

PROJECT SPECIAL PROVISIONS

ROADWAY

CLEARING AND GRUBBING METHODS:

Perform clearing on this project to the limits established by Method "II" shown on Standard Drawing No. 200.02 of the 2012 Roadway Standard Drawings except at interchange locations.

Perform clearing at interchange locations on this project to the limits established by Method "III" shown on Standard Drawing No. 200.03 of the 2012 Roadway Standard Drawings.

BURNING RESTRICTIONS:

(7-1-95) 200, 210, 215 SP2 R05

Open burning is not permitted on any portion of the right-of-way limits established for this project. Do not burn the clearing, grubbing or demolition debris designated for disposal and generated from the project at locations within the project limits, off the project limits or at any waste or borrow sites in this county. Dispose of the clearing, grubbing and demolition debris by means other than burning, according to state or local rules and regulations.

BUILDING AND UNDERGROUND STORAGE TANK REMOVAL:

(1-1-02) (Rev. 1-17-12)

215

SP2 R15 B

Remove the buildings, underground storage tanks and appurtenances listed below in accordance with Section 215 of the 2012 Standard Specifications:

Building Removal

Parcel 132 – Left of Survey Station 100+20, Survey Line -LLT-Canopy

Building Removal

Parcel 017 – Survey Station 35+12 thru Survey Station 40+35, Survey Line -L Right B. Belk Inv.: One (1) Two-Story Block Business, 6 Private Lights, 3 Electrical Signs, 1 Light Pole

Building Removal

Parcel 018 – Survey Station 41+00 thru Survey Station 43+00, Survey Line -L Right LP National Prop.: One–Story Concrete Business, 3 Tanks, Carwash, Metal Canopy, Metal Bars, Fencing

Building Removal

Parcel 019 – Survey Station 29+70 thru Survey Station 30+75, Right and Left of Survey Line -Y1; Survey Station 40+90 thru Survey Station 44+50, Right of Survey -L-; Survey Station 10+20 thru Survey Station 15+10 Right of Survey Line -Y10-Sharon Amity's LLC: Portion of Two (2) One-Story Brick Businesses, 2 Monopole Signs, One (1) 2-Wood Poles Sign with 2 Signs on It and 4 Private Lights, 1 Metal Sign, One (1) 2-Pole Sign, 1 Pole Sign, 1 Guardrail, 4 Private Lights

Building Removal

Parcel 073 – Survey Station 15+37 thru Survey Station 16+17, Survey Line -Y1RPAA Right and Left
A. Polonyfis: Shed

Building Removal

Parcel 074 – Survey Station 14+41 thru Survey Station 15+85, Survey Line SL-Y1RPAA Right and Left
D. Gillespie – Shed

Revised 2-8-13 Mecklenburg County

Building Removal

Parcel 107 – Survey Station 80+00 to Survey Station 85+65, Survey Line -L, Right and Survey Station 21+50 to Survey Station 27+25, Survey Line -Y-15 R. Tull: Portion of One-Story Block Business (Pet Smart)

Building Removal

Parcel 107A – Survey Station 85+65 to Survey Station 88+25, Survey Line -L Right and Survey Station 27+50 to Survey Station 31+00, Survey Line -Y-15 R. Tull: Portion of Metal Canopy

Building Removal

Parcel 108 – Survey Station 87+55 thru Survey Station 88+95, Survey Line -L Left GE Cap: One-Story Brick Business

When the description of the work for an item requires a portion of the building to be cut off, that portion of the buildings and appurtenances located within the right of way and/or construction area shall be cut off by the Contractor and disposed of by him. The Engineer will denote on the building, the line where the building is to be cut off. The Contractor will be required to cut the building off on a neat line along the construction line or right of way boundary designated by the Engineer. The Contractor will not be required to do any repairing to that portion of the building located outside the right of way or construction area or to shore it up in any respect. All of the Contractor's work shall be confined to the right of way and construction area designated by the Engineer.

TEMPORARY DETOURS:

(7-1-95) (Rev. 4-15-08)

1101

SP2 R30 A

Construct temporary detours required on this project in accordance with the typical sections in the plans or as directed.

After the detours have served their purpose, remove the portions deemed unsuitable for use as a permanent part of the project as directed by the Engineer. Salvage and stockpile the aggregate base course removed from the detours at locations within the right of way, as directed by the Engineer, for removal by State Forces. Place pavement and earth material removed from the detour in embankments or dispose of in waste areas furnished by the Contractor.

Aggregate base course and earth material that is removed will be measured and will be paid at the contract unit price per cubic yard for *Unclassified Excavation*. Pavement that is removed will be measured and will be paid at the contract unit price per square yard for *Removal of Existing Pavement*. Pipe culverts removed from the detours remain the property of the Contractor. Pipe culverts that are removed will be measured and will be paid at the contract unit price per linear foot for *Pipe Removal*. Payment for the construction of the detours will be made at the contract unit prices for the various items involved.

Such prices and payments will be full compensation for constructing the detours and for the work of removing, salvaging, and stockpiling aggregate base course; removing pipe culverts; and for placing earth material and pavement in embankments or disposing of earth material and pavement in waste areas.

SHOULDER AND FILL SLOPE MATERIAL:

(5-21-02)

235 560

SP2 R45 B

Description

Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2012 Standard Specifications.

Measurement and Payment

When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of Borrow Excavation or Shoulder Borrow. If there is no pay item for Borrow or Shoulder Borrow in the contract, this work will be considered incidental to Unclassified Excavation. Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for Borrow Excavation or Shoulder Borrow, then the material will be paid for at the contract unit price for Unclassified Excavation. The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for Unclassified Excavation, Borrow Excavation, or Shoulder Borrow, depending on the source of the material.

Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes.

When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*.

When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard for *Borrow Excavation* or *Shoulder Borrow* in accordance with the applicable provisions of Section 230 or Section 560 of the 2012 Standard Specifications.

EMBANKMENT MONITORING (Settlement Gauges):

(7-1-95) (Rev. 11-17-09) 235 SP2 R75

Description

This work consists of furnishing and installing settlement gauges as shown in the plans.

Materials

Provide threaded pipe with a black finish in accordance with ASTM A53 Type F of the diameter shown in the plans.

Construction Methods

Furnish and install Settlement Gauges as shown in the plans at locations designated in the plans. Place the base on a level surface near the natural ground as shown in the plans. Extend the metal pipe by adding pipe sections at threaded couplings as the embankment is progressed. Make sure that the top of the extension section is no less than one foot above the embankment surface and no higher than 6 ft. Make the exposed length of pipe conspicuous to avoid chance of damage.

Conduct operations in such a manner that the gauges are not damaged. Compact fill around the gauge pipes and plates to the same density as the surrounding material. Restore or replace any settlement gauge pipe damaged or destroyed due to fault or negligence on the part of the Contractor at no additional cost. No additional payment will be made for compaction of fill around and over the settlement gauges or for interference with the Contractor's operations resulting from settlement gauge installations. Perform installation operations such that the pipe remains plumb.

Measurement and Payment

Embankment Settlement Gauges will be measured as the actual number that have been incorporated into the completed and accepted work and will be paid at the contract unit price per each. Such price and payment will be full compensation for all materials, labor, equipment and other incidentals necessary to complete the work satisfactorily.

Payment will be made under:

Pay ItemPay UnitEmbankment Settlement GaugeEach

PIPE INSTALLATION:

(11-20-12) 300 SP3 R01

Revise the 2012 Standard Specifications as follows:

Page 3-1, Article 300-2, Materials, line 23-24, replace sentence with:

Provide foundation conditioning geotextile in accordance with Section 1056 for Type 4 geotextile.

FLOWABLE FILL:

(9-17-02) (Rev 1-17-12) 300, 340, 450, 1000, 1530, 1540, 1550

SP3 R30

Description

This work consists of all work necessary to place flowable fill in accordance with these provisions, the plans, and as directed.

Materials

Refer to Division 10 of the 2012 Standard Specifications.

ItemSectionFlowable Fill1000-6

Construction Methods

Discharge flowable fill material directly from the truck into the space to be filled, or by other approved methods. The mix may be placed full depth or in lifts as site conditions dictate. The Contractor shall provide a method to plug the ends of the existing pipe in order to contain the flowable fill.

Measurement and Payment

At locations where flowable fill is called for on the plans and a pay item for flowable fill is included in the contract, *Flowable Fill* will be measured in cubic yards and paid as the actual number of cubic yards that have been satisfactorily placed and accepted. Such price and payment will be full compensation for all work covered by this provision including, but not limited to, the mix design, furnishing, hauling, placing and containing the flowable fill.

Payment will be made under:

Pay Item Flowable Fill

Pay Unit Cubic Yard

PREPARATION OF SUBGRADE AND BASE:

(1-16-96)

SP5 R05

On mainline portions and ramps of this project, prepare the subgrade and base beneath the pavement structure in accordance with the applicable sections of the 2012 Standard Specifications except use an automatically controlled fine grading machine using string lines, laser controls or other approved methods to produce final subgrade and base surfaces meeting the lines, grades and cross sections required by the plans or established by the Engineer.

No direct payment will be made for the work required by this provision as it will be considered incidental to other work being paid for by the various items in the contract.

ASPHALT PAVEMENTS - SUPERPAVE:

(6-19-12)

605

SP6 R01

Revise the 2012 Standard Specifications as follows:

Page 6-3, Article 605-7 APPLICATION RATES AND TEMPERATURES, replace this article, including Table 601-1, with the following:

Apply tack coat uniformly across the existing surface at target application rates shown in Table 605-1.

TABLE 605-1
APPLICATION RATES FOR TACK COAT

Ewistin - Courts on	Target Rate (gal/sy)
Existing Surface	Emulsified Asphalt
New Asphalt	0.04 ± 0.01
Oxidized or Milled Asphalt	0.06 ± 0.01
Concrete	0.08 ± 0.01

Apply tack coat at a temperature within the ranges shown in Table 605-2. Tack coat shall not be overheated during storage, transport or at application.

TABLE 605-2 APPLICATION TEMPERATURE FOR TACK COAT

Asphalt Material	Temperature Range
Asphalt Binder, Grade PG 64-22	350 - 400°F
Emulsified Asphalt, Grade RS-1H	130 - 160°F
Emulsified Asphalt, Grade CRS-1	130 - 160°F
Emulsified Asphalt, Grade CRS-1H	130 - 160°F
Emulsified Asphalt, Grade HFMS-1	130 - 160°F
Emulsified Asphalt, Grade CRS-2	130 - 160°F

Page 6-18, Article 610-1 DESCRIPTION, lines 40-41, delete the last sentence of the last paragraph.

Page 6-19, Subarticle 610-3(A) Mix Design-General, line 5, add the following as the first paragraph:

Warm mix asphalt (WMA) is allowed for use at the Contractor's option in accordance with the NCDOT Approved Products List for WMA Technologies available at: http://www.ncdot.org/doh/operations/materials/pdf/wma.pdf.

ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:

(11-21-00) (Rev. 7-17-12)

609

SP6 R15

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

Asphalt Concrete Base Course	Type B 25.0	4.4%
Asphalt Concrete Intermediate Course	Type I 19.0	4.8%
Asphalt Concrete Surface Course	Type S 4.75A	6.8%
Asphalt Concrete Surface Course	Type SA-1	6.8%
Asphalt Concrete Surface Course	Type SF 9.5A	6.7%
Asphalt Concrete Surface Course	Type S 9.5	6.0%
Asphalt Concrete Surface Course	Type S 12.5	5.6%

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2012 Standard Specifications.

ASPHALT PLANT MIXTURES:

(7-1-95)

609

SP6 R20

Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer.

PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:

(11-21-00

620

SP6 R25

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2012 Standard Specifications.

The base price index for asphalt binder for plant mix is \$557.33 per ton.

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **December 1, 2012**.

C.S. SLOTTED DRAIN:

Description

Furnish and install __" C. S. Slotted Drain, __" Thick, that has been fabricated in accordance with the requirements of Section 310 of the *Standard Specifications* and the details in the plans. Install the slotted drain in accordance with the requirements of Section 300 of the *Standard*

Specifications except as noted in this provision. Embed the slotted drain in a bedding of lean grout, consisting of a mixture of 1 part portland cement to 6 parts of mortar sand with no more water added than is necessary to make a workable mixture.

Measurement and Payment

__ "C. S. Slotted Drain, __" will be measured and paid for as the actual number of linear feet of slotted drain which have been incorporated into the completed and accepted work. Measurement will be made in accordance with Article 310-6. Such price and payment will be full compensation for all work, including but not limited to furnishing, hauling, placing the slotted drain, bedding the drain in grout, making all joint connections, all excavation and backfill.

Payment will be made under:

Pay Item
"C. S. Slotted Drain, "Thick

Pay Unit Linear Foot

FRAME WITH GRATE (Driveway Drop Inlet):

(3-21-00) (Rev.7-18-06)

SPI 8-35

Description

Provide grates for driveway drop inlets that are fabricated steel or cast iron. Provide grates that are of a design and weight that is recommended by the manufacturer as being adequate for HS-20 loadings. Furnish a manufacturer's certification stating that the grates and frame furnished on the project have been designed and manufactured to be adequate for an HS-20 loading. Provide grates with a minimum clear waterway opening of 50 in² per 1'-0" length of grate.

If the frame and grate is made from fabricated steel, the requirements of Article 1074-9 of the 2012 Standard Specifications will be applicable. If the grate and frame is made from iron castings, the requirements of Article 1074-7 of the 2012 Standard Specifications will be applicable.

Measurement and Payment

Frame with Grate, Driveway Drop Inlet will be measured and paid for as the actual number of linear feet that have been incorporated into the completed and accepted work. Such price and payment will be full compensation for furnishing the grates and frame, and all labor and incidentals necessary to complete the work.

Payment will be made under:

Pay ItemFrame with Grate, Driveway Drop Inlet

Pay Unit Linear Foot

CONVERT EXISTING TRAFFIC BEARING JUNCTION BOX TO CATCH BASIN:

(1-1-02) (Rev. 7-18-06) 840, 859

SP8 R50

At the proper phase of construction, convert the existing traffic bearing junction box at locations indicated in the plans or where directed, to catch basin in accordance with the details in the plans and the applicable requirements of Sections 840 and 859 of the 2012 Standard Specifications.

Convert Existing Traffic Bearing Junction Box to Catch Basin will be measured and paid as each, completed and accepted. Such price and payment is considered full compensation for all equipment, materials, labor, tools, and incidentals necessary to complete each conversion satisfactorily.

Payment will be made under:

Pay Item Pay Unit

Convert Existing Traffic Bearing Junction Box to Catch Basin Each

CONVERT EXISTING TRAFFIC BEARING DROP INLET TO TRAFFIC BEARING JUNCTION BOX:

(1-1-02) (Rev. 7-18-06)

840, 859

SP8 R50

At the proper phase of construction, convert the existing traffic bearing drop inlet at locations indicated in the plans or where directed, to traffic bearing junction box in accordance with the details in the plans and the applicable requirements of Sections 840 and 859 of the 2012 Standard Specifications.

Convert Existing Traffic Bearing Drop Inlet to Traffic Bearing Junction Box will be measured and paid as each, completed and accepted. Such price and payment is considered full compensation for all equipment, materials, labor, tools, and incidentals necessary to complete each conversion satisfactorily.

Payment will be made under:

Pay ItemPay UnitConvert Existing Traffic Bearing Drop Inlet toEach

Traffic Bearing Junction Box

CONVERT EXISTING CATCH BASIN TO TRAFFIC BEARING JUNCTION BOX WITH MANHOLE:

(1-1-02) (Rev. 7-18-06)

840, 859

SP8 R50

At the proper phase of construction, convert the existing catch basin at locations indicated in the plans or where directed, to traffic bearing junction box with manhole in accordance with the details in the plans and the applicable requirements of Sections 840 and 859 of the 2012 Standard Specifications.

Convert Existing Catch Basin to Traffic Bearing Junction Box with Manhole will be measured and paid as each, completed and accepted. Such price and payment is considered full compensation for all equipment, materials, labor, tools, and incidentals necessary to complete each conversion satisfactorily.

Payment will be made under:

Pay Item
Convert Existing Catch Basin to Traffic Bearing
Junction Box with Manhole

Pay Unit Each

PEDESTRIAN SAFETY RAIL:

Description

Furnish and install pedestrian safety rail at the locations shown in the plans, in accordance with the detail in the plans and as directed by the Engineer.

Measurement and Payment

Pedestrian Safety Rail will measured and paid for as the actual number of linear feet of safety rail measured along the top of the rail to the nearest 0.1 of a foot. Such price and payment shall be full compensation for fabricating, furnishing, installing, painting and all incidentals necessary to satisfactorily install the safety rail.

Payment will be made under:

Pay Item
Pedestrian Safety Rail

Pay Unit Linear Foot

GUARDRAIL ANCHOR UNITS, TYPE 350:

(4-20-04) (Rev. 8-16-11)

862

SP8 R65

Description

Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2012 Standard Specifications, and at locations shown in the plans.

Materials

The Contractor may at his option, furnish any one of the guardrail anchor units or approved equal.

Guardrail anchor unit (ET-Plus) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976 The guardrail anchor unit (SKT 350) as manufactured by:

Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435

Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Article 106-2 of the 2012 Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Article 105-2 of the 2012 Standard Specifications.

No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

Construction Methods

Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Article 1088-3 of the 2012 Standard Specifications and is incidental to the cost of the guardrail anchor unit.

Measurement and Payment

Measurement and payment will be made in accordance with Article 862-6 of the 2012 Standard Specifications.

Payment will be made under:

Pay ItemPay UnitGuardrail Anchor Units, Type 350Each

IMPACT ATTENUATOR UNITS, TYPE 350:

(4-20-04) (Rev. 1-17-12)

Description

Furnish and install impact attenuator units and any components necessary to connect the impact attenuator units in accordance with the manufacturer's requirement, the details in the plans and at locations shown in the plans.

SP8 R75

Materials

The Contractor may at his option, furnish any one of the **NON-GATING** impact attenuator units or approved equal:

The impact attenuator unit (QUADGUARD) as manufactured by:

Energy Absorption Systems, Inc. One East Wacker Drive Chicago, Illinois 60601-2076 Telephone: 312-467-6750

The impact attenuator unit (TRACC) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976

The Contractor may at his option, furnish any one of the **GATING** impact attenuator units or approved equal:

The impact attenuator unit (BRAKEMASTER) as manufactured by:

Energy Absorption Systems, Inc. One East Wacker Drive Chicago, Illinois 60601-2076 Telephone: 312-467-6750

The impact attenuator unit (CAT) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976

Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each impact attenuator unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Article 106-2 of the 2012 Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each impact attenuator unit in accordance with Article 105-2 of the 2012 Standard Specifications.

No modifications shall be made to the impact attenuator unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

Construction Methods

If the median width is 40 feet or less, the Contractor shall supply one of the NON-GATING Impact Attenuator Units listed in the Materials Section herein.

If the median width is greater than 40 feet, the Contractor may use any of the GATING or NON-GATING Impact Attenuator Units listed in the Materials Section herein.

Measurement and Payment

Impact Attenuator Unit, Type 350 will be measured and paid at the contract unit price per each. Such prices and payment will be full compensation for all work covered by this provision including, but not limited to, furnishing, installing and all incidentals necessary to complete the work.

Payment will be made under:

Pay Item

Impact Attenuator Units, Type 350

Pay Unit

Each

TEMPORARY 4" CONCRETE SIDEWALK:

Description

Construct temporary 4" concrete sidewalk in accordance with the plans, Section 848 of the *Standard Specifications* and as directed by the Engineer.

Materials

Refer to Article 848-2 of the Standard Specifications.

Construction Methods

Construct the temporary 4" concrete sidewalk in accordance with Section 848 of the *Standard Specifications*. When temporary 4" concrete sidewalk is no longer needed, remove and properly dispose of.

Measurement and Payment

Temporary 4" Concrete Sidewalk will be measured and paid in square yards, measured along the surface of the completed and accepted work. Such price includes, but is not limited to, excavating and backfilling, sawing the existing sidewalk, furnishing and placing concrete, constructing and sealing joints and removing and properly disposing of temporary 4" concrete sidewalk.

Payment will be made under:

Pay Item

Temporary 4" Concrete Sidewalk

Pay Unit

Square Yard

TEMPORARY CONCRETE CURB RAMPS:

Description

Construct temporary concrete curb ramps in accordance with the plans, Section 848 of the *Standard Specifications* and as directed by the Engineer.

Materials

Refer to Article 848-2 of the Standard Specifications.

Construction Methods

Construct the temporary concrete curb ramps in accordance with Section 848 of the *Standard Specifications*. When temporary concrete curb ramps are no longer needed, remove and properly dispose of.

Measurement and Payment

Temporary Concrete Curb Ramps will be measured and paid in units of each. Such price includes, but is not limited to, excavating and backfilling, sawing the existing sidewalk or driveway, furnishing and placing concrete, curb and gutter, constructing and sealing joints and furnishing, installing truncated domes shown in the Roadway Standard Drawings and removing and properly disposing of temporary concrete curb ramps.

Payment will be made under:

Pay Item

Temporary Concrete Curb Ramps

Pay Unit

Each

DETECTABLE WARNINGS FOR PROPOSED CURB RAMPS:

(6-15-10) (Rev. 8-16-11)

848

SP8 R126(Revised)

Description

Construct detectable warnings consisting of integrated raised truncated domes on proposed concrete curb ramps (permanent and temporary) in accordance with the 2012 Standard Specifications, plan details, the requirements of the 28 CFR Part 36 ADA Standards for Accessible Design and this provision.

Materials

Detectable warning for proposed curb ramps shall consist of integrated raised truncated domes. The description, size and spacing shall conform to Section 848 of the 2012 Standard Specifications.

Use material for detectable warning systems as shown herein. Material and coating specifications must be stated in the Manufacturers Type 3 Certification and all Detectable Warning systems must be on the NCDOT Approved Products List.

Install detectable warnings created from one of the following materials: precast concrete blocks or bricks, clay paving brick, gray or ductile iron castings, mild steel, stainless steel, and engineered plastics, rubber or composite tile. Only one material type for detectable warning will be permitted per project, unless otherwise approved by the Engineer.

- (A) Detectable Warnings shall consist of a base with integrated raised truncated domes, and when constructed of precast concrete they shall conform to the material requirements of Article 848-2 of the 2012 Standard Specifications.
- (B) Detectable Warnings shall consist of a base with integrated raised truncated domes, and may be comprised of other materials including, but not limited, to clay paving brick, gray iron or ductile iron castings, mild steel, stainless steel, and engineered plastics, rubber or composite tile, which are cast into the concrete of the curb ramps. The material shall have an integral color throughout the thickness of the material. The detectable warning shall include fasteners or anchors for attachment in the concrete and shall be furnished as a system from the manufacturer.

Prior to installation, the Contractor shall submit to the Engineer assembling instructions from the manufacturer for each type of system used in accordance with Article 105-2 of the 2012 Standard Specifications. The system shall be furnished as a kit containing all consumable materials and consumable tools, required for the application. They shall be capable of being affixed to or anchored in the concrete curb ramp, including green concrete (concrete that has set but not appreciably hardened). The system shall be solvent free and contain no volatile organic compounds (VOC). The static coefficient of friction shall be 0.8 or greater when measured on top of the truncated domes and when measured between the domes in accordance with ASTM C1028 (dry and wet). The system shall be resistant to deterioration due to exposure to sunlight, water, salt or adverse weather conditions and impervious to degradation by motor fuels, lubricants and antifreeze.

(C) When steel or gray iron or ductile iron casting products are provided, only products that meet the requirements of Subarticle 106-1(B) of the 2012 Standard Specifications may be used. Submit to the Engineer a Type 6 Certification, catalog cuts and installation procedures at least 30 days prior to installation for all.

Construction Methods

- (A) Prior to placing detectable warnings in proposed concrete curb ramps, adjust the existing subgrade to the proper grade and in accordance with Article 848-3 of the 2012 Standard Specifications.
- (B) Install all detectable warning in proposed concrete curb ramps in accordance with the manufacturer's recommendations.

Measurement and Payment

Detectable Warnings installed for construction of proposed curb ramps will not be paid for separately. Such payment will be included in the price bid for *Concrete Curb Ramps* or *Temporary Concrete Curb Ramps*.

MEDIAN HAZARD PROTECTION:

Description

Construct Median Hazard Protection at the concrete barrier transition sections as shown in the detail in the plans, in accordance with the detail in the plans and as directed by the Engineer.

Measurement and Payment

Median Hazard Protection will be measured and paid for per each that are completed and accepted. Such price and payment will be full compensation for all labor, materials (including, but not limited to earth material, #57 stone, concrete cover, galvanized bar and grout) and incidentals necessary construct the Median Hazard Protection.

Concrete Barrier Transition Sections will be measured and paid for as provided elsewhere in the contract.

Payment will be made under:

Pay ItemPay UnitMedian Hazard ProtectionEach

STREET SIGNS AND MARKERS AND ROUTE MARKERS:

-1-95)

SP9 R02

Move any existing street signs, markers, and route markers out of the construction limits of the project and install the street signs and markers and route markers so that they will be visible to the traveling public if there is sufficient right of way for these signs and markers outside of the construction limits.

Near the completion of the project and when so directed by the Engineer, move the signs and markers and install them in their proper location in regard to the finished pavement of the project.

Stockpile any signs or markers that cannot be relocated due to lack of right of way, or any signs and markers that will no longer be applicable after the construction of the project, at locations directed by the Engineer for removal by others.

The Contractor shall be responsible to the owners for any damage to any street signs and markers or route markers during the above described operations.

No direct payment will be made for relocating, reinstalling, and/or stockpiling the street signs and markers and route markers as such work shall be considered incidental to other work being paid for by the various items in the contract.

FOUNDATIONS AND ANCHOR ROD ASSEMBLIES FOR METAL POLES:

(1-17-12) (Rev. 8-21-12) 9, 14, 17 SP9 R05

Description

Foundations for metal poles include foundations for signals, cameras, overhead and dynamic message signs (DMS) and high mount and low level light standards supported by metal poles or upright trusses. Foundations consist of footings with pedestals and drilled piers with or without grade beams or wings. Anchor rod assemblies consist of anchor rods (also called anchor bolts) with nuts and washers on the exposed ends of rods and nuts and a plate or washers on the other ends of rods embedded in the foundation.

Construct concrete foundations with the required resistances and dimensions and install anchor rod assemblies in accordance with the contract and accepted submittals. Construct drilled piers consisting of cast-in-place reinforced concrete cylindrical sections in excavated holes. Provide temporary casings or polymer slurry as needed to stabilize drilled pier excavations. Use a prequalified Drilled Pier Contractor to construct drilled piers for metal poles. Define "excavation" and "hole" as a drilled pier excavation and "pier" as a drilled pier.

This provision does not apply to materials and anchor rod assemblies for standard foundations for low level light standards. See Section 1405 of the 2012 Standard Specifications and Standard Drawing No. 1405.01 of the 2012 Roadway Standard Drawings for materials and anchor rod assemblies for standard foundations. For construction of standard foundations for low level light standards, standard foundations are considered footings in this provision.

This provision does not apply to foundations for signal pedestals; see Section 1743 of the 2012 Standard Specifications and Standard Drawing No. 1743.01 of the 2012 Roadway Standard Drawings.

Materials

Refer to the 2012 Standard Specifications.

Item	Section
Conduit	1091-3
Grout, Nonshrink	1003
Polymer Slurry	411-2(B)
Portland Cement Concrete	1000
Reinforcing Steel	1070
Rollers and Chairs	411-2(C)
Temporary Casings	411-2(A)

Provide Type 3 material certifications in accordance with Article 106-3 of the 2012 Standard Specifications for conduit, rollers, chairs and anchor rod assemblies. Store steel materials on blocking at least 12" above the ground and protect it at all times from damage; and when placing

in the work make sure it is free from dirt, dust, loose mill scale, loose rust, paint, oil or other foreign materials. Load, transport, unload and store foundation and anchor rod assembly materials so materials are kept clean and free of damage. Damaged or deformed materials will be rejected.

Use conduit type in accordance with the contract. Use Class A concrete for footings and pedestals, Class Drilled Pier concrete for drilled piers and Class AA concrete for grade beams and wings including portions of drilled piers above bottom of wings elevations. Corrugated temporary casings may be accepted at the discretion of the Engineer. A list of approved polymer slurry products is available from:

www.ncdot.org/doh/preconstruct/highway/geotech/leftmenu/Polymer.html

Provide anchor rod assemblies in accordance with the contract consisting of the following:

- (A) Straight anchor rods,
- (B) Heavy hex top and leveling nuts and flat washers on exposed ends of rods, and
- (C) Nuts and either flat plates or washers on the other ends of anchor rods embedded in foundations.

Do not use lock washers. Use steel anchor rods, nuts and washers that meet ASTM F1554 for Grade 55 rods and Grade A nuts. Use steel plates and washers embedded in concrete with a thickness of at least 1/4". Galvanize anchor rods and exposed nuts and washers in accordance with Article 1076-4 of the 2012 Standard Specifications. It is not necessary to galvanize nuts, plates and washers embedded in concrete.

Construction Methods

Install the required size and number of conduits in foundations in accordance with the plans and accepted submittals. Construct top of piers, footings, pedestals, grade beams and wings flat, level and within 1" of elevations shown in the plans or approved by the Engineer. Provide an Ordinary Surface finish in accordance with Subarticle 825-6(B) of the 2012 Standard Specifications for portions of foundations exposed above finished grade. Do not remove anchor bolt templates or pedestal or grade beam forms or erect metal poles or upright trusses onto foundations until concrete attains a compressive strength of at least 3,000 psi.

(A) Drilled Piers

Before starting drilled pier construction, hold a predrill meeting to discuss the installation, monitoring and inspection of the drilled piers. Schedule this meeting after the Drilled Pier Contractor has mobilized to the site. The Resident or Division Traffic Engineer, Contractor and Drilled Pier Contractor Superintendent will attend this predrill meeting.

Do not excavate holes, install piles or allow equipment wheel loads or vibrations within 20 ft of completed piers until 16 hours after Drilled Pier concrete reaches initial set.

Check for correct drilled pier alignment and location before beginning drilling. Check plumbness of holes frequently during drilling.

Construct drilled piers with the minimum required diameters shown in the plans. Install piers with tip elevations no higher than shown in the plans or approved by the Engineer.

Excavate holes with equipment of the sizes required to construct drilled piers. Depending on the subsurface conditions encountered, drilling through rock and boulders may be required. Do not use blasting for drilled pier excavations.

Contain and dispose of drilling spoils and waste concrete as directed and in accordance with Section 802 of the 2012 Standard Specifications. Drilling spoils consist of all materials and fluids removed from excavations.

If unstable, caving or sloughing materials are anticipated or encountered, stabilize holes with temporary casings and/or polymer slurry. Do not use telescoping temporary casings. If it becomes necessary to replace a temporary casing during drilling, backfill the excavation, insert a larger casing around the casing to be replaced or stabilize the excavation with polymer slurry before removing the temporary casing.

If temporary casings become stuck or the Contractor proposes leaving casings in place, temporary casings should be installed against undisturbed material. Unless otherwise approved, do not leave temporary casings in place for mast arm poles and cantilever signs. The Engineer will determine if casings may remain in place. If the Contractor proposes leaving temporary casings in place, do not begin drilling until a casing installation method is approved.

Use polymer slurry and additives to stabilize holes in accordance with the slurry manufacturer's recommendations. Provide mixing water and equipment suitable for polymer slurry. Maintain polymer slurry at all times so slurry meets Table 411-3 of the 2012 Standard Specifications except for sand content.

Define a "sample set" as slurry samples collected from mid-height and within 2 ft of the bottom of holes. Take sample sets from excavations to test polymer slurry immediately after filling holes with slurry, at least every 4 hours thereafter and immediately before placing concrete. Do not place Drilled Pier concrete until both slurry samples from an excavation meet the required polymer slurry properties. If any slurry test results do not meet the requirements, the Engineer may suspend drilling until both samples from a sample set meet the required slurry properties.

Remove soft and loose material from bottom of holes using augers to the satisfaction of the Engineer. Assemble rebar cages and place cages and Drilled Pier concrete in accordance with Subarticle 411-4(E) of the 2012 Standard Specifications except for the following:

- (1) Inspections for tip resistance and bottom cleanliness are not required,
- (2) Temporary casings may remain in place if approved, and
- (3) Concrete placement may be paused near the top of pier elevations for anchor rod assembly installation and conduit placement or
- (4) If applicable, concrete placement may be stopped at bottom of grade beam or wings elevations for grade beam or wing construction.

If wet placement of concrete is anticipated or encountered, do not place Drilled Pier concrete until a concrete placement procedure is approved. If applicable, temporary casings and fluids may be removed when concrete placement is paused or stopped in accordance with the exceptions above provided holes are stable. Remove contaminated concrete from exposed Drilled Pier concrete after removing casings and fluids. If holes are unstable, do not remove temporary casings until a procedure for placing anchor rod assemblies and conduit or constructing grade beams or wings is approved.

Use collars to extend drilled piers above finished grade. Remove collars after Drilled Pier concrete sets and round top edges of piers.

If drilled piers are questionable, pile integrity testing (PIT) and further investigation may be required in accordance with Article 411-5 of the 2012 Standard Specifications. A drilled pier will be considered defective in accordance with Subarticle 411-5(D) of the 2012 Standard Specifications and drilled pier acceptance is based in part on the criteria in Article 411-6 of the 2012 Standard Specifications except for the top of pier tolerances in Subarticle 411-6(C) of the 2012 Standard Specifications.

If a drilled pier is under further investigation, do not grout core holes, backfill around the pier or perform any work on the drilled pier until the Engineer accepts the pier. If the drilled pier is accepted, dewater and grout core holes and backfill around the pier with approved material to finished grade. If the Engineer determines a pier is unacceptable, remediation is required in accordance with Article 411-6 of the 2012 Standard Specifications. No extension of completion date or time will be allowed for remediation of unacceptable drilled piers or post repair testing.

Permanently embed a plate in or mark top of piers with the pier diameter and depth, size and number of vertical reinforcing bars and the minimum compressive strength of the concrete mix at 28 days.

(B) Footings, Pedestals, Grade Beams and Wings

Excavate as necessary for footings, grade beams and wings in accordance with the plans, accepted submittals and Section 410 of the 2012 Standard Specifications. If unstable, caving or sloughing materials are anticipated or encountered, shore foundation excavations as needed with an approved method. Notify the Engineer when foundation excavation is complete. Do not place concrete or reinforcing steel until excavation dimensions and foundation material are approved.

Construct cast-in-place reinforced concrete footings, pedestals, grade beams and wings with the dimensions shown in the plans and in accordance with Section 825 of the 2012 Standard Specifications. Use forms to construct portions of pedestals and grade beams protruding above finished grade. Provide a chamfer with a 3/4" horizontal width for pedestal and grade beam edges exposed above finished grade. Backfill and fill in accordance with Article 410-8 of the 2012 Standard Specifications. Proper compaction around footings and wings is critical for foundations to resist uplift and torsion forces. Place concrete against undisturbed soil and do not use forms for standard foundations for low level light standards.

(C) Anchor Rod Assemblies

Size anchor rods for design and the required projection above top of foundations. Determine required anchor rod projections from nut, washer and base plate thicknesses, the protrusion of 3 to 5 anchor rod threads above top nuts after tightening and the distance of one nut thickness between top of foundations and bottom of leveling nuts.

Protect anchor rod threads from damage during storage and installation of anchor rod assemblies. Before placing anchor rods in foundations, turn nuts onto and off rods past leveling nut locations. Turn nuts with the effort of one workman using an ordinary wrench without a cheater bar. Report any thread damage to the Engineer that requires extra effort to turn nuts.

Arrange anchor rods symmetrically about center of base plate locations as shown in the plans. Set anchor rod elevations based on required projections above top of foundations. Securely brace and hold rods in the correct position, orientation and alignment with a steel template. Do not weld to reinforcing steel, temporary casings or anchor rods.

Install top and leveling (bottom) nuts, washers and the base plate for each anchor rod assembly in accordance with the following procedure:

- (1) Turn leveling nuts onto anchor rods to a distance of one nut thickness between the top of foundation and bottom of leveling nuts. Place washers over anchor rods on top of leveling nuts.
- (2) Determine if nuts are level using a flat rigid template on top of washers. If necessary, lower leveling nuts to level the template in all directions or if applicable, lower nuts to tilt the template so the metal pole or upright truss will lean as shown in the plans. If leveling nuts and washers are not in full contact with the template, replace washers with galvanized beveled washers.
- (3) Verify the distance between the foundation and leveling nuts is no more than one nut thickness.
- (4) Place base plate with metal pole or upright truss over anchor rods on top of washers. High mount luminaires may be attached before erecting metal poles but do not attach cables, mast arms or trusses to metal poles or upright trusses at this time.
- (5) Place washers over anchor rods on top of base plate. Lubricate top nut bearing surfaces and exposed anchor rod threads above washers with beeswax, paraffin or other approved lubricant.

- (6) Turn top nuts onto anchor rods. If nuts are not in full contact with washers or washers are not in full contact with the base plate, replace washers with galvanized beveled washers.
- (7) Tighten top nuts to snug-tight with the full effort of one workman using a 12" wrench. Do not tighten any nut all at once. Turn top nuts in increments. Follow a star pattern cycling through each nut at least twice.
- (8) Repeat (7) for leveling nuts.
- (9) Replace washers above and below the base plate with galvanized beveled washers if the slope of any base plate face exceeds 1:20 (5%), any washer is not in firm contact with the base plate or any nut is not in firm contact with a washer. If any washers are replaced, repeat (7) and (8).
- (10) With top and leveling nuts snug-tight, mark each top nut on a corner at the intersection of 2 flats and a corresponding reference mark on the base plate. Mark top nuts and base plate with ink or paint that is not water-soluble. Use the turn-of-nut method for pretensioning. Do not pretension any nut all at once. Turn top nuts in increments for a total turn that meets the following nut rotation requirements:

NUT ROTATION REQUIREMENTS								
(Turn-of-Nut Pretensioning Method)								
Anchor Rod Diameter, inch Requirement								
≤ 1 1/2	1/3 turn (2 flats)							
> 1 1/2	1/6 turn (1 flat)							

Follow a star pattern cycling through each top nut at least twice.

- (11) Ensure nuts, washers and base plate are in firm contact with each other for each anchor rod. Cables, mast arms and trusses may now be attached to metal poles and upright trusses.
- (12) Between 4 and 14 days after pretensioning top nuts, use a torque wrench calibrated within the last 12 months to check nuts in the presence of the Engineer. Completely erect mast arm poles and cantilever signs and attach any hardware before checking top nuts for these structures. Check that top nuts meet the following torque requirements:

TORQUE REQU	JIREMENTS
Anchor Rod Diameter, inch	Requirement, ft-lb
7/8	180
1	270
1 1/8	380
1 1/4	420
≥ 1 1/2	600

If necessary, retighten top nuts in the presence of the Engineer with a calibrated torque wrench to within \pm 10 ft-lb of the required torque. Do not overtighten top nuts.

(13) Do not grout under base plate.

Measurement and Payment

Foundations and anchor rod assemblies for metal poles and upright trusses will be measured and paid for elsewhere in the contract.

No payment will be made for temporary casings that remain in drilled pier excavations. No payment will be made for PIT. No payment will be made for further investigation of defective piers. Further investigation of piers that are not defective will be paid as extra work in accordance with Article 104-7 of the 2012 Standard Specifications. No payment will be made for remediation of unacceptable drilled piers or post repair testing.

MATERIALS:

(2-21-12) (Rev. 12-18-12)

1000, 1005, 1080, 1081, 1092

SP10 R01

Revise the 2012 Standard Specifications as follows:

Page 10-1, Article 1000-1, DESCRIPTION, line 14, add the following:

Use materials which do not produce a mottled appearance through rusting or other staining of the finished concrete surface.

Page 10-5, Table 1000-1, REQUIREMENTS FOR CONCRETE, replace with the following:

	TABLE 1000-1 REQUIREMENTS FOR CONCRETE												
	6	Maxii		er-Cement		Con	sistency . Slump	Cement Content					
Class of Concrete	Min. Comp. Strength at 28 days		trained crete	Entr	Air- ained crete	Vibrated	Non- Vibrated	Vib	rated	Non- Vibrated			
	Mir St	Rounded Aggregate	Angular Aggre- gate	Rounded Aggregate	Angular Aggre- gate			Min.	Max.	· Min.	Max.		
Units	psi				<u>y</u>	inch	inch	lb/cy	lb/cy	lb/cy	lb/cy		
AA	4,500	0.381	0.426	-	-	3.5		639	715	-	-		
AA Slip Form	4,500	0.381	0.426	-	-	1.5	-	639	. 715		-		
Drilled Pier	4,500	_	_	0.450	0.450	-	5-7 dry 7-9 wet	-		640	800		
Α	3,000	0.488	0.532	0.550	0.594	3.5	4	564	•	602	-		
В	2,500	0.488	0.567	0.559	0.630	2.5	4	508	: -	545			
B Slip Formed	2,500	0.488	0.567	-	-	1.5	-	508	-	-	-		
Sand Light- weight	4,500	_	0.420	-	-	4	-	715	-	-	-		
Latex Modified	3,000 7 day	0.400	0.400	-		6	-	658	-	-	-		
Flowable Fill excavatable	150 max. at 56 days	as needed	as needed	as needed	as needed	-	Flow- able	-		40	100		
Flowable Fill non-excavatable	125	as needed	as needed	as needed	as needed	-	Flow- able	-	-	100	as needed		
Pavement	4,500 design, field	0.559	0.559	-	-	1.5 slip form 3.0	-	526		· -			
	flexural, design only					hand place							
Precast	See Table	as needed	as needed	-	-	6	as needed	as needed	as needed	as needed	as needed		
Prestress	per contract	See Table 1078-1	See Table 1078-1	-	-	8	-	564	as needed	-	-		

Page 10-23, Table 1005-1, AGGREGATE GRADATION-COARSE AGGREGATE, replace with the following:

Light- weight ^C	ABC (M)	ABC	9	14M	78M	67	6M	57M	57	. 5	467M	4	Std. Size#	
> .	•	ı	:	1	•	. '	:	1	ı	1	100	100	2"	
See Subarticle 1005-4(A)	100	100	:	ı	•	•		100	100	100	95- 100	100	1 1/2"	
- icle 100	75- 100	75- 97	ı	•	•	100	100	95- 100	95- 100	90-	ı	20- 55	1:	
5-4(A)	•	ı		•	100	90 <u>-</u>	100 100	ı	ı	20- 55	35- 70	0-15	3/4"	:
100	45- 79	55 <u>-</u>	•		98- 100		20- 55	25- 45	25 - 60	0-10	•		1/2"	Percentage of Total by Weight Passing
100		1	100	100	75 - 100	20- 55	0-20	• .		0-5	0-30	0-5	3/8"	tage o
5- 40	20 - 40	35- 55	85 -	35- 70	20- 45	0-10	0-8	0-10	0-10		0-5		#	f Tota
0-20			10- 40	5-20	0-15	0-5	•	0-5	0-5	:	•		#	ıl by V
ı	0- 25	25- 45	ı		•	ı	•	•	•		•		#10	Veigh
0-10	•	ı	0-10	0-8	•	ı	ı	ı	ı		ı	ı	#16	t Pass
:	•	114- 30	•	ı	•	ı	ı	ı	ı	: •	•	•	#40	ing
0-2.5	0- 12 ^B	4- 12 ^B	>	>	>	>	>	A	A	>	>	>	#200	
AST	Maintenance Stabilization	Aggregate Base Course, Aggregate Stabilization	AST	Asphalt Plant Mix, AST, Weep Hole Drains, Str. Concrete	Asphalt Plant Mix, AST, Str. Conc, Weep Hole Drains	AST, Str. Concrete, Asphalt Plant Mix	AST	AST, Concrete Pavement	AST, Str. Concrete, Shoulder Drain, Sediment Control Stone	AST, Sediment Control Stone	Asphalt Plant Mix	Asphalt Plant Mix	Remarks	

Page 10-126, Table 1078-1, REQUIREMENTS FOR CONCRETE, replace with the following:

TABLE 1078-1 REQUIREMENTS FOR CONCRETE							
Property	28 Day Design Compressive Strength 6,000 psi or less	28 Day Design Compressive Strength greater than 6,000 psi					
Maximum Water/Cementitious Material Ratio	0.45	0.40					
Maximum Slump without HRWR	3.5"	3.5"					
Maximum Slump with HRWR	8"	8"					
Air Content (upon discharge into forms)	5 + 2%	5 + 2%					

Page 10-151, Article 1080-4 Inspection and Sampling, lines 18-22, replace (B), (C) and (D) with the following:

- (B) At least 3 panels prepared as specified in 5.5.10 of AASHTO M 300, Bullet Hole Immersion Test.
- (C) At least 3 panels of 4"x6"x1/4" for the Elcometer Adhesion Pull Off Test, ASTM D4541.
- (D) A certified test report from an approved independent testing laboratory for the Salt Fog Resistance Test, Cyclic Weathering Resistance Test, and Bullet Hole Immersion Test as specified in AASHTO M 300.
- (E) A certified test report from an approved independent testing laboratory that the product has been tested for slip coefficient and meets AASHTO M253, Class B.

Page 10-162, Subarticle 1081-1(A) Classifications, lines 4-7, delete the second and third sentences of the description for Type 3A.

Page 10-162, Subarticle 1081-1(B) Requirements, lines 26-30, replace the second paragraph with the following:

For epoxy resin systems used for embedding dowel bars, threaded rods, rebar, anchor bolts and other fixtures in hardened concrete, the manufacturer shall submit test results showing that the bonding system will obtain 125% of the specified required yield strength of the fixture. Furnish certification that, for the particular bolt grade, diameter and embedment depth required, the anchor system will not fail by adhesive failure and that there is no movement of the anchor bolt. For certification and anchorage, use 3,000 psi as the minimum Portland cement concrete compressive strength used in this test. Use adhesives that meet Section 1081.

List the properties of the adhesive on the container and include density, minimum and maximum temperature application, setting time, shelf life, pot life, shear strength and compressive strength.

Page 10-169, Subarticle 1081-3(G) Anchor Bolt Adhesives, delete this subarticle.

Page 10-204, Subarticle 1092-2(A) Performance and Test Requirements, replace Table 1092-3 Minimum Coefficient of Retroreflection for NC Grade A with the following:

TABLE 1092-3 MINIMUM COEFFICIENT OF RETROREFLECTION FOR NC GRADE A (Candelas Per Lux Per Square Meter)

Observation Angle, degrees	Entrance Angle, degrees	White	Yellow	Green	Red	Blue	Fluorescent Yellow Green	Fluorescent Yellow
0.2	-4.0	525	395	52	95	30	420	315
0.2	30.0	215	162	22	43	10	170	130
0.5	-4.0	310	230	31	56	18	245	185
0.5	30.0	135	100	14	27	6	110	81
1.0	-4.0	120	60	8	16	3.6	64	48
1.0	30.0	45	34	4.5	9	2	36	27

HIGH STRENGTH CONCRETE FOR DRIVEWAYS:

(11-21-00) (Rev. 1-17-12)

848

SP10 R02

Use high early strength concrete for all driveways shown in the plans and as directed by the Engineer. Provide high early strength concrete that meets the requirements of Article 1000-5 of the 2012 Standard Specifications.

Measurement and payment will be in accordance with Section 848 of the 2012 Standard Specifications.

SELECT MATERIAL, CLASS III, TYPE 3:

(1-17-12

1016, 1044

SP10 R05

Revise the 2012 Standard Specifications as follows:

Page 10-39, Article 1016-3, CLASS III, add the following after line 14:

Type 3 Select Material

Type 3 select material is a natural or manufactured fine aggregate material meeting the following gradation requirements and as described in Sections 1005 and 1006:

Percentage of Total by Weight Passing												
3/8"	#4	#8	#16	#30	#50	#100	#200					
100	95-100	65-100	35-95	15-75	5-35	0-25	0-8					

Page 10-39, Article 1016-3, CLASS III, line 15, replace "either type" with "Type 1, Type 2 or Type 3".

Page 10-62, Article 1044-1, line 36, delete the sentence and replace with the following:

Subdrain fine aggregate shall meet Class III select material, Type 1 or Type 3.

Page 10-63, Article 1044-2, line 2, delete the sentence and replace with the following:

Subdrain coarse aggregate shall meet Class V select material.

TEMPORARY SHORING:

(2-20-07) (Rev. 7-17-12)

SP11 R02

Description

Temporary shoring includes cantilever, braced and anchored shoring and temporary mechanically stabilized earth (MSE) walls. Temporary shoring does not include trench boxes. At the Contractor's option, use any type of temporary shoring unless noted otherwise in the plans or as directed. Design and construct temporary shoring based on actual elevations and shoring dimensions in accordance with the contract and accepted submittals. Construct temporary shoring at locations shown in the plans and as directed. Temporary shoring is required to maintain traffic when a 2:1 (H:V) slope from the top of an embankment or bottom of an excavation will intersect the existing ground line less than 5 ft from the edge of pavement of an open travelway. This provision does not apply to pipe, inlet or utility installation unless noted otherwise in the plans.

Positive protection includes concrete barrier and temporary guardrail. Provide positive protection for temporary shoring at locations shown in the plans and as directed. Positive protection is required if temporary shoring is located in the clear zone in accordance with the AASHTO Roadside Design Guide.

(A) Cantilever and Braced Shoring

Cantilever shoring consists of steel sheet piles or H-piles with timber lagging. Braced shoring consists of sheet piles or H-piles with timber lagging and bracing such as beams, plates, walers, struts, rakers, etc. Define "piles" as sheet piles or H-piles.

(B) Anchored Shoring

Anchored shoring consists of sheet piles with walers or H-piles with timber lagging anchored with ground or helical anchors. Driven anchors may be accepted at the discretion of the Engineer. A ground anchor consists of a grouted steel bar or multistrand tendon with an anchorage. A helical anchor consists of a lead section with a central steel shaft and at least one helix steel plate followed by extensions with only central shafts (no helixes) and an anchorage. Anchorages consist of steel bearing plates with washers and hex nuts for bars or steel wedge plates and wedges for strands. Use a prequalified Anchored Wall Contractor to install ground anchors. Define "anchors" as ground, helical or driven anchors.

(C) Temporary MSE Walls

Temporary MSE walls include temporary geosynthetic and wire walls. Define "temporary wall" as a temporary MSE wall. Define "reinforcement" as geotextile, geogrid, welded wire grid or metallic strip reinforcement.

Temporary geosynthetic walls consist of geotextile or geogrid reinforcement wrapped behind welded wire facing. Define "temporary geotextile wall" as a temporary geosynthetic wall with geotextile reinforcement and "temporary geogrid wall" as a temporary geosynthetic wall with geogrid reinforcement.

Temporary wire walls consist of welded wire grid or metallic strip reinforcement connected to welded wire facing. Define "Wire Wall Vendor" as the vendor supplying the temporary wire wall.

(D) Embedment

Define "embedment" for cantilever, braced and anchored shoring as the pile depth below the grade in front of shoring. Define "embedment" for temporary walls as the wall height below the grade in front of walls.

(E) Positive Protection

Define "unanchored or anchored portable concrete barrier" as portable concrete barrier (PCB) that meets Standard Drawing No. 1170.01 of the 2012 Roadway Standard Drawings. Define "concrete barrier" as unanchored or anchored PCB or an approved equal. Define "temporary guardrail" as temporary steel beam guardrail that meets Standard Drawing No. 862.02 of the 2012 Roadway Standard Drawings.

Materials

Refer to the 2012 Standard Specifications.

Item	Section
Anchor Pins	1056-2
Concrete Barrier Materials	1170-2
Flowable Fill, Excavatable	1000-6
Geotextiles	1056
Neat Cement Grout	1003
Portland Cement Concrete	1000
Select Material	1016
Steel Beam Guardrail Materials	862-2
Steel Plates	1072-2
Steel Sheet Piles and H-Piles	1084
Untreated Timber	1082-2
Welded Wire Reinforcement	1070-3
Wire Staples	1060-8(D)

Provide Type 6 material certifications for shoring materials in accordance with Article 106-3 of the 2012 Standard Specifications. Use Class IV select material (standard size No. ABC) for temporary guardrail. Use nonshrink neat cement grout or Class A concrete that meets Article 450-2 of the 2012 Standard Specifications for drilled-in piles. Use untreated timber with a thickness of at least 3" and a bending stress of at least 1,000 psi for timber lagging. Provide steel bracing that meets ASTM A36.

(A) Shoring Backfill

Use Class II, Type 1, Class III, Class V or Class VI select material or material that meets AASHTO M 145 for soil classification A-2-4 with a maximum PI of 6 for shoring backfill except do not use A-2-4 soil for backfill around culverts.

(B) Anchors

Store anchor materials on blocking a minimum of 12" above the ground and protect it at all times from damage; and when placing in the work make sure it is free from dirt, dust, loose mill scale, loose rust, paint, oil or other foreign materials. Load, transport, unload and store anchor materials so materials are kept clean and free of damage. Damaged or deformed materials will be rejected.

(1) Ground Anchors

Use high-strength deformed steel bars that meet AASHTO M 275 or seven-wire strands that meet ASTM A886 or Article 1070-5 of the 2012 Standard Specifications. Splice bars in accordance with Article 1070-9 of the 2012 Standard Specifications. Do not splice strands. Use bondbreakers, spacers and centralizers that meet Article 6.3.5 of the AASHTO LRFD Bridge Construction Specifications.

(2) Helical Anchors

Use helical anchors with an ICC Evaluation Service, Inc. (ICC-ES) report. Helical anchors without an ICC-ES report may be approved at the discretion of the Engineer. Provide couplers, thread bar adapters and bolts recommended by the Anchor Manufacturer to connect helical anchors together and to piles.

(3) Anchorages

Provide steel plates for bearing plates and steel washers, hex nuts, wedge plates and wedges recommended by the Anchor Manufacturer.

(C) Temporary Walls

(1) Welded Wire Facing

Use welded wire reinforcement for welded wire facing, struts and wires. For temporary wire walls, provide welded wire facing supplied by the Wire Wall Vendor or a manufacturer approved or licensed by the vendor. For temporary wire walls with separate reinforcement and facing components, provide connectors (e.g., bars, clamps, plates, etc.) and fasteners (e.g., bolts, nuts, washers, etc.) required by the Wire Wall Vendor.

(2) Geotextiles

Provide Type 2 geotextile for separation and retention geotextiles. Provide Type 5 geotextile for geotextile reinforcement with wide width tensile strengths at ultimate in accordance with the accepted submittals.

(3) Geogrid Reinforcement

Handle and store geogrids in accordance with Article 1056-2 of the 2012 Standard Specifications. Define "machine direction" (MD) and "cross-machine direction" (CD) for geogrids in accordance with ASTM D4439. Provide geogrids for geogrid reinforcement with short-term design strengths in accordance with the accepted submittals.

Use geogrids with a roll width of at least 4 ft and an "approved" or "approved for provisional use" status code. Geogrids are approved for short-term design strengths for a 3-year design life in the MD and CD based on material type. The list of approved geogrids with short-term design strengths is available from: www.ncdot.org/doh/operations/materials/soils/gep.html

Define material type from the website above for shoring backfill as follows:

Material Type	Shoring Backfill
Borrow	A-2-4 Soil
Fine Aggregate	Class II, Type 1 or Class III Select Material
Coarse Aggregate	Class V or VI Select Material

If an approved geogrid does not list a short-term design strength in the MD for the shoring backfill used, do not use the geogrid for geogrid reinforcement. If an approved geogrid does not list a short-term design strength in the CD for the shoring backfill used, do not install the geogrid with the MD parallel to the wall face.

(4) Welded Wire Grid and Metallic Strip Reinforcement

Provide welded wire grid and metallic strip reinforcement supplied by the Wire Wall Vendor or a manufacturer approved or licensed by the vendor. Use welded wire grid reinforcement ("mesh", "mats" and "ladders") that meet Article 1070-3 of the 2012 Standard Specifications and metallic strip reinforcement ("straps") that meet ASTM A572 or A1011.

Preconstruction Requirements

(A) Concrete Barrier

Define "clear distance" behind concrete barrier as the horizontal distance between the barrier and edge of pavement. The minimum required clear distance for concrete barrier is shown in the plans. At the Contractor's option or if the minimum required clear distance is not available, set concrete barrier next to and up against traffic side of temporary shoring except for barrier above temporary walls. Concrete barrier with the minimum required clear distance is required above temporary walls.

(B) Temporary Guardrail

Define "clear distance" behind temporary guardrail as the horizontal distance between guardrail posts and temporary shoring. At the Contractor's option or if clear distance for cantilever, braced and anchored shoring is less than 4 ft, attach guardrail to traffic side of shoring as shown in the plans. Place ABC in clear distance and around guardrail posts instead of pavement. Do not use temporary guardrail above temporary walls.

(C) Temporary Shoring Designs

Before beginning temporary shoring design, survey existing ground elevations in the vicinity of shoring locations to determine actual design heights (H). Submit 8 copies of working drawings and 3 copies of design calculations and a PDF copy of each for temporary shoring designs in accordance with Article 105-2 of the 2012 Standard Specifications. Submit working drawings showing plan views, shoring profiles, typical sections and details of temporary shoring design and construction sequence. Do not begin shoring construction until a design submittal is accepted.

Have cantilever and braced shoring designed, detailed and sealed by an engineer licensed in the state of North Carolina. Use a prequalified Anchored Wall Design Consultant to design anchored shoring. Provide anchored shoring designs sealed by a Design Engineer approved as a Geotechnical Engineer (key person) for an Anchored Wall Design Consultant. Include details in anchored shoring working drawings of anchor locations and lock-off loads, unit grout/ground bond strengths for ground anchors or minimum installation torque and torsional strength rating for helical anchors and if necessary, obstructions extending through shoring or interfering with anchors. Include details in the anchored shoring construction sequence of pile and anchor installation, excavation and anchor testing.

Use a prequalified MSE Wall Design Consultant to design temporary walls. Provide temporary wall designs sealed by a Design Engineer approved as a Geotechnical Engineer (key person) for the MSE Wall Design Consultant. Include details in temporary wall working drawings of geotextile and reinforcement types, locations and directions and obstructions extending through walls or interfering with reinforcement.

(1) Soil Parameters

Design temporary shoring for the assumed soil parameters and groundwater elevations shown in the plans. Assume the following soil parameters for shoring backfill:

(a)	Unit weight $(\gamma) = 120 \text{ lb/}$	CI;
(b)	Friction Angle (φ)	Shoring Backfill
	30°	A-2-4 Soil
	34°	Class II Type 1 or Class III Select Mater

(c) $\frac{38^{\circ}}{\text{Cohesion (c)} = 0 \text{ lb/sf.}}$ Class V or VI Select Material

(2) Traffic Surcharge

Design temporary shoring for a traffic surcharge of 250 lb/sf if traffic will be above and within H of shoring. This traffic surcharge does not apply to construction traffic. Design temporary shoring for any construction surcharge if construction traffic will be above and within H of shoring. For LRFD shoring designs, apply traffic (live load) surcharge in accordance with Figure C11.5.5-3 of the AASHTO LRFD Bridge Design Specifications.

(3) Cantilever, Braced and Anchored Shoring Designs

Use shoring backfill for fill sections and voids between cantilever, braced and anchored shoring and the critical failure surface. Use concrete or grout for embedded portions of drilled-in H-piles. Do not use drilled-in sheet piles.

Define "top of shoring" for cantilever, braced and anchored shoring as where the grade intersects the back of sheet piles or H-piles and timber lagging. Design cantilever, braced and anchored shoring for a traffic impact load of 2,000 lb/ft applied 18" above top of shoring if concrete barrier is above and next to shoring or temporary guardrail is above and attached to shoring. For anchored shoring designs, apply traffic impact load as horizontal load (P_{H1}) in accordance with Figure 3.11.6.3-2(a) of the AASHTO LRFD specifications.

Extend cantilever, braced and anchored shoring at least 32" above top of shoring if shoring is designed for traffic impact. Otherwise, extend shoring at least 6" above top of shoring.

Design cantilever, braced and anchored shoring for a maximum deflection of 3" if the horizontal distance to the closest edge of pavement or structure is less than H. Otherwise, design shoring for a maximum deflection of 6". Design cantilever and braced shoring in accordance with the plans and AASHTO Guide Design Specifications for Bridge Temporary Works.

Design anchored shoring in accordance with the plans and Article 11.9 of the AASHTO LRFD Bridge Design Specifications. Use a resistance factor of 0.80 for tensile resistance of anchors with bars, strands or shafts. Extend the unbonded length for ground anchors and the shallowest helix for helical anchors at least 5 ft behind the critical failure surface. Do not extend anchors beyond right-of-way or easement limits. If existing or future obstructions such as foundations, guardrail posts, pavements, pipes, inlets or utilities will interfere with anchors, maintain a clearance of at least 6" between obstructions and anchors.

(4) Temporary Wall Designs

Use shoring backfill in the reinforced zone of temporary walls. Separation geotextiles are required between shoring backfill and backfill, natural ground or culverts along the sides of the reinforced zone perpendicular to the wall face. For Class V or VI select material in the reinforced zone, separation geotextiles are also required between shoring backfill and backfill or natural ground on top of and at the back of the reinforced zone.

Design temporary walls in accordance with the plans and Article 11.10 of the AASHTO LRFD Bridge Design Specifications. Embed temporary walls at least 18" except for walls on structures or rock as determined by the Engineer. Use a uniform reinforcement length throughout the wall height of at least 0.7H or 6 ft, whichever is greater. Extend the reinforced zone at least 6" beyond end of reinforcement. Do not locate the reinforced zone outside right-of-way or easement limits.

Use the simplified method for determining maximum reinforcement loads in accordance with the AASHTO LRFD specifications. For geotextile reinforcement, use geotextile properties approved by the Department or default values in accordance with the AASHTO LRFD specifications. For geogrid reinforcement, use approved geogrid properties available from the website shown elsewhere in this provision. Use geosynthetic properties for the direction reinforcement will be installed, a 3-year design life and the shoring backfill type in the reinforced zone.

Do not use more than 4 different reinforcement strengths for each temporary geosynthetic wall. Design temporary geotextile walls for a reinforcement coverage ratio (R_c) of 1.0 and temporary geogrid walls for an R_c of at least 0.8. For geogrid reinforcement with an R_c of less than 1.0, use a maximum horizontal clearance between geogrids of 3 ft and stagger reinforcement so geogrids are centered over gaps in the reinforcement layer below.

For temporary geosynthetic walls, use "L" shaped welded wire facing with 18" to 24" long legs. Locate geotextile or geogrid reinforcement so reinforcement layers are at the same level as the horizontal legs of welded wire facing. Use vertical reinforcement spacing equal to facing height. Wrap geotextile or geogrid reinforcement behind welded wire facing and extend reinforcement at least 3 ft back behind facing into shoring backfill.

For temporary wire walls with separate reinforcement and facing components, attach welded wire grid or metallic strip reinforcement to welded wire facing with a connection approved by the Department. For temporary geogrid and wire walls, retain shoring backfill at welded wire facing with retention geotextiles and extend geotextiles at least 3 ft back behind facing into backfill.

(D) Preconstruction Meeting

The Engineer may require a shoring preconstruction meeting to discuss the construction, inspection and testing of the temporary shoring. If required, schedule this meeting after all shoring submittals have been accepted. The Resident, District or Bridge Maintenance Engineer, Bridge or Roadway Construction Engineer, Geotechnical Operations Engineer, Contractor and Shoring Contractor Superintendent will attend this preconstruction meeting.

Construction Methods

Control drainage during construction in the vicinity of shoring. Direct run off away from shoring and shoring backfill. Contain and maintain backfill and protect material from erosion.

Install positive protection in accordance with the contract and accepted submittals. Use PCB in accordance with Section 1170 of the 2012 Standard Specifications and Standard Drawing No. 1170.01 of the 2012 Roadway Standard Drawings. Use temporary guardrail in accordance with Section 862 of the 2012 Standard Specifications and Standard Drawing No. 862.01, 862.02 and 862.03 of the 2012 Roadway Standard Drawings.

(A) Tolerances

Construct shoring with the following tolerances:

- (1) Horizontal wires of welded wire facing are level in all directions,
- (2) Shoring location is within 6" of horizontal and vertical alignment shown in the accepted submittals, and
- Shoring plumbness (batter) is within 2° of vertical.

(B) Cantilever, Braced and Anchored Shoring Installation

If overexcavation behind cantilever, braced or anchored shoring is shown in the accepted submittals, excavate before installing piles. Otherwise, install piles before excavating for shoring. Install cantilever, braced or anchored shoring in accordance with the construction sequence shown in the accepted submittals. Remove piles and if applicable, timber lagging when shoring is no longer needed.

(1) Pile Installation

Install piles with the minimum required embedment and extension in accordance with Subarticles 450-3(D) and 450-3(E) of the 2012 Standard Specifications except that a pile driving equipment data form is not required. Piles may be installed with a vibratory hammer as approved by the Engineer.

Do not splice sheet piles. Use pile excavation to install drilled-in H-piles. After filling holes with concrete or grout to the elevations shown in the accepted submittals, remove any fluids and fill remaining portions of holes with flowable fill. Cure concrete or grout at least 7 days before excavating.

Notify the Engineer if refusal is reached before pile excavation or driven piles attain the minimum required embedment. When this occurs, a revised design submittal may be required.

(2) Excavation

Excavate in front of piles from the top down in accordance with the accepted submittals. For H-piles with timber lagging and braced and anchored shoring, excavate in staged horizontal lifts with a maximum height of 5 ft. Remove flowable fill and material in between H-piles as needed to install timber lagging. Position lagging with at least 3" of contact in the horizontal direction between the lagging and pile flanges. Do not excavate the next lift until timber lagging for the current lift is installed and if applicable, bracing and anchors for the current lift are accepted. Backfill behind cantilever, braced or anchored shoring with shoring backfill.

(3) Anchor Installation

If applicable, install foundations located behind anchored shoring before installing anchors. Fabricate and install ground anchors in accordance with the accepted submittals, Articles 6.4 and 6.5 of the AASHTO LRFD Bridge Construction Specifications and the following unless otherwise approved:

(a) Materials in accordance with this provision are required instead of materials conforming to Articles 6.4 and 6.5.3 of the AASHTO LRFD Specifications,

- (b) Encapsulation-protected ground anchors in accordance with Article 6.4.1.2 of the AASHTO LRFD specifications are not required, and
- (c) Corrosion protection for unbonded lengths of ground anchors and anchorage covers are not required.

Install helical anchors in accordance with the accepted submittals and Anchor Manufacturer's instructions. Measure torque during installation and do not exceed the torsional strength rating of the helical anchor. Attain the minimum required installation torque and penetration before terminating anchor installation. When replacing a helical anchor, embed last helix of the replacement anchor at least 3 helix plate diameters past the location of the first helix of the previous anchor.

(4) Anchor Testing

Proof test and lock-off anchors in accordance with the accepted submittals and Article 6.5.5 of the AASHTO LRFD Bridge Construction Specifications except for the acceptance criteria in Article 6.5.5.5. For the AASHTO LRFD specifications, "ground anchor" refers to a ground or helical anchor and "tendon" refers to a bar, strand or shaft.

(a) Anchor Acceptance

Anchor acceptance is based in part on the following criteria.

- (i) For ground and helical anchors, total movement is less than 0.04" between the 1 and 10 minute readings or less than 0.08" between the 6 and 60 minute readings.
- (ii) For ground anchors, total movement at maximum test load exceeds 80% of the theoretical elastic elongation of the unbonded length.

(b) Anchor Test Results

Submit 2 copies of anchor test records including movement versus load plots for each load increment within 24 hours of completing each row of anchors. The Engineer will review the test records to determine if the anchors are acceptable.

If the Engineer determines an anchor is unacceptable, revise the anchor design or installation methods. Submit a revised anchored shoring design for acceptance and provide an acceptable anchor with the revised design or installation methods. If required, replace the anchor or provide additional anchors with the revised design or installation methods.

(C) Temporary Wall Installation

Excavate as necessary for temporary walls in accordance with the plans and accepted submittals. If applicable, install foundations located in the reinforced zone before placing shoring backfill or reinforcement unless otherwise approved. Notify the Engineer when foundation excavation is complete. Do not place shoring backfill or reinforcement until excavation dimensions and foundation material are approved.

Erect welded wire facing with no negative batter (wall face leaning forward) so the wall position is as shown in the plans and accepted submittals. Set welded wire facing adjacent to each other in the horizontal and vertical direction to completely cover the wall face with facing. Stagger welded wire facing to create a running bond by centering facing over joints in the row below.

Wrap geotextile reinforcement and retention geotextiles behind welded wire facing as shown in the plans and accepted submittals and cover geotextiles with at least 3" of shoring backfill. Overlap adjacent geotextile reinforcement and retention and separation geotextiles at least 18" with seams oriented perpendicular to the wall face. Hold geotextiles in place with wire staples or anchor pins as needed.

Place reinforcement within 3" of locations shown in the plans and accepted submittals and in slight tension free of kinks, folds, wrinkles or creases. Install reinforcement with the direction shown in the plans and accepted submittals. For temporary wire walls with separate reinforcement and facing components, attach welded wire grid or metallic strip reinforcement to welded wire facing as shown in the accepted submittals. Do not splice or overlap reinforcement so seams are parallel to the wall face. Contact the Engineer when unanticipated existing or future obstructions such as foundations, pavements, pipes, inlets or utilities will interfere with reinforcement.

Place shoring backfill in the reinforced zone in 8" to 10" thick lifts. Compact A-2-4 soil and Class II, Type 1 and Class III select material in accordance with Subarticle 235-3(C) of the 2012 Standard Specifications. Use only hand operated compaction equipment to compact backfill within 3 ft of welded wire facing. At a distance greater than 3 ft, compact shoring backfill with at least 4 passes of an 8 ton to 10 ton vibratory roller in a direction parallel to the wall face. Smooth wheeled or rubber tired rollers are also acceptable for compacting backfill. Do not use sheepsfoot, grid rollers or other types of compaction equipment with feet. Do not displace or damage reinforcement when placing and compacting shoring backfill. End dumping directly on geotextile or geogrid reinforcement is not permitted. Do not operate heavy equipment on reinforcement until it is covered with at least 8" of shoring backfill. Replace any damaged reinforcement to the satisfaction of the Engineer.

Backfill for temporary walls outside the reinforced zone in accordance with Article 410-8 of the 2012 Standard Specifications. Bench temporary walls into the sides of excavations where applicable. For temporary geosynthetic walls with top of wall within 5 ft of finished grade, remove top facing and incorporate top reinforcement layer into fill when placing fill in front of wall. Temporary walls remain in place permanently unless otherwise required.

Measurement and Payment

Temporary Shoring will be measured and paid in square feet. Temporary walls will be measured as the square feet of exposed wall face area. Cantilever, braced or anchored shoring will be measured as the square feet of exposed shoring face area with the shoring height equal to the difference between the top and bottom of shoring elevations. Define "top of shoring" as where the grade intersects the back of sheet piles or H-piles and timber lagging. Define "bottom of shoring" as where the grade intersects front of sheet piles or H-piles and timber lagging. No measurement will be made for any embedment, shoring extension above top of shoring or pavement thickness above temporary walls.

The contract unit price for *Temporary Shoring* will be full compensation for providing shoring designs, submittals and materials, excavating, backfilling, hauling and removing excavated materials and supplying all labor, tools, equipment and incidentals necessary to construct temporary shoring.

No payment will be made for temporary shoring not shown in the plans or required by the Engineer including shoring for OSHA reasons or the Contractor's convenience. No value engineering proposals will be accepted based solely on revising or eliminating shoring locations shown in the plans or estimated quantities shown in the bid item sheets as a result of actual field measurements or site conditions.

PCB will be measured and paid in accordance with Section 1170 of the 2012 Standard Specifications. No additional payment will be made for anchoring PCB for temporary shoring. Costs for anchoring PCB will be incidental to temporary shoring.

Temporary guardrail will be measured and paid for in accordance with Section 862 of the 2012 Standard Specifications.

Payment will be made under:

Pay ItemTemporary Shoring

Pay Unit Square Foot

TRUCK MOUNTED CHANGEABLE MESSAGE SIGNS:

-21-12)

SP11 R10

Revise the 2012 Roadway Standard Drawings as follows:

Drawing No. 1101.02, Sheet 12, TEMPORARY LANE CLOSURES, replace General Note #11 with the following:

11- TRUCK MOUNTED CHANGEABLE MESSAGE SIGNS (TMCMS) USED ON SHADOW VEHICLES FOR "IN LANE" ACTIVITIES SHALL BE A MINIMUM OF 43" X 73". THE DISPLAY PANEL SHALL HAVE FULL MATRIX CAPABILITY WITH THE CAPABILITY TO PROVIDE 2 MESSAGE LINES WITH 7 CHARACTERS PER LINE WITH A MINIMUM CHARACTER HEIGHT OF 18". FOR ADDITIONAL MESSAGING, CONTACT THE WORK ZONE TRAFFIC CONTROL SECTION.

12- TMCMS USED FOR ADVANCED WARNING ON VEHICLES LOCATED ON THE SHOULDER MAY BE SMALLER THAN 43" X 73". THE DISPLAY PANEL SHALL HAVE THE CAPABILITY TO PROVIDE 2 MESSAGE LINES WITH 7 CHARACTERS PER LINE WITH A MINIMUM CHARACTER HEIGHT OF 18". FOR ADDITIONAL MESSAGING, CONTACT THE WORK ZONE TRAFFIC CONTROL SECTION.

Drawing No. 1101.02, Sheet 13, TEMPORARY LANE CLOSURES, replace General Note #12 with the following:

- 12- TRUCK MOUNTED CHANGEABLE MESSAGE SIGNS (TMCMS) USED ON SHADOW VEHICLES FOR "IN LANE" ACTIVITIES SHALL BE A MINIMUM OF 43" X 73". THE DISPLAY PANEL SHALL HAVE FULL MATRIX CAPABILITY WITH THE CAPABILITY TO PROVIDE 2 MESSAGE LINES WITH 7 CHARACTERS PER LINE WITH A MINIMUM CHARACTER HEIGHT OF 18". FOR ADDITIONAL MESSAGING, CONTACT THE WORK ZONE TRAFFIC CONTROL SECTION.
- 13- TMCMS USED FOR ADVANCED WARNING ON VEHICLES LOCATED ON THE SHOULDER MAY BE SMALLER THAN 43" X 73". THE DISPLAY PANEL SHALL HAVE THE CAPABILITY TO PROVIDE 2 MESSAGE LINES WITH 7 CHARACTERS PER LINE WITH A MINIMUM CHARACTER HEIGHT OF 18". FOR ADDITIONAL MESSAGING, CONTACT THE WORK ZONE TRAFFIC CONTROL SECTION.

COORDINATION OF EXISTING LIGHTING WORK:

(7-1-95) (Rev. 8-21-12)

SP14 R02

Maintain operation of the existing lighting systems until such time that it becomes in conflict with the actual construction work, or it becomes a hazard to traffic as determined by the Engineer.

Use care in working around the lights and circuitry and phase operations so that the disruption of existing lighting systems will be minimized. Make repairs or replacements in conformance with the contract. Should the Contractor fail to make such repairs within the time allowed, the Department will cause the necessary repairs to be made by others. The costs of such repairs will be deducted from any monies due the Contractor on the next subsequent monthly or final payment.

PERMANENT SEEDING AND MULCHING:

(7-1-95) 1660

SP16 R02

The Department desires that permanent seeding and mulching be established on this project as soon as practical after slopes or portions of slopes have been graded. As an incentive to obtain an early stand of vegetation on this project, the Contractor's attention is called to the following:

For all permanent seeding and mulching that is satisfactorily completed in accordance with the requirements of Section 1660 in the 2012 Standard Specifications and within the following percentages of elapsed contract times, an additional payment will be made to the Contractor as an incentive additive. The incentive additive will be determined by multiplying the number of

acres of seeding and mulching satisfactorily completed times the contract unit bid price per acre for Seeding and Mulching times the appropriate percentage additive.

Percentage of Elapsed Contract Time	Percentage Additive
0% - 30%	30%
30.01% - 50%	15%

Percentage of elapsed contract time is defined as the number of calendar days from the date of availability of the contract to the date the permanent seeding and mulching is acceptably completed divided by the total original contract time.