-Bromofluorobenzene (S)	95 %	70-130	1		06/20/13 18:02	2 460-00-4	
Toluene-d8 (S)	99 %	70-130	1		06/20/13 18:02	2 2037-26-5	

17.6 %

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176

06/17/13 09:50

Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Percent Moisture

Date: 06/24/2013 01:32 PM

Lab ID: 92161351002 Collected: 06/10/13 11:00 Received: 06/12/13 15:42 Sample: 74-1 (7.5') Matrix: Solid Results reported on a "dry-weight" basis **Parameters** Results Units Report Limit Prepared Analyzed CAS No. Qual 8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 **Diesel Components** 6.1 06/12/13 17:30 06/15/13 00:56 68334-30-5 ND mg/kg Surrogates 106 % 41-119 n-Pentacosane (S) 06/12/13 17:30 06/15/13 00:56 629-99-2 Analytical Method: EPA 8015 Modified Preparation Method: EPA 5035A/5030B **Gasoline Range Organics** ND mg/kg Gasoline Range Organics 5.8 06/13/13 13:09 06/14/13 14:43 8006-61-9 Surrogates 4-Bromofluorobenzene (S) 84 % 70-167 06/13/13 13:09 06/14/13 14:43 460-00-4 **Percent Moisture** Analytical Method: ASTM D2974-87

0.10

1

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

R-2603 Parcel 74 36001.1.2 Project:

Pace Project No.: 92161351

QC Batch: GCV/6988 QC Batch Method: EPA 5035A/5030B

92161351002

Analysis Method: Analysis Description: EPA 8015 Modified

Gasoline Range Organics

Associated Lab Samples:

METHOD BLANK: 992052 Matrix: Solid

Associated Lab Samples: 92161351002

Blank Reporting Limit Parameter Units Result Qualifiers Analyzed Gasoline Range Organics ND 06/14/13 09:23 mg/kg 6.0 % 4-Bromofluorobenzene (S) 82 70-167 06/14/13 09:23

LABORATORY CONTROL SAMPLE: 992053

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Gasoline Range Organics mg/kg 49.9 47.4 95 70-165 4-Bromofluorobenzene (S) % 90 70-167

MATRIX SPIKE SAMPLE: 992897

Date: 06/24/2013 01:32 PM

MS MS % Rec 92161404002 Spike Parameter Units Result Conc. Result % Rec Limits Qualifiers ND Gasoline Range Organics 55.8 65.9 118 47-187 mg/kg 4-Bromofluorobenzene (S) % 90 70-167

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Date: 06/24/2013 01:32 PM

QC Batch: MSV/23350 Analysis Method: SM 6200B
QC Batch Method: SM 6200B Analysis Description: 6200B MSV

Associated Lab Samples: 92161351001

METHOD BLANK: 995344 Matrix: Water

Associated Lab Samples: 92161351001

1,1,1,2-Tetrachloroethane	Parameter	Units	Blank Result	Reporting Limit	Analyzad	Qualifiers
1,1,1-Trichloroethane					Analyzed	— Qualifiers
1,1,2,2-Titrichloroethane						
1,1,2-Trichloroethane		•				
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane					
1,1-Dichloroethene ug/L ND 0.50 06/20/13 13:58 1,1-Dichloropropene ug/L ND 0.50 06/20/13 13:58 1,2,3-Trichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,2,3-Trichloropengene ug/L ND 0.50 06/20/13 13:58 1,2,4-Trimethylenzene ug/L ND 2.0 06/20/13 13:58 1,2-Hindryblenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dibromo-3-chloropropane ug/L ND 0.50 06/20/13 13:58 1,2-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane <	1,1,2-Trichloroethane	•				
1,1-Dichloropropene	1,1-Dichloroethane	ug/L	ND	0.50	06/20/13 13:58	
1,2,3-Trichlorobenzene	1,1-Dichloroethene	ug/L			06/20/13 13:58	
1,2,3-Trichloropropane ug/L ND 0.50 06/20/13 13:58 1,2,4-Trinchlorobenzene ug/L ND 2.0 06/20/13 13:58 1,2-4-Trinchlorobenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dichorobersene ug/L ND 0.50 06/20/13 13:58 1,2-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,4-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 2-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 2-Chlorotoluene	1,1-Dichloropropene	-	ND	0.50	06/20/13 13:58	
1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	ug/L	ND	2.0	06/20/13 13:58	
1,2,4-Trimethylbenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dibromo-3-chloropropane ug/L ND 1.0 06/20/13 13:58 1,2-Dibromoethane (EDB) ug/L ND 0.50 06/20/13 13:58 1,2-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,3-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane	1,2,3-Trichloropropane	ug/L	ND	0.50	06/20/13 13:58	
1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	ug/L	ND	2.0	06/20/13 13:58	
1,2-Dibromoethane (EDB) ug/L ND 0.50 06/20/13 13:58 1,2-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dichloropthane ug/L ND 0.50 06/20/13 13:58 1,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,3-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,4-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,4-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,4-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2-C-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 Bromochame ug/L	1,2,4-Trimethylbenzene	ug/L	ND	0.50	06/20/13 13:58	
1,2-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,2-Dichloroptopane ug/L ND 0.50 06/20/13 13:58 1,2-Dichloroptopane ug/L ND 0.50 06/20/13 13:58 1,3-Frimethylbenzene ug/L ND 0.50 06/20/13 13:58 1,3-Dichloroptopane ug/L ND 0.50 06/20/13 13:58 1,3-Dichloroptopane ug/L ND 0.50 06/20/13 13:58 1,4-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2,2-Dichloroptopane ug/L ND 0.50 06/20/13 13:58 2-Chloroteluene ug/L ND 0.50 06/20/13 13:58 Benzene ug/L ND<	1,2-Dibromo-3-chloropropane	ug/L	ND	1.0	06/20/13 13:58	
1,2-Dichloroethane	1,2-Dibromoethane (EDB)	ug/L	ND	0.50	06/20/13 13:58	
1,2-Dichloropropane	1,2-Dichlorobenzene	ug/L	ND	0.50	06/20/13 13:58	
1,3,5-Trimethylbenzene ug/L ND 0.50 06/20/13 13:58 1,3-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,4-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 4-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 Benzene ug/L ND 0.50 06/20/13 13:58 Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chlorotethane ug/L ND 0.50	1,2-Dichloroethane	ug/L	ND	0.50	06/20/13 13:58	
1,3-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,4-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2,2-Dichlorobluene ug/L ND 0.50 06/20/13 13:58 4-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 4-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 Benzene ug/L ND 0.50 06/20/13 13:58 Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromoferm ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 0	1,2-Dichloropropane	ug/L	ND	0.50	06/20/13 13:58	
1,3-Dichloropropane ug/L ND 0.50 06/20/13 13:58 1,4-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 4-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 Benzene ug/L ND 0.50 06/20/13 13:58 Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 0.50 <t< td=""><td>1,3,5-Trimethylbenzene</td><td>ug/L</td><td>ND</td><td>0.50</td><td>06/20/13 13:58</td><td></td></t<>	1,3,5-Trimethylbenzene	ug/L	ND	0.50	06/20/13 13:58	
1,4-Dichlorobenzene ug/L ND 0.50 06/20/13 13:58 2,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 4-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 Benzene ug/L ND 0.50 06/20/13 13:58 Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chlorotethane ug/L ND 0.50 06/20/13 13:58 Chlorotethane ug/L ND 0.50 06	1,3-Dichlorobenzene	ug/L	ND	0.50	06/20/13 13:58	
2,2-Dichloropropane ug/L ND 0.50 06/20/13 13:58 2-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 4-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 Benzene ug/L ND 0.50 06/20/13 13:58 Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chlorothane ug/L ND 0.50 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chlorothane ug/L ND 0.50 06/20/13 13:58 <td>1,3-Dichloropropane</td> <td>ug/L</td> <td>ND</td> <td>0.50</td> <td>06/20/13 13:58</td> <td></td>	1,3-Dichloropropane	ug/L	ND	0.50	06/20/13 13:58	
2-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 4-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 Benzene ug/L ND 0.50 06/20/13 13:58 Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chlorothane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 0.50 06/20/13 13:58 cis-1,2-Dichloropropene ug/L ND 0.50 06/20/13 1	1,4-Dichlorobenzene	ug/L	ND	0.50	06/20/13 13:58	
4-Chlorotoluene ug/L ND 0.50 06/20/13 13:58 Benzene ug/L ND 0.50 06/20/13 13:58 Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chlorobethane ug/L ND 0.50 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 0.50 06/20/13 13:58 Cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50	2,2-Dichloropropane	ug/L	ND	0.50	06/20/13 13:58	
Benzene ug/L ND 0.50 06/20/13 13:58 Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 5.0 06/20/13 13:58 Bromomethane ug/L ND 0.50 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chlorocethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13	2-Chlorotoluene	ug/L	ND	0.50	06/20/13 13:58	
Bromobenzene ug/L ND 0.50 06/20/13 13:58 Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 5.0 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chloroethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50	4-Chlorotoluene	ug/L	ND	0.50	06/20/13 13:58	
Bromochloromethane ug/L ND 0.50 06/20/13 13:58 Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 5.0 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chloroethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50<	Benzene	ug/L	ND	0.50	06/20/13 13:58	
Bromodichloromethane ug/L ND 0.50 06/20/13 13:58 Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 5.0 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chloroethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dibromomethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 <t< td=""><td>Bromobenzene</td><td>ug/L</td><td>ND</td><td>0.50</td><td>06/20/13 13:58</td><td></td></t<>	Bromobenzene	ug/L	ND	0.50	06/20/13 13:58	
Bromoform ug/L ND 0.50 06/20/13 13:58 Bromomethane ug/L ND 5.0 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chloroethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 0.50 <td>Bromochloromethane</td> <td>ug/L</td> <td>ND</td> <td>0.50</td> <td>06/20/13 13:58</td> <td></td>	Bromochloromethane	ug/L	ND	0.50	06/20/13 13:58	
Bromomethane ug/L ND 5.0 06/20/13 13:58 Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chloroethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Chloromethane ug/L ND 0.50 06/20/13 13:58 cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0	Bromodichloromethane	ug/L	ND	0.50	06/20/13 13:58	
Carbon tetrachloride ug/L ND 0.50 06/20/13 13:58 Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chloroethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Chloromethane ug/L ND 0.50 06/20/13 13:58 cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Bromoform	ug/L	ND	0.50	06/20/13 13:58	
Chlorobenzene ug/L ND 0.50 06/20/13 13:58 Chloroethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Chloromethane ug/L ND 0.50 06/20/13 13:58 cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dibromomethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Bromomethane	ug/L	ND	5.0	06/20/13 13:58	
Chloroethane ug/L ND 1.0 06/20/13 13:58 Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 Cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dibromomethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Carbon tetrachloride	ug/L	ND	0.50	06/20/13 13:58	
Chloroform ug/L ND 0.50 06/20/13 13:58 Chloromethane ug/L ND 1.0 06/20/13 13:58 cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dibromomethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Chlorobenzene	ug/L	ND	0.50	06/20/13 13:58	
Chloromethane ug/L ND 1.0 06/20/13 13:58 cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dibromomethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Chloroethane	ug/L	ND	1.0	06/20/13 13:58	
cis-1,2-Dichloroethene ug/L ND 0.50 06/20/13 13:58 cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dibromomethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Chloroform		ND	0.50	06/20/13 13:58	
cis-1,3-Dichloropropene ug/L ND 0.50 06/20/13 13:58 Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dibromomethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Chloromethane	ug/L	ND	1.0	06/20/13 13:58	
Dibromochloromethane ug/L ND 0.50 06/20/13 13:58 Dibromomethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	cis-1,2-Dichloroethene	ug/L	ND	0.50	06/20/13 13:58	
Dibromomethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	cis-1,3-Dichloropropene	ug/L	ND	0.50	06/20/13 13:58	
Dibromomethane ug/L ND 0.50 06/20/13 13:58 Dichlorodifluoromethane ug/L ND 0.50 06/20/13 13:58 Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Dibromochloromethane	ug/L	ND	0.50	06/20/13 13:58	
Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Dibromomethane		ND	0.50	06/20/13 13:58	
Diisopropyl ether ug/L ND 0.50 06/20/13 13:58 Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58	Dichlorodifluoromethane	ug/L	ND	0.50	06/20/13 13:58	
Ethylbenzene ug/L ND 0.50 06/20/13 13:58 Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58		_	ND	0.50	06/20/13 13:58	
Hexachloro-1,3-butadiene ug/L ND 2.0 06/20/13 13:58		-	ND	0.50	06/20/13 13:58	
	•					
		ug/L	ND	0.50	06/20/13 13:58	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

METHOD BLANK: 995344 Matrix: Water

Associated Lab Samples: 92161351001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
m&p-Xylene	ug/L	ND ND	1.0	06/20/13 13:58	
Methyl-tert-butyl ether	ug/L	ND	0.50	06/20/13 13:58	
Methylene Chloride	ug/L	ND	2.0	06/20/13 13:58	
n-Butylbenzene	ug/L	ND	0.50	06/20/13 13:58	
n-Propylbenzene	ug/L	ND	0.50	06/20/13 13:58	
Naphthalene	ug/L	ND	2.0	06/20/13 13:58	
o-Xylene	ug/L	ND	0.50	06/20/13 13:58	
sec-Butylbenzene	ug/L	ND	0.50	06/20/13 13:58	
Styrene	ug/L	ND	0.50	06/20/13 13:58	
tert-Butylbenzene	ug/L	ND	0.50	06/20/13 13:58	
Tetrachloroethene	ug/L	ND	0.50	06/20/13 13:58	
Toluene	ug/L	ND	0.50	06/20/13 13:58	
trans-1,2-Dichloroethene	ug/L	ND	0.50	06/20/13 13:58	
trans-1,3-Dichloropropene	ug/L	ND	0.50	06/20/13 13:58	
Trichloroethene	ug/L	ND	0.50	06/20/13 13:58	
Trichlorofluoromethane	ug/L	ND	1.0	06/20/13 13:58	
Vinyl chloride	ug/L	ND	1.0	06/20/13 13:58	
1,2-Dichloroethane-d4 (S)	%	98	70-130	06/20/13 13:58	
4-Bromofluorobenzene (S)	%	98	70-130	06/20/13 13:58	
Dibromofluoromethane (S)	%	103	70-130	06/20/13 13:58	
Toluene-d8 (S)	%	101	70-130	06/20/13 13:58	

LABORATORY CONTROL SAMPLE: 995345

Date: 06/24/2013 01:32 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	48.8	98	60-140	
1,1,1-Trichloroethane	ug/L	50	49.4	99	60-140	
1,1,2,2-Tetrachloroethane	ug/L	50	49.4	99	60-140	
1,1,2-Trichloroethane	ug/L	50	50.5	101	60-140	
1,1-Dichloroethane	ug/L	50	48.2	96	60-140	
1,1-Dichloroethene	ug/L	50	48.3	97	60-140	
1,1-Dichloropropene	ug/L	50	60.3	121	60-140	
1,2,3-Trichlorobenzene	ug/L	50	52.9	106	60-140	
1,2,3-Trichloropropane	ug/L	50	54.1	108	60-140	
1,2,4-Trichlorobenzene	ug/L	50	52.6	105	60-140	
1,2,4-Trimethylbenzene	ug/L	50	49.0	98	60-140	
1,2-Dibromo-3-chloropropane	ug/L	50	48.7	97	60-140	
1,2-Dibromoethane (EDB)	ug/L	50	56.4	113	60-140 C	CU
1,2-Dichlorobenzene	ug/L	50	50.5	101	60-140	
1,2-Dichloroethane	ug/L	50	46.4	93	60-140	
1,2-Dichloropropane	ug/L	50	50.1	100	60-140	
1,3,5-Trimethylbenzene	ug/L	50	48.0	96	60-140	
1,3-Dichlorobenzene	ug/L	50	47.7	95	60-140	
1,3-Dichloropropane	ug/L	50	53.3	107	60-140	
1,4-Dichlorobenzene	ug/L	50	52.6	105	60-140	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Date: 06/24/2013 01:32 PM

LABORATORY CONTROL SAMPL	LE: 995345					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2,2-Dichloropropane	ug/L		47.4	95	60-140	
2-Chlorotoluene	ug/L	50	50.5	101	60-140	
4-Chlorotoluene	ug/L	50	46.6	93	60-140	
Benzene	ug/L	50	48.4	97	60-140	
Bromobenzene	ug/L	50	48.9	98	60-140	
Bromochloromethane	ug/L	50	50.8	102	60-140	
Bromodichloromethane	ug/L	50	49.9	100	60-140	
Bromoform	ug/L	50	52.8	106	60-140	
Bromomethane	ug/L	50	47.2	94	60-140	
Carbon tetrachloride	ug/L	50	54.8	110	60-140	
Chlorobenzene	ug/L	50	51.5	103	60-140	
Chloroethane	ug/L	50	45.6	91	60-140	
Chloroform	ug/L	50	49.1	98	60-140	
Chloromethane	ug/L	50	49.3	99	60-140	
cis-1,2-Dichloroethene	ug/L	50	46.9	94	60-140	
cis-1,3-Dichloropropene	ug/L	50	52.6	105	60-140	
Dibromochloromethane	ug/L	50	52.8	106	60-140	
Dibromomethane	ug/L	50	46.4	93	60-140	
Dichlorodifluoromethane	ug/L	50	36.9	74	60-140	
Diisopropyl ether	ug/L	50	50.2	100	60-140	
Ethylbenzene	ug/L	50	51.5	103	60-140	
Hexachloro-1,3-butadiene	ug/L	50	49.5	99	60-140	
Isopropylbenzene (Cumene)	ug/L	50	50.1	100	60-140	
m&p-Xylene	ug/L	100	100	100	60-140	
Methyl-tert-butyl ether	ug/L	50	51.2	102	60-140	
Methylene Chloride	ug/L	50	55.2	110	60-140	
n-Butylbenzene	ug/L	50	49.0	98	60-140	
n-Propylbenzene	ug/L	50	47.7	95	60-140	
Naphthalene	ug/L	50	53.1	106	60-140	
o-Xylene	ug/L	50	47.7	95	60-140	
sec-Butylbenzene	ug/L	50	45.7	91	60-140	
Styrene	ug/L	50	52.7	105	60-140	
tert-Butylbenzene	ug/L	50	45.9	92	60-140	
Tetrachloroethene	ug/L	50	51.1	102	60-140	
Toluene	ug/L	50	45.4	91	60-140	
trans-1,2-Dichloroethene	ug/L	50	49.2	98	60-140	
trans-1,3-Dichloropropene	ug/L	50	56.7	113	60-140	
Trichloroethene	ug/L	50	49.7	99	60-140	
Trichlorofluoromethane	ug/L	50	44.5	89	60-140	
Vinyl chloride	ug/L	50	45.7	91	60-140	
1,2-Dichloroethane-d4 (S)	%			93	70-130	
4-Bromofluorobenzene (S)	%			103	70-130	
Dibromofluoromethane (S)	%			99	70-130	
Toluene-d8 (S)	%			99	70-130	

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Date: 06/24/2013 01:32 PM

MATRIX SPIKE & MATRIX SPIK	E DUPLICATI	E: 99534	6		995347						
			MS	MSD							
	921	61461003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qua
,1,1,2-Tetrachloroethane	ug/L	ND	20	20	23.2	25.0	116	125	60-140	7	
,1,1-Trichloroethane	ug/L	ND	20	20	25.9	28.7	129	143	60-140	10 MC)
,1,2,2-Tetrachloroethane	ug/L	ND	20	20	24.1	25.4	121	127	60-140	5	
,1,2-Trichloroethane	ug/L	ND	20	20	24.1	26.4	120	132	60-140	9	
,1-Dichloroethane	ug/L	ND	20	20	26.1	26.7	130	134	60-140	2	
1-Dichloroethene	ug/L	ND	20	20	26.8	29.9	134	150	60-140	11 MC)
1-Dichloropropene	ug/L	ND	20	20	30.9	33.3	155	167	60-140	7 MC)
,2,3-Trichlorobenzene	ug/L	ND	20	20	24.2	25.8	118	126	60-140	6	
2,3-Trichloropropane	ug/L	ND	20	20	26.7	27.6	133	138	60-140	4	
2,4-Trichlorobenzene	ug/L	ND	20	20	25.8	26.5	127	130	60-140	3	
2,4-Trimethylbenzene	ug/L	ND	20	20	24.9	26.4	125	132	60-140	6	
2-Dibromo-3-chloropropane	ug/L	ND	20	20	25.4	26.0	127	130	60-140	2	
2-Dibromoethane (EDB)	ug/L ug/L	ND	20	20	27.0	27.2	135	136	60-140	1	
2-Dichlorobenzene	ug/L ug/L	ND	20	20	25.0	26.3	125	131	60-140	5	
2-Dichloroethane	ug/L ug/L	ND	20	20	22.0	20.3	110	111	60-140	0	
2-Dichloropropane	ug/L ug/L	ND	20	20	24.6	28.1	123	140	60-140	13	
3,5-Trimethylbenzene	-	ND	20	20	24.0	26.6	123	133	60-140	9	
	ug/L	ND									
3-Dichlorobenzene	ug/L	ND	20	20	23.9	25.2	120 137	126	60-140	5 3 MC	
3-Dichloropropane	ug/L	ND	20	20	27.4	28.2		141	60-140		,
4-Dichlorobenzene	ug/L		20	20	25.4	27.9	127	140	60-140	10	
2-Dichloropropane	ug/L	ND	20	20	24.5	25.3	122	126	60-140	3	
Chlorotoluene	ug/L	ND	20	20	26.4	27.8	132	139	60-140	5	
Chlorotoluene	ug/L	ND	20	20	23.0	24.6	115	123	60-140	7	
enzene	ug/L	ND	20	20	24.0	25.8	120	129	60-140	7	
romobenzene	ug/L	ND	20	20	25.9	26.9	130	134	60-140	4	
romochloromethane	ug/L	ND	20	20	24.2	27.3	121	137	60-140	12	
romodichloromethane	ug/L	ND	20	20	24.1	25.7	121	128	60-140	6	
romoform	ug/L	ND	20	20	24.8	25.6	124	128	60-140	3	
romomethane	ug/L	ND	20	20	21.5	24.4	107	122	60-140	13	
arbon tetrachloride	ug/L	ND	20	20	28.7	31.5	144	158	60-140	9 MC)
hlorobenzene	ug/L	ND	20	20	25.5	27.0	128	135	60-140	6	
hloroethane	ug/L	ND	20	20	27.3	28.1	137	140	60-140	3	
hloroform	ug/L	ND	20	20	27.0	28.4	135	142	60-140	5 MC)
hloromethane	ug/L	ND	20	20	23.8	24.6	119	123	60-140	3	
s-1,2-Dichloroethene	ug/L	ND	20	20	25.6	26.5	128	132	60-140	3	
s-1,3-Dichloropropene	ug/L	ND	20	20	25.9	26.7	129	133	60-140	3	
ibromochloromethane	ug/L	ND	20	20	25.0	27.2	125	136	60-140	8	
ibromomethane	ug/L	ND	20	20	22.8	22.6	114	113	60-140	1	
ichlorodifluoromethane	ug/L	ND	20	20	20.0	21.6	100	108	60-140	7	
iisopropyl ether	ug/L	ND	20	20	26.0	27.8	130	139	60-140	7	
thylbenzene	ug/L	ND	20	20	25.9	27.1	130	135	60-140	4	
exachloro-1,3-butadiene	ug/L	ND	20	20	24.2	25.6	121	128	60-140	6	
opropylbenzene (Cumene)	ug/L	ND	20	20	24.7	25.1	123	126	60-140	2	
&p-Xylene	ug/L	ND	40	40	49.8	52.5	124	131	60-140	5	
ethyl-tert-butyl ether	ug/L	1.9	20	20	28.7	29.3	134	137	60-140	2	
ethylene Chloride	ug/L	ND	20	20	28.1	30.0	141	150	60-140	7 MC)
-Butylbenzene	ug/L	ND	20	20	25.5	26.5	127	133	60-140	4	•

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Date: 06/24/2013 01:32 PM

MATRIX SPIKE & MATRIX SP	INE DUPLICAT	E: 99534			995347						
			MS	MSD							
	92	161461003	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
n-Propylbenzene	ug/L	ND	20	20	24.9	26.6	124	132	60-140	7	
Naphthalene	ug/L	ND	20	20	24.3	26.4	118	129	60-140	8	
o-Xylene	ug/L	ND	20	20	24.3	25.0	121	125	60-140	3	
sec-Butylbenzene	ug/L	ND	20	20	24.2	25.4	120	126	60-140	5	
Styrene	ug/L	ND	20	20	25.1	25.6	126	128	60-140	2	
tert-Butylbenzene	ug/L	ND	20	20	23.9	26.1	119	131	60-140	9	
Tetrachloroethene	ug/L	ND	20	20	25.6	27.6	126	136	60-140	8	
Toluene	ug/L	ND	20	20	23.2	24.4	116	122	60-140	5	
trans-1,2-Dichloroethene	ug/L	ND	20	20	25.7	28.0	128	140	60-140	9	
trans-1,3-Dichloropropene	ug/L	ND	20	20	26.7	29.0	133	145	60-140	8 M0	
Trichloroethene	ug/L	ND	20	20	24.2	26.2	121	131	60-140	8	
Trichlorofluoromethane	ug/L	ND	20	20	25.9	26.9	130	134	60-140	4	
Vinyl chloride	ug/L	ND	20	20	25.2	28.4	126	142	60-140	12 M0	
1,2-Dichloroethane-d4 (S)	%						99	99	70-130		
4-Bromofluorobenzene (S)	%						100	98	70-130		
Dibromofluoromethane (S)	%						100	99	70-130		
Toluene-d8 (S)	%						96	98	70-130		

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

QC Batch: OEXT/22536
QC Batch Method: EPA 3546

Analysis Method:
Analysis Description:

EPA 8015 Modified 8015 Solid GCSV

Associated Lab Samples: 92161351002

METHOD BLANK: 990888 Matrix: Solid

Associated Lab Samples: 92161351002

Blank Reporting Limit Parameter Units Result Qualifiers Analyzed **Diesel Components** ND 5.0 06/12/13 12:13 mg/kg % n-Pentacosane (S) 94 41-119 06/12/13 12:13

LABORATORY CONTROL SAMPLE: 990889

Date: 06/24/2013 01:32 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Components	mg/kg	66.7	53.5	80	49-113	
n-Pentacosane (S)	%			82	41-119	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 990890 990891 MSD MS 92161133002 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual ND **Diesel Components** mg/kg 77.3 77.3 66.9 58.5 84 73 10-146 13 n-Pentacosane (S) % 101 87 41-119

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

QC Batch: PMST/5600 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 92161351002

SAMPLE DUPLICATE: 991747

92161026001 Dup
Parameter Units Result RepD Qualifiers

Percent Moisture % 21.4 20.5 5

SAMPLE DUPLICATE: 991748

Date: 06/24/2013 01:32 PM

 Parameter
 Units
 92161351002 Result
 Dup Result
 RPD
 Qualifiers

 Percent Moisture
 %
 17.6
 17.1
 3

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Acid preservation may not be appropriate for 2-Chloroethylvinyl ether, Styrene, and Vinyl chloride.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 06/24/2013 01:32 PM

CU The continuing calibration for this compound is outside of Pace Analytical acceptance limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Pace Analytical Services, Inc. 2225 Riverside Dr. Asheville, NC 28804 (828)254-7176 Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: R-2603 Parcel 74 36001.1.2

Pace Project No.: 92161351

Date: 06/24/2013 01:32 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92161351002	74-1 (7.5')	EPA 3546	OEXT/22536	EPA 8015 Modified	GCSV/14847
92161351002	74-1 (7.5')	EPA 5035A/5030B	GCV/6988	EPA 8015 Modified	GCV/6990
92161351001	74-2 (TW)	SM 6200B	MSV/23350		
92161351002	74-1 (7.5')	ASTM D2974-87	PMST/5600		

Page 1 of 2 Sample Condition Upon Receipt (SCUR) ace Analytical* Issuing Authority: **Document Number:** Pace Huntersville Quality Office F-CHR-CS-03-rev.11 Client Name: ☐ Huntersville ☐ Asheville Where Received: Eden ☐ Raleigh Courier: Fed Ex UPS USPS Client Commercial Pace Other Optional Proj. Due Date: Custody Seal on Cooler/Box Present: yes no Proj. Name: Packing Material: Bubble Wrap Bubble Bags None Thermometer Used: IR Gun T1102 11301 Samples on ice, cooling process has begun Type of Ice: Wet) Blue None T1102: No Correction T1301: No Correction **Temp Correction Factor** Date and Initials of person examining contents Biological Tissue is Frozen: Yes No N/A Corrected Cooler Temp.: Temp should be above freezing to 6°C Comments: Yes ONo ON/A 1. Chain of Custody Present: Chain of Custody Filled Out: ☐Yes ☐No □N/A ☐Yes ☐No ☐N/A Chain of Custody Relinquished: ☐Yes ☐No □N/A Sampler Name & Signature on COC: ∰Yes □No □N/A 5. Samples Arrived within Hold Time: ☐Yes ☐No □N/A 6. Short Hold Time Analysis (<72hr): □Yes □No □N/A Rush Turn Around Time Requested: methanolin ☐Yes ☐No □N/A Sufficient Volume: √ Yes □ No □N/A Correct Containers Used: ⊠Yeş □No □N/A -Pace Containers Used: ÚYes □No □N/A 10. Containers Intact: ☐Yes ☐No □N/A 11. Filtered volume received for Dissolved tests □Yes □No □N/A 12. Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. □Yes □No □N/A 13. All containers needing preservation are found to be in □Yes □No □N/A compliance with EPA recommendation. □Yes □No exceptions: VOA, coliform, TOC, O&G, WI-DRO (water) □Yes ☑No □N/A 14. Samples checked for dechlorination: □Yes ☑No □N/A Headspace in VOA Vials (>6mm): 15. ☐Yes ☐No ☐N/A Trip Blank Present: 116. □Yes □No □N/A Trip Blank Custody Seals Present Pace Trip Blank Lot # (if purchased): Y / N Field Data Required? Client Notification/ Resolution: Date/Time: Person Contacted:

SCURF Review: Date: 6/12/13

SRF Review: Date: 6/13/13

Comments/ Resolution: Scale was

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

WO#:92161351

92161351

Pace Analytical®

CHAIN-OF-CUSTODY / Analytical Request Document

			'	2		2 1	0	9	0 7	6	O1	4 4	0 10	-	ITEM#			0 (0		Reques	mail		Address:	Comp	Sect	
			WEL# 74										7	75	Sample IDs MUST BE UNIQUE	SAMPLE ID	Negan and Chert IIIIOIII and I	Section D	11. 11	Requested Due Date/TAT:	Jimbo	revishoro, N.	203 Tol	Company Aramid En	Section A Required Client Information:	Pace Analytical®
ORIGINAL				L# 74								41	11/11	1-2(TW			Drinking Water Water	Matrix Codes	11/12	Pr Pr	menthe	. , ,	1	Smill on went Re	, a s	
			M	大分	D R			+				750	2) XX	의 경우 등은 연구 등록 등 대표 WATRIX CODE (see valid codes to left)					Project Number	Project Name:	7	Copy To:	Report To-	Section B Required Project Information:	
			M	5	LINQUI							- 5		3	SAMPLE TYPE			_	S	NA STATE	er No.:	Y1 BW		3	oject Info	
				Sjewich !!	RELINQUISHED BY / AFFILIATION										DATE	START				N.P.	Sal	1 gway (leat	rmation:	
	SAMPLER		deci	12/2	AFFILIATIO										TIME	OSITE TO STEE		2	600	300	3600	Š.		Hem		
SIGNATUR	RINT Nam		P	GWE	N							Chall	1	alidis	DATE	END/GRAB			8	180	0 2		- 1	5		The Chai
SIGNATURE of SAMPLER:	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER.		612-1	5/16) (DATE							11:00	- (1448	TIME	RAB			1	27						The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.
\ \frac{1}{2}			Pr.	SE C					-		-	7		-	SAMPLE TEMP	Andrew Control of the Vice	TION		L	T M M	2 2	>	0	>	= ω	ly is a L
	7		SHA	08:0	TIME						+	X		7	# OF CONTA Unpreserved			-		Manager: Pace Profile #:	Pace Quote Reference	Address:	Company Na	Attention:	Section C Invoice Information:	EGAL D
1,5	5		,	1			\Box							X	H ₂ SO ₄	-	7/68			X	DES.		Vare 1		ormation	OCUME
1			(5		Þ		\parallel				+	+			HCI NaOH		rieservatives		100	SOIN	W	4	?			NT. All
2/1	620000		3	1	ACCEPTED BY / AFFILIATION		H				-)	٥		Na ₂ S ₂ O ₃ Methanol				1	19	000	+	1			relevan
1 5			D	14	ED BY /										Other Analysis	Γest ↓	Y	/ N 👢	-	24	9		4			t fields
DATE	B		-4	h	AFFIL			-		-		15	-	X	16200	0			R	X	N					must t
DATE Signed			dice	and a	IATION						7	>	<	No.	ORC GR4) (355) (523			Requested Analysis Filtered (Y/N)		NC851	#1				oe complet
			5	0					+			-						-	Analys	Site L	8	7	REGL			ed accur
10			9	CHAN	DATE			-	+		+	-				Žv			is Filt	Site Location STATE:	₩ST	NPDES	LATO			ately.
N			542	1	TIME			+			+					V			ered (Y/	<u> </u>	R	7 0	REGULATORY AGENCY			
Temp	in °C	H	1	13															Z	NC	RCRA	ROUND	NCY		Page:]
Received on		+			S						Residual Chlorine (Y/N)					11,		GROUND WATER		16	-					
Ice (Y/N) Custody		+		SAMPLE	AMPLE C										Sace Pr	Pace Project No./1								5		
Sealed ((Y/l)					SAMPLE CONDITIONS										oject No	2					OTHER	DRINKIN		303		
Samples (Y/N					SNC							8	3	CO	Pace Project No./ Lab I.D.							DRINKING WATER			P	
												/													Page	2 2 of 22

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per modern or any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

APPENDIX F

FIELD PERSONNEL LOG								
PROJECT NAME : NCDOT Wilk PARCELS 71, 72, 73, 74, 78, 94, 97		PROJECT NO.: R-2603						
Name: Eric Cross, Ryan Kramer	Date: 5/22/13	Mon Tue Wed Th Fri Sat Sun						
TASKS PERFORMED:								
E. Cross & R. Kramer: On site: 8AM Mobilize to site. Performed geophy Performed geophysical data analysi Leave site: 6PM Associated mileage – 84 miles								
T. Leatherman: Travel to Soil & Water offices in W Hours associated with trip - 7 Associated mileage – 191 miles	Vilkesboro, NC to rev	view maps/aerials						

FIELD PERSONNEL LOG
PROJECT NAME : NCDOT Wilkes County ROW PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102
Name: Eric Cross, Ryan Kramer, Tim Leatherman Date: 5/23/13 Mon Tue Wed Th Fri Sat
TASKS PERFORMED:
E. Cross & R. Kramer On site: 8AM Performed geophysical surveys using EM61 magnetometer and/or GPR. Performed geophysical data analysis/processing in field and in evening. Leave site: 6PM
T. Leatherman Site Reconnaissance Hours associated with recon – 7 Mileage for recon – 185

FIELD PERSONNEL LOG **PROJECT NAME**: NCDOT Wilkes County ROW **PROJECT NO.:** R-2603 PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102 Mon Tue Wed Th Fri Sat Sun Name: Eric Cross, Ryan Kramer **Date:** 5/24/13 TASKS PERFORMED: On site: 8AM Performed geophysical surveys using EM61 magnetometer and/or GPR. Performed geophysical data analysis/processing in field and in evening. Leave site: 6PM Demobilization Mileage - 150

FIELD PERSONNEL LOG								
PROJECT NAME: NCDOT Wilkes County ROW PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102	PROJECT NO.: R-2603							
Name: Eric Cross, Time Leatherman Date: 6/3/13	Mon Tue Wed Th Fri Sat Sun							
TASKS PERFORMED:								
E. Cross On site: 8AM Mobilize to site. Performed geophysical surveys using Performed geophysical data analysis/processing in fiel Leave site: 6PM Mobilization mileage – 150 miles								
T. Leatherman Mobilize to site, assist with geophysics. Hours – 5 Mileage for mobilization/demobilization – 203								

FIELD PERSONNI	EL LOG
PROJECT NAME : NCDOT Wilkes County ROW PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102	PROJECT NO.: R-2603
Name: Eric Cross, Time Leatherman Date: 6/4/13	Mon Tue Wed Th Fri Sat Sun
TASKS PERFORMED:	
E. Cross & T. Leatherman On site: 8AM Performed geophysical surveys using EM61 magneton data analysis/processing in field. Investigated propose locating. Leave site: 4PM	
E. Cross demobilization mileage: 150	

FIELD PERSONNEL LOG **PROJECT NAME**: NCDOT Wilkes County ROW **PROJECT NO.:** R-2603 PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102 MonTue Wed Th Fri Sat Sun Name: Tim Leatherman **Date:** 6/7/13 TASKS PERFORMED: Travel to NCDENR Regional Office to perform file review Hours associated with file review -4.75Mileage to travel to regional office – 58

FIELD PERSONNEL LOG **PROJECT NAME**: NCDOT Wilkes County ROW **PROJECT NO.:** R-2603 PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102 **Mon** Tue Wed Th Fri Sat Sun Name: Tim Leatherman, Ryan Kramer **Date:** 6/10/13 **TASKS PERFORMED:** Mobilize to job site from Greensboro. Performed geoprobe boring supervision, soil and groundwater sampling, QED analysis. Hours for personnel vary, see timesheets. Mileage associated with mobilization/demobilization for all vehicles, week of June $10^{th} = 542$

FIELD PERSONNEL LOG **PROJECT NAME**: NCDOT Wilkes County ROW PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102 **PROJECT NO.:** R-2603 Mon Tue Wed Th Fri Sat Sun Name: Tim Leatherman, Ryan Kramer **Date:** 6/11/13 **TASKS PERFORMED:** Performed geoprobe boring supervision, soil and groundwater sampling, QED analysis. Hours for personnel vary, see timesheets.

FIELD PERSONNEL LOG **PROJECT NAME**: NCDOT Wilkes County ROW PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102 **PROJECT NO.:** R-2603 Mon Tue Wed Th Fri Name: Tim Leatherman, Ryan Kramer, Brett Higgins Date: 6/12/13 **TASKS PERFORMED:** Performed geoprobe boring supervision, soil and groundwater sampling, QED analysis. Hours for personnel vary, see timesheets.

FIELD PERSONNEL LOG								
PROJECT NAME : NCDOT Wilkes County ROW PARCELS 71, 72, 73, 74, 78, 94, 97/99, AND 102	PROJECT NO.: R-2603							
Name: Tim Leatherman, Brett Higgins Date: 6/13/13	Mon Tue Wed Th Fri							
TASKS PERFORMED:								
Performed geoprobe boring supervision, soil and groundwater sampling, QED analysis. Travel to Greensboro from job site. Hours for personnel vary, see timesheets.								