PRELIMINARY SITE ASSESSMENT FOR PARCEL 196, JOSHUA JOHNSON PROPERTY 1023 EVANS STREET GREENVILLE, PITT COUNTY, NORTH CAROLINA

> STATE PROJECT: U-3315 WBS ELEMENT: 35781.1.2

> > **PREPARED FOR:**

NCDOT GEOTECHNICAL ENGINEERING UNIT GEOENVIRONMENTAL SECTION 1589 MSC RALEIGH, NORTH CAROLINA 27699-1589

NOVEMBER 20, 2012

PREPARED BY:

CATLIN ENGINEERS AND SCIENTISTS P. O. BOX 10279 WILMINGTON, NORTH CAROLINA 28404-0279 (910) 452-5861

CATLIN PROJECT NO. 212077

CORPORATE GEOLOGY LICENSE CERTIFICATION NO. C-118 CORPORATE LICENSURE NO. FOR ENGINEERING SERVICES C-0585

TABLE OF CONTENTS

1.0	PURPOSE OF INVESTIGATION AND DESCRIPTION	1
2.0	METHODS	2
	2.1 FIELD METHODS 2.2 LABORATORY TESTING	3 4
3.0	RESULTS	4
4.0	SUMMARY AND RECOMMENDATIONS	5
5.0	LIMITATIONS	6
6.0	SIGNATURES	6

TABLES

TABLE 1SUMMARY OF SOIL LABORATORY RESULTS – EPA METHODS 8260BAND 8270D BASE NEUTRAL

SHEETS

- SHEET 1A CONVENTIONAL PLAN SHEET SYMBOLS
- SHEET 2 BORING LOCATIONS AND SUMMARIZED LABORATORY ANALYTICAL RESULTS

APPENDICES

APPENDIX A	SCHNABEL GEOPHYSICAL REPOR	Т

- APPENDIX B BORING LOG
- APPENDIX C LABORATORY REPORT AND CHAIN OF CUSTODY RECORD
- APPENDIX D PHOTOGRAPHS

Page

PRELIMINARY SITE ASSESSMENT FOR PARCEL 196, JOSHUA JOHNSON PROPERTY 1023 EVANS STREET GREENVILLE, PITT COUNTY, NORTH CAROLINA

STATE PROJECT: U-3315 WBS ELEMENT: 35781.1.2

NOVEMBER 20, 2012

1.0 PURPOSE OF INVESTIGATION AND DESCRIPTION

CATLIN Engineers and Scientists (CATLIN) was retained by the North Carolina Department of Transportation (NCDOT) Geotechnical Engineering Unit to provide a field investigation concluding with a Preliminary Site Assessment (PSA) for the above site. In response to a June 19, 2012 Request for Proposal (RFP) (Updated July 10, 2012) and subsequent work scope clarifications with Mr. Gordon Box, LG and Mr. Cyrus Parker, PE, LG, CATLIN submitted a proposal for conducting an investigation at the Parcel 196, Joshua Johnson Property. The parcel/property is located at 1023 Evans Street along the NCDOT Project "Stantonsburg Road/Tenth Street Connector from Memorial Drive (US 13) to Evans Street" in Greenville, North Carolina. Sheet 1 illustrates the general location.

The following specific parcel information was provided by NCDOT:

... what appears to be a former pump island was observed adjacent to Evans Street.

According to NCDOT acquisition of the right of way (ROW) is necessary for roadway construction (State Project U-3315) and specifically at the above referenced parcel (Parcel 196). A site investigation is requested before ROW acquisition and roadway construction. Underground storage tanks (USTs) and/or associated piping are suspected in the proposed ROW and/or easement(s).

1

The work scope as requested includes:

- Communicate progress reports to the GeoEnvironmental Section.
- Determine if contaminated soils or USTs are present within the NCDOT ROW, controlled access boundary (CA), or easement with particular emphasis on the vicinity of proposed excavations for drainage, utilities, and slope stake cuts.
- Estimate the quantity of impacted soils. Estimate the volume of impacted soils across the study area and the volume that will require excavation during construction. Indicate the approximate area of soil contamination on a site map and CADD file.
- Research the site for past uses and possible releases and include findings in final report.
- Report the depth to groundwater and obtain one groundwater sample from the site with emphasis on the vicinity of proposed drainage features. Test groundwater sample for contaminants relevant to the site's past use and/or possible releases.
- Provide a MicroStation file with the boring locations and estimated extent of impacted soils (if any).
- Prepare a report including field activities, findings, and recommendations and submit in triplicate and electronically to the NCDOT GeoEnvironmental Section.

This report documents our activities and findings at Parcel 196, Joshua Johnson Property (currently Tech Shop), 1023 Evans Street, Greenville, North Carolina. According to the RFP, Parcel 196 is two (2) properties addressed as 1023 and 1025 Evans Street. This investigation was conducted only on the portion addressed as 1023 Evans Street. The site is illustrated on Sheet 2.

2.0 METHODS

Approximate proposed boring locations were discussed with NCDOT personnel before final Workplan submittal. There were no slope stake cuts identified within the subject site. Per NCDOT request, borings (soil samples) were located near proposed drainage features (as indicated on NCDOT provided plan sheets). The NCDOT Conventional Plan Sheet Symbols are provided on Sheet 1A. Accessible proposed drainage features at the site include drainage piping.

North Carolina Department of Environment and Natural Resources (NCDENR) UST Section personnel were interviewed and the NCDENR UST database was reviewed. NCDENR Dry-cleaning Solvent Cleanup Act (DSCA) Program personnel were also interviewed and the DSCA site list was reviewed.

CATLIN coordinated geophysical activities concurrently with soil boring and

sampling. The geophysical investigation methods are detailed in the SCHNABEL ENGINEERING SOUTH, PC (Schnabel) geophysical report provided in Appendix A. Final boring/sample location was determined based on proposed drainage feature location (and elevation), geophysical results, file review information, field observations, and discussion with NCDOT personnel. CATLIN's field activities began and concluded at the site on July 25, 2012.

Based on review of geophysical information, file review information, discussions with knowledgeable locals, and groundwater analytical results from nearby parcels, groundwater contamination was not suspected and a groundwater sample was not collected at the site.

2.1 FIELD METHODS

All field work was conducted in general accordance with state and federal guidelines and industry standards.

Underground utility locating was coordinated by CATLIN personnel. The North Carolina One Call Center (NC-1-Call) was contacted for underground utility location. The areas around the proposed boring locations were checked and underground utilities were indicated by NC-1-Call personnel.

CATLIN personnel gathered subsurface soil data at the site by Direct Push Technology (DPT) boring advancement using an AMS PowerProbe[™] 9600D (PowerProbe). A boring was identified by the parcel number 196 followed by "DPT" and boring number (example: 196DPT-01). One boring was located near proposed drainage catch basin 1108. The boring was advanced to depth by static force and a 90-pound hydraulic percussion hammer. Two and one-guarter inch diameter by four-foot length steel is used as casing. Soil samples were continuously collected in four-foot long and one and one-half inch diameter clear liners. Liners are removed from the casing and then cut in half longitudinally to allow for visual/manual classification utilizing the Unified Soil Classification System (USCS). Soils were collected continuously from near the surface to boring termination. The boring for soil sample collection was terminated at six (6) feet below land surface (BLS). Half of the soils from the liners were removed in twofoot intervals and placed in sealable polyethylene bags for organic vapor analysis (OVA) headspace screening utilizing a photo ionization detector (PID). The USCS, OVA/PID reading, and any indication of petroleum impact were recorded on the field log and has been transferred to the Boring Log provided in Appendix B. As illustrated on Sheet 2, one (1) boring was advanced for soil sample collection.

Soil samples for laboratory analysis were collected from the sample

interval above the water table with the highest OVA/PID reading and/or the sample interval near the bottom of the proposed drainage feature installation elevation. The sample interval was included with the boring identification as part of the soil sample identification [196DPT-01(5-5.5 ft)]. The sample identification is included on the Boring Log in Appendix B and the laboratory analytical Chain of Custody in Appendix C.

New disposable nitrile gloves were worn during sampling activities. All samples were placed into laboratory provided glassware and packed on ice in an insulated cooler for transportation to the laboratory. Sample integrity was maintained by following proper Chain of Custody procedures. A copy of the Chain of Custody is provided following the analytical report in Appendix C.

The borehole was abandoned to just below the surface using threeeighth inch bentonite chips. Bentonite and water were poured into the borehole simultaneously to facilitate hydration. Final borehole and sample locations were surveyed utilizing a Trimble[®] GPS survey instrument.

2.2 LABORATORY TESTING

Following boring advancement, selected soils were placed in the appropriately labeled glassware. In an attempt to provide information regarding possible petroleum and/or dry cleaning solvent impact to soils, a sample was analyzed for volatile and semi-volatile organics by Environmental Protection Agency (EPA) Methods 8260B and 8270D Base Neutral (BN).

One (1) soil sample was submitted to SGS Analytical Perspectives (NC Certification #481). Chain of Custody documentation is included in Appendix C.

3.0 RESULTS

NCDENR File Review and Interviews

NCDENR Washington Regional Office personnel were not aware of any releases on record for the site. The NCDENR UST database does not list any tanks registered at the site. NCDENR DSCA Program personnel were also interviewed. The site does not appear on the NCDENR DSCA site list. There are no UST or DSCA sites adjacent to the subject site.

Historical aerial photographs were also reviewed and local "historians" were interviewed. Based on review of the historical aerial photographs and locals with knowledge of the area, there is no indication the site was previously utilized as a gas/service station. The existing structure at the site was initially a drive thru car wash. The concrete pad identified previously by NCDOT personnel as a possible gasoline dispenser pad was determined to be associated with a building related to the former car wash.

Geophysical Investigation

The complete geophysical investigation report by Schnabel is included in Appendix A and indicates that metallic USTs are unlikely to be encountered within 8 feet of the ground surface in the areas surveyed on the subject property.

Site Reconnaissance

CATLIN personnel identified the proposed drainage feature locations. Photographs of the site are provided in Appendix D. Additional photographs are included in the Schnabel report provided in Appendix A.

Soil and Groundwater

Sandy clay / clayey sand and clay was encountered at boring 196DPT-01. No petroleum hydrocarbon odor was noted in any soils. The complete boring log including OVA/PID results are provided in Appendix B.

Summarized soil sample analytical results are provided on Table 1. The soil sample location and summarized soil analytical results are illustrated on Sheet 2. As indicated on Table 1 and Sheet 2, no compound concentrations were reported above the laboratory quantitation limits or UST Section Soil-To-Groundwater (STGW) Maximum Soil Contaminant Concentrations (MSCCs). The complete laboratory analytical report is provided in Appendix C.

Depth to groundwater was not measured but is estimated at approximately nine (9) feet BLS.

4.0 SUMMARY AND RECOMMENDATIONS

A preliminary site assessment was conducted at the subject site as requested by NCDOT. NCDOT is planning roadway construction including utility installation and ROW acquisition at the site.

No impacted soils were revealed in a sample collected from the proposed construction area (Catch Basin Number 1108). Based on geophysical survey results, site reconnaissance, and NCDENR file review information, there are no indications of any USTs located at the site. It is not anticipated that groundwater will be encountered during construction activities and groundwater contamination is not suspected at the site.

5.0 LIMITATIONS

This report is based on the agreed work scope and a review of available data from limited sampling. It is possible that this investigation may have failed to reveal the presence of contamination in the project area where such contamination may exist. Although CATLIN has used accepted methods appropriate for soil and groundwater sampling, CATLIN cannot guarantee that additional soil and/or groundwater contamination does not exist.

6.0 SIGNATURES

Benjamin J. Ashba, P.G. Project Manager

G. Richard Garrett, P.G. Senior Project Manager

6

TABLES

Page 1 of 1 WBS: 35781.1.2 U-3315

TABLE 1

SUMMARY OF SOIL LABORATORY RESULTS - EPA METHODS 8260B AND 8270D BASE NEUTRAL

Parcel 196, Joshua Johnson – Former Car Wash, currently Tech Shop 1023 Evans Street

	Met	hod>	EPA Meth	od 8260B	EPA Method 8270D Base Neutral	
Sample ID	Contai of Co	minant ncern —→	e chloride	EPA 260B rrs	Method 3ase ters	
х.	Date Collected	Location	Methylene	All other E Method 8 Paramete	All EPA N 8270D Ba Neutral Paramete	
196DPT01 (5-5.5ft)	7/25/12	@ CB 1108	0.693 J	BMDL	BMDL	
Residential MSCC (ug/kg) Industrial/Commercial MSCC (ug/kg) STGW MSCC (ug/kg)			85,000 763,000 20	Varies Varies Varies	Varies Varies Varies	

All results in micrograms per kilogram (ug/kg).

Sample depth below land surface provided in parenthesis as part of the sample identification.

CB = Proposed Catch Basin

BMDL = Below Method Detection Limit, refer to analytical report for a complete list of parameters and detection limits

J = Estimated Concentration

MSCC = Maximum Soil Contaminant Concentration

STGW = Soil To Groundwater

NCDOT; Soil Summary CATLIN Project No. 212077

SHEETS

Note: Not to Scale

*S.U.E. = Subsurface Utility Engineering

STATE OF NORTH CAROLINA **DIVISION OF HIGHWAYS** CONVENTIONAL PLAN SHEET SYMBOLS

BOUNDARIES AND PROPERTY:

State Line	۲۹۹۵ می واد کری نمایش و ۲ یا ناندان اس
County Line	
Township Line	
City Line	
Reservation Line	
Property Line	
Existing Iron Pin	- 2
Property Corner	
Property Monument	- 🔒
Parcel/Sequence Number	- 🔞
Existing Fence Line	xxx
Proposed Woven Wire Fence	
Proposed Chain Link Fence	
Proposed Barbed Wire Fence	
Existing Wetland Boundary	
Proposed Wetland Boundary	
Existing Endangered Animal Boundary	
Existing Endangered Plant Boundary	
Known Soil Contamination: Area or Site	
Potential Soil Contamination: Area or Site	xx - xx
BUILDINGS AND OTHER CULT	URE:
Gas Pump Vent or U/G Tank Cap	- 0
Sign	- 9
Well	- 💡
Small Mine	- *
Foundation	
Area Outline	-
Cemetery	
Building	
School	
Church	
Dam	

HYDROLOGY:

Stream or Body of Water	
Hydro, Pool or Reservoir	- []
Jurisdictional Stream	
Buffer Zone 1	BZ 1
Buffer Zone 2	BZ 2
Flow Arrow	
Disappearing Stream	>
Spring	
Wetland	±
Proposed Lateral, Tail, Head Ditch	- 2222
False Sump	$- \diamond$

RATT ROADS.

KAILKUADS:	
Standard Gauge	CST TRANSPORTATION
RR Signal Milepost	0 101EP037 35
Switch	SERVICE
RR Abandoned	endere sedere endere mider
RR Dismantled	
RIGHT OF WAY:	
Baseline Control Point	•
Existing Right of Way Marker	Δ
Existing Right of Way Line	
Proposed Right of Way Line	
Proposed Right of Way Line with Iron Pin and Cap Marker	-
Proposed Right of Way Line with Concrete or Granite Marker	
Existing Control of Access	
Proposed Control of Access	
Existing Easement Line	—— E ——
Proposed Temporary Construction Easement -	E
Proposed Temporary Drainage Easement	TDE
Proposed Permanent Drainage Easement	PDE
Proposed Permanent Drainage / Utility Easement	DUE
Proposed Permanent Utility Easement	
Proposed Temporary Utility Easement	TUE
Proposed Aerial Utility Easement	AUE
Proposed Permanent Easement with	۲
ROADS AND RELATED FEATURE	7 S :
Existing Edge of Payement	
Existing Curb	ند حي فتند الندر التدر
Proposed Slope Stakes Cut	
Proposed Slope Stakes Fill	
Proposed Curb Ramp	ŒD
Curb Cut Future Ramp	œ
Existing Metal Guardrail	
Proposed Guardrail	
Existing Cable Guiderail	
Proposed Cable Guiderail	
Equality Symbol	0
Pavement Removal	000000
VEGETATION:	
Single Tree	8
Single Shrub	0
Hedge	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Woods Line	manna

Orchard	
Vineyard	Vineyand
EXISTING STRUCTURES:	
MAJOR:	
Bridge, Tunnel or Box Culvert	() () () () () () () () () ()
Bridge Wing Wall, Head Wall and End Wall -)
MINOR:	
Head and End Wall	THE
Pipe Culvert	
Footbridge	
Drainage Box: Catch Basin, DI or JB	D ^o
Paved Ditch Gutter	
Storm Sewer Manhole	3
Storm Sewer	5
UTILITIES:	
POWER:	
Existing Power Pole	- · · · · · · · · · · · · · · · · · · ·
Proposed Power Pole	6
Existing Joint Use Pole	+
Proposed Joint Use Pole	•
Power Manhole	Ø
Power Line Tower	\mathbf{X}
Power Transformer	
U/G Power Cable Hand Hole	

H-Frame Pole	•
Recorded U/G Power Line	lest and the second sec
Designated U/G Power Line (S.U.E.*)	

TELEPHONE:

Existing Telephone Pole	-
Proposed Telephone Pole	
Telephone Manhole	đ
Telephone Booth	a
Telephone Pedestal	0
Telephone Cell Tower	2
U/G Telephone Cable Hand Hole	6
Recorded U/G Telephone Cable	
Designated U/G Telephone Cable (S.U.E.*)-	
Recorded U/G Telephone Conduit	
Designated U/G Telephone Conduit (S.U.E.*)-	
Recorded U/G Fiber Optics Cable	
Designated U/G Fiber Optics Cable (S.U.E.*+	

DO NOT US FOR CONSTRUCTION WATER: Water Manhole -Water Meter Water Valve Water Hydrant Recorded U/G Water Line Designated U/G Water Line (S.U.E.*) ------Above Ground Water Line — Ard Botor TV: TV Satellite Dish — K TV Pedestal -8 TV Tower -----U/G TV Cable Hand Hole ----12 Recorded U/G TV Cable -----Designated U/G TV Cable (S.U.E.*) -----Recorded U/G Fiber Optic Cable ----Designated U/G Fiber Optic Cable (S.U.E.*)- -----GAS: Gas Valve ٥ Gas Meter Recorded U/G Gas Line -Designated U/G Gas Line (S.U.E.*)-----4/6 0cm Above Ground Gas Line -SANITARY SEWER: Sanitary Sewer Manhole -Sanitary Sewer Cleanout -U/G Sanitary Sewer Line Above Ground Sanitary Sewer -----____ A/G Serliery Sever Recorded SS Forced Main Line-**MISCELLANEOUS:** Utility Pole -Utility Pole with Base -----Utility Located Object -----0 Utility Traffic Signal Box — 12 Utility Unknown U/G Line -U/G Tank; Water, Gas, Oil -Underground Storage Tank, Approx. Loc. œ A/G Tank; Water, Gas, Oil ____ Geoenvironmental Boring — U/G Test Hole (S.U.E.*) ----0

PROJECT REFERENCE NO. SHEET NO.

1-A

U-33/5

End of Information ----

Abandoned According to Utility Records -----

AATUR

E.O.I.

APPENDICES

APPENDIX A SCHNABEL GEOPHYSICAL REPORT

August 15, 2012

Mr. Richard Garrett, LG, Project Manager Catlin Engineers and Scientists, Inc. P.O. Box 10279 Wilmington, NC 28404-0279

RE:

State Project:U-3315WBS Element:35781.1.2County:PittDescription:Stantonsbut

35781.1.2 Pitt Stantonsburg Road/Tenth Street Connector from Memorial Drive (US 13) to Evans Street

Subject: Project 11821014.17, Report on Geophysical Surveys Parcel 196, Ward Holdings LLC Property, Greenville, North Carolina

Dear Mr. Garrett:

SCHNABEL ENGINEERING SOUTH, PC (Schnabel) is pleased to present this report on the geophysical surveys we performed on the subject property. The report includes two 11x17 color figures and two 8.5x11 color figures.

INTRODUCTION

The work described in this report was performed on July 31 and August 1, 2012, by Schnabel under our 2011 contract with the NCDOT. The surveys were performed over the accessible areas of the property as indicated by the NCDOT to support their environmental assessment of the subject property. Photographs of the property are included on Figure 1. The property contains two parcels which are located approximately 270 feet south of the Evans Street and W 10th Street intersection (on the east side of Evans Street) in Greenville, NC. The purpose of the geophysical surveys was to investigate the presence of metal underground storage tanks (USTs) in the accessible areas of the right-of-way and/or easement.

The geophysical surveys consisted of an electromagnetic (EM) induction survey and a ground penetrating radar (GPR) survey. The EM survey was performed using a Geonics EM61-MK2 instrument. The EM61 is a time domain metal detector that is used to locate metal objects buried up to about eight feet below ground surface. When collecting EM61 data, three or four time gates are recorded of the response decay rate. The GPR survey was performed over selected EM61 anomalies, including areas of reinforced

T/ 336-274-9456 F/ 336-274-9486 11A Oak Branch Drive / Greensboro, NC / 27407 schnabel-eng.com

concrete, using a Geophysical Survey Systems SIR-3000 system equipped with a 400 MHz antenna. Photographs of the equipment used are shown on Figure 2.

FIELD METHODOLOGY

Locations of geophysical data points were obtained using a sub-meter Trimble Pro-XRS DGPS system. References to direction and location in this report are based on the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 83 datum, with units in US survey feet. We recorded the locations of existing site features (monitoring wells, signs, etc.) with the Trimble system for later correlation with the geophysical data and locations provided by the NCDOT.

The EM61 data were collected along parallel survey lines spaced approximately 2.5 feet apart. The EM61 and DGPS data were recorded digitally using a field computer and later transferred to a desktop computer for data processing. The GPR data were collected along survey lines spaced one to two feet apart in orthogonal directions over areas of reinforced concrete and anomalous EM readings not attributed to cultural features. The GPR data were reviewed in the field to evaluate the possible presence of USTs. The GPR data also were recorded digitally and later transferred to a desktop computer for further review.

DISCUSSION OF RESULTS

The contoured EM61 data collected over Parcel 196 are shown on Figures 3 and 4. The EM61 early time gate data are plotted on Figure 3. The early time gate data provide a more sensitive detection of metal objects than the later time gate data. Figure 4 shows the differential response between the top and bottom coils of the EM61 instrument. The differential response data filters out the effect of surface and very shallowly buried metallic objects. Typically, the differential response emphasizes anomalies from deeper and larger objects such as USTs.

The early time gate and differential results show anomalies of unknown cause, in addition to those apparently caused by buried utilities or known site features (Figures 3 and 4). The GPR data indicate that the EM anomalies of unknown cause are probably caused by reinforced concrete and buried utilities. The GPR data collected at the site do not indicate the presence of metallic USTs within the areas surveyed.

CONCLUSIONS

Our evaluation of the geophysical data collected on the subject property on Project U-3315 in Greenville, NC indicates that metallic USTs are unlikely to be encountered within 8 feet of the ground surface in the areas surveyed on the subject property.

LIMITATIONS

These services have been performed and this report prepared for Catlin Engineers and Scientists, Inc. and the North Carolina Department of Transportation in accordance with generally accepted guidelines for conducting geophysical surveys. It is generally recognized that the results of geophysical surveys are non-unique and may not represent actual subsurface conditions.

We appreciate the opportunity to have provided these services. Please call if you need additional information or have any questions.

Sincerely,

SCHNABEL ENGINEERING SOUTH, PC

What

James W. Whitt, LG Senior Staff Geophysicist

Jeremy S. Strohmeyer, LG Project Manager

JW:JS

Attachments: Figures (4) CC: NCDOT, Gordon Box FILE: G!2011-SDE-JOBS\11821014_00_NCDOT_2011_GEOTECHNICAL_UNIT_SERVICES\11821014_17_U-3315_PTT_COUNTYREPORT\PARCEL 196\SCHNABEL GEOPHYSICAL REPORT ON PARCEL 196 (U-3315).DOCX

Schnabel ENGINEERING STATE PROJECT U-3315 NC DEPT. OF TRANSPORTATION PITT COUNTY, NORTH CAROLINA PROJECT NO. 11821014.17

PARCEL 196 SITE PHOTOS

FIGURE 1

© Schnabel Engineering 2012 All Rights Reserved

Geonics EM61-MK2 Metal Detector with Trimble DGPS Unit

GSSI SIR-3000 Ground-Penetrating Radar with 400 MHz Antenna

Note: Stock photographs - not taken on site.

STATE PROJECT U-3315 NC DEPT. OF TRANSPORTATION PITT COUNTY, NORTH CAROLINA PROJECT NO. 11821014.17 PHOTOS OF GEOPHYSICAL EQUIPMENT USED

FIGURE 2

PARCEL 196

Note: The contour plot shows the earliest and more sensitive time gate of the EM61 bottom coil/channel in millivolts (mV). The EM data were collected on July 31, 2012, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina Zone 3200, using the NAD 1983 datum. GPR data were acquired on August 1, 2012, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

-15000

REF.: NCDOT FILE: u3315_rdy_psh11.dgn (FOR SOME SITE FEATURES)

PARCEL 196

Note: The contour plot shows the difference, in millivolts (mV), between the readings from the top and bottom coils of the EM61. The difference is taken to reduce the effect of shallow metal objects and emphasize anomalies caused by deeper metallic objects, such as drums and tanks. The EM data were collected on July 31, 2012, using a Geonics EM61-MK2 instrument. Positioning for the EM61 survey was provided using a submeter Trimble ProXRS DGPS system. Coordinates are in the US State Plane 1983 System, North Carolina 3200 Zone, using the NAD 1983 datum. GPR data were acquired on August 1, 2012, using a Geophysical Survey Systems SIR 3000 equipped with a 400 MHz antenna.

-20000

100

REF.: NCDOT FILE: u3315_rdy_psh11.dgn (FOR SOME SITE FEATURES)

U-3315 WBS Element: 35781.1.2

APPENDIX B BORING LOG

🔽 = 24hr. DTW

APPENDIX C

LABORATORY REPORT AND CHAIN OF CUSTODY RECORD

Laboratory Report of Analysis

To: Ben Ashba RICHARD CATLIN & ASSOCIATES P.O. Box 10279 Wilmington, NC 28404

Report Number: 31202359

Client Project: NCDOT Parcel 196

Dear Ben Ashba,

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Barbara A. Hager at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

Sincerely, SGS North America Inc.

Barlara J. Hager

Barbara A. Hager Project Manager barbara.hager@sgs.com Barbara A. Hager 2012.07.31 14:16:40 -05'00'

Date

Print Date: 07/31/2012

N.C. Certification # 481

ANALYTICAL PERSPECTIVES IS NOW PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

> SGS Analytical Perspectives 5500 Business Dr. US - 28405 - Wilmington, NC t +1 910 350 1903 1+1 910 350 1557 www.sgs.com Page 1 of 22

Laboratory Qualifiers

Report Definitions

DL	Method, Instrument, or Estimated Detection Limit per Analytical Metho	bd
----	---	----

- CL Control Limits for the recovery result of a parameter
- LOQ Reporting Limit
- DF Dilution Factor
- RPD Relative Percent Difference
- LCS(D) Laboratory Control Spike (Duplicate)
- MS(D) Matrix Spike (Duplicate)
- MB Method Blank

Qualifier Definitions

- * Recovery or RPD outside of control limits
- B Analyte was detected in the Lab Method Blank at a level above the LOQ
- U Undetected (Reported as ND or < DL)
- V Recovery is below quality control limit. The data has been validated based on a favorable signal-to-noise and detection limit
- A Amount detected is less than the Lower Method Calibration Limit
- J Estimated Concentration.
- O The recovery of this analyte in the OPR is above the Method QC Limits and the reported concentration in the sample may be biased high
- E Amount detected is greater than the Upper Calibration Limit
- S The amount of analyte present has saturated the detector. This situation results in an underestimation of the affected analyte(s)
- Q Indicates the presence of a quantitative interference. This situation may result in an underestimation of the affected analyte(s)
- I Indicates the presence of a qualitative interference that could cause a false positive or an overestimation of the affected analyte(s)
- DPE Indicates the presence of a peak in the polychlorinated diphenylether channel that could cause a false positive or an overestimation of the affected analyte(s)
- TIC Tentatively Identified Compound
- EMPC Estimated Maximum possible Concentration due to ion ratio failure
- ND Not Detected
- K Result is estimated due to ion ratio failure in High Resolution PCB Analysis
- P RPD > 40% between results of dual columns
- D Spike or surrogate was diluted out in order to achieve a parameter result within instrument calibration range

Samples requiring manual integrations for various congeners and/or standards are marked and dated by the analyst. A code definition is provided below:

M1 Mis-identified peak

- M2 Software did not integrate peak
- M3 Incorrect baseline construction (i.e. not all of peak included; two peaks integrated as one)
- M4 Pattern integration required (i.e. DRO, GRO, PCB, Toxaphene and Technical Chlordane)
- M5 Other Explained in case narrative
- Note Results pages that include a value for "Solids (%)" have been adjusted for moisture content.

Print Date: 07/31/2012

N.C. Certification # 481

Client Sample ID

1960Ρ1-01 (5-5.5π)	31202359001	07/25/2012 13:30	07/26/2012 16:	42 Soll-Solid as dry weight

Sample Summary

Collected

Lab Sample ID

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t +1 910 350 1903 f +1 910 350 1557 www.sgs.com

<u>Matrix</u>

. . . .

Received

	Detectable Results	Summary			
Client Sample ID: 196DPT-01 (5-5.5ft)					
Lab Sample ID: 31202359001-A	Parameter		Result	Units	
SW-846 8260B	Methylene chloride		0.693	ug/Kg	J
Quality Control Samples					
Client Sample ID: MB-S for HBN 26131	[VXX/3717]				
Lab Sample ID: 82391	Parameter		Result	Units	
SW-846 8260B	Methylene chloride		0.930	ug/Kg	J

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives 5500 Business Dr. US - 28405 - Wilmington, NC t +1 910 350 1903 1 +1 910 350 1557 www.sgs.com Page 4 of 22

Client Sample ID: **196DPT-01 (5-5.5ft)** Client Project ID: **NCDOT Parcel 196** Lab Sample ID: 31202359001-A Lab Project ID: 31202359

Collection Date: 07/25/2012 13:30 Received Date: 07/26/2012 16:42 Matrix: Soil-Solid as dry weight Solids (%): 84.20

Results by SW-846 8260B

Parameter	Result	Quat	DL	LOQ/CL	Units	DF	Date Analyzed
1,1,1,2-Tetrachloroethane	ND	U	0.886	4.18	ug/Kg	1	07/27/2012 12:54
1,1,1-Trichloroethane	ND	U	0.650	4.18	ug/Kg	1	07/27/2012 12:54
1,1,2,2-Tetrachloroethane	ND	U	0.944	4.18	ug/Kg	1	07/27/2012 12:54
1,1,2-Trichloroethane	ND	U	0.869	4.18	ug/Kg	1	07/27/2012 12:54
1,1-Dichloroethane	ND	U	0.721	4.18	ug/Kg	1	07/27/2012 12:54
1,1-Dichloroethene	ND	U	0.754	4.18	ug/Kg	1	07/27/2012 12:54
1,1-Dichloropropene	ND	U	0.770	4.18	ug/Kg	1	07/27/2012 12:54
1,2,3-Trichlorobenzene	ND	U	1.16	4.18	ug/Kg	1	07/27/2012 12:54
1,2,3-Trichloropropane	ND	U	0.927	4.18	ug/Kg	1	07/27/2012 12:54
1,2,4-Trichlorobenzene	ND	υ	0.994	4.18	ug/Kg	1	07/27/2012 12:54
1,2,4-Trimethylbenzene	ND	U	0.894	4.18	ug/Kg	1	07/27/2012 12:54
1,2-Dibromo-3-chloropropane	ND	U	4.85	25.1	ug/Kg	1.0	07/27/2012 12:54
1,2-Dibromoethane	ND	U	0.633	4.18	ug/Kg	1	07/27/2012 12:54
1,2-Dichlorobenzene	ND	U	1.08	4.18	ug/Kg	1	07/27/2012 12:54
1,2-Dichloroethane	ND	U	0.740	4.18	ug/Kg	1	07/27/2012 12:54
1,2-Dichtoropropane	ND	U	0.673	4.18	ug/Kg	1	07/27/2012 12:54
1,3,5-Trimethylbenzene	ND	U	0.822	4.18	ug/Kg	1	07/27/2012 12:54
1,3-Dichlorobenzene	ND	- υ	0. 96 9	4.18	ug/Kg	1	07/27/2012 12:54
1,3-Dichloropropane	ND	U	0.673	4.18	ug/Kg	1	07/27/2012 12:54
1,4-Dichlorobenzene	ND	U	0.919	4.18	ug/Kg	1	07/27/2012 12:54
2,2-Dichloropropane	ND	U	0.697	4.18	ug/Kg	1	07/27/2012 12:54
2-Butanone	ND	U	1.30	20.9	ug/Kg	1	07/27/2012 12:54
2-Chlorotoluene	ND	U	0.936	4.18	ug/Kg	1	07/27/2012 12:54
2-Hexanone	ND	U	1.63	10.4	ug/Kg	1	07/27/2012 12:54
4-Chlorotoluene	ND	U	0.927	4.18	ug/Kg	1	07/27/2012 12:54
4-Isopropyltoluene	ND	U	0.869	4.18	ug/Kg	1	07/27/2012 12:54
4-Methyl-2-pentanone	ND	U	2.68	<u>10.4</u>	ug/Kg	1	07/27/2012 12:54
Acetone	ND	U	1.04	41.8	ug/Kg	1	07/27/2012 12:54
Benzene	ND	U	0.746	4.18	ug/Kg	1	07/27/2012 12:54
Bromobenzene	ND	່ ບ	0.824	4.18	ug/Kg	1	07/27/2012 12:54
Bromochloromethane	ND	U	0.729	4.18	ug/Kg	1	07/27/2012 12:54
Bromodichloromethane	ND	U	0.679	4.18	ug/Kg	1	07/27/2012 12:54
Bromoform	ND	U	0.559	4.18	ug/Kg	1 10	07/27/2012 12:54
Bromomethane	ND	U	1.47	4.18	ug/Kg	1	07/27/2012 12:54
n-Butylbenzene	ND	U	0.902	4.18	ug/Kg	1	07/27/2012 12:54
Carbon disulfide	ND	U	0.722	4.18	ug/Kg	1	07/27/2012 12:54
Carbon tetrachloride	ND	U	0.727	4.18	ug/Kg	1	07/27/2012 12:54
Chlorobenzene	ND	U	0.647	4.18	ug/Kg	1	07/27/2012 12:54
Chloroethane	ND	U	0.384	4.18	ug/Kg	1	07/27/2012 12:54
Chloroform	ND	U	0.678	4.18	ug/Kg	1	07/27/2012 12:54
Chloromethane	ND	U	0. <mark>60</mark> 6	4.18	ug/Kg	1	07/27/2012 12:54
Dibromochloromethane	ND	U	0.708	4.18	ug/Kg	1	07/27/2012 12:54
Dibromomethane	ND	U	0.678	4.18	ug/Kg	1	07/27/2012 12:54
Dichlorodifluoromethane	ND	U	0.607	4.18	ug/Kg	1	07/27/2012 12:54

Print Date: 07/31/2012

N.C. Certification # 481

Client Sample ID: **196DPT-01 (5-5.5ft)** Client Project ID: **NCDOT Parcel 196** Lab Sample ID: 31202359001-A Lab Project ID: 31202359

Collection Date: 07/25/2012 13:30 Received Date: 07/26/2012 16:42 Matrix: Soil-Solid as dry weight Solids (%): 84.20

Results by SW-846 8260B		-					
Parameter	Result	Qual	DL	LOQ/CL	<u>Units</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND	U	0.719	4.18	ug/Kg	1	07/27/2012 12:54
trans-1,3-Dichloropropene	ND	U	0.749	4.18	ug/Kg	1	07/27/2012 12:54
Diisopropyl Ether	ND	U	0.750	4.18	ug/Kg	1	07/27/2012 12:54
Ethyl Benzene	ND	U	0.691	4.18	ug/Kg	1	07/27/2012 12:54
Hexachlorobutadiene	ND	U	1.14	4.18	ug/Kg	1	07/27/2012 12:54
isopropylbenzene (Cumene)	ND	U	0.805	4.18	ug/Kg	1	07/27/2012 12:54
Methyl iodide	ND	U	0.707	4.18	ug/Kg	1	07/27/2012 12:54
Methylene chloride	0.693	J	0.583	16.7	ug/Kg	1	07/27/2012 12:54
Naphthalene	ND	υ	1.01	4.18	u g /Kg	1	07/27/2012 12:54
Styrene	ND	U	0.824	4.18	ug/Kg	1	07/27/2012 12:54
Tetrachloroethene	ND	U	0.628	4.18	ug/Kg	1	07/27/2012 12:54
Toluene	ND	U	0.677	4.18	ug/Kg	1	07/27/2012 12:54
Trichloroethene	ND	U	0.699	4.18	ug/Kg	1	07/27/2012 12:54
Trichlorofluoromethane	ND	U	0.630	4.18	ug/Kg	1	07/27/2012 12:54
Vinyl chloride	ND	U	0.615	4.18	ug/Kg	1	07/27/2012 12:54
Xylene (total)	ND	U	1.48	8.36	ug/Kg	1	07/27/2012 12:54
cis-1,2-Dichloroethene	ND	U	0.648	4.18	ug/Kg	1	07/27/2012 12:54
m,p-Xylene	ND	U	1.48	8.36	ug/Kg	1	07/27/2012 12:54
n-Propylbenzene	ND	U	0.815	4.18	ug/Kg	1	07/27/2012 12:54
o-Xylene	ND	U	0.844	4.18	ug/Kg	1	07/27/2012 12:54
sec-Butylbenzene	ND	U	0.869	4.18	ug/Kg	1	07/27/2012 12:54
tert-Butyl methyl ether (MTBE)	ND	U	0.712	4.18	ug/Kg	1	07/27/2012 12:54
tert-Butylbenzene	ND	U	0.757	4.18	ug/Kg	1	07/27/2012 12:54
trans-1,2-Dichloroethene	ND	U	0.719	4.18	ug/Kg	1	07/27/2012 12:54
trans-1,4-Dichloro-2-butene	ND	U	4.52	20.9	ug/Kg	1	07/27/2012 12:54
Surrogates							
1,2-Dichloroethane-d4	105			55.0 <mark>-173</mark>	%	1	07/27/2012 12:54
4-Bromofluorobenzene	101			23.0-141	%	1	07/27/2012 12:54
Toluene d8	98.0			57.0-134	%	1	07/27/2012 12:54

Batch Information

Analytical Batch: VMS2418 Analytical Method: SW-846 8260B Instrument: MSD2 Analyst: DVO Analytical Date/Time: 07/27/2012 12:54 Prep Batch: VXX3717 Prep Method: SW-846 5035 SL Prep Date/Time: 07/27/2012 10:20 Prep Initial Wt./Vol.: 7.11 g Prep Extract Vol: 5 mL

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 1+1 910 350 1557 www.sgs.com

Page 6 of 22

Client Sample ID: **196DPT-01 (5-5.5ft)** Client Project ID: **NCDOT Parcel 196** Lab Sample ID: 31202359001-E Lab Project ID: 31202359

Results by SW-846 8270D

Collection Date: 07/25/2012 13:30 Received Date: 07/26/2012 16:42 Matrix: Soil-Solid as dry weight Solids (%): 84.20

	and a star sector with		- 1 i	_	- W - 8		No. of the second
Parameter	Result	Qual		LOQ/CL	<u>Units</u>	DF	Date Analyzed
1,2,4-Trichlorobenzene	ND	U	34.3	389	ug/Kg	1	07/30/2012 16:41
1,2-Dichlorobenzene	ND	U	19.4	389	ug/Kg	1	07/30/2012 16:41
1,3-Dichlorobenzene	ND	U	26.2	389	ug/Kg	1	07/30/2012 16:41
1,4-Dichlorobenzene	ND	U	27.5	389	ug/Kg	1 1	07/30/2012 16:41
2,4,5-Trichlorophenol	ND	U	26.0	389	ug/Kg	1	07/30/2012 16:41
2,4,6-Trichlorophenol	ND	U	26.4	389	ug/Kg	1	07/30/2012 16:41
2,4-Dichlorophenol	ND	U	22.5	389	ug/Kg	1	07/30/2012 16:41
2,4-Dinitrophenol	ND	U	36.1	777	ug/Kg	1	07/30/2012 16:41
2,4-Dinitrotoluene	ND	U	19.7	389	ug/Kg	1	07/30/2012 16:41
2,6-Dinitrotoluene	ND	U	27.9	389	ug/Kg	1	07/30/2012 16:41
2-Chloronaphthalene	ND	U	22.9	389	ug/Kg	1	07/30/2012 16:41
2-Chlorophenol	ND	U	20.6	389	ug/Kg	1	07/30/2012 16:41
2-Methylnaphthalene	ND	U	31.5	389	ug/Kg	1	07/30/2012 16:41
2-Methylphenol	ND	U	21.5	389	ug/Kg	1	07/30/2012 16:41
2-Nitroaniline	ND	U	25.6	389	ug/Kg	1	07/30/2012 16:41
2-Nitrophenol	ND	U	18.7	389	ug/Kg	1 - 1	07/30/2012 16:41
3 and/or 4-Methylphenol	ND	U	25.2	389	ug/Kg	1	07/30/2012 16:41
3,3'-Dichlorobenzidine	ND	U	18.7	389	ug/Kg	1	07/30/2012 16:41
3-Nitroaniline	ND	U	17.5	389	ug/Kg	1	07/30/2012 16:41
4,6-Dinitro-2-methylphenol	ND	U	18.3	389	ug/Kg	1	07/30/2012 16:41
4-Chioro-3-methylphenol	ND	U	<mark>19.4</mark>	389	ug/Kg	1	07/30/2012 16:41
4-Chloroaniline	ND	U	31.1	389	ug/Kg	1	07/30/2012 16:41
4-Chlorophenyl phenyl ether	ND	U	41.5	389	ug/Kg	1	07/30/2012 16:41
Acenaphthene	ND	U	17.7	389	ug/Kg	1	07/30/2012 16:41
Acenaphthylene	ND	U	16.4	389	ug/Kg	1	07/30/2012 16:41
Anthracene	ND	U	17.3	389	ug/Kg	1	07/30/2012 16:41
Benzo(a)anthracene	ND	U	21.4	389	ug/Kg	1	07/30/2012 16:41
Benzo(a)pyrene	ND	U	22.0	389	ug/Kg	1	07/30/2012 16:41
Benzo(b)fluoranthene	ND	U	22.4	389	ug/Kg	1	07/30/2012 16:41
Benzo(g,h,i)perylene	ND	U	61.9	389	ug/Kg	1	07/30/2012 16:41
Benzo(k)fluoranthene	ND	U	46.6	389	ug/Kg	1	07/30/2012 16:41
Benzoic acid	ND	U	8.63	389	ug/Kg	1	07/30/2012 16:41
Bis(2-Chloroethoxy)methane	ND	U	17.5	389	ug/Kg	1	07/30/2012 16:41
Bis(2-Chloroethyl)ether	ND	υ	36.3	389	ug/Kg	1	07/30/2012 16:41
Bis(2-Chloroisopropyl)ether	ND	U	34.0	389	ug/Kg	1	07/30/2012 16:41
Bis(2-Ethylhexyl)phthalate	ND	U	18.7	389	ug/Kg	1	07/30/2012 16:41
4-Bromophenyl phenyl ether	ND	U	25.6	389	ug/Kg	1	07/30/2012 16:41
Butyl benzyl phthalate	ND	U	33.8	389	ug/Kg	1	07/30/2012 16:41
Chrysene	ND	U	45.3	389	ug/Kg	1	07/30/2012 16:41
Di-n-butyl phthalate	ND	U	18.4	389	ug/Kg	1	07/30/2012 16:41
Di-n-octyl phthalate	ND	U	21.5	389	ug/Kg	1	07/30/2012 16:41
Dibenz(a,h)anthracene	ND	U	17.5	389	ug/Kg	1	07/30/2012 16:41
Dibenzofuran	ND	U	30.5	389	ug/Kg	1	07/30/2012 16:41
Diethyl phthalate	ND	U	21.0	389	ug/Kg	1	07/30/2012 16:41

Print Date: 07/31/2012

N.C. Certification # 481

Client Sample ID: **196DPT-01 (5-5.5ft)** Client Project ID: **NCDOT Parcel 196** Lab Sample ID: 31202359001-E Lab Project ID: 31202359 Collection Date: 07/25/2012 13:30 Received Date: 07/26/2012 16:42 Matrix: Soil-Solid as dry weight Solids (%): 84.20

Results by SW-846 8270D

The dealer of the second second	1000		 State inc						
Parameter		Result	Qua	11.1	DL	LOQ/CL	Units	DF	Date Analyzed
Dimethyl phthalate		ND	U		29.8	389	ug/Kg	1	07/30/2012 16:41
2,4-Dimethylphenol		ND	U		28.5	389	ug/Kg	1	07/30/2012 16:41
Diphenylamine		ND	U		17.5	389	ug/Kg	1	07/30/2012 16:41
Fluoranthene		ND	U		36.6	389	ug/Kg	1	07/30/2012 16:41
Fluorene		ND	U		20.6	389	ug/Kg	1	07/30/2012 16:41
Hexachlorobenzene		ND	U		36.8	389	ug/Kg	1	07/30/2012 16:41
Hexachlorobutadiene		ND	U		23.3	389	ug/Kg	1	07/30/2012 16:41
Hexachlorocyclopentadiene		ND	U		118	389	ug/Kg	1	07/30/2012 16:41
Hexachloroethane		ND	U		22.4	389	ug/Kg	1	07/30/2012 16:41
Indeno(1,2,3-cd)pyrene		ND	U		30.3	389	ug/Kg	1	07/30/2012 16:41
Isophorone		ND	U		17.7	389	ug/Kg	1	07/30/2012 16:41
Naphthalene		ND	U		3 3.6	389	ug/Kg	1	07/30/2012 16:41
4-Nitroaniline		ND	U		22.4	389	ug/Kg	1	07/30/2012 16:41
Nitrobenzene		ND	U		22.4	38 9	ug/Kg	1	07/30/2012 16:41
4-Nitrophenol		ND	U		38.3	38 9	ug/Kg	1	07/30/2012 16:41
Pentachlorophenol		ND	U		31.1	389	ug/Kg	1	07/30/2012 16:41
Phenanthrene		ND	υ		25.6	389	ug/Kg	1	07/30/2012 16:41
Phenol		ND	U		36.3	389	ug/Kg	1	07/30/2012 16:41
Pyrene		ND	U		16.4	389	ug/Kg	1	07/30/2012 16:41
n-Nitrosodi-n-propylamine		ND	U		111	389	ug/Kg	1	07/30/2012 16:41
Surrogates									
2,4,6-Tribromophenol		97.0				41.0-129	%	1	07/30/2012 16:41
2-Fluorobiphenyl		80.0				48.0-123	%	1	07/30/2012 16:41
2-Fluorophenol		77.0				42.0-123	%	1	07/30/2012 16:41
Nitrobenzene-d5		83.0				46.0-117	%	1	07/30/2012 16:41
Phenol-d6		89 .0				48.0-125	%	1	07/30/2012 16:41
Terphenyl-d14		99.0				44.0-140	%	1	07/30/2012 16:41

Batch Information

Analytical Batch: XMS1614 Analytical Method: SW-846 8270D Instrument: MSD10 Analyst: CMP Analytical Date/Time: 07/30/2012 16:41 Prep Batch: XXX2863 Prep Method: SW-846 3541 Prep Date/Time: 07/27/2012 10:01 Prep Initial Wt./Vol.: 30.57 g Prep Extract Vol: 10 mL

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 1+1 910 350 1557 www.sgs.com

Page 8 of 22

Batch Summary

Analytical Method: SW-846 8260B **Prep Method:** SW-846 5035 SL Prep Batch: VXX3717 Prep Date: 07/27/2012 10:10 Client Sample ID Lab Sample ID Analysis Date Analytical Batch Instrument <u>Analyst</u> 07/27/2012 11:20 VMS2418 MSD2 DVO LCS-S for HBN 26131 [VXX/3717] 82389 LCSD-S for HBN 26131 [VXX/3717 82390 07/27/2012 11:44 VMS2418 MSD2 DVO MSD2 DVO MB-S for HBN 26131 [VXX/3717] 82391 07/27/2012 12:31 VMS2418 DVO 196DPT-01 (5-5.5ft) 31202359001 07/27/2012 12:54 VMS2418 MSD2 DVO 107DPT-01 (4.5-5ft)(82319DUP) 82697 07/27/2012 17:13 VMS2418 MSD2 07/27/2012 17:37 107DPT-02 (5-5.7ft)(82320MS) 82698 VMS2418 MSD2 DVO

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 f+1 910 350 1557 www.sgs.com

Method Blank

Results by SW-846 8260B

Blank ID: MB-S for HBN 26131 [VXX/3717] Blank Lab ID: 82391 QC for Samples: 31202359001 Matrix: Soil-Solid as dry weight

Parameter	Result	Qual	DL	LOQ/CL	<u>Units</u>
Dichlorodifluoromethane	ND	U	0.727	5.00	ug/Kg
Chloromethane	ND	U	0.725	5.00	ug/Kg
Vinyl chloride	ND	U	0.736	5.00	ug/Kg
Bromomethane	ND	U	1.76	5.00	ug/Kg
Chloroethane	ND	U	0.460	5.00	ug/Kg
Trichlorofluoromethane	ND	U	0.754	5.00	ug/Kg
1,1-Dichloroethene	ND	U	0.903	5.00	ug/Kg
Acetone	ND	U	1.24	50.0	ug/Kg
Methylene chloride	0.930	J	0.698	20.0	ug/Kg
trans-1,2-Dichloroethene	ND	U	0.861	5.00	ug/K g
tert-Butyl methyl ether (MTBE)	ND	U	0.852	5.00	ug/Kg
1,1-Dichloroethane	ND	U	0.863	5.00	ug/Kg
Diisopropyl Ether	ND	U	0.898	5.00	ug/Kg
2,2-Dichloropropane	ND	U	0.834	5.00	ug/Kg
cis-1,2-Dichloroethene	ND	U	0.775	5.00	ug/Kg
2-Butanone	ND	U	1.56	25.0	ug/Kg
Bromochloromethane	ND	U	0.873	5.00	ug/Kg
Chloroform	ND	U	0.812	5.00	ug/Kg
1,1,1-Trichloroethane	ND	U	0.778	5.00	ug/Kg
Carbon tetrachloride	ND	U	0.870	5.00	ug/Kg
1,1-Dichloropropene	ND	U	0.922	5.00	ug/Kg
Benzene	ND	U	0.893	5.00	ug/Kg
1,2-Dichloroethane	ND	U	0.886	5.00	ug/Kg
Trichloroethene	ND	U	0.837	5.00	ug/Kg
1,2-Dichloropropane	ND	U	0.805	5.00	ug/Kg
Dibromomethane	ND	U	0.812	5.00	ug/Kg
Bromodichloromethane	ND	U	0.813	5.00	ug/Kg
cis-1,3-Dichloropropene	ND	U	0.861	5.00	ug/Kg
4-Methyl-2-pentanone	ND	U	3.21	12.5	ug/Kg
Toluene	ND	U	0.810	5.00	ug/Kg
Methyl iodide	ND	U	0.846	5.00	ug/Kg
trans-1,3-Dichloropropene	ND	U	0.896	5.00	ug/Kg
Carbon disulfide	ND	U	0.864	5.00	ug/Kg
1,1,2-Trichloroethane	ND	U	1.04	5.00	ug/Kg
Tetrachloroethene	ND	U	0.752	5.00	ug/Kg

Print Date: 07/31/2012

1,3-Dichloropropane

1,2-Dibromoethane

Chlorobenzene

Bromoform

Dibromochloromethane

1,1,1,2-Tetrachloroethane

2-Hexanone

ND

ND

ND

ND

ND

ND

ND

U

υ

U

U

U

U

U

N.C. Certification # 481

5.00

12.5

5.00

5.00

5.00

5.00

5.00

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

Page 10 of 22

0.806

1.95

0.847

0.758

0.774

1.06

0.669

DF

1

1

1

1

1

1

1

1

1

1

1

Method Blank

Blank ID: MB-S for HBN 26131 [VXX/3717] Blank Lab ID: 82391 QC for Samples: 31202359001 Matrix: Soil-Solid as dry weight

Results by SW-846 8260B

Parameter	Result	Qual	<u>DL</u>	LOQ/CL	<u>Units</u>	DF	
Bromobenzene	ND	U	0.986	5.00	ug/Kg	1	
1,1,2,2-Tetrachloroethane	ND	U	1.13	5.00	ug/Kg	1	
1,2,3-Trichloropropane	ND	U	1.11	5.00	ug/Kg	1	
Ethyl Benzene	ND	U	0.827	5.00	ug/Kg	1	
m,p-Xylene	ND	U	1.77	10.0	ug/Kg	1	
Styrene	ND	U	0.986	5.00	ug/Kg	1	
o-Xylene	ND	U	1.01	5.00	ug/Kg	1	
Xylene (total)	ND	U	1.77	10.0	ug/Kg	1	
Isopropylbenzene (Cumene)	ND	U	0.963	5.00	ug/Kg	1	
n-Propylbenzene	ND	U	0.975	5.00	ug/Kg	1	
2-Chlorotoluene	ND	U	1.12	5.00	ug/Kg	1	
4-Chlorotoluene	ND	U	1.11	5.00	ug/Kg	1	
1,3,5-Trimethylbenzene	ND	U	0.984	5.00	ug/Kg	1	
tert-Butylbenzene	ND	U	0.906	5.00	ug/Kg	1	
1,2,4-Trimethylbenzene	ND	U	1.07	5.00	ug/Kg	1	
sec-Butylbenzene	ND	U	1.04	5.00	ug/Kg	1	
1,3-Dichlorobenzene	ND	U	1.16	5.00	ug/Kg	1	
4-isopropyitoluene	ND	U	1.04	5.00	ug/Kg	1	
1,4-Dichlorobenzene	ND	U	1.10	5.00	ug/Kg	1	
1,2-Dichlorobenzene	ND	U	1.29	5.00	ug/Kg	1	
n-Butylbenzene	ND	U	1.08	5.00	ug/Kg	1	
1,2-Dibromo-3-chloropropane	ND	U	5.81	30.0	ug/Kg	1	
1,2,4-Trichlorobenzene	ND	U	1.19	5.00	ug/Kg	1	
Hexachlorobutadiene	ND	U	1.37	5.00	ug/Kg	1	
Naphthalene	ND	U	1.21	5.00	ug/Kg	1	
trans-1,4-Dichloro-2-butene	ND	U	5.41	25.0	ug/Kg	1	
1,2,3-Trichlorobenzene	ND	U	1.39	5.00	ug/Kg	1	
Surrogates							
1,2-Dichloroethane-d4	100			55.0-173	%	1	
Toluene d8	101			57.0-134	%	1	
4-Bromofluorobenzene	102			23.0-141	%	1	

Batch Information

Analytical Batch: VMS2418 Analytical Method: SW-846 8260B Instrument: MSD2 Analyst: DVO Analytical Date/Time: 7/27/2012 12:31:00PM Prep Batch: VXX3717 Prep Method: SW-846 5035 SL Prep Date/Time: 7/27/2012 10:10:34AM Prep Initial Wt./Vol.: 5 g Prep Extract Vol: 5 mL

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 1+1 910 350 1557 www.sgs.com

Blank Spike ID: LCS-S for HBN 26131 [VXX/3717] Blank Spike Lab ID: 82389 Date Analyzed: 07/27/2012 11:20 Spike Duplicate ID: LCSD-S for HBN 26131 [VXX/3717 Spike Duplicate Lab ID: 82390 Matrix: Soil-Solid as dry weight

QC for Samples: 31202359001

Results by SW-846 8260B			1			in the second second		的研究的研究和是	
	E	Blank Spike	(ug/Kg)	S	pike Duplicat	e (ug/Kg)			
Parameter	Spike	Result	Rec (%)	<u>Spike</u>	Result	Rec (%)	CL	RPD (%)	RPD CL
Dichlorodifluoromethane	3 0.0	25.0	83	30 .0	24.0	80	52.0-133	4.1	30.00
Chloromethane	30.0	27.8	93	3 0 .0	25.9	86	64.0-126	7.1	30.00
Vinyl chloride	30.0	28.2	94	30.0	26.2	87	69.0-120	7.4	30.00
Bromomethane	3 0. 0	28.8	96	30.0	27.1	90	41.0-160	6.1	30.00
Chloroethane	30.0	3 0.4	101	30.0	27.4	91	69.0-126	10	30.00
Trichlorofluoromethane	30.0	28.5	95	30.0	26. 3	88	72.0-123	8.0	30.00
1,1-Dichloroethene	30.0	31.8	106	30.0	28.9	96	78.0-113	9.6	30.00
Acetone	75.0	86.5	115	75.0	92.6	123	0.00-243	6.8	30.00
Methylene chloride	3 0.0	27.9	93	30.0	24.6	82	40.0-156	13	30.00
trans-1,2-Dichloroethene	3 0 .0	29.1	97	30.0	29.1	97	78.0- 11 1	0.0	30.00
tert-Butyl methyl ether (MTBE)	3 0.0	28.4	95	30 .0	28.7	96	68.0-138	1.1	30.00
1,1-Dichloroethane	30.0	28.6	95	30.0	28.5	95	71.0-121	0.35	30.00
Diisopropyl Ether	30.0	28.4	95	30.0	28.7	96	60.0-141	1.1	30.00
2,2-Dichloropropane	30.0	29.2	97	30.0	28.5	95	79.0-127	2.4	30.00
cis-1,2-Dichloroethene	30.0	28.7	96	30.0	29.6	99	80.0-114	3.1	30.00
2-Butanone	75.0	8 3.0	111	75.0	90.1	120	31.0-189	8.2	30.00
Bromochloromethane	30.0	30.5	102	30.0	32.3	108	81.0-115	5.7	30.00
Chloroform	30.0	27.4	91	30.0	28.4	95	76.0-114	3.6	30.00
1,1,1-Trichloroethane	30.0	27.6	92	30 .0	27.4	91	79.0-117	0.73	30.00
Carbon tetrachloride	30.0	28.4	95	30.0	28.1	94	82.0-119	1.1	30.00
1,1-Dichloropropene	30.0	28.7	96	30.0	28 .6	95	82.0-114	0.35	30.00
Benzene	30.0	28.4	95	30.0	28.9	96	82.0-113	1.7	30.00
1,2-Dichloroethane	30.0	28.1	94	30.0	29.1	97	72.0-126	3.5	30.00
Trichloroethene	30.0	28.5	95	3 0.0	29.0	97	82.0-108	1.7	30.00
1,2-Dichloropropane	30.0	28.5	95	30.0	29.2	97	78.0-116	2.4	30.00
Dibromomethane	30.0	30.9	103	30.0	30.8	103	79.0-125	0.32	30.00
Bromodichloromethane	30.0	27.9	93	30.0	27.8	93	79.0-122	0.36	30.00
cis-1,3-Dichloropropene	30.0	30.6	102	30.0	30.4	101	75.0-127	0.66	30.00
4-Methyl-2-pentanone	75.0	84.0	112	75.0	87.9	117	57.0-159	4.5	30.00
Toluene	30.0	29,7	99	30.0	29.9	100	83.0-111	0.67	30.00
Methyl iodide	30.0	29.0	97	30.0	29.7	99	63.0-137	2.4	30.00
trans-1,3-Dichloropropene	30.0	30.2	101	3 0.0	30.3	101	75.0-134	0.33	30.00
Carbon disulfide	30.0	26.2	87	30.0	26.6	89	72.0-116	1.5	30.00
1,1,2-Trichloroethane	30.0	31.5	105	30.0	31.6	105	73.0-121	0.32	30.00

Print Date: 07/31/2012

N.C. Certification # 481

Blank Spike ID: LCS-S for HBN 26131 [VXX/3717] Blank Spike Lab ID: 82389 Date Analyzed: 07/27/2012 11:20 Spike Duplicate ID: LCSD-S for HBN 26131 [VXX/3717 Spike Duplicate Lab ID: 82390 Matrix: Soil-Solid as dry weight

QC for Samples: 31202359001

Results by SW-846 8260B

	E	Blank Spike	(ug/Kg)	S	pike Duplicat	te (ug/Kg)			
Parameter	Spike	Result	Rec (%)	<u>Spike</u>	<u>Result</u>	Rec (%)	CL	<u>RPD (%)</u>	RPD CL
Tetrachloroethene	30.0	28.9	96	30 .0	29.5	98	60.0-118	2.1	30.00
1,3-Dichloropropane	30.0	30.7	102	30.0	30.8	103	76.0-121	0.33	30.00
2-Hexanone	75 .0	86.4	115	75.0	9 3.0	124	41.0-171	7.4	30.00
Dibromochloromethane	30.0	29.8	99	30.0	31.2	104	77.0-126	4.6	30.00
1,2-Dibromoethane	30.0	3 0.2	101	3 0.0	32.8	109	76.0-125	8.3	30.00
Chlorobenzene	30.0	29.6	99	30.0	30.2	101	78.0-109	2.0	30.00
1,1,1,2-Tetrachloroethane	30.0	28.4	9 5	30.0	29.6	9 9	81.0-117	4.1	30.00
Bromoform	30.0	31.6	105	30.0	33.9	113	72.0-134	7.0	30.00
Bromobenzene	30.0	28.8	96	30.0	28.9	96	76.0-113	0.35	30.00
1,1,2,2-Tetrachloroethane	30.0	31.4	105	30.0	33.6	112	76.0-129	6.8	30.00
1,2,3-Trichloropropane	30.0	32.2	107	3 0 .0	34.1	114	70.0 <mark>-1</mark> 45	5.7	30.00
Ethyl Benzene	3 0.0	29.0	97	30.0	28.8	96	72.0-115	0.69	30.00
m,p-Xylene	60.0	58.2	97	60.0	57.8	96	73.0-114	0.69	30.00
Styrene	30.0	28.9	96	30.0	28.6	95	74.0-114	1.0	30.00
o-Xylene	30.0	29.3	98	30.0	28.8	96	74.0-113	1.7	30.00
Isopropylbenzene (Cumene)	30.0	29.3	98	30.0	28.8	96	72.0-115	1.7	30.00
n-Propylbenzene	30.0	30.1	100	30.0	29.7	99	71.0-117	1.3	30.00
2-Chlorotoluene	30.0	30.3	101	30.0	29.4	98	76.0-111	3.0	30.00
4-Chlorotoluene	3 0.0	28.8	96	30.0	28.7	96	75.0-113	0.35	30.00
1,3,5-Trimethylbenzene	30.0	29.4	98	30.0	28.9	96	72.0-115	1.7	30.00
tert-Butylbenzene	30 .0	29.0	97	30.0	28.7	96	74.0-112	1.0	30.00
1,2,4-Trimethylbenzene	30 .0	29.6	99	30.0	29.1	97	73.0-114	1.7	30.00
sec-Butylbenzene	30.0	28.9	96	30.0	28.4	95	72.0-115	1.7	30.00
1,3-Dichlorobenzene	30.0	29.4	9 8	30.0	29.8	99	75.0-110	1.4	30.00
4-Isopropyltoluene	30.0	29.2	97	30.0	28.7	96	73.0-114	1.7	30.00
1,4-Dichlorobenzene	30.0	29.4	98	30.0	29.7	99	76.0-110	1.0	30.00
1,2-Dichlorobenzene	30.0	29.6	99	30.0	29.7	99	77.0-109	0.34	30.00
n-Butylbenzene	30.0	29.4	98	30.0	29.4	98	72.0-118	0 .0	30.00
1,2-Dibromo-3-chloropropane	180	206	114	180	223	124	54.0-166	7.9	30.00
1,2,4-Trichtorobenzene	30.0	27.9	93	30.0	28.4	95	76 .0-115	1.8	30.00
Hexachlorobutadiene	30.0	27.5	92	30.0	26.8	89	70.0-111	2.6	30.00
Naphthalene	30.0	32.2	107	30.0	32.9	110	71.0-12 9	2.2	30.00
trans-1,4-Dichloro-2-butene	150	159	106	150	164	109	62. 0- 164	3.1	30.00
1,2,3-Trichlorobenzene	30.0	30.0	100	30.0	29. 9	100	78 .0-115	0.33	30.00

Print Date: 07/31/2012

N.C. Certification # 481

S6S Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 f+1 910 350 1557 www.sgs.com

Page 13 of 22

Blank Spike ID: LCS-S for HBN 26131 [VXX/3717] Blank Spike Lab ID: 82389 Date Analyzed: 07/27/2012 11:20 Spike Duplicate ID: LCSD-S for HBN 26131 [VXX/3717 Spike Duplicate Lab ID: 82390 Matrix: Soil-Solid as dry weight

QC for Samples: 31202359001

Results by SW-846 8260B

	11. 11	Blank Spike	(%)		Spike Duplicat	te (%)			
Parameter Surrogates	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>Spike</u>	<u>Result</u>	<u>Rec (%)</u>	<u>CL</u>	<u>RPD (%)</u>	<u>RPD CL</u>
1,2-Dichloroethane-d4			101			102	55.0-173		
Toluene d8			99			100	57.0-134		
4-Bromofluorobenzene			102			103	23.0-141		

Batch Information

Analytical Batch: VMS2418 Analytical Method: SW-846 8260B Instrument: MSD2 Analyst: DVO Prep Batch: VXX3717 Prep Method: SW-846 5035 SL Prep Date/Time: 07/27/2012 10:10 Spike Init Wt./Vol.: 5 g Extract Vol: 5 mL Dupe Init Wt./Vol.: 5 g Extract Vol: 5 mL

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 t+1 910 350 1557 www.sgs.com

Page 14 of 22

Batch Summary

Analytical Method: SW-846 8270D Prep Method: SW-846 3541 Prep Batch: XXX2863 Prep Date: 07/27/2012 10:01 **Client Sample ID** Lab Sample ID Analysis Date Analytical Batch Instrument Analyst 07/30/2012 15:09 CMP MB for HBN 26126 [XXX/2863] 82374 XMS1614 MSD10 LCS for HBN 26126 [XXX/2863] 82375 07/30/2012 15:55 XMS1614 MSD10 CMP 196DPT-01 (5-5.5ft) 31202359001 07/30/2012 16:41 XMS1614 MSD10 CMP 107DPT-01 (4.5-5ft)(82319MS) 82376 07/30/2012 17:27 XMS1614 MSD10 CMP 107DPT-01 (4.5-5ft)(82319MSD) 82377 07/30/2012 17:50 XMS1614 MSD10 CMP

Print Date: 07/31/2012

N.C. Certification # 481

S6S Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 t+1 910 350 1557 www.sgs.com

Method Blank

Blank ID: MB for HBN 26126 [XXX/2863] Blank Lab ID: 82374 QC for Samples: 31202359001 Matrix: Soil-Solid as dry weight

Results by SW-846 8270D

Parameter	Result	Qual	DL	LOQ/CL	<u>Units</u>	<u>DF</u>
Phenol	ND	U	29.2	313	ug/Kg	1
Bis(2-Chloroethyl)ether	ND	U	29.2	313	ug/Kg	1
2-Chlorophenol	ND	U	16.6	313	ug/Kg	1
1,3-Dichlorobenzene	ND	U	21.1	313	ug/Kg	1
1,4-Dichlorobenzene	ND	U	22.1	313	ug/Kg	1
1,2-Dichlorobenzene	ND	U	15.6	313	ug/Kg	1
2-Methylphenol	ND	U	17.3	313	ug/Kg	1
3 and/or 4-Methylphenol	ND	U	20.3	313	ug/Kg	1
Bis(2-Chloroisopropyl)ether	ND	U ID	27.3	313	ug/Kg	1
n-Nitrosodi-n-propylamine	ND	U	89.6	313	ug/Kg	1
Hexachloroethane	ND	U	18.0	313	ug/Kg	1
Nitrobenzene	ND	U	18.0	313	ug/Kg	1
Isophorone	ND	U 40	14.2	313	ug/Kg	1
2-Nitrophenol	ND	U	15.0	313	ug/Kg	1
2,4-Dimethylphenol	ND	U	22.9	313	ug/Kg	1
Bis(2-Chloroethoxy)methane	ND	U	14.1	313	ug/Kg	1
2,4-Dichlorophenol	ND	U	18.1	313	ug/Kg	1
1,2,4-Trichlorobenzene	ND	U	27.6	313	ug/Kg	1
Naphthalene	ND	U	27.0	313	ug/Kg	1
4-Chloroaniline	ND	U	25.0	313	ug/Kg	1
Hexachlorobutadiene	ND	U	18.7	313	ug/Kg	1
4-Chloro-3-methylphenol	ND	U	15.6	313	ug/Kg	1
2-Methylnaphthalene	ND	U	25.3	313	ug/Kg	1
Hexachlorocyclopentadiene	ND	U	94.7	313	ug/Kg	1
2,4,5-Trichlorophenol	ND	U	20.9	313	ug/Kg	1
2,4,6-Trichlorophenol	ND	U	21.2	313	ug/Kg	1
2-Chloronaphthalene	ND	U	18.4	313	ug/Kg	1
2-Nitroaniline	ND	U	20.6	313	ug/Kg	1
3-Nitroaniline	ND	U	14.1	313	ug/Kg	1
Dimethyl phthalate	ND	U	24.0	313	ug/Kg	1
2,6-Dinitrotoluene	ND	U	22.4	313	ug/Kg	1 2 3
Acenaphthene	ND	U	14.2	313	ug/Kg	1
2,4-Dinitrophenol	ND	U	29.0	625	ug/Kg	1
4-Nitrophenol	ND	U	30.8	313	ug/Kg	1
Dibenzofuran	ND	U	24.5	313	ug/Kg	1
2,4-Dinitrotoluene	ND	U	15.8	313	ug/Kg	1
Fluorene	ND	U	16.6	313	ug/Kg	1
Diethyl phthalate	ND	U	16.9	313	ug/Kg	1 1
4-Chlorophenyl phenyl ether	ND	U	33.4	313	ug/Kg	1
4-Nitroaniline	ND	U	18.0	313	ug/Kg	1
4,6-Dinitro-2-methylphenol	ND	U	14.7	313	ug/Kg	1
Diphenylamine	ND	U	14.1	313	ug/Kg	1

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+t 910 350 1903 f+1 910 350 1557 www.sgs.com

Page 16 of 22

Method Blank

Blank ID: MB for HBN 26126 [XXX/2863] Blank Lab ID: 82374 QC for Samples: 31202359001 Matrix: Soil-Solid as dry weight

Results by SW-846 8270D

Parameter	Result	Qual	DL	LOQ/CL	<u>Units</u>	DF	
4-Bromophenyl phenyl ether	ND	U	20.6	313	ug/Kg	1	
Hexachlorobenzene	ND	U	29.6	313	ug/Kg	1	
Pentachlorophenol	ND	U	25.0	313	ug/Kg	1	
Phenanthrene	ND	U	20.6	313	ug/Kg	1	
Anthracene	ND	U	13.9	313	ug/Kg	1	
Di-n-butyl phthalate	ND	U	14.8	313	ug/Kg	1	
Fluoranthene	ND	U	29.4	313	ug/Kg	1	
Pyrene	ND	U	13.2	313	ug/Kg	1	
Butyl benzyl phthalate	ND	U	27.2	313	ug/Kg	1	
Benzo(a)anthracene	ND	U	17.2	313	ug/Kg	1	
3,3'-Dichlorobenzidine	ND	U	15.0	313	ug/Kg	1	
Chrysene	ND	U	36.4	313	ug/Kg	1	
Bis(2-Ethylhexyl)phthalate	ND	U	15.0	313	ug/Kg	1	
Di-n-octyl phthalate	ND	U	17.3	313	ug/Kg	1	
Benzo(b)fluoranthene	ND	U	18.0	313	ug/Kg	1	
Benzo(k)fluoranthene	ND	U	37.5	313	ug/Kg	- 1	
Benzo(a)pyrene	ND	U	17.7	313	ug/Kg	1	
Indeno(1,2,3-cd)pyrene	ND	U	24.4	313	ug/Kg	1	
Dibenz(a,h)anthracene	ND	U	14.1	313	ug/Kg	1	
Benzo(g,h,i)perylene	ND	U	49.8	313	ug/Kg	1.	
Benzoic acid	ND	U	6.94	313	ug/Kg	1	
Acenaphthylene	ND	U	13.2	313	ug/Kg	1	
Surrogates							
2-Fluorophenol	62.0			42.0-123	%	1	
Phenol-d6	74.0			48.0-125	%	1	
Nitrobenzene-d5	73.0			46.0-117	%	1	
2-Fluorobiphenyl	83.0			48.0-123	%	1	
2,4,6-Tribromophenol	90.0			41.0-129	%	1	
Terphenyl-d14	113			44.0-140	%	1	

Batch Information

Analytical Batch: XMS1614 Analytical Method: SW-846 8270D Instrument: MSD10 Analyst: CMP Analytical Date/Time: 7/30/2012 3:09:00PM Prep Batch: XXX2863 Prep Method: SW-846 3541 Prep Date/Time: 7/27/2012 10:01:47AM Prep Initial Wt./Vol.: 32 g Prep Extract Vol: 10 mL

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 1+1 910 350 1557 www.sgs.com

Page 17 of 22

Blank Spike ID: LCS for HBN 26126 [XXX/2863] Blank Spike Lab ID: 82375 Date Analyzed: 07/30/2012 15:55

Matrix: Soil-Solid as dry weight

QC for Samples: 31202359001

Results by SW-846 8270D

ParameterSolkeResultResc (%)CLPhenol313028709267.0.112Big(2-Chloroethyl)ether313028509167.0.1091,3-Dichlorobenzene313027008966.0.1091,4-Dichlorobenzene313027008966.0.1021,4-Dichlorobenzene313027008966.0.1121,2-Dichlorobenzene313028009366.0.1133 and/or 4-Methylphenol313028009666.0.1133 and/or 4-Methylphenol313027008464.0.114n-Nitrosodin-propylether313027008664.0.110Nitrobenzene313027008669.0.112Isophorone313027008869.0.112Isophorone313029009669.0.112Sigl-Chlorosthynymethane313029009266.0.113Bis(2-Chlorosthony)methane313029009266.0.113Sigl-Chlorosthony)methane313029009266.0.112Sigl-Chlorosthony)methane313029009267.0.1161,2,4-Tirichlorobenzene313028009365.0.1141,2,4-Tirichlorobenzene313029009563.0.1244-Chloro-3-methylphenol313029009563.0.1244-Chloro-3-methylphenol313029009663.0.1244-Chlorosthorophenol313029009663.0.1244-Chlorostheros		E	Blank Spike	(ug/Kg)	
Phenol 3130 2870 92 67.0-112 Big/2-Chlorophenol 3130 2850 91 67.0-109 1.3-Dichlorobenzene 3130 2770 89 66.0-109 1.4-Dichlorobenzene 3130 2780 89 65.0-112 1.4-Dichlorobenzene 3130 2820 90 67.0-110 2-Methylphenol 3130 2820 93 68.0-110 3 and/or 4-Methylphenol 8130 2820 93 68.0-110 3 and/or 4-Methylphenol 3130 2820 93 68.0-111 Bis/2-Chlorosporpyletime 3130 270 84 64.0-114 n-Nitrosodi-n-propylamine 3130 270 87 68.0-112 Isophorone 3130 2800 92 69.0-112 Isophorone 3130 2970 85 68.0-117 2-Nitrophenol 3130 2970 95 68.0-112 Bis/2-Chloroethoxy)methane 3130 298 70.0-1114 A-Dichorophenol <th>Parameter</th> <th><u>Spike</u></th> <th>Result</th> <th>Rec (%)</th> <th><u>CL</u></th>	Parameter	<u>Spike</u>	Result	Rec (%)	<u>CL</u>
Bis(2-Chloroethyl)ether313026908663.0-1162-Chlorophenol313027608966.0-1091.3-Dichlorobenzene313027808965.0-1121.4-Dichlorobenzene313028209067.0-1102-Methylphenol313028209368.0-1123 and/or 4-Methylphenol625062019666.0-113Bis(2-Chloroisopropylether313027208768.0-111Hexachloroethane313027208768.0-111Nitrobenzene313027008869.0-112Isophorone313027008869.0-112Isophorone313027008869.0-112Sindrone313027008869.0-112Sindrone313028009266.0-113Sindrone313028009266.0-113Sindrone313028009266.0-112Sindrone313028009266.0-112Sindrone313029009566.0-114Naphthelene313030309766.0-114Abritrichlorobenzene313029009660.0-114Abritrichlorobenzene313029009660.0-114Abritrichlorophenol313029009660.0-114Abritrichlorophenol313029009660.0-114Abritrichlorophenol3130230070.0-114Abritrichlorophenol313023	Phenol	31 3 0	287 0	92	67.0-112
2-Chiorophenol313028509167.0-1091,3-Dichlorobenzene313027708966.0-1091,4-Dichlorobenzene313027908965.0-1121,2-Dichlorobenzene313028009388.0-1102-Methylphenol313028009666.0-1133 and/or 4-Methylphenol625060209666.0-1133 and/or 4-Methylphenol813026108464.0-114n-Nitrosodin-propylether313027008766.0-113Nitrobenzene313027008860.0-112Isophorone313028009669.0-1082-Nitrophenol313028009266.0-1172-Libmethylphenol313028009266.0-112Sephorone313028009266.0-112Bis(2-Chloroethoxy)methane313028009266.0-112Bis(2-Chloroethoxy)methane313030809967.0-1181,2-Librichorobenzene313030809870.0-1141,2-Librichorobenzene313030809869.0-1101,2-Librichorobenzene313030809869.0-1101,2-Librichorophenol313028009670.0-1142-Methylnaphtalene313030709860.0-1102-Aberhylphenol313030809869.0-1102-Aberhylphenol313030709860.0-1102-Aberhylphenol31303070<	Bis(2-Chloroethyl)ether	3130	2690	86	63.0-116
1,3-Dichlorobenzene313027708966.0-1091,4-Dichlorobenzene313027908965.0-1121,2-Dichlorobenzene313028009366.0-1132-Methylphenol6206009666.0-1133 and/or 4-Methylphenol6206009666.0-113Bis(2-Chloroisopropylether313027008766.0-111Hexachloroethane313027008766.0-113Sophorone313027078669.0-112Sophorone313028009660.0-112Sophorone313028009266.0-1132.Hitrophenol313028009266.0-1122.Hitrophenol313028009266.0-1122.Hotrophenol313028009266.0-1122.A-Dichlorophenol313028009266.0-1131.2.A-Trichlorophenol313028009367.0-1181.2.A-Trichlorophenol313030009367.0-114A-Chloro-Triphylphenol313029009670.0-1142.Hotrohorophenol313029009660.0-1102.A-Dichlorophenol313029009860.0-1102.Hotrohorophenol313029009670.0-1142.Hotrohorophenol313029009670.0-1142.Hotrohorophenol313029009670.0-1142.Hotrohorophenol313029009660.0-110 <td>2-Chlorophenol</td> <td>3130</td> <td>2850</td> <td>91</td> <td>67.0-109</td>	2-Chlorophenol	3130	2850	91	67.0-109
1.4-Dichlorobenzene313027908965.0-1121.2-Dichlorobenzene313028209067.0-1102-Methylphenol313028009368.0-1133 and/or 4-Methylphenol625060209666.0-1133 and/or 4-Methylphenol61008464.0-110Isig/2-Chloroisopropylether313027008766.0-111Hexachloroethane313027008869.0-112Isophorone313028009669.0-112Isophorone313028009865.0-1172-Nitrophenol313028009269.0-112Bis/2-Chloroisborylymethane313028009269.0-112Bis/2-Chloroethoxylmethane313029709568.0-112Bis/2-Chloroethoxylmethane313030809967.0-1181.2.4-Tirchlorobepenol313030309765.0-114Naphthalene313029009670.0-1114-Chloroathine313029009670.0-1142.4-Dinorobutadiene313029009670.0-1142.4-Dinorobutadiene313029009670.0-1142.4-Dinorobutadiene313029009670.0-1142.4-Dinorobutadiene313029009670.0-1142.4-Dinorobutadiene313029009670.0-1142.4-Dinorobutadiene313029009670.0-1142.4-Dinorobutadiene31302800	1,3-Dichlorobenzene	3130	2770	89	66.0-109
1.2-Dichlorobenzene313028209067.0-1102-Methylphenol313028909368.0-1103 andro 4-Methylphenol625060209666.0-113Bis(2-Chloroisopropylether313027008464.0-114n-Nitrosodi-n-propylamine313027008766.0-111Nitrobenzene313027008869.0-112Isophorone313029009669.0-1122Nitrophenol313029009669.0-1122Nitrophenol313028009269.0-1122Linenthylphenol313028009269.0-112Bis(2-Chloroethoxy)methane313029709568.0-112Bis(2-Chloroethoxy)methane313029709565.0-114Naphthalene313030609870.0-1111.2.4-Trichlorobenzene313023407541.0-93.0Hexachlorobutadiene313029709563.0-1244-Chloroanilline313029009670.0-1142-Methylnaphthalene313023407541.0-93.02.4.5-Trichlorophenol313030709890.0-1002.4.5-Trichlorophenol3130250010460.0-1192.4.5-Trichlorophenol3130250010461.0-1002.4.5-Trichlorophenol313025008140.01032.4.5-Trichlorophenol313025008140.01032.4.5-Trichlorophenol	1,4-Dichlorobenzene	3130	2790	89	65.0-112
2-Methylphenol313028909368.0-1103 and/or 4-Methylphenol625060209666.0-113Bis(2-Chloroisopropyl)ether313027108464.0-114n-Nitrosodin-propylatnine313027208766.0-111Hexachloroethane313027008669.0-112Isophorone313029009669.0-1082-Nitrobenzene313029009865.0-1172.4-Dimethylphenol313028009269.0-112Bis(2-Chloroethoxylmethane313029009568.0-112Bis(2-Chloroethoxylmethane313029009568.0-112Benzoic acid313030609765.0-11412.4-Trichlorobenzene313030609765.0-114Naphthalene313029009670.0-1114-Chloroaniline313029009663.0-1244-Chloro-3-methylphenol313030609869.0-1104-Chloro-3-methylphenol313030609869.0-1104-Chloro-3-methylphenol313030609869.0-1102.4.5-Trichlorophenol313030609869.0-1102.4.5-Trichlorophenol313030609869.0-1122.4.6-Trichlorophenol313030609869.0-1122.4.5-Trichlorophenol313032609660.0-1192.4.5-Trichlorophenol313032609667.0-1182.4.5-Trichlor	1,2-Dichlorobenzene	3130	2820	90	67.0-110
3 and/or 4-Methylphenol6250602096660-113Bis(2-Chloroisopropyl)ether313026108464.0-114n-Nitrosodi-n-propylamine313027208766.0-111Hexachloroethane313027008669.0.012Nitrobenzene313029009669.0.108Sophorone313029009669.0.112Sophorone313029009269.0.1122.Hitrophenol313029009269.0.112Bis(2-Chloroethoxy)methane313029709568.0.112Benzoic acid31301550500.00-2032.4-Dichtlorophenol313030809967.0.1181.2.4-Tirchlorobenzene313030609870.0.1114-Chloro-Almethylphenol313029709563.0.1244-Chloro-Almethylphenol313029709563.0.1244-Chloro-Almethylphenol313029709670.0.1144-Chloro-Almethylphenol313030709869.0.110Hexachlorobutadiene313030709860.0.1102.4-Entrohylphenol3130325010467.0.1192.4-Entrohorophenol3130325010467.0.1192.4-Entrohorophenol313025008148.0.1032.4-Entrohorophenol313025008148.0.1032.4-Entrohorophenol313025008148.0.1032.4-Entrohorophenol <td< td=""><td>2-Methylphenol</td><td>3130</td><td>2890</td><td>93</td><td>68.0-110</td></td<>	2-Methylphenol	3130	2890	93	68.0-110
Bis(2-Chloroisopropy)ether313026108464.0-114n-Nitrosodi-n-propylamine313027208766.0-111Hexachloroethane313026808664.0-110Nitrobenzene313027708869.0-112Isophorone313029909665.0-1172.4-Dirothphenol313028809268.0-112Bis(2-Chloroethoxy)methane313028809268.0-112Bis(2-Chloroethoxy)methane313029709568.0-112Bis(2-Chloroethoxy)methane313030809967.0-1181,2,4-Trichlorophenol313030809870.0-1141,2,4-Trichlorophenol313029709563.0-1244-Chloro-3-methylphenol313029709563.0-1244-Chloro-3-methylphenol313029709563.0-1444-Chloro-3-methylphenol313029709563.0-1244-Chloro-3-methylphenol313029709563.0-1142-Methylnaphthalene313029709670.0-1144-Chloro-3-methylphenol313029709670.0-1142-Methylnaphthalene31302970980.00-10802,4,5-Trichlorophenol3130326010467.0-1192,4,6-Trichlorophenol313025010467.0-1192,4,6-Trichlorophenol313025010467.0-1192,4,6-Trichlorophenol31302909669.0-112<	3 and/or 4-Methylphenol	6250	6020	96	66.0-113
n-Nitrosodi-n-propylamine313027208766.0-111Hexachloroethane313026808664.0-110Nitrobenzene313027708869.0-112Isophorone313029909669.0-1082.Nitrophenol313030609865.0-1172.4-Dimethylphenol313028809269.0-112Bis(2-Chloroethoxy)methane313028709568.0-112Benzoic acid31301550500.00-2032,4-Dichlorophenol313030809765.0-1141,2,4-Trichlorobenzene313030609870.0-1144-Chloro-3-methylphenol313029709563.0-1244-Chloro-3-methylphenol313029009670.0-1142,4-Dirichlorophenol313029009670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4-5-Trichlorophenol3130325010467.0-1192,4-5-Trichlorophenol313028109057.0-96.02,4-5-Trichlorophenol313028208148.0-1032,4-5-Trichlorophenol313028007661.0-11002,4-5-Trichlorophenol313028109057.0-96.02,4-5-Trichlorophenol313028007661.0-11002,4-5-Trichlorophenol313028007661.0-11002,6-Dinitr	Bis(2-Chloroisopropyl)ether	3130	2610	84	64.0-114
Hexachloroethane313026808664.0.110Nitrobenzene313027708869.0.112Isophorone313029909669.0.1082.Nitrophenol313030609865.0.1172.4-Dimethylphenol313028809269.0.112Bis(2-Chloroethoxy)methane313029709568.0.112Benzoic acid31301550500.00-2032.4-Dichlorophenol313030809967.0.1181.2,4-Trichlorobenzene313030809870.0.1114-Chloraenlline313030809870.0.1114-Chloroanlline313029709563.0.1244-Chloro-3-methylphenol313029009670.0.1142.4-Erichlorophenol313030809869.0.110Hexachlorocyclopentadiene313030809860.0.10802.4.5-Trichlorophenol31303070980.00-10802.4.5-Trichlorophenol3130325010467.0.1192.4.6-Trichlorophenol3130250010467.0.1192.4.5-Trichlorophenol313028007661.0.1002.4.5-Trichlorophenol3130250010467.0.1192.4.6-Trichlorophenol313025008148.0.1032.6-Dinitroblene313025008148.0.1032.6-Dinitroblene313025008148.0.1032.6-Dinitroblene31302	n-Nitrosodi-n-propylamine	3130	2720	87	66.0-111
Nitrobenzene313027708869.0-112Isophorone313029909669.0-1082-Nitrophenol313030609865.0-1172.4-Dimethylphenol313028809269.0-112Bis(2-Chloroethoxy)methane313029709568.0-112Benzoic acid31301550500.00-2032.4-Dichlorophenol313030809967.0-1181.2.4-Trichlorobenzene313030309765.0-114Naphthalene313023407541.0-93.0Hexachlorobutadiene313029709563.0-1244-Chloro-alline313029709563.0-1244-Chloro-alline313029709563.0-1244-Chloro-alline313029709563.0-1244-Chloro-alline313029009670.0-1142-Methylnaphthalene31303080980.00-10802,4,5-Trichlorophenol31303070980.00-10802,4,6-Trichlorophenol3130281010467.0-1192-Chloronaphthalene313028007661.0-1003-Nitroaniline313028007661.0-1003-Nitroaniline313029009669.0-1182,6-Dinitrotoluene313028007661.0-1003-Nitroaniline313028007661.0-1003-Nitroaniline313029009669.0-118 <tr< td=""><td>Hexachloroethane</td><td>3130</td><td>2680</td><td>86</td><td>64.0-110</td></tr<>	Hexachloroethane	3130	2680	86	64.0-110
Isophorone313029909669.0-1082-Nitrophenol313030609865.0-1172.4-Dimethylphenol313028809269.0-112Bis(2-Chloroethoxy)methane313029709568.0-112Benzoic acid31301550500.00-2032.4-Dichlorophenol313030809967.0-1181,2.4-Trichlorobenzene313030309765.0-114Naphthalene313023407541.0-93.0Hexachlorobutadinen313029709563.0-1244-Chloroaniline313029709563.0-1244-Chloroaniline313029709563.0-1244-Chloroaniline313029709563.0-1244-Chloroaniline313029009670.0-1142-Methylnaphthalene313030809860.0-11001-Mixachlorobyclopentadiene313030709860.0-1192,4,5-Trichlorophenol3130325010467.0-1192-Chloronaphthalene313025008148.0-1032-Nitroaniline313025008148.0-103Dimethyl phthalate313025008148.0-103Dimethyl phthalate313025008148.0-103Dimethyl phthalate313025008148.0-103Dimethyl phthalate313029009669.0-1182,6-Dinitrotoluene3130290096 <t< td=""><td>Nitrobenzene</td><td>3130</td><td>2770</td><td>88</td><td>69.0-112</td></t<>	Nitrobenzene	3130	2770	88	69.0-112
2-Nitrophenol313030609865.0-1172,4-Dimethylphenol313028809269.0-112Bis(2-Chloroethoxy)methane313029709568.0-112Benzoic acid31301550500.00-2032,4-Dichlorophenol313030809967.0-1181,2,4-Trichlorobenzene313030609870.0-1114-Chloroaniline313023407541.0-93.0Hexachlorobutadiene313029709563.0-1244-Chloroa-3-methylphenol313029709670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130325010467.0-1192,4,6-Trichlorophenol313025008148.0-1032,4,6-Trichlorophenol313025208148.0-1032,4,6-Trichlorophenol313025009661.0-1003,10028007661.0-10057.0-96.02,4,6-Trichlorophenol313025008148.0-1032,4,6-Trichlorophenol313025008148.0-1032,4,6-Trichlorophenol313025008148.0-1032,4,6-Trichlorophenol313025008148.0-1032,4,6-Trichlorophenol313025008148.0-1032,4,6-Trichlorophenol313025008148.0-1032,4,6-Trichl	Isophorone	3130	2990	96	69.0-108
2.4-Dimethylphenol 3130 2880 92 69.0-112 Bis(2-Chloroethoxy)methane 3130 2970 95 68.0-112 Benzoic acid 3130 1550 50 0.00-203 2.4-Dichlorophenol 3130 3080 99 67.0-118 1.2.4-Trichlorobenzene 3130 3030 97 65.0-114 Naphthalene 3130 2340 75 41.0-93.0 Hexachlorobutadiene 3130 2970 95 63.0-124 4-Chloro-3-methylphenol 3130 2970 95 63.0-124 4-Chloro-3-methylphenol 3130 2970 96 70.0-114 2-Methylnaphthalene 3130 3080 98 69.0-110 Hexachlorocyclopentadiene 3130 3070 98 0.00-1080 2.4,5-Trichlorophenol 3130 3250 104 67.0-119 2.4,6-Trichlorophenol 3130 2810 90 57.0-96.0 2.Nitroaniline 3130 2810 90 57.0-96.0 2.Nitroaniline 3130 2520 81 48.0-103 <td>2-Nitrophenol</td> <td>3130</td> <td>3060</td> <td>98</td> <td>65.0-117</td>	2-Nitrophenol	3130	3060	98	65.0-117
Bis(2-Chloroethoxy)methane 3130 2970 95 68.0-112 Benzoic acid 3130 1550 50 0.00-203 2,4-Dichlorophenol 3130 3080 99 67.0-118 1,2,4-Trichlorobenzene 3130 3030 97 65.0-114 Naphthalene 3130 3060 98 70.0-111 4-Chloroaniline 3130 2340 75 41.0-93.0 Hexachlorobutadiene 3130 2970 95 63.0-124 4-Chloro-3-methylphenol 3130 2970 95 63.0-124 4-Chloro-3-methylphenol 3130 2990 96 70.0-114 2-Methylnaphthalene 3130 3080 98 0.00-1080 2,4,5-Trichlorophenol 3130 3070 98 0.00-1080 2,4,6-Trichlorophenol 3130 3250 104 67.0-119 2,4,6-Trichlorophenol 3130 2810 90 57.0-96.0 2-Nitroaniline 3130 2800 76 61.0-100 </td <td>2,4-Dimethylphenol</td> <td>3130</td> <td>2880</td> <td>92</td> <td>69.0-112</td>	2,4-Dimethylphenol	3130	2880	92	69.0-112
Benzoic acid31301550500.00-2032,4-Dichlorophenol313030809967.0-1181,2,4-Trichlorobenzene313030309765.0-114Naphthalene313030609870.0-1114-Chloroaniline313023407541.0-93.0Hexachlorobutadiene313029709563.0-1244-Chloro-3-methylphenol313029909670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130325010467.0-1192,4,6-Trichlorophenol313022807661.0-1002,4,6-Trichlorophenol313025208148.0-1032-Nitroaniline313025208148.0-103Dimethyl phthalate313030709869.0-1182,6-Dinitrotoluene313030709869.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709868.0-111	Bis(2-Chloroethoxy)methane	3130	2970	95	68.0-112
2.4-Dichlorophenol313030809967.0-1181.2.4-Trichlorobenzene313030309765.0-114Naphthalene313030609870.0-1114-Chloroaniline313023407541.0-93.0Hexachlorobutadiene313029709563.0-1244-Chloro-3-methylphenol313029909670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802.4,5-Trichlorophenol3130325010467.0-1192.4,6-Trichlorophenol313028109057.0-96.02.4,6-Trichlorophenol313025208148.0-103Dimethyl phthalate313025208148.0-103Dimethyl phthalate313030709869.0-1182.6-Dinitrotoluene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-125<	Benzoic acid	3130	1550	50	0.00-203
1,2,4-Trichlorobenzene313030309765.0-114Naphthalene313030609870.0-1114-Chloroaniline313023407541.0-93.0Hexachlorobutadiene313029709563.0-1244-Chloro-3-methylphenol313029909670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130325010467.0-1192,4,6-Trichlorophenol313022807661.0-1002,4,6-Trichlorophenol313028109057.0-96.02,-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122Acenaphthene313030709869.0-122	2,4-Dichlorophenol	3130	3080	99	67.0-118
Naphthalene313030609870.0-1114-Chloroaniline313023407541.0-93.0Hexachlorobutadiene313029709563.0-1244-Chloro-3-methylphenol313029909670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130325010466.0-1192,4,6-Trichlorophenol3130225010467.0-1192-Chloronaphthalene313028109057.0-96.02-Nitroaniline313025208148.0-1033-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030109668.0-1112,4-Dinitrophenol313030709820.125	1,2,4-Trichlorobenzene	3130	3030	97	65.0-114
4-Chloroaniline313023407541.0-93.0Hexachlorobutadiene313029709563.0-1244-Chloro-3-methylphenol313029909670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130334010766.0-1192,4,6-Trichlorophenol3130325010467.0-1192,Chloronaphthalene313028109057.0-96.02-Nitroaniline313028007661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030109668.0-1112,4-Dinitrophenol313030709820.125	Naphthalene	3130	3060	98	70.0-111
Hexachlorobutadiene313029709563.0-1244-Chloro-3-methylphenol313029909670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130334010766.0-1192,4,6-Trichlorophenol3130325010467.0-1192-Chloronaphthalene313028109057.0-96.02-Nitroaniline313023807661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030109668.0-1112,4-Dinitrophenol313030709812.0-125	4-Chloroaniline	3130	2340	75	41.0-93.0
4-Chloro-3-methylphenol313029909670.0-1142-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130324010766.0-1192,4,6-Trichlorophenol3130325010467.0-1192-Chloronaphthalene313028109057.0-96.02-Nitroaniline313023807661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-1224,cenaphthene313030109668.0-1112,4-Dinitrophenol313030709812.0-125	Hexachlorobutadiene	3130	2970	95	63.0-124
2-Methylnaphthalene313030809869.0-110Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130334010766.0-1192,4,6-Trichlorophenol3130325010467.0-1192-Chloronaphthalene313028109057.0-96.02-Nitroaniline313023807661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029009669.0-1182,6-Dinitrotoluene313030709869.0-1224cenaphthene313030109668.0-1112,4-Dinitrophenol313030709812.0-125	4-Chloro-3-methylphenol	3130	2990	96	70.0-114
Hexachlorocyclopentadiene31303070980.00-10802,4,5-Trichlorophenol3130334010766.0-1192,4,6-Trichlorophenol3130325010467.0-1192-Chloronaphthalene313028109057.0-96.02-Nitroaniline313023807661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029009669.0-1182,6-Dinitrotoluene313030709868.0-1112,4-Dinitrophenol313030709812.0-125	2-Methylnaphthalene	3130	3080	98	69.0-110
2,4,5-Trichlorophenol3130334010766.0-1192,4,6-Trichlorophenol3130325010467.0-1192-Chloronaphthalene313028109057.0-96.02-Nitroaniline313023807661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-1224,cenaphthene313030109668.0-1112,4-Dinitrophenol313030709812.0-125	Hexachlorocyclopentadiene	3130	3070	98	0.00-1080
2,4,6-Trichlorophenol3130325010467.0-1192-Chloronaphthalene313028109057.0-96.02-Nitroaniline313023807661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030109668.0-1112,4-Dinitrophenol313030709812.0-125	2,4,5-Trichlorophenol	3130	3340	107	66.0-119
2-Chloronaphthalene313028109057.0-96.02-Nitroaniline313023807661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029009669.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030109668.0-1112,4-Dinitrophenol313030709812.0-125	2,4,6-Trichlorophenol	3130	3250	104	67.0-119
2-Nitroaniline313023807661.0-1003-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030109668.0-1112,4-Dinitrophenol313030709812.0-125	2-Chloronaphthalene	3130	2810	90	57.0-96.0
3-Nitroaniline313025208148.0-103Dimethyl phthalate313029909669.0-1182,6-Dinitrotoluene313030709869.0-122Acenaphthene313030109668.0-1112,4-Dinitrophenol313030709812.0-125	2-Nitroaniline	3130	2380	76	61.0-100
Dimethyl phthalate 3130 2990 96 69.0-118 2,6-Dinitrotoluene 3130 3070 98 69.0-122 Acenaphthene 3130 3010 96 68.0-111 2,4-Dinitrophenol 3130 3070 98 12.0-125	3-Nitroaniline	3130	2520	81	48.0-103
2,6-Dinitrotoluene 3130 3070 98 69.0-122 Acenaphthene 3130 3010 96 68.0-111 2,4-Dinitrophenol 3130 3070 98 12.0-125	Dimethyl phthalate	3130	2990	96	69.0-118
Acenaphthene 3130 3010 96 68.0-111 2,4-Dinitrophenol 3130 3070 98 12.0-125	2,6-Dinitrotoluene	3130	3070	98	69.0-122
2,4-Dinitrophenol 3130 3070 98 12.0-125	Acenaphthene	3130	3010	96	68.0-111
	2,4-Dinitrophenol	3130	3070	98	12.0-125

Print Date: 07/31/2012

N.C. Certification # 481

Blank Spike ID: LCS for HBN 26126 [XXX/2863] Blank Spike Lab ID: 82375 Date Analyzed: 07/30/2012 15:55

Matrix: Soil-Solid as dry weight

QC for Samples: 31202359001

Results by SW-846 8270D

	E	Blank Spike	ug/Kg)	
Parameter	<u>Spike</u>	Result	Rec (%)	CL
4-Nitrophenol	3130	2330	75	45.0-120
Dibenzofuran	3130	3080	98	71.0-114
2,4-Dinitrotoluene	3130	3140	101	68.0-123
Fluorene	3130	3020	97	66.0-116
Diethyl phthalate	3130	2990	96	68.0-114
4-Chlorophenyl phenyl ether	3130	3 06 0	98	66.0-120
4-Nitroaniline	3130	2730	87	66.0-114
4,6-Dinitro-2-methylphenol	3130	4020	129*	24.0-123
Diphenylamine	3130	3340	107	60.0-118
4-Bromophenyl phenyl ether	3130	3420	110	63.0-118
Hexachlorobenzene	3130	3090	99	62.0-112
Pentachlorophenol	3130	4030	129*	34.0-125
Phenanthrene	3130	3450	110	60.0-122
Anthracene	3130	3440	110	63.0-113
Di-n-butyl phthalate	3130	349 <mark>0</mark>	112	64.0-121
Fluoranthene	3130	3500	112	64.0-118
Pyrene	3130	3 20 0	102	67.0-116
Butyl benzyl phthalate	3130	2900	93	68.0-118
Benzo(a)anthracene	3130	3150	101	65.0-118
3,3'-Dichlorobenzidine	3130	2720	87	54.0-118
Chrysene	3130	3200	102	66.0-118
Bis(2-Ethylhexyl)phthalate	3130	2900	93	67.0-123
Di-n-octyl phthalate	3130	3020	97	62.0-131
Benzo(b)fluoranthene	3130	2790	89	<mark>63.0-11</mark> 9
Benzo(k)fluoranthene	3130	3360	107	69.0-118
Benzo(a)pyrene	3130	3230	103	69.0-113
Indeno(1,2,3-cd)pyrene	3130	3310	106	64.0-123
Dibenz(a,h)anthracene	3130	3250	104	64.0-123
Benzo(g,h,i)perylene	3130	3390	108	57.0-128
Acenaphthylene	3130	3200	102	72.0-115
Surrogates				
2-Fluorophenol			78	42.0-123
Phenol-d6			93	48.0-125
Nitrobenzene-d5			89	46.0-117

Print Date: 07/31/2012

N.C. Certification # 481

SGS Analytical Perspectives 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 1+1 910 350 1557 www.sgs.com

Blank Spike ID: LCS for HBN 26126 [XXX/2863] Blank Spike Lab ID: 82375 Date Analyzed: 07/30/2012 15:55

Matrix: Soil-Solid as dry weight

QC for Samples: 31202359001

Results by SW-846 8270D

		Blank Spike	ə (%)	
Parameter	<u>Spike</u>	Result	<u>Rec (%)</u>	CL
2-Fluorobiphenyl			98	48.0-123
2,4,6-Tribromophenol			119	41.0-129
Terphenyl-d14			98	44.0-140

Batch Information

Analytical Batch: XMS1614 Analytical Method: SW-846 8270D Instrument: MSD10 Analyst: CMP Prep Batch: XXX2863 Prep Method: SW-846 3541 Prep Date/Time: 07/27/2012 10:01 Spike Init Wt./Vol.: 32 g Extract Vol: 10 mL

Dupe Init Wt./Vol.: Extract Vol:

N.C. Certification # 481

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 1 +1 910 350 1557 www.sgs.com

SGS ANALYTICAL PERSPECTIVES 5500 Business Drive Wilmington, NC 28405 +1 910 350 1903 wwwscs.com	PAGE	OF			REMARKS	e c b 1 0 8						RNAROUND TIME	Ketandard	Trust Fund	Other:				White - Retained by Lab Yellow - Retained by Client
OF CUSTODY	aterence #					۲ ۲						REPORT LEVEL: REQUESTED TUR	D Level 1 WLevel II D Level IV DRush:	SPECIAL DELIVERABLES: State of Origin: NC	DOD DEDD. SJMMENT	SPECIAL INSTRUCTIONS:	ABSENT) Shipping Camer.	Shipping Teket No:	OW PART OF SGS, THE WORLD'S LEADING INSPECTION. TIFICATION COMPANY.
CHAIN	SZ-SECC 31.	3 2.1.18252	Ditt Canty	-zwe	TIME MATRIX S	1330 SolL 5						RECEIVED BY:	Ja your	Heceived By:		Received By:	COC Seal: INTACT BROKER /	Sample Receipt Temp: C	ANALYTICAL PERSPECTIVES IS NO VERIFICATION, TESTING AND CER
ANUTITICAL PERSPECTIVES	CATUN/NCOOT T. Rundsharecatur PHONE NO: 1910) 45	"NCDOT Pare/ 14, STE/ PWSID (MBB):	sra: Bene carris us ican Brancashare actin Usa, can B	TO: QUOTE # NUMBER NCK	SAMPLE IDENTIFICATION DATE	96DPT-01 (5.5.5') 7.25.12						D/RELINQUISHED BY: (1) DATE TIME (//	Holl more the	ed By: (2) Date/ 201 Zime	7124	ed By: (3) Date Time	or Laboratory By: Date Time		&12)
Š	CLIENT: CONTAC	PROJEC	REPORT	INVOICE	LAB NO.		Pa	ge 21	1 of 22		1.50 - 1.	Contect	d	Relinquish		Relinquish	Received		SGS-00055 (0

SGS North America Inc.

Sample Receipt Checklist (SRC)

Client:	NCDOT-Catlin	Work Order No.:	31202359
1.	Shipped X Hand Delivered	Notes:	
2.	X COC Present on Receipt No COC Additional Transmittal Forms		
3.	Custody Tape on Container X No Custody Tape		
4.	_X_Samples Intact Samples Broken / Leaking		
5.	X Chilled on Receipt Actual Temp.(s) in °C: Ambient on Receipt Walk-in on Ice; Coming down to temp. Received Outside of Temperature Specification	0.8 	
6.	X Sufficient Sample Submitted		
7.	Chlorine absent HNO3 < 2 HCL < 2 Additional Preservatives verified (see notes)		
. 8.	X Received Within Holding Time Not Received Within Holding Time		
9.	X No Discrepancies Noted Discrepancies Noted NCDENR notified of Discrepancies*		
10.	No Headspace present in VOC vials Headspace present in VOC vials >6mm		
comments:			
		· · · · · · · · · · · · · · · · · · ·	
		<u>neternel</u>	
	Inspe	cted and Logged in by: JJ	Thu 7/26/42 00:00

MI_11.6

U-3315 WBS Element: 35781.1.2

APPENDIX D PHOTOGRAPHS

PARCEL 196, JOSHUA JOHNSON PROPERTY 1023 EVANS STREET

From near Northwest property corner and Evans Street looking Southsouthwest, boring 196DPT-01 near proposed catch basin 1108 in foreground.

From across Evans Street looking East, former car wash building, currently Tech Shop.

NCDOT; Parcel196PSA_Rpt CATLIN Project No. 212077