# Project Special Provisions (Version 12.1) Signals and Intelligent Transportation Systems Prepared By: iou 2-Oct-12 # **Contents** | 1. | SIC | GNAL HEADS | 3 | |----|------------|-------------------------------------------------------------------------------|----| | | 1.1. | MATERIALS | 3 | | | Α. | General: | | | | В. | Vehicle Signal Heads: | | | | C. | Signal Cable: | | | 2. | VT | DEO IMAGING LOOP EMULATOR DETECTOR SYSTEMS | | | 4. | | | • | | | 2.1. | DESCRIPTION | | | | 2.2. | MATERIALS | | | | <i>A</i> . | General: | | | | В. | Loop Emulator System: | | | | <i>C</i> . | Video Imaging Loop Emulator System Support: CONSTRUCTION METHODS | | | | 2.3. | MEASUREMENT AND PAYMENT | | | | 2.4. | | | | 3. | MI | ICROWAVE VEHICLE DETECTOR | 11 | | | 3.1. | DESCRIPTION | 11 | | | 3.2. | MATERIALS | | | | 3.3. | CONSTRUCTION METHODS | | | | 3.4. | MEASUREMENT AND PAYMENT | 11 | | 4. | OLUD. | AAFFIC SIGNAL SUPPORTS | 12 | | 4. | | METAL TRAFFIC SIGNAL SUPPORTS – ALL POLES | | | | 4.1. | | | | | <i>A</i> . | General: | | | | В. | Materials: | | | | <i>C</i> . | Construction Methods: | | | | 4.2. | METAL POLE WITH MAST ARM | | | | <i>A</i> . | | | | | <i>B</i> . | Construction Methods: DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES | | | | 4.3. | DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL FOLES Description: | | | | <i>A</i> . | Description: Soil Test and Foundation Determination: | | | | В.<br>С. | Drilled Pier Construction: | | | | 4.4. | POLE NUMBERING SYSTEM | | | | 4.4.<br>A. | New Poles | | | | 4.5. | MEASUREMENT AND PAYMENT | | | | | | | | 5. | | ONTROLLERS WITH CABINETS | | | | 5.1. | MATERIALS – TYPE 2070L CONTROLLERS | | | | 5.2. | MATERIALS – GENERAL CABINETS | | | | 5.3. | MATERIALS – TYPE 170E CABINETS | | | | <b>A</b> . | Type 170 E Cabinets General: | 20 | # R-3324 Signals & Intelligent Transportation Systems | В. | Type 170 E Cabinet Electrical Requirements: | 21 | |----|---------------------------------------------|----| | | Type 170 E Cabinet Physical Requirements: | | | | Model 2018 Enhanced Conflict Monitor: | | | | MATERIALS – TYPE 170 DETECTOR SENSOR UNITS | | #### 1. SIGNAL HEADS #### 1.1. MATERIALS #### A. General: Fabricate vehicle signal head housings and end caps from die-cast aluminum. Fabricate 12-inch and 16-inch pedestrian signal head housings and end caps from die-cast aluminum. Fabricate 9-inch pedestrian signal head housings, end caps, and visors from virgin polycarbonate material. Provide visor mounting screws, door latches, and hinge pins fabricated from stainless steel. Provide interior screws, fasteners, and metal parts fabricated from stainless steel or corrosion resistant material. Fabricate tunnel and traditional visors from sheet aluminum. Paint all surfaces inside and outside of signal housings and doors. Paint outside surfaces of tunnel and traditional visors, messenger cable mounting assemblies, pole and pedestal mounting assemblies, and pedestrian pushbutton housings. Have electrostatically-applied, fused-polyester paint in highway yellow (Federal Standard 595C, Color Chip Number 13538) a minimum of 2.5 to 3.5 mils thick. Do not apply paint to the latching hardware or rigid vehicle signal head mounting brackets for mast-arm attachments. Have the interior surfaces of tunnel and traditional visors painted an alkyd urea black synthetic baking enamel with a minimum gloss reflectance and meeting the requirements of MIL-E-10169, "Enamel Heat Resisting, Instrument Black." For pole mounting, provide side of pole mounting assemblies with framework and all other hardware necessary to make complete, watertight connections of the signal heads to the poles and pedestals. Fabricate the mounting assemblies and frames from aluminum with all necessary hardware, screws, washers, etc. to be stainless steel. Provide mounting fittings that match the positive locking device on the signal head with the serrations integrally cast into the brackets. Provide upper and lower pole plates that have a 1 ¼-inch vertical conduit entrance hubs with the hubs capped on the lower plate and 1 ½-inch horizontal hubs. Ensure that the assemblies provide rigid attachments to poles and pedestals so as to allow no twisting or swaying of the signal heads. Ensure that all raceways are free of sharp edges and protrusions, and can accommodate a minimum of ten Number 14 AWG conductors. For pedestal mounting, provide a post-top slipfitter mounting assembly that matches the positive locking device on the signal head with serrations integrally cast into the slipfitter. Provide stainless steel hardware, screws, washers, etc. Provide a minimum of six 3/8 X 3/4-inch long square head bolts for attachment to pedestal. Provide a center post for multi-way slipfitters. For light emitting diode (LED) traffic signal modules, provide the following requirements for inclusion on the Department's Qualified Products List for traffic signal equipment. - 1. Sample submittal, - 2. Third-party independent laboratory testing results for each submitted module with evidence of testing and conformance with all of the Design Qualification Testing specified in section 6.4 of each of the following Institute of Transportation Engineers (ITE) specifications: - Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Circular Signal Supplement - Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement Pedestrian Traffic Control Signal Indications –Light Emitting Diode (LED) Signal Modules. (Note: The Department currently recognizes two approved independent testing laboratories. They are Intertek ETL Semko and Light Metrics, Incorporated with Garwood Laboratories. Independent laboratory tests from other laboratories may be considered as part of the QPL submittal at the discretion of the Department, - 3. Evidence of conformance with the requirements of these specifications, - 4. A manufacturer's warranty statement in accordance with the required warranty, and - 5. Submittal of manufacturer's design and production documentation for the model, including but not limited to, electrical schematics, electronic component values, proprietary part numbers, bill of materials, and production electrical and photometric test parameters. - 6. Evidence of approval of the product to bear the Intertek ETL Verified product label for LED traffic signal modules. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide new replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Repaired or refurbished modules may not be used to fulfill the manufacturer's warranty obligations. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). # **B.** Vehicle Signal Heads: Comply with the ITE standard "Vehicle Traffic Control Signal Heads". Provide housings with provisions for attaching backplates. Provide visors that are 8 inches in length for 8-inch vehicle signal head sections. Provide visors that are 10 inches in length for 12-inch vehicle signal heads. Provide a termination block with one empty terminal for field wiring for each indication plus one empty terminal for the neutral conductor. Have all signal sections wired to the termination block. Provide barriers between the terminals that have terminal screws with a minimum Number 8 thread size and that will accommodate and secure spade lugs sized for a Number 10 terminal screw. Mount termination blocks in the yellow signal head sections on all in-line vehicle signal heads. Mount the termination block in the red section on five-section vehicle signal heads. Furnish vehicle signal head interconnecting brackets. Provide one-piece aluminum brackets less than 4.5 inches in height and with no threaded pipe connections. Provide hand holes on the bottom of the brackets to aid in installing wires to the signal heads. Lower brackets that carry no wires and are used only for connecting the bottom signal sections together may be flat in construction. For messenger cable mounting, provide messenger cable hangers, wire outlet bodies, balance adjusters, bottom caps, wire entrance fitting brackets, and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the messenger cable. Fabricate mounting assemblies from malleable iron or steel and provide serrated rings made of aluminum. Provide messenger cable hangers and balance adjusters that are galvanized before being painted. Fabricate balance adjuster eyebolt and eyebolt nut from stainless steel or galvanized malleable iron. Provide messenger cable hangers with U-bolt clamps. Fabricate washers, screws, bolts, clevis pins, cotter pins, nuts, and U-bolt clamps from stainless steel. For mast-arm mounting, provide rigid vehicle signal head mounting brackets and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the mast Version 12.1 4 print date: 10/02/12 Signals & Intelligent Transportation Systems arms and to provide a means for vertically adjusting the vehicle signal heads to proper alignment. Fabricate the mounting assemblies from aluminum, and provide serrated rings made of aluminum. Provide stainless steel cable attachment assemblies to secure the brackets to the mast arms. Ensure all fastening hardware and fasteners are fabricated from stainless steel. Provide LED vehicular traffic signal modules (hereafter referred to as modules) that consist of an assembly that uses LEDs as the light source in lieu of an incandescent lamp for use in traffic signal sections. Use LEDs that are aluminum indium gallium phosphorus (AlInGaP) technology for red and yellow indications and indium gallium nitride (InGaN) for green indications. Install the ultra bright type LEDs that are rated for 100,000 hours of continuous operation from -40°F to +165°F. Design modules to have a minimum useful life of 60 months and to meet all parameters of this specification during this period of useful life. For the modules, provide spade terminals crimped to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard signal head. Do not provide other types of crimped terminals with a spade adapter. \*Ensure the power supply is integral to the module assembly. On the back of the module, permanently mark the date of manufacture (month & year) or some other method of identifying date of manufacture. Tint the red, yellow and green lenses to correspond with the wavelength (chromaticity) of the LED. Transparent tinting films are unacceptable. Provide a lens that is integral to the unit with a smooth outer surface. # 1. LED Circular Signal Modules: Provide modules in the following configurations: 12-inch circular sections, and 8-inch circular sections. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL). Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2012 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the *Standard Specifications*, that each module meets or exceeds the ITE "Vehicle Traffic Control Signal Heads – Light Emitting Diode (LED) Circular Signal Supplement" dated June 27, 2005 (hereafter referred to as VTCSH Circular Supplement) and other requirements stated in this specification. Provide modules that meet the following requirements when tested under the procedures outlined in the VTCSH Circular Supplement: | Module Type | Max. Wattage at 165° F | Nominal Wattage at 77° F | |------------------------|------------------------|--------------------------| | 12-inch red circular | 17 | 11 | | 8-inch red circular | 13 | 8 | | 12-inch green circular | 15 | 15 | | 8-inch green circular | 12 | 12 | For yellow circular signal modules, provide modules tested under the procedures outlined in the VTCSH Circular Supplement to insure power required at 77° F is 22 Watts or less for the 12-inch circular module and 13 Watts or less for the 8-inch circular module. Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of a circular traffic signal module. Power may also be derived from voltage, current and power factor measurements. Version 12.1 5 print date: 10/02/12 Signals & Intelligent Transportation Systems: 127 # 2. LED Arrow Signal Modules Provide 12-inch omnidirectional arrow signal modules. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL). Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2012 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the *Standard Specifications*, that each module meets or exceeds the requirements for 12-inch omnidirectional modules specified in the ITE "Vehicle Traffic Control Signal Heads – Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement" dated July 1, 2007 (hereafter referred to as VTCSH Arrow Supplement) and other requirements stated in this specification. Provide modules that meet the following requirements when tested under the procedures outlined in the VTCSH Arrow Supplement: | Module Type | Max. Wattage at 165° F | Nominal Wattage at 77° F | |---------------------|------------------------|--------------------------| | 12-inch red arrow | 12 | 9 | | 12-inch green arrow | 11 | 11 | For yellow arrow signal modules, provide modules tested under the procedures outlined in the VTCSH Arrow Supplement to insure power required at 77° F is 12 Watts or less. Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of an arrow traffic signal module. Power may also be derived from voltage, current and power factor measurements. # C. Signal Cable: Furnish 16-4 and 16-7 signal cable that complies with IMSA specification 20-1 except provide the following conductor insulation colors: - For 16-4 cable: white, yellow, red, and green - For 16-7 cable: white, yellow, red, green, yellow with black stripe tracer, red with black stripe tracer, and green with black stripe tracer. Apply continuous stripe tracer on conductor insulation with a longitudinal or spiral pattern. Provide a ripcord to allow the cable jacket to be opened without using a cutter. IMSA specification 19-1 will not be acceptable. Provide a cable jacket labeled with the IMSA specification number and provide conductors constructed of stranded copper. #### 2. VIDEO IMAGING LOOP EMULATOR DETECTOR SYSTEMS #### 2.1. DESCRIPTION Design, furnish, provide training, and install video imaging loop emulator detection systems with all necessary hardware in accordance with the plans and specifications. Unless otherwise specified in the contract, all loop emulator detection equipment will remain the property of the contractor. #### 2.2. MATERIALS #### A. General: Material and equipment furnished under this section must be pre-approved on the Department's QPL by the date of installation except miscellaneous hardware such as cables and mounting hardware do not need to be pre-approved. Used equipment will be acceptable provided the following conditions have been met: - Equipment is listed on the current QPL. - Equipment is in good working condition. - Equipment is to remain the property of the contractor. Ensure that software is licensed for use by the Department and by any other agency responsible for maintaining or operating the loop emulation system. Provide the Department with a license to duplicate and distribute the software as necessary for design and maintenance support. Design and furnish video imaging loop emulator detection systems that detect vehicles at signalized intersections by processing video images and providing detection outputs to the signal controller in real time (within 112 milliseconds of vehicle arrival). Furnish all required camera sensor units, loop emulator processor units, hardware and software packages, cabling, poles, mast arms, harnesses, camera mounting assemblies, surge protection panels, grounding systems, messenger cable and all necessary hardware. Furnish systems that allow the display of detection zones superimposed on an image of the roadway on a Department-furnished monitor or laptop computer screen. Ensure detection zones can be defined and data entered using a simple keyboard or mouse and monitor, or using a laptop PC with software. Provide design drawings showing design details and camera sensor unit locations for review and acceptance before installation. Provide mounting height and location requirements for camera sensor units on the design based on site survey. Design video imaging loop emulator detection systems with all necessary hardware. Indicate all necessary poles, spans, mast arms, luminaire arms, cables, camera mounting assemblies and hardware to achieve the required detection zones where Department owned poles are not adequate to locate the camera sensor units. Do not design for the installation of poles in medians. Obtain the Engineer's approval before furnishing video imaging loop emulator detection systems. The contractor is responsible for the final design of video imaging loop emulator detection systems. Review and acceptance of the designs by the Department does not relieve the contractor from the responsibility to provide fully functional systems and to ensure that the required detection zones can be provided. Provide the ability to program each detection call (input to the controller) with the following functions: - Full Time Delay Delay timer is active continuously, - Normal Delay Delay timer is inhibited when assigned phase is green (except when used with TS 2 and 170/2070L controllers), - Extend Call is extended for this amount of time after vehicle leaves detection area, - Delay Call/Extend Call This feature uses a combination of full time delay and extend time on the same detection call. Ensure operation is as follows: Vehicle calls are received after the delay timer times out. When a call is detected, it is held until the detection area is empty and the programmed extend time expires. If another vehicle enters the detection area before the extend timer times out, the call is held and the extend time is reset. When the extend timer times out, the delay timer has to expire before another vehicle call can be received. Provide the ability to program each detection zone as one of the following functions: - Presence detector, - Directional presence detector, - Pulse detector, - Directional pulse detector. Ensure previously defined detector zones and configurations can be edited. Provide each individual system with all the necessary equipment to focus and zoom the camera lenses without the need to enter the camera enclosure. Provide systems that allow for the placement of at least 8 detection zones within the combined field of view of a single camera sensor unit. Provide a minimum of 8 detection outputs per camera. Provide detection zones that can be overlapped. Ensure systems reliably detect vehicles when the horizontal distance from the camera sensor unit to the detection zone area is less than ten times the mounting height of the sensor. Ensure systems detect vehicles in multiple travel lanes. Ensure systems can detect vehicle presence within a 98 to 102 percent accuracy (up to 2 percent of the vehicles missed and up to 2 percent of false detection) for clear, dry, daylight conditions, a 96 to 105 percent accuracy (up to 4 percent of the vehicles missed and up to 5 percent false detection) for dawn and dusk conditions, and a 96 percent accuracy (up to 4 percent of the vehicles missed) for night and adverse conditions (fog, snow, rain, etc.) using standard sensor optics and in the absence of occlusion. Repair and replace all failed components within 72 hours. The Department may conduct field-testing to ensure the accuracy of completed video imaging loop emulator detection systems. #### **B.** Loop Emulator System: Furnish loop emulator systems that receive and simultaneously process information from camera sensor units, and provides detector outputs to signal controllers. Ensure systems provide the following: - Operate in a typical roadside environment and meet the environmental specifications and are fully compatible with NEMA TS 1, NEMA TS 2, or Type 170/2070L controllers and cabinets, - provide a "fail-safe" mode whereby failure of one or more of the camera sensor units or power failure of the loop emulator system will cause constant calls to be placed on the affected vehicle detection outputs to the signal controller, - provide compensation for minor camera movement of up to 2 percent of the field of view at 400 feet without falsely detecting vehicles, - process the video at a minimum rate of 30 times per second, - provide separate wired connectors inside the controller cabinet for video recording each camera, - provide remote video monitoring with a minimum refresh rate at 1 frame per second over a standard dial-up telephone line, - provide remote video detection monitoring. Furnish camera sensor units that comply with the following: - have an output signal conforming to EIA RS-170 standard, - have a nominal output impedance of 75 ohms, - be immune to bright light sources, or have built in circuitry or protective devices to prevent damage to the sensor when pointed directly at strong light sources, - be housed in a light colored environmental enclosure that is water proof and dust tight, and that conforms to NEMA-4 specifications or better, - simultaneously monitor at least five travel lanes when placed at the proper mounting location with a zoom lens. - have a sunshield attached to the environmental enclosure to minimize solar heating, - meet FCC class B requirements for electromagnetic interference emissions, - have a heater attached to the viewing window of the environmental enclosure to prevent ice and condensation in cold weather. Where coaxial video cables and other cables are required between the camera sensor and other components located in the controller cabinet, furnish surge protection in the controller cabinet. If furnishing coaxial communications cable comply with the following, as recommended by the approved loop emulator manufacturer: - Number 20 AWG, solid bare copper conductor terminated with crimped-on BNC connectors (do not use BNC adapters) from the camera sensor to the signal controller cabinet. - Number 22 AWG, stranded bare copper conductor terminated with crimped-on BNC connectors (do not use BNC adapters) from the camera sensor unit to the junction box, and within the signal controller cabinet. Furnish power cable appropriately sized to meet the power requirements of the sensors. At a minimum, provide three conductor 120 VAC field power cable. As determined during the site survey, furnish sensor junction boxes with nominal 6 x 10 x 6 inches dimensions at each sensor location. Provide terminal blocks and tie points for coaxial cable. #### C. Video Imaging Loop Emulator System Support: Furnish video imaging loop emulator systems with either a simple keyboard or a mouse with monitor and appropriate software, or with system software for use on department-owned laptop PCs. Ensure the system is Windows 2000 and Windows XP compatible. Provide Windows 2000 and Windows XP compatible personal computer software, if needed, to provide remote video and video detection monitoring. Ensure systems allow the user to edit previously defined detector configurations. When a vehicle is within a detection zone, provide for a change in color or intensity of the detection zone perimeter or other appropriate display changes on the Department-furnished monitor or laptop computer screen. Provide cabling and interconnection hardware with 6-foot minimum length interconnection cable to interface with the system. Provide all associated equipment manuals and documentation. #### 2.3. CONSTRUCTION METHODS Arrange and conduct site surveys with the system manufacturer's representative and Department personnel to determine proper camera sensor unit selection and placement. Provide the Department at least 3 working days notice before conducting site surveys. Upon completion of the site surveys the Department will provide revised plans reflecting the findings of the site survey. Version 12.1 9 print date: 10/02/12 #### R-3324 Signals & Intelligent Transportation Systems Before beginning work at locations requiring video imaging loop emulator detection systems, furnish system software. Upon activation of detection zones, provide detector configuration files. Ensure that up-to-date detection configuration files are furnished for various detection zone configurations that may be required for construction phasing. Place into operation loop emulator detection systems. Configure loop emulator detection systems to achieve required detection in designated zones. Have a certified manufacturer's representative on site to supervise and assist with installation, set up, and testing of the system. Install the necessary processing and communications equipment in the signal controller cabinet. Make all necessary modifications to install equipment, cabling harnesses, and camera sensor interface panels with surge suppression. Perform modifications to camera sensor unit gain, sensitivity, and iris limits necessary to complete the installation. Do not install camera sensor units on signal poles unless approved by the Engineer. Install the necessary cables from each sensor to the signal controller cabinet along signal cabling routes. Install surge protection and terminate all cable conductors. Relocate camera sensor units and reconfigure detection zones as necessary according to the plans for construction phases. Provide at least 8 hours of training on the set up, operation, troubleshooting, and maintenance of the loop emulator detection system to a maximum of ten Department personnel. Arrange for training to be conducted by the manufacturer's representative at an approved site within the Division responsible for administration of the project. Thirty days before conducting training submit a detailed course curriculum, draft manuals and materials, and resumes. Obtain approval of the submittal before conducting the training. At least one week before beginning training, provide three sets of complete documentation necessary to maintain and operate the system. Do not perform training until installation of loop emulator detection systems is complete. #### 2.4. MEASUREMENT AND PAYMENT Actual number of site surveys, arranged, conducted, and accepted. Actual number of luminaire arms for video systems furnished, installed, and accepted. Actual number of cameras without internal loop emulator processing units furnished, installed, and accepted. Actual number of external loop emulator processing units furnished, installed, and accepted. No measurement will be made of video imaging loop emulator system support or training, power and video cables, and trenching as these items will be considered incidental to furnishing and installing video imaging loop emulator detection systems. Payment will be made under: | Site Survey | Each | |-------------------------------------------------------|------| | Luminaire Arm for Video System | | | Camera without Internal Loop Emulator Processing Unit | | | External Loop Emulator Processing Unit | Each | #### 3. MICROWAVE VEHICLE DETECTOR #### 3.1. DESCRIPTION Furnish and install a microwave vehicle detection unit and manufacturer recommended cables and hardware in accordance with the plans and specifications. #### 3.2. MATERIALS Provide a detector for either side-fire or forward-fire configuration with a mounting height of 16 inches or greater for normal operation. Ensure the detector will detect vehicle in sunny, cloudy, rainy, snowy, and foggy weather conditions with self-tuning to auto-adjust in changing environmental conditions. Ensure the detector can operate from the voltage supplied by a NEMA and Type-170 traffic signal cabinet. Ensure the detector can provide detection calls to the traffic signal controller within a NEMA and Type-170 cabinet. Ensure the detector will put out a constant call in the event of a component failure or loss of power. Ensure the detector has an operating temperature range of -20 to 150 degrees F. Ensure a water resistant housing for the detector. For advance pulse detection, ensure the detector senses vehicles in motion at a range of 200 feet with an operating frequency of 10.525 GHz +/- 25MHz. For stop bar presence detection, ensure the detector outputs a constant call while a vehicle is in the detection zone. Ensure the presence detection unit can cover a detection zone as shown on the plans and has an effective range of at least 75 feet from the detector unit to the aim point on the road surface. For units without an integrated card rack interface, provide Form C output relay contacts rated a minimum of 3A, 24VDC. If a laptop is used to adjust detector settings, ensure that software is licensed for use by the Department and by any other agency responsible for maintaining or operating the microwave detection system. Provide the Department with a license to duplicate and distribute the software as necessary for design and maintenance support. #### 3.3. CONSTRUCTION METHODS Install the microwave vehicle detector in accordance with the manufacturer's recommendations. Monitor and maintain the detector unit during construction to ensure microwave vehicle detector is functioning properly and aimed for the detection zone shown in the plans. Refer to Subarticle 1700-3 (D) Maintenance and Repair of Materials of the *Standard Specifications* for failure to maintain the microwave detection system. ### 3.4. MEASUREMENT AND PAYMENT Actual number of microwave vehicle detector units furnished, installed, and accepted. No measurement will be made of cables or hardware, as these will be considered incidental to furnishing and installing microwave vehicle detectors. Payment will be made under: #### 4. TRAFFIC SIGNAL SUPPORTS #### 4.1. METAL TRAFFIC SIGNAL SUPPORTS – ALL POLES #### A. General: Furnish and install metal strain poles and metal poles with mast arms, grounding systems, and all necessary hardware. The work covered by this special provision includes requirements for the design, fabrication, and installation of both standard and custom/site specifically designed metal traffic signal supports and associated foundations. Provide metal traffic signal support systems that contain no guy assemblies, struts, or stay braces. Provide designs of completed assemblies with hardware that equals or exceeds AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals 4th Edition, 2001 (hereafter called 4th Edition AASHTO), including the latest interim specifications. Provide assemblies with a round or near-round (18 sides or more) cross-section, or a multi sided cross section with no less than six sides. The sides may be straight, convex, or concave. Pole heights shown on signal plans are estimated from available data for bid purposes. Prior to furnishing metal signal poles, use field measurements and adjusted cross-sections to determine whether pole heights are sufficient to obtain required clearances. If pole heights are not sufficient, the Contractor should immediately notify the Engineer of the required revised pole heights. Ensure that metal signal poles permit cables to be installed inside poles and any required mast arms. For holes in the poles and arms used to accommodate cables, provide full-circumference grommets. Arm flange plate wire access holes should be deburred, non grommeted, and oversized to fit around the 2" diameter grommeted shaft flange plate wire access hole. After fabrication, have steel poles, required mast arms, and all parts used in the assembly hot-dip galvanized per section 1076. Design structural assemblies with weep holes large enough and properly located to drain molten zinc during galvanization process. Provide hot-dip galvanizing on structures that meets or exceeds ASTM Standard A-123. Provide galvanizing on hardware that meets or exceeds ASTM Standard A-153. Ensure that threaded material is brushed and retapped as necessary after galvanizing. Perform repair of damaged galvanizing that complies with the following: Repair of Galvanizing .......Article 1076-6 Standard Drawings for Metal Poles are available that supplement these project special provisions. These drawings are located on the Department's website: http://www.ncdot.gov/doh/preconstruct/traffic/ITSS/ws/mpoles/poles.html Comply with article 1098-1B "General Requirements" of the 2012 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES, hereinafter referred to as the Standard Specifications for submittal requirements. Furnish shop drawings for approval. Provide the copies of detailed shop drawings for each type of structure as summarized below. Ensure that shop drawings include material specifications for each component and identify welds by type and size on the drawing details, not in table format. Do not release structures for fabrication until shop drawings have been approved by NCDOT. Provide an itemized bill of materials for all structural components and associated connecting hardware on the drawings. Comply with article 1098-1A "General Requirements" of the *Standard Specifications* for Qualified Products List (QPL) submittals. All shop drawings must include project location description, signal inventory number(s) and a project number or work order number on the drawings. Summary of information required for metal pole review submittal: | Item | Hardcopy<br>Submittal | Electronic<br>Submittal | Comments / Special Instructions | |-------------------------------------------------|-----------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Sealed, Approved Signal<br>Plan/Loading Diagram | 1 | 1 | All structure design information needs to reflect the latest approved signal plans | | Custom Pole Shop Drawings | 4 sets | 1 set | Submit drawings on 11" x 17" format media | | | | | Show NCDOT inventory number(s) in or above the title block | | Standard Pole Shop Drawings | 4 sets | 1 set | Submit drawings on 11" x 17" format media | | (from the QPL) | | | Show NCDOT inventory number(s) in or above the title block | | Structure Calculations | 1 set | 1 set | Not required for Standard QPL Poles | | Standard Pole Foundation<br>Drawings | 1 set | 1 set | Submit drawings on 11" x 17" format media. Submit a completed Standard Foundation Selection form for each pole using foundation table on Metal Pole Drawing M-8. | | Custom Foundation Drawings | 4 sets | 1 set | Submit drawings on 11" x 17" format media. If QPL Poles are used, include the corresponding QPL pole shop drawings with this submittal. | | Foundation Calculations | 1 | 1 | Not required for Standard QPL Poles | | Soil Boring Logs and Report | 1 | 1 | Report should include a location plan and a soil classification report including soil capacity, water level, hammer efficiency, soil bearing pressure, soil density, etc. for each pole. | **NOTE** – All shop drawings and custom foundation design drawings must be sealed by a professional Engineer licensed in the state of North Carolina. All geotechnical information must be sealed by either a Professional Engineer or geologist licensed in the state of North Carolina. Include a title block and revision block on the shop drawings and foundation designs showing the NCDOT inventory number. Shop drawings and foundation drawings may be submitted together or separately for approval. However, shop drawings must be approved before foundations can be reviewed. Foundation designs will be returned without review if the associated shop drawing has not been approved. Incomplete submittals will be returned without review. #### **B.** Materials: Fabricate metal pole and arm shaft from coil or plate steel to meet the requirements of ASTM A 595 Grade A tubes. For structural steel shapes, plates and bars use A572 Gr 50 min or ASTM A709 Gr 50 min.. Provide pole and arm shafts that are round in cross section or multisided tubular shapes and have a uniform linear taper of 0.14 in/ft. Construct shafts from one piece of single ply plate or coil so there are no circumferential weld splices. Galvanize in accordance with AASHTO M 111 and/or ASTM A 123 or an approved equivalent. Use the submerged arc process or other NCDOT previously approved process suitable for pole shaft and arms to continuously weld pole shafts and arm shafts along their entire length. The longitudinal seam weld will be finished flush to the outside contour of the base metal. Ensure shafts have no circumferential welds except at the lower end joining the shaft to the pole base and arm base. Provide welding that conforms to Article 1072-20 of the *Standard Specifications*, except that no field welding on any part of the pole will be permitted unless approved by a qualified engineer. Refer to Metal Pole Standard Drawing Sheets M2 through M5 for fabrication details. Fabricate anchor bases from plate steel meeting, as a minimum, the requirements of ASTM A 36M or cast steel meeting the requirements of ASTM A 27M Grade 485-250, AASHTO M270 Gr 36 or an approved equivalent. Conform to the applicable bolt pattern and orientation as shown on Metal Pole Standard Drawing Sheet M2. Ensure all hardware is galvanized steel or stainless steel. The Contractor is responsible for ensuring that the designer/fabricator specifies connecting hardware and/or materials that do not create a dissimilar metal corrosive reaction. Unless otherwise required by the design, ensure each anchor rod is 2" diameter and 60" length. Provide 10" minimum thread projection at the top of the rod, and 8" minimum at the bottom of the rod. Use anchor rod assembly and drilled pier foundation materials that meet the *Foundations and Anchor Rod Assemblies for Metal Poles* provision. For each structural bolt and other steel hardware, hot dip galvanizing shall conform to the requirements of AASHTO M 232 (ASTM A 153). Ensure end caps for poles or mast arms are constructed of cast aluminum conforming to Aluminum Alloy 356.0F. Provide a circular anchor bolt lock plate that will be secured to the anchor bolts at the embedded end with 2 washers and 2 nuts. Provide a base plate template that matches the bolt circle diameter of the anchor bolt lock plate. Construct plates and templates from ¼" minimum thick steel with a minimum width of 4". Galvanizing is not required. Provide 4 heavy hex nuts and 4 flat washers for each anchor bolt. For nuts, use AASHTO M291 grade 2H, DH, or DH3 or equivalent material. For flat washers, use AASHTO M293 or equivalent material. #### C. Construction Methods: Erect signal support poles only after concrete has attained a minimum allowable compressive strength of 3000 psi. Install anchor rod assemblies in accordance with the *Foundations and Anchor Rod Assemblies for Metal Poles* provision. For further construction methods, see construction methods for Metal Strain Pole, or Metal Pole with Mast Arm. Connect poles to grounding electrodes and bond them to the electrical service grounding electrodes. For holes in the poles used to accommodate cables, install grommets before wiring pole or arm. Do not cut or split grommets. Attach the terminal compartment cover to the pole by a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cover to hang clear of the compartment opening when the cover is removed, and is strong enough to prevent vandalism. Ensure the chain or cable will not interfere with service to the cables in the pole base. Attach cap to pole with a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cap to hang clear of the opening when the cap is removed. Perform repair of damaged galvanizing that complies with the *Standard Specifications*, Article 1076-6 "Repair of Galvanizing." Install galvanized wire mesh around the perimeter of the base plate to cover the gap between the base plate and top of foundation for debris and pest control. Install a 1/4" thick plate for concrete foundation tag to include: concrete grade, depth, diameter, and reinforcement sizes of the installed foundation. Version 12.1 14 print date: 10/02/12 # 4.2. METAL POLE WITH MAST ARM Provide signal support mast arm assemblies. Comply with the previous Section – Metal Strain Pole – except as noted herein. Provide pole plates and associated gussets and fittings for attachment of required mast arms. As part of each mast arm attachment, provide a cable passage hole in the pole to allow passage of signal cables from the pole to the arm. Ensure that allowable mast arm deflection does not exceed that allowed per 4<sup>th</sup> Edition AASHTO. Also when arm is fully loaded, tip of the arm shall not go below the arm attachment point with the pole for all load conditions per 4<sup>th</sup> Edition AASHTO. Furnish all arm plates and necessary attachment hardware, including bolts and brackets. Provide two extra bolts for each arm. Provide grommet holes on the arms to accommodate cables for the signals. Provide arms with weatherproof connections for attaching to the shaft of the pole. Provide hardware that is galvanized steel, stainless steel, or corrosive-resistant aluminum. Provide a removable end cap with stainless steel attachment screws for the end of each mast arm. Ensure that the cap is cast aluminum conforming to Aluminum Association Alloy 356.0F. Furnish cap attached to the arm with a sturdy chain or cable approved by the Engineer. Ensure that the chain or cable is long enough to permit the cap to hang clear of the arm end opening when the cap is removed. # Comply with the following for Aluminum Arms: - Conform to Aluminum Association Alloy 6061-T6, 6063-T6 or approved equivalent. - Conform to the welding requirements of the aluminum poles. - Have satin brush finished and furnish individually wrapped. #### Comply with the following for Steel Luminaire Arms: - In addition to tapered tube, luminaire arms may be standard weight black steel pipe conforming to ASTM A 53-90a, Type E or Type S, Grade B or an approved equivalent. - Conform to the welding requirements of the steel poles. - After all fabricating, cutting, punching, and welding are completed, luminaire arms should be hot-dipped galvanized inside and outside. - In accordance with the National Electrical Code (NEC) Article 230.2(E), provide identification of the electrical source provider for the luminaire feeder circuit with contact information on a permanent label located in the pole hand hole in the vicinity of the feeder circuit raceway. #### A. Materials: Fabrication of two ply pole shafts and arms is unacceptable with the exception of fluted members. After all fabricating, cutting, punching, and welding are completed, hot-dip galvanize the structure in accordance with the AASHTO M 111 or equivalent. #### **B.** Construction Methods: Install horizontal-type arms with sufficient manufactured rise to keep arm from deflecting below the arm attachment height. Attach cap to the mast arm with a sturdy chain or cable. Ensure that the chain or cable is long enough to permit the cap to hang clear of the arm opening when the cap is removed. For mast arm poles, use full penetration welds with back-up ring at the pole base and at the arm base connection. #### 4.3. DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES Analysis procedures and formulas shall be based on AASHTO, ACI code and per FHWA manuals. Design methods based on engineering publications or research papers needs to have prior approval from NCDOT. The Department reserves the right to accept or disapprove any method used for the analysis. Use a Factor of Safety of 1.33 for torsion and 2.0 for bending for the foundation design. Foundation design for lateral load shall not exceed 1" lateral deflection at top of foundation. Design all custom foundations to carry the maximum capacity of each metal pole. For standard case strain poles only, if a custom foundation is designed, use the actual moment reactions from the Standard Foundation Selection Table shown on Standard Drawing No. M8. When poor soil conditions are encountered which could create an excessively large foundation design, consideration may be given to allowing an exemption to the maximum capacity design. The contractor must gain approval from the engineer before reducing a foundation's capacity. On projects where poor soil is known to be present, it is advisable that the contractor consider getting foundations approved before releasing poles for fabrication. #### A. Description: Furnish and install foundations for NCDOT metal poles with all necessary hardware in accordance with the plans and specifications. Metal Pole Standards have been developed and implemented by NCDOT for use at signalized intersections in North Carolina. If the plans call for a standard pole, then a standard foundation may be selected from the plans. However, the Contractor is not required to use a standard foundation. If the Contractor chooses to design a non-standard site-specific foundation for a standard pole or if the plans call for a non-standard site-specific pole, design the foundation to conform to the applicable provisions in the NCDOT Metal Pole Standards and Section B4 (Non-Standard Foundation Design) below. If non-standard site specific foundations are designed for standard QPL approved strain poles, the foundation designer must use the design moment specified by load case on Metal Pole Standard Drawing Sheet M8. Failure to conform to this requirement will be grounds for rejection of the design. If the Contractor chooses to design a non-standard foundation for a standard pole and the soil test results indicate a standard foundation is feasible for the site, the Contractor will be paid the cost of the standard foundation (drilled pier and wing wall, if applicable). Any additional costs associated with a non-standard site-specific foundation including additional materials, labor and equipment will be considered incidental to the cost of the standard foundation. All costs for the non-standard foundation design will also be considered incidental to the cost of the standard foundation. #### B. Soil Test and Foundation Determination: #### 1. General: Drilled piers are reinforced concrete sections, cast-in-place against in situ, undisturbed material. Drilled piers are of straight shaft type and vertical. Some standard drilled piers for supporting poles with mast arms may require wing walls to resist torsional rotation. Based upon this provision and the results of the required soil test, a drilled pier length and wing wall requirement may be determined and constructed in accordance with the plans. For non-standard site-specific poles, the contractor-selected pole fabricator will determine if the addition of wing walls is necessary for the supporting foundations. #### 2. Soil Test: Perform a soil test at each proposed metal pole location. Complete all required fill placement and excavation at each signal pole location to finished grade before drilling each boring. Soil tests performed that are not in compliance with this requirement may be rejected and will not be paid. Drill one boring to a depth of 26 feet within a 25 foot radius of each proposed foundation. Perform standard penetration tests (SPT) in accordance with ASTM D 1586 at depths of 1, 2.5, 5, 7.5, 10, 15, 20 and 26 feet. Discontinue the boring if one of the following occurs: - A total of 100 blows have been applied in any 2 consecutive 6-in. intervals. - A total of 50 blows have been applied with < 3-in. penetration. Describe each intersection as the "Intersection of (Route or SR #), (Street Name) and (Route or SR #), (Street Name), \_\_\_\_\_\_ County, Signal Inventory No. \_\_\_\_\_ ". Label borings with "B- N, S, E, W, NE, NW, SE or SW" corresponding to the quadrant location within the intersection. Pole numbers should be made available to the Drill Contractor. Include pole numbers in the boring label if they are available. If they are not available, ensure the boring labels can be cross-referenced to corresponding pole numbers. For each boring, submit a legible (hand written or typed) boring log signed and sealed by a licensed Geologist or Professional Engineer registered in North Carolina. Include on each boring the SPT blow counts and N-values at each depth, depth of the boring, and a general description of the soil types encountered. #### 3. Standard Foundation Determination: Use the following method for determining the Design N-value: $$N_{AVG} = \underbrace{(N@1' + N@2.5' + \dots N@Deepest Boring Depth)}_{Total Number of N-values}$$ $$Y = (N@1')^2 + (N@2.5')^2 + \dots (N@Deepest Boring Depth)^2$$ $$Z = (N@1' + N@2.5' + \dots N@Deepest Boring Depth)$$ $$N_{STD DEV} = \underbrace{\frac{(Total Number of N-values \times Y) - Z^2}{(Total Number of N-values) \times (Total Number of N-values - 1)}^{0.5}$$ 139 **Design N-value** equals lesser of the following two conditions: $$N_{AVG} - (N_{STD DEV} \times 0.45)$$ Or Average of First Four N-Values = $(N@1' + N@2.5' + N@5' + N@7.5')$ Note: If less than 4 N-values are obtained because of criteria listed in Section 2 above, use average of N-values collected for second condition. Do not include the N-value at the deepest boring depth for above calculations if the boring is discontinued at or before the required boring depth because of criteria listed in Section 2 above. Use N-value of zero for weight of hammer or weight of rod. If N-value is greater than 50, reduce N-value to 50 for calculations. If standard NCDOT strain poles are shown on the plans and the Contractor chooses to use standard foundations, determine a drilled pier length, "L," for each signal pole from the Standard Foundations Chart (sheet M 8) based on the Design N-value and the predominant soil type. For each standard pole location, submit a completed "Metal Pole Standard Foundation Selection Form" signed by the Contractor's representative. Signature on form is for verification purposes only. Include the Design N-value calculation and resulting drilled pier length, "L," on each form. If non-standard site-specific poles are shown on the plans, submit completed boring logs collected in accordance with Section 2 (Soil Test) above along with pole loading diagrams from the plans to the contractor-selected pole fabricator to assist in the pole and foundation design. If one of the following occurs, the Standard Foundations Chart shown on the plans may not be used and a non-standard foundation may be required. In such case, contact the Engineer. - The Design N-value is less than 4. - The drilled pier length, "L", determined from the Standard Foundations Chart, is greater than the depth of the corresponding boring. In the case where a standard foundation cannot be used, the Department will be responsible for the additional cost of the non-standard foundation. Foundation designs are based on level ground around the traffic signal pole. If the slope around the edge of the drilled pier is steeper than 8:1 (H:V) or the proposed foundation will be less than 10 feet from the top of an embankment slope, the Contractor is responsible for providing slope information to the foundation designer and to the Engineer so it can be considered in the design. The "Metal Pole Standard Foundation Selection Form" may be found at: http://www.ncdot.gov/doh/preconstruct/highway/geotech/formdet/misc/MetalPole.pdf If assistance is needed, contact the Engineer. # 4. Non-Standard Foundation Design: Design non-standard foundations based upon site-specific soil test information collected in accordance with Section 2 (Soil Test) above. Design drilled piers for side resistance only in accordance with Section 4.6 of the *AASHTO Standard Specifications for Highway Bridges*. Use the computer software LPILE version 5.0 or later manufactured by Ensoft, Inc. to analyze drilled piers. Use the computer software gINT version 8.0 or later manufactured by Bentley Systems, Inc. with the current NCDOT gINT library and data template to produce SPT boring logs. Provide a drilled pier foundation for each pole with a length and diameter that result in a horizontal lateral movement of less than 1 inch at the top of the pier and a horizontal rotational movement of less than 1 inch at the edge of the pier. Contact the Engineer for pole loading diagrams for standard poles to be used for non-standard foundation designs. Submit any non-standard foundation designs including drawings, calculations, and soil boring logs to the Engineer for review and approval before construction. #### C. Drilled Pier Construction: Construct drilled pier foundations in accordance with the *Foundations and Anchor Rod Assemblies for Metal Poles* provision. #### 4.4. POLE NUMBERING SYSTEM #### A. New Poles Attach an identification tag to each pole shaft and mast arm section as shown on Metal Pole Standard Drawing Sheet M2 "Typical Fabrication Details Common To All Metal Poles". #### 4.5. MEASUREMENT AND PAYMENT Actual number of metal poles with single mast arms furnished, installed, and accepted. Actual number of metal poles with dual mast arms furnished, installed, and accepted. Actual number of soil tests with SPT borings drilled furnished and accepted. Actual volume of concrete poured in cubic yards of drilled pier foundation furnished, installed and accepted. No measurement will be made for foundation designs prepared with metal pole designs, as these will be considered incidental to designing signal support structures. #### Payment will be made under: | Metal Pole with Single Mast Arm | Each | |---------------------------------|------------| | Metal Pole with Dual Mast Arm | Each | | Soil Test | Each | | Drilled Pier Foundation | Cubic Yard | #### 5. CONTROLLERS WITH CABINETS #### 5.1. MATERIALS – TYPE 2070L CONTROLLERS Conform to CALTRANS *Transportation Electrical Equipment Specifications* (TEES) (dated August 16, 2002, plus Errata 1 dated October 27, 2003 and Errata 2 dated June 08, 2004) except as required herein. Furnish Model 2070L controllers. Ensure that removal of the CPU module from the controller will place the intersection into flash. The Department will provide software at the beginning of the burning-in period. Contractor shall give 5 working days notice before needing software. Program software provided by the Department. Provide model 2070L controllers with the latest version of OS9 operating software and device drivers, composed of the unit chassis and at a minimum the following modules and assemblies: - MODEL 2070 1B, CPU Module, Single Board - MODEL 2070-2A, Field I/O Module (FI/O) - MODEL 2070-3B, Front Panel Module (FP), Display B (8x40) - MODEL 2070-4A, Power Supply Module, 10 AMP - MODEL 2070-7A, Async Serial Com Module (9-pin RS-232) Furnish one additional MODEL 2070-7A, Async Serial Com Module (9-pin RS-232) for all master controller locations. For each master location and central control center, furnish a U.S. Robotics V.92 or approved equivalent auto-dial/auto-answer external modem to accomplish the interface to the Department-furnished microcomputers. Include all necessary hardware to ensure telecommunications. #### 5.2. MATERIALS – GENERAL CABINETS Provide a moisture resistant coating on all circuit boards. Provide one 20 mm diameter radial lead UL-recognized metal oxide varistor (MOV) between each load switch field terminal and equipment ground. Electrical performance is outlined below. | PROPERTIES OF MOV SURGE PROTECTOR | | | | | | | | | | | |---------------------------------------------|---------------|--|--|--|--|--|--|--|--|--| | Maximum Continuous Applied Voltage at | 150 VAC (RMS) | | | | | | | | | | | 185° F | 200 VDC | | | | | | | | | | | Maximum Peak 8x20µs Current at 185° F | 6500 A | | | | | | | | | | | Maximum Energy Rating at 185° F | 80 J | | | | | | | | | | | Voltage Range 1 mA DC Test at 77° F | 212-268 V | | | | | | | | | | | Max. Clamping Voltage 8x20µs, 100A at 77° F | 395 V | | | | | | | | | | | Typical Capacitance (1 MHz) at 77° F | 1600 pF | | | | | | | | | | Provide a power line surge protector that is a two-stage device that will allow connection of the radio frequency interference filter between the stages of the device. Ensure that a maximum continuous current is at least 10A at 120V. Ensure that the device can withstand a minimum of 20 peak surge current occurrences at 20,000A for an 8x20 microsecond waveform. Provide a maximum clamp voltage of 395V at 20,000A with a nominal series inductance of 200µh. Ensure that the voltage does not exceed 395V. Provide devices that comply with the following: | Frequency (Hz) | Minimum Insertion Loss (dB) | |----------------|-----------------------------| | 60 | 0 | | 10,000 | 30 | | 50,000 | 55 | | 100,000 | 50 | | 500,000 | 50 | | 2,000,000 | 60 | | 5,000,000 | 40 | | 10,000,000 | 20 | | 20,000,000 | 25 | #### 5.3. MATERIALS – TYPE 170E CABINETS # A. Type 170 E Cabinets General: Conform to the city of Los Angeles' Specification No. 54-053-08, *Traffic Signal Cabinet Assembly Specification* (dated July 2008), except as required herein. Furnish model 336S pole mounted cabinets configured for 8 vehicle phases, 4 pedestrian phases, and 6 overlaps. When overlaps are required, provide auxiliary output files for the overlaps. Do not reassign load switches to accommodate overlaps unless shown on electrical details. Provide 336S pole mounted cabinets that are 46" high with 40" high internal rack assemblies. Furnish model 332 base mounted cabinets configured for 8 vehicle phases, 4 pedestrian phases, and 6 overlaps. When overlaps are required, provide auxiliary output files for the overlaps. Do not reassign load switches to accommodate overlaps unless shown on electrical details. Provide model 200 load switches, model 222 loop detector sensors, model 252 AC isolators, and model 242 DC isolators according to the electrical details. As a minimum, provide one (1) model 2018 conflict monitor, one (1) model 206L power supply unit, two (2) model 204 flashers, one (1) DC isolator (located in slot I14), and four (4) model 430 flash transfer relays (provide seven (7) model 430 flash transfer relays if auxiliary output file is installed) with each cabinet. # B. Type 170 E Cabinet Electrical Requirements: Provide a cabinet assembly designed to ensure that upon leaving any cabinet switch or conflict monitor initiated flashing operation, the controller starts up in the programmed start up phases and start up interval. Furnish two sets of non-fading cabinet wiring diagrams and schematics in a paper envelope or container and placed in the cabinet drawer. All AC+ power is subject to radio frequency signal suppression. Provide surge suppression in the cabinet for each type of cabinet device. Provide surge protection for the full capacity of the cabinet input file. Provide surge suppression devices that operate properly over a temperature range of -40° F to +185° F. Ensure the surge suppression devices provide both common and differential modes of protection. Provide a pluggable power line surge protector that is installed on the back of the PDA (power distribution assembly) chassis to filter and absorb power line noise and switching transients. Ensure the device incorporates LEDs for failure indication and provides a dry relay contact closure for the purpose of remote sensing. Ensure the device meets the following specifications: | Peak Surge Current (Single pulse, 8x20μs) | .20,000A | |-------------------------------------------|-----------------------| | Occurrences (8x20µs waveform) | .10 minimum @ 20,000A | | Maximum Clamp Voltage | .395VAC | | Operating Current | 15 amps | | Response Time | .< 5 nanoseconds | Provide a loop surge suppressor for each set of loop terminals in the cabinet. Ensure the device meets the following specifications: | Peak Surge Current (6 times, 8x20µs) | | |--------------------------------------|----------------| | (Differential Mode) | 400A | | (Common Mode) | 1,000A | | Occurrences (8x20µs waveform) | 500 min @ 200A | | Maximum Clamp Voltage | | R-3324 Signals & Intelligent Transportation Systems Signals & intelligent Transportation Systems (Differential Mode @400A)......35V (Common Mode @1,000A).....35V Response Time.....<5 nanoseconds Maximum Capacitance.....35 pF Provide a data communications surge suppressor for each communications line entering or leaving the cabinet. Ensure the device meets the following specifications: Provide a DC signal surge suppressor for each DC input channel in the cabinet. Ensure the device meets the following specifications: Peak Surge Current (Single pulse, 8x20µs)......10,000A Occurrences (8x20µs waveform).......100 @ 2,000A Maximum Clamp Voltage......30V Response Time......<1 nanosecond Provide a 120 VAC signal surge suppressor for each AC+ interconnect signal input. Ensure the device meets the following specifications: Peak Surge Current (Single pulse, $8x20\mu s$ )......20,000A Maximum Clamp Voltage........350VAC Response Time.......< 200 nanoseconds Discharge Voltage......<200 Volts @ 1,000A Insulation Resistance..... $\geq$ 100 M $\Omega$ Provide conductors for surge protection wiring that are of sufficient size (ampacity) to withstand maximum overcurrents which could occur before protective device thresholds are attained and current flow is interrupted. If additional surge protected power outlets are needed to accommodate fiber transceivers, modems, etc., install a UL listed, industrial, heavy-duty type power outlet strip with a minimum rating of 15 A / 125 VAC, 60 Hz. Provide a strip that has a minimum of 3 grounded outlets. Ensure the power outlet strip plugs into one of the controller unit receptacles located on the rear of the PDA. Ensure power outlet strip is mounted securely; provide strain relief if necessary. Version 12.1 22 print date: 10/02/12 Provide a door switch in the front and a door switch in the rear of the cabinet that will provide the controller unit with a Door Ajar alarm when either the front or the rear door is open. Ensure the door switches apply DC ground to the Input File when either the front door or the rear door is open. Furnish a fluorescent fixture in the rear across the top of the cabinet and another fluorescent fixture in the front across the top of the cabinet at a minimum. Ensure that the fixtures provide sufficient light to illuminate all terminals, labels, switches, and devices in the cabinet. Conveniently locate the fixtures so as not to interfere with a technician's ability to perform work on any devices or terminals in the cabinet. Provide a protective diffuser to cover exposed bulbs. Install 16 watt T-4 lamps in the fluorescent fixtures. Provide a door switch to provide power to each fixture when the respective door is open. Wire the fluorescent fixtures to the 15 amp ECB (equipment circuit breaker). Furnish a police panel with a police panel door. For model 336S cabinets, mount the police panel on the rear door. Ensure that the police panel door permits access to the police panel when the main door is closed. Ensure that no rainwater can enter the cabinet even with the police panel door open. Provide a police panel door hinged on the right side as viewed from the front. Provide a police panel door lock that is keyed to a standard police/fire call box key. In addition to the requirements of LA Specification No. 54-053-08, provide the police panel with a toggle switch connected to switch the intersection operation between normal stop-and-go operation (AUTO) and manual operation (MANUAL). Ensure that manual control can be implemented using inputs and software such that the controller provides full programmed clearance times for the yellow clearance and red clearance for each phase while under manual control. Provide a 1/4-inch locking phone jack in the police panel for a hand control to manually control the intersection. Provide sufficient room in the police panel for storage of a hand control and cord. Ensure the 336S cabinet Input File is wired as follows: | 336S Cabinet Port-Bit/C-1 Pin Assignment | | | | | | | | | | | | | | | |------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Slot # 1 2 3 4 5 6 7 8 9 10 11 12 13 1 | | | | | | | | 14 | | | | | | | | C-1 (Spares) | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 75 | 76 | 77 | 78 | 79 | 80 | | Port<br>C-1 | 3-2<br>56 | 1-1<br>39 | 3-4<br>58 | 1-3<br>41 | 3-1<br>55 | 1-2<br>40 | 3-3<br>57 | 1-4<br>42 | 2-5<br>51 | 5-5<br>71 | 5-6<br>72 | 5-1<br>67 | 5-2<br>68 | 6-7<br>81 | | Port<br>C-1 | 2-1<br>47 | 1-5<br>43 | 2-3<br>49 | 1-7<br>45 | 2-2<br>48 | 1-6<br>44 | 2-4<br>50 | 1-8<br>46 | 2-6<br>52 | 5-7<br>73 | 5-8<br>74 | 5-3<br>69 | 5-4<br>70 | 6-8<br>82 | For model 332 base mounted cabinets, ensure terminals J14-E and J14-K are wired together on the rear of the Input File. Connect TB9-12 (J14 Common) on the Input Panel to T1-2 (AC-) on the rear of the PDA. Provide detector test switches mounted at the top of the cabinet rack or other convenient location which may be used to place a call on each of eight phases based on the chart below. Provide three positions for each switch: On (place call), Off (normal detector operation), and Momentary On (place momentary call and return to normal detector operation after switch is released). Ensure that the switches are located such that the technician can read the controller display and observe the intersection. Connect detector test switches for cabinets as follows: | 336S Cabinet | | 332 Cabinet | | | |------------------------|-----------|------------------------|-----------|--| | Detector Call Switches | Terminals | Detector Call Switches | Terminals | | | Phase 1 | I1-F | Phase 1 | I1-W | | | Phase 2 | I2-F | Phase 2 | I4-W | | | Phase 3 | I3-F | Phase 3 | I5-W | | | Phase 4 | I4-F | Phase 4 | I8-W | | | Phase 5 | I5-F | Phase 5 | J1-W | | | Phase 6 | I6-F | Phase 6 | J4-W | | | Phase 7 | I7-F | Phase 7 | J5-W | | | Phase 8 | I8-F | Phase 8 | J8-W | | Provide the PCB 28/56 connector for the conflict monitor unit (CMU) with 28 independent contacts per side, dual-sided with 0.156 inch contact centers. Provide the PCB 28/56 connector contacts with solder eyelet terminations. Ensure all connections to the PCB 28/56 connector are soldered to the solder eyelet terminations. Ensure that all cabinets have the CMU connector wired according to the 332 cabinet connector pin assignments (include all wires for auxiliary output file connection). Wire pins 13, 16, R, and U of the CMU connector to a separate 4 pin plug, P1, as shown below. Provide a second plug, P2, which will mate with P1 and is wired to the auxiliary output file as shown below. Provide an additional plug, P3, which will mate with P1 and is wired to the pedestrian yellow circuits as shown below. When no auxiliary output file is installed in the cabinet, provide wires for the green and yellow inputs for channels 11, 12, 17, and 18, the red inputs for channels 17 and 18, and the wires for the P2 plug. Terminate the two-foot wires with ring type lugs, insulated, and bundled for optional use. | | P | P1 | | P2 | | 23 | |-----|----------|---------|----------|---------|----------|---------| | PIN | FUNCTION | CONN TO | FUNCTION | CONN TO | FUNCTION | CONN TO | | 1 | CH-9G | CMU-13 | OLA-GRN | A123 | 2P-YEL | 114 | | 2 | CH-9Y | CMU-16 | OLA-YEL | A122 | 4P-YEL | 105 | | 3 | CH-10G | CMU-R | OLB-GRN | A126 | 6P-YEL | 120 | | 4 | CH-10Y | CMU-U | OLB-YEL | A125 | 8P-YEL | 111 | Connect the P20 terminal assembly (red monitor board) to a connector installed on the front of the type 2018 enhanced conflict monitor through a 3-1/2 foot 20-wire ribbon cable. Ensure that the ribbon cable connector and the connector on the conflict monitor are keyed to ensure proper connection. Ensure that removal of the P20 ribbon cable will cause the conflict monitor to recognize a latching fault condition and place the cabinet into flashing operation. Wire the P20 connector to the traffic signal red displays to provide inputs to the conflict monitor as shown below. Ensure the pedestrian Don't Walk circuits are wired to channels 13 through 16 of the P20 connector. When no auxiliary output file is installed in the cabinet, provide wires for channels 9 through 12 reds. Terminate the two-foot wires with ring type lugs, insulated, and bundled for optional use. | Pin # | Function | Pin # | Function | |-------|--------------------|-------|---------------| | 1 | Channel 15 Red | 11 | Channel 9 Red | | 2 | Channel 16 Red | 12 | Channel 8 Red | | 3 | Channel 14 Red | 13 | Channel 7 Red | | 4 | GND | 14 | Channel 6 Red | | 5 | Channel 13 Red | 15 | Channel 5 Red | | 6 | Special Function 2 | 16 | Channel 4 Red | | 7 | Channel 12 Red | 17 | Channel 3 Red | | 8 | Special Function 1 | 18 | Channel 2 Red | | 9 | Channel 10 Red | 19 | Channel 1 Red | | 10 | Channel 11 Red | 20 | Red Enable | Ensure the controller unit outputs to the auxiliary output file are pre-wired to the C5 connector. When no auxiliary output file is installed in the cabinet, connect the C5 connector to a storage socket located on the Input Panel or on the rear of the PDA. In addition to the requirements of LA Specification No. 54-053-08, ensure relay K1 on the Power Distribution Assembly (PDA) is a four pole relay and K2 on the PDA is a two pole relay. Provide a two pole, ganged circuit breaker for the flash bus circuit. Ensure the flash bus circuit breaker is an inverse time circuit breaker rated for 10 amps at 120 VAC with a minimum of 10,000 RMS symmetrical amperes short circuit current rating. Do not provide the auxiliary switch feature on the flash bus circuit breaker. Ensure the ganged flash bus circuit breaker is certified by the circuit breaker manufacturer to provide gang tripping operation. Ensure auxiliary output files are wired as follows: | | AUXILIARY OUTPUT FILE<br>TERMINAL BLOCK TA ASSIGNMENTS | | | | |----------|--------------------------------------------------------|--|--|--| | POSITION | FUNCTION | | | | | 1 | Flasher Unit #1, Circuit 1/FTR1 (OLA, OLB)/FTR3 (OLE) | | | | | 2 | Flasher Unit #1, Circuit 2/FTR2 (OLC, OLD)/FTR3 (OLF) | | | | | 3 | Flash Transfer Relay Coils | | | | | 4 | AC - | | | | | 5 | Power Circuit 5 | | | | | 6 | Power Circuit 5 | | | | | 7 | Equipment Ground Bus | | | | | 8 | NC . | | | | Provide four spare load resistors mounted in each cabinet. Ensure each load resistor is rated as shown in the table below. Wire one side of each load resistor to AC-. Connect the other side of each resistor to a separate terminal on a four (4) position terminal block. Mount the load resistors and terminal block either inside the back of Output File No. 1 or on the upper area of the Service Panel. Version 12.1 26 print date: 10/02/12 | ACCEPTABLE LOAD RESISTOR VALUES | | | | |---------------------------------|-----------|--|--| | VALUE (ohms) WATTAGE | | | | | 1.5K – 1.9 K | 25W (min) | | | | 2.0K – 3.0K 10W (min) | | | | Provide Model 200 load switches, Model 204 flashers, Model 242 DC isolators, Model 252 AC isolators, and Model 206L power supply units that conform to CALTRANS' "Transportation Electrical Equipment Specifications" dated March 12, 2009 with Erratum 1. # C. Type 170 E Cabinet Physical Requirements: Do not mold, cast, or scribe the name "City of Los Angeles" on the outside of the cabinet door as specified in LA Specification No. 54-053-08. Do not provide a Communications Terminal Panel as specified in LA Specification No. 54-053-08. Do not provide terminal block TBB on the Service Panel. Do not provide Cabinet Verification Test Program software or associated test jigs as specified in LA Specification No. 54-053-08. Furnish unpainted, natural, aluminum cabinet shells. Ensure that all non-aluminum hardware on the cabinet is stainless steel or a Department approved non-corrosive alternate. Ensure the lifting eyes, gasket channels, police panel, and all supports welded to the enclosure and doors are fabricated from 0.125 inch minimum thickness aluminum sheet and meet the same standards as the cabinet and doors. Provide front and rear doors with latching handles that allow padlocking in the closed position. Furnish 0.75 inch minimum diameter stainless steel handles with a minimum 0.5 inch shank. Place the padlocking attachment at 4.0 inches from the handle shank center to clear the lock and key. Provide an additional 4.0 inches minimum gripping length. Provide Corbin #2 locks on the front and rear doors. Provide one (1) Corbin #2 and one (1) police master key with each cabinet. Ensure main door locks allow removal of keys in the locked position only. Provide a surge protection panel with 16 loop surge protection devices and designed to allow sufficient free space for wire connection/disconnection and surge protection device replacement. For model 332 cabinets, provide an additional 20 loop surge protection devices. Provide an additional two AC+ interconnect surge devices to protect one slot and eight DC surge protection devices to protect four slots. Provide no protection devices on slot I14. For pole mounted cabinets, mount surge protection devices for the AC+ interconnect inputs, inductive loop detector inputs, and low voltage DC inputs on a swing down panel assembly fabricated from sturdy aluminum. Attach the swing down panel to the bottom rear cabinet rack assembly using thumb screws. Ensure the swing down panel allows for easy removal of the input file without removing the surge protection panel assembly or its parts. Have the surge protection devices mounted horizontally on the panel and soldered to the feed through terminals of four 14 position terminal blocks with #8 screws mounted on the other side. Ensure the top row of terminals is connected to the upper slots and the bottom row of terminals is connected to the bottom slots. Provide a 15 position copper equipment ground bus attached to the field terminal side (outside) of the swing down panel for termination of loop lead-in shield grounds. Ensure that a Number 4 AWG green wire connects the surge protection panel assembly ground bus to the main cabinet equipment ground. For base mounted cabinets, mount surge protection panels on the left side of the cabinet as viewed from the rear. Attach each panel to the cabinet rack assembly using bolts and make it easily removable. Mount the surge protection devices in vertical rows on each panel and connect the devices to one side of 12 position, double row terminal blocks with #8 screws. For each surge protection panel, terminate all grounds from the surge protection devices on a copper equipment ground bus attached to the surge protection panel. Wire the terminals to the rear of a standard input file using spade lugs for input file protection. Provide permanent labels that indicate the slot and the pins connected to each terminal that may be viewed from the rear cabinet door. Label and orient terminals so that each pair of inputs is next to each other. Indicate on the labeling the input file (I or J), the slot number (1-14) and the terminal pins of the input slots (either D & E for upper or J & K for lower). Provide a minimum 14 x 16 inch pull out, hinged top shelf located immediately below controller mounting section of the cabinet. Ensure the shelf is designed to fully expose the table surface outside the controller at a height approximately even with the bottom of the controller. Ensure the shelf has a storage bin interior which is a minimum of 1 inch deep and approximately the same dimensions as the shelf. Provide an access to the storage area by lifting the hinged top of the shelf. Fabricate the shelf and slide from aluminum or stainless steel and ensure the assembly can support the 2070L controller plus 15 pounds of additional weight. Ensure shelf has a locking mechanism to secure it in the fully extended position and does not inhibit the removal of the 2070L controller or removal of cards inside the controller when fully extended. Provide a locking mechanism that is easily released when the shelf is to be returned to its non-use position directly under the controller. # D. Model 2018 Enhanced Conflict Monitor: Furnish Model 2018 Enhanced Conflict Monitors that provide monitoring of 18 channels. Ensure each channel consists of a green, yellow, and red field signal input. Ensure that the conflict monitor meets or exceeds CALTRANS' Transportation Electrical Equipment Specifications dated March 12, 2009 with Erratum 1 (hereafter referred to as CALTRANS' 2009 TEES) for a model 210 monitor unit and other requirements stated in this specification. Ensure the conflict monitor is provided with an 18 channel conflict programming card. Pin EE and Pin T of the conflict programming card shall be connected together. Pin 16 of the conflict programming card shall be floating. Ensure that the absence of the conflict programming card will cause the conflict monitor to trigger (enter into fault mode), and remain in the triggered state until the programming card is properly inserted and the conflict monitor is reset. Provide a conflict monitor that incorporates LED indicators into the front panel to dynamically display the status of the monitor under normal conditions and to provide a comprehensive review of field inputs with monitor status under fault conditions. Ensure that the monitor indicates the channels that were active during a conflict condition and the channels that experienced a failure for all other per channel fault conditions detected. Ensure that these indications and the status of each channel are retained until the Conflict Monitor is reset. Furnish LED indicators for the following: - AC Power (Green LED indicator) - VDC Failed (Red LED indicator) - WDT Error (Red LED indicator) - Conflict (Red LED indicator) - Red Fail (Red LED indicator) - Dual Indication (Red LED indicator) - Yellow/Clearance Failure (Red LED indicator) - PCA/PC Ajar (Red LED indicator) - Monitor Fail/Diagnostic Failure (Red LED indicator) - 54 Channel Status Indicators (1 Red, 1 Yellow, and 1 Green LED indicator for each of the 18 channels) Provide a switch to set the Red Fail fault timing. Ensure that when the switch is in the ON position the Red Fail fault timing value is set to 1350 +/- 150ms (2018 mode). Ensure that when the switch is in the OFF position the Red Fail fault timing value is set to 850 +/- 150ms (210 mode). Provide a switch to set the Watchdog fault timing. Ensure that when the switch is in the ON position the Watchdog fault timing value is set to 1.0 +/- 0.1s (2018 mode). Ensure that when the switch is in the OFF position the Watchdog fault timing value is set to 1.5 +/- 0.1s (210 mode). Provide a jumper or switch to set the AC line brown-out levels. Ensure that when the jumper is present or the switch is in the ON position the AC line dropout voltage threshold is 98 +/- 2 Vrms, the AC line restore voltage threshold is 103 +/- 2 Vrms, and the AC line brown-out timing value is set to 400 +/- 50ms (2018 mode). Ensure that when the jumper is not present or the switch is in the OFF position the AC line dropout voltage threshold is 92 +/- 2 Vrms, the AC line restore voltage threshold is 98 +/- 2 Vrms, and the AC line brown-out timing value is set to 80 +/- 17ms (210 mode). Provide a jumper or switch that will enable and disable the Watchdog Latch function. Ensure that when the jumper is not present or the switch is in the OFF position the Watchdog Latch function is disabled. In this mode of operation, a Watchdog fault will be reset following a power loss, brownout, or power interruption. Ensure that when the jumper is present or the switch is in the ON position the Watchdog Latch function is enabled. In this mode of operation, a Watchdog fault will be retained until a Reset command is issued. Provide a jumper that will reverse the active polarity for pin #EE (output relay common). Ensure that when the jumper is not present pin #EE (output relay common) will be considered 'Active' at a voltage greater than 70 Vrms and 'Not Active' at a voltage less than 50 Vrms (Caltrans mode). Ensure that when the jumper is present pin #EE (output relay common) will be considered 'Active' at a voltage less than 50 Vrms and 'Not Active' at a voltage greater than 70 Vrms (Failsafe mode). In addition to the connectors required by CALTRANS' 2009 TEES, provide the conflict monitor with a red interface connector mounted on the front of the monitor. Ensure the connector is a 20 pin, right angle, male connector with latching clip locks and polarizing keys. Ensure the right angle solder tails are designed for a 0.062" thick printed circuit board. Keying of the connector shall be between pins 3 and 5, and between 17 and 19. Ensure the connector has two rows of pins with the odd numbered pins on one row and the even pins on the other row. Ensure the connector pin row spacing is 0.10" and pitch is 0.10". Ensure the mating length of the connector pins is 0.24". Ensure the pins are finished with gold plating 30µ" thick. Ensure the red interface connector pins on the monitor have the following functions: | Pin# | Function | Pin # | Function | |------|----------------|-------|--------------------| | 1 | Channel 15 Red | 2 | Channel 16 Red | | 3 | Channel 14 Red | 4 | Chassis Ground | | 5 | Channel 13 Red | 6 | Special Function 2 | | 7 | Channel 12 Red | 8 | Special Function 1 | | 9 | Channel 10 Red | 10 | Channel 11 Red | | 11 | Channel 9 Red | 12 | Channel 8 Red | | 13 | Channel 7 Red | 14 | Channel 6 Red | | 15 | Channel 5 Red | 16 | Channel 4 Red | | 17 | Channel 3 Red | 18 | Channel 2 Red | | 19 | Channel 1 Red | 20 | Red Enable | Ensure that the removal of the P-20 red interface ribbon cable will cause the monitor to recognize a latching fault condition and place the cabinet into flashing operation. Provide Special Function 1 and Special Function 2 inputs to the unit which shall disable only Red Fail Monitoring when either input is sensed active. A Special Function input shall be sensed active when the input voltage exceeds 70 Vrms with a minimum duration of 550 ms. A Special Function input shall be sensed not active when the input voltage is less than 50 Vrms or the duration is less than 250 ms. A Special Function input is undefined by these specifications and may or may not be sensed active when the input voltage is between 50 Vrms and 70 Vrms or the duration is between 250 ms and 550 ms. Signals & Intelligent Transportation Systems Ensure the conflict monitor recognizes field signal inputs for each channel that meet the following requirements: - consider a Red input greater than 70 Vrms and with a duration of at least 500 ms as an "on" condition: - consider a Red input less than 50 Vrms or with a duration of less than 200 ms as an "off" condition (no valid signal); - consider a Red input between 50 Vrms and 70 Vrms or with a duration between 200 ms and 500 ms to be undefined by these specifications; - consider a Green or Yellow input greater than 25 Vrms and with a duration of at least 500 ms as an "on" condition: - consider a Green or Yellow input less than 15 Vrms or with a duration of less than 200 ms as an "off" condition; and - consider a Green or Yellow input between 15 Vrms and 25 Vrms or with a duration between 200 ms and 500 ms to be undefined by these specifications. Provide a conflict monitor that recognizes the faults specified by CALTRANS' 2009 TEES and the following additional faults. Ensure the conflict monitor will trigger upon detection of a fault and will remain in the triggered (in fault mode) state until the unit is reset at the front panel or through the external remote reset input for the following failures: - 1. Red Monitoring or Absence of Any Indication (Red Failure): A condition in which no "on" voltage signal is detected on any of the green, yellow, or red inputs to a given monitor channel. If a signal is not detected on at least one input (R, Y, or G) of a conflict monitor channel for a period greater than 1000 ms when used with a 170 controller and 1500 ms when used with a 2070L controller, ensure monitor will trigger and put the intersection into flash. If the absence of any indication condition lasts less that 750 ms when used with a 170 controller and 1200 ms when used with a 2070L controller, ensure conflict monitor will not trigger. Red fail monitoring shall be enabled on a per channel basis by the use of switches located on the conflict monitor. Have red monitoring occur when all of the following input conditions are in effect: - a) Red Enable input to monitor is active (Red Enable voltages are "on" at greater than 70 Vrms, off at less than 50 Vrms, undefined between 50 and 70 Vrms), and - b) Neither Special Function 1 nor Special Function 2 inputs are active. - c) Pin #EE (output relay common) is not active - 2. Short/Missing Yellow Indication Fault (Clearance Error): Yellow indication following a green is missing or shorter than 2.7 seconds (with $\pm$ 0.1-second accuracy). If a channel fails to detect an "on" signal at the Yellow input for a minimum of 2.7 seconds ( $\pm$ 0.1 second) following the detection of an "on" signal at a Green input for that channel, ensure that the monitor triggers and generates a clearance/short yellow error fault indication. Short/missing yellow (clearance) monitoring shall be enabled on a per channel basis by the use of switches located on the conflict monitor. This fault shall not occur when the channel is programmed for Yellow Inhibit, when the Red Enable signal is inactive or pin #EE (output relay common) is active. - 3. **Dual Indications on the Same Channel:** In this condition, more than one indication (R,Y,G) is detected as "on" at the same time on the same channel. If dual indications are detected for a period greater than 500 ms, ensure that the conflict monitor triggers and displays the proper failure indication (Dual Ind fault). If this condition is detected for less Version 12.1 32 print date: 10/02/12 than 200 ms, ensure that the monitor does not trigger. G-Y-R dual indication monitoring shall be enabled on a per channel basis by the use of switches located on the conflict monitor. G-Y dual indication monitoring shall be enabled for all channels by use of a switch located on the conflict monitor. This fault shall not occur when the Red Enable signal is inactive or pin #EE (output relay common) is active. 4. Configuration Settings Change: The configuration settings are comprised of (as a minimum) the permissive diode matrix, dual indication switches, yellow disable jumpers, any option switches, any option jumpers, and the Watchdog Enable switch. Ensure the conflict monitor compares the current configuration settings with the previous stored configuration settings on power-up, on reset, and periodically during operation. If any of the configuration settings are changed, ensure that the conflict monitor triggers and causes the program card indicator to flash. Ensure that configuration change faults are only reset by depressing and holding the front panel reset button for a minimum of three seconds. Ensure the external remote reset input does not reset configuration change faults. Ensure the conflict monitor will trigger and the AC Power indicator will flash at a rate of $2 \text{ Hz} \pm 20\%$ with a 50% duty cycle when the AC Line voltage falls below the "drop-out" level. Ensure the conflict monitor will resume normal operation when the AC Line voltage returns above the "restore" level. Ensure the AC Power indicator will remain illuminated when the AC voltage returns above the "restore" level. Should an AC Line power interruption occur while the monitor is in the fault mode, then upon restoration of AC Line power, the monitor will remain in the fault mode and the correct fault and channel indicators will be displayed. Provide a flash interval of at least 6 seconds and at most 10 seconds in duration following a power-up, an AC Line interruption, or a brownout restore. Ensure the conflict monitor will suspend all fault monitoring functions, close the Output relay contacts, and flash the AC indicator at a rate of $4 \text{ Hz} \pm 20\%$ with a 50% duty cycle during this interval. Ensure the termination of the flash interval after at least 6 seconds if the Watchdog input has made 5 transitions between the True and False state and the AC Line voltage is greater than the "restore" level. If the watchdog input has not made 5 transitions between the True and False state within $10 \pm 0.5$ seconds, the monitor shall enter a WDT error fault condition. Ensure the conflict monitor will monitor an intersection with a minimum of four approaches using the four-section Flashing Yellow Arrow (FYA) vehicle traffic signal as outlined by the NCHRP 3-54 research project for protected-permissive left turn signal displays. Ensure the conflict monitor will operate in the FYA mode and FYAc (Compact) mode as specified below to monitor each channel for the following fault conditions: Conflict, Red Fail, Dual Indication, and Clearance. Provide a switch to select between the FYA mode and FYAc mode. Provide a switch to select each FYA phase movement for monitoring. #### FYA mode | FYA Signal<br>Head | Phase 1 | Phase 3 | Phase 5 | Phase 7 | |--------------------|------------------|-------------------|-------------------|-------------------| | Red Arrow | Channel 9 Red | Channel 10 Red | Channel 11 Red | Channel 12 Red | | Yellow Arrow | Channel 9 Yellow | Channel 10 Yellow | Channel 11 Yellow | Channel 12 Yellow | | Flashing<br>Yellow Arrow | Channel 9 Green | Channel 10 Green | Channel 11 Green | Channel 12 Green | |--------------------------|-----------------|------------------|------------------|------------------| | Green Arrow | Channel 1 Green | Channel 3 Green | Channel 5 Green | Channel 7 Green | #### FYAc mode | FYA Signal<br>Head | Phase 1 | Phase 3 | Phase 5 | Phase 7 | |--------------------------|------------------|------------------|------------------|-------------------| | Red Arrow | Channel 1 Red | Channel 3 Red | Channel 5 Red | Channel 7 Red | | Yellow Arrow | Channel 1 Yellow | Channel 3 Yellow | Channel 5 Yellow | Channel 7 Yellow | | Flashing<br>Yellow Arrow | Channel 1 Green | Channel 3 Green | Channel 5 Green | Channel 7 Green | | Green Arrow | Channel 9 Green | Channel 9 Yellow | Channel 10 Green | Channel 10 Yellow | Ensure that the conflict monitor will log at least nine of the most recent events detected by the monitor in non-volatile EEPROM memory (or equivalent). For each event, record at a minimum the time, date, type of event, status of each field signal indication with RMS voltage, and specific channels involved with the event. Ensure the conflict monitor will log the following events: monitor reset, configuration, previous fault, and AC line. Furnish the signal sequence log that shows all channel states (Greens, Yellows, and Reds) and the Red Enable State for a minimum of 2 seconds prior to the current fault trigger point. Ensure the display resolution of the inputs for the signal sequence log is not greater than 50 ms. Provide a RS-232C/D compliant port (DB-9 female connector) on the front panel of the conflict monitor in order to provide communications from the conflict monitor to the 170/2070L controller or to a Department-furnished laptop computer. Electrically isolate the port interface electronics from all monitor electronics, excluding Chassis Ground. Ensure that the controller can receive all event log information through a controller Asynchronous Communications Interface Adapter (Type 170E) or Async Serial Comm Module (2070L). Provide a Windows based graphic user interface software to communicate directly through the same monitor RS-232C/D compliant port to retrieve and view all event log information to a Department-furnished laptop computer. The RS-232C/D compliant port on the monitor shall allow the monitor to function as a DCE device with pin connections as follows: | Conflict M | Conflict Monitor RS-232C/D (DB-9 Female) Pinout | | | | | |------------|-------------------------------------------------|-----|--|--|--| | Pin Number | Function | I/O | | | | | 1 | DCD | 0 | | | | | 2 | TX Data | 0 | | | | | 3 | RX Data | I | | | | | 4 | * DTR | I | | | | | 5 | Ground | - | | | | | 6 | DSR | 0 | | | | | 7 | CTS | I | | | | | 8 | RTS | 0 | | | | | 9 | NC | - | | | | # MONITOR BOARD EDGE CONNECTOR | Pin # | Function (Back Side) | Pin # | Function (Component Side) | |-------|-----------------------------|------------------------|-----------------------------| | 1 | Channel 2 Green | Α | Channel 2 Yellow | | 2 | Channel 13 Green | В | Channel 6 Green | | 3 | Channel 6 Yellow | С | Channel 15 Green | | 4 | Channel 4 Green | D | Channel 4 Yellow | | 5 | Channel 14 Green | E | Channel 8 Green | | 6 | Channel 8 Yellow | F | Channel 16 Green | | 7 | Channel 5 Green | Н | Channel 5 Yellow | | 8 | Channel 13 Yellow | J | Channel 1 Green | | 9 | Channel 1 Yellow | K | Channel 15 Yellow | | 10 | Channel 7 Green | L | Channel 7 Yellow | | 11 | Channel 14 Yellow | M | Channel 3 Green | | 12 | Channel 3 Yellow | N | Channel 16 Yellow | | 13 | Channel 9 Green | P | Channel 17 Yellow | | 14 | Channel 17 Green | R | Channel 10 Green | | 15 | Channel 11 Yellow | S | Channel 11 Green | | 16 | Channel 9 Yellow | T | Channel 18 Yellow | | 17 | Channel 18 Green | U | Channel 10 Yellow | | | | | | | 18 | Channel 12 Yellow | V | Channel 12 Green | | 19 | Channel 17 Red | $\mathbf{W}$ | Channel 18 Red | | 20 | Chassis Ground | X | Not Assigned | | 21 | AC- | Y | DC Common | | 22 | Watchdog Timer | Z | External Test Reset | | 23 | +24VDC | $\mathbf{A}\mathbf{A}$ | +24VDC | | 24 | Tied to Pin 25 | BB | Stop Time (Output) | | 25 | Tied to Pin 24 | CC | Not Assigned | | 26 | Not Assigned | DD | Not Assigned | | 27 | Relay Output, Side #3, N.O. | EE | Relay Output,Side #2,Common | | 28 | Relay Output, Side #1, N.C. | FF | AC+ | <sup>--</sup> Slotted for keying between Pins 17/U and 18/V # CONFLICT PROGRAM CARD PIN ASSIGNMENTS | Pin # | Function (Back Side) | Pin # | Function (Component Side) | |-------|-----------------------|-------|---------------------------| | 1 | Channel 2 Green | Α | Channel 1 Green | | 2 | Channel 3 Green | В | Channel 2 Green | | 3 | Channel 4 Green | C | Channel 3 Green | | 4 | Channel 5 Green | D | Channel 4 Green | | 5 | Channel 6 Green | E | Channel 5 Green | | 6 | Channel 7 Green | F | Channel 6 Green | | 7 | Channel 8 Green | H | Channel 7 Green | | 8 | Channel 9 Green | J | Channel 8 Green | | 9 | Channel 10 Green | K | Channel 9 Green | | 10 | Channel 11 Green | L | Channel 10 Green | | 11 | Channel 12 Green | M | Channel 11 Green | | 12 | Channel 13 Green | N | Channel 12 Green | | 13 | Channel 14 Green | P | Channel 13 Green | | 14 | Channel 15 Green | R | Channel 14 Green | | 15 | Channel 16 Green | S | Channel 15 Green | | 16 | N/C | T | PC AJAR | | 17 | Channel 1 Yellow | U | Channel 9 Yellow | | 18 | Channel 2 Yellow | V | Channel 10 Yellow | | 19 | Channel 3 Yellow | W | Channel 11 Yellow | | 20 | Channel 4 Yellow | X | Channel 12 Yellow | | 21 | Channel 5 Yellow | Y | Channel 13 Yellow | | 22 | Channel 6 Yellow | Z | Channel 14 Yellow | | 23 | Channel 7 Yellow | AA | Channel 15 Yellow | | 24 | Channel 8 Yellow | BB | Channel 16 Yellow | | | | | | | 25 | Channel 17 Green | CC | Channel 17 Yellow | | 26 | Channel 18 Green | DD | Channel 18 Yellow | | 27 | Channel 16 Green | EE | PC AJAR (Program Card) | | 28 | Yellow Inhibit Common | FF | Channel 17 Green | <sup>--</sup> Slotted for keying between Pins 24/BB and 25/CC # 5.4. MATERIALS – TYPE 170 DETECTOR SENSOR UNITS Furnish detector sensor units that comply with Chapter 5 Section 1, "General Requirements," and Chapter 5 Section 2, "Model 222 & 224 Loop Detector Sensor Unit Requirements," of the CALTRANS "Transportation Electrical Equipment Specifications" dated March 12, 2009 with Erratum 1.