Prioritization Assessment Report Scott's Cleaners

DSCA ID: 74-0010 111 W. 10th Street Greenville, Pitt County

North Carolina Dry-Cleaning Solvent Cleanup Act Program

H&H Job No. DS0-82A October 29, 2013

SMARTER ENVIRONMENTAL SOLUTIONS

#C-1269 Engineering #245 Geology

2923 South Tryon Street, Suite 100 Charlotte, NC 28203 704.586.0007 main 3334 Hillsborough Street Raleigh, NC 27607 919.847.4241 main

www.harthickman.com

Via E- Mail

October 29, 2013

Mr. Jay King North Carolina Department of Environment and Natural Resources Division of Waste Management, Superfund Section Dry Cleaning Solvent Cleanup Program 1646 Mail Service Center Raleigh, NC 27699

Re: Prioritization Assessment Report Scott's Cleaners Greenville, Pitt County DSCA ID # 74-0010 <u>H&H Job No. DS0-82A</u>

Dear Jay:

Attached please find a Prioritization Assessment Report documenting initial soil and groundwater assessment activities conducted at the Scott's Cleaners site located at 111 W. 10th Street in Greenville, Pitt County, North Carolina.

As part of the prioritization assessment activities, H&H installed and sampled nineteen soil borings (SB-1 through SB-19) and seventeen temporary monitoring wells (TMW-1 through TMW-17). The results indicate that soil and groundwater at the site have been impacted by releases of the dry-cleaning solvent tetrachloroethene (PCE). The groundwater impacts extend off of the source property primarily to the north/northeast. Additional assessment activities are needed to further delineate the extent of impacts.

3334 Hillsborough Street Raleigh, NC 27607 919.847.4241 main Mr. Jay King October 29, 2013 Page 2

H&H appreciates the opportunity to work with you on this project. If you have any questions or require additional information, please do not hesitate to contact us at 704-586-0007.

Very truly yours,

Hart & Hickman, PC

Many Johanson

Mary Johanson Assistant Project Geologist

Attachment

Chistre Zutal

Christie Zawtocki, PE Principal Engineer

Assessment Report Forms for

North Carolina Dry-Cleaning Solvent Cleanup Act Program

Facility Name	Scott's Cleaners			
racinty Name:	111 W. 10th Street, Greenville, Pitt County			
DSCA ID No.:	74-0010			
Submittal Date:	October 29, 2013			
Prepared By:	Hart & Hickman, PC			
	2923 South Tryon Street, Suite 100, Charlotte, North Carolina 28203			

Table of Cont	ents	AR TOC
DSCA ID No.	: 74-0010	
Form/Att . No.	Description	Check box if included
	Assessment Report Forms (Page 1 of 2)	
Form 1	Facility Information	
Form 2	Site History	✓
Form 3	Land Use and Receptor Survey	
Form 4	Groundwater Use, Surface Water Use, and Ecological Survey	
Form 5	Site Stratigraphy and Hydrogeology	
Form 6	Non-Aqueous Phase Liquid (NAPL) Information	
Att 1	Site location man	
Att. 1	Historical aerial photograph	
Att. 2	Historical maps and fire insurance records	
Att. 4	Facility as-building drawings.	
Att. 5	Facility layout diagram indicating the following (if applicable): (i) Service doors, (ii) current and historic location of drycleaning equipment, (iii) solvent/waste storage areas (including ASTs and USTs), (iv) distillation unit, (v) location of septic tank/drainfield or sanitary sewer lateral line, (vi) floor drains, (vii) storm sewer, (viii) expansion joints and cracks in floor, (ix) location of utilities, and (x) location of dumpsters.	
Att. 6	Utility records, including videos of sewer lines and pressure testing.	
Att. 7	Scaled vicinity map illustrating surrounding land use within 500 foot and 0.5 mile radii of the site.	
Att. 8	USGS Quad map with plotted water well location(s) within the 1,500 foot and 0.5 mile radii of the site.	v
Att. 9	Area geologic map/relevant cross-sections.	\checkmark
Att. 10	Soil boring logs which must include the following: (i) OVA or other field screening readings, (ii) depth of samples collect, (iii) odor, (iv) staining, (v) blow counts (if applicable), (vi) interval recovery, (vii) structures and/or bedding, (viii) moisture content, and (ix) borehole disposition (abandonment or conversion to monitor well).	V
Att. 11	Site map showing location(s) of soil sample(s).	
Att. 12	Soil contaminant concentration maps showing the concentration at each sampling point.	
Att. 13	Soil isoconcentration maps.	\checkmark
Att. 14	Site map showing location(s) of monitoring well(s).	\checkmark
Att. 15	Well completion diagrams and records of construction submitted to state.	
Att. 16	Groundwater gradient map.	✓
Att. 17	Groundwater contaminant concentration maps showing the concentration at each sampling point and isoconcentration maps.	I
Att. 18	Map showing location(s) of surface water sample(s) (if applicable).	
Att. 19	Surrace water concentration map showing the concentration at each sampling point (if applicable).	

Form/Att . No.	Description	Check box if included
	Assessment Report Attachments continued (Page 2 of 2)	
Att. 20	Map showing location(s) of water supply well(s) (if applicable).	
Att. 21	Laboratory analytical reports including chain-of custody and qual assurance/quality control (QA/QC) documentation.	lity 🗸
Att. 22		
Att. 23		
Att. 24		
Att. 25		

nd the dry address o
nd the dry address o
address o
ie of the
ed solvents
900s to
1
under my
under my
under my
under my

History		AR For
CA ID No.: 74-0010		
Number of dry-cleaning machines used at current or former facility:	2 er, dry-to-dry wi	ith vented
Transfer machines were believed to be used at the site during early operation recent operations at the site utilized dry-to-dry machines.	ns in the mid-190	00s. More
Type of dry-cleaning solvents used by each type of machine.		
Perchloroethene (PCE) has always been used at the site. Hydrocarbon solve operations at the site.	nt was used in e	arly
Where are/were the dry-cleaning solvents stored at the facility site? (Machin AST(s), etc.)	e base tanks, US	T(s),
Historical storage practices are unknown		
Are chlorinated dry cleaning solvents delivered to the facility by means of a delivery system?	closed, direct-co	oupled
Historical delivery practices are unknown		
Are virgin (new) solvents stored in containers other than the dry- cleaning machine?	O Yes	● No
Are or were any USTs or ASTs used to store any petroleum or hazardous substances other than dry-cleaning solvents at the facility	• Yes	O No
If yes, provide information about the substance stored, year taken out of waste solvent, etc.	f service, virgin	solvent or
According to a <i>Primary Site Assessment</i> conducted by Catlin for NCDOT ir probable UST located on the property that is most likely from the former gas	n July 2012, there is station.	e is a
What methods of disposal are used or have been used for separator water?		
Historical separator water disposal methods are unknown.		
Provide information about the current/historical waste management practice that are/were generated and how the waste are/were stored and managed.	s, including type	s of wastes
Historical waste management practices are unknown.		

ite History AR Form 2							
DSCA ID No.: 74-0010							
Crownal Swafooo Conditions							
Unpaved				_ 01			
✓ Paved %	Paved % area paved: 15						
Any visible cracks in pave	ment?		Yes 🔿 M	No			
-		Subs	urface U	tili	ties		
In the space provided for	additional n	otes, ple	ease indi	cate	e the location	and distance fro	om soil and/or
groundwater contamination	n to the near	est subsi	urface uti	lity	line and acce	ss point (e.g., m	anhole).
Have the utilities been scre	ened for var	or level	s?	С) Yes 💽 No		
If YES, attach documentat	ion of vapor	monitor	ring resul	ts.			
Indicate which of the foll	owing utiliti	es curre	ently act	as	conduits, or a	are likely to bec	ome conduits,
under the columns entitled	"Impacted b	y Relea	se," and '	'Po	tentially Impa	cted by Release,	" respectively.
	Depth	Τı	vpe of		Flow	Impacted	Potentially
	[feet]	Ma	aterial		Direction	by Release	Impacted
Sanitary sewer	Unknown	Unkt	nown		Unknown	Unknown	by Kelease Yes
\square Septic drainfields	Unknown	China	10 10 1		Unknown	Clikitown	105
\Box Covered storm sewer							
Open ditch							
✓ Water line	Unknown	Unkr	nown		Unknown	Unknown	Yes
☑ Gas line	Unknown	Unkr	nown		Unknown	Unknown	Yes
Electric line	Unknown	Unkr	nown		Unknown	Unknown	Yes
✓ Telephone line	Unknown	Unkr	nown		Unknown	Unknown	Yes
			~				
Data the release was diseas	l Land	Release	Charact	eri	zation	2012	
Date the release was report	ted				July	$\frac{2012}{r 30, 2012}$	
Type of release (explain)	(u	Chlorina	ated solve	ents	identified in s	soil and groundy	vater are likely du
to former drycleaning oper	ations at the	site; hov	wever, the	e sc	ource of the rele	ease is unknown	. Petroleum-based
solvents identified in soil an	d groundwate	er are lik	ely from a	a fo	rmer gas station	n that previously	operated at the site
Has the release been abated	d?	• Yes	O No				
Is native soil impacted?		Yes	O No				
Is groundwater impacted?		• Yes	O No				
Is surface water impacted?		O Yes	No		Surface w	vater has not bee	en sampled.
Release Discovery							
\Box UST(s)/AST(s) remov	al				Known spill i	ncident	
☐ Inventory control	□ Inventory control □ Citizen complaint						
☐ Facility remodeling/Construction activity ☐ Assessment on adjacent property							
Environmental assessm	nent				Unknown		

Site History		AR Form
DSCA ID No.: 74-0010		
Q		
Sol	arce(s) of Rel	Tanka
Bining		Lanks
$\Box \text{Other} (\text{specify})$	Ľ	UIKIIOWII
Che	micals of Cor	ncern
\Box 1.1.1-Trichloroethane	<u></u>	cis-1.2-Dichloroethylene
\square 1.1.2.2-Tetrachloroethane		Ethylbenzene
\square 1,1,2-Trichloroethanae		Methyl tert-butyl ether (MTBE)
\square 1,1-Dichloroethane		Naphthalene
\square 1,1-Dichloroethylene	 	Tetrachloroethylene
1,2-Dichloroethane (EDC)	\checkmark	Toluene
✓ Benzene	√	trans-1,2-Dichloroethylene
Benzo(a)pyrene	\checkmark	Trichloroethylene
Carbon tetrachloride		Vinyl chloride
Chloroform	<u> </u>	Xylenes (total)
✓ Others		
1,2,4-Trimethylbenzene		
1,3,5-Trimethylbenzene		
A	dditional No	tes
The primary constituents of concern associat tetrachloroethene (PCE) and trichloroethene concentrations above the DSCA Tier 1 RBSI (dichloroethene) and trans-1,2-DCE, which a and/or groundwater but at concentrations bel The other constituents checked above are no With the exception of benzene, ethylbenzene groundwater at concentrations below DSCA station operated on the property in the early t	ted with the fo (TCE). Thes Ls in groundware degradation low the DSCA t believed to be e, and xylenes Tier 1 RBSL to mid-1900s.	ormer dry-cleaning operations are e constituents have been detected at vater and/or soil. Cis-1,2-DCE on products of PCE, were also detected in soil A Tier 1 RBSL. be associated with the dry-cleaning release. these constituents have been detected in s. According to historic Sanborn maps, a gas-

	Land Use				
On site Land Us	Current	Futura			
Desidential					
Commorcial/Ind					
	Istriai				
Utner	for forward land user				
Justify the choice	e for future fand use:				
The subject site l	has historically been utilized as a commerc	cial property since the ear	rly 20th century. The		
site is surrounde	d on all sides by commercial properties with	th a few residential prope	erties beyond. Visual		
observations of t	he surrounding properties provide no indic	ciation of a future land us	se change.		
Immediate Off		at a minimum state	whether residential		
commercial/indu	istrial agricultural or ecologically	sensitive area). In	dicate distances to		
residential/comn	nercial/industrial buildings having basemer	nts which are occupied.	dicute distances		
North:	Co!	mmercial			
Northeast:	Cor	mmercial			
Northwest:	Сол	mmercial			
South:	Commercial with	some residential beyond			
Southeast:	Commercial with	some residential beyond			
Southwest:	Сот	mmercial			
West:	Сот	mmercial			
East:	Commercial				
	Receptor Sur	vey			
List the distance	and the direction (downgradient, upgrad	lient, or crossgradient) to	these facilites within		
0.5 mile radius o	of the site (If necessary provide details in a	dditional notes).			
		Distance [feet]	Direction		
Nearest residenti	al site:	185	Upgradient		
Nearest commer-	cial/industrial site:	90	Downgradient		
If site is vacant,	nearest inhabited building:	N/A	N/A		
Nearest ecologic	ally sensitive area (agricultural areas,				
parks/recreationa	al areas, widlife sanctuaries, wetlands):	1,800	Downgradient		
Nearest school, h	nospital, day care, nursing home etc.:	900	Downgradient		
Nearest public su	upply well:	1,000	Upgradient		
Nearest private s	upply well:	N/A	N/A		
Nearest point of	exposure (current or potential) for	1.000	TT 11		
groundwater ing	estion:	1,000	Upgradient		
Nearest surface v	water body:	1,800	Downgradient		
	Additional No	otes			
		measured from the subject sit	e to the applicable site		
Distances to the near	rest residential, commercial, and school sites were				
Distances to the nea property lines. Dista	ances to the nearest ecologically sensitive area, poin	nt of exposure, and surface wa	ater body were measured		
Distances to the nea property lines. Dista from the groundwate	ances to the nearest ecologically sensitive area, pointer source area. Groundwater at the site flows to the	nt of exposure, and surface wa northeast. An unnamed tribu	ater body were measured atary to the Tar River is		

roundwater Use, Surface Water Use, a	and Ecological Survey			AR Forn
SCA ID No.: 74-0010				
	Groundwater U	se		
Is the groundwater used on-site?	Yes No			
If yes, specify the use:				
Potable domestic supply				
Non-potable domestic supply				
Public/Municipal supply				
Industrial supply Δ griculture				
Other (explain in space provided bel	.ow)			
Is a surface water body present in 1.00	Surface Water U			
Is a surface water body present in 1,00	O feet radius of the site :			
If yes, specify the following.	r Wet weather cre		in ditch	
• Other			in anon	
North Carolina classification of water	body			
Does the water discharges into lake or	reservoir?) Yes 💿 No		
Surface water use:				
Potable domestic supply				
Non-potable domestic supply				
Public/Municipal supply				
Industrial supply				
Agriculture Other (explain in space provided hel				
Other (explain in space provided bei	OW)			
E	cological Receptors and	d Habitats		
1. Are there any ecological receptors of	r habitats present within	500 feet radius	Yes 🔘	No
2 Are there visible indications of stress	ased recentors or habitats	s on or near the		
site that may be a result of chemical	release?	, on or near the	Yes O	No
	Water Well(s) Inform	nation		
1. Are there public/municipal water su	pply wells within 0.5 mi	le radius from	• Yes	No
2. Are there private water supply wells	within 1500 feet radius	from the site?	Yes 🕥	No
	Additional Note	ès		
The closest public water supply well is	s located approximately	1,000 feet south	west and upgrad	lient of the site.
No private water supply wells are loca	ted within 1,500 feet of	the site.	1 <i>0</i> -11	

Site Stratigraphy and Hydrogeology

SCA ID No.: 74-0010							
	Stratigra	ohy of Site					
Depth [feet] Description of Soil							
0-3 Brown, silty SAND							
3-8	3-8 Tan and orange, clayey SAND						
Predominent Soil T	`ype:						
Depth [feet]	Type of Bedrock and Geological Formation						
N/A	Bedroc	k not encountered at the site.					
	Hydrogeology of the Sa						
Type of Aquifer?		nfined Unconfined Perched					
Underlying predom	inent aquifer name:	N/A					
Aquifer classification	on (if applicable):	N/A					
Range of groundwa	ater level fluctuations [feet bgs]:	N/A					
Average depth to w	vater table/static water level:	9.45					
Flow direction:		Northeast					
Hydraulic gradient	(i) []:	0.013					
Hydraulic conducti	vity (K) [cm/year]:	3,156					
Darcy velocity (K x	(i) [cm/year-calculated]:	41.03					
Groundwater veloci	ity (K x i/Porosity) [cm/year]:	NA					
Annual precipitatio	n (average for last 30 years) [inc	hes/year]: 49.4					
	A ddition	al Natag					
	Auuiuoi	lai Notes					
A years as donth to a	noundrustania on sugrams of Aug	ust 2012 data for tomogramy manitoring walls TMW					
Average depth to gi	Coundwater is an average of Aug	ust 2013 data for temporary monitoring wells 1 M w					
1, 11/1// -2, 11/1///	5, 11v1 vv - 7, 11v1 vv - 6, and 11v1 vv - 1	.0.					
There are no histori	ical groundwater elevation data t	o calculate a range of groundwater fluctuations					
There are no mistori	tear groundwater elevation data t	o calculate a range of groundwater fractautions.					
Groundwater at the	site predominately flows to the	northeast.					
Groundwater at the site predominatery nows to the northeast.							
The hydraulic gradient was calculated from August 2013 groundwater elevation data for TMW-8 and							
TMW-1.							
Hydraulic conductivity is based on typical values for the predominant soil type (Dawson & Istok,							
Aquifer Testing: De	esign and Analysis of Pumping a	nd Slug Tests, 1991).					
Average annual pre	cipitation for Greenville, NC wa	s obtained from:					
http://www.usclima	itedata.com/climate.php?location	n=USNC0281					

Values/Pan			
values/Kall	<u>ge</u>		Method
NA	Estimated	Measured	NA
NA	Estimated	\square Measured	NA
NA	Estimated	□ Measured	NA
NA	Estimated	□ Measured	NA
NA	Estimated	☐ Measured	NA
e Character	ristics		
Values/Rang	ge		Method
NA	Estimated	☐ Measured	NA
NA	Estimated	☐ Measured	NA
NA	Estimated	☐ Measured	NA
NA	Estimated	☐ Measured	NA
NA	Estimated	☐ Measured	NA
onal Notes			
ne site to date	e.		
	NA NA NA NA NA e Character Values/Rang NA NA NA NA NA MA NA a nal Notes	NA Estimated NA Estimated	NA Estimated Measured NA Estimated Measured NA Estimated Measured NA Estimated Measured Values/Range Ma Estimated Measured NA Estimated Measured

Non-Aqueous Phase Liquid (NAPL) Information	AR Form 6
DSCA ID No.: 74-0010	
Was NAPL discovered at the site: O Yes) No
If Yes, type of NAPL discovered:	DNAPL
Summary of LNA	APL
Date LNAPL was discovered?	
Type of LNAPL discovered (if known):	
Number of monitoring wells/points currently at site:	
Number of monitoring wells/points containing LNAPL ()	Note if any, list the monitoring wells/points
Has LNAPL removal started?	
If No, cite reason:	
If Yes, specify method of removal (bailer, pump, etc.):	
Total number of recovery events to date:	
Total amount of purge-water recovered:	
Total amount of LNAPL recovered:	
Date of latest LNAPL removal report submitted:	
Summary of DNA	APL
Date DNAPL was discovered?	
I ype of DNAPL discovered (if known):	
Number of monitoring wells/points containing DNAPL (Note	if any, list the monitoring wells/points
Has DNAPL removal started?	
If No, cite reason:	
Removal points (MW # Boring # etc.):	
Total number of recovery events to date:	
Total amount of purge-water recovered:	
Total amount of DNAPL recovered:	
Date of latest DNAPL removal report submitted:	
Additonal Not	es
Based on the 2013 sampling activities, no NAPL has been dise	covered at the site.

SITE LOCATION MAP

HISTORICAL SANBORN MAPS

SCALED VICINITY MAP

WATER SUPPLY WELL LOCATION MAP

AREA GEOLOGIC MAP

BORING LOGS

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261

BORING NUMBER SB-1/TMW-1

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	70	4-586-0	007(p) 704-5	36-0373(f))	919-84	7-4241(p) 919-847-4261(f)				
	UEPTH (ft)	OVERY (%)	MPLE TYPE NUMBER		OVA (ppm)	тногосу	MA	TERIAL DESCRIPTION	BORING D	IAGRAM HLd JQ	
	0.0	REO	SAN	BKG.	SAMP.						
	0.0 <u>-</u> 			0	0		(SC-SM) Tan to orange	e, clayey SAND		0.0- 	
			🖑 дв	0	0						
	2.5_			0	0						
				0	0					-	
			₩у дв	0	0						
	5.0-			0	0					5.0 	
				0	0		1 1 1 1				
AAA-MASTER GINT PROJECTS\DSO-82.GPJ	7.5			0	0		(CL-ML) Tan to orange	, silty CLAY, groundwater at 8 ft bgs		-7.5 - - - - - - - 10.0 - - - - - - - - - - - - - - - - - -	
14 - S:\	12 5-						Botto	om of borehole at 12.0 feet.		-12.5	
3/13 13:	-2.5										
CKMAN.GDT - 10/23											
RT HI	15.0-			0705		<u> </u>				-15.0	
BORING LOG - HA	DRILI DRILI SAMF LOGO DRAV	LING L RIG PLINC GED I WN B	METHO METHO METHO BY: MG Y: BRK	D: Dir D: DP	: Quar ect Pu T Slee	ntex sh ves	BORII BORII TOTA TOP (DEPT	NG STARTED: 8///13 NG COMPLETED: 8/7/13 L DEPTH: 12 ft. DF CASING ELEV: H TO WATER:	Remarks:		

3334 Hillsborough Street 2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 Raleigh, North Carolina 27607

BORING NUMBER SB-2/TMW-2

Sheet 1 of 1

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

	70	4-586-0	007(p) 704-58	6-0373(f)		919-84	LOCATION: 111 West 10th Street, Greenville, NC			
ПЕРТН	(ft)	RECOVERY (%)	MPLE TYPE NUMBER		OVA (ppm)	тногосу	МА	TERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
		RE(SA	BKG.	SAMP.					
).0 <u>-</u> 			0	0		(SC-SM) Tan to orange	, clayey SAND		
			∰ GB	0	0					_
2	 2.5			0	0					_ -2.5 _
				0	0					
5	 5.0		∰ GB	0	0					_ _ _5.0
	-			0	0					
SO-82.GPJ	-			0	0					_
ER GINT PROJECTS/D	 7.5 			0	0					_ _7.5 _ _ _
MASTE							Bott	om of borehole at 9.0 feet		-
:\AAA-	4									E
14 - S										-10.0
3/13 13	_									E
- 10/2:	_									E
N.GDT	7									$\left - \right $
CKMA	-									F
IART H		LING	CONTRA	CTOR:	Quar	l	BORI	NG STARTED: 8/7/13	Remarks:	<u> </u>
BORING LOG - F	BRILLING CONTRACTOR: Quantex DRILL RIG/ METHOD: Direct Push SAMPLING METHOD: DPT Sleeves LOGGED BY: MG DRAWN BY: BRK						BORIN TOTA TOP C DEPT	NG COMPLETED: 8/7/13 L DEPTH: 9 ft. DF CASING ELEV: H TO WATER:		

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261

BORING NUMBER SB-3/TMW-3

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

L	704-586-0007(p) 704-586-0373(f)						7-4241(p) 919-847-4261(f)			,	
	UEPIH (ft)	OVERY (%)	APLE TYPE NUMBER		UVA (ppm)	тногоду	MA	TERIAL DESCRIPTION		BORING DIAGRAM	DEPTH (ft)
		REC	SAN	BKG.	SAMP.						
	-0.0 			0	0		Concrete (SM) Brown, silty SANI)			0.0
	-			-							-
	_		₩ <mark>}</mark> GB	0	3.2						-
	 2.5			0	1.4						_ _2.5 _
	-			0	0.7						_
	-			0	1.4		(SC) Tan, clayey SANE	D, moist at 4 ft, wet at 5 ft			_
DSO-82.GPJ	5.0— — — —			0	4.4						-5.0
SINT PROJECTS	-			0	3.1						
:\AAA-MASTER (_ 7.5– _			0	0		(CL) Tan, CLAY				_ 7.5 _
:14 - S	_						Bott	tom of borehole at 8.0 feet.			_
3/13 13	_										E
- 10/23	_										-
I.GDT											E
KMAN	_										_
RTHIC .	10.0-										-10.0
BORING LOG - HAF	dril Dril Sami Logo Dra	ling L Rig Pling Ged B Wn B	Contrac / Methoe 6 Methoe 84: Mg 4: Brk	: Dire : DP1	Quar ect Pus Slee	ntex sh ves	BORII BORII TOTA TOP (DEPT	NG STARTED: 8/7/13 NG COMPLETED: 8/7/13 IL DEPTH: 8 ft. DF CASING ELEV: IH TO WATER:	Remarks		

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-4/TMW-4

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

		1			-	u, v,		
DEPTH (#)	SOVERY (%)	MPLE TYPE NUMBER			тногоду	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
	REC	SAI	BKG.	SAMP.				
			3.2	0		Concrete (SM) Brown, silty SAND		
		∰ GB	0	9.4				
2.5			0	4.8		(SM) Tan, silty SAND		_
			0	1.8		(CL) Tan to orange, CLAY		
		M ^M 2 GB	0	0				
5.0			0					5.0
			0					
			0	0		(SP) Moist to wet, tan to orange, SAND		
7.5 교			0	0				-7.5
NDSO-82.0								
PROJECTS								
ER GINT P								
AAA-MAST								
3:14 - S.	5-					Bottom of borehole at 12.0 feet.		_ -12.5
0/23/13 1								_
N.GDT - 1								
WYOH HICKWA								_ _ -15.0
DRI	LLING LL RIG MPLING GGED AWN B	Contrac 6 Method 6 Method 6 Method BY: MG 8Y: BRK	CTOR: D: Dire D: DP	Quar ect Pue Slee	ntex sh ves	BORING STARTED:8/7/13RemainBORING COMPLETED:8/7/13TOTAL DEPTH:12 ft.TOP OF CASING ELEV:DEPTH TO WATER:	rks:	

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-5

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

			501(p) 104 000			1			
NEDTH	(ff)	COVERY (%)	MPLE TYPE NUMBER		UVA (ppm)	тногосу	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
		REO	SAI	BKG.	SAMP.				
-	0.0						Concrete		-0.0-
	_			0	3.4		(ML) Brown, SILT	-	_
	_		∰ GB	7.2	0			-	_
2	_ 2.5_ _ _			4.6	0		(SC-SM) Tan, clayey SAND		_ 2.5
	_			1.8	0			-	
Ę	_ _ _ 5.0_		∰ GB	0.8	0		(CL) Tan to orange, CLAY		 5.0
S\DSO-82.GPJ				0	0			-	-
GINT PROJECT	_			0	0			-	_
AAA-MASTER	_ 7.5_ _			0	0		(CL) Moist to wet, tan, CLAY	-	_ _7.5 _
14 - S	_						Bottom of borehole at 8.0 feet.		_
8/13 13	_							-	_
- 10/23									_
N.GDT									_
CKMA	_							-	-
	0.0-		CONTRA		0.125		RORING STARTED: 8/7/13		-10.0
BORING LOG - H.	DRILI SAME LOGO	L RIG PLING GED E WN B	METHOE METHOE METHOE SY: MG I: BRK): Dire): DP1	ct Pus	sh ves	BORING COMPLETED: 8/7/13 TOTAL DEPTH: 8 ft. TOP OF CASING ELEV: DEPTH TO WATER:		

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-6/TMW-5

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	704-560-0007(p) 704-560-0373(i) 919-047-4.						-+24 ((b) 9 19-047 -+20 ((1)	
DEPTH	(ft)	COVERY (%)	MPLE TYPE NUMBER		(mdd (ppm)	ІТНОГОСУ	MATERIAL DESCRIPTION	BORING DIAGRAM 프 급 문 (문)
		RE	SA	BKG.	SAMP			
-0	.0 - 			0	0		(SM) Brown, silty SAND	0.0-
	-		🕅 GB	0	0			
2	.5-			0	0			-2.5
			₩у GB	0	0		(SC-SM) Moist, tan, clayey SAND	
5				0	0			
				0	0		(SM) Wet, tan, silty SAND	
				0	0			
CTS/DSO-82.GPJ	.5- - - - - -			0	0			-7.5
A-MASTER GINT PROJE	D.0-							-10.0
4 - S:\A/	_						Bottom of borehole at 12.0 feet.	
13 13:1	2.5-							-12.5
- 10/23/	_							
N.GDT								
HICKMA								
	Rili Rili Amf Ogo Rav	LING L RIG PLING GED E WN B	Contrac / Methoe 6 Methoe 84: Mg 7: Brk	: TOR:): Dire): DP1	Quar ect Pus Γ Slee	l ntex sh ves	BORING STARTED: 8/7/13 Rem BORING COMPLETED: 8/7/13 TOTAL DEPTH: 12 ft. TOP OF CASING ELEV: DEPTH TO WATER:	arks:

Sheet 1 of 1

2923 South Tryon Street-Suite 100 3334 Hillsbord Charlotte, North Carolina 28203 Raleigh, North

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-7

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	704-586-0	0007(p) 704	-586-03	373(f)		919-84	919-847-4241(p) 919-847-4261(f)			
DEPTH (#)	(III) SOVERY (%)	MPLE TYPE				тногосу	MA	TERIAL DESCRIPTION	BORING D	
	REC	SAI		BKG.	SAMP.					
-0.0	 			0	0		(SM) Brown, silty SANI)		0.0-
		₩y G	В	0	0					-
2.5				0	0					_ 2.5
	-			0	0		(SM) Tan, silty SAND			
5.0		my G	в	0	0					 5.0
S\DSO-82.GPJ				0	0	Z74 T				
R GINT PROJECT	-			0	0		(SU-SW) Wolst, tan to t			
S:\AAA-MASTER	 j 			0	0		Bott	om of borehole at 8.0 feet		_ _7.5 _
13 13:14 -	-						BOU			-
r - 10/23/	-									-
MAN.GD										
¥ 10.0⊐	o-									-10.0
DRI	illing Ill Rig Mpling Gged I Awn B	Contr / Meth G Meth By: Mg Y: Brk	ACT OD: OD:	OR: Dire DPT	Quan ct Pus Slee	ntex sh ves	BORII BORII TOTA TOP C DEPT	NG STARTED: 8/7/13 NG COMPLETED: 8/7/13 L DEPTH: 8 ft. DF CASING ELEV: H TO WATER:	Remarks:	

2923 South Tryon Street-Suite 100

Charlotte, North Carolina 28203

SMARTER ENVIRONMENTAL SOLUTIONS

3334 Hillsborough Street

Raleigh, North Carolina 27607

BORING NUMBER SB-8

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

7	04-586-0	007(p) 704-586	6-0373(f)		919-84	7-4241(p) 919-847-4261(f)			
DEPTH (ft)	:OVERY (%)	APLE TYPE NUMBER		UVA (ppm)	гногоду	MA	TERIAL DESCRIPTION	BORING DIA	GRAM HLd JU
	REC	SAN	BKG.	SAMP.					
-0.0-						Concrete			0.0-
-			0	0		(SM) Brown, silty SANI)		-
-		∰ GB	0	0					
_ 2.5– _			0	0		(SM) Tan, silty SAND			
-			0	0					
		₩у GB	0	0					
ADSO-82.GPJ			0	0					
GINT PROJECTS			0	0					-
			0	0					7.5
3:14 - (Bott	om of borehole at 8.0 feet.		\vdash
3/13 1:									
- 10/2;									-
1.GDT									
- KMA									-
Ĭ 10.0-					<u> </u>				-10.0
PH - DOI DRIL SAM LOG DRA	ling L Rig Pling Ged I Wn B	CONTRAC METHOE METHOE BY: MG Y: BRK	: TOR:): Dire): DP1	Quar ect Pus F Slee	itex sh ves	BORI BORI TOTA TOP (DEPT	NG STARTED: 8/7/13 NG COMPLETED: 8/7/13 L DEPTH: 8 ft. DF CASING ELEV: H TO WATER:	Remarks:	

PROJ

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-9

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

DEPTH (ft)	COVERY (%)	MPLE TYPE NUMBER		- UVA (ppm)	тногосу	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
	REC	SAI	BKG.	SAMP.				
-0.0						Asphalt		-0.0-
-			0	0		(SM) Brown, Silly SAIND		-
-	-	∰ GB	0	0				-
-	-					(SC-SM) Tan to orange, clayey SAND	-	-
2.5-	-		0	0				-2.5 -
-								L
-			0	0				F
-								F
-	-	^{€M} ∕2 GB	0	0				_
5.0-								_
-0.0 -								-5.0
80-82.0	-		0	0				F
- ECTS/D	-					(SM) Tan to orange, silty SAND	-	
PROJE			0	0				
- GIN	-							_ !
HSW 7.5-	-		0	0				-7.5
S:\AAA						Rottom of borehole at 8.0 feet	-	
3 13:14 -								- -
10/23/15								F
- GDT -	-							-
								F
10.0 ⁻				0				-10.0
PH - DOT DNINOG	LING L RIG IPLING GED E WN B	/ Methoe / Methoe / Methoe // Mg /: Brk): Dire): DP	Quar ect Pus F Slee	ntex sh ves	BORING STARTED: 8/7/13 Rema BORING COMPLETED: 8/7/13 TOTAL DEPTH: 8 ft. TOP OF CASING ELEV: DEPTH TO WATER:	IRKS:	

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-10

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	704-560-0		-0073(I)		313-04		
DEPTH	(III) SOVERY (%)	APLE TYPE NUMBER		UVA (ppm)	тногоду	MATERIAL DESCRIPTION	BORING DIAGRAM
	REC	SAN	BKG.	SAMP.			
-0.0)+			0,		Asphalt	0.0-
	- - -		0	0		(SM) Brown, silty SAND	
	-	🖑 GB	0	0			
2.5			0	0		(SC-SM) Tan to orange, clayey SAND	-2.5
			0	0			
5.0	_ _ _ 	₩З GB	0	0			
S\DSO-82.GPJ	-		0	0			
R GINT PROJECT	-		0	0			
S:\AAA-MASTER	 j 		0	0			-7.5
3:14 -	-					Bottom of borehole at 8.0 feet.	
8/13 15							-
- 10/23	_						
.GDT .	-						
(MAN.							
0 ∃ 10.0	0-						-10.0
DRING FOR DRING	illing Ill Rig Mpling Gged I Awn B	Contrag / Methoi G Methoi By: Mg Y: Brk	CTOR: D: Dire D: DPT	Quan ect Pus I Slee	ntex sh ves	BORING STARTED:8/7/13RemainBORING COMPLETED:8/7/13TOTAL DEPTH:8 ft.TOTAL DEPTH:8 ft.TOP OF CASING ELEV:DEPTH TO WATER:	arks:

2923 South Tryon Street-Suite 100 Charlotte, North Carolina 28203 3334 Hillsborough Street 04-586-0007(p) 704-586-0373(f)

Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-11/TMW-17

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

'	04 000 0		0070(1)		1			
DEPTH (ft)	ECOVERY (%)	AMPLE TYPE NUMBER		IP. OVA (ppm)	ГІТНОГОСУ	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
	L 22	0	BKO	SAM				
-0	-		0	7.2	R B A R	Concrete (SM) Tan, silty SAND	1	-0
-		₩ <u></u> GB	0	22.2				_
-	-		0	14.1				-
-			0	7.8		(SC-SM) Tan to orange, clayey SAND	-	
- 5 -		M ^M GB	0	4.2				_ _ 5
-	1		0	1.2				-
_			0	0		(SC-SM) Gray to orange, clayey SAND, wet at 8 ft		_
-			0	0				
-	-							_
- 82.GP	-							_
-01 10								-10
- ROJEC	-							_
	-							-
STER 0								_
AAA-M/	1							-
14 - S:\ -]							
3/13 13:	-							$\left - \right $
-15– 10/2	1					Bottom of borehole at 15.0 feet.		-15- -
AN.GD1	-							-
HICKM	1							
DRIL DRIL DRIL SAM LOG DRA	LLING LL RIG IPLINC GED I	CONTRAC METHOD METHOD METHOD BY: MG Y: BRK	: Dire : DP1	Quar ect Pus I Slee	ntex sh ves	BORING STARTED:8/9/13RemainBORING COMPLETED:8/9/1315TOTAL DEPTH:15 ft.15TOP OF CASING ELEV:15DEPTH TO WATER:15	arks:	·

2923 South Tryon Street-Suite 100 3334 Hillsborough Street Charlotte, North Carolina 28203

Raleigh, North Carolina 27607

BORING NUMBER SB-12

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	70	4-586-0	007(p) 704-586	6-0373(f)		919-84	7-4241(p) 919-847-4261(f)			
	DEPTH (ft)	OVERY (%)	MPLE TYPE NUMBER		- UVA (ppm)	тногосу	MA	TERIAL DESCRIPTION	BORING D	IAGRAM HLd JU
	-0.0	REO	SAN	BKG.	SAMP.					
	-0.0 			0	0		(SM) Brown, silty SANE			
			₩} GB	0	0					
	 2.5			0	0					 2.5
				0	0		(SC-SM) Tan to orange	e, clayey SAND		-
	- - 5 0-		₩ GB	0	0					_ _
SVDSO-82.GPJ	-			0	0					
GINT PROJECTS	-			0	0					
S:\AAA-MASTER	 7.5– 			0	0		Pott	em of horobolo et 9.0 fact		_ _7.5 _
13:14	_						Bott	om of borenole at 8.0 feet.		
0/23/13	_									
GDT - 1	_									
KMAN.	_									_
RT HIC	10.0-									-10.0
BORING LOG - HA	DRIL DRIL SAMI LOGO DRAV	ling L Rig Pling Ged e Wn B	Contrad / Methoi 6 Methoi 8 Me	: Dire): DP	Quar ect Pus T Slee	itex sh ves	BORII BORII TOTA TOP C DEPT	NG STARTED: 8/9/13 NG COMPLETED: 8/9/13 L DEPTH: 8 ft. DF CASING ELEV: H TO WATER:	Remarks:	

2923 South Tryon Street-Suite 100 3334 Hillsborough Street Charlotte, North Carolina 28203

Raleigh, North Carolina 27607

BORING NUMBER SB-13

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	70	04-586-0	007(p) 704-586	i-0373(f)		919-84	47-4241(p) 919-847-4261(f)			
	DEPTH (ft)	OVERY (%)		NUMBER		UVA (ppm)	тногоду	MA	TERIAL DESCRIPTION	BORING DIA	GRAM HLd⊒G
		REC		NAC A	BKG.	SAMP.					
	-0.0 				0	0		(SM) Brown, silty SANI	כ		0.0- _ _ _
	-		6M2	GB	0	0					
	 2.5— 				0	0	778-1				_ -2.5 _ _
					0	0		(SC-SM) Tan to orange	s, clayey SAND		
	_ _ 5.0—		EN S	GB	0	0					_ _ _ _5.0
S\DSO-82.GPJ					0	0					
R GINT PROJECT	-				0	0					
- S:\AAA-MASTEF	7.5-				0	0		Bott	tom of borehole at 8.0 feet.		 -7.5
13 13:14 -	_										-
- 10/23/	_										
AN.GDT	_										
'HICKM,	 10.0-										 -10.0
BORING LOG - HARI	DRIL DRIL SAM LOG DRA	ling L Rig Pling Ged B Wn B	Con / Me 6 Me 8 Y: Y: B	NTRAC THOE THOE MG RK	CTOR: D: Dire D: DP1	Quar ect Pus F Slee	ntex sh ves	BORI BORI TOTA TOP (DEPT	NG STARTED: 8/9/13 NG COMPLETED: 8/9/13 L DEPTH: 8 ft. DF CASING ELEV: H TO WATER:	Remarks:	

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-14

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	704-586-0	007(p) 704-560	-0373(1)		919-04		
DEPTH (#)	COVERY (%)	MPLE TYPE NUMBER		- UVA (ppm)	тногосу	MATERIAL DESCRIPTION	BORING DIAGRAM
	REC	SAI	BKG.	SAMP.			
-0.0						Asphalt	0.0-
			0	0		(SM) Brown, silty SAND	
	_	₩у GB	0	0			
2.5			0	0		(SC-SM) Tan to orange, clayey SAND	-2.5
-			0	0			
5.0		₩у GB	0	0			
S\DSO-82.GPJ			0	0			
R GINT PROJECT			0	0		(SM) fail to orange, silly SAND	
7.5	-		0	0			-7.5
3:14 - 5	-					Bottom of borehole at 8.0 feet.	
3/13 1;							
- 10/2	-						
N.GDT							
CKMA	-						
10.0 E	비미미			0.127		BORING STARTED: 8/0/13	-10.0 arks:
H - DRI SAN LOC DRI DRI	ILL RIG MPLING GGED I AWN B	METHOE METHOE BY: MG Y: BRK): Dire): DP1	ct Pus	sh ves	BORING COMPLETED: 8/9/13 TOTAL DEPTH: 8 ft. TOP OF CASING ELEV: DEPTH TO WATER:	21 NJ.

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-15

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	704-560-0	JUU7(p) 704-560	-0373(1)		919-04	-+241(p) \$15-047-+201(1)		
DEPTH	(11) :OVERY (%)	APLE TYPE NUMBER		UVA (ppm)	тногоду	MATERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
	REC	SAN	BKG.	SAMP.				0.0
2.5 2.5 5.0		<pre> GB GB GB GB </pre>	0	0		Asphalt (SM) Brown, silty SAND (SC-SM) Tan to orange, clayey SAND		-0.0-
T HICKMAN.GDT - 10/23/13 13:14 - S.\AAA-MASTER G 0.0 5.2			0	0		Bottom of borehole at 8.0 feet.		7.5
DR DR DR SAI	illing Ill Rig Mpling Gged I Awn B	Contrac 6/ Method 3 Method By: Mg Y: Brk	CTOR: D: Dire D: DP1	Quar ect Pus Slee	ntex sh ves	BORING STARTED:8/9/13RemainBORING COMPLETED:8/9/13TOTAL DEPTH:8 ft.TOP OF CASING ELEV:DEPTH TO WATER:DEPTH TO WATER:	rks:	

2923 South Tryon Street-Suite 100 Charlotte North Carolina 28203 3334 Hillsborough Street 04-586-0007(p) 704-586-0373(f)

Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-16

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

		4 000 0	001(p)104 000	-0373(1)				
	UEPTH (ft)	COVERY (%)	MPLE TYPE NUMBER			тногоду	MATERIAL DESCRIPTION	
		REC	SAI	BKG.	SAMP.			
F	0.0				0)		Asphalt	0.0-
				0	0		(SM) Brown, silty SAND	-
			₩ GB	0	0			
	_ 2.5_ _			0	0			_ 2.5
				0	0		(SC-SM) Tan to orange, clayey SAND	
	_ _ _ 5.0-		∰ GB	0	0			 5.0
NDSO-82.GPJ				0	0			
GINT PROJECTS	_			0	0		(SC-SM) Gray to orange, clayey SAND	
:\AAA-MASTER (_ 7.5– _			0	0			_ 7.5 _
:14 - S	_						Bottom of borehole at 8.0 feet.	-
3/13 13	_							
- 10/2	_							-
N.GD1	_							
ICKMA								
BORING LOG - HART H	DRILI DRILI SAMF LOGO	ling L Rig Pling Ged B WN B	Contrac / Methoe 6 Methoe 84: Mg 44: Brk	: TOR: : Dire : DP1	Quan ect Pus Slee	ltex sh ves	BORING STARTED: 8/9/13 BORING COMPLETED: 8/9/13 TOTAL DEPTH: 8 ft. TOP OF CASING ELEV: DEPTH TO WATER:	[_] 10.0

 2923 South Tryon Street-Suite 100
 3334 Hillsborough Street

 Charlotte, North Carolina 28203
 Raleigh, North Carolina 27607

 704-586-0007(p) 704-586-0373(f)
 919-847-4241(p) 919-847-4261

BORING NUMBER SB-17

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

L	70	4-586-0	007(p) 704-586	6-0373(f)		919-84	7-4241(p) 919-847-4261(f)		-	
	UEPIH (ft)	OVERY (%)	APLE TYPE NUMBER		UVA (ppm)	тногоду	MA	TERIAL DESCRIPTION	BORING DIAGRAM	DEPTH (ft)
		REC	SAN	BKG.	SAMP.					
	0.0				0,		Concrete			0.0
	_						(SM) Brown, silty SANI)		_
	_			0	0					
	_		M) 05							-
	_		GB							_
	_			-			(SM) Tan, silty SAND			
	2.5-									-2.5
				0	0					
	_									-
	_									_
	_			1						-
	_		M GB							
	5 0-			0	0					
G	5.0									-
0-82.G										
TS\DS	_									-
ROJEC	_									_
SINT P	_			0						
STER (_									-
AA-MA	7.5-									-7.5
- S:\A							Bott	om of borehole at 8.0 feet.		
3 13:14	_									
0/23/1										
3DT - 1	_									$\left - \right $
KMAN.(
ET HICH	10.0-									-10.0
BORING LOG - HAR	DRILI DRILI SAMI LOGO DRAV	ling L Rig Pling Ged B Wn B	Contrac / Methoe 6 Methoe 84: Mg 4: Brk	CTOR:): Dire): DP1	Quar ect Pus I Slee	itex sh ves	BORII BORII TOTA TOP (DEPT	NG STARTED: 8/9/13 NG COMPLETED: 8/9/13 L DEPTH: 8 ft. DF CASING ELEV: H TO WATER:	Remarks:	

3334 Hillsborough Street

Raleigh, North Carolina 27607

2923 South Tryon Street-Suite 100

Charlotte, North Carolina 28203

BORING NUMBER SB-18

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

7	704-586-0	007(p) 704-586	6-0373(f)		919-84	7-4241(p) 919-847-4261(f)			
DEPTH (ft)	COVERY (%)	MPLE TYPE NUMBER		- UVA (ppm)	тногосу	MA	TERIAL DESCRIPTION	BORING E	DIAGRAM (t) (t)
	REC	SAI	BKG.	SAMP.					
-0.0 - - - - - - -		₩ GB	- 0	0		Concrete (SM) Brown, silty SANI)		
- 2.5- - - - -			0	0		(SM) Tan to gray, silty s	SAND		 2.5
- - - - 5.0-85.0ED - - - -		M GB	- 0	0		(SC-SM) Tan to orange	e, clayey SAND		 5.0
S:AAA-MASTER GINT PROJECTS	-		0	0					- - - - - -7.5 -
13:14 -						Bott	iom of dorenole at 8.0 feet.		-
HICKMAN.GDT - 10/23/13 0.01									- - - - - -10.0
	LLING LL RIG MPLINC GGED I	Contrac Method Method Method SMEthod SY: MG Y: BRK	CTOR: D: Dire D: DP1	Quar ect Pus F Slee	ntex sh ves	BORII BORII TOTA TOP (DEPT	NG STARTED: 8/9/13 NG COMPLETED: 8/9/13 L DEPTH: 8 ft. DF CASING ELEV: H TO WATER:	Remarks:	

2923 South Tryon Street-Suite 100 Charlotte North Carolina 28203 3334 Hillsborough Street 04-586-0007(p) 704-586-0373(f)

Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER SB-19

PROJECT: Scott's Cleaners

JOB NUMBER: DSCA ID# 074-0010

LOCATION: 111 West 10th Street, Greenville, NC

	104-300-0	1007(p) 704-300	-0070(1)		010 04		
DEPTH (ft)	COVERY (%)	MPLE TYPE NUMBER			ТНОГОСУ	MATERIAL DESCRIPTION	BORING DIAGRAM
	RE	SA	3KG.	AMP			
-0.0			ш	S S	P S A P	Concrete	0.0-
-	-	₹ ^{MM} Z GB	0	86.1		(SM) Brown, silty SAND	
- 2.5- - - - -			0	250		(SM) Tan to orange, silty SAND	
- - - - - - - - - - - - - - - - - - -		₩ GB	0	416		(SC-SM) Tan to orange, clayey SAND	
S:AAA-MASTER GINT PROJECTS	-		0	312			
- 14 -	-					Bottom of borehole at 8.0 feet.	-
AN.GDT - 10/23/13 1	- - -						
- Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y							-10.0
	LLING LL RIG MPLING GGED I AWN B	CONTRAC METHOD METHOD METHOD BY: MG Y: BRK	TOR: Dire: DP1:	Quar ect Pus Slee	ntex sh ves	BORING STARTED: 8/9/13 Rem BORING COMPLETED: 8/9/13 TOTAL DEPTH: 8 ft. TOP OF CASING ELEV: DEPTH TO WATER:	arks:

ATTACHMENTS 13A-B

SOIL PCE ISOCONCENTRATION MAPS

LEGEND

	SOURCE PROPERTY BOUNDARY
	PROPERTY BOUNDARY
	SOURCE PROPERTY BUILDING
	OFF-SITE BUILDING
۲	SOIL BORING LOCATION
1.1 (1-2')	PCE CONCENRATION IN mg/kg (SAMPLE INTERVAL IN FT BGS)
0.023	PCE ISOCONTOUR LINE IN MG/KG (DASHED WHERE INFERRED)

NOTES:

1. SOIL SAMPLES SB-1 THROUGH SB-19 COLLECTED BETWEEN 8/07/13 AND 8/09/13 BY HART & HICKMAN.

2. SOIL SAMPLES DPT-01 THROUGH DPT-14 COLLECTED BY NCDOT CONTRACTOR BETWEEN 7/16/12 AND 8/03/12.

ATTACHMENT 14

SITE MAP

ATTACHMENT 16

GROUNDWATER GRADIENT MAP

ATTACHMENTS 17A-B

GROUNDWATER ISOCONCENTRATION MAPS

ATTACHMENT 21

LABORATORY ANALYTICAL REPORT

6821 SW Archer Road Gainesville, Florida 32608

Telephone (352) 367-0073 *Fax* (352) 378-6491 Email: info@kbmobilelabs.com

August 15, 2013

Tim Klotz Hart & Hickman 3334 Hillsborough Street Raleigh, NC 27607

RE: Scott's Cleaners #1 111 W. 10th Street, Greenville, NC - Final Data Report KB Labs Project # 13-117

Dear Mr. Klotz:

Enclosed is the final report of the on-site analysis performed by KB Labs, Inc. at the above referenced site. Samples were collected and analyzed from August 7 to 10, 2013. Included are a brief project narrative, data report narrative, tables listing quality control results, final analytical results, and sample chain-of-custody form.

KB Labs' mobile laboratory (KB-2) has been inspected by the North Carolina Department of Environment and Natural Resources and is certified by the Division of Water Quality. Our personnel, methodology. proficiency testing, and quality assurance requirements comply with the guidelines of 15 NCAC 2B.0500, 2H.0900 and 2L .0100, .0200, .0300, and 2N .0100 through .0800 and with the consensus standards adopted at the National Environmental Laboratory Accreditation Conference (NELAC). Data for the site referenced above were determined in accordance with published procedures under Test Methods for Evaluating Solid Waste (EPA SW-846, Update III Revised May 1997). Unless otherwise indicated on the quality control narrative accompanying the data report, the quality assurance and quality control procedures performed in conjunction with analysis of groundwater samples demonstrated that the reported data met our requirements for accuracy and precision under NCDENR and NELAC Standards.

If you have any questions, please do not hesitate to call me or Kelly Bergdoll, President of KB Labs, at (352) 472-5830.

Sincerely,

KB Labs, Inc.

Todd Romero Director of Operations

"KB Labs is a small, woman-owned business enterprise."

PROJECT NARRATIVE

Project Scope

From August 7to 10, 2013, a total of 56 samples (38 soils and 18 water) were analyzed for Hart & Hickman at Scott's Cleaners #1 111 W. 10th Street, Greenville, NC. The samples were analyzed for vinyl chloride, 1,1-dichloroethene, cis- and trans-1, 2- dichloroethene, trichloroethene, tetrachloroethene, benzene, toluene, ethylbenzene, xylenes, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene.

NELAP Certification

KB Mobile Labs Unit KB2: NCDENR Certification Number 632 KB Labs: (% Solids)

Analytical Procedure

All samples were analyzed using SW846 Method 5030/8260 for waters. Ten (10) milliliters (mL) of water or air (air samples) were purged with helium and the volatile organic compounds (VOCs) were collected on a solid-phase adsorption trap. The adsorption trap was heated and back-purged with helium. The components were then separated by capillary column gas chromatography and measured with a mass spectrometer (GC/MS) operated in the electron impact full-scan mode. The individual VOCs in the samples were measured against corresponding VOC standards.

The soil samples were analyzed using SW846 Method 5030/8260. One (1) gram (g) of soil sample was added to 10 mL of laboratory reagent water, heated and analyzed like a water sample as described above.

Soil data are corrected for percent solid values supplied by KB Labs.

Analytical Results

Laboratory results were provided to the client on an as-completed or next-day basis. Final results of the on-site analyses are provided in a hardcopy report and the results relate only to the actual samples received and analyzed in the laboratory. The data produced and reported in the field has been reviewed and approved for this final report by the Director of Operations for KB Labs.

Uncertainty of Reported Values

All measurement data presented in this report are subject to a degree of uncertainty and the degree of uncertainty varies with each compound of interest. KB Labs estimates the

uncertainty of each measurement using a statistical evaluation of the standard deviation from the mean percent recovery of a number of trials of a given measurement. More specifically, KB Labs maintains historical percent recovery control limits at the 99% confidence level for each analyte of interest. These are calculated as \pm 3 times the standard deviation from the mean of historical measurements of the percent recovery of spikes of the analytes of interest into actual and control sample matrices. For example, if the lower and upper percent recovery control limits for a specific analyte of interest have been determined to be 70 and 100 percent respectively, a reported value of 10.0 ug/L will be with 99% confidence 7.0 to 13.0 ug/L.For more information about KB Labs estimation of uncertainty, contact KB Labs' quality assurance officer and/or request a copy of KB Labs' SOP for determining measurement uncertainty.

Quality Control (QC) Data

<u>Surrogate Recoveries</u> – Table 1 lists the daily analytical sequence and percent recovery results for surrogate compounds, which were added to all analyses. Four (4) surrogate compounds were added to each analysis in order to continually monitor general method performance.

<u>VOC Spike Recoveries</u> – Table 2 lists the percent recovery results for matrix spike and laboratory control samples. A known amount of each target compound was added to selected field samples and to laboratory reagent water in order to monitor the performance of each of the target compounds in the actual matrix and in laboratory reagent water.

<u>Method Blanks</u> – Daily analysis of laboratory reagent water samples was performed in order to monitor the cleanliness of the analytical system.

DATA REPORT NARRATIVE

- 1. All sample data has been reviewed and, if required, updated in the Final Data Report for rounding, sample weights, and significant figures.
- 2. Sample ID TMW-17 reported m,p-Xylene 140 changed to 160 ug/L.
- 3. Values between KB Labs Reporting Limit (RL) and Method Detection Limit (MDL) are reported per NCDENR DSCA requirements. All data indicated with J Data Qualifier.

|--|

Client: Hart & Hickman	Driller/Sampler: Hart & Hickman	Analyst: Bob George
Site: #1 111 W. 10th Street	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No: 13-117
On-site Dates : 8/7/13-8/10/13	Client Project Manager: Tim Klotz	Matrix: Water/Soil

Sample ID	Date of	Su	urrogate	% Recove	Surrogate Control Limits				
•	Analysis	S1*	S2*	S3*	S4*	S1*	S2*	S3*	S4*
CCS 50	08/07/13	95	92	104	100	Pass	Pass	Pass	Pass
LCS 20	08/07/13	98	92	105	100	Pass	Pass	Pass	Pass
SOIL BLANK	08/07/13	105	99	104	102	Pass	Pass	Pass	Pass
2080713-01A(SB-1 1-2')	08/07/13	94	90	104	103	Pass	Pass	Pass	Pass
2080713-02A(SB-1 4-5')	08/07/13	95	87	103	104	Pass	Pass	Pass	Pass
2080713-03A(SB-2 1-2')	08/07/13	103	97	104	105	Pass	Pass	Pass	Pass
2080713-05A(SB-3 1-2')	08/07/13	87	94	107	111	Pass	Pass	Pass	Pass
2080713-06A(SB-4 1-2')	08/07/13	110	106	113	122	Pass	Pass	Pass	Pass
2080713-07A(SB-4 4-5')	08/07/13	97	92	100	104	Pass	Pass	Pass	Pass
2080713-08A(SB-5 1-2')	08/07/13	100	96	111	126	Pass	Pass	Pass	Pass
2080713-09A(SB-5 4-5')	08/07/13	104	98	106	105	Pass	Pass	Pass	Pass
BLANK	08/07/13	97	93	102	100	Pass	Pass	Pass	Pass
BLANK	08/07/13	104	99	104	102	Pass	Pass	Pass	Pass
2080713-10A(SB-6 1-2')	08/07/13	101	96	110	129	Pass	Pass	Pass	Pass
2080713-11A(SB-6 3-4')	08/07/13	107	100	105	101	Pass	Pass	Pass	Pass
2080713-12A(SB-7 1-2')	08/07/13	100	94	106	113	Pass	Pass	Pass	Pass
2080713-13A(SB-7 4-5')	08/07/13	106	98	106	101	Pass	Pass	Pass	Pass
2080713-14A(SB-8 1-2')	08/07/13	96	95	109	111	Pass	Pass	Pass	Pass
2080713-15A(SB-8 4-5')	08/07/13	93	96	106	104	Pass	Pass	Pass	Pass
2080713-04A(SB-2 4-5')	08/07/13	97	91	102	104	Pass	Pass	Pass	Pass
2080713-16A(SB-9 1-2')	08/07/13	106	101	103	102	Pass	Pass	Pass	Pass
2080713-17A(SB-9 4-5')	08/07/13	102	97	105	105	Pass	Pass	Pass	Pass
2080713-18A(SB-10 1-2')	08/07/13	96	94	101	107	Pass	Pass	Pass	Pass
2080713-19A(SB-10 4-5')	08/07/13	96	91	103	104	Pass	Pass	Pass	Pass
2080713-06A(SB-4 1-2')	08/07/13	105	103	95	103	Pass	Pass	Pass	Pass
2080713-07A(SB-4 4-5')	08/07/13	103	98	95	100	Pass	Pass	Pass	Pass
2080713-08A(SB-5 1-2')	08/07/13	100	94	96	101	Pass	Pass	Pass	Pass
2080713-09A(SB-5 4-5')	08/07/13	103	96	99	103	Pass	Pass	Pass	Pass
2080713-16A(SB-9 1-2') MS	08/07/13	98	97	101	96	Pass	Pass	Pass	Pass
2080713-16A(SB-9 1-2') MSD	08/07/13	101	99	102	100	Pass	Pass	Pass	Pass
CCS 50	08/07/13	95	89	102	100	Pass	Pass	Pass	Pass
TUNE 50	08/08/13	105	96	106	102	Pass	Pass	Pass	Pass
CCS 50	08/08/13	99	93	103	101	Pass	Pass	Pass	Pass
LCS 20	08/08/13	100	95	102	99	Pass	Pass	Pass	Pass
BLANK	08/08/13	101	90	104	102	Pass	Pass	Pass	Pass
SOIL LCS 20	08/08/13	100	95	101	97	Pass	Pass	Pass	Pass
SOIL BLANK	08/08/13	101	90	105	105	Pass	Pass	Pass	Pass
2080813-01A (TMW-7)	08/08/13	107	93	102	102	Pass	Pass	Pass	Pass

*Surrogate Compounds:

S1 = Dibromofluoromethane (83% - 125%) S2 = 1,2- Dichloroethane-D4 (74% - 130%)

S2 = 1,2- Dichloroethane-D4 (74% - S3 = Toluene-D8 (87% - 114%)

S4 = 4-Bromofluorobenzene (71% - 131%)

|--|

Client: Hart & Hickman	Driller/Sampler: Hart & Hickman	Analyst: Bob George
Site: #1 111 W. 10th Street	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No: 13-117
On-site Dates : 8/7/13-8/10/13	Client Project Manager: Tim Klotz	Matrix: Water/Soil

Sample ID	Date of	of Surrogate % Recovery				Surrogate Control Limits				
-	Analysis	S1*	S2*	S3*	S4*	S1*	S2*	S3*	S4*	
2080813-02A (TMW-6)	08/08/13	104	95	105	104	Pass	Pass	Pass	Pass	
2080813-03A (TMW-8)	08/08/13	102	94	101	101	Pass	Pass	Pass	Pass	
2080813-04A (TMW-1)	08/08/13	102	93	100	100	Pass	Pass	Pass	Pass	
2080813-05A (TMW-2)	08/08/13	103	95	104	103	Pass	Pass	Pass	Pass	
2080813-06A (TMW-4) 1:50	08/08/13	98	89	100	103	Pass	Pass	Pass	Pass	
2080813-07A (TMW-3) 1:10	08/08/13	101	95	99	98	Pass	Pass	Pass	Pass	
2080813-05B(TMW-2) MS	08/08/13	94	90	101	96	Pass	Pass	Pass	Pass	
2080813-05B(TMW-2) MSD	08/08/13	98	92	105	98	Pass	Pass	Pass	Pass	
2080813-08A (TMW-9)	08/08/13	103	96	105	106	Pass	Pass	Pass	Pass	
2080813-09A (TMW-10)	08/08/13	94	88	101	99	Pass	Pass	Pass	Pass	
2080813-10A (TMW-5) 1:10	08/08/13	97	91	100	101	Pass	Pass	Pass	Pass	
2080813-11A (TMW-16) 1:50	08/08/13	98	91	100	101	Pass	Pass	Pass	Pass	
2080813-12A (TMW-11) 1:10	08/08/13	106	100	102	103	Pass	Pass	Pass	Pass	
2080813-13A (TMW-12) 1:2	08/08/13	104	97	103	103	Pass	Pass	Pass	Pass	
2080813-14A(TMW-14)	08/08/13	98	94	100	103	Pass	Pass	Pass	Pass	
2080813-15A(TMW-13)	08/08/13	99	94	99	100	Pass	Pass	Pass	Pass	
CCS 50	08/08/13	92	88	102	99	Pass	Pass	Pass	Pass	
TUNE 50	08/09/13	123	119	92	98	Pass	Pass	Pass	Pass	
CCS 50	08/09/13	101	94	101	98	Pass	Pass	Pass	Pass	
LCS 20	08/09/13	106	99	97	98	Pass	Pass	Pass	Pass	
BLANK	08/09/13	108	97	97	99	Pass	Pass	Pass	Pass	
SOIL LCS 20	08/09/13	107	104	97	96	Pass	Pass	Pass	Pass	
SOIL BLANK	08/09/13	103	90	100	101	Pass	Pass	Pass	Pass	
2080913-01A (IDW-1)	08/09/13	108	93	96	99	Pass	Pass	Pass	Pass	
2080913-01A (IDW-1) 1:5	08/09/13	104	93	99	101	Pass	Pass	Pass	Pass	
2080913-02A(TMW-15)	08/09/13	98	93	99	101	Pass	Pass	Pass	Pass	
2080913-03A(TMW-17)	08/09/13	91	87	97	106	Pass	Pass	Pass	Pass	
2080913-03A(TMW-17) 1:10	08/09/13	92	82	97	102	Pass	Pass	Pass	Pass	
2080913-04A(SB-11 1-2)	08/09/13	95	87	99	98	Pass	Pass	Pass	Pass	
2080913-05A(SB-11 4-5)	08/09/13	94	85	101	101	Pass	Pass	Pass	Pass	
2080913-06A(SB-12 1-2)	08/09/13	102	92	98	107	Pass	Pass	Pass	Pass	
2080913-07A(SB-12 4-5)	08/09/13	100	88	98	100	Pass	Pass	Pass	Pass	
2080913-08A(SB-13 1-2)	08/09/13	100	92	98	106	Pass	Pass	Pass	Pass	
2080913-09A(SB-13 4-5)	08/09/13	99	92	99	102	Pass	Pass	Pass	Pass	
2080913-10A(SB-15 1-2)	08/09/13	98	89	99	103	Pass	Pass	Pass	Pass	
2080913-11A(SB-15 4-5)	08/09/13	100	94	99	100	Pass	Pass	Pass	Pass	
2080913-12A(SB-14 1-2)	08/09/13	100	92	99	102	Pass	Pass	Pass	Pass	
2080913-13A(SB-14 4-5)	08/09/13	101	94	98	101	Pass	Pass	Pass	Pass	

*Surrogate Compounds:

S1 = Dibromofluoromethane (83% - 125%) S2 = 1,2- Dichloroethane-D4 (74% - 130%) S3 = Toluene-D8 (87% - 114%) S4 = 4-Bromofluorobenzene (71% - 131%)

Table 1:	Analytical	Run Seq	uence/Surrog	ate Percent	Recoveries

Client: Hart & Hickman	Driller/Sampler: Hart & Hickman	Analyst: Bob George
Site: #1 111 W. 10th Street	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No: 13-117
On-site Dates : 8/7/13-8/10/13	Client Project Manager: Tim Klotz	Matrix: Water/Soil

Sample ID	Date of	Su	urrogate	% Recove	Sur	rogate Co	ontrol Lin	nits	
	Analysis	S1*	S2*	S3*	S4*	S1*	S2*	S3*	S4*
2080913-14A(SB-16 1-2)	08/09/13	101	92	98	102	Pass	Pass	Pass	Pass
2080913-15A(SB-16 4-5)	08/09/13	100	93	98	100	Pass	Pass	Pass	Pass
2080913-16A(SB-17 1-2)	08/09/13	85	94	98	100	Pass	Pass	Pass	Pass
2080913-17A(SB-17 4-5)	08/09/13	100	93	100	105	Pass	Pass	Pass	Pass
2080913-18A(SB-18 1-2)	08/09/13	97	92	107	116	Pass	Pass	Pass	Pass
2080913-19A(SB-18 4-5)	08/09/13	99	93	99	105	Pass	Pass	Pass	Pass
TUNE 50	08/09/13	106	96	98	98	Pass	Pass	Pass	Pass
CCS 50	08/09/13	97	89	98	98	Pass	Pass	Pass	Pass
SOIL BLANK	08/09/13	96	89	97	102	Pass	Pass	Pass	Pass
2080913-22A(IDW-1 SOIL)	08/09/13	100	90	101	104	Pass	Pass	Pass	Pass
2080913-20A(SB-19 1-2)	08/09/13	106	93	95	100	Pass	Pass	Pass	Pass
2080913-21A(SB-19 4-5)	08/09/13	108	94	95	99	Pass	Pass	Pass	Pass
TUNE 50	08/10/13	115	96	95	102	Pass	Pass	Pass	Pass
CCS 50	08/10/13	105	91	97	96	Pass	Pass	Pass	Pass
LCS 20	08/10/13	105	93	97	95	Pass	Pass	Pass	Pass
BLANK	08/10/13	102	89	95	99	Pass	Pass	Pass	Pass
2080913-17A(SB-17 4-5')MS	08/10/13	105	97	94	95	Pass	Pass	Pass	Pass
2080913-17A(SB-17 4-5")MSD	08/10/13	100	96	95	96	Pass	Pass	Pass	Pass
CCS 50	08/10/13	100	91	94	98	Pass	Pass	Pass	Pass
Comments:	Although s	ome surr	ogates ma	ay be out	of the con	trol perce	nt recover	y range, c	other
	supporting laboratory	QC, such control sa	h as matri amples, ai	x spikes, i e perform	matrix spi ned by KB	ke duplica Labs to fι	ites, meth urther valio	od blanks date repor	, and ted data.

Client: Hart & Hickman	Driller/Sampler: Hart & Hickman	Analyst: Bob George
Site: #1 111 W. 10th Street	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No.: 13-118
Onsite Dates: 8/7/13- 8/10/13	Client Project Manager: Tim Klotz	Matrix: Water/Soil

Table 2: VOC Spike Compound Percent Recoveries

Matrix Spike/Matrix Spike Duplicate (MS/MSD):

Samples: 2080713-1	2080713-16A(SB-9 1-2) Date of Analysis: 8/7/2013									
Matrix Spike Compounds	Со	ntrol Lim	nits	Perce	nt Reco	veries	Con	Control Limit Checks		
Matrix Spike Compounds	Lower	Upper	RPD	MS	MSD	RPD	MS	MSD	RPD	
Vinyl Chloride	38	145	20	100	103	4	Pass	Pass	Pass	
1,1-Dichloroethene	47	143	20	106	131	22	Pass	Pass	> RPDL	
Trans-1,2-Dichloroethene	48	145	20	104	129	22	Pass	Pass	> RPDL	
Cis-1,2-Dichloroethene	51	147	20	109	127	16	Pass	Pass	Pass	
Benzene	71	123	20	123	129	5	> UCL	> UCL	Pass	
Trichloroethene	64	134	20	116	121	4	Pass	Pass	Pass	
Toluene	67	130	20	123	131	7	Pass	> UCL	Pass	
Tetrachloroethene	54	140	20	125	134	7	Pass	Pass	Pass	
Ethylbenzene	69	125	20	126	137	8	> UCL	> UCL	Pass	
m,p-Xylene	63	144	20	131	140	6	Pass	Pass	Pass	
o-Xylene	74	125	20	139	150	8	> UCL	> UCL	Pass	
1,3,5-Trimethylbenzene	64	133	20	124	134	8	Pass	> UCL	Pass	
1,2,4-Trimethylbenzene	64	134	20	128	135	6	Pass	> UCL	Pass	
Note: Control Lin	ite ere h			ما امت مع	interion.	منا مربا مرب	بملامه مقربه	بوافع ومرام ورجافون	مما مستاما مانيم م	

Note: Control Limits are based on a semi-annual historical evaluation of mobile unit and method guidelines.

Samples:	2080813-0	5A(TMW	/-2)	Da	ate of A	3					
Matrix Spika	Compounds	Со	ntrol Lim	nits	Perce	nt Reco	veries	Cont	Control Limit Checks		
	compounds	Lower	Upper	RPD	MS	MSD	RPD	MS	MSD	RPD	
Vinyl Chloride		38	145	20	81	76	6	Pass	Pass	Pass	
1,1-Dichloroet	thene	47	143	20	85	97	13	Pass	Pass	Pass	
Trans-1,2-Dic	hloroethene	48	145	20	81	93	14	Pass	Pass	Pass	
Cis-1,2-Dichlo	oroethene	51	147	20	89	96	8	Pass	Pass	Pass	
Benzene		71	123	20	98	96	2	Pass	Pass	Pass	
Trichloroether	ne	64	134	20	92	91	2	Pass	Pass	Pass	
Toluene		67	130	20	100	101	1	Pass	Pass	Pass	
Tetrachloroeth	nene	54	140	20	100	100	0	Pass	Pass	Pass	
Ethylbenzene		69	125	20	103	104	1	Pass	Pass	Pass	
m,p-Xylene		63	144	20	107	106	1	Pass	Pass	Pass	
o-Xylene		74	125	20	113	113	0	Pass	Pass	Pass	
1,3,5-Trimethy	ylbenzene	64	133	20	103	102	1	Pass	Pass	Pass	
1,2,4-Trimethy	ylbenzene	64	134	20	106	105	1	Pass	Pass	Pass	
NI - 4 -											

Note:

Control Limits are based on a semi-annual historical evaluation of mobile unit and method guidelines.

Client: Hart & Hickman	Driller/Sampler: Hart & Hickman	Analyst: Bob George
Site: #1 111 W. 10th Street	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No.: 13-118
Onsite Dates: 8/7/13- 8/10/13	Client Project Manager: Tim Klotz	Matrix: Water/Soil

Table 2: VOC Spike Compound Percent Recoveries

Samples: 2080913-1	7A(SB-1	7 4-5')	D	ate of A	nalysis:	8/10/20	13			
Matrix Spike Compounds	Control Limits			Perce	ent Reco	veries	Control Limit Checks			
Matrix Spike Compounds	Lower	Upper	RPD	MS	MSD	RPD	MS	MSD	RPD	
Vinyl Chloride	38	145	20	103	100	3	Pass	Pass	Pass	
1,1-Dichloroethene	47	143	20	110	104	5	Pass	Pass	Pass	
Trans-1,2-Dichloroethene	48	145	20	105	100	5	Pass	Pass	Pass	
Cis-1,2-Dichloroethene	51	147	20	118	114	3	Pass	Pass	Pass	
Benzene	71	123	20	129	126	2	> UCL	> UCL	Pass	
Trichloroethene	64	134	20	123	118	4	Pass	Pass	Pass	
Toluene	67	130	20	121	119	2	Pass	Pass	Pass	
Tetrachloroethene	54	140	20	121	118	2	Pass	Pass	Pass	
Ethylbenzene	69	125	20	119	116	3	Pass	Pass	Pass	
m,p-Xylene	63	144	20	123	119	3	Pass	Pass	Pass	
o-Xylene	74	125	20	132	130	2	> UCL	> UCL	Pass	
1,3,5-Trimethylbenzene	64	133	20	120	117	3	Pass	Pass	Pass	
1.2.4-Trimethylbenzene	64	134	20	123	122	2	Pass	Pass	Pass	

Note:

Control Limits are based on a semi-annual historical evaluation of mobile unit and method guidelines.

Client: Hart & Hickman	Driller/Sampler: Hart & Hickman	Analyst: Bob George
Site: #1 111 W. 10th Street	KB Labs Project Manager: Kelly Bergdoll	KB Labs Project No.: 13-118
Onsite Dates: 8/7/13- 8/10/13	Client Project Manager: Tim Klotz	Matrix: Water/Soil

Table 2: VOC Spike Compound Percent Recoveries

Laboratory Control Spikes (LCS):

Samples: LCS 1 SOI	L		Da	ate of A	nalysis:	8/	8/7/2013					
LCS 2						8/	8/8/2013					
LCS 3 SOI	L	. 8/8/2013										
Spike Compounds	Control Limits			Percent Recoveries			Control Limit Checks					
Spike Compounds	Lower		Upper	LCS#1	LCS#2	LCS#3	LCS#1	LCS#2	LCS#3			
Vinyl Chloride	37	to	158	81	94	90	Pass	Pass	Pass			
1,1-Dichloroethene	52	to	147	99	116	109	Pass	Pass	Pass			
Trans-1,2-Dichloroethene	51	to	148	99	111	105	Pass	Pass	Pass			
Cis-1,2-Dichloroethene	59	to	142	100	106	103	Pass	Pass	Pass			
Benzene	71	to	130	102	110	107	Pass	Pass	Pass			
Trichloroethene	69	to	132	95	105	102	Pass	Pass	Pass			
Toluene	70	to	134	105	110	108	Pass	Pass	Pass			
Tetrachloroethene	58	to	145	106	112	109	Pass	Pass	Pass			
Ethylbenzene	74	to	134	110	117	111	Pass	Pass	Pass			
m,p-Xylene	70	to	146	113	121	116	Pass	Pass	Pass			
o-Xylene	71	to	139	121	128	122	Pass	Pass	Pass			
1,3,5-Trimethylbenzene	75	to	133	108	115	113	Pass	Pass	Pass			
1,2,4-Trimethylbenzene	70	to	139	110	118	115	Pass	Pass	Pass			

Note:

Control Limits are based on a semi-annual historical evaluation of mobile unit and method guidelines.

Samples: LCS 4	Date of Analysis: 8/9/2013										
LCS 5 SOI	L	. 8/9/2013									
LCS 6						8/1	0/2013				
Spike Compounds	Control Limits			Percent Recoveries			Control Limit Checks				
Spike Compounds	Lower		Upper	LCS#4	LCS#5	LCS#6	LCS#4	LCS#5	LCS#6		
Vinyl Chloride	37	to	158	109	110	86	Pass	Pass	Pass		
1,1-Dichloroethene	52	to	147	129	137	100	Pass	Pass	Pass		
Trans-1,2-Dichloroethene	51	to	148	122	128	96	Pass	Pass	Pass		
Cis-1,2-Dichloroethene	59	to	142	121	129	102	Pass	Pass	Pass		
Benzene	71	to	130	124	131	106	Pass	> UCL	Pass		
Trichloroethene	69	to	132	119	124	101	Pass	Pass	Pass		
Toluene	70	to	134	118	127	101	Pass	Pass	Pass		
Tetrachloroethene	58	to	145	120	128	101	Pass	Pass	Pass		
Ethylbenzene	74	to	134	123	129	101	Pass	Pass	Pass		
m,p-Xylene	70	to	146	127	134	105	Pass	Pass	Pass		
o-Xylene	71	to	139	135	142	113	Pass	> UCL	Pass		
1,3,5-Trimethylbenzene	75	to	133	125	131	103	Pass	Pass	Pass		
1,2,4-Trimethylbenzene	70	to	139	126	133	106	Pass	Pass	Pass		

Note: Control Limits are based on a semi-annual historical evaluation of mobile unit and method guidelines.

	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID
LABS Mobile Laboratory Services	Method Blank	SB-1 1-2'	SB-1 4-5'	SB-2 1-2'	SB-2 4-5'	SB-3 1-2'	SB-4 1-2'	SB-4 4-5'	SB-5 1-2'	SB-5 4-5'
Analysis Date	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Dilution	1	1	1	1	1	1	1, 1m	1, 1m	1, 1m	1, 1m
% solids	NA	81.5	78.5	86.4	76.6	93.9	90.6	80.0	90.4	75.8
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Vinyl Chloride	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
1,1-Dichloroethene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
t-1,2-Dichloroethene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.005 J
c-1,2-Dichloroethene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.006 J	0.011	0.016	0.075	0.38
Benzene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
Trichloroethene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.006 J	0.047	0.030	0.17	0.30
Toluene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
Tetrachloroethene	0.010 U	0.056	0.10	0.014	0.073	0.43	10	2.0	11	3.2
Ethylbenzene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
m,p-Xylene	0.020 U	0.025 U	0.025 U	0.023 U	0.026 U	0.021 U	0.022 U	0.025 U	0.022 U	0.026 U
o-Xylene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
1,3,5-Trimethylbenzene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
1,2,4-Trimethylbenzene	0.010 U	0.012 U	0.013 U	0.012 U	0.013 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U

	Sample ID	Sample ID								
LABS Mobile Laboratory Services	SB-6 1-2'	SB-6 3-4'	SB-7 1-2'	SB-7 4-5'	SB-8 1-2'	SB-8 4-5'	SB-9 1-2'	SB-9 4-5'	SB-10 1-2'	SB-10 4-5'
Analysis Date	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013
Matrix	Soil	Soil								
Dilution	1	1	1	1	1	1	1	1	1	1
% solids	91.4	85.3	92.7	89.1	95.8	94.9	89.6	78.8	89.8	75.6
Units	mg/kg	mg/kg								
Vinyl Chloride	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
1,1-Dichloroethene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
t-1,2-Dichloroethene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
c-1,2-Dichloroethene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
Benzene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
Trichloroethene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
Toluene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
Tetrachloroethene	0.002 J	0.012 U	0.003 J	0.011 U	0.090	0.005 J	0.011 U	0.046	0.007 J	0.057
Ethylbenzene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
m,p-Xylene	0.022 U	0.023 U	0.022 U	0.022 U	0.021 U	0.021 U	0.022 U	0.025 U	0.022 U	0.026 U
o-Xylene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
1,3,5-Trimethylbenzene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U
1,2,4-Trimethylbenzene	0.011 U	0.012 U	0.011 U	0.011 U	0.010 U	0.011 U	0.011 U	0.013 U	0.011 U	0.013 U

	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID
LABS Mobile Laboratory Services	SB-11 1-2	SB-11 4-5'	SB-12 1-2'	SB-12 4-5'	SB-13 1-2'	SB-13 4-5'	SB-15 1-2'	SB-15 4-5'	SB-14 1-2'	SB-14 4-5'
Analysis Date	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Dilution	1	1	1	1	1	1	1	1	1	1
% solids	86.3	83.0	89.6	84.0	92.7	85.4	80.4	76.1	78.1	82.1
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Vinyl Chloride	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
1,1-Dichloroethene	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
t-1,2-Dichloroethene	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
c-1,2-Dichloroethene	0.012 U	0.012 U	0.003 J	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
Benzene	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
Trichloroethene	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
Toluene	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
Tetrachloroethene	0.012 U	0.013	0.021	0.004 J	0.011 U	0.012 U	0.012 U	0.013 U	0.006 J	0.005 J
Ethylbenzene	0.007 J	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
m,p-Xylene	0.015 J	0.024 U	0.022 U	0.024 U	0.022 U	0.023 U	0.025 U	0.026 U	0.026 U	0.024 U
o-Xylene	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
1,3,5-Trimethylbenzene	0.012 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U
1,2,4-Trimethylbenzene	0.088	0.012	0.003 J	0.012 U	0.011 U	0.012 U	0.012 U	0.013 U	0.013 U	0.012 U

	Sample ID								
LABS Mobile Laboratory Services	SB-16 1-2'	SB-16 4-5'	SB-17 1-2'	SB-17 4-5'	SB-18 1-2'	SB-18 4-5'	SB-19 1-2'	SB-19 4-5'	IDW-1 soil
Analysis Date	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013	8/9/2013
Matrix	Soil								
Dilution	1	1	1	1	1	1	2m	4m	1
% solids	90.8	81.0	94.6	84.4	92.5	84.6	89.7	84.0	78.1
Units	mg/kg								
Vinyl Chloride	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	0.95 U	0.013 U
1,1-Dichloroethene	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	0.95 U	0.013 U
t-1,2-Dichloroethene	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	0.95 U	0.013 U
c-1,2-Dichloroethene	0.011 U	0.014	0.011 U	0.012 U	0.024	0.012 U	0.18 J	0.95 U	0.013 U
Benzene	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	0.95 U	0.013 U
Trichloroethene	0.011 U	0.012	0.011 U	0.012 U	0.051	0.004 J	0.16 J	0.95 U	0.013 U
Toluene	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	0.95 U	0.013 U
Tetrachloroethene	0.013	0.31	0.011 U	0.012 U	1.1	0.20	18	48	0.037
Ethylbenzene	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	1.9 U	0.013 U
m,p-Xylene	0.022 U	0.025 U	0.021 U	0.024 U	0.022 U	0.024 U	0.89 U	0.95 U	0.026 U
o-Xylene	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	0.95 U	0.013 U
1,3,5-Trimethylbenzene	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	0.95 U	0.013 U
1,2,4-Trimethylbenzene	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U	0.45 U	0.95 U	0.013 U

	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID	Sample ID
Mobile Laboratory Services	Method Blank	TMW-7	TMW-6	TMW-8	TMW-1	TMW-2	TMW-4	TMW-3	TMW-9
Analysis Date	08/08/13	08/08/13	08/08/13	08/08/13	08/08/13	08/08/13	08/08/13	08/08/13	08/08/13
Matrix	Water	Water	Water	Water	Water	Water	Water	Water	Water
Dilution	1	1	1	1	1	1	50	10	1
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Vinyl Chloride	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U
t-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U
c-1,2-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	0.4 J	1.0 U	49 J	16	1.0 U
Benzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U
Trichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 J	1.0 U	55	8.3 J	1.0 U
Toluene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U
Tetrachloroethene	0.7 U	0.7 U	0.7 U	0.7 U	71.4	0.6 J	1700	140	0.9 J
Ethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U
m,p-Xylene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	100 U	20 U	2.0 U
o-Xylene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U
1,3,5-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U
1,2,4-Trimethylbenzene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	50 U	10 U	1.0 U

	Sample ID								
Mobile Laboratory Services	TMW-10	TMW-5	TMW-16	TMW-11	TMW-12	TMW-14	TMW-13	IDW-1	TMW-15
Analysis Date	08/08/13	08/08/13	08/08/13	08/08/13	08/08/13	08/08/13	08/08/13	08/09/13	08/09/13
Matrix	Water								
Dilution	1	10	50	10	2	1	1	1, 5	1
Units	ug/L								
Vinyl Chloride	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
t-1,2-Dichloroethene	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
c-1,2-Dichloroethene	2.5	10 U	24 J	7.8 J	24	0.6 J	0.5 J	6.1	1.0 U
Benzene	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	0.6 J	6.3 J	70	12	2.9	0.3 J	0.8 J	4.9	1.0 U
Toluene	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethene	38.8	280	2400	230	34	51.2	61.1	110	0.5 J
Ethylbenzene	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
m,p-Xylene	2.0 U	20 U	100 U	20 U	4.0 U	2.0 U	2.0 U	2.0 U	2.0 U
o-Xylene	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-Trimethylbenzene	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trimethylbenzene	1.0 U	10 U	50 U	10 U	2.0 U	1.0 U	1.0 U	1.0 U	1.0 U
KB Labs, Inc. 6821 SW Archer Rd Gainesville, FL 32608 Phone: 352-367-0073

Final Data Report Hart-Hickman Scotts Cleaners 10th Street Greenville, NC

	Sample ID
Mobile Laboratory Services	TMW-17
Analysis Date	08/09/13
Matrix	Water
Dilution	1, 10
Units	ug/L
Vinyl Chloride	1.0 U
1,1-Dichloroethene	1.0 U
t-1,2-Dichloroethene	1.0 U
c-1,2-Dichloroethene	1.0 U
Benzene	3.8
Trichloroethene	1.0 U
Toluene	4.2
Tetrachloroethene	1.4
Ethylbenzene	76.4
m,p-Xylene	160
o-Xylene	5.6
1,3,5-Trimethylbenzene	99.9
1,2,4-Trimethylbenzene	750

1/2	MOBILE UNIT # YB 2	PRESERVATION C Chilled H HCL Ot Other (see Remarks)	07.70	COMMENT / SAMPLE PRE FIX	Q A	024	0 2 A	C4 P	ср И	Dé D	P to	08.7	A Co	10A	4	7 D	13 A	۲ ک	ISA	ervations		
		CC IDENTIFY FRAMETERS DESIRED AND AND NO OF	P.P.	Kor Nowber	>	>	7	>	>	>	~ ~	~ ~	~	2	~ <	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ ~		<	temarks and Obs		
ð		XIU	TAM 3J9N	IAZ	S	S	5	2	<u>></u>	V	V	~	<u></u>	M	S	N	W	N	S	₽ ₽	e S	1
STODY RECO			BATCH # (Lab Use Only)	STATION LOCATION / No.																Date / T	Date / T	
L C C C C	: Drive 07 507			TIME REC'D	1201	1201	1221	1201	UIS VII	11 35N	1/35	1205	1205	1318	1318	1410	1410	1410	1410	ture)	ture)	oil Gas
Z-C	. Conference gh, NC 276 352) 538-6'	2		DATE REC'D	421,3)				Witten of Weighton								againe grant (grant (gr	Nes	d by: (Signa	by: (Signa	SG S
Ö	6701 Ralei 1 TEL (DRESS The SS		COMP.																Receive	Regeive	und Wate
	:52) 378-649	VAME & ADI	PERSON	TIME	1005	100	107.5	1020	1/02	1120	1135	1200	1205	1315	13US	1330	1335	1400	1405	ate / Time	late / Time	GW Gr
	er Road 32608 -0073 - FAX (3	PROJECT	CONTACT	DATE SAMPLED	8/4/3																	urface Water
	6821 SW Arch Gainesville, FL TEL (352) 367-	a flaren		DID.NUMBER	2~1	۲-N	2-1	5.5	~	1 - 2	5-5	<u> </u>	۲ - S	1-2	25	~ /	4.5	1-2	4.S	ters lignature)	lignature)	S Soil SW-S
	Mobile Laboratory Services	CLIENT NAME	SAMPLERS	SAMPLE FIELD	58 - (28-1	58 - T	58-5	RR RR	58-9	58-9	S S S	5.8.5	۹ ج ج	9. 9s	58- 7	52-7	25	\$ - \$	Precleaned Contain Relinquished by: (S	Relinquished by: (S	Matrix Tvpes

S Soil SW-Surface Water GW Ground Water Matrix Types

	MOBILE UNIT # FAS 2	PRESERVATION C Challed H HCL Ot Other (see Remarks)	20 C. K	ス comment / SAMPLE PRE FIX	al A, ous	CIA, 22B (High Selind	03A,03Q	O4A,04B	or A, 05B	069,068	Oth, Oth	eeA, aeB	e7 A, 09 B	109 Jo 3	1(A) 1(A	12 1 12 8	134, 136	142, 148	ISA, 158	servations		
Ω		TAIN DESNET DESNET DESNET AND AND AND AND CONTINUES			2 V V	1	> < 3	> ~ 3	> 1 2.0	> ^ ^?	> 1	313	1 1 30	130	100	650 2	62 2 2	5 C (7730	e Remarks and Obs	3	
STODY RECOR			BATCH # (Lab Use Only)	STATION LOCATION / No.					~~~	~			- ~							Date / Tim	Barg / Tim	
CHAIN-OF-CU	701 Conference Drive aleigh, NC 27607 EL (352) 538-6507	2		GRAB DATE TIME REC'D REC'D	8/8/13 0951	1540	8		1035	(† 0)		1335	1335	ナ	<u> </u>	1515	1515	151	<u>></u> >>	seived by: (Signature)	seived by: (Signature)	Vater SG Soil Gas
U	oad .08 3 · FAX (352) 378-6491 1	ROJECT NAME & ADDRES	ONTACT PERSON	DATE TIME P.	6/3 0950	S 150	e S S	020	1030	R 0	6	225	235	1245	0,5,	1430	1445	S S S S	2 2 2 2	Date / Time Re	Date / Time	ace Water GW Ground V
	6821 SW Archer F Gainesville, FL 326 bite Laboratory FEL (352) 367-007 Services	ENT NAME A HEEVER	MPLERS	AMPLE FIELD ID.\ NUMBER	x T-3E	A - 3.K	0 38	1-38	2,5	ケークス	N 3 8	5-38	0-38	M C S	2- 36	2~38	27.38	ち)~ いる	S> 3 E	cleaned Containers linquished by: (<i>Signature</i>)	linquished by: (Signature)	rix Types S Soil SW Surf

1/2	MOBILE UNIT #	PRESERVATION C Chiled H HCL Ot Other (see Remarks)	0× 3 3 3	COMMENT / SAMPLE PRE FIX	o! A	014,028	03A, 03B	4ho	0SA	063	640	089	862	Pol	110	₽ <i>2</i> (130	Ϋ́Ρ	-SA	bservations		
		IDENTIFY ARAMETERS DESRED AND NO. OF CONTATINEDS		ban	>	>	>	7	~ ~	7	7	>	~	7	1	7	7 1	6	<u>k</u>	rks and (
		SHENIAT	NOD 10	NUMBEF		Ņ	ړ	-ada	нура	, and a	ociemer.	100			r,retr	*	Ś	متخدري		Rema		
Q		ХІЯ	TAM ƏJ9N	VAS	Z	20	2	Ŵ	V	N	\wedge	N	N	Ŋ	N	V	V	Ŵ	V	é	e . Y	
STODY RECOF			3ATCH # (Lab Use Only)	STATION LOCATION / No.																Date / Tin	Date/Tin	and a second
Š	Drive 7 37			TIME REC'D	0505	t 10/	f 101	015	025	1105	1/05	1105	105	1105	Nes	1110	110	1210	1210	(e)	(e)	l Gas
AN-O	1 Conference (jgh, NC 2760 (352) 538-650	2		DATE REC'D	219/23	Anna								999) (1999) (1999) (1999)					•	ed by: (<i>Signatu</i>	ed by: (Signatu	ar SG Soil
Ö	670 Rafe TEL	RESS		COMP.																Receiv	A Received	nd Mate
	352) 378-6491	NAME & ADD	PERSON	TIME SAMPLED		0130	Q Q	s s s s	0000	e V	1040	650	/oSS	112 S	1 20	0111	1115	1135	1140	Date / Time	Date / Time	r GW Grou
	her Road L 32608 ^.0073 · FAX (C S C ECT	CONTACT	DATE SAMPLED	5/1/3	Num		acii:501304744				c		rewinddoddodau	797734(r)Junius200							intace Mate
· · · ·	6821 SW Ard Gainesville, FI TEL (352) 367	A		LD ID./ NUMBER		2	2	1-2	××,	2	4.5	7.7	1, 1	21	4 · S	2-1	4 - S	1-2	£-S	uiners (Signature)	(Signature)	S Soil SW 5
×	Mobile Laboratory Services	CLIENT NAME	SAMPLERS	SAMPLE FIEI	130	384	1285	SB-1	58~11	8	53-12	2 2 2 3 3 3 3	58- 53- 53- 53- 53- 53- 53- 53- 53- 53- 53	58 - (S	56-15	₹~ Q.	58-59	58-16	53-16	Precleaned Conta Relinquished by: r	Relinquished by: I	Atobelo Timoo

2/2	MOBILE UNIT # KB 2	C Chiled C Chiled H HCL Ot Other (see Remarks)	A 200	20809/3 COMMENT/SAMPLE PRE FIX	64	120	1817	461	t x	2 4	629						rvations			
	Rest Conference Store	DENTIFY CARETERS DESIRED AND NO. OF NTAINERS	6	201	>	27	Arres 600	<u>\</u>	7	7 7	7			 			ks and Obse			
		SHENIATI	J OF CON	иливеі	~	Vitast				···				 	 		Remar			
0		ХІЯТ	TAM 3J9M	IAS	V	Ŵ	N	V	N	V	V						Q			
STODY RECOR			BATCH # (Lab Use Only)	STATION LOCATION / No.													Date / Tim		891	
P	nive 7			TIME REC'D	1210	12/2	1330	1000	1324	1324	132	and a feature and a second					(e)		(Đ	l Gas
Q N N	Conference C gti, NC 27607 352) 538-650)		DATE REC'D	8/2/13						J						ed by: (Signatu	1411 A 161 (1979) A 179 (1979) A	ed by: (Signatu	er SG Soi
ç	6701 Ralei TEL (RESS	e	COMP.									+		 		Receive		Hecelve	ind Wate
	52) 378-6491	HAME & ADDI	PERSON	TIME	1150	1155	1250	1255	1315	1320	1325)ate / Time		Date / Time	GW Grou
	er Road . 32608 -0073 · FAX (3	PROLECT S & C	CONTACT	DATE SAMPLED	3/3/2	d manage														Surface Water
	1 SW Ard lesville, Fl (352) 367		er.	MBER		s,	C	ŝ	2	5.	"Netwood			and a share of the state of the		- Sarah Sanaharan Sarah Sarah				SW
	682 Gair TEL	4		UNVOIC	-	Г	4	. J		5	Ś	A / ANY ANA / 1 1 4 1		 North Art of Party and Annual Annual Party and		a de a particular de la compansión de la c	iers lignature)		Signature)	S Soil
Å	Mobile Laboratory Services	CLIENT NAME	SAMPLERS	SAMPLE FIELD	58~17		25 25	52-15	5 12 5 12 5 12	S 8 - 2	122			an unitary of page and an and a start of the			Precieaned Contair Relinquished by: (S		Relinquished by: (5	Matrix Types

Analytical Data Tables

for

North Carolina Dry-Cleaning Solvent Cleanup Act Program

Facility Name	Scott's Cleaners
racinty Name:	111 West 10th Street, Greenville, Pitt County
DSCA ID No.:	74-0010
Submittal Date:	October 29, 2013
Duonound Dru	Hart & Hickman, PC
Ргерагей Бу:	2923 South Tryon Street, Suite 100, Charlotte, North Carolina 28203

	ents	ADT 1
CA ID No.	: 74-0010	
Table/ Att. No.	Description	Check box if included
	Tables	
Table 1	Site Chronology	\checkmark
Table 2	Analytical Data for Soil	\checkmark
Table 3	Analytical Data for Sub-slab Gas	
Table 4	Analytical Data for Soil Gas	
Table 5	Analytical Data for Indoor and Outdoor Air	
Table 6	Monitoring Well Construction Data	
Table 7	Groundwater Elevation Data	\checkmark
Table 8	Analytical Data for Groundwater	\checkmark
Table 9	Analytical Data for Surface Water	
Table 10	Water Well(s) Survey Data	\checkmark
Table 11	Analytical Data for Water Supply Well(s)	
Table 12	Analytical Data for Natural Attenuation Parameters	
	Attachments	
Att. 1	Site map showing location(s) of soil boring(s).	
Att. 2	Soil contaminant concentration maps showing the concentration at each sampling point.	
Att. 3	Soil isoconcentration maps.	
Att. 4	Site map showing location(s) of monitoring well(s).	
Att. 5	Well completion diagrams and records of construction submitted to state.	
Att. 6	Groundwater gradient map for each sampling event.	
	PCE concentration map showing the concentration at each sampling point and	
Att. 7	isoconcentration map. However, if there are significant plumes for other dry-	_
1	cleaning contaminants, contaminant concentration maps for each chemical of	
<u> </u>	concern should be included.	
Att. 8	Groundwater concentration trend plots.	
Att. 9	Map showing location(s) of surface water sample(s) (it applicable).	
Att. 10	Surface water concentration map showing the concentration at each sampling point (if applicable).	
Att. 11	USGS Quad map with plotted water well location(s) within the 1,500 foot and 0.5 mile radii of the site (if applicable).	
Att. 12	Site map showing location(s) of monitoring well(s) for natural attenuation paramete	
Att. 13	Site map showing location(s) of indoor air, outdoor air, or soil gas samples.	
Att. 14	Air and soil gas concentration map showing the concentration at each sampling poir	ıt.
_	Signed laboratory analytical reports including chain-of custody and quality	_
Att. 15	assurance/quality control (QA/QC) documentation (only if not previously submitted).	
Att. 16		
Att. 17		
Att. 18		
Att. 19		
Att. 20		

Table 1: Site Chr	ronology ADT 1
DSCA ID No.:	74-0010
Chronology of Ev	vents
Date	Instructions: Brief description of all significant events that have occurred since a problem was suspected at the facility. Commence with the first date a problem was suspected and continue through the most recent activity described in the current report.
mid-1900s-2004	Scott's Cleaners conducted dry-cleaning operations at the site. In 2004, dry-cleaning operations were relocated to another facility. Scott's Cleaners maintains a drop-off/pick-up store in a portion of the space that was formerly occupied by the dry-cleaning operations.
July 2012	PCE impacts were discovered at the Scott's Cleaners site during a Primary Site Assessment conducted by Catlin for the NCDOT as part of a road-widening project.
May 23, 2013	The site is certified into the DSCA Program.
August 2013	Hart & Hickman, PC (H&H) conducted prioritization assessment activities at the Scott's Cleaners site. The assessment activities included the installation and sampling of 19 soil borings (SB-1 through SB-19) and 17 temporary monitoring wells (TMW-1 through TMW-17). H&H personnel also surveyed top of casing elevations in select temporary monitoring wells to obtain groundwater flow direction. On October 29, 2013, H&H submitted a Prioritization Assessment Report to the DSCA Program documenting the assessment activities and results.

Table 2: Analytical Data for Soil

DSCA ID No.: 74-0010

	1		T	I	T			I	ſ	(1)					1		I		
mple ID	pth set bgs]	mpling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylen	Trichloroethylene	Vinyl chloride	Xylenes (total)	1,2,4-Trimethylbenzene					
Sa	De [fe	Sa				-	-					[mg	g/kg]	-					
SB-1	1-2	08/07/13	< 0.012	< 0.012	< 0.012	NA	NA	0.056	< 0.012	< 0.012	< 0.012	< 0.012	< 0.037	< 0.012					
SB-1	4-5	08/07/13	< 0.013	< 0.013	< 0.013	NA	NA	0.10	< 0.013	< 0.013	< 0.013	< 0.013	< 0.038	< 0.013					
SB-2	1-2	08/07/13	< 0.012	< 0.012	< 0.012	NA	NA	0.014	< 0.012	< 0.012	< 0.012	< 0.012	< 0.035	< 0.012					
SB-2	4-5	08/07/13	< 0.013	< 0.013	< 0.013	NA	NA	0.073	< 0.013	< 0.013	< 0.013	< 0.013	< 0.039	< 0.013					
SB-3	1-2	08/07/13	< 0.011	0.006J	< 0.011	NA	NA	0.43	< 0.011	< 0.011	0.006J	< 0.011	< 0.032	< 0.011					
SB-4	1-2	08/07/13	< 0.011	0.011	< 0.011	NA	NA	10	< 0.011	< 0.011	0.047	< 0.011	< 0.033	$<\!0.011$					
SB-4	4-5	08/07/13	< 0.013	0.016	< 0.013	NA	NA	2.0	< 0.013	< 0.013	0.030	< 0.013	< 0.038	< 0.013					
SB-5	1-2	08/07/13	< 0.011	0.075	< 0.011	NA	NA	11	< 0.011	< 0.011	0.17	< 0.011	< 0.033	< 0.011					
SB-5	4-5	08/07/13	< 0.013	0.38	< 0.013	NA	NA	3.2	< 0.013	0.005J	0.30	< 0.013	< 0.039	< 0.013					
SB-6	1-2	08/07/13	< 0.011	< 0.011	< 0.011	NA	NA	0.002J	< 0.011	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011					
SB-6	3-4	08/07/13	< 0.012	< 0.012	< 0.012	NA	NA	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.035	< 0.012					
SB-7	1-2	08/07/13	< 0.011	< 0.011	< 0.011	NA	NA	0.003J	< 0.011	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011					
SB-7	4-5	08/07/13	< 0.011	< 0.011	< 0.011	NA	NA	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011					
SB-8	1-2	08/07/13	< 0.010	< 0.010	< 0.010	NA	NA	0.090	< 0.010	< 0.010	< 0.010	< 0.010	< 0.031	< 0.010					
SB-8	4-5	08/07/13	< 0.011	< 0.011	< 0.011	NA	NA	0.005J	< 0.011	< 0.011	< 0.011	< 0.011	< 0.032	< 0.011					
SB-9	1-2	08/07/13	< 0.011	< 0.011	< 0.011	NA	NA	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011					
SB-9	4-5	08/07/13	< 0.013	< 0.013	< 0.013	NA	NA	0.046	< 0.013	< 0.013	< 0.013	< 0.013	< 0.038	< 0.013					
SB-10	1-2	08/07/13	< 0.011	< 0.011	< 0.011	NA	NA	0.007J	< 0.011	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011					
SB-10	4-5	08/07/13	< 0.013	< 0.013	< 0.013	NA	NA	0.057	< 0.013	< 0.013	< 0.013	< 0.013	< 0.039	< 0.013					
SB-11	1-2	08/09/13	< 0.012	< 0.012	0.007J	NA	NA	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	0.015J	0.088					
SB-11	4-5	08/09/13	< 0.012	< 0.012	< 0.012	NA	NA	0.013	< 0.012	< 0.012	< 0.012	< 0.012	< 0.036	0.012					
SB-12	1-2	08/09/13	< 0.011	0.003J	< 0.011	NA	NA	0.021	< 0.011	< 0.011	< 0.011	< 0.011	< 0.033	0.003J					
SB-12	4-5	08/09/13	< 0.012	< 0.012	< 0.012	NA	NA	0.004J	< 0.012	< 0.012	< 0.012	< 0.012	< 0.036	< 0.012					
SB-13	1-2	08/09/13	< 0.011	< 0.011	< 0.011	NA	NA	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011					
SB-13	4-5	08/09/13	< 0.012	< 0.012	< 0.012	NA	NA	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.035	< 0.012					
SB-14	1-2	08/09/13	< 0.013	< 0.013	< 0.013	NA	NA	0.006J	< 0.013	< 0.013	< 0.013	< 0.013	< 0.039	< 0.013					
SB-14	4-5	08/09/13	< 0.012	< 0.012	< 0.012	NA	NA	0.005J	< 0.012	< 0.012	< 0.012	< 0.012	< 0.036	< 0.012					

Table 2: Analytical Data for Soil

DSCA ID No.: 74-0010

mple ID	ppth eet bgs]	mpling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)	1,2,4-Trimethylbenzene				
Sa	[fe	Sa		-								[mg	/kg]			-		
SB-15	1-2	08/09/13	< 0.012	< 0.012	< 0.012	NA	NA	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.037	< 0.012				
SB-15	4-5	08/09/13	< 0.013	< 0.013	< 0.013	NA	NA	< 0.013	< 0.013	< 0.013	< 0.013	< 0.013	< 0.039	< 0.013				
SB-16	1-2	08/09/13	< 0.011	< 0.011	< 0.011	NA	NA	0.013	< 0.011	< 0.011	< 0.011	< 0.011	< 0.033	< 0.011				
SB-16	4-5	08/09/13	< 0.012	0.014	< 0.012	NA	NA	0.31	< 0.012	< 0.012	0.012	< 0.012	< 0.037	< 0.012				
SB-17	1-2	08/09/13	< 0.011	< 0.011	< 0.011	NA	NA	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.032	< 0.011				
SB-17	4-5	08/09/13	< 0.012	< 0.012	< 0.012	NA	NA	< 0.012	< 0.012	< 0.012	< 0.012	< 0.012	< 0.036	< 0.012				-
SB-18	1-2	08/09/13	< 0.011	0.024	< 0.011	NA	NA	1.1	< 0.011	< 0.011	0.051	< 0.011	< 0.033	< 0.011				-
SB-18	4-5	08/09/13	< 0.012	< 0.012	< 0.012	NA	NA	0.20	< 0.012	< 0.012	0.004J	< 0.012	< 0.036	< 0.012				-
SB-19	1-2	08/09/13	< 0.45	0.18J	< 0.45	NA	NA	18	< 0.45	< 0.45	0.16J	< 0.45	<1.34	< 0.45				-
SB-19	4-5	08/09/13	< 0.95	< 0.95	<1.9	NA	NA	48	< 0.95	< 0.95	< 0.95	< 0.95	<1.90	< 0.95				
DSC	CA Tier 1 RI	BSL	0.034	1.1	51	0.18	1.6	0.023	29	1.5	0.067	0.00079	36	45				
Notes: 1. NA denotes 2. J flag denot	Not Analyze	ed concentration	between t	he labora	tory repor	ting limit	and meth	od detecti	on limit.									

3. **Bold** concentrations exceed the DSCA Tier 1 Risk Based Screening Level (RBSL).

Table 7: Groundwater Elevation Data DSCA ID No.: 74-0010 Groundwater Corrected* Groundwater Sampling Date **TOC Elevation** Depth to Water Depth to NAPL NAPL Thickness Elevation Groundwater Sampling Point (mm/dd/yy) [feet bgs] [feet bgs] [feet] [feet] [feet] Elevation [feet] TMW-1 08/08/13 100.00 9.89 90.11 TMW-2 08/08/13 98.86 8.65 90.21 ---90.72 TMW-6 08/08/13 101.84 11.12 TMW-7 08/08/13 100.50 9.94 90.56

91.49

89.33

8.85

8.27

Note: TOC elevations surveyed by H&H personnel on 8/8/13. Elevations are relative to arbitrary benchmark at TMW-1 TOC equal to 100 feet.

TMW-8

TMW-10

08/08/13

08/08/13

100.34

97.60

Table 8: Analytical Data for Groundwater

DSCA ID	No.: 74	-0010																
oundwater Sampling Point	mpling Date (mm/dd/yy)	Benzene	cis-1,2-Dichloroethylene	Ethylbenzene	Methyl tert-butyl ether (MTBE)	Naphthalene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Vinyl chloride	Xylenes (total)	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene				
Gr	Sa										[mg	g/L]						
TMW-1	08/08/13	< 0.0010	0.0004J	< 0.0010	NA	NA	0.0714	< 0.0010	< 0.0010	0.001J	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-2	08/08/13	< 0.0010	< 0.0010	< 0.0010	NA	NA	0.0006J	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-3	08/08/13	$<\!0.010$	0.016	$<\!0.010$	NA	NA	0.14	< 0.010	< 0.010	0.0083J	< 0.010	< 0.030	$<\!0.010$	< 0.010				
TMW-4	08/08/13	< 0.050	0.049J	< 0.050	NA	NA	1.7	< 0.050	< 0.050	0.055	< 0.050	< 0.150	< 0.050	< 0.050				
TMW-5	08/08/13	< 0.010	< 0.010	< 0.010	NA	NA	0.28	< 0.010	< 0.010	0.0063J	< 0.010	< 0.030	< 0.010	< 0.010				
TMW-6	08/08/13	< 0.0010	< 0.0010	< 0.0010	NA	NA	< 0.00070	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-7	08/08/13	< 0.0010	< 0.0010	< 0.0010	NA	NA	< 0.00070	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-8	08/08/13	< 0.0010	< 0.0010	< 0.0010	NA	NA	< 0.00070	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-9	08/08/13	< 0.0010	< 0.0010	< 0.0010	NA	NA	0.0009J	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-10	08/08/13	< 0.0010	0.0025	< 0.0010	NA	NA	0.0388	< 0.0010	< 0.0010	0.0006J	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-11	08/08/13	< 0.010	0.0078J	< 0.010	NA	NA	0.23	< 0.010	< 0.010	0.012	< 0.010	< 0.030	< 0.010	< 0.010				
TMW-12	08/08/13	< 0.0020	0.024	< 0.0020	NA	NA	0.034	< 0.0020	< 0.0020	0.0029	< 0.0020	< 0.0060	< 0.0020	< 0.0020				
TMW-13	08/08/13	< 0.0010	0.0005J	< 0.0010	NA	NA	0.0611	< 0.0010	< 0.0010	0.0008J	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-14	08/08/13	< 0.0010	0.0006J	< 0.0010	NA	NA	0.0512	< 0.0010	< 0.0010	0.0003J	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-15	08/09/13	< 0.0010	< 0.0010	< 0.0010	NA	NA	0.0005J	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0030	< 0.0010	< 0.0010				
TMW-16	08/08/13	< 0.050	0.024J	< 0.050	NA	NA	2.4	< 0.050	< 0.050	0.070	< 0.050	< 0.150	< 0.050	< 0.050				
TMW-17	08/09/13	0.0038	< 0.0010	0.0764	NA	NA	0.0014	0.0042	< 0.0010	< 0.0010	< 0.0010	0.1656	0.75	0.0999				
DSCA Tie	r 1 RBSL	0.001	0.07	0.003	0.02	0.004	0.0007	0.6	0.076	0.001	0.00003	0.094	5.8	0.4				
Votas																		

Notes:

1. NA denotes Not Analyzed.

2. Bold concentration exceeds the DSCA Tier 1 Risk Based Screening Levels (RBSLs) (or NC 2L Standard, if not established).

Table 10	: Water Well(s) Sur	vey Data								ADT 10
DSCA II) No.: 74-0010									
Ref. No./ Well ID	Sampling Location Name and Address	Property Owner Name, Address, and Phone Number	Tenant Name, Address, and Phone Number	Distance from Source [feet]	Well Depth [feet]	Screen Interval [feet]	Use of Well	Source of Well Identification	Direction (downgradient, upgradient, etc., to source area)	Status (Active/ Inactive)
1	200th W. 13th Street Greenville, NC	City of Greenville PO Box 7207 Greenville, NC 27835	N/A	1,800	unknown	unknown	Community well	Receptor survey	Upgradient	Active