Preliminary Site Assessment

1001 Dickinson Avenue
Parcel #185, Buck, Dennis
Previous Flemings Gasoline Station
and

1011 Dickinson Avenue Extension Parcel#186, City of Greenville Greenville, Pitt County, North Carolina

State Project No. U-3315

WBS Element: 35781.1.2

February 20, 2013

Terracon Project No. 70127335

Prepared for:

North Carolina Department of Transportation (NCDOT)

Geotechnical Engineering Unit

Prepared by:

Terracon Consultants, Inc. Raleigh, North Carolina

Offices Nationwide Employee-Owned Established in 1965 terracon.com

February 20, 2013

North Carolina Department of Transportation Attention: Mr. Gordon Box, LG Geotechnical Engineering Unit 1589 Mail Service Center Raleigh, NC 27699

Re: Preliminary Site Assessment (PSA)

Parcel 185, Buck, Dennis

Previous Flemings Gasoline Station

1001 Dickinson Avenue

and

Parcel 186, City of Greenville

Grassed Median-Former Filling Station 1011 Dickinson Avenue Extension

1011 Dickinson Avenue Extension

Greenville, Pitt County, North Carolina

Terracon Project No. 70127335

WBS Element: 35781.1.2

Dear Mr. Box:

Terracon Consultants, Inc. (Terracon) is pleased to submit a Preliminary Site Assessment (PSA) report for the above referenced site. This assessment was performed in accordance with our Proposal for Preliminary Site Assessment (Terracon Proposal No. P70127314) dated August 7, 2012. This report includes the findings of the investigation, and provides our conclusions and recommendations.

Terracon appreciates the opportunity to provide these services to the NCDOT. If you have any questions concerning this report or need additional information, please contact us at 919-873-2211.

Sincerely,

Terracon Consultants, Inc.

Prepared by:

Benjamin W. Swift

Environmental Professional

Reviewed by:

Christopher L. Corbitt, PG Authorized Project Reviewer

Lori Hoffman, PE

Environmental Department Manager

Terracon Consultants, Inc. 5240 Green's Dairy Road Raleigh, NC 27616 P [919] 873 2211 F [919] 873 9555 terracon.com

for:

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION	1
1.1	Site Description	1
1.2	Site History	
1.3	Scope of Work	2
1.4	Standard of Care	
1.5	Additional Scope Limitations	
1.6		
2.0	FIELD ACTIVITIES	
2.1	Geophysical Survey	3
2.2		3
2.3		
2.4	Subsurface Conditions	
3.0	LABORATORY ANALYTICAL PROGRAM	5
4.0	DATA EVALUATION	5
5.0	CONCLUSIONS	7

TABLES

- Table 1 Soil Sampling Analytical Results Summary (DRO/ GRO)
- Table 2 Soil Sampling Analytical Results Summary (VOCs/SVOCs)
- Table 3 Soil Sampling Analytical Results Summary (EPH/VPH)
- Table 5 Groundwater Sampling Analytical Results Summary

FIGURES

- Exhibit 1 Site Vicinity Map (Topographic Map)
- Exhibit 2 Site Diagram with Soil Boring Locations and Analytical Data (Parcel 185)
- Exhibit 3 Site Diagram with Soil Boring Locations and Analytical Data (Parcel 186)

APPENDICES

- Appendix A: Boring Logs
- Appendix B: Geophysical Survey Report
- Appendix C: Laboratory Analytical Reports and Chain of Custody

PRELIMINARY SITE ASSESSMENT

PARCEL 185, BUCK, DENNIS 1001 DICKINSON AVENUE PARCEL 186, CITY OF GREENVILLE 1011 DICKINSON AVENUE EXTENSION GREENVILLE, PITT COUNTY, NORTH CAROLINA

1.0 INTRODUCTION

1.1 Site Description

Site Name	Parcel 185, Buck, Dennis (Previous Flemings Gasoline Station) Parcel 186, City of Greenville (Grassed Median-former filling station)
Site Location/Address	1001 Dickinson Avenue, Greenville, North Carolina 1011 Dickinson Avenue Ext, Greenville, North Carolina
General Site Description	Parcel 185 is occupied by two vacant structures previously occupied by Flemings Gasoline Station. On-site structures include service bays for vehicle maintenance operations. Parcel 186 is currently maintained as a grass-covered median in the northern portion of the site. The southern portion of the parcel is traversed by West 10 th Street. The southernmost portion of the parcel is apparently a paved parking area for Flemings Gasoline Station (Parcel 185).

1.2 Site History

According to information provided by the NCDOT and collected by Terracon, there are no known release (LUST) incidents associated with the two parcels.

Parcel 185 previously operated as Flemings Gasoline Station. According to the NCDENR UST database, three on-site USTs were removed in 1989 and one UST was closed in place with inert materials. Four "active" USTs are reportedly located on the site. The NCDOT intends to acquire only the northern portion of the site which does not include the on-site buildings or the USTs.

Parcel 186 reportedly operated as a filling station from at least 1923 to at least 1929, according to historical fire insurance maps. Currently, the northern portion of the site consists of a grass-covered median. The southern portion of the site is traversed by West 10th Street. The southernmost portion of the site is apparently a paved parking area for Flemings Gasoline Station (Parcel 185). No known USTs are listed for the site. The NCDOT intends to only acquire a portion the parcel.

A review of the City of Greenville Online Mapping website indicates the shared parcel boundary for Parcels 185 and 186 do not correlate to the information provided by the NCDOT. The

shared parcel boundary depicted on the City of Greenville Online Mapping website is farther south and parallels the Flemings Gasoline Station building.

1.3 Scope of Work

Terracon has prepared the following Preliminary Site Assessment (PSA) scope of work in accordance with the NCDOT's Request for Technical and Cost Proposal dated June 19, 2012 and Terracon's Proposal for Preliminary Site Assessment (Proposal No. P70127314) dated August 7, 2012. The scope of work included a geophysical investigation for each parcel, the collection of seven soil samples and two groundwater samples for laboratory analysis and preparation of a report documenting our environmental investigation activities.

1.4 Standard of Care

Terracon's services were performed in a manner consistent with generally accepted practices of the profession undertaken in similar studies in the same geographical area during the same time period. Terracon makes no warranties, either expressed or implied, regarding the findings, conclusions or recommendations. Please note that Terracon does not warrant the work of laboratories, regulatory agencies or other third parties supplying information used in the preparation of the report. These PSA services were performed in accordance with the scope of work authorized by you and were not conducted in accordance with ASTM E1903-97.

1.5 Additional Scope Limitations

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-site activities and other services performed under this scope of work; such information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, undetectable or not present during these services; thus, we cannot represent that the site is free of hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this PSA. Subsurface conditions may vary from those encountered at specific borings or wells or during other surveys, tests, assessments, investigations or exploratory services; the data, interpretations, findings, and our recommendations are based solely upon data obtained at the time and within the scope of these services.

1.6 Reliance

This report has been prepared for the exclusive use of North Carolina Department of Transportation (NCDOT). Authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the site) is prohibited without the expressed written authorization of the client and Terracon.

2.0 FIELD ACTIVITIES

The following PSA activities are presented in the order that they were conducted in the field on August 22, 24, and 29, and September 2, and 7, 2012. Exhibit 1 presents the general boundaries and topography of the site on portions of the USGS topographic quadrangle map of Greenville SW, North Carolina dated 1998. Exhibits 2 and 3 are site layout plans that depict the approximate locations of the site features and soil boring locations.

2.1 Geophysical Survey

On August 22, 23, and 29, 2012, Pyramid Environmental conducted a geophysical investigation at the site in an effort to determine if unknown, metallic underground storage tanks (USTs) were present beneath the proposed right-of-way (ROW) area. The geophysical investigation included an electromagnetic (EM) induction survey using a Geonics EM-61 MK1 metal detection instrument and a ground penetrating radar (GPR) survey using a GSSI SIR-2000 unit.

The geophysical investigation did not reveal any probable metallic USTs in the area of investigation identified for Parcel 185. Four known USTs were identified along the eastern parcel boundary but these USTs are not located within the proposed ROW.

Two possible (low confidence) metallic USTs or conduit junctions were detected in the southern portion of Parcel 186 (driveway/parking area of Flemings Gasoline Station). A portion of one of the possible USTs appears to lie beneath the southern edge of West 10th Street. A copy of the geophysical reports is included in Appendix B.

2.2 Soil Sampling

Based on the findings of the geophysical investigation, Terracon provided oversight of the advancement of four soil borings in the northern portion of Parcel 185 and three soil borings at Parcel 186 on September 7, 2012. Two of the borings were advanced in the southern portion of Parcel 186 near the locations of the suspected USTs while the third boring was advanced in the grassed median in the northern portion of the parcel. The borings were completed by Bridger Drilling Enterprises, Inc., a North Carolina licensed driller using a Geoprobe® rig.

Soil samples were collected in 5-foot, disposable, acetate sleeves to document soil lithology, color, moisture content, and sensory evidence of impairment. The soil samples were placed in resealable plastic bags for a sufficient amount of time to allow volatilization of organic compounds from the soils. The soil samples were then screened using a field-portable photo-ionization detector (PID) by inserting the probe tip into the headspace of each bag. The PID readings and soil sample depths for the four borings on Parcel 185 are included on Table 1. PID readings and soil sample depths for Parcel 186 and Parcel 185 are also included on individual boring logs in Appendix A.

Soil borings on both parcels were advanced to depths ranging from approximately 15 to 20 feet below ground surface (bgs). Soils obtained from the acetate sleeves were separated into two and half foot intervals.

The soil samples were collected and placed in laboratory prepared glassware and packed in ice within a cooler. The sample cooler and completed chain-of-custody forms were relinquished to SGS North American Inc. in Wilmington, North Carolina.

2.3 Groundwater Sampling

Following soil sampling activities, soil boring B-1 on Parcel 185 was advanced to approximately 20 feet bgs and converted to temporary groundwater sampling well (TW-1). Boring B-1 was located in the apparent down-gradient portion of Parcel 185.

Soil boring B-2 on Parcel 186 was also advanced to approximately 20 feet bgs and converted to temporary groundwater sampling well (TW-1). Boring B-2 was located in the apparent downgradient portion of Parcel 186. The temporary well locations are depicted Exhibit 2 (Parcel 185) and Exhibit 3 (Parcel 186). The temporary monitoring wells were constructed using the following materials:

- 1-inch diameter, 0.010-inch machine slotted PVC well screen with a threaded bottom cap; and,
- 1-inch diameter, threaded, flush-joint PVC riser pipe to surface.

The depth to groundwater was measured in the temporary wells at approximately 15.8 feet bgs (Parcel 185) and 15.9 feet bgs (Parcel 186). Prior to sampling, the monitoring wells were purged with a peristaltic pump until turbidity decreased. A water sample was collected from each temporary well and placed into laboratory supplied, pre-preserved sample containers. The ice-packed sample container and chain of custody documentation were picked up by a courier for delivery to the laboratory.

2.4 Subsurface Conditions

The soil samples from ground surface to a depth of approximately 20 feet included sands, clayey sands, clay, and sandy clay. Petroleum odors and elevated PID readings were noted in the samples collected from soil borings B-1, B-2, and B-3 on Parcel 185 and in the samples collected from soil borings B-2 and B-3 on Parcel 186. Soil samples from the interval exhibiting the highest PID readings or most obvious evidence of contamination in each boring were submitted for laboratory analysis.

3.0 LABORATORY ANALYSES

Soil samples were submitted for laboratory analysis of Total Petroleum Hydrocarbons (TPH) Diesel Range Organics (DRO) by EPA Method 3546 and TPH Gasoline Range Organics (GRO) by EPA Method 5035. Soil samples were also collected for analysis of North Carolina Department of Environment and Natural Resources (NCDENR) risk-based parameters including volatile organic compounds (VOCs) by EPA Method 8260 and semi-volatile organic compounds (SVOCs) by EPA Method 8270, MADEP VPH, and MADEP EPH pending analytical results of the DRO/GRO samples. The groundwater samples were submitted for laboratory analysis of VOCs by EPA Method 8260 and SVOCs by EPA Method 8270. Samples were submitted to SGS North American Inc. in Wilmington, North Carolina for analysis. Please refer to Appendix C for the laboratory analytical reports.

4.0 DATA EVALUATION

4.1 Soil Sample Analytical Results and Interpretation

Parcel 185

Gasoline Range Organics (GRO) were detected above the laboratory method detection limits in sample S-1 at a concentration of 1,020 milligrams per kilogram (mg/kg) and sample S-3 at 76.7 mg/kg. TPH GRO compounds were detected at concentrations above the NCDENR UST Action Level (10 mg/kg) in both samples.

Diesel Range Organics (DRO) were also detected in sample S-1 (1,210 mg/kg) and sample S-3 (721 mg/kg) at concentrations above the NCDENR UST Action Level (10 mg/kg).

Based on the DRO/GRO analytical results for sample S-1, risk-based analyses reported 1,2,4-trimethylbenzene (133 mg/kg), 1,3,5-trimethylbenzene (39 mg/kg), 4-isopropyltoluene (7.92 mg/kg), naphthalene (35.5 mg/kg), ethylbenzene (14.7 mg/kg), isopropylbenzene (3.54 mg/kg), toluene (10.2 mg/kg), total xylenes (111 mg/kg), n-propylbenzene (13.4 mg/kg), and 2-methylnapthalene (31.5 mg/kg) above their respective laboratory method reporting limits and at concentrations above their respective NCDENR Soil-to-Groundwater Maximum Soil Contamination Concentrations (MSCCs).

Risk-based analyses for sample S-3 reported 1,2,4-trimethylbenzene (0.195 mg/kg), 1,3,5-trimethylbenzene (0.269 mg/kg), 4-isopropyltoluene (0.0955 mg/kg), naphthalene (0.206 mg/kg), and 2-methylnapthalene (2.09 mg/kg) above their respective laboratory method reporting limits. The detected concentrations in sample S-3 do not exceed their respective NCDENR Soil-to-Groundwater MSCCs.

Laboratory analytical results reported C5-C8 Aliphatics (15.8 mg/kg), C9-C22 Aromatics (179.3 mg/kg), and C9-C18 Aliphatics (186.2 mg/kg) for soil sample S-1. Laboratory analytical results also reported C9-C22 Aromatics (114.4 mg/kg) and C9-C18 Aliphatics (137.7 mg/kg) for soil sample S-3. Based on the NCDENR UST Section MADEP Groundwater Sample Worksheet, C9-C22 Aromatics exceed the NCDENR Soil-to-Groundwater MSCC (31 mg/kg) in sample S-1 and sample S-3.

Parcel 186

Concentrations of TPH-GRO or TPH-DRO were not detected above laboratory method detection limits in the three samples (S-1, S-2 and S-3) collected from Parcel 186. Based on the DRO and GRO results, no risk-based samples were analyzed for Parcel 186.

A summary of the soil sampling analytical results are included in Tables 1, 2 and 3 as an attachment to this report.

4.2 Groundwater Analytical Results and Interpretation

Parcel 185

Laboratory analytical results for groundwater sample TW-1 from Parcel 185 reported ethylbenzene at 3,320 micrograms per liter (ug/L), naphthalene (2,180 ug/L), toluene (42,100 ug/L), total xylenes (16,900 ug/L), and 2-methylnapthalene (116 ug/L) at concentrations that exceed their respective NCAC 2L Groundwater Quality Standards.

Parcel 186

Laboratory analytical results for groundwater sample TW-1 from Parcel 186 reported benzene (15.6 ug/L) and tetrachloroethene (6.8 ug/L) at concentrations that exceed their respective NCAC 2L Groundwater Quality Standard.

Concentrations of 1,2,4-trimethylbenzene (3.77 ug/L), 1,3,5-trimethylbenzene (1.83 ug/L), ethylbenzene (10.4 ug/L), toluene (8.77 ug/L), total xylenes (37.6 ug/L), and n-propylbenzene (1.06 ug/L) were reported above their laboratory method detection limits but below their respective NCAC 2L Groundwater Quality Standards.

A summary table of the groundwater sampling analytical results is included as an attachment to this report.

5.0 CONCLUSIONS

The findings of this investigation are discussed below.

 The geophysical investigation did not reveal probable metallic USTs or other buried anomalies in the area of investigation identified for Parcel 185. Four known USTs were identified along the eastern parcel boundary but these USTs are not located within the proposed ROW.

Two possible (low confidence) metallic USTs or conduit junctions were detected in the southern portion of Parcel 186 (driveway/parking area of Flemings Gasoline Station). A portion of one of the possible USTs appears to lie beneath the southern edge of West 10th Street.

 Seven soil borings were advanced to depths ranging from approximately 15 to 20 feet bgs.

Parcel 185

Gasoline Range Organics were detected above the NCDENR UST Action Level (10 mg/kg) in sample S-1 at a concentration of 1,020 mg/kg and sample S-3 at 76.7 mg/kg.

Diesel Range Organics were also detected in sample S-1 (1,210 mg/kg) and sample S-3 (721 mg/kg) at concentrations above the NCDENR UST Action Level (10 mg/kg).

Based on the DRO/GRO analytical results for sample S-1, risk-based analyses reported 1,2,4-trimethylbenzene (133 mg/kg), 1,3,5-trimethylbenzene (39 mg/kg), 4-isopropyltoluene (7.92 mg/kg), naphthalene (35.5 mg/kg), ethylbenzene (14.7 mg/kg), isopropylbenzene (3.54 mg/kg), toluene (10.2 mg/kg), total xylenes (111 mg/kg), n-propylbenzene (13.4 mg/kg), and 2-methylnapthalene (31.5 mg/kg) above their respective NCDENR Soil-to-Groundwater MSCCs.

Risk-based analyses for sample S-3 reported 1,2,4-trimethylbenzene (0.195 mg/kg), 1,3,5-trimethylbenzene (0.269 mg/kg), 4-isopropyltoluene (0.0955 mg/kg), naphthalene (0.206 mg/kg), and 2-methylnapthalene (2.09 mg/kg) above their respective laboratory method reporting limits. The detected concentrations in sample S-3 do not exceed their respective NCDENR Soil-to-Groundwater MSCCs.

Laboratory analytical results reported C5-C8 Aliphatics (15.8 mg/kg), C9-C22 Aromatics (179.3 mg/kg), and C9-C18 Aliphatics (186.2 mg/kg) for soil sample S-1. Laboratory analytical results also reported C9-C22 Aromatics (114.4 mg/kg) and C9-C18 Aliphatics (137.7 mg/kg) for soil sample S-3. Based on the NCDENR UST Section MADEP

Groundwater Sample Worksheet, C9-C22 Aromatics exceed the NCDENR Soil-to-Groundwater MSCC (31 mg/kg) in sample S-1 and sample S-3.

The depth to groundwater was measured in temporary monitoring well TW-1 at approximately 15.8 feet bgs.

Laboratory analytical results for groundwater sample TW-1 from Parcel 185 reported ethylbenzene at 3,320 micrograms per liter (ug/L), naphthalene (2,180 ug/L), toluene (42,100 ug/L), total xylenes (16,900 ug/L), and 2-methylnapthalene (116 ug/L) at concentrations that exceed their respective NCAC 2L Groundwater Quality Standards.

The extent of soil contamination appears to be localized at Parcel 185. Based on plans provided by NCDOT, utility or drainage excavations are not planned for Parcel 185. Terracon recommends considering a contingency of 11 cubic yards for driveway construction. This is based on assumption of a 6-inch cut for an area of 300 square feet in the planned driveway (near S-1).

Parcel 186

Concentrations of TPH-GRO or TPH-DRO were not detected above laboratory method detection limits in the three samples (S-1, S-2 and S-3) collected from Parcel 186. Based on the DRO and GRO results, no risk-based samples were analyzed for Parcel 186.

The depth to groundwater was measured in temporary monitoring well TW-1 at approximately 15.9 feet bgs.

Laboratory analytical results for groundwater sample TW-1 from Parcel 186 reported benzene (15.6 ug/L) and tetrachloroethene (6.8 ug/L) at concentrations that exceed their respective NCAC 2L Groundwater Quality Standard.

Concentrations of 1,2,4-trimethylbenzene (3.77 ug/L), 1,3,5-trimethylbenzene (1.83 ug/L), ethylbenzene (10.4 ug/L), toluene (8.77 ug/L), total xylenes (37.6 ug/L), and n-propylbenzene (1.06 ug/L) were reported above their laboratory method detection limits but below their respective NCAC 2L Groundwater Quality Standards.

- Based on the laboratory analytical results, contamination was identified in the soils within the project area at Parcel 185 and impacted groundwater was detected in the project areas at Parcel 185 and Parcel 186. Groundwater was measured at a depth of approximately 15.9 feet bgs.
- Based on plans provided by NCDOT, utility or drainage excavations are not planned for Parcel 186. The area of contamination on Parcel 186 that will be impacted by driveway

construction is approximately 385 square feet. Assuming cuts of one foot for curb and driveway construction, the quantity of soil excavation for Parcel 196 is 14 cubic yards.

TABLES

Table 1 – Soil Sampling Analytical Results Summary (DRO/GRO)
Table 2 – Soil Sampling Analytical Results Summary (VOCs/SVOCs)
Table 3 – Soil Sampling Analytical Results Summary (EPH/VPH)
Table 4 – Groundwater Sampling Analytical Results Summary (Parcel 185)
Table 5 – Groundwater Sampling Analytical Results Summary (Parcel 186)

Table 1 Soil Sampling Analytical Results Summary (DRO/GRO) Parcel #185, Buck, Dennis Property Greenville, Pitt County, North Carolina

Sample ID	Depth	PID reading	Method 5035/GRO	Method 3546/DRO
	ft bgs	ppm	mg/kg	mg/kg
S-1	0-2.5	1429	1020	1210
S-2	10.0-12.5	36.6	ND	ND
S-3	2.5-5.0	497.1	76.7	721
S-4	10.0-12.5	0.8	ND	ND
NCDENR Actio	on Level	10	10	

Notes:

ft bgs = feet below ground surface

ppm = parts per million

mg/kg = milligrams per kilogram

DRO = Diesel Range Organics

GRO = Gasoline Range Organics

ND = Below laboratory detection limits

Highlighted values indicate above NCDENR Action Level

Table 2
Soil Sampling Analytical Results Summary VOCs/SVOCs)
Parcel #185, Buck, Dennis Property
Greenville, Pitt County, North Carolina

				Sample ID	S-1	S-3
				Depth	0-2.5 FT	2.5-5.0 FT
Method	Parameter	Units	Soil to Groundwater Maximum Concentration	Industrial/Commercial Soil Cleanup Levels	Value	Value
	1,2,4-Trimethylbenzene	mg/kg	8.5	20440	133	0.195
	1,3,5-Trimethylbenzene	mg/kg	8.3	20440	39	0.269
	4-Isopropyltoluene	mg/kg	0.12	4000	7.92	0.0955
	Naphthalene	mg/kg	0.16	8176	35.5	0.206
8260B	Ethylbenzene	mg/kg	4.9	40000	14.7	ND
	Isopropylbenzene (Cumene)	mg/kg	1.7	40880	3.54	ND
	Toluene	mg/kg	4.3	32000	10.2	ND
	Xylene (total)	mg/kg	4.6	81760	111	ND
	n-Propylbenzene	mg/kg	1.7	16350	13.4	ND
8270C	2-Methylnapthalene	mg/kg	3.6	1635	31.5	2.09
8270C	Naphthalene	mg/kg	0.16	8176	24.8	ND

Notes:

Samples collected on September 7, 2012

NE = Not established

units = mg/kg - sample analyte compound concentrations measured in milligrams per kilogram

Bold concentrations were reported above the Maximum Soil Contaminant Concentration Levels (MSCCs)

Table 3 Soil Sampling Analytical Results Summary (VPH/EPH) Parcel #185, Buck, Dennis Property Greenville, Pitt County, North Carolina

			S-1 0-2.5 FT 9/7/2012	S-3 2.5-5.0 FT 9/7/2012					
Hydrocarbon Fraction Ranges	Analytical Hydrocarbon Fractions		Residential MSCC (mg/kg)	Industrial / Commercial MSCC (mg/kg)	Soil to Groundwater MSCC (mg/kg)	Lab Results Conc.	Final VPH and/or EPH Conc.	Lab Results Conc.	Final VPH and/or EPH Conc.
C5-C8 Aliphatics	C5-C8 Aliphatics	VPH	939	24528	68	15.8	15.8	< 4.25	<4.25
C9-C18 Aliphatics	C9-C12 Aliphatics C9-C18 Aliphatics			40000	540	71.2 115	186.2	82.5 55.2	137.7
C19-C36 Aliphatics	C19-C36 Aliphatics	EPH	31000	810000	Considered Immobile	< 6.06	<6.06	< 7.3	<7.3
C9-C22 Aromatics	C9-C10 Aromatics C11-C22 Aromatics		460	12264	31	68.3 111	179.3	94.6 19.8	114.4

Notes:

ft = feet

mg/kg=milligrans per kilograms

^{**}Where no detectable concentration was measured, the method detection limit was used for the final calculation**

Table 4 Groundwater Sampling Analytical Results Summary Parcel #185, Buck, Dennis Property Greenville, Pitt County, North Carolina

			Sample ID Depth	TW-1 15.8 FT
Method	Parameter	Units	NCAC 2L Groundwater Quality Standard	Value
	Ethylbenzene	ug/l	600	3320
	Naphthalene	ug/l	6	2180
8260B	Toluene	ug/l	600	42100
82005	Xylenes (total)	ug/l	500	16900
	m,p-Xylene	ug/l	NE	11400
	o-Xylene	ug/l	NE	5560
8270C	2-Methylnaphthalene	ug/l	30	116
8270C	Naphthalene	ug/l	6	559

Notes:

Sample GW collected on September 7, 2012

NE = Not established

units = ug/L - sample analyte compound concentrations measured in micrograms per liter

Bold concentrations were reported above the laboratory method detection limits but below the NCAC 2L Groundwater Quality Standard

=Greater than or equal to the NCAC 2L Groundwater Quality Standard

^{* =} Estimated Concentration (J Qualifier)

Table 5 Groundwater Sampling Analytical Results Summary Parcel #186, City of Greenville Greenville, Pitt County, North Carolina

			Sample ID Depth	TW-1 15.9 FT		
Method	Parameter	Units	NCAC 2L Groundwater Quality Standard	Value		
	1,2,4-Trimethylbenzene	ug/l	400	3.77		
	1,3,5-Trimethylbenzene	ug/l	400	1.83		
	Benzene	ug/l	1	15.6		
	Ethylbenzene	ug/l	600	10.4		
8260B	Tetrachloroethene	ug/l	0.7	6.8		
82006	Toluene	ug/l	600	8.77		
	Xylenes (total)	ug/l	500	37.6		
	m,p-Xylene	ug/l	NE	28.6		
	n-Propylbenzene	ug/l	NE	1.06		
	o-Xylene	ug/l	NE	9.03		
8270C	SVOCs	No Analyte	No Analytes Detected Above the Laboratory Detection Limits			

Notes:

Sample GW collected on September 7, 2012

NE = Not established

units = ug/L - sample analyte compound concentrations measured in micrograms per liter

Bold concentrations were reported above the laboratory method detection limits but below the NCAC 2L Groundwa

FIGURES

Exhibit 1 – Site Vicinity Map (Topographic Map)
Exhibit 2 – Site Diagram with Soil Boring Locations and Analytical Data (Parcel 185)
Exhibit 3 – Site Diagram with Soil Boring Locations and Analytical Data (Parcel 186)

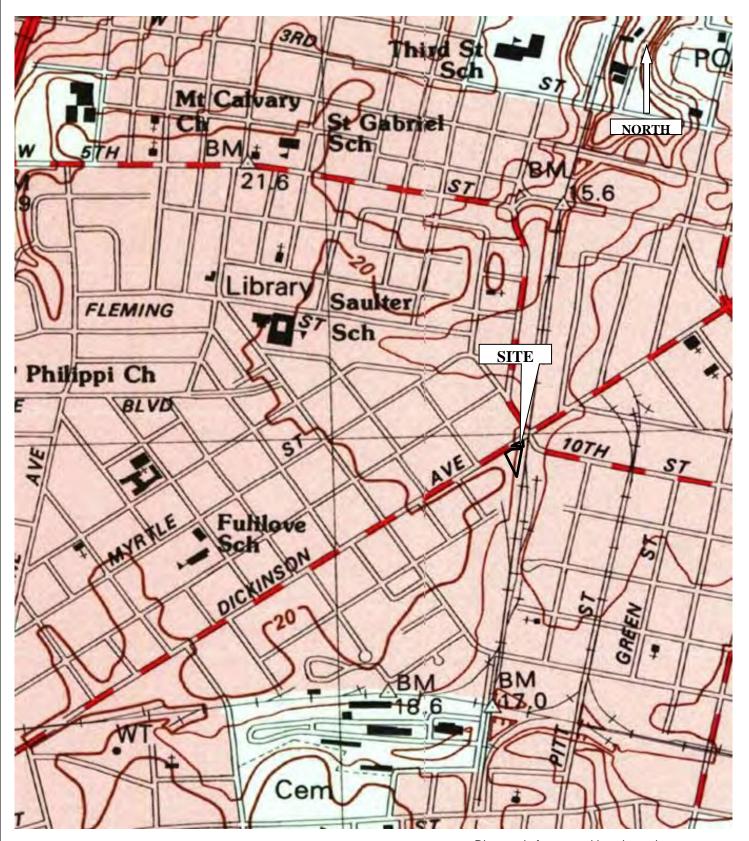
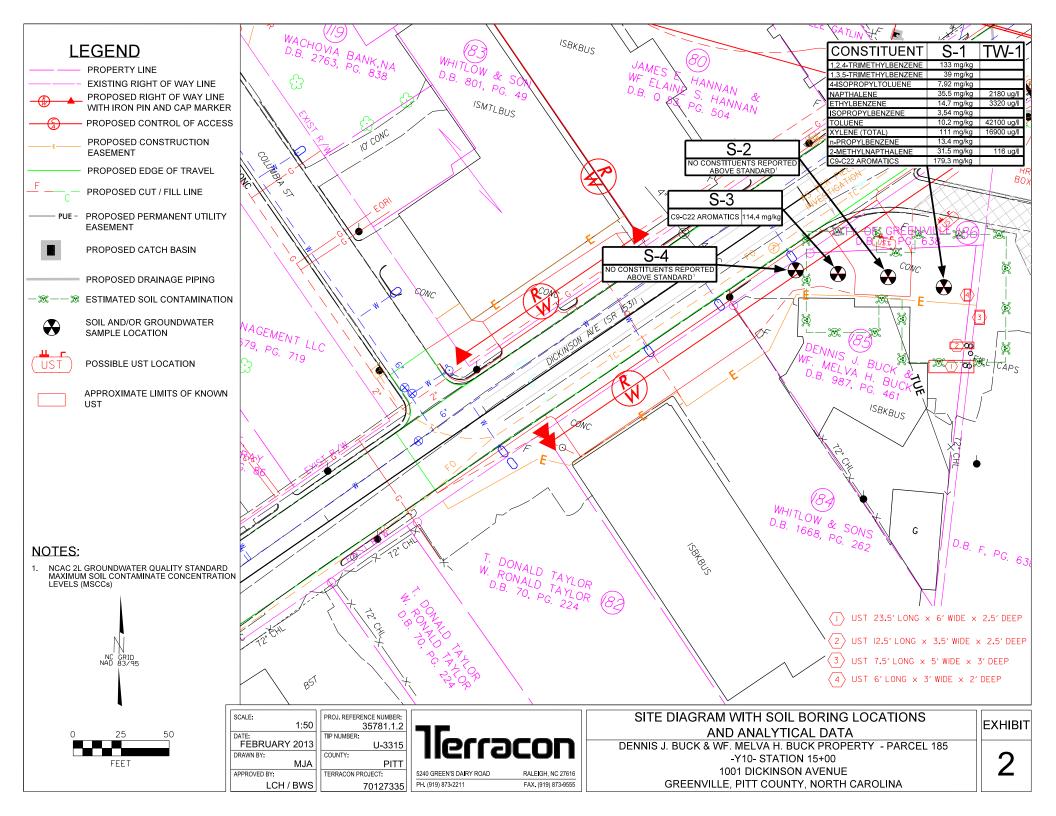
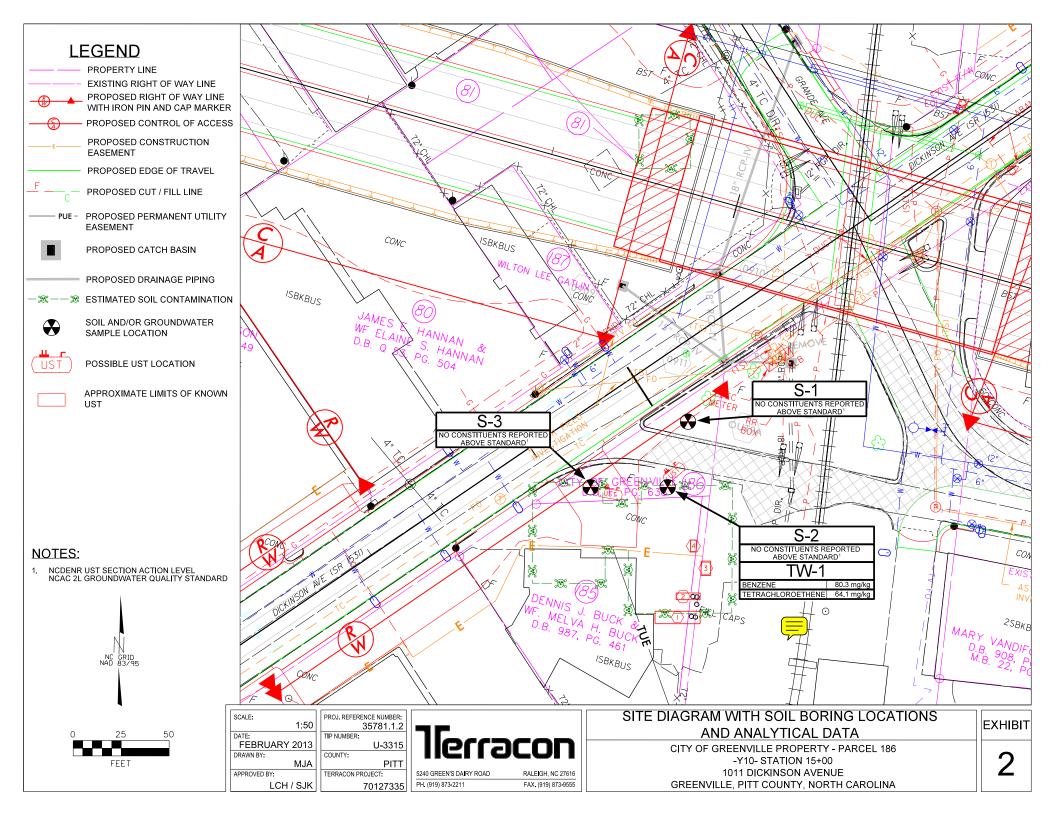


Diagram is for general location only

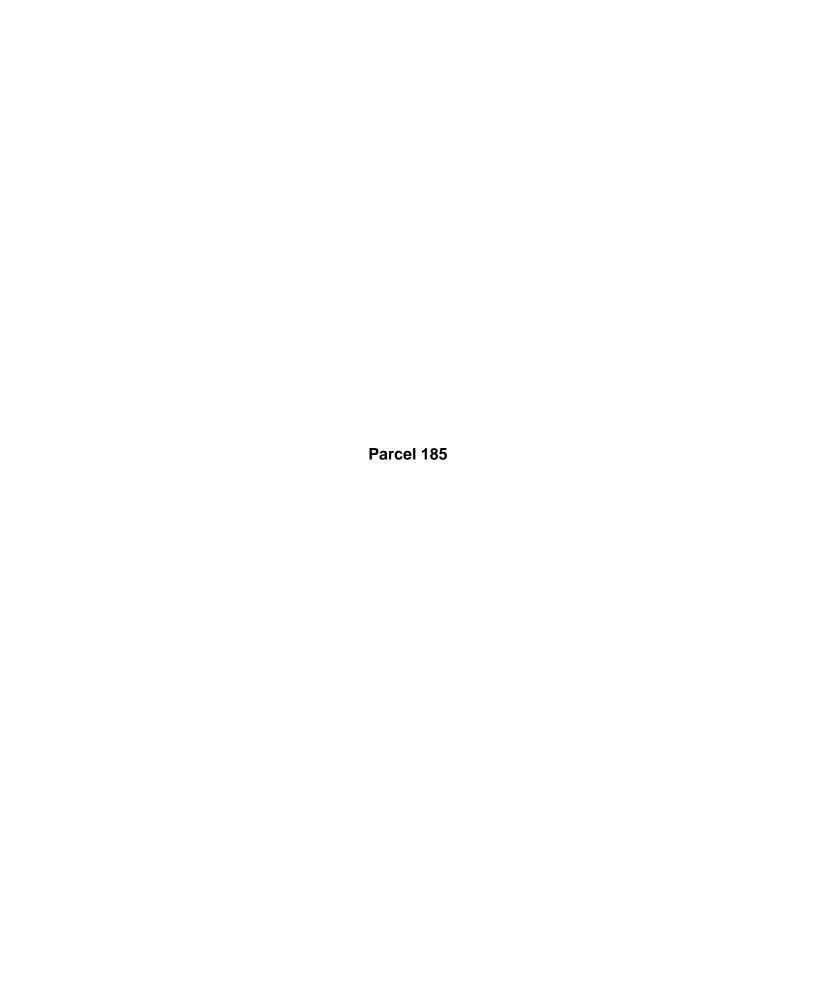

Site Vicinity Map
Parcel # 185 & 186
1001 Dickinson Avenue
Greenville, Pitt County, North Carolina


Reference: Greenville SW, NC USGS Quadrangle

Dated Year: 1998

Terracon

PROJECT NO.:	70127335
DATE: 10/2/12	CONTOUR INT: 2 meters
DRAWN: MDP	CHECK: LCH
SCALE: NTS	



APPENDICES

Appendix A – Boring Logs
Appendix B – Geophysical Survey Report
Appendix C – Laboratory Analytical Reports and Chain of Custody

APPENDIX A

Boring Logs

				SOIL BO	RING I	_OG	
PROJECT N/	AME: Stanto	onsburg/Ten	th Street Conne	ector		SOIL BORING I.D.: B-1	
PROJECT NO				DATE(S) DRILLED: September 7, 2012			
PROJECT LO	CATION:	Parcel #185	, 1001 Dickinso	on Avenue		DRILLING CONTR.: Bridger Drilling Enterprises, Inc.	
1110020			North Carolina	DRILL METHOD: Geoprobe			
		0.		BORING DIAMETER: 2 inches			
CLIENT: NCC	OT Cenen	wironmental				SAMPLING METHOD/INTERVAL: 5-Foot	
LOGGED BY:						REMARKS: BGS = below grade surface	
DESCRIPTIV						NEIVIANNO. DGO - Delow grade Surface	
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH	T	
INTERVAL	REC. (IN.)	PER 6"		Odors	(FT)	DESCRIPTION OF SOIL	
0 - 2.5*	REC. (IIV.)	NA	(ppm)	Petroleum odor	0.0	Concrete	
0 - 2.5	 	INA	1429.0	Felioieum ouoi	-	Orange clay with grey staining	
	 	<u> </u>	├	I	0.5	Orange day with grey staining	
ļ	\longmapsto	<u> </u>	\vdash	I	1.0		
		<u> </u>	<u> </u>	1	1.5		
	<u> </u>	<u> </u>	<u> </u>	I	2.0		
2.5 - 5.0		NA	1353.0	1	2.5		
L		<u> </u>		1	3.0	Orange tan sand	
<u> </u>				1	3.5		
				1	4.0	1	
				1	4.5	1	
5.0 - 7.5		NA	1350.0	1	5.0	1	
				1	5.5	1	
	 		 	1	6.0	1	
	 		 	I	6.5	1	
	 		\vdash	1	7.0	Orange sand	
7.5 - 10.0	 	NA	1572.0	1	7.5		
7.5 - 10.0	 	INA	1012.0	I		1	
	├── ┼	<u> </u>	+	I	8.0	1	
	 	<u> </u>	\longrightarrow	I	8.5		
<u> </u>		<u> </u>	<u> </u>	1	9.0		
<u> </u>	<u> </u>	<u> </u>	ļ	I	9.5		
10.0 - 12.5	<u> </u>	NA	1077.0	I	10.0	Moist at 10 feet bgs	
				I	10.5]	
		<u> </u>		I	11.0		
<u> </u>				I	11.5		
				1	12.0	1	
12.5 - 15.0		NA	1268.0	1	12.5	1	
				1	13.0	1	
				1	13.5	1	
	 		 	1	14.0	1	
	 		 	1	14.5	1	
15.5 - 17.5	 	NA	403.9	1	15.0	1	
10.0 11.0	++	14/ .	400.0	1	15.5	Well installed at 15.8 feet bgs	
	 		 	1	_	Well installed at 10.0 foot bys	
<u> </u>	\vdash		+	1	16.0 16.5	1	
	 	 '		1		Tan anana	
·= - 00 0	\longmapsto		 	I	17.0	Tan, grey sand	
17.5 - 20.0		NA	NA	I	17.5		
	<u> </u>	<u> </u>	igsquare	I	18.0	Water table at 18 feet bgs	
	<u> </u>	<u> </u>	igsquare	I	18.5		
		<u></u>	$oxed{oxed}$	I	19.0	Orange, brown clay	
		<u> </u>		<u> </u>	19.5		
					20.0	Boring Terminated at 20 feet bgs	
				1	20.5		
				1	21.0	1	
				<u>_</u>	21.5	1	
DRILLING METHO	ODS		START IN O METILO				
AR - AIR ROTAR' CFA - CONTINUC	OUS FLIGHT A	AUGER S	SAMPLING METHO SS - SPLIT SPOON				
DC - DRIVEN CAS HA - HAND AUGE	SING FR		ST - SHELBY TUBE GP - GEOPROBE	Ē		lerracon	
HSA - HOLLOW S	STEM AUGER					lierracon	
NO POOK CODE			 Sample collected 	for analysis			

MD - MUD DRILLING RC - ROCK CORING WR - WATER ROTARY

				SOIL BOR	≀ING I	OG
PROJECT NA	^ME- Stant	onshura/Tent	th Street Con		1110	SOIL BORING I.D.: B-2
PROJECT NO			II Olicel Oom	riector		DATE(S) DRILLED: September 7, 2012
110020	O 1012. 5	00				DATE(0) DIVILLED. OOPIONIDOL 1, 2012
PROJECT LO	OCATION:	Parcel #185,	. 1001 Dickin	son Avenue	DRILLING CONTR.: Bridger Drilling Enterprises, Inc.	
FROULUT L			North Carolina		DRILL METHOD: Geoprobe	
		0.55	10	•		BORING DIAMETER: 2 inches
CLIENT: NC	DOT Gener	wironmental				SAMPLING METHOD/INTERVAL: 5-Foot
LOGGED BY						REMARKS: BGS = below grade surface
DESCRIPTIV						NEIVIANNO. DOO - Delow grade Surrace
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH	Γ
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL
0-2.5	NEO. (114.)	NA NA	(ppin) 5.5	No petroleum odor	0.0	Concrete
<u> </u>	+	· · · · ·		- 110 pension 121	0.5	Grey, orange clayey sand
 	+	\vdash	 	-	1.0	510 ₃ , 5.3g5 5.3,5, 2
<u> </u>	+		 	4	1.5	
 	+		 	4	2.0	
2.5 - 5.0	+	NA	9.1	Petroleum odor	2.5	
2.0 0.0	+	14/1	J. 1	- 1000000000000000000000000000000000000	3.0	
	+		 	4	3.5	
	+	\vdash	 	4	4.0	Tan, grey clayey sand
	+		 	4	4.0	Tan, groy dayoy dana
5.0 - 7.5	+	NA	13.7	4	5.0	
3.0 - 7.3		INA	13.1	-	5.5	•
 	+	\vdash	 	4	6.0	
 		\vdash	 	-	6.5	•
 	+	\vdash		-	7.0	
7.5 - 10.0	+	NA	22.9	-		1
7.5 - 10.0		INA	22.3	-	7.5	•
 	+	\vdash		-	8.0	{
 	-		 	4	8.5	
 	-		 	4	9.0	4
10.0 - 12.5*	+	NA	36.6	-	9.5	-
10.0 - 12.0	+	INA	30.0	4	10.0	4
 	+	\vdash	 	4	10.5	4
 	+	\vdash		-	11.0	-
 	+	\vdash	 	4		White, grey sand
12.5 - 15	+	NA	52.6	4	12.0	write, grey sand
12.5 - 10	+	INA	5∠.∪	4	12.5	{
 	+	\vdash		-		1
<u> </u>	+	\vdash		-	13.5	{
<u> </u>	+	\vdash		-	14.0	-
 	+		 	+	1	Boring Terminated at 15.0 feet bgs
 	+		 	4	15.0 15.5	Doming Terminated at 10.0 feet ago
	+		 	4	16.0	-
	+	\vdash	 	-		•
	+	\vdash	 	-	16.5	•
 	+	\vdash		-	17.0	-
 		\vdash	 	-		-
 		\vdash	 	-	18.0	-
 	+		 	4	18.5	-
 	+		 	4	19.5	-
 	+	\vdash	 	-		-
 	+	\vdash	 	-	20.0	•
 	+	\vdash		-	20.5	-
├──	+	\vdash		4	21.0	{
DRILLING METH	HODS				21.0	
AR - AIR ROTAR CFA - CONTINUO	RY		SAMPLING METH SS - SPLIT SPOO			
DC - DRIVEN CA	ASING		ST - SHELBY TU	JBE		

CPC - CONTINGOUS FLIGHT AC DC - DRIVEN CASING HA - HAND AUGER HSA - HOLLOW STEM AUGER MD - MUD DRILLING RC - ROCK CORING WR - WATER ROTARY

ST - SHELBY TUBE GP - GEOPROBE

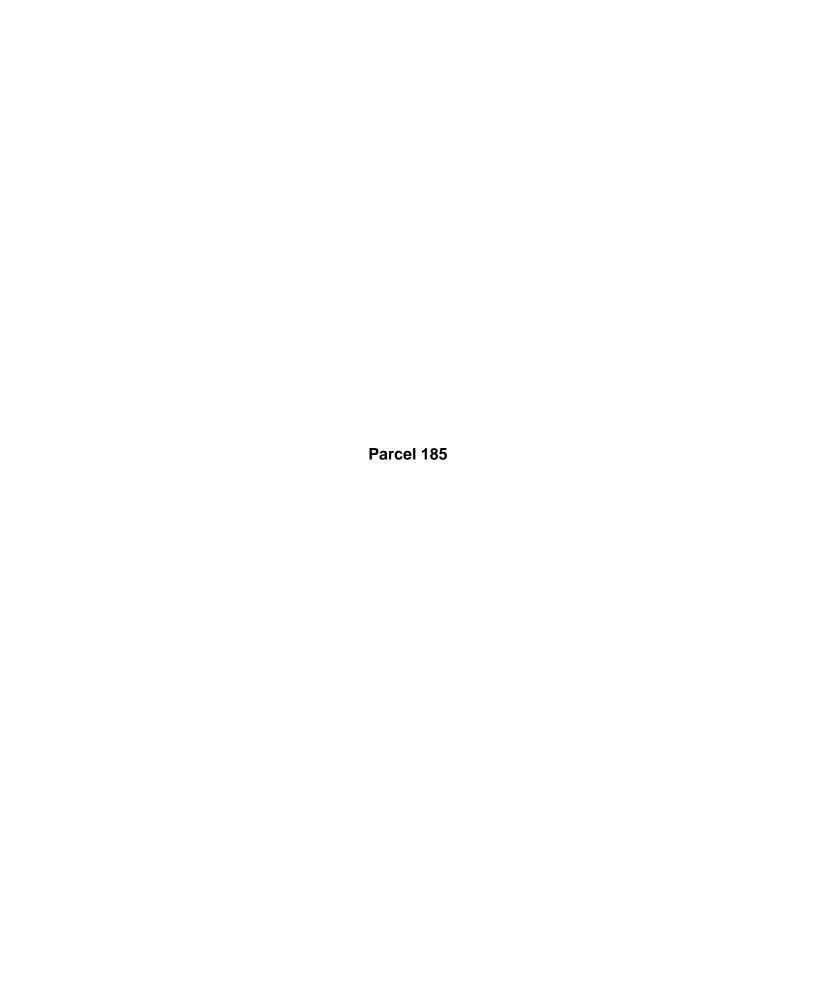
				SOIL BOF	RING I	_OG
PROJECT N	AME: Stanto	onsburg/Tent	th Street Conn			SOIL BORING I.D.: B-3
PROJECT NO						DATE(S) DRILLED: September 7, 2012
PROJECT LO	OCATION:	Parcel #185,	, 1001 Dickinso	DRILLING CONTR.: Bridger Drilling Enterprises, Inc.		
			North Carolina	DRILL METHOD: Geoprobe		
						BORING DIAMETER: 2 inches
CLIENT: NC	DOT Geoen	vironmental				SAMPLING METHOD/INTERVAL: 5-Foot
LOGGED BY	: Ben Swift					REMARKS: BGS = below grade surface
DESCRIPTIV	/E LOG					
SAMPLE	SAMPLE	BLOWS	PID/FID	Odors	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Ouois	(FT)	DESCRIPTION OF SOIL
0-2.5		NA	463.1	Petroleum odor	0.0	Concrete
					0.5	Tan, grey sandy clay
					1.0	
					1.5	
				1	2.0	
2.5 - 5.0*		NA	497.1		2.5	
				1	3.0	Orange, tan sand
				1	3.5	1
				1	4.0	
				1	4.5	1
5.0 - 7.5		NA	61.5	1	5.0	
				1	5.5	
				1	6.0	
				1	6.5	
				1	7.0	
7.5 - 10.0		NA	127.8	1	7.5	
				1	8.0	
	† 1			1	8.5	
				1	9.0	1
				1	9.5	1
10.0 - 12.5		NA	97.0	1	10.0	1
				1	10.5	1
				1	11.0	1
				1	11.5	1
	1			1	12.0	White, tan sand
12.5 - 15	1	NA	572.3	1	12.5	1
	1			1	13.0	1
	1			1	13.5	1
	1			1	14.0	1
	† †			1	14.5	1
	1				15.0	Boring Terminated at 15.0 feet bgs
				1	15.5	
				1	16.0	1
				1	16.5	1
				1	17.0	1
	† 1			1	17.5	1
				1	18.0	1
				1	18.5	1
				1	19.0	1
				1	19.5	1
	1			1	20.0	1
	† †			1	20.5	1
	† †			1	21.0	1
	† †			1	21.5	1
DRILLING METH			· · · · · · · · · · · · · · · · · · ·	<u> </u>		
AR - AIR ROTAR CFA - CONTINUO	IOUS FLIGHT A	AUGER S	<u>SAMPLING METHO</u> SS - SPLIT SPOON	N		
DC - DRIVEN CA	SER		ST - SHELBY TUB GP - GEOPROBE			Torracon

				SOIL BOR	ING I	OG
PROJECT NA	∆MF: Stanto	onshura/Tent	h Street Con			SOIL BORING I.D.: B-4
PROJECT NO			II Oli Ook Ook	lector		DATE(S) DRILLED: September 7, 2012
	<u> </u>					J. (C,
PROJECT LO	OCATION:	Parcel #185,	1001 Dickins	son Avenue	DRILLING CONTR.: Bridger Drilling Enterprises, Inc.	
			North Carolina		DRILL METHOD: Geoprobe	
						BORING DIAMETER: 2 inches
CLIENT: NC	DOT Geoen	vironmental				SAMPLING METHOD/INTERVAL: 5-Foot
LOGGED BY						REMARKS: BGS = below grade surface
DESCRIPTIV				-		-
SAMPLE	SAMPLE	BLOWS	PID/FID	Odern	DEPTH	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL
0-2.5		NA	0.4	No petroleum odor	0.0	Concrete
			i	7	0.5	Tan, grey sandy clay
				7	1.0	1
	† 1			7	1.5	1
				7	2.0	1
2.5 - 5.0*		NA	0.4	7	2.5	1
	† 1			7	3.0	1
				7	3.5	1
	† †			1	4.0	1
	1			1	4.5	1
5.0 - 7.5	† †	NA	0.6	†	5.0	1
	+ + +			7	5.5	1
	† †			†	6.0	1
	† †			†	6.5	1
	+ + +			7	7.0	1
7.5 - 10.0	+ +	NA	0.7	7	7.5	1
	† †			†	8.0	Orange, tan sand
	+ +			7	8.5	orange, tan cane
	+ +			†	9.0	1
	+ + +			7	9.5	1
10.0 - 12.5	+ + +	NA	0.8	7	10.0	1
	† †			†	10.5	1
	† †			†	11.0	1
	1			1	11.5	1
	1			1	12.0	Tan sand
12.5 - 15	1	NA	0.8	7	12.5	1
	† †		1	†	13.0	1
	1			1	13.5	1
	1			1	14.0	1
				7	14.5	1
					15.0	Boring Terminated at 15.0 feet bgs
			i	7	15.5	1
				7	16.0	1
				7	16.5	1
				7	17.0	1
	† 1			7	17.5	1
	† 1			7	18.0	1
	† 1			7	18.5	1
	† 1		i	7	19.0	1
	† 1			7	19.5	1
				7	20.0	1
				7	20.5	1
	† †			†	21.0	1
				7	21.5	1
DRILLING METH			COMPUNIO METI	:000		
AR - AIR ROTAR CFA - CONTINUO	IOUS FLIGHT A	AUGER S	SAMPLING METH SS - SPLIT SPOO	ON		
DC - DRIVEN CA HA - HAND AUGI	ASING		ST - SHELBY TU GP - GEOPROBI			

SOIL BORING LOG							
PROJECT N/	AME: Stanto	onsburg/Tent	th Street Conne		SOIL BORING I.D.: B-1		
PROJECT NO			11 00000 0 0 1 1 1	oto.		DATE(S) DRILLED: September 2, 2012	
						5, W 2 (0) C. W	
PROJECT LO	CATION:	Parcel #186	, 1011 Dickinso	n Avenue Extension	DRILLING CONTR.: Bridger Drilling Enterprises, Inc.		
			North Carolina			DRILL METHOD: Geoprobe	
						BORING DIAMETER: 2 inches	
CLIENT: NCC	າດT Geoen	vironmental				SAMPLING METHOD/INTERVAL: 5-Foot	
LOGGED BY:						REMARKS: BGS = below grade surface	
DESCRIPTIV						11EM/11.10. 200 - 2010.1 g. aug 52.1.200	
SAMPLE	SAMPLE	BLOWS	PID/FID		DEPTH	T	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL	
0 - 2.5	1120. ()	NA	0.0		0.0	Concrete	
0 2.0	 	14/.	0.0		0.5	0010.00	
	 		\vdash		1.0	1	
	 		 		1.5	1	
	 	,——	\vdash		2.0	1	
2.5 - 5.0	\vdash	NA	0.0		2.5	1	
2.0 - 0.0	 	INA	0.0			1	
					3.0	-	
	 				3.5		
	 				4.0		
- ^ 7.5*	\longmapsto				4.5		
5.0 - 7.5*	├	NA	0.0		5.0		
<u> </u>	├	<u>_</u>	\vdash		5.5		
<u> </u>	ļ		\vdash		6.0		
	ļ				6.5		
<u> </u>	<u> </u>				7.0		
7.5 - 10.0	<u> </u>	NA	0.0		7.5		
			igsquare		8.0		
			$ldsymbol{ldsymbol{ldsymbol{\sqcup}}}$		8.5]	
					9.0		
			lder		9.5]	
10.0 - 12.5		NA	0.0		10.0]	
					10.5		
					11.0		
					11.5		
					12.0		
12.5 - 15.0		NA	0.0		12.5		
					13.0	1	
					13.5		
					14.0	1	
					14.5		
					15.0	Boring Terminated at 15.0 feet bgs	
					15.5		
					16.0		
					16.5	1	
					17.0	1	
					17.5	1	
					18.0	1	
					18.5	1	
					19.0	1	
					19.5	1	
					20.0	1	
					20.5	1	
					21.0	1	
	1				21.5	1	
DRILLING METH	ODS		- : : : : : : : : : : : : : : : : : : :				
AR - AIR ROTAR' CFA - CONTINUC	OUS FLIGHT AI	UGER S	<u>SAMPLING METHOI</u> SS - SPLIT SPOON				
DC - DRIVEN CA HA - HAND AUGE	SING		ST - SHELBY TUBE GP - GEOPROBE	É		Torracon	

SOIL BORING LOG							
PROJECT NA	AME: Stanto	onsburg/Tent	th Street Con		SOIL BORING I.D.: B-2		
PROJECT NO				10012:		DATE(S) DRILLED: September 2, 2012	
PROJECT LO	OCATION:	Parcel #186.	, 1011 Dickins	son Avenue Extension		DRILLING CONTR.: Bridger Drilling Enterprises, Inc.	
			North Carolina			DRILL METHOD: Geoprobe	
						BORING DIAMETER: 2 inches	
CLIENT: NC	DOT Geoer	wironmental				SAMPLING METHOD/INTERVAL: 5-Foot	
LOGGED BY						REMARKS: BGS = below grade surface	
DESCRIPTIV						NEWANIO. 200 - Solow grade Sanaco	
SAMPLE	SAMPLE	BLOWS	PID/FID	Т	DEPTH	Γ	
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL	
0 - 2.5	NEO. (,	NA	(ppin) 0.1	No petroleum odor	0.0	Concrete	
0 2.0	+ +	- 1 *	U. 1	- No policious	0.5	Orange, tan sandy clay	
	+			=	1.0	Ordingo, turi odinay olay	
	+ +	 		4	1.0	1	
	+		 	4	\vdash	4	
25 50	+	NIA	0.5	4	2.0	4	
2.5 - 5.0	+	NA	0.5	4	2.5		
<u> </u>	4		<u> </u>	_	3.0		
	 			_	3.5		
	<u> </u>	<u> </u>	<u> </u>	_	4.0	Orange, grey, tan sandy clay	
	<u> </u>	لــــــــــا	<u> </u>		4.5		
5.0 - 7.5		NA	1.7		5.0	1	
<u> </u>			<u> </u>		5.5]	
		<u> </u>	<u> </u>		6.0]	
	1		<u> </u>		6.5		
		!		L	7.0]	
7.5 - 10.0		NA	4.8	Slight odor	7.5	1	
Γ		!	<u> </u>	7	8.0	1	
				7	8.5	1	
	† <u> </u>			7	9.0	1	
<u> </u>	<u>† </u>			7	9.5	1	
10.0 - 12.5*	†	NA	8.0	7	10.0	1	
	† 1			7	10.5	1	
	† 1			Petroleum odor	11.0	Grey stained clay/moist	
	† 1			7	11.5	1	
	+ 1			7	12.0	1	
12.5 - 15.0	+ +	NA	13.5	-	12.5	-	
12.0	+ +	· · · · ·	10.0	4	13.0	White, tan, grey sand	
 	+ +		 	4	13.5	· · · · · · · · · · · · · · · · · · ·	
 	+	 		4	14.0	1	
 	+	 		4		1	
15.5 - 17.5	+ +	NA	11.5	-	14.5	1	
10.0 - 17.0	+ +	INA	11.0	4	15.0 15.5	Water table at 15.9 feet bgs	
 	+	 	 	4		Orange, clayey sand/wet	
<u> </u>	+		 	4	16.0	Olange, dayey sand wet	
<u> </u>	+			4	16.5	Į	
17.5 20.0	+	- NA	245.0	4	17.0	Į	
17.5 - 20.0	4	NA	915.0	_	17.5		
<u> </u>	 		<u> </u>	_	18.0	Grey, brown clay/wet	
<u> </u>	4			4	18.5		
<u> </u>			<u> </u>	_	19.0		
<u> </u>	4				19.5	Well set at 20.0 feet bgs	
<u> </u>	<u> </u>		<u> </u>		20.0	Boring Terminated at 20.0 feet bgs	
<u> </u>			<u> </u>		20.5]	
L			L		21.0]	
				<u>l</u>	21.5		
DRILLING METH AR - AIR ROTAR	IODS		SAMPLING METH	HODS			
CFA - CONTINUO	JOUS FLIGHT A	AUGER S	SS - SPLIT SPOO	ON			
DC - DRIVEN CA			ST - SHELBY TU				

GP - GEOPROBE



SOIL BORING LOG							
PROJECT N	ΔMF: Stanto	onshura/Tent	h Street Con		SOIL BORING I.D.: B-3		
PROJECT N			II Olloot SS	lector		DATE(S) DRILLED: September 2, 2012	
	<u> </u>						
PROJECT LO	OCATION:	Parcel #186,	, 1011 Dickins	son Avenue Extension		DRILLING CONTR.: Bridger Drilling Enterprises, Inc.	
			North Carolina			DRILL METHOD: Geoprobe	
						BORING DIAMETER: 2 inches	
CLIENT: NCI	DOT Geoen	vironmental				SAMPLING METHOD/INTERVAL: 5-Foot	
LOGGED BY			lin			REMARKS: BGS = below grade surface	
DESCRIPTIV				-		·	
SAMPLE	SAMPLE	BLOWS	PID/FID	21	DEPTH		
INTERVAL	REC. (IN.)	PER 6"	(ppm)	Odors	(FT)	DESCRIPTION OF SOIL	
0 - 2.5	1	NA	1.8	No Petroleum odor	0.0	Concrete	
				7	0.5	Orange, grey sandy clay	
				7	1.0		
	1 1			7	1.5		
	1 1			7	2.0		
2.5 - 5.0		NA	2.0	7	2.5		
				7	3.0		
				7	3.5		
				7	4.0		
				7	4.5		
5.0 - 7.5*		NA	2.4	7	5.0		
					5.5		
					6.0	Orange, tan sand	
					6.5		
					7.0		
7.5 - 10.0		NA	1.8		7.5		
					8.0		
	I l				8.5		
	T				9.0		
			<u> </u>		9.5		
10.0 - 12.5		NA	1.6		10.0		
			<u> </u>		10.5		
	1		L		11.0		
			<u> </u>		11.5		
			<u> </u>		12.0		
12.5 - 15.0		NA	2.1	Slight odor	12.5		
	1			_	13.0		
	1			_	13.5		
	1			_	14.0		
					14.5	Daving Taymingtod at 45 0 feet has	
	+ -			4	15.0	Boring Terminated at 15.0 feet bgs	
	+ -		 	4	15.5		
	+ +		 	4	16.0		
	+		 	4	16.5		
	+		 	4	17.0		
	+		 	4	17.5		
	+ +			4	18.0		
	+ +		 	4	18.5 19.0		
	+ +		 	4	19.5		
	+		 	4	20.0		
	+ +		 	4	20.5		
	+ +			4	21.0		
				╡	21.5		
DRILLING METH					20		
AR - AIR ROTAR CFA - CONTINU		UGER S	<u>SAMPLING METH</u> SS - SPLIT SPOO	HODS ON			
DC - DRIVEN CA HA - HAND AUG			ST - SHELBY TU GP - GEOPROBI				

APPENDIX B

Geophysical Survey Report

GEOPHYSICAL INVESTIGATION REPORT

EM61 & GPR SURVEYS

DENNIS BUCK PROPERTY (PARCEL 185) 1001 Dickinson Avenue Greenville, North Carolina

September 25, 2012

Report prepared for: Lori C. Hoffman, PE

Stephen J. Kerlin

Terracon

5240 Green's Dairy Road

Raleigh, North Carolina 27616

Prepared by:

Mark J. Denil! P.G.

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. P.O. Box 16265 GREENSBORO, NC 27416-0265 (336) 335-3174

Terracon GEOPHYSICAL INVESTIGATION REPORT DENNIS BUCK PROPERTY (PARCEL 185)

1001 Dickinson Avenue Greenville, North Carolina

	TABLE OF CONTENTS PAGE
1.0	INTRODUCTION 1
2.0	FIELD METHODOLOGY 1
3.0	DISCUSSION OF RESULTS 2
4.0	SUMMARY & CONCLUSIONS 4
5.0	LIMITATIONS 5
	EICHDEG
	<u>FIGURES</u>
Figu	re 1 Geophysical Equipment & Site Photographs
Figu	
Figu	
Figu	<u>e</u>
Figu	re 5 GPR Image Across Second Possible UST or Junction

1.0 INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Terracon across the proposed Right-of-Way (ROW) area at the Dennis Buck property (Parcel 185) located at 1001 Dickinson Avenue in Greenville, North Carolina. Conducted on August 24 and 29, 2012, the geophysical investigation was performed as part of the North Carolina Department of Transportation (NCDOT) preliminary site assessment for state project number U-3315 (WBS Element 35781.1.2) to determine if unknown, metallic, underground storage tanks (USTs) were present beneath the proposed ROW area of the site.

The Dennis Buck property consists of an inactive service station formerly known as Flemings Gas Station. The property has a vacant garage and the former pump island areas appear to lie between the building and West 10th Street. UST valve covers indicate the presence of four USTs that are located immediately east of the garage. The proposed ROW area encompasses the property that lies between the garage and West 10th Street and consists primarily of asphalt and gravel surfaces. However, because one of the known USTs is located along the southern edge of the proposed ROW area, the geophysical survey area was extended across the approximate foot prints of the four known USTs. The geophysical survey area has a maximum length and width of 160 feet and 100 feet, respectively.

Terracon representatives Mr. Stephen Kerlin and Ms. Lori Hoffman, PE provided information and maps identifying the geophysical survey area to Mark Denil, PG prior to conducting the investigation. Photographs of the geophysical equipment used in this investigation and the property are shown in **Figure 1**.

2.0 FIELD METHODOLOGY

Prior to conducting the geophysical investigation, a 10-foot by 10-foot survey grid was established across the geophysical survey (proposed ROW) area using measuring tapes and water-based marking paint. These grid marks were used as X-Y coordinates for location control when collecting the geophysical data and establishing base maps for the geophysical results.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection surveys and ground penetrating radar (GPR) surveys. The EM survey was performed using a Geonics EM61-MK1 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. All of the EM61 data were digitally collected at approximately 0.8 foot intervals along easterly-westerly trending, parallel survey lines spaced five feet apart. All of the data were downloaded to a computer and reviewed in the field and office using the Geonics DAT61W and Surfer for Windows Version 7.0 software programs.

The GPR investigation was conducted across the areas containing steel reinforced concrete and selected EM61 differential anomalies using a GSSI SIR-2000 unit equipped with a 400 MHz antenna. Data were digitally collected in a continuous mode along X-axis and/or Y-axis survey lines, spaced 2.5 to 5.0 feet apart using a vertical scan of 512 samples, at a rate of 48 scans per second. A 70 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were collected down to a maximum depth of approximately 5 feet, based on an estimated two-way travel time of 8 nanoseconds per foot.

Verbal, preliminary geophysical results obtained from the site were provided to Mr. Kerlin or Ms Hoffman during the week of September 3, 2012.

3.0 <u>DISCUSSION OF RESULTS</u>

Contour plots of the EM61 bottom coil and differential results are presented in **Figures 2 and 3**, respectively. The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to delineate metal conduits or utility lines, small, isolated metal objects, and areas containing insignificant metal debris. The differential results are obtained from the difference between the top and bottom coils of the EM61 instrument. The differential results focus on the larger metal objects such as drum and UST-size objects and ignore the smaller insignificant metal objects.

The linear, EM61 bottom coil anomalies intersecting grid coordinates X=45 Y=45, X=62 Y=55, X=85 Y=54, X=95 Y=55, and X=130 Y=78 are probably in response to buried utility lines or conduits. Similarly, the linear, bottom coil anomalies intersecting grid coordinates X=170 Y=12, X=170 Y=25 and X=170 Y=32 and any other linear bottom coil anomalies shown in Figure 2 may be in response to buried conduits. GPR data suggest the long, EM61 anomaly that is centered near grid coordinates X=100 Y=44 is in responses to the steel reinforced walkway that runs along the northerly side of the garage, the building itself and to a possible buried conduit that runs parallel to the building wall.

The four known, USTs are centered near grid coordinates X=140 Y=10, X=146 Y=21, X=156 Y=34, and X=151 Y=44. The approximate lengths, widths and depths of the four USTs are provided in Figures 2 and 3. The UST centered near grid coordinates X=151 Y=44 appears to lie along the edge of the proposed ROW area or slightly within the proposed ROW area. Based on the GPR data, the foot prints of the four known USTs were marked in the field using orange spray paint.

GPR data acquired across the EM61 differential anomaly centered near grid coordinates X=112 Y=77 detected a possible (low confidence) metallic UST or a conduit junction. Based on the GPR data, the possible UST or conduit junction is approximately 8.5 feet long, 2.5 feet wide and buried 1.2 feet below pavement. GPR images obtained along a portion of survey lines X=112 and Y=77, which cross the possible UST or conduit junction and a photograph showing the location of the possible UST are presented in **Figure 4.** The foot print of the possible UST was marked in the field using orange marking paint.

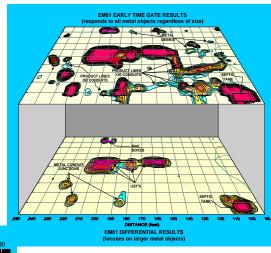
GPR data acquired across the EM61 differential anomaly centered near grid coordinates X=148 Y=85 detected a second, possible (low confidence), metallic UST or a conduit junction. Based on the GPR data, this second, possible UST or conduit junction is approximately 6.0 feet long, 3.5 feet wide and buried 2.0 feet below pavement. A portion of the possible UST appears to lie beneath the edge of West 10^{th} Street. A GPR image obtained along a survey line beginning at X=140 Y=80 and ending at X=140 Y=80, which crosses the possible UST or conduit junction and a photograph showing the

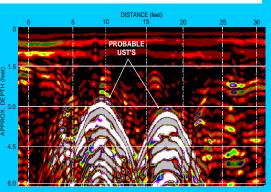
location of the possible UST are presented in **Figure 5.** The foot print of the possible UST was marked in the field using orange marking paint.

The remaining EM61 anomalies shown in Figures 2 and 3 and not mentioned in this report are probably in response to known surface objects, conduits, or to small, insignificant metal debris/objects.

4.0 <u>SUMMARY & CONCLUSIONS</u>

Our evaluation of the EM61 and GPR data collected across the proposed ROW area of the Dennis Buck property (Parcel 185) located at 1001 Dickinson Avenue in Greenville, North Carolina, provides the following summary and conclusions:

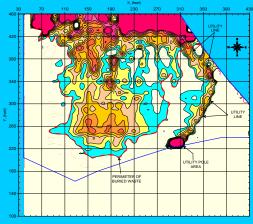

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the surveyed portion of the site.
- The linear, EM61 bottom coil anomalies intersecting grid coordinates X=45 Y=45, X=62 Y=55, X=85 Y=54, X=95 Y=55, and X=130 Y=78 are probably in response to buried utility lines or conduits.
- The four known, USTs are centered near grid coordinates X=140 Y=10, X=146 Y=21, X=156 Y=34, and X=151 Y=44. The UST centered near grid coordinates X=151 Y=44 appears to lie along the edge of the proposed ROW area or slightly within the proposed ROW area.
- GPR data acquired across the EM61 differential anomaly centered near grid coordinates X=112 Y=77 detected a possible (low confidence) metallic UST or a conduit junction. Based on the GPR data, the possible UST or conduit junction is approximately 8.5 feet long, 2.5 feet wide and buried 1.2 feet below pavement.
- GPR data acquired across the EM61 differential anomaly centered near grid coordinates X=148 Y=85 detected a second, possible (low confidence), metallic UST or a conduit

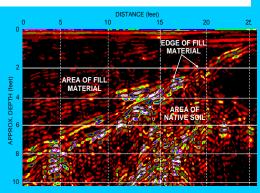

junction. Based on the GPR data, this second, possible UST or conduit junction is approximately 6.0 feet long, 3.5 feet wide and buried 2.0 feet below pavement. A portion of the possible UST appears to lie beneath the edge of West 10th Street.

• The remaining EM61 anomalies shown in Figures 2 and 3 are probably in response to known surface objects, buried lines, conduits, or to small, insignificant metal debris/objects.

5.0 LIMITATIONS

EM61 and GPR surveys have been performed and this report prepared for Terracon in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have detected two, possible metallic USTs or conduit junctions. However, additional unknown metallic USTs may lie beneath the site that were not detected by the geophysical investigation.





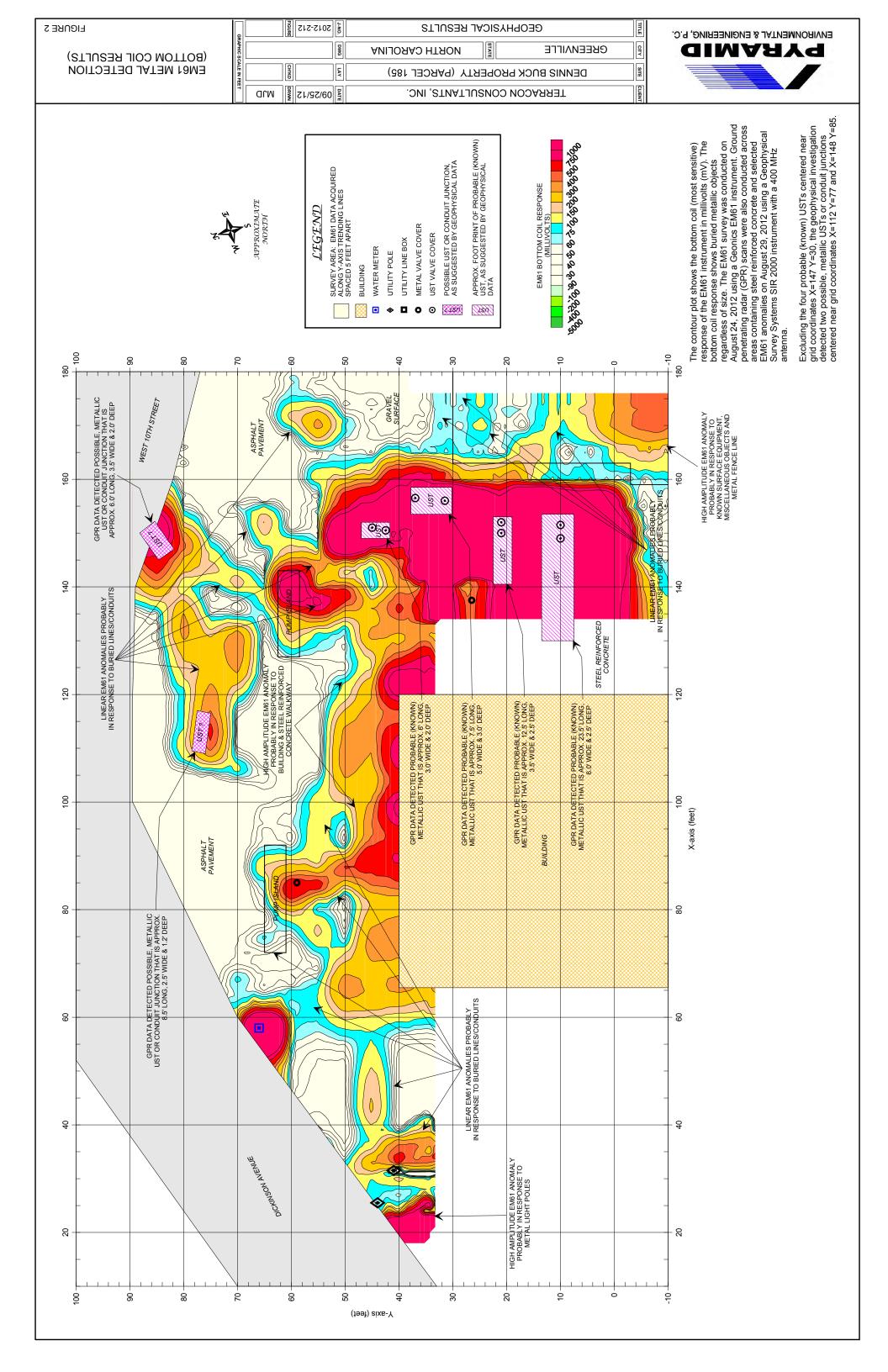
FIGURES

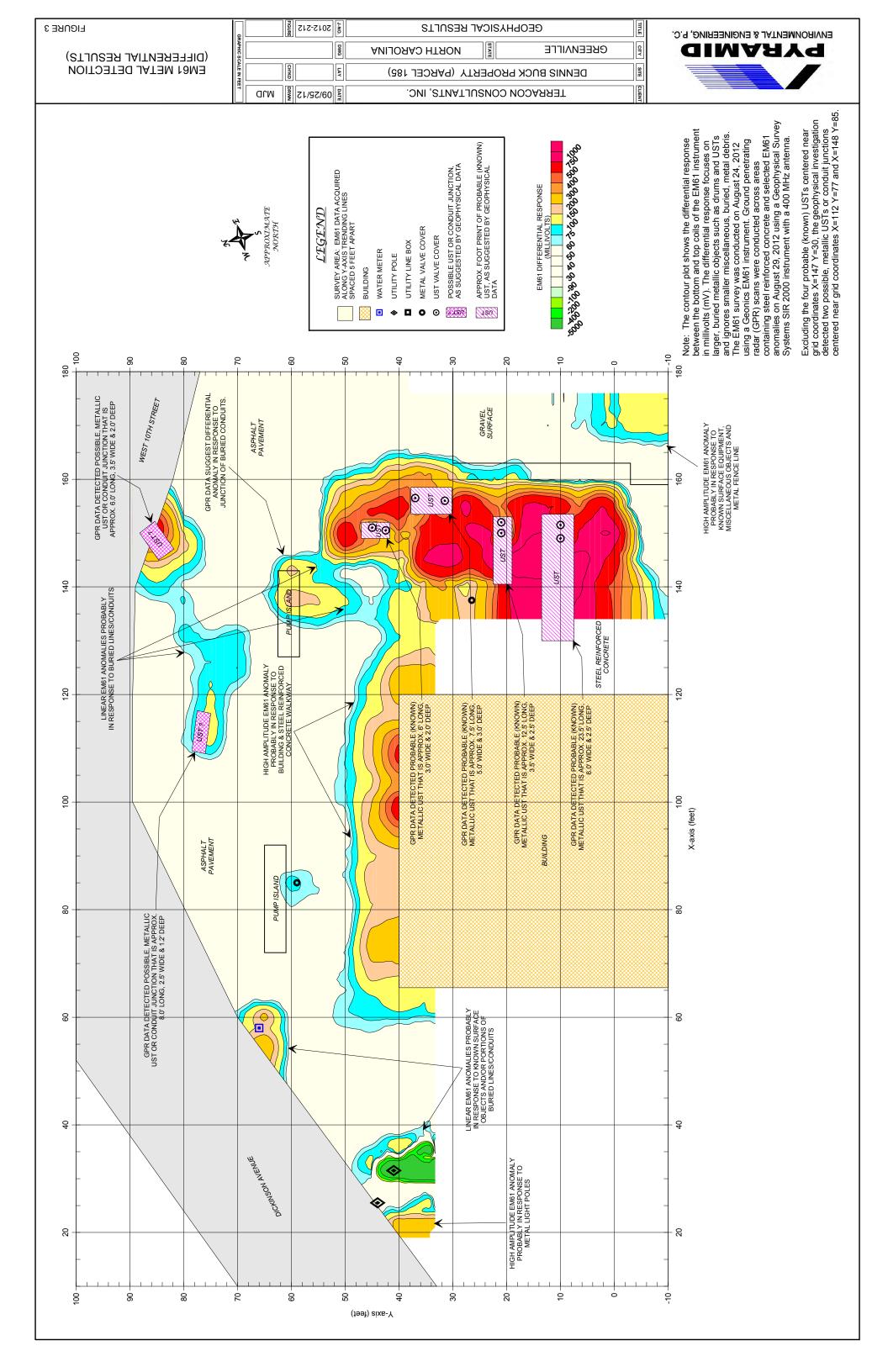
(on the following pages)

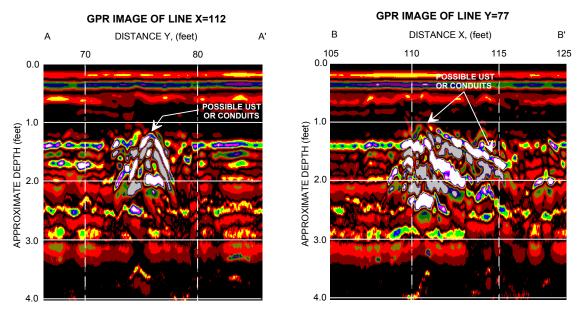
Figures shown on this page are for esthetic purposes only and are not related to the geophysical results discussed in this report.

The photograph shows the Geonics EM61 metal detector that was used to conduct the metal detection survey across the proposed Right-of-Way area at the Dennis Buck property (Parcel 185) on August 24, 2012.

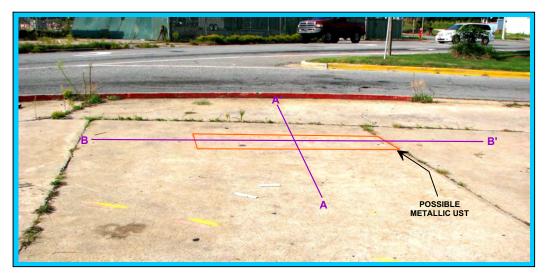
The photographs show the SIR-2000 GPR system equipped with a 400 MHz antenna that were used to conduct the ground penetrating radar investigation across the areas containing steel reinforced concrete and selected EM61 differential anomalies at the Parcel 185 site on August 29, 2012.



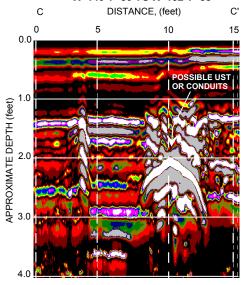

The photograph shows the Dennis Buck property (Parcel 185) located at the intersection of Dickinson Avenue and West 10th Street in Greenville, North Carolina. The photograph is viewed in a westerly direction.



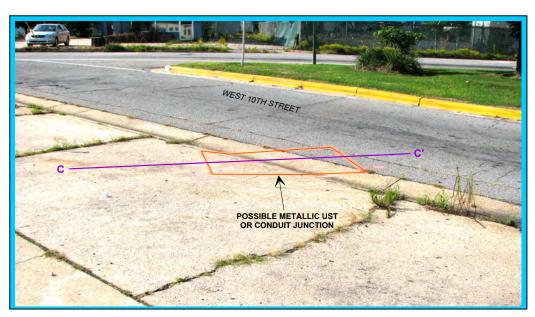
I	CLIENT	TERRACON CONSULTANTS, INC.	B 09/25/12 MJD
	SITE	DENNIS BUCK PROPERTY (PARCEL 185)	GHKD GHKD
	È	GREENVILLE	DWG
	11	GEOPHYSICAL RESULTS	2012-212


GEOPHYSICAL EQUIPMENT & SITE PHOTOGRAPHS

The GPR images obtained along a portion of survey lines X=112 and Y=77 recorded higher amplitude anomalies that may possibly be in response to a metallic UST or a conduit junction buried approximately 1.2 feet below present grade. The possible (low confidence) UST or junction is centered near grid coordinates X=112 Y=77. The solid purple lines labeled AA' and BB' in the photograph below represent the approximate locations of the GPR images.



The orange rectangle in the photograph represents the approximate perimeter of a possible UST or a conduit junction. Centered near grid coordinates X=112 Y=77, the possible UST is approximately 8.5 feet long, 2.5 feet wide and buried 1.2 feet below pavement. The solid purple lines in the photograph represent the approximate locations of the GPR images shown above. The photograph is viewed in a northerly direction.



CLIENT	TERRACON CONSULTANTS, INC.	09/25/12 MJD
SITE	DENNIS BUCK PROPERTY (PARCEL 185)	CHKD
Ę	GREENVILLE	DWG
TILE	GEOPHYSICAL RESULTS	2012-212

GPR IMAGE FROM GRID COORDINATES X=140 Y=80 TO X=152 Y=88

The GPR image obtained across the EM61 differential anomaly centered near grid coordinates X=148 Y=85 recorded a higher amplitude, hyperbolic anomaly that may possibly be in response to a metallic UST or a conduit junction buried approximately 2.0 feet below present grade. The solid purple line labeled CC' in the photograph below represents the approximate location of the GPR image.

The orange rectangle in the photograph represents the approximate perimeter of a possible UST or a conduit junction. Centered near grid coordinates X=148 Y=85, the possible UST or junction is approximately 6.0 feet long, 3.5 feet wide and buried 2.0 feet below pavement. The solid purple line in the photograph represents the approximate location of the GPR image shown above. The photograph is viewed in a northerly direction.

CLIENT	TERRACON CONSULTANTS, INC.	09/25/12 MJD
SITE	DENNIS BUCK PROPERTY (PARCEL 185)	CHKD
ČΉ	GREENVILLE	DWG
TILE.	GEOPHYSICAL RESULTS	2012-212

GEOPHYSICAL INVESTIGATION REPORT

EM61 & GPR SURVEYS

CITY OF GREENVILLE PROPERTY (PARCEL 186) 1011 Dickinson Avenue Greenville, North Carolina

September 26, 2012

Report prepared for: Lori C. Hoffman, PE

Stephen J. Kerlin

Terracon

5240 Green's Dairy Road

Raleigh, North Carolina 27616

Prepared by:

Mark J. Denil' P.G.

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. P.O. Box 16265 GREENSBORO, NC 27416-0265 (336) 335-3174

Terracon GEOPHYSICAL INVESTIGATION REPORT CITY OF GREENVILLE PROPERTY (PARCEL 186)

1011 Dickinson Avenue Greenville, North Carolina

	TABLE OF CONTENTS P	AGE
1.0	INTRODUCTION	1
2.0	FIELD METHODOLOGY	1
3.0	DISCUSSION OF RESULTS	2
4.0	SUMMARY & CONCLUSIONS	3
5.0	LIMITATIONS	4
	EICHDES	
	<u>FIGURES</u>	
Figu		
Figu	re 2 EM61 Metal Detection Results	

1.0 INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Terracon across the City of

Greenville property (Parcel 186) located at 1011 Dickinson Avenue in Greenville, North Carolina.

Conducted on August 22 and 29, 2012, the geophysical investigation was performed as part of the

North Carolina Department of Transportation (NCDOT) preliminary site assessment for state project

number U-3315 (WBS Element 35781.1.2) to determine if unknown, metallic, underground storage

tanks (USTs) were present beneath Parcel 186.

The City of Greenville property is a triangular-shaped, grass-covered lot at the intersection of

Dickinson Avenue and West 10th Street. A set of railroad tracks border the southeastern perimeter of

the property. The lot contains a utility line-related building for the adjacent railroad and several other

utility line-related boxes, a storm sewer drain, utility poles, support poles and other miscellaneous

equipment scattered across the lot. The geophysical survey area has a maximum length and width of

90 feet and 78 feet, respectively.

Terracon representatives Mr. Stephen Kerlin and Ms. Lori Hoffman, PE provided information and

maps identifying the geophysical survey area to Mark Denil, PG prior to conducting the

investigation. Photographs of the geophysical equipment used in this investigation and the property

are shown in **Figure 1**.

2.0 FIELD METHODOLOGY

Prior to conducting the geophysical investigation, a 10-foot by 10-foot survey grid was established

across the site area using measuring tapes, pin flags and water-based marking paint. These grid

marks were used as X-Y coordinates for location control when collecting the geophysical data and

establishing base maps for the geophysical results.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection surveys

and ground penetrating radar (GPR) surveys. The EM survey was performed using a Geonics EM61-

City of Greenville Property (Parcel 186) – Geophysical Report Pyramid Environmental & Engineering, P.C.

09/26/12

MK1 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. All of the EM61 data were digitally collected at approximately 0.8 foot intervals along northeast-southwest trending, parallel survey lines spaced five feet apart. All of the data were downloaded to a computer and reviewed in the field and office using the Geonics DAT61W and Surfer for Windows Version 7.0 software programs.

The GPR investigation was conducted across selected EM61 differential anomalies using a GSSI SIR-2000 unit equipped with a 400 MHz antenna. Data were digitally collected in a continuous mode along X-axis and/or Y-axis survey lines, spaced 2.5 to 5.0 feet apart using a vertical scan of 512 samples, at a rate of 48 scans per second. A 70 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were collected down to a maximum depth of approximately 5 feet, based on an estimated two-way travel time of 8 nanoseconds per foot.

Verbal, preliminary geophysical results obtained from the site were provided to Mr. Kerlin or Ms Hoffman during the week of September 3, 2012.

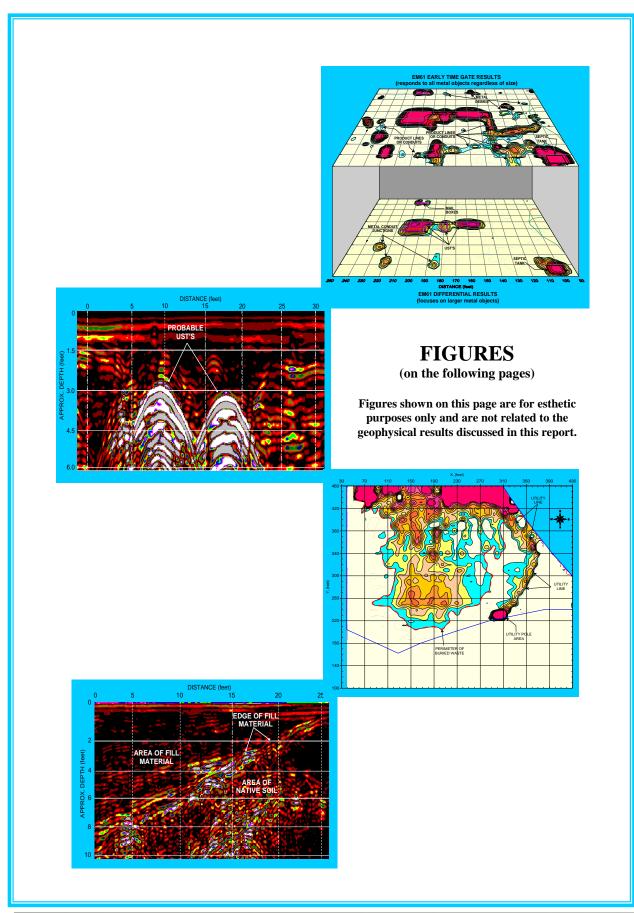
3.0 <u>DISCUSSION OF RESULTS</u>

Contour plots of the EM61 bottom coil and differential results are presented in **Figure 2.** The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to delineate metal conduits or utility lines, small, isolated metal objects, and areas containing insignificant metal debris. The differential results are obtained from the difference between the top and bottom coils of the EM61 instrument. The differential results focus on the larger metal objects such as drum and UST-size objects and ignore the smaller insignificant metal objects.

The linear, EM61 bottom coil anomalies intersecting grid coordinates X=30 Y=13, X=90 Y=60 and X=95 Y=33 are probably in response to buried utility lines or conduits. GPR data suggest the EM61

bottom coil anomaly centered near grid coordinates X=52 Y=14 is in response to buried miscellaneous metal debris or small objects. GPR data suggest the EM61 differential anomalies centered near grid coordinates X=90 Y=74, X=97 Y=15 and X=97 Y=34 are probably in response to known, surface objects, such as metal support poles, drain grate, utility line valve covers, and/or portions of the buried utility lines. The differential anomaly centered near grid coordinates X=78 Y=55 is probably in response to utility line-related equipment.

The remaining EM61 anomalies shown in Figure 2 and not mentioned in this report are probably in response to known surface objects, conduits or to small, insignificant, metal debris/objects. The geophysical investigation suggests that the surveyed portion of the City of Greenville property (Parcel 186) does not contain metallic USTs.


4.0 SUMMARY & CONCLUSIONS

Our evaluation of the EM61 and GPR data collected across the City of Greenville property (Parcel 186) located at 1011 Dickinson Avenue in Greenville, North Carolina, provides the following summary and conclusions:

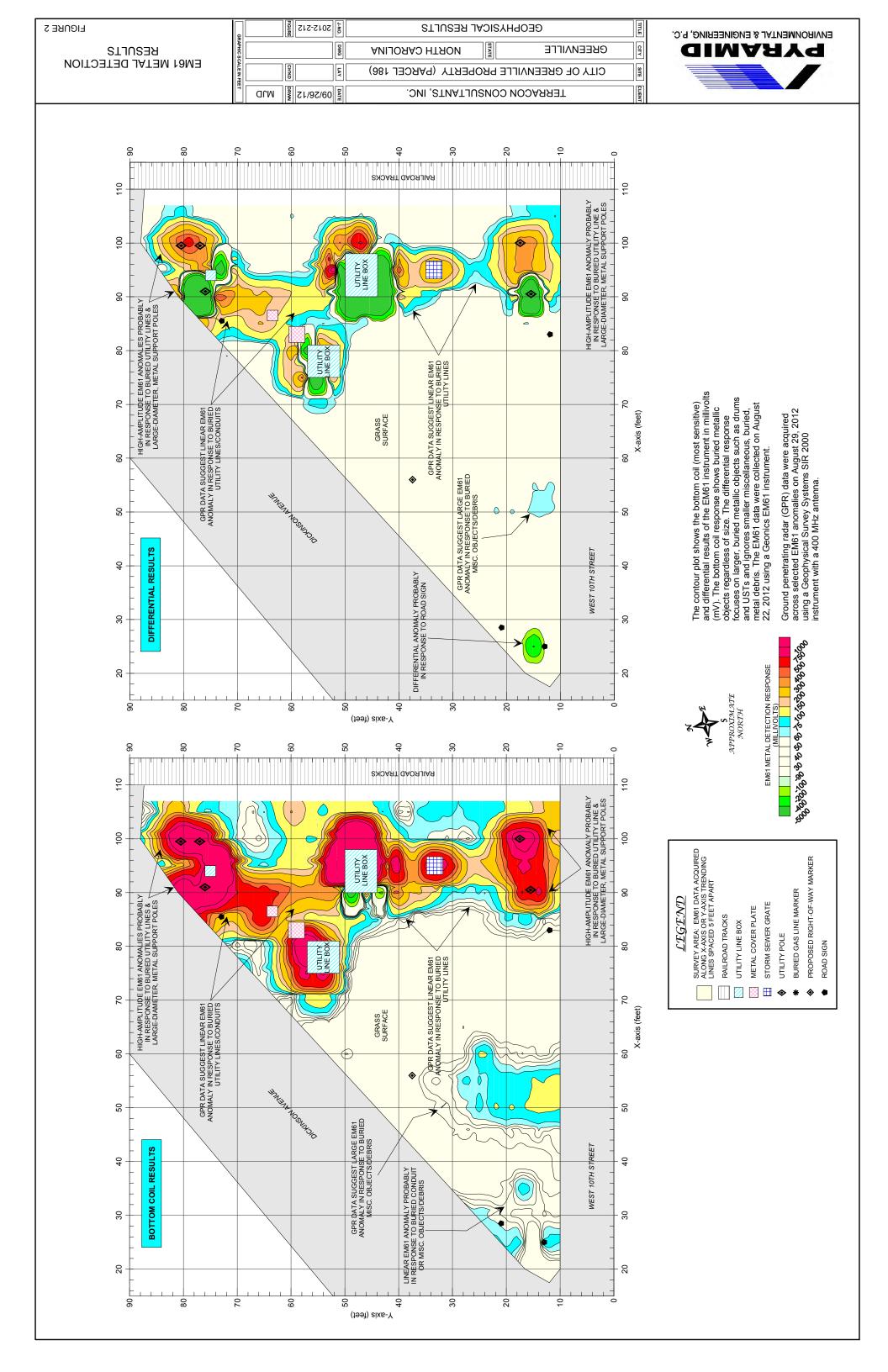
- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the surveyed portion of the site.
- The linear, EM61 bottom coil anomalies intersecting grid coordinates X=30 Y=13, X=90 Y=60 and X=95 Y=33 are probably in response to buried utility lines or conduits.
- GPR data suggest the EM61 differential anomalies centered near grid coordinates X=90 Y=74, X=97 Y=15 and X=97 Y=34 are probably in response to known, surface objects, such as metal support poles, drain grate, utility line valve covers, and/or portions of the buried utility lines.
- The geophysical investigation suggests that the surveyed portion of Parcel 186 does not contain metallic USTs.

5.0 <u>LIMITATIONS</u>

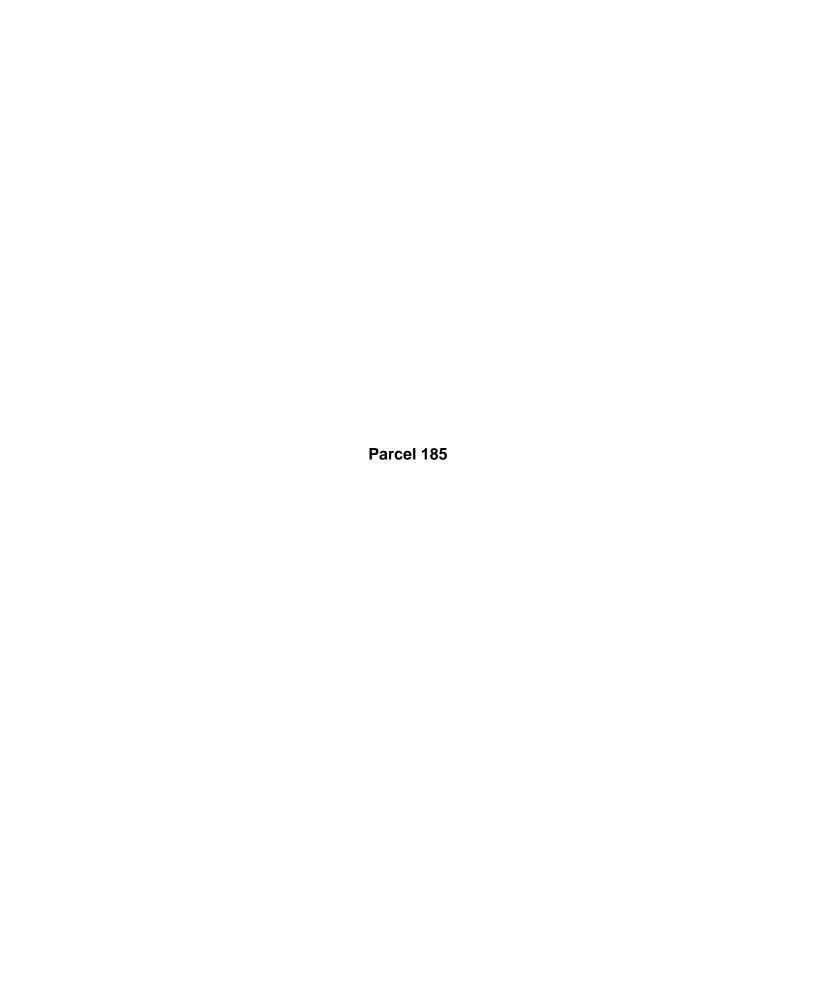
EM61 and GPR surveys have been performed and this report prepared for Terracon Consultants, Inc. in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined that the area of interest does not contain buried, metallic USTs, but that none were detected.

The photograph shows the Geonics EM61 metal detector that was used to conduct the metal detection survey across the City of Greenville property (Parcel 186) on August 22, 2012.

The photographs show the SIR-2000 GPR system equipped with a 400 MHz antenna that were used to conduct the ground penetrating radar investigation across selected EM61 differential anomalies at the Parcel 186 site on August 29, 2012.



The photograph shows the City of Greenville property (Parcel 186) located at the intersection of Dickinson Avenue and West 10th Street in Greenville, North Carolina. The photograph is viewed in an easterly direction.


CLIEN	TERRACON CONSULTANTS, INC.	图 09/26/12
SITE	CITY OF GREENVILLE PROPERTY (PARCEL 186)	CHKD CHKD
СШУ	GREENVILLE	DWG
тшг	GEOPHYSICAL RESULTS	2012-212

GEOPHYSICAL EQUIPMENT & SITE PHOTOGRAPHS

APPENDIX C

Laboratory Analytical Reports and Chain of Custody

Laboratory Report of Analysis

To: Steve Kerlin

Terracon

5240 Greens Dairy Rd Raleigh, NC 27616

Report Number: 31202869

Client Project: 70127335 U-3315 Parcel#185

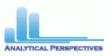
Dear Steve Kerlin.

michael.page@sgs.com

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Michael D. Page at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.


Sincerely,	
SGS North America Inc.	
Michael D. Page	Date
Project Manager	

Print Date: 09/17/2012 N.C. Certification # 481

ANALYTICAL PERSPECTIVES IS NOW PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 f+1 910 350 1557 www.sgs.com

Laboratory Qualifiers

Report Definitions

DL Method, Instrument, or Estimated Detection Limit per Analytical Method

CL Control Limits for the recovery result of a parameter

LOQ Reporting Limit
DF Dilution Factor

RPD Relative Percent Difference

LCS(D) Laboratory Control Spike (Duplicate)

MS(D) Matrix Spike (Duplicate)

MB Method Blank

Qualifier Definitions

* Recovery or RPD outside of control limits

B Analyte was detected in the Lab Method Blank at a level above the LOQ

U Undetected (Reported as ND or < DL)

V Recovery is below quality control limit. The data has been validated based on a favorable signal-to-noise and detection limit

A Amount detected is less than the Lower Method Calibration Limit

J Estimated Concentration.

O The recovery of this analyte in the OPR is above the Method QC Limits and the reported concentration in the sample may be biased high

E Amount detected is greater than the Upper Calibration Limit

S The amount of analyte present has saturated the detector. This situation results in an underestimation of the affected analyte(s)

Indicates the presence of a quantitative interference. This situation may result in an

underestimation of the affected analyte(s)

I Indicates the presence of a qualitative interference that could cause a false positive or an

overestimation of the affected analyte(s)

DPE Indicates the presence of a peak in the polychlorinated diphenylether channel that could

cause a false positive or an overestimation of the affected analyte(s)

TIC Tentatively Identified Compound

EMPC Estimated Maximum possible Concentration due to ion ratio failure

ND Not Detected

Q

K Result is estimated due to ion ratio failure in High Resolution PCB Analysis

P RPD > 40% between results of dual columns

D Spike or surrogate was diluted out in order to achieve a parameter result within instrument calibration range

Samples requiring manual integrations for various congeners and/or standards are marked and dated by the analyst. A code definition is provided below:

M1 Mis-identified peak

Note Results pages that include a value for "Solids (%)" have been adjusted for moisture content.

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	Matrix
S-1	31202869001	09/07/2012 13:37	09/10/2012 14:45	Soil-Solid as dry weight
S-2	31202869002	09/07/2012 14:35	09/10/2012 14:45	Soil-Solid as dry weight
S-3	31202869003	09/07/2012 15:03	09/10/2012 14:45	Soil-Solid as dry weight
S-4	31202869004	09/07/2012 15:35	09/10/2012 14:45	Soil-Solid as dry weight
TW-1	31202869005	09/07/2012 14:13	09/10/2012 14:45	Water

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869001-G Lab Project ID: 31202869 Collection Date: 09/07/2012 13:37 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 82.00

Results by SW-846 8015C GRO

<u>Parameter</u>	Result	<u>Qual</u>	LOC	<u>Units</u>	<u>DF</u>	Date Analyzed
Gasoline Range Organics (GRO)	1020		140	mg/kg	40	09/17/2012 12:06

Surrogates

4-Bromofluorobenzene 98.5 70.0-130 % 40 09/17/2012 12:06

Batch Information

Analytical Batch: VGC2142
Analytical Method: SW-846 8015C GRO

Instrument: GC7
Analyst: MDY

Prep Batch: **VXX4007**Prep Method: **SW-846 5035**Prep Date/Time: **09/11/2012 10:50**

Prep Initial Wt./Vol.: **6.97 g** Prep Extract Vol: **5 mL**

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869001-I Lab Project ID: 31202869 Collection Date: 09/07/2012 13:37 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 82.00

Results by SW-846 8015C DRO

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics (DRO)	1210		35.6	mg/kg	5	09/13/2012 18:40

Surrogates

o-Terphenyl 84.4 40.0-140 % 5 09/13/2012 18:40

Batch Information

Analytical Batch: XGC2530

Analytical Method: SW-846 8015C DRO

Instrument: GC6
Analyst: DTF

Prep Batch: XXX3033

Prep Method: **SW-846 3541**

Prep Date/Time: 09/11/2012 17:34
Prep Initial Wt./Vol.: 34.28 g

Prep Extract Vol: 10 mL

Print Date: 09/17/2012 N.C. Certification # 481

Page 5 of 17

Client Sample ID: S-2

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869002-G Lab Project ID: 31202869 Collection Date: 09/07/2012 14:35 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 90.80

Results by SW-846 8015C GRO

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Gasoline Range Organics (GRO)	ND		4.00	mg/kg	1	09/12/2012 18:45

Surrogates

4-Bromofluorobenzene 102 70.0-130 % 1 09/12/2012 18:45

Batch Information

Analytical Batch: VGC2136
Analytical Method: SW-846 8015C GRO

Instrument: GC7
Analyst: MDY

Prep Batch: VXX3986
Prep Method: SW-846 5035
Prep Date/Time: 09/11/2012 10:57

Prep Initial Wt./Vol.: **5.5 g**Prep Extract Vol: **5 mL**

Client Sample ID: S-2

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869002-I Lab Project ID: 31202869 Collection Date: 09/07/2012 14:35 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 90.80

Results by SW-846 8015C DRO

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics (DRO)	ND		7.04	mg/kg	1	09/13/2012 0:06

Surrogates

o-Terphenyl 91.0 40.0-140 % 1 09/13/2012 0:06

Batch Information

Analytical Batch: XGC2517
Analytical Method: SW-846 8015C DRO

Instrument: GC6
Analyst: DTF

Prep Batch: XXX3033
Prep Method: SW-846 3541
Prep Date/Time: 09/11/2012 17:34
Prep Initial Wt./Vol.: 31.29 g
Prep Extract Vol: 10 mL

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869003-G Lab Project ID: 31202869 Collection Date: 09/07/2012 15:03 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 89.60

Results by SW-846 8015C GRO

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Gasoline Range Organics (GRO)	76.7		12.8	mg/kg	4	09/12/2012 19:35

Surrogates

4-Bromofluorobenzene 109 70.0-130 % 4 09/12/2012 19:35

Batch Information

Analytical Batch: VGC2136

Analytical Method: SW-846 8015C GRO

Instrument: GC7
Analyst: MDY

Prep Batch: VXX3986

Prep Method: SW-846 5035

Prep Date/Time: **09/11/2012 11:00**Prep Initial Wt./Vol.: **6.98 g**

Prep Extract Vol: 5 mL

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869003-I Lab Project ID: 31202869 Collection Date: 09/07/2012 15:03 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 89.60

Results by SW-846 8015C DRO

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics (DRO)	721		34.8	mg/kg	5	09/13/2012 19:08

Surrogates

o-Terphenyl 90.0 40.0-140 % 5 09/13/2012 19:08

Batch Information

Analytical Batch: XGC2530
Analytical Method: SW-846 8015C DRO

Instrument: GC6
Analyst: DTF

Prep Batch: XXX3033
Prep Method: SW-846 3541
Prep Date/Time: 09/11/2012 17:34
Prep Initial Wt./Vol.: 32.1 g

Prep Extract Vol: 10 mL

Client Sample ID: S-4

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869004-G Lab Project ID: 31202869

Collection Date: 09/07/2012 15:35 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 90.70

Results by SW-846 8015C GRO

<u>Parameter</u>	<u>Result</u>	Qual	<u>LOQ/CL</u>	<u>Units</u>	<u>DF</u>	<u>Date Analyzed</u>
Gasoline Range Organics (GRO)	ND		3.67	mg/kg	1	09/12/2012 16:14
Surrogates						

4-Bromofluorobenzene 102 70.0-130 09/12/2012 16:14

Batch Information

Prep Batch: VXX3986 Analytical Batch: VGC2136 Analytical Method: SW-846 8015C GRO Prep Method: **SW-846 5035** Instrument: GC7 Prep Date/Time: 09/11/2012 11:04

Analyst: MDY Prep Initial Wt./Vol.: 6 g Prep Extract Vol: 5 mL

Client Sample ID: S-4

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869004-I Lab Project ID: 31202869 Collection Date: 09/07/2012 15:35 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 90.70

Results by SW-846 8015C DRO

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics (DRO)	ND		7.07	mg/kg	1	09/13/2012 1:02
Surrogates						
o-Terphenyl	104		40.0-140	%	1	09/13/2012 1:02

Batch Information

Analytical Batch: XGC2517

Analytical Method: SW-846 8015C DRO

Instrument: GC6
Analyst: DTF

Prep Batch: XXX3033
Prep Method: SW-846 3541
Prep Date/Time: 09/11/2012 17:34
Prep Initial Wt./Vol.: 31.18 g
Prep Extract Vol: 10 mL

Results of TW-1

Client Sample ID: TW-1

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869005-A Lab Project ID: 31202869 Collection Date: 09/07/2012 14:13 Received Date: 09/10/2012 14:45

Matrix: Water

Results by **SW-846 8260B**

(Courts by 611-646 6266B		
<u>Parameter</u>	Result	<u>Qual</u>
1,1,1,2-Tetrachloroethane	ND	
1,1,1-Trichloroethane	ND	
1,1,2,2-Tetrachloroethane	ND	
1,1,2-Trichloroethane	ND	
1,1-Dichloroethane	ND	
1,1-Dichloroethene	ND	
1,1-Dichloropropene	ND	
1,2,3-Trichlorobenzene	ND	
1,2,3-Trichloropropane	ND	
1,2,4-Trichlorobenzene	ND	
1,2,4-Trimethylbenzene	ND	
1,2-Dibromo-3-chloropropane	ND	
1,2-Dibromoethane	ND	
1,2-Dichlorobenzene	ND	
1,2-Dichloroethane	ND	
1,2-Dichloropropane	ND	
1,3,5-Trimethylbenzene	ND	
1,3-Dichlorobenzene	ND	
1,3-Dichloropropane	ND	
1,4-Dichlorobenzene	ND	
2,2-Dichloropropane	ND	
2-Butanone	ND	
2-Chlorotoluene	ND	
2-Hexanone	ND	
4-Chlorotoluene	ND	
4-Isopropyltoluene	ND	
4-Methyl-2-pentanone	ND	
Acetone	ND	
Benzene	ND	
Bromobenzene	ND	
Bromochloromethane	ND	
Bromodichloromethane	ND	
Bromoform	ND	
Bromomethane	ND	
n-Butylbenzene	ND	
Carbon disulfide	ND	
Carbon tetrachloride	ND	
Chlorobenzene	ND	
Chloroethane	ND	
Chloroform	ND	
Chloromethane	ND	
Dibromochloromethane	ND	
Dibromomethane	ND	

Client Sample ID: TW-1

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869005-A Lab Project ID: 31202869 Collection Date: 09/07/2012 14:13 Received Date: 09/10/2012 14:45

Matrix: Water

Results by SW-846 8260B

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>U</u> ı	nits
Dichlorodifluoromethane	ND		10000	ug/L	
cis-1,3-Dichloropropene	ND		2000	ug/L	
trans-1,3-Dichloropropene	ND		2000	ug/L	
Diisopropyl Ether	ND		2000	ug/L	
Ethyl Benzene	3320		2000	ug/L	
Hexachlorobutadiene	ND		2000	ug/L	
Isopropylbenzene (Cumene)	ND		2000	ug/L	
Methyl iodide	ND		2000	ug/L	
Methylene chloride	ND		10000	ug/L	
Naphthalene	2180		2000	ug/L	
Styrene	ND		2000	ug/L	
Tetrachloroethene	ND		2000	ug/L	
Toluene	42100		2000	ug/L	
Trichloroethene	ND		2000	ug/L	
Trichlorofluoromethane	ND		2000	ug/L	
Vinyl chloride	ND		2000	ug/L	
Xylene (total)	16900		4000	ug/L	
cis-1,2-Dichloroethene	ND		2000	ug/L	
m,p-Xylene	11400		4000	ug/L	
n-Propylbenzene	ND		2000	ug/L	
o-Xylene	5560		2000	ug/L	
sec-Butylbenzene	ND		2000	ug/L	
tert-Butyl methyl ether (MTBE)	ND		2000	ug/L	
tert-Butylbenzene	ND		2000	ug/L	
trans-1,2-Dichloroethene	ND		2000	ug/L	
trans-1,4-Dichloro-2-butene	ND		10000	ug/L	2
Surrogates					
1,2-Dichloroethane-d4	103		64.0-140	%	20
4-Bromofluorobenzene	102		85.0-115	%	200
Toluene d8	101		82.0-117	%	200

Batch Information

Analytical Batch: VMS2543
Analytical Method: SW-846 8260B

Instrument: MSD4
Analyst: BWS

Prep Batch: VXX3979

Prep Method: **SW-846 5030B** Prep Date/Time: **09/11/2012 08:17**

Prep Initial Wt./Vol.: 40 mL
Prep Extract Vol: 40 mL

Client Sample ID: TW-1

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869005-D Lab Project ID: 31202869 Collection Date: 09/07/2012 14:13 Received Date: 09/10/2012 14:45

Matrix: Water

Results by **SW-846 8270D**

Accounts by CVV-040 027 0D	D-: "	
<u>Parameter</u> 1,2,4-Trichlorobenzene	<u>Result</u> ND	<u>Qual</u>
1,2,4-11ichlorobenzene	ND ND	
1,3-Dichlorobenzene	ND	
1,4-Dichlorobenzene	ND	
2,4,5-Trichlorophenol	ND	
2,4,6-Trichlorophenol	ND	
2,4-Dichlorophenol	ND	
2,4-Dinitrophenol	ND	
2,4-Dinitrotoluene	ND	
2,6-Dinitrotoluene	ND	
2-Chloronaphthalene	ND	
2-Chlorophenol	ND	
2-Methylnaphthalene	116	
2-Methylphenol	ND	
2-Nitroaniline	ND	
2-Nitrophenol	ND	
3 and/or 4-Methylphenol	ND	
3,3'-Dichlorobenzidine	ND	
3-Nitroaniline	ND	
4,6-Dinitro-2-methylphenol	ND	
4-Chloro-3-methylphenol	ND	
4-Chloroaniline	ND	
4-Chlorophenyl phenyl ether	ND	
Acenaphthene	ND	
Acenaphthylene	ND	
Anthracene	ND	
Benzo(a)anthracene	ND	
Benzo(a)pyrene	ND	
Benzo(b)fluoranthene	ND	
Benzo(g,h,i)perylene	ND	
Benzo(k)fluoranthene	ND	
Benzoic acid	ND	
Bis(2-Chloroethoxy)methane	ND	
Bis(2-Chloroethyl)ether	ND	
Bis(2-Chloroisopropyl)ether	ND	
Bis(2-Ethylhexyl)phthalate	ND	
4-Bromophenyl phenyl ether	ND	
Butyl benzyl phthalate	ND	
	ND	
Chrysene		
Di-n-butyl phthalate	ND	
Di-n-butyl phthalate Di-n-octyl phthalate	ND	
Di-n-butyl phthalate		

Client Sample ID: TW-1

Client Project ID: 70127335 U-3315 Parcel#185

Lab Sample ID: 31202869005-D Lab Project ID: 31202869 Collection Date: 09/07/2012 14:13 Received Date: 09/10/2012 14:45

Matrix: Water

Results by **SW-846 8270D**

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>
Diethyl phthalate	ND		50.8	ug/L	10
Dimethyl phthalate	ND		50.8	ug/L	10
2,4-Dimethylphenol	ND		50.8	ug/L	10
Diphenylamine	ND		50.8	ug/L	10
Fluoranthene	ND		50.8	ug/L	10
Fluorene	ND		50.8	ug/L	10
Hexachlorobenzene	ND		50.8	ug/L	10
Hexachlorobutadiene	ND		50.8	ug/L	10
Hexachlorocyclopentadiene	ND		102	ug/L	10
Hexachloroethane	ND		50.8	ug/L	10
Indeno(1,2,3-cd)pyrene	ND		50.8	ug/L	10
Isophorone	ND		50.8	ug/L	10
Naphthalene	559		50.8	ug/L	10
4-Nitroaniline	ND		254	ug/L	10
Nitrobenzene	ND		50.8	ug/L	10
4-Nitrophenol	ND		254	ug/L	10
Pentachlorophenol	ND		254	ug/L	10
Phenanthrene	ND		50.8	ug/L	10
Phenol	ND		50.8	ug/L	10
Pyrene	ND		50.8	ug/L	10
n-Nitrosodi-n-propylamine	ND		50.8	ug/L	10
Surrogates					
2,4,6-Tribromophenol	NA	D	29.3-152	%	10
2-Fluorobiphenyl	NA	D	50.0-107	%	10
2-Fluorophenol	NA	D	33.1-118	%	10
Nitrobenzene-d5	NA	D	46.0-118	%	10
Phenol-d6	NA	D	49.0-120	%	10
Terphenyl-d14	NA	D	22.1-142	%	10

Batch Information

Analytical Batch: XMS1665 Analytical Method: SW-846 8270D

Instrument: MSD10 Analyst: CMP Prep Batch: XXX3040

Prep Extract Vol: 5 mL

Prep Method: **SW-846 3520C**Prep Date/Time: **09/13/2012 08:20**Prep Initial Wt./Vol.: **984 mL**

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

DRINKING WATER OTHER 1554746 GROUND WATER | Page: ろり REGULATORY AGENCY RCRA STATE: NPDES Site Location T UST 2 (202869 Invoice Information: Attention: Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #: Section C Address: 185 # we HEFFMAN Project Number: 76/2235 Project Name: 6-3315 Section B Required Project Information: Purchase Order No.: Report To: Copy To: Choffman Herace--&n Phrhy Grant D Address Over ALEICH NY Section A Required Client Information: Phone: 973-2211
Requested Due Date/TAT: CSPRACE.

			Pace Project No./ Lab I.D.			2 1										SAMPLE CONDITIONS			Nont		taetr	Y/N)	ر ا
			Pace Pro													SAMPLEC			3	0	(1	N/Y) i	n: e:
_		(N/A)	Residual Chlorine																0.20		၁.	, uį di	u
(X/N)																TIME	916		5 %				1
s Filtered		20 Ho	M ,OTOH,	77	=		E	_	_			_			_	DATE	8-16-12		1/0/12/	_			
d Analysi		*(000 *(000	.8) ,,GTOH, 28) ,GTOH, 28) STONE	7	=				_								9-		16	-			
Requested Analysis Filtered (Y/N)		(09	0.02) 58) 2001	X	_		<u>-</u>	X X								FILIATION	B						
	↑n/A	1	Other Analysis Test	<u>۲</u>						L						ACCEPTED BY / AFFILIATION	5/0		Sug				
	tives		NaOH Na ₂ S ₂ O ₃ Methanol	i R	-											ACCEPTI	於	7	1 / V	7			
	Preservatives		HCI HNO ³ H ⁵ CO [†]					60			_					,	3		Jan 1			N	
		S	# OF CONTAINER # OF CONTAINER	113				5								TIME	7150	1200	3445	1/		Br)
ľ		ОГГЕСТІОИ	SAMPLE TEMP AT	1337	35	503	535	ξ.								DATE	9-10-12	1-11-12	21-01-		SIGNATURE	AMPLER:	
	ED	COMPOSITE END/GRAB	DATE TII	77		15	[5]	1413									9	14	8			PRINT Name of SAMPLER:	
	COLLECTED		TIME D	12.6												FILIATION	762c/46	•			SAMPLER NAME AND	PRIN	
	_	COMPOSITE	DATE									-				RELINQUISHED BY / AFFILIATION	161 h	,	Ž		SA	<u></u>	
		see valid codes to	SAMPLE TYPE (G	3n G	_			1 12								RELINQUISH	ر کے ر	A	Aten				
	code	MA MA MA MA MA MA MA MA MA MA MA MA MA M	AR STP	3				ځم								_	1/26		Ri			ORIGINAL	
	Matrix Codes MATRIX / CODE	Drinking Water Water Waste Water Product Soil/Solid	Wipe Wir Air Tissue Other													ITS						OF	
	Section D Required Client Information	<u>.</u>	SAMPLE ID (A-Z, 0-9/) Sample IDs MUST BE UNIQUE	5-1	2-5	4-3	4-4	7-10-1		į						ADDITIONAL COMMENTS							
Į	_+/ LE		# M∃TI	1	7	ო 7	4	25	9	7	8	6	10	11	12								

*Important Note: By signing this form you are eccepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

SGS North America Inc.

Sample Receipt Checklist (SRC)

Client:	NCDOT-Terracon	_ Work Order No.:	31202869
1.	Shipped X Hand Delivered	Notes:	
2.	X COC Present on Receipt No COC Additional Transmittal Forms		
3.	Custody Tape on Container X No Custody Tape		
4.	X Samples Intact Samples Broken / Leaking		
5.	X Chilled on Receipt Actual Temp.(s) in °C: Ambient on Receipt Walk-in on Ice; Coming down to temp. Received Outside of Temperature Specificati		
6.	X Sufficient Sample Submitted Insufficient Sample Submitted		
7.	Chlorine absent HNO3 < 2 HCL < 2 Additional Preservatives verified (see notes)		
8.	X Received Within Holding Time Not Received Within Holding Time		
9.	X No Discrepancies Noted Discrepancies Noted NCDENR notified of Discrepancies*		
10.	X No Headspace present in VOC vials Headspace present in VOC vials >6mm		
Comments: _			
_			
			
	Inspe	cted and Logged in by: <u>JJ</u>	
		Date:	Mon-9/10/12 00:00

Laboratory Report of Analysis

To: Steve Kerlin

Terracon

5240 Greens Dairy Rd Raleigh, NC 27616

Report Number: 31202953

Client Project: 70127335 U-3315 #185

Dear Steve Kerlin.

Sincerely.

Project Manager michael.page@sgs.com

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Michael D. Page at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

SGS North America Inc.	
Michael D. Page	Date

Print Date: 09/25/2012 N.C. Certification # 481

ANALYTICAL PERSPECTIVES IS NOW PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 f+1 910 350 1557 www.sgs.com

Laboratory Qualifiers

Report Definitions

DL Method, Instrument, or Estimated Detection Limit per Analytical Method

CL Control Limits for the recovery result of a parameter

LOQ Reporting Limit
DF Dilution Factor

RPD Relative Percent Difference

LCS(D) Laboratory Control Spike (Duplicate)

MS(D) Matrix Spike (Duplicate)

MB Method Blank

Qualifier Definitions

* Recovery or RPD outside of control limits

B Analyte was detected in the Lab Method Blank at a level above the LOQ

U Undetected (Reported as ND or < DL)

V Recovery is below quality control limit. The data has been validated based on a favorable signal-to-noise and detection limit

A Amount detected is less than the Lower Method Calibration Limit

J Estimated Concentration.

O The recovery of this analyte in the OPR is above the Method QC Limits and the reported concentration in the sample may be biased high

E Amount detected is greater than the Upper Calibration Limit

S The amount of analyte present has saturated the detector. This situation results in an underestimation of the affected analyte(s)

Q Indicates the presence of a quantitative interference. This situation may result in an underestimation of the affected analyte(s)

I Indicates the presence of a qualitative interference that could cause a false positive or an overestimation of the affected analyte(s)

DPE Indicates the presence of a peak in the polychlorinated diphenylether channel that could

cause a false positive or an overestimation of the affected analyte(s)

TIC Tentatively Identified Compound

EMPC Estimated Maximum possible Concentration due to ion ratio failure

ND Not Detected

K Result is estimated due to ion ratio failure in High Resolution PCB Analysis

P RPD > 40% between results of dual columns

D Spike or surrogate was diluted out in order to achieve a parameter result within instrument calibration range

Samples requiring manual integrations for various congeners and/or standards are marked and dated by the analyst. A code definition is provided below:

M1 Mis-identified peak

Note Results pages that include a value for "Solids (%)" have been adjusted for moisture content.

Sample Summary

<u>C</u>	<u>Client Sample ID</u>	Lab Sample ID	Collected	Received	<u>Matrix</u>
S	i-1	31202953001	09/07/2012 13:37	09/10/2012 14:45	Soil-Solid as dry weight
S	-3	31202953002	09/07/2012 15:03	09/10/2012 14:45	Soil-Solid as dry weight

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953001-D Lab Project ID: 31202953 Collection Date: 09/07/2012 13:37 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 83.20

Results by **SW-846 8260B**

arameter	Result	Qual
,1,1,2-Tetrachloroethane	ND	
I,1,1-Trichloroethane	ND	
1,1,2,2-Tetrachloroethane	ND	
1,1,2-Trichloroethane	ND	
1,1-Dichloroethane	ND	
1,1-Dichloroethene	ND	
1,1-Dichloropropene	ND	
1,2,3-Trichlorobenzene	ND	
1,2,3-Trichloropropane	ND	
1,2,4-Trichlorobenzene	ND	
1,2,4-Trimethylbenzene	133000	
1,2-Dibromo-3-chloropropane	ND	
1,2-Dibromoethane	ND	
1,2-Dichlorobenzene	ND	
1,2-Dichloroethane	ND	
1,2-Dichloropropane	ND	
1,3,5-Trimethylbenzene	39000	
1,3-Dichlorobenzene	ND	
1,3-Dichloropropane	ND	
1,4-Dichlorobenzene	ND	
2,2-Dichloropropane	ND	
2-Butanone	ND	
2-Chlorotoluene	ND	
2-Hexanone	ND	
4-Chlorotoluene	ND	
4-Isopropyltoluene	7920	
4-Methyl-2-pentanone	ND	
Acetone	ND	
Benzene	ND	
Bromobenzene	ND	
Bromochloromethane	ND	
Bromodichloromethane	ND	
Bromoform	ND	
Bromomethane	ND	
n-Butylbenzene	ND	
Carbon disulfide	ND	
Carbon tetrachloride	ND	
Chlorobenzene	ND	
Chloroethane	ND	
Chloroform	ND	
Chloromethane	ND	
Dibromochloromethane	ND	

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953001-D Lab Project ID: 31202953 Collection Date: 09/07/2012 13:37 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 83.20

Results by **SW-846 8260B**

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	<u>Da</u>
Dichlorodifluoromethane	ND		11000	ug/Kg	2500	09
cis-1,3-Dichloropropene	ND		2200	ug/Kg	2500	09
trans-1,3-Dichloropropene	ND		2200	ug/Kg	2500	09
Diisopropyl Ether	ND		2200	ug/Kg	2500	09
Ethyl Benzene	14700		2200	ug/Kg	2500	09
Hexachlorobutadiene	ND		2200	ug/Kg	2500	09
sopropylbenzene (Cumene)	3540		2200	ug/Kg	2500	09
Methyl iodide	ND		2200	ug/Kg	2500	09
Methylene chloride	ND		11000	ug/Kg	2500	09
Naphthalene	35500		2200	ug/Kg	2500	09
Styrene	ND		2200	ug/Kg	2500	09/
Tetrachloroethene	ND		2200	ug/Kg	2500	09/
Гoluene	10200		2200	ug/Kg	2500	09/
 	ND		2200	ug/Kg	2500	09/1
Trichlorofluoromethane	ND		2200	ug/Kg	2500	09/1
/inyl chloride	ND		2200	ug/Kg	2500	09/
(ylene (total)	111000		4400	ug/Kg	2500	09/
cis-1,2-Dichloroethene	ND		2200	ug/Kg	2500	09/
n,p-Xylene	78700		4400	ug/Kg	2500	09/
n-Propylbenzene	13400		2200	ug/Kg	2500	09/
o-Xylene	32200		2200	ug/Kg	2500	09/
sec-Butylbenzene	ND		2200	ug/Kg	2500	09/
ert-Butyl methyl ether (MTBE)	ND		2200	ug/Kg	2500	09/
ert-Butylbenzene	ND		2200	ug/Kg	2500	09/1
rans-1,2-Dichloroethene	ND		2200	ug/Kg	2500	09/1
rans-1,4-Dichloro-2-butene	ND		11000	ug/Kg	2500	09/
urrogates						
1,2-Dichloroethane-d4	102		55.0-173	%	2500	09/
4-Bromofluorobenzene	102		23.0-141	%	2500	09/
Toluene d8	103		57.0-134	%	2500	09/1

Batch Information

Analytical Batch: VMS2558

Analytical Method: SW-846 8260B

Instrument: MSD4
Analyst: BWS

Prep Batch: VXX4017

Prep Method: **SW-846 5035 SM** Prep Date/Time: **09/18/2012 10:50**

Prep Initial Wt./Vol.: **6.83 g**Prep Extract Vol: **5 mL**

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953001-E Lab Project ID: 31202953 Collection Date: 09/07/2012 13:37 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 83.20

Results by MADEP VPH

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
C5-C8 Aliphatics	15.8		4.38	mg/kg	1	09/19/2012 18:08
C9-C10 Aromatics	68.3		4.38	mg/kg	1	09/19/2012 18:08
C9-C12 Aliphatics	71.2		4.38	mg/kg	1	09/19/2012 18:08
Surrogates						
FID - 4-Bromofluorobenzene	99.0		70.0-130	%	1	09/19/2012 18:08
PID - 4-Bromofluorobenzene	92.0		70.0-130	%	1	09/19/2012 18:08

Batch Information

Analytical Batch: VGC2145

Analytical Method: MADEP VPH

Instrument: GC4
Analyst: MDY

Prep Batch: VXX4022

Prep Method: **SW-846 5035 VPH prep** Prep Date/Time: **09/18/2012 10:50**

Prep Initial Wt./Vol.: **6.86 g**Prep Extract Vol: **5 mL**

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953001-F Lab Project ID: 31202953 Collection Date: 09/07/2012 13:37 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 83.20

Results by **SW-846 8270D**

-	al .	al .	4
	LOQ/CL		
	3600	13 3	
	3600	9 9	
	3600		8 8
	3600	3 3	5 5
	3600	3 3	5 5
	3600	3 3	5 5
	3600	3 3	5 5
	18000		
	3600		~ ~
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	7200	7200 ug/Kg	7200 ug/Kg 10
	18000	18000 ug/Kg	18000 ug/Kg 10
	18000	18000 ug/Kg	18000 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600	3600 ug/Kg	3600 ug/Kg 10
	3600		
	3600		
	3600		
	3600		
	3600		
	18000	8 8	3 3
	3600	8 8	3 3
	3600		
	3600		
	3600		
	3600	0 0	ŭ ŭ
	3600		
	3600		
	3600		
	3600		
	3600		
	3600		

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953001-F Lab Project ID: 31202953 Collection Date: 09/07/2012 13:37 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 83.20

Results by SW-846 8270D

<u>Parameter</u>	Result	<u>Qual</u>
Diethyl phthalate	ND	
Dimethyl phthalate	ND	
2,4-Dimethylphenol	ND	
Diphenylamine	ND	
Fluoranthene	ND	
Fluorene	ND	
Hexachlorobenzene	ND	
Hexachlorobutadiene	ND	
Hexachlorocyclopentadiene	ND	
Hexachloroethane	ND	
Indeno(1,2,3-cd)pyrene	ND	
Isophorone	ND	
Naphthalene	24800	
4-Nitroaniline	ND	
Nitrobenzene	ND	
4-Nitrophenol	ND	
Pentachlorophenol	ND	
Phenanthrene	ND	
Phenol	ND	
Pyrene	ND	
n-Nitrosodi-n-propylamine	ND	
Surrogates		
2,4,6-Tribromophenol	NA	D
2-Fluorobiphenyl	NA	D
2-Fluorophenol	NA	D
Nitrobenzene-d5	NA	D
Phenol-d6	NA	D
Terphenyl-d14	NA	D

Batch Information

Analytical Batch: XMS1673 Analytical Method: SW-846 8270D

Instrument: MSD10 Analyst: CMP Prep Batch: XXX3062
Prep Method: SW-846 3541
Prep Date/Time: 09/18/2012 16:28

Prep Initial Wt./Vol.: **33.44 g** Prep Extract Vol: **10 mL**

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953001-F Lab Project ID: 31202953 Collection Date: 09/07/2012 13:37 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 83.20

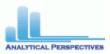
Results by MADEP EPH

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
C11-C22 Aromatics	111		11.8	mg/kg	1	09/21/2012 20:13
C19-C36 Aliphatics	ND		6.06	mg/kg	1	09/21/2012 19:45
C9-C18 Aliphatics	115		5.25	mg/kg	1	09/21/2012 19:45
Surrogates						
2-Bromonaphthalene	83.3		40.0-140	%	1	09/21/2012 20:13
2-Fluorobiphenyl	85.0		40.0-140	%	1	09/21/2012 20:13
n-Tricosane	125		40.0-140	%	1	09/21/2012 19:45
o-Terphenyl	99.0		40.0-140	%	1	09/21/2012 20:13

Batch Information

Analytical Batch: XGC2553

Analytical Method: MADEP EPH


Instrument: GC6
Analyst: DTF

Prep Batch: XXX3063

Prep Extract Vol: 10 mL

Prep Method: **SW-846 3541/8015 EPH**Prep Date/Time: **09/18/2012 16:32**Prep Initial Wt./Vol.: **15.93 g**

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953002-D Lab Project ID: 31202953 Collection Date: 09/07/2012 15:03 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 88.90

Results by **SW-846 8260B**

arameter	Result	Qual
1,1,1,2-Tetrachloroethane	ND	<u>Qual</u>
1,1,1-Trichloroethane	ND	
1,1,2,2-Tetrachloroethane	ND	
1,1,2-Trichloroethane	ND	
1,1-Dichloroethane	ND	
1,1-Dichloroethene	ND	
1,1-Dichloropropene	ND	
1,2,3-Trichlorobenzene	ND	
1,2,3-Trichloropropane	ND	
1,2,4-Trichlorobenzene	ND	
1,2,4-Trimethylbenzene	195	
1,2-Dibromo-3-chloropropane	ND	
1,2-Dibromoethane	ND	
1,2-Dichlorobenzene	ND	
1,2-Dichloroethane	ND	
1,2-Dichloropropane	ND	
1,3,5-Trimethylbenzene	269	
1,3-Dichlorobenzene	ND	
1,3-Dichloropropane	ND	
1,4-Dichlorobenzene	ND	
2,2-Dichloropropane	ND	
2-Butanone	ND	
2-Chlorotoluene	ND	
2-Hexanone	ND	
4-Chlorotoluene	ND	
4-Isopropyltoluene	95.5	
4-Methyl-2-pentanone	ND	
Acetone	ND	
Benzene	ND	
Bromobenzene	ND	
Bromochloromethane	ND	
Bromodichloromethane	ND	
Bromoform	ND	
Bromomethane	ND	
n-Butylbenzene	ND	
Carbon disulfide	ND	
Carbon tetrachloride	ND	
Chlorobenzene	ND	
Chloroethane	ND	
	ND	
Chloroform		
Chloromethane	ND	

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953002-D Lab Project ID: 31202953 Collection Date: 09/07/2012 15:03 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 88.90

Results by **SW-846 8260B**

Parameter	Result	Qual		LOQ/CL	LOQ/CL Units
hlorodifluoromethane	ND	<u>Quai</u>		229	
s-1,3-Dichloropropene	ND		45.		- 5 5
ans-1,3-Dichloropropene	ND		45.7		ug/Kg
Diisopropyl Ether	ND		45.7		ug/Kg
Ethyl Benzene	ND		45.7		ug/Kg
Hexachlorobutadiene	ND		45.7		ug/Kg
Isopropylbenzene (Cumene)	ND		45.7		ug/Kg
Methyl iodide	ND		45.7		ug/Kg
Methylene chloride	ND		229		ug/Kg
Naphthalene	206		45.7	_	/Kg
Styrene	ND		45.7	ug/k	-
Tetrachloroethene	ND		45.7	ug/Kg	7
Toluene	ND		45.7	ug/Kg	
Trichloroethene	ND		45.7	ug/Kg	
Trichlorofluoromethane	ND		45.7	ug/Kg	
Vinyl chloride	ND		45.7	ug/Kg	
Xylene (total)	ND		91.4	ug/Kg	
cis-1,2-Dichloroethene	ND		45.7	ug/Kg	
m,p-Xylene	ND		91.4	ug/Kg	
n-Propylbenzene	ND		45.7	ug/Kg	
o-Xylene	ND		45.7	ug/Kg	
sec-Butylbenzene	ND		45.7	ug/Kg	
tert-Butyl methyl ether (MTBE)	ND		45.7	ug/Kg	
tert-Butylbenzene	ND		45.7	ug/Kg	
trans-1,2-Dichloroethene	ND		45.7	ug/Kg	
trans-1,4-Dichloro-2-butene	ND		229	ug/Kg	
Surrogates					
1,2-Dichloroethane-d4	98.0		55.0-173	%	
4-Bromofluorobenzene	103		23.0-141	%	
Toluene d8	103		57.0-134	%	

Batch Information

Analytical Batch: VMS2558

Analytical Method: SW-846 8260B

Instrument: MSD4
Analyst: BWS

Prep Batch: VXX4017

Prep Method: **SW-846 5035 SM**Prep Date/Time: **09/18/2012 08:00**

Prep Initial Wt./Vol.: **6.15 g**Prep Extract Vol: **5 mL**

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953002-E Lab Project ID: 31202953 Collection Date: 09/07/2012 15:03 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 88.90

Results by MADEP VPH

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
C5-C8 Aliphatics	ND		4.25	mg/kg	1	09/19/2012 16:50
C9-C10 Aromatics	94.6		4.25	mg/kg	1	09/19/2012 16:50
C9-C12 Aliphatics	82.5		4.25	mg/kg	1	09/19/2012 16:50
Surrogates						
FID - 4-Bromofluorobenzene	102		70.0-130	%	1	09/19/2012 16:50
PID - 4-Bromofluorobenzene	98.0		70.0-130	%	1	09/19/2012 16:50

Batch Information

Analytical Batch: VGC2145

Analytical Method: MADEP VPH

Instrument: GC4
Analyst: MDY

Prep Batch: VXX4022

Prep Method: **SW-846 5035 VPH prep** Prep Date/Time: **09/18/2012 10:55**

Prep Initial Wt./Vol.: **6.61 g** Prep Extract Vol: **5 mL**

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953002-F Lab Project ID: 31202953 Collection Date: 09/07/2012 15:03 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 88.90

Results by **SW-846 8270D**

Parameter	Result	Qual
1,2,4-Trichlorobenzene	ND	
,2-Dichlorobenzene	ND	
1,3-Dichlorobenzene	ND	
1,4-Dichlorobenzene	ND	
2,4,5-Trichlorophenol	ND	
2,4,6-Trichlorophenol	ND	
2,4-Dichlorophenol	ND	
2,4-Dinitrophenol	ND	
2,4-Dinitrotoluene	ND	
2,6-Dinitrotoluene	ND	
2-Chloronaphthalene	ND	
2-Chlorophenol	ND	
2-Methylnaphthalene	2090	
2-Methylphenol	ND	
2-Nitroaniline	ND	
2-Nitrophenol	ND	
3 and/or 4-Methylphenol	ND	
3,3'-Dichlorobenzidine	ND	
3-Nitroaniline	ND	
4,6-Dinitro-2-methylphenol	ND	
4-Chloro-3-methylphenol	ND	
4-Chloroaniline	ND	
4-Chlorophenyl phenyl ether	ND	
Acenaphthene	ND	
Acenaphthylene	ND	
Anthracene	ND	
Benzo(a)anthracene	ND	
Benzo(a)pyrene	ND	
Benzo(b)fluoranthene	ND	
Benzo(g,h,i)perylene	ND	
Benzo(k)fluoranthene	ND	
Benzoic acid	ND	
Bis(2-Chloroethoxy)methane	ND	
Bis(2-Chloroethyl)ether	ND	
Bis(2-Chloroisopropyl)ether	ND	
Bis(2-Ethylhexyl)phthalate	ND	
4-Bromophenyl phenyl ether	ND	
Butyl benzyl phthalate	ND	
Chrysene	ND	
Di-n-butyl phthalate	ND	
Di-n-octyl phthalate	ND	
Dibenz(a,h)anthracene	ND	
Dibenzofuran	ND	

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953002-F Lab Project ID: 31202953 Collection Date: 09/07/2012 15:03 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 88.90

Results by **SW-846 8270D**

<u>arameter</u>	Result	<u>Qual</u>
Diethyl phthalate	ND	
Dimethyl phthalate	ND	
4-Dimethylphenol	ND	
iphenylamine	ND	
uoranthene	ND	
Fluorene	ND	
Hexachlorobenzene	ND	
Hexachlorobutadiene	ND	
Hexachlorocyclopentadiene	ND	
Hexachloroethane	ND	
Indeno(1,2,3-cd)pyrene	ND	
Isophorone	ND	
Naphthalene	ND	
4-Nitroaniline	ND	
Nitrobenzene	ND	
4-Nitrophenol	ND	
Pentachlorophenol	ND	
Phenanthrene	ND	
Phenol	ND	
Pyrene	ND	
n-Nitrosodi-n-propylamine	ND	
Surrogates		
2,4,6-Tribromophenol	85.0	
2-Fluorobiphenyl	87.0	
2-Fluorophenol	79.0	
Nitrobenzene-d5	86.0	
Phenol-d6	91.0	
Terphenyl-d14	90.0	

Batch Information

Analytical Batch: XMS1672 Analytical Method: SW-846 8270D

Instrument: MSD10 Analyst: CMP Prep Batch: XXX3062 Prep Method: SW-846 3541

Prep Extract Vol: 10 mL

Prep Date/Time: 09/18/2012 16:28
Prep Initial Wt./Vol.: 33.99 g

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 #185

Lab Sample ID: 31202953002-F Lab Project ID: 31202953 Collection Date: 09/07/2012 15:03 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 88.90

Results by **MADEP EPH**

<u>Parameter</u>	Result	Qual	LOQ/CL	LOQ/CL Units	LOQ/CL Units DF
C11-C22 Aromatics	19.8		14.2	14.2 mg/kg	14.2 mg/kg 1
C19-C36 Aliphatics	ND		7.30	7.30 mg/kg	7.30 mg/kg 1
C9-C18 Aliphatics	55.2		6.32	6.32 mg/kg	6.32 mg/kg 1
Surrogates					
2-Bromonaphthalene	86.2		40.0-140	40.0-140 %	40.0-140 % 1
2-Fluorobiphenyl	92.0		40.0-140	40.0-140 %	40.0-140 % 1
n-Tricosane	124		40.0-140	40.0-140 %	40.0-140 % 1
o-Terphenyl	97.0		40.0-140	40.0-140 %	40.0-140 % 1

Batch Information

Analytical Batch: XGC2553

Analytical Method: MADEP EPH

Instrument: GC6
Analyst: DTF

Prep Batch: XXX3063

Prep Extract Vol: 10 mL

Prep Method: **SW-846 3541/8015 EPH**Prep Date/Time: **09/18/2012 16:32**Prep Initial Wt./Vol.: **12.38** g

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	Section B			Section C		þ			1/0/1/2 Page:		jo	~
Required Client Information:	Required Project Information:			Invoice Information:	nation:		5	3120012	L	7	1 2	
Company	Report To: LOSI HEFE	HOFFMAN		Attention:	111					Top	1554 / 46	
Address ALO CAFALE OFFICE AN	Copy To:			Company Name:		7		REGULATORY AGENCY	AGENCY			
4 ATC	•			Address:				f" NPDES	T GROUND	GROUND WATER	P DRINKIN	DRINKING WATER
Email To: Choffing Lenger.	Purchase Order No.:			Pace Quote Reference:				Γ usτ	T RCRA		T OTHER	
1	Project Name: (1 - 3 3 5	# 185		Pace Project Manager:				Site Location		_		
Requested Due Date/TAT: 574	Project Number: 701223	35		Pace Profile #:				STATE	2			
								Requested Analysis Filtered (Y/N)	(N/N) pa	_		
Section D Matrix Codes Required Client Information MATRIX / CODE	(field	COLLECTED			Preservatives	Î N /A Sa						
P W W D	FOR WALL COCKES TO THE COCKES	COMPOSITE COM START EM	COMPOSITE	s			(09	# HO		(N/A)		
SAMPLE ID Wipe (A-Z, 0-91) Ar Ar Sample IDs MUST BE UNIQUE Tissue Other) EDOD XIRTA		MPLE TEMP AT (DE CONTAINER	НО	₂ S ₂ O ₃ sthanol her nalysis Test	0.00	19 ,,ONU) 187 ,,ONU 187 ,,ONU		sidual Chlonne		
		ТІМЕ	TIME	יח ו	HC HV	Of We	Λ)]	11 - 11 - 11 - 11 - 11 - 11 - 11 - 11		\perp	Pace Project No./ Lab I.D.	o./ Lab I.D.
1 5-1	546	12.6	7	2		3	X X	7 4 4 4				
2 5-2			1435									
3 5-3			1503							_		
4 5-4			1535			=	=	=				
5 723-1	 		1413	57	Ē		<u>メ</u> メ					
Ø												
7												
8												
on										-		
10												
12												
ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	Y / AFFILIATION	DATE	TIME		CCEPTED B	ACCEPTED BY / AFFILIATION	DATE	TIME		SAMPLE CONDITIONS	IONS
	1/31 / C/2/	Howe	9-10-12	1150	(B. A	3	1855	2-10-12	916			
	MAN.		9-11-12	1200		2						
	Rilling	7	9-10-12	3445	Jul.	20	32	9/110/12	7445	0.26	JNON J	
				1		7	•				0	
		SAMPLER NAME AND SIGNATURE	AND SIGNATUR								oojet įλ //	lotact (
Q	ORIGINAL	PRINT	PRINT Name of SAMPLER:	: BEN	SUF	,				nl qrr seviec	ed Co	(N/A)
		SIGNAT	SIGNATURE OF SAMPLER:	M	1	#7	DATE Signed (MM/DD/YY):	4-712			ol C C C C C C	ms2

Important Note: By signing this form you are accepting Pace's NET 30 day payment larms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

SGS North America Inc.

Sample Receipt Checklist (SRC)

Client:	NCDOT-Terracon	_ Work Order No.:	31202869
1.	Shipped	Notes:	
	X Hand Delivered		· · · · · · · · · · · · · · · · · · ·
2.	X COC Present on Receipt		
	No COC Additional Transmittal Forms		
3.	Custody Tape on Container		
	X No Custody Tape		
4.	X Samples Intact Samples Broken / Leaking		
5.	X Chilled on Receipt Actual Temp.(s) in °C	: 0.2	
	Ambient on Receipt Walk-in on Ice; Coming down to temp.		
	Received Outside of Temperature Specifical	ions	
6.	X Sufficient Sample Submitted		
	Insufficient Sample Submitted		
7.	Chlorine absent		
	HNO3 < 2 HCL < 2		
	Additional Preservatives verified (see notes)		
8.	X Received Within Holding Time		
	Not Received Within Holding Time		
9.	X No Discrepancies Noted		
	Discrepancies Noted NCDENR notified of Discrepancies*		
10.	X No Headspace present in VOC vials		
10.	Headspace present in VOC vials >6mm		
omments:			
_			
.			
	Inst	ected and Logged in by: <u>ا</u> Date:	J Mon-9/10/12 00:00

^{*}NCDENR must be notified when collection, holding time or preservation requirements are not met.

SGS North America Inc.

Sample Receipt Checklist (SRC)

Client:	NCDOT-Terracon	Work Order No.:	3170 2953 31202869 Majir/iz
1.	Shipped X Hand Delivered	Notes:	
2.	X COC Present on Receipt No COC Additional Transmittal Forms		
3.	Custody Tape on Container X No Custody Tape		
4.	X Samples Intact Samples Broken / Leaking		
5.	Chilled on Receipt Actual Temp.(s) in °C: Ambient on Receipt Walk-in on Ice; Coming down to temp. Received Outside of Temperature Specification.		
6.	X Sufficient Sample Submitted Insufficient Sample Submitted		
7.	Chlorine absent HNO3 < 2 HCL < 2 Additional Preservatives verified (see notes)		
8.	X Received Within Holding Time Not Received Within Holding Time		
9.	X No Discrepancies Noted Discrepancies Noted NCDENR notified of Discrepancies*		
10.	No Headspace present in VOC vialsHeadspace present in VOC vials >6mm		
Comments: _	Relog of 31202869001, 003.		
<u></u>	Inspe	ected and Logged in by: <u>JJ</u> Date:	Tue-9/18/12 00:00

Laboratory Report of Analysis

To: Steve Kerlin

Terracon

5240 Greens Dairy Rd Raleigh, NC 27616

Report Number: 31202865

Client Project: 70127335 U-3315 Parcel#186

Dear Steve Kerlin.

michael.page@sgs.com

Enclosed are the results of the analytical services performed under the referenced project for the received samples and associated QC as applicable. The samples are certified to meet the requirements of the National Environmental Laboratory Accreditation Conference Standards. Copies of this report and supporting data will be retained in our files for a period of five years in the event they are required for future reference. All results are intended to be used in their entirety and SGS is not responsible for use of less than the complete report. Any samples submitted to our laboratory will be retained for a maximum of thirty (30) days from the date of this report unless other arrangements are requested.

If there are any questions about the report or services performed during this project, please call Michael D. Page at (910) 350-1903. We will be happy to answer any questions or concerns which you may have.

Thank you for using SGS North America Inc. for your analytical services. We look forward to working with you again on any additional analytical needs.

SGS North America Inc.		
Michael D. Dogo	Data	
Michael D. Page	Date	
Project Manager		

Print Date: 09/17/2012 N.C. Certification # 481

ANALYTICAL PERSPECTIVES IS NOW PART OF SGS, THE WORLD'S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 f+1 910 350 1557 www.sgs.com

Laboratory Qualifiers

Report Definitions

DL Method, Instrument, or Estimated Detection Limit per Analytical Method

CL Control Limits for the recovery result of a parameter

LOQ Reporting Limit
DF Dilution Factor

RPD Relative Percent Difference

LCS(D) Laboratory Control Spike (Duplicate)

MS(D) Matrix Spike (Duplicate)

MB Method Blank

Qualifier Definitions

* Recovery or RPD outside of control limits

B Analyte was detected in the Lab Method Blank at a level above the LOQ

U Undetected (Reported as ND or < DL)

V Recovery is below quality control limit. The data has been validated based on a favorable signal-to-noise and detection limit

A Amount detected is less than the Lower Method Calibration Limit

J Estimated Concentration.

O The recovery of this analyte in the OPR is above the Method QC Limits and the reported concentration in the sample may be biased high

E Amount detected is greater than the Upper Calibration Limit

S The amount of analyte present has saturated the detector. This situation results in an underestimation of the affected analyte(s)

Q Indicates the presence of a quantitative interference. This situation may result in an underestimation of the affected analyte(s)

I Indicates the presence of a qualitative interference that could cause a false positive or an overestimation of the affected analyte(s)

Indicates the presence of a peak in the polychlorinated diphenylether channel that could

cause a false positive or an overestimation of the affected analyte(s)

TIC Tentatively Identified Compound

EMPC Estimated Maximum possible Concentration due to ion ratio failure

ND Not Detected

DPE

K Result is estimated due to ion ratio failure in High Resolution PCB Analysis

P RPD > 40% between results of dual columns

D Spike or surrogate was diluted out in order to achieve a parameter result within instrument calibration range

Samples requiring manual integrations for various congeners and/or standards are marked and dated by the analyst. A code definition is provided below:

M1 Mis-identified peak

Note Results pages that include a value for "Solids (%)" have been adjusted for moisture content.

Sample Summary

Client Sample ID	Lab Sample ID	Collected	Received	<u>Matrix</u>
S-1	31202865001	09/07/2012 11:15	09/10/2012 14:45	Soil-Solid as dry weight
S-2	31202865002	09/07/2012 11:54	09/10/2012 14:45	Soil-Solid as dry weight
S-3	31202865003	09/07/2012 12:58	09/10/2012 14:45	Soil-Solid as dry weight
TW-1	31202865004	09/07/2012 12:48	09/10/2012 14:45	Water

Print Date: 09/17/2012 N.C. Certification # 481

Member of the SGS Group (SGS SA)

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865001-A Lab Project ID: 31202865 Collection Date: 09/07/2012 11:15 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 91.30

Results by SW-846 8015C GRO

<u>Parameter</u> Gasoline Range Organics (GRO)	<u>Result</u> ND	Qual	<u>LOQ/CL</u> 3.05	<u>Units</u> mg/kg	<u>DF</u> 1	<u>Date Analyzed</u> 09/12/2012 13:43
Surrogates						
4-Bromofluorobenzene	100		70.0-130	%	1	09/12/2012 13:43

Batch Information

Analytical Batch: VGC2136

Analytical Method: SW-846 8015C GRO

Instrument: GC7
Analyst: MDY

Prep Batch: VXX3986
Prep Method: SW-846 5035

Prep Extract Vol: 5 mL

Prep Date/Time: **09/11/2012 10:30** Prep Initial Wt./Vol.: **7.18** g

Client Sample ID: S-1

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865001-C Lab Project ID: 31202865 Collection Date: 09/07/2012 11:15 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 91.30

Results by SW-846 8015C DRO

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics (DRO)	ND		7.03	mg/kg	1	09/12/2012 22:13

Surrogates

o-Terphenyl 91.9 40.0-140 % 1 09/12/2012 22:13

Batch Information

Analytical Batch: XGC2517 Prep Batch: XXX3033
Analytical Method: SW-846 8015C DRO Prep Method: SW-846 3541

Instrument: GC6 Prep Date/Time: 09/11/2012 17:34

Analyst: DTF Prep Initial Wt./Vol.: 31.15 g

Prep Extract Vol: 10 mL

Client Sample ID: S-2

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865002-A Lab Project ID: 31202865 Collection Date: 09/07/2012 11:54 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 82.00

Results by SW-846 8015C GRO

<u>Parameter</u> Gasoline Range Organics (GRO)	<u>Result</u> ND	Qual	<u>LOQ/CL</u> 3.57	<u>Units</u> mg/kg	<u>DF</u> 1	<u>Date Analyzed</u> 09/12/2012 14:
Surrogates						
4-Bromofluorobenzene	102		70.0-130	%	1	09/12/2012 14

Batch Information

Analytical Batch: VGC2136

Analytical Method: SW-846 8015C GRO Instrument: GC7

Instrument: GC7
Analyst: MDY

Prep Batch: VXX3986
Prep Method: SW-846 5035
Prep Date/Time: 09/11/2012 10:31

Prep Initial Wt./Vol.: **6.84 g** Prep Extract Vol: **5 mL**

Client Sample ID: S-2

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865002-C Lab Project ID: 31202865 Collection Date: 09/07/2012 11:54 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 82.00

Results by SW-846 8015C DRO

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics (DRO)	ND		7.67	mg/kg	1	09/12/2012 22:41

Surrogates

o-Terphenyl 92.1 40.0-140 % 1 09/12/2012 22:41

Batch Information

Analytical Batch: XGC2517 Prep Batch: XXX3033
Analytical Method: SW-846 8015C DRO Prep Method: SW-846 3541
Instrument: GC6 Prep Date/Time: 09/11/2012 17:34

Analyst: DTF

Prep Initial Wt./Vol.: 31.79 g

Prep Extract Vol: 10 mL

103

Results of S-3

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865003-A Lab Project ID: 31202865 Collection Date: 09/07/2012 12:58 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 90.30

70.0-130

Prep Extract Vol: 5 mL

Results by SW-846 8015C GRO

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Gasoline Range Organics (GRO)	ND		4.13	mg/kg	1	09/12/2012 14:33
Surrogates						

Batch Information

Print Date: 09/17/2012

4-Bromofluorobenzene

Analytical Batch: VGC2136

Analytical Method: SW-846 8015C GRO Instrument: GC7
Analyst: MDY

Prep Batch: VXX3986

Prep Method: SW-846 5035

Prep Date/Time: 09/11/2012 10:31

Prep Initial Wt./Vol.: 5.36 g

SGS Analytical Perspectives | 5500 Business Dr. US - 28405 - Wilmington, NC t+1 910 350 1903 f+1 910 350 1557 www.sgs.com

N.C. Certification # 481

09/12/2012 14:33

Client Sample ID: S-3

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865003-C Lab Project ID: 31202865 Collection Date: 09/07/2012 12:58 Received Date: 09/10/2012 14:45 Matrix: Soil-Solid as dry weight

Solids (%): 90.30

Results by SW-846 8015C DRO

<u>Parameter</u>	Result	<u>Qual</u>	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
Diesel Range Organics (DRO)	ND		6.64	mg/kg	1	09/12/2012 23:09

Surrogates

o-Terphenyl 87.5 40.0-140 % 1 09/12/2012 23:09

Batch Information

Analytical Batch: XGC2517

Analytical Method: SW-846 8015C DRO

Instrument: GC6
Analyst: DTF

Prep Batch: XXX3033

Prep Method: **SW-846 3541**

Prep Date/Time: 09/11/2012 17:34 Prep Initial Wt./Vol.: 33.34 g

Prep Extract Vol: 10 mL

Client Sample ID: TW-1

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865004-A

Lab Project ID: 31202865

Collection Date: 09/07/2012 12:48 Received Date: 09/10/2012 14:45

Matrix: Water

Results by SW-846 8260B

<u>Parameter</u>	Result	Qual	LOQ/CL	<u>Units</u>	<u>DF</u>	Date Analyzed
1,1,1,2-Tetrachloroethane	ND		1.00	ug/L	1	09/11/2012 16:30
1,1,1-Trichloroethane	ND		1.00	ug/L	1	09/11/2012 16:30
1,1,2,2-Tetrachloroethane	ND		1.00	ug/L	1	09/11/2012 16:30
1,1,2-Trichloroethane	ND		1.00	ug/L	1	09/11/2012 16:30
1,1-Dichloroethane	ND		1.00	ug/L	1	09/11/2012 16:30
1,1-Dichloroethene	ND		1.00	ug/L	1	09/11/2012 16:30
1,1-Dichloropropene	ND		1.00	ug/L	1	09/11/2012 16:30
1,2,3-Trichlorobenzene	ND		1.00	ug/L	1	09/11/2012 16:30
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/11/2012 16:30
1,2,4-Trichlorobenzene	ND		1.00	ug/L	1	09/11/2012 16:30
1,2,4-Trimethylbenzene	3.77		1.00	ug/L	1	09/11/2012 16:30
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/11/2012 16:30
1,2-Dibromoethane	ND		1.00	ug/L	1	09/11/2012 16:30
1,2-Dichlorobenzene	ND		1.00	ug/L	1	09/11/2012 16:30
1,2-Dichloroethane	ND		1.00	ug/L	1	09/11/2012 16:30
1,2-Dichloropropane	ND		1.00	ug/L	1	09/11/2012 16:30
1,3,5-Trimethylbenzene	1.83		1.00	ug/L	1	09/11/2012 16:30
1,3-Dichlorobenzene	ND		1.00	ug/L	1	09/11/2012 16:30
1,3-Dichloropropane	ND		1.00	ug/L	1	09/11/2012 16:30
1,4-Dichlorobenzene	ND		1.00	ug/L	1	09/11/2012 16:30
2,2-Dichloropropane	ND		1.00	ug/L	1	09/11/2012 16:30
2-Butanone	ND		25.0	ug/L	1	09/11/2012 16:30
2-Chlorotoluene	ND		1.00	ug/L	1	09/11/2012 16:30
2-Hexanone	ND		5.00	ug/L	1	09/11/2012 16:30
4-Chlorotoluene	ND		1.00	ug/L	1	09/11/2012 16:30
4-Isopropyltoluene	ND		1.00	ug/L	1	09/11/2012 16:30
4-Methyl-2-pentanone	ND		5.00	ug/L	1	09/11/2012 16:30
Acetone	ND		25.0	ug/L	1	09/11/2012 16:30
Benzene	15.6		1.00	ug/L	1	09/11/2012 16:30
Bromobenzene	ND		1.00	ug/L	1	09/11/2012 16:30
Bromochloromethane	ND		1.00	ug/L	1	09/11/2012 16:30
Bromodichloromethane	ND		1.00	ug/L	1	09/11/2012 16:30
Bromoform	ND		1.00	ug/L	1	09/11/2012 16:30
Bromomethane	ND		1.00	ug/L	1	09/11/2012 16:30
n-Butylbenzene	ND		1.00	ug/L	1	09/11/2012 16:30
Carbon disulfide	ND		1.00	ug/L	1	09/11/2012 16:30
Carbon tetrachloride	ND		1.00	ug/L	1	09/11/2012 16:30
Chlorobenzene	ND		1.00	ug/L	1	09/11/2012 16:30
Chloroethane	ND		1.00	ug/L	1	09/11/2012 16:30
Chloroform	ND		1.00	ug/L	1	09/11/2012 16:30
Chloromethane	ND		1.00	ug/L	1	09/11/2012 16:30
Dibromochloromethane	ND		1.00	ug/L	1	09/11/2012 16:30
Dibromomethane	ND		1.00	ug/L	1	09/11/2012 16:30

Client Sample ID: TW-1

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865004-A Lab Project ID: 31202865 Collection Date: 09/07/2012 12:48 Received Date: 09/10/2012 14:45

Matrix: Water

Results by **SW-846 8260B**

<u>arameter</u>	Result	Qual		LOQ/CL	LOQ/CL Units
Dichlorodifluoromethane	ND			5.00	5.00 ug/L
-1,3-Dichloropropene	ND			1.00	1.00 ug/L
ns-1,3-Dichloropropene	ND		1.00		ug/L
Diisopropyl Ether	ND		1.00		ug/L
Ethyl Benzene	10.4		1.00		ug/L
Hexachlorobutadiene	ND		1.00		ug/L
Isopropylbenzene (Cumene)	ND		1.00		ug/L
Methyl iodide	ND		1.00		ug/L
Methylene chloride	ND		5.00	ug	g/L
Naphthalene	ND		1.00	ug/	L
Styrene	ND		1.00	ug/L	
Tetrachloroethene	6.80		1.00	ug/L	
Toluene	8.77		1.00	ug/L	
Trichloroethene	ND		1.00	ug/L	
Trichlorofluoromethane	ND		1.00	ug/L	
Vinyl chloride	ND		1.00	ug/L	
Xylene (total)	37.6		2.00	ug/L	
cis-1,2-Dichloroethene	ND		1.00	ug/L	
m,p-Xylene	28.6		2.00	ug/L	
n-Propylbenzene	1.06		1.00	ug/L	
o-Xylene	9.03		1.00	ug/L	
sec-Butylbenzene	ND		1.00	ug/L	
tert-Butyl methyl ether (MTBE)	ND		1.00	ug/L	
tert-Butylbenzene	ND		1.00	ug/L	
trans-1,2-Dichloroethene	ND		1.00	ug/L	
trans-1,4-Dichloro-2-butene	ND		5.00	ug/L	
Surrogates					
1,2-Dichloroethane-d4	106		64.0-140	%	
4-Bromofluorobenzene	105		85.0-115	%	
Toluene d8	103		82.0-117	%	

Batch Information

Analytical Batch: VMS2543
Analytical Method: SW-846 8260B

Instrument: MSD4
Analyst: BWS

Prep Batch: VXX3979

Prep Method: **SW-846 5030B** Prep Date/Time: **09/11/2012 08:17**

Prep Initial Wt./Vol.: 40 mL
Prep Extract Vol: 40 mL

Client Sample ID: TW-1

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865004-D Lab Project ID: 31202865 Collection Date: 09/07/2012 12:48 Received Date: 09/10/2012 14:45

Matrix: Water

Results by **SW-846 8270D**

	D "	
Parameter	Result	<u>Qual</u>
1,2,4-Trichlorobenzene	ND	
1,2-Dichlorobenzene	ND ND	
1,3-Dichlorobenzene	ND ND	
1,4-Dichlorobenzene	ND ND	
2,4,5-Trichlorophenol	ND	
2,4,6-Trichlorophenol		
2,4-Dichlorophenol	ND ND	
2,4-Dinitrophenol	ND	
2,4-Dinitrotoluene	ND	
2,6-Dinitrotoluene	ND	
2-Chloronaphthalene	ND	
2-Chlorophenol	ND	
2-Methylnaphthalene	ND	
2-Methylphenol	ND	
2-Nitroaniline	ND	
2-Nitrophenol	ND	
3 and/or 4-Methylphenol	ND	
3,3'-Dichlorobenzidine	ND	
3-Nitroaniline	ND	
4,6-Dinitro-2-methylphenol	ND	
4-Chloro-3-methylphenol	ND	
4-Chloroaniline	ND	
4-Chlorophenyl phenyl ether	ND	
Acenaphthene	ND	
Acenaphthylene	ND	
Anthracene	ND	
Benzo(a)anthracene	ND	
Benzo(a)pyrene	ND	
Benzo(b)fluoranthene	ND	
Benzo(g,h,i)perylene	ND	
Benzo(k)fluoranthene	ND	
Benzoic acid	ND	
Bis(2-Chloroethoxy)methane	ND	
Bis(2-Chloroethyl)ether	ND	
Bis(2-Chloroisopropyl)ether	ND	
Bis(2-Ethylhexyl)phthalate	ND	
4-Bromophenyl phenyl ether	ND	
Butyl benzyl phthalate	ND	
Chrysene	ND	
Di-n-butyl phthalate	ND	
2 suty. prittialate		
• .	ND	
Di-n-octyl phthalate Dibenz(a,h)anthracene	ND ND	

Client Sample ID: TW-1

Client Project ID: 70127335 U-3315 Parcel#186

Lab Sample ID: 31202865004-D Lab Project ID: 31202865 Collection Date: 09/07/2012 12:48 Received Date: 09/10/2012 14:45

Matrix: Water

Results by **SW-846 8270D**

	Result	<u>Qual</u>
Diethyl phthalate	ND	
Dimethyl phthalate	ND	
2,4-Dimethylphenol	ND	
Diphenylamine !	ND	
Fluoranthene	ND	
Fluorene	ND	
Hexachlorobenzene !	ND	
Hexachlorobutadiene !	ND	
Hexachlorocyclopentadiene !	ND	
Hexachloroethane I	ND	
Indeno(1,2,3-cd)pyrene	ND	
Isophorone I	ND	
Naphthalene I	ND	
4-Nitroaniline	ND	
Nitrobenzene	ND	
4-Nitrophenol	ND	
Pentachlorophenol !	ND	
Phenanthrene !	ND	
Phenol !	ND	
Pyrene !	ND	
n-Nitrosodi-n-propylamine	ND	
urrogates		
2,4,6-Tribromophenol	95.0	
•	90.0	
2-Fluorophenol	74.0	
Nitrobenzene-d5	97.0	
	89.0	
Phenol-d6	09.0	

Batch Information

Analytical Batch: XMS1663 Analytical Method: SW-846 8270D

Instrument: MSD10 Analyst: CMP Prep Batch: XXX3040

Prep Method: SW-846 3520C Prep Date/Time: 09/13/2012 08:20 Prep Initial Wt./Vol.: 993 mL

Prep Extract Vol: 5 mL

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. 21202865

Section C

Section B

₽

Page:

Pace Project No./ Lab I.D. (N/A) DRINKING WATER SAMPLE CONDITIONS S DWOVY. OTHER 165474 (N/A) Sealed Coole Custody Received on Ice (Y/N) GROUND WATER Residual Chlorine (Y/N) 5 O° ni qmeT 7 /4457 REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) 916 21-96 TIME 9-108-12 1200 1/10/14 STATE: Site Location NPDES DATE UST (<u>0658) 2</u> (0658) 2 ACCEPTED BY / AFFILIATION 701 270 270 ァ ♦ test Test N/A ulillan Other Methanol Preservatives _EO_SS₂6N HOSN 1200 Aug НСІ Invoice Information: Attention: ^EONH Company Name: ⁷OS²H 9-10-12 HUS Pace Quote Reference: Pace Project Manager: Pace Profile #: 9/60 PRINT Name of SAMPLER: \mathcal{B} Unpreserved IME 7 Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE 9-10-12 9-10-12 SAMPLE TEMP AT COLLECTION DATE 842 1253 1154 シーケイ 115 TIME COMPOSITE END/GRAB DATE COLLECTED RELINQUISHED BY / AFFILIATION Project Name: 0-3315 # 186 7 554/120 TIME COMPOSITE START 70127335 DATE Required Project Information: SAMPLE TYPE (G=GRAB C=COMP) P urchase Order No.: ₹ Project Number: シメ MATRIX CODE Report To: Copy To: WY WY SIZE AND SIZE A Matrix Codes MATRIX / CODE Drinking Water Water Waste Water Product Soil/Solid Oil Wipe Air Tissue Stey & Email To: Choffmond terratur. 57. Anotex ADDITIONAL COMMENTS SLABYO CREENS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE ,3 SAMPLE ID ピープ Company: (680 ALO) Required Client Information Section A Required Client Information: 916-813-221 Requested Due Date/TAT Section D 10 F # MBIII 40 9 œ 6

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

SIGNATURE of SAMPLER:

ORIGINAL

F-ALL-Q-020rev.07, 15-May-2007

(MM/DD/YY): 9-7-12

SGS North America Inc.

Sample Receipt Checklist (SRC)

Client:	NCDOT-Terracon	_ Work Order No.:	31202865
1.	Shipped X Hand Delivered	Notes:	
2.	X COC Present on Receipt No COC Additional Transmittal Forms		
3.	Custody Tape on Container X No Custody Tape		
4.	X Samples Intact Samples Broken / Leaking		
5.	X Chilled on Receipt Actual Temp.(s) in °C: Ambient on Receipt Walk-in on Ice; Coming down to temp. Received Outside of Temperature Specification		
6.	X Sufficient Sample Submitted Insufficient Sample Submitted		
7.	Chlorine absent HNO3 < 2 HCL < 2 Additional Preservatives verified (see notes)		
8.	X Received Within Holding Time Not Received Within Holding Time		
9.	X No Discrepancies Noted Discrepancies Noted NCDENR notified of Discrepancies*		
10.	X No Headspace present in VOC vials Headspace present in VOC vials >6mm		
Comments: _			
		·	
	· · · · · · · · · · · · · · · · · · ·		
	Inspe	ected and Logged in by: <u>JJ</u> Date:	Mon-9/10/12 00:00