38499.I.I	
L .	
تا	
\mathbf{C}	l
[I]	l
M	l
	ځ
	Ī
	١
K	
ר ח	

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION
DIVISION OF HIGHWAYS
GEOTECHNICAL ENGINEERING UNIT

CONTENTS

OUNT	SINIO
SHEET	DESCRIPTION
1	TITLE SHEET
2	LEGEND
3	SITE PLAN
4-5	PROFILES
6-9	CROSS SECTIONS
10-17	BORE LOGS, CORE REPORTS & CORE PHOTOS
18	ROCK TEST RESULTS
19	SITE PHOTOS

STRUCTURE SUBSURFACE INVESTIGATION

PROJ. REF	FERENCE NO.	38499.1.1 (B-4725)	F.A. PROJ	BRZ-1554(4)
COUNTY	<u>CASWELL</u>	****		
PROJECT	DESCRIPTION	BRIDGE No. 12 C	OVER COUNTRY	LINE
_CREEK	ON SR 155	4 (YARBOROUGH	MILL ROAD)	

 STATE
 STATE PROJECT REPERENCE NO.
 SHEST NOTAL MISSES

 N.C.
 38499.1.1
 1
 19

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF PREPARING THE SCOPE OF WORK TO BE INCLUDED IN THE REQUEST FOR PROPOSAL. THE VARIOUS FIELD BORING LOCS, ROCK CORES, AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N.C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1991 TOT-8600. THE SUBSURFACE PLANS, FIELD BORING LOCS, ROCK CORES, AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

SOIL AND ROCK BOUNDARIES WITHIN A BOREHOLE ARE BASED ON GEOTECHNICAL INTERPRETATION UNLESS ENCOUNTERED IN A SAMPLE, INTERPRETED BOUNDARIES MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN SAMPLED STRATA, AND BOREHOLE INFORMATION MAY NOT NECESSARILY REFLECT ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS. THE LABORATORY SAMPLE DATA AND THE IN SITU IN-PLACED TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHON. THE OBSERVED WATER LEVELS OR SOIL MOSTURE CONDITIONS INDICATED IN THE SUBSURFACE INVESTIGATIONS AND AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOSTURE CONDITIONS MAY CARS CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS, INCLUDING TEMPERATURES, PRECIPITATION, AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, OR THE OPHION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAULTONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT, THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTE THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS BEING ACCURATE NOR IT IS CONSIDERED TO BE PART OF THE PLANS, SPECIFICATIONS, OR CONTRACT FOR THE PROJECT.
- NOTE BY HAVING REQUESTED THIS INFORMATION THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL

J. Howard

D. White

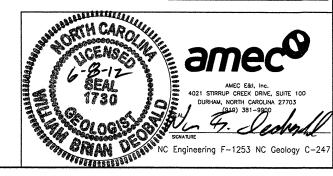
O. Smith

DRAWN BY

R. Rahie

INVESTIGATED BY AMEC E&I, Inc.

CHECKED BY


J. Howard

SUBMITTED BY

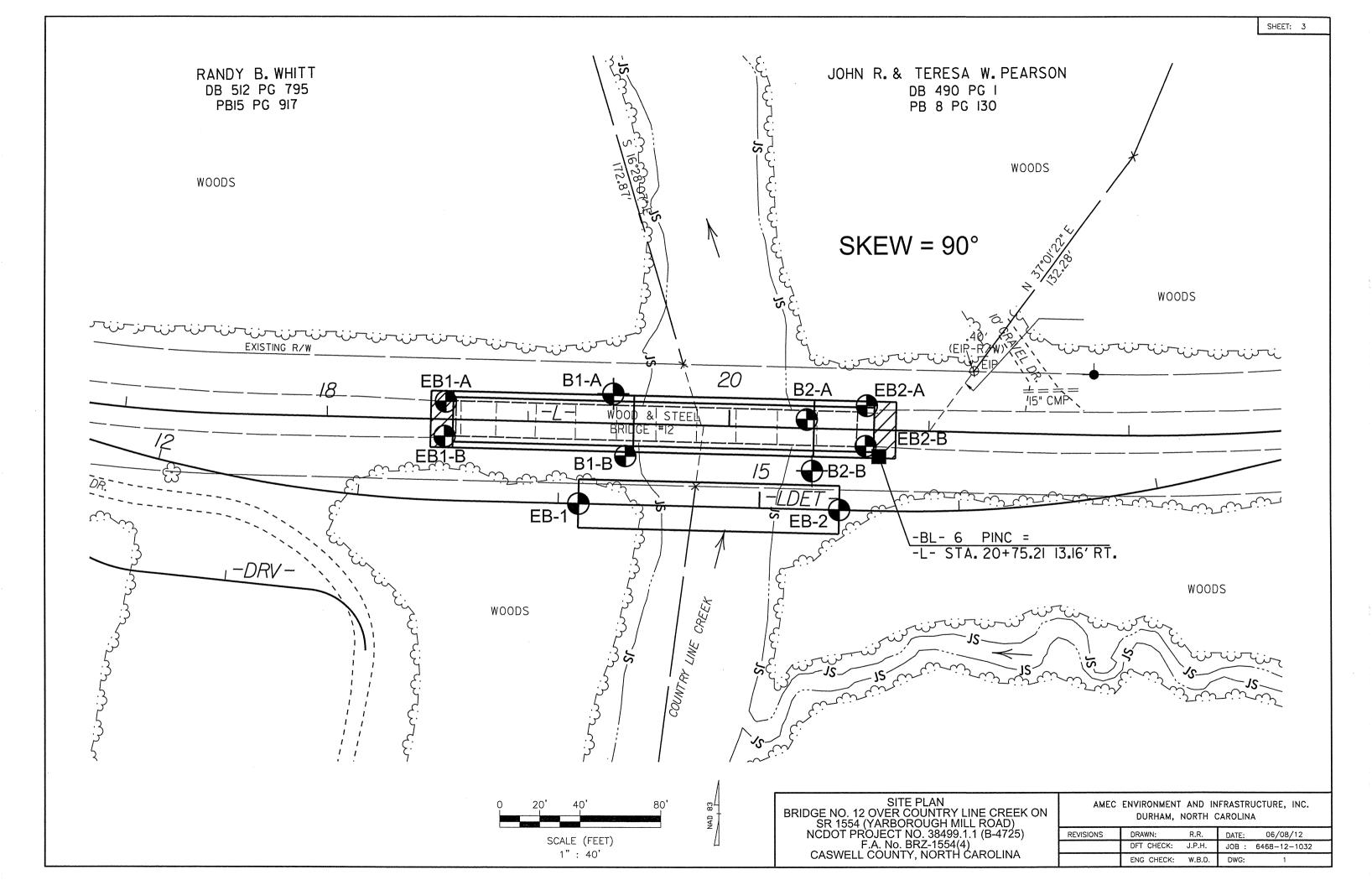
B. Deobald

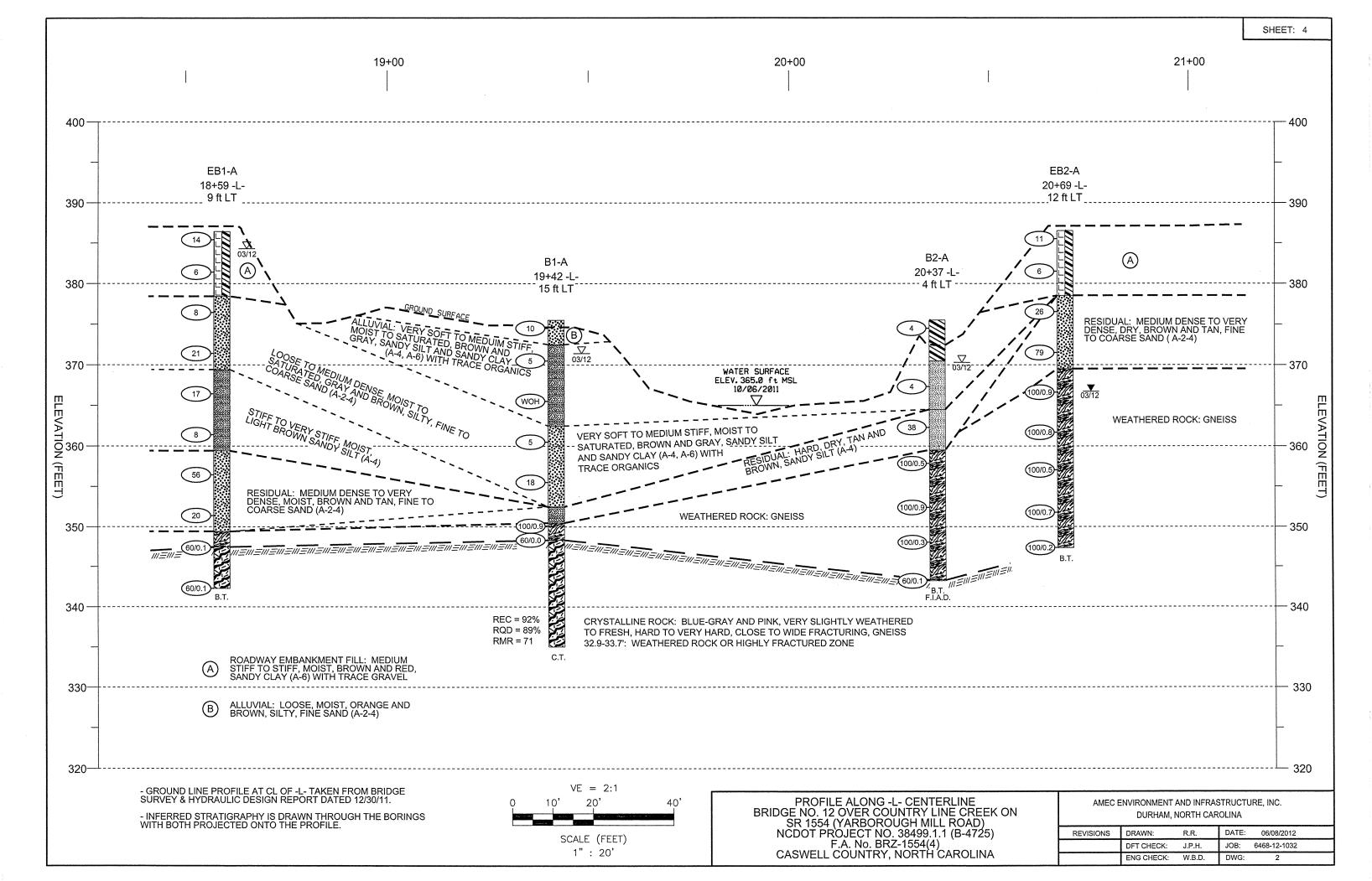
DATE

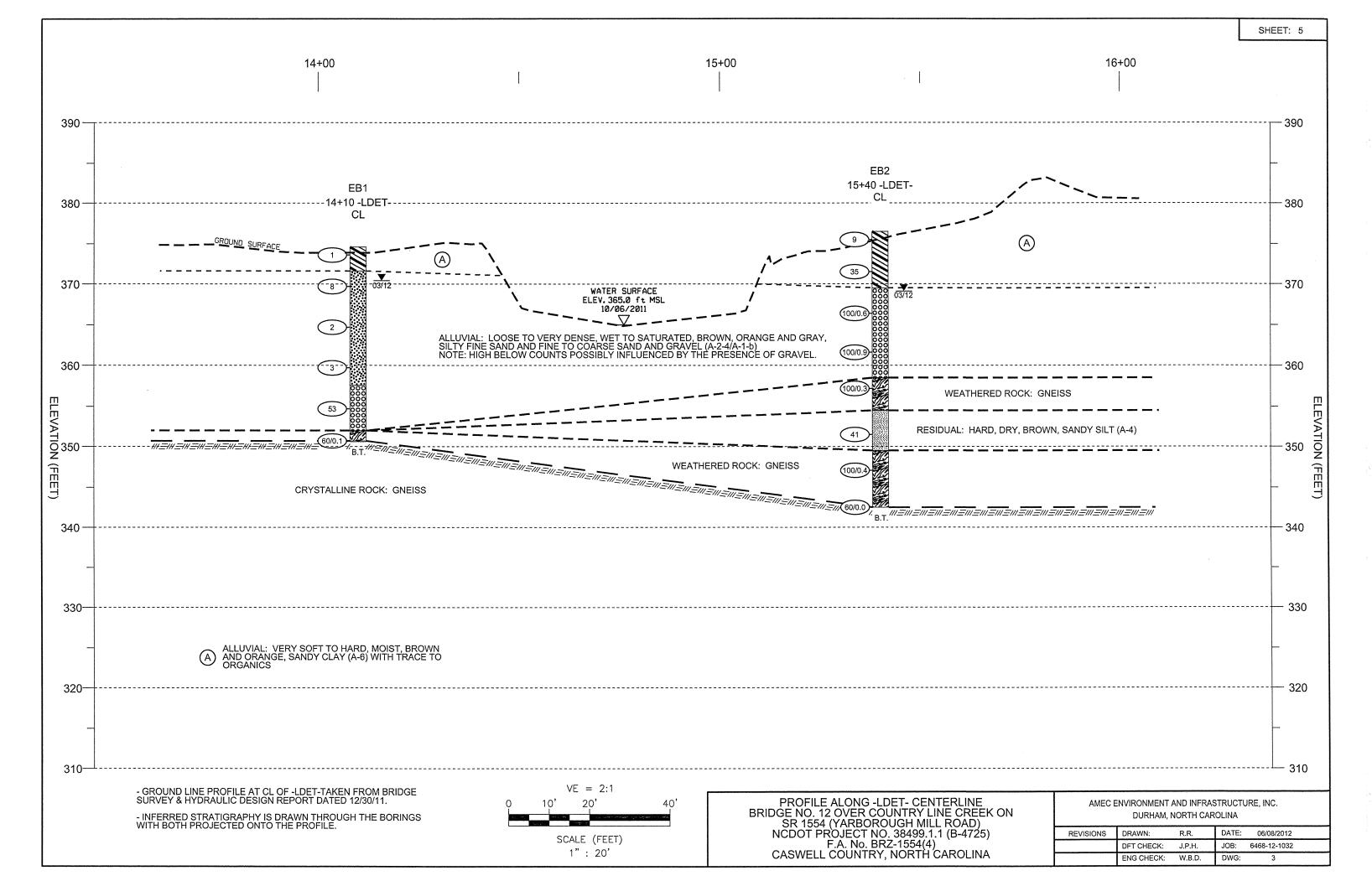
JUNE 2012

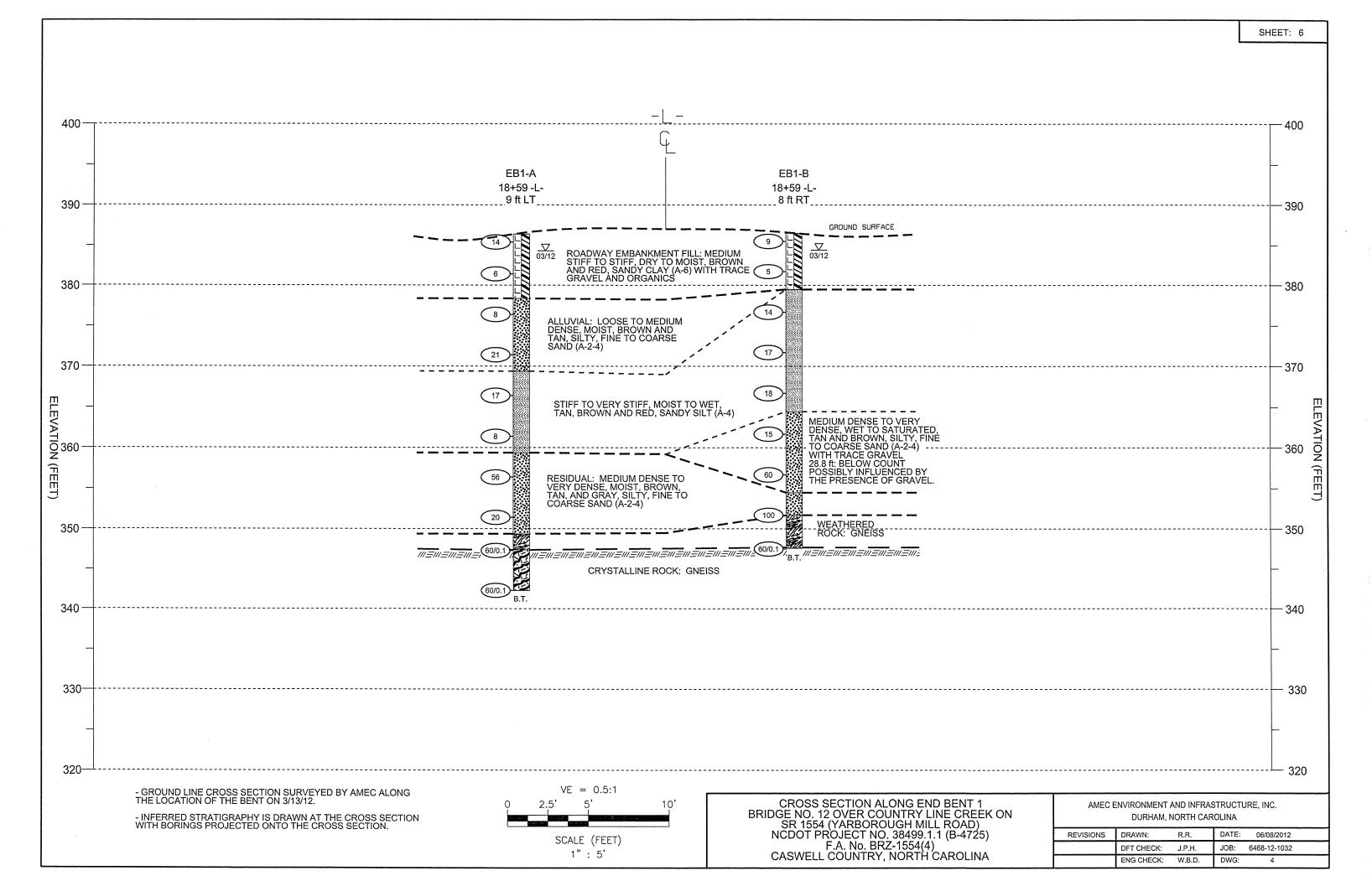
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

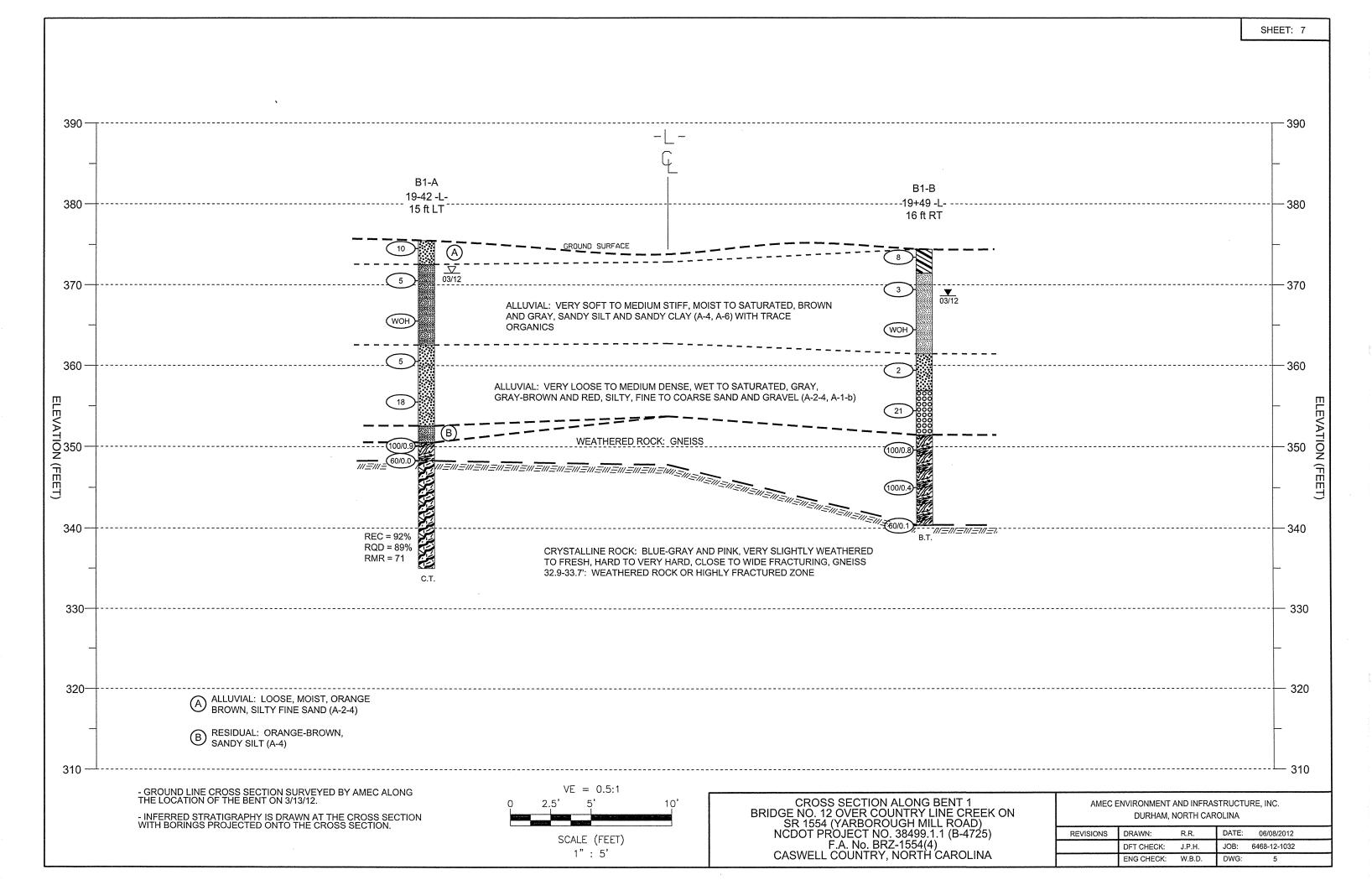
DIVISION OF HIGHWAYS

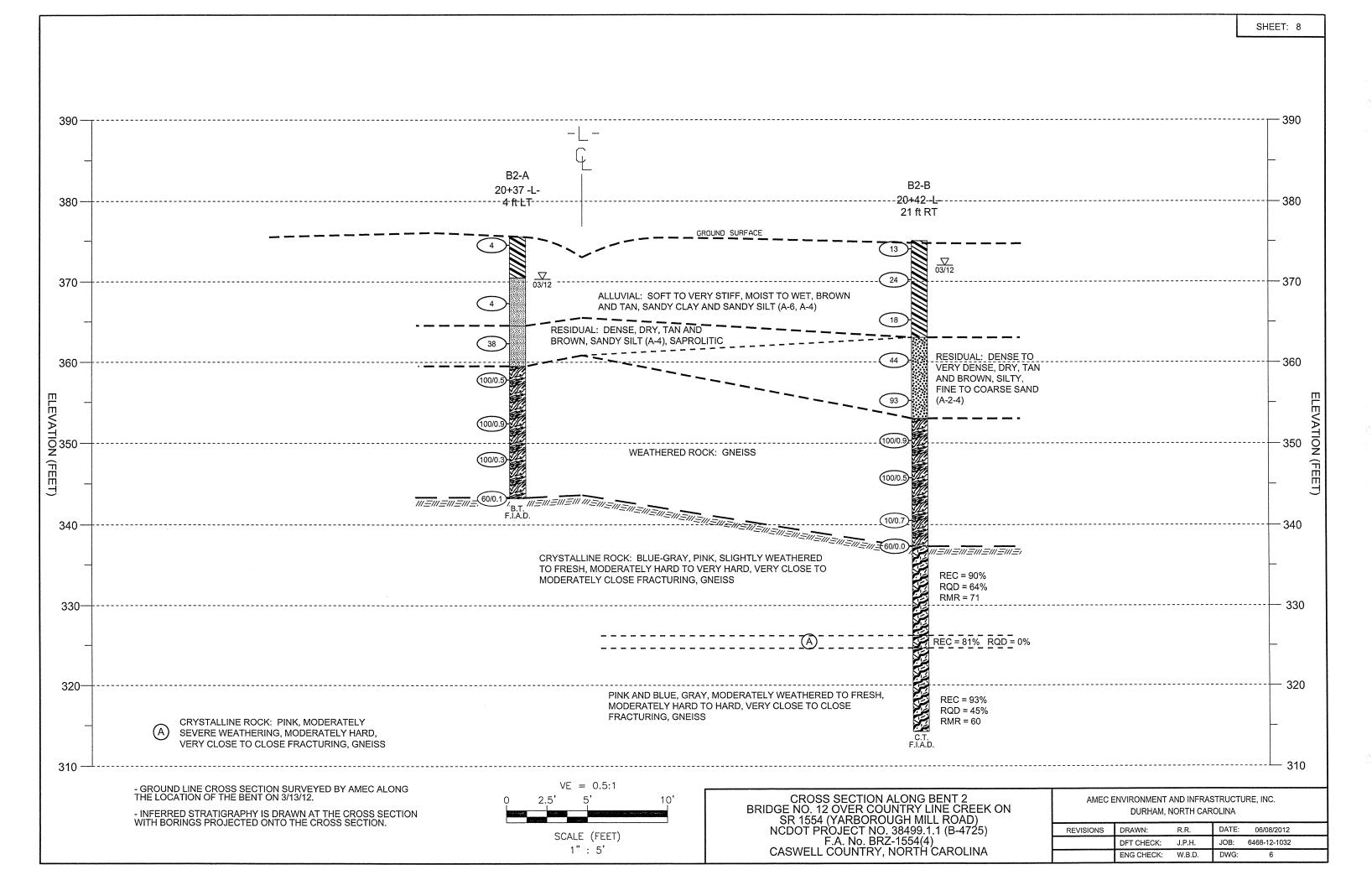

GEOTECHNICAL ENGINEERING UNIT

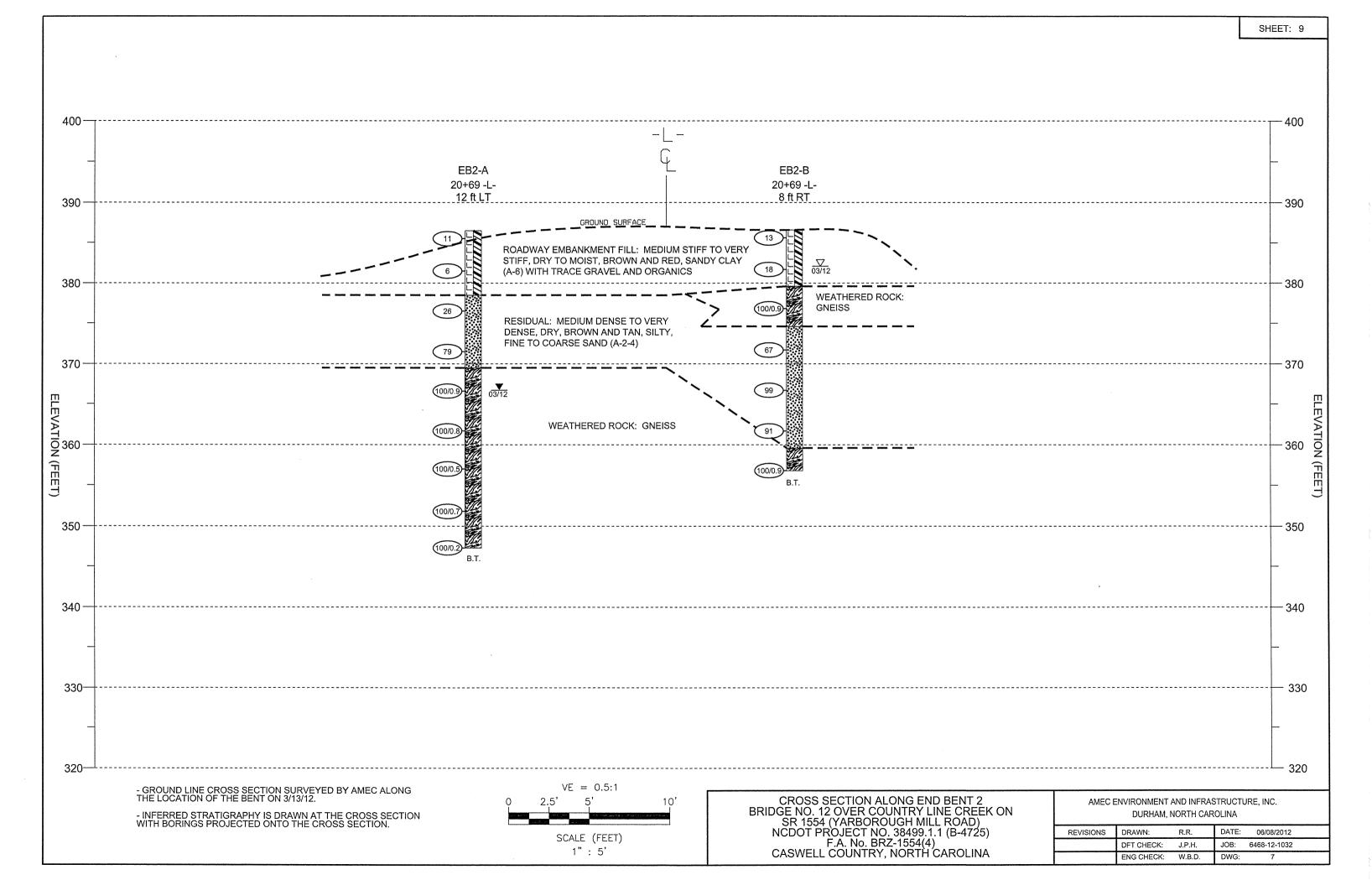

SUBSURFACE INVESTIGATION


	SOIL AND ROCK LEGEND, TERM	IS, SYMBOLS, AND ABBREVIATIONS	
SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED TO BE THE UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORM - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE, (ALSO	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT IF TESTED, WOULD YIELD SPT REFUSAL, AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL.	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER.
THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER, AND YIELD LESS THAN 180 BLOWS PER FOOT ACCORDING TO STANDARD PENETRATION TEST (AASHTO 1206, ASTM D-1586). SOIL	POORLY GRADED) GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLES OF TWO OR MORE SIZES.	SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER COUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE	AQUIFER - A WATER BEARING FORMATION OR STRATA.
CLASSIFICATION IS BASED ON THE AASHTO SYSTEM. BASIC DESCRIPTIONS GENERALLY SHALL INCLUDE: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH	ANGULARITY OF GRAINS	OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS:	ARENACEDUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.
AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. EXAMPLE: VERY STIFF, GRAY, SUTY CLA, MOST WITH INTERBEDDED FINE SAMD LIVERS, HIGHLY PLASTIC, A-7-6	THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBROUNDED, OR ROUNDED.	WEATHERED WINDLE STILLED BY TOLLOWS!	ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, AS SHALE, SLATE, ETC.
SOIL LEGEND AND AASHTO CLASSIFICATION	MINERALOGICAL COMPOSITION	ROCK (WR) BLOWS PER FOOT IF TESTED.	ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE
GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS OPERANC MATERIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS	CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE,	GROUND SURFACE.
LLASS. (\(\sigma\) 35% PASSING "200) (> 35% PASSING "200)	WHENEVER THEY ARE CONSIDERED OF SIGNIFICANCE.	CNEISS, CABBRO, SCHIST, ETC.	CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.
CROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-a A-1-b A-2-4 A-2-5 A-2-7 A-1-a A-1-b A-2-4 A-2-6 A-2-7 A-3 A-6, A-7	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LIQUID LIMIT LESS THAN 31	ROCK (NCR) SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK TYPE	COLLUYIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL 000000000000000000000000000000000000	MODERATELY COMPRESSIBLE LIQUID LIMIT EDUAL TO 31-50 HIGHLY COMPRESSIBLE LIQUID LIMIT GREATER THAN 50	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL
Z PASSING STIT.	PERCENTAGE OF MATERIAL	(CP) SHELL BEDS, ETC.	LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT
# 40 30 MX 50 MX 51 MN GRANULAR CLAY PEAT	ORGANIC MATERIAL GRANULAR SILT - CLAY SOILS SOILS OTHER MATERIAL	WEATHERING	ROCKS OR CUTS MASSIVE ROCK.
= 200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN 36 MN	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10%	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER HAMMER IF CRYSTALLINE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL.
LIQUID LIMIT	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35%	VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,	DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF
GROUP INDEX 8 8 8 4 4 MX 8 MX 12 MX 16 MX MO MX MODERATE ORGANIC	HIGHLY ORGANIC >10% >20% HIGHLY 35% AND ABOVE	(V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
AMOUNTS OF SOILS	GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.
ORAVEL AND SAND SAND SAND SAND SOILS SOILS MATTER	STATIC WATER LEVEL AFTER 24 HOURS	(SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.	FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.
GEN. RATING FAIR TO	7704	MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS, IN (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS	FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM
AS A EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE SUBGRADE	PERSONAL SOLUTION AND SOLUTION STATES	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED	PARENT MATERIAL. FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY
PI OF A-7-5 SUBGROUP IS ≤ LL - 30 : PI OF A-7-6 SUBGROUP IS > LL - 30	SPRING OR SEEP	WITH FRESH ROCK. MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL	THE STREAM.
CONSISTENCY OR DENSENESS RANGE OF STANDARD RANGE OF UNCONFINED	MISCELLANEOUS SYMBOLS	SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK,	FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD.
PRIMARY SOIL TYPE CONSISTENCY PENETRATION RESISTENCE COMPRESSIVE STRENGTH	ROADWAY EMBANKMENT (RE) WITH SOIL DESCRIPTION OP DMT TEST BORING W/ CORE	IF TESTED, WOULD YIELD SPT REFUSAL	JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
WERY LONGE	1 4	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT REDUCED ISEV,) IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KADLINIZED TO SOME	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO
GRANULAR LOOSE 4 TO 10	I så	EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN.	ITS LATERAL EXTENT.
(NON-COHESIVE) DENSE 30 TO 50	ARTIFICIAL FILL (AF) OTHER — CORE BORING RED— SPT REFUSAL THAN ROADWAY EMBANKMENT	IF TESTED, YIELDS SPT N VALUES > 180 BPF VERY SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT	LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN DNE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN
UEOV COET 10	INFERRED SOIL BOUNDARY MONITORING WELL	(V SEV.) THE MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK	SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
GENERALLY SOFT 2 TO 4 8.25 TO 8.59	TITETTE INFERRED ROCK LINE A PIEZOMETER	REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE SUCH THAT ONLY MINOR VESTIGES OF THE DRIGINAL ROCK FABRIC REMAIN. IF TESTED, YIELDS SPT N VALUES < 100 BPF	<u>PERCHED WATER</u> - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM.
SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2	INSTALLATION	COMPLETE ROCK REDUCED TO SOIL, ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.
(COHESIVE)	INSTALLATION	SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.	ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND
TEXTURE OR GRAIN SIZE	25/025 DIP & DIP DIRECTION OF ROCK STRUCTURES CONE PENETROMETER TEST	ROCK HARDNESS	EXPRESSED AS A PERCENTAGE.
U.S. STD. SIEVE SIZE 4 10 40 60 200 270	SOUNDING ROD	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK, BREAKING OF HAND SPECIMENS REQUIRES	SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK.
OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053		SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED	SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND
BOULDER COBBLE GRAVEL COARSE FINE SILT CLAY	ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST	HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN.	RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS.
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.)	BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED	MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD FYCAVATER BY HARD RIOW OF A CEOLOGIST'S PICK HAND SPECIMENS CAN BE DETACHED	SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR
GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3	CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7 - DRY UNIT WEIGHT	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS.	SLIP PLANE.
SOIL MOISTURE - CORRELATION OF TERMS	CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS	MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE	STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS IN OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH
SOU MOISTURE SCALE FIELD MOISTURE	DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK	POINT OF A GEOLOGIST'S PICK.	A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
(ATTERBERG LIMITS) DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION	e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL. THIN	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH
- SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE	FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL	PIECES CAN BE BROKEN BY FINGER PRESSURE.	OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY
LL_ LIOUID LIMIT	FRAGS FRAGMENTS W - MOISTURE CONTENT CBR - CALIFORNIA BEARING	VERY CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE, CAN BE SCRATCHED READILY BY	TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC SEMISOLID; REQUIRES DRYING TO	HI HIGHLY V - VERY RATIO	FINGERNAIL.	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.
(PI) PL PLASTIC LIMIT ATTAIN OPTIMUM MOISTURE	EQUIPMENT USED ON SUBJECT PROJECT	FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS	
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: X AUTOMATIC MANUAL	VERY WIDE MORE THAN 10 FFFT VERY THICKLY BEDDED > 4 FEET	BENCH MARK: BL-6 N. 999423 E. 1939342
SL SHRINKAGE LIMIT	MOBILE B- LAY BITS	MIDE 3 10 10 FEET THINLY BEDDED 0.16 - 1.5 FEET	ELEVATION: 386.05 FT.
- DRY - (D) REQUIRES ADDITIONAL WATER TO	6 CONTINUOUS FLIGHT AUGER CORE SIZE:	CLOSE 0.16 TO 1 FEET VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET	NOTES:
ATTAIN OPTIMUM MUISTORE	- B	THINLY LAMINATED < 0.008 FEET	
PLASTICITY PLASTICITY INDEX (PI) DRY STRENGTH	- CME-45C HARD FACED FINGER BITS X -N O	INDURATION FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF THE MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.	F.I.A.D. FILLED IMMEDIATELY AFTER DRILLING
PLASTICITY INDEX (PI) DRY STRENGTH NONPLASTIC 0-5 VERY LOW	X CME-55 LC TUNG,-CARBIDE INSERTS	DUDDING WITH EINEED FORCE MINIFORMS COATHS	CT CORING TERMINATED
LOW PLASTICITY 6-15 SLIGHT MED. PLASTICITY 16-25 MEDIUM	X CASING W/ ADVANCER HAND TOOLS:	FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.	
HIGH PLASTICITY 26 OR MORE HIGH	PORTABLE HOIST X TRICONE 27/8 STEEL TEETH POST HOLE DIGGER	MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR	TRICONE TUNGCARB. HAND AUGER	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE;	
DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY).	X CORE BIT SOUNDING ROD VANE SHEAR TEST	DIFFICULT TO BREAK WITH HAMMER.	
MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	U U Trail StigRA [ES]	EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	


PROJECT REFERENCE NO. 38499.I.I


SHEET NO.

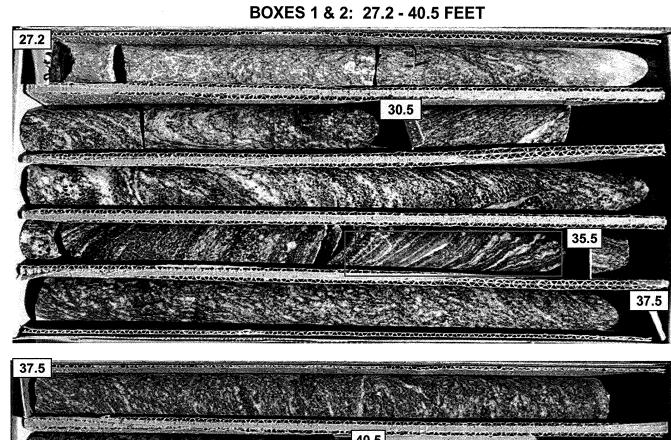


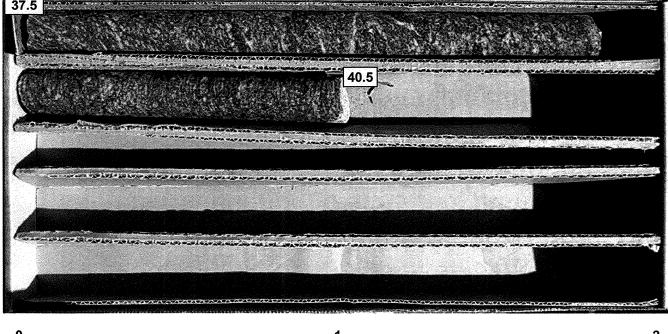


VBS 38499	.1.1				TIP	B-47	25		C	TNUC	Y C	ASWE	LL				GEO	LOGIST	Howard	i, J.			WB	S 38	3499.1	.1			TIP	B-472	25		COUN	YTY (CASWE	LL			GEO	LOGIS	T Howa	ırd, J.	
ITE DESCR	IPTIC	N B	ridge	No. 1	2 Ov	er Cou	ntry L	ine Cı	eek o	on SF	1554	1 (Yarl	oroug	gh Mil	l Roa	id)					GROU	ND WTR (ft	SIT	E DE	SCRIP.	TION	Bridge	e No.					ek on S		54 (Yarb		Mill F	Road)					GROUND W
ORING NO.	EB	1-A			ST	ATION	18+	59			OFF	SET	9 ft L	.T			ALIG	NMENT	-L-		0 HR.	2.7	ВО	RING	NO.	EB1-B			ST	ATION	18+5	9		OF	FFSET	8 ft RT			ALIG	NMEN	T -L-	****	0 HR.
OLLAR ELE	V . 3	386.4	ft		то	TAL DE	PTH	44.1	ft		NOI	RTHIN	G 99	99,450	0		EAST	TING 1,9	939,126		24 HR.	Caved 12.	CO	LLAR	ELEV	. 386	.5 ft		TO	TAL DE	PTH	38.9 f	t	NC	ORTHING	G 999,	433		EAST	TING	1,939,12	5	24 HR. Cave
RILL RIG/HAM	MER	EFF./C	ATE	MAC	1145	CME-55I	.C 88°	% 03/0	1/2011	1			DRI	LL ME	THOD) Mu	d Rotary	/		HAMI	MER TYPE	Automatic	DRI	LL RIG	HAMN	ER EFF	./DATE	E MA	C1145	CME-55LG	C 88%	03/01/	2011			DRILL	METH	HOD N	/lud Rotary	у		HAN	MER TYPE Auto
RILLER W	hite,	D.			ST	ART DA	TE	03/06	/12		COI	MP. D	ATE.	03/06	3/12		SURF	FACE WA	TER DE	PTH N	I/A		DRI		W hi	te, D.			ST	ART DA	TE C	3/06/1	12	CC	OMP. DA	TE 03	/06/1	2	SURI	FACE	WATER D	DEPTH	N/A
EV DRIVE ELEV (ft)	DEPT (ft)	' '	LOW (0	2 <u>5</u>	BLOW	S PER 50	F00	- 75	100		MP.	/	L O G	ELEV. (f		IL AND R	OCK DES	CRIPTION	N DEPTH (ELE (ft)	V DR EL			BLOW 0.5ft			0	В 25		PER FO 50	OT 7 <u>5</u>	100	SAMF NO.	1/	IOI G			SOIL AND	ROCK DE	SCRIPTION
															WICH		<u> </u>					<i>DEI</i> 1111																					
90	-					-										E	-						390		 														<u> </u>				
386.4 -	0.0	5	8	3	6		14							+	∇		386.4		ROADWA		KMENT	0	385		6.5	0.0	4	5	4	· j .	: [:		T				+	7 8	- 386.5	Bro	ROADW	OUND SUF	
382.4	4.0	1 3	1		_	:/:									D			Brown,	rea, sand	gravel	A-6), with	race		_38	2.7	3.8 V	мон	2	3	1				- 1	 		N N	TE	-	ы		nics, trace	
80 _	- -					∮ 6, .			. .	• •	<u> </u>				M		378 4					8	380		‡					₹° -!	: :		• • •		 		"		379.5			ALLUVIA	
377.4 -	9.0	2	3	3	5	-1- · -48 ·				:::		· · · · · · · · · · · · · · · · · · ·			м			Brown, ta	A n, silty, fir	LLUVIAL ne to coa	se SAND	————— (A-2-4)	375		7.7 +	8.8	2	6	8	· · ·	4	: : :		-			N	<i>,</i>	- -	Tan			andy SILT (A-4)
372.4	- - - 14.0					::';				::		: : :				#	•								2.7	13.8	4	7	10	1	: :	: : :	1:::						-				
<u>'0</u>	-	5	9	}	12		21		: :	::		• • •			М		369.4					17	370)	‡		4	1	10		17	• • •					N	v	_				
367.4	19.0	4	7	,	10		17	· · ·		: :					м	E		Li	ght browr	n, sandy \$	SILT (A-4)				7.7 I	18.8	4	8	10		18						N	1					
362.4	- - - 24 0					: //:		· · ·		• •			-			F	-						365	1	2.7	23.8				:: [; : :		1	1					<u>364.5</u>	— — Ta		silty, fine to	coarse SAND
0	-	2	5	5	3	. ∮ 8 .	:	: : :		• •	: :	: : :			М	E	359.4					27	360)	‡		3		8	•1	15	:::					^	۷			·		
357.4	29.0	30	25	9	27		-		· 1	56					м			Brown, ta	R in, silty, fi	ESIDUAL ne to coa	rse SAND	(A-2-4)			57.7 ‡	28.8	27	37	23				6	0 -			Sa	at.		28.8ft	: Blow cou	int possibly sence of g	r influenced by the ravel
352.4	- 240						:	· · ·								E	-						355		<u> </u>	33.8							+++	~					354.5	— — — Gr		RESIDUA	L SAND (A-2-4)
50	34.U - -	18	9		11	:::	4 20		: :	::	:	: : :			м	+	-349.4		37.0f	ft: Bit cha	ıtter	37	350				7	8	92	: : :	: :	: : :	::		100/1.0	41			351.7		WEA	ATHERED Gray, Gne	ROCK
347.4	- 39.0	60/0	.1				1		- -	• •	. .	- 60/0.1					347.4			HERED F Gneiss ALLINE		39	0	_34	17.7 +		50/0.1			: : :	: :	· · ·	: :		60/0.1	\downarrow	-		347.7 347.6	π	CRY	STALLINE	ROCK
15	- -						-	· · ·	: :	• •	+-	• • •					-		CKISI	Gneiss	NOON				‡														<u>-</u> -	Pene	tration Tes	st Refusal:	ith Standard at Elevation 347.6
342.4	44.0	60/0	1.1		1				<u> </u>			60/0.1	•	F			342.3	Penetrat	tion Test I	Refusal a	th Standar t Elevation	44 d 342.3	1		<u> </u>														E		ft In Crys	stalline Ro	ck : Gneiss
-	- - -															E		ft	: In Crysta	alline Roc	k : Gneiss				+														-				
-	- - -															-	-								‡														<u>-</u>				
-	-															F									‡														Ē				
	-															E	-								Ī														<u> </u>				
	-															-	-								‡														<u> -</u> -				
-	<u>-</u>															 - -									‡														<u> </u>				
	-																-								‡														E				
																-	-								‡														E				
-																-									‡														F				

NCDOT GEOTECHNICAL ENGINEERING UNIT

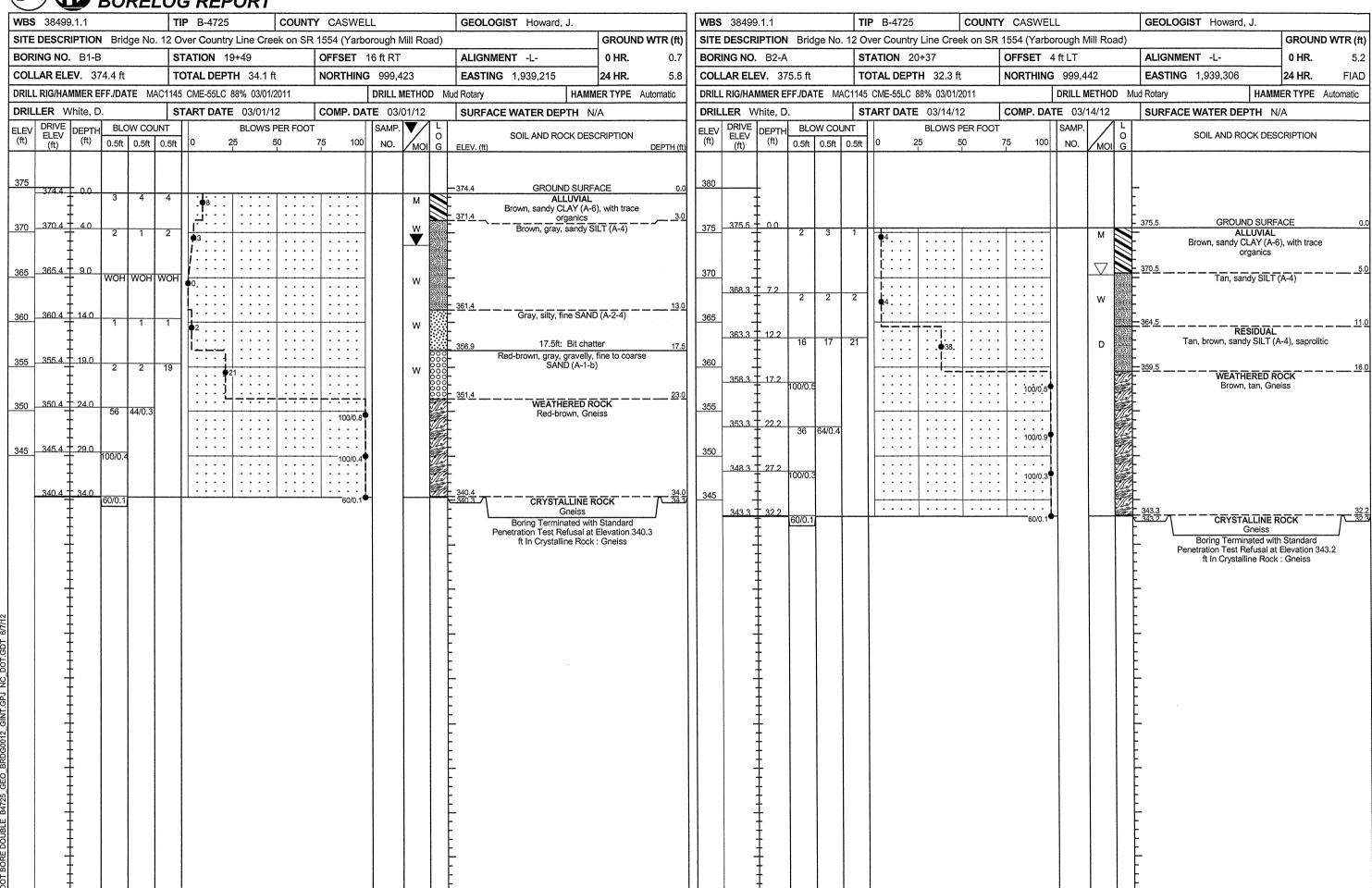
WBS	38499	9.1.1			T	IP B-4725	COUNT	CASWEL	.L			GEOLOGIST Howard,	J.	
SITE	DESCR	IPTION	l Brid	ge No	. 12 C	ver Country Line	Creek on SR	1554 (Yarbo	rough N	∕III Ro	ad)		GROUN	ID WTR (ft
BOR	ING NO	B1-A	`		S	TATION 19+42		OFFSET 1	5 ft LT			ALIGNMENT -L-	0 HR.	4.1
COLI	LAR ELI	EV. 37	75.5 ft		T	OTAL DEPTH 40).5 ft	NORTHING	999,4	54		EASTING 1,939,209	24 HR.	Caved 7.
DRILL	RIG/HAI	MMER E	FF./DA	TE M	AC1145	5 CME-55LC 88% 0	3/01/2011		DRILL I	METHO	D N	lud Rotary	HAMMER TYPE	Automatic
DRIL	LER V	/hite, D).		S	TART DATE 03/	02/12	COMP. DA				SURFACE WATER DEP		
ELEV	DRIVE	DEPTH	T	ow co			WS PER FOOT		SAMP.	V /	L			
(ft)	ELEV (ft)	(ft)		0.5ft	0.5ft	0 25	50	75 100	NO.	MOI	O G	SOIL AND ROO ELEV. (ft)	CK DESCRIPTION	DEPTH (
380	-													
375	375.5 -	0.0						-				- - 375.5 GROUNE	SURFACE	0
313	-	†	2	5	5	. •10				М		ALL Orange, brown, sil	.UVIAL tv. fine SAND (A-2-	-4)
	371.5 °	4.0				;-! : : : :				∇		- 372.5	sandy SILT (A-4)	
370	-		3	3	2	•5· · · ·	• • • • • •			w			sundy OILT (71 4)	
	-	<u> </u>				/:::: ::						-		
	366.5	9.0	WOH	WOH	WOH	V : : : : : :		: : : :				.		
365	-	<u> </u>	"	"	""	0	 	+		Sat.				
	361.5 °	£				-:::::::::::::::::::::::::::::::::::::						362.5 Gray, gray-brown, sil		13
360	301.5	14.0	3	2	3	45				Sat.		Gray, gray-brown, si	ity, fine to coarse s i-2-4)	AND
	-	F												
	356.5	19.0			<u> </u>	::\\: ::							•	
355	_	ļ.	2	7	11	18		 		Sat.		19.0ft: 1	Little gravel	
	-	 										352.5		23
350	351.5	24.0	6	12	88/0.4		~	1::::				- RES	SIDUAL , sandy SILT (A-4)	25
330	348.3 -	27.2						100/0.9				WEATHE	RED ROCK	27
			60/0.0	1				- 60/0.0				CRYSTAL	rown, Gneiss LINE ROCK	
345	-	<u> </u>					• • • • • •	<u> </u>				L Blue-gray	, pink Gneiss	
	-	<u> </u>						: : : :				_		
	-	ţ				:::: ::						-		
340	-	<u> </u>				 		 	RS-1	1		-		
	-	Ł										_		
335		<u> </u>										335.0		4
	-	ŀ										Boring Terminated	at Elevation 335.0 Rock : Gneiss	
	-	F										Note: 0.2' of rock co		
	-	ļ.										not recovered an	d left in the boring	
		‡										term	nination.	
		‡										- -		
	-	‡										-		
		t										_		
		Ė										<u>-</u>		
		Ł										•		
		ŀ										-		
	_	F										F		
		F										<u>-</u>		
		F										F		
	-	‡										-		
		‡										 		
	-	‡										<u> </u>		
		ţ										<u> </u>		
		+		1							1	 		


NCDOT GEOTECHNICAL ENGINEERING UNIT


SHEET 11 OF 19

ORING NO. B1-A STATION 19+42 OFFSET 15 ft LT ALIGNMENT -L- 0 F OLLAR ELEV. 375.5 ft TOTAL DEPTH 40.5 ft NORTHING 999,454 EASTING 1,939,209 24 F	OUND MED
OLLAR ELEV. 375.5 ft TOTAL DEPTH 40.5 ft NORTHING 999,454 EASTING 1,939,209 24 Ft RILLE RIG/HAMMER EFF/DATE MAC1145 CME-55LC 88% 03/01/2011 DRILL METHOD Mud Rotary HAMMER TY RILLER White, D. START DATE 03/02/12 COMP. DATE 03/02/12 SURFACE WATER DEPTH N/A CEV RUN (ft) TOTAL RUN 13.3 ft TOTAL RUN 13.3 ft EV (ft) RUN (ft) RUN (ft) RUN (ft) RUN (ft) RUN (ft) RUN (ft) DESCRIPTION AND REMARKS 8.3 348.3 27.2 3.3 N=60/0.0 (ft) SAMP. (ft) REC. (ft) ROD (ft) DESCRIPTION AND REMARKS 45 345.0 30.5 2.35 (ft) 3.3 (ft) SAMP. (ft) 92% (ft) 348.3 (ft) Blue-gray and pink, very slightly weathered to fresh, hard to very have stated to fresh, hard t	OUND WTR
RILLE RIGHAMMER EFF./DATE MAC1145 CME-55LC 88% 03/01/2011 DRILL METHOD Mud Rotary HAMMER TO RILLER White, D. START DATE 03/02/12 COMP. DATE 03/02/12 SURFACE WATER DEPTH N/A ORE SIZE NQ TOTAL RUN 13.3 ft EV RUN (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	HR. 4
RILLER White, D. START DATE 03/02/12 COMP. DATE 03/02/12 SURFACE WATER DEPTH N/A TOTAL RUN 13.3 ft EV RUN (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)	IR. Caved
No. STRATA CRYSTALLINE ROCK Factor Fac	YPE Automati
RUN CHEV C	
ELEV C(ft)	
348.3 72.2 3.3 N=60/0.0 (3.3) (3.0) 100% 91% 2:45 2:45 2:36 2:36 3:30 3:15 3:30 3:15 3:30 3:50 3:50 3:50 3:50 3:50 3:50 3:5	DEPT
45 345.0 7 30.5 5.0 0.45/0.3 (4.2) (4.1) 84% 82% 3 joints at 10° 2 joints at 20° 1 joint at 40° 32.9 - 33.7ft: Loss of circulation; weathered rock and/or highly from the control of the c	
3:30 3:30 3:30 3:30 3:30 3:30 3:30 3:30	nard, close
3.30 (4.8) (fractured
2:45 3:00 3:00 3:00 Rock Type=E 35 335.0 40.5 Boring Terminated at Elevation 335.0 ft In Crystalline Rock : C	naotai oa
35 335.0 40.5 3:00 Boring Terminated at Elevation 335.0 ft In Crystalline Rock : 0 Note: 0.2' of rock cored from 40.3-40.5' was not recovered and 1	
Note: 0.2' of rock cored from 40.3-40.5' was not recovered and l	Gneiss
+	
‡	
+	

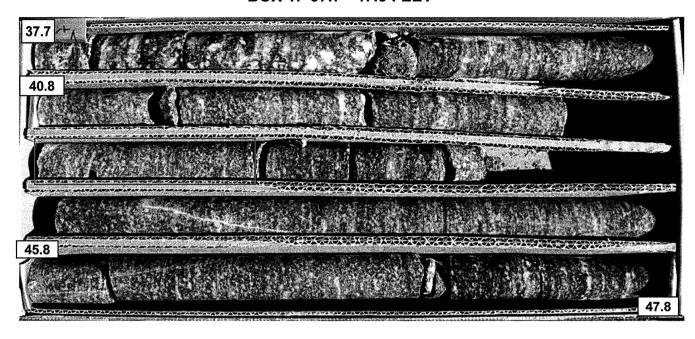
CORE PHOTOGRAPHS


B1-ABOXES 1 & 2: 27 2 - 40 5 FFFT

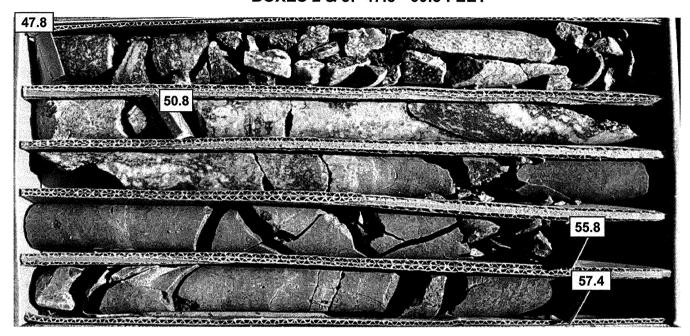
FEET

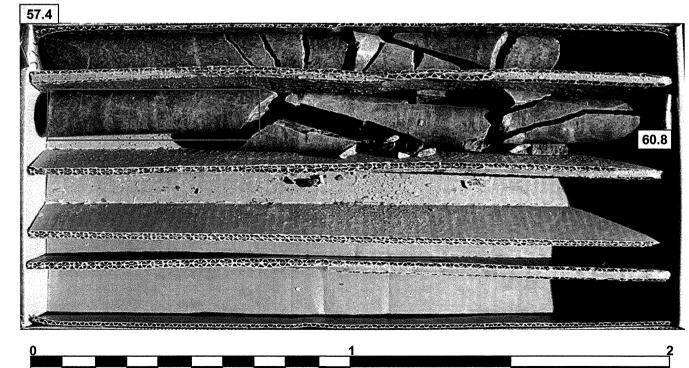
NCDOT GEOTECHNICAL ENGINEERING UNIT

WBS	38499	.1.1			TI	P B-4725		COUNT	Y CASWE	LL		GE	OLOGI	ST Howard,	, J.		
SITE	DESCR	IPTION	Brid	ge No	. 12 O	ver Country L	ine Cree	k on SR	1554 (Yarb	orough N	/lill Road	d)				GROUN	D WTR (f
BORI	NG NO.	B2-B			S1	ration 20+	42		OFFSET	21 ft RT		AL	IGNME	NT -L-		0 HR.	3.
COLL	AR ELE	EV. 37	5.0 ft		TC	OTAL DEPTH	60.8 ft		NORTHIN	999,4	16	EA	STING	1,939,308		24 HR.	FIAI
DRILL	.RIG/HAI	MMER E	FF./DA	TE M	AC1145	CME-55LC 88	% 03/01/2	2011		DRILL N	METHOD	Mud Rot	ary		HAMME	R TYPE	Automatic
DRIL	LER W	/hite, D			S	TART DATE	03/07/1	2	COMP. DA	TE 03/	07/12	su	RFACE	WATER DE	PTH N/A	4	
ELEV (ft)	DRIVE ELEV (ft)	DEPTH (ft)	BLC 0.5ft	0.5ft	JNT 0.5ft	0 25		PER FOOT	75 100	SAMP. NO.		L O G ELE	/. (ft)	SOIL AND RO	OCK DESC	RIPTION	DEPTH
375	375.0	0.0	WOH	3	10	- ••13•			1		м	375.0		AL	ID SURFAC		
370	371.2 -	3.8	9	12	12	22	· · · · · · · · · · · · · · · · · · ·				∇ M		T.	an, sandy, silty o	CLAY (A-6 rganics	i), with tra	ce
365	366.2	8.8	9	8	10	: : : : ;					M						
000_	361.2	13.8	_	-] .	 	: : : :			S	363.0		RE an, brown, silty	SIDUAL		<u>1</u>
360		•	17	22	22	::::	44				D		•	an, brown, sing	(A-2-4)	arsc 07 (14	5
355	356.2	18.8	35	41	52		· · · · ·		93		D	353.0	<u> </u>				2:
350	351.2	23.8	43	57/0.4					100/0.9	•					IERED RO vn, Gniess		
345	346.2	28.8	100/0.5					: : : :	100/0.5								
340	341.2	33.8	50	50/0.2					100/0.7								
225	337.3	37.7 -	60/0.0						60/0.0		Z WISSER	337.	3		ALLINE RO		
335	-	-								RS-2				Dide-gre	iy, pilik Gili	Ciss	
330	_																
325		E										326. 324.		Pir	nk, Gneiss		
320	-		***************************************										***************************************	Pink and I	blue-gray G	Sneiss	***************************************
	-																
315	_	<u> </u>								RS-3	1	314.		oring Terminate Crystallin	ed at Elevat ne Rock : G	tion 314.2 Ineiss	ft In
	-	 - -															
	- - -	+										<u> </u>					
	-	‡															

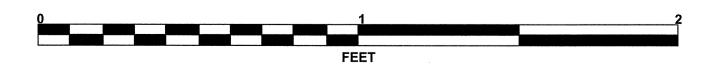

NCDOT GEOTECHNICAL ENGINEERING UNIT

SHEET 14 OF 19

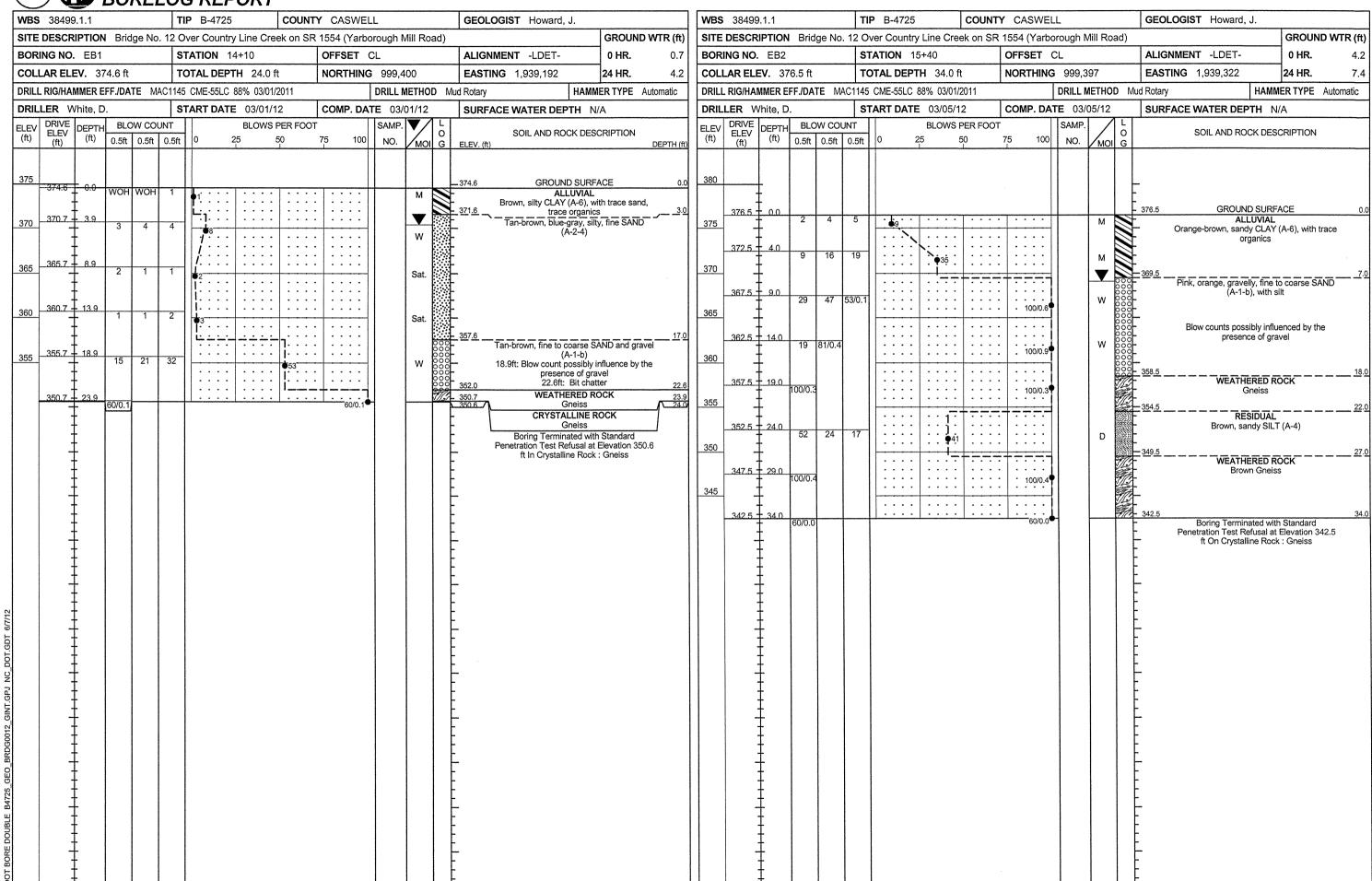

WBS	38499			RE B		B-472				Y C	ASWELL			GEOLOGIST	Howard,	J.		
			Brid	ge No. 1	<u> </u>							ough Mill Roa	ıd)				GROUN	D WTR (ft
	NG NO.			<u> </u>	·		20+42				FSET 2		·	ALIGNMENT	-L-		0 HR.	3.0
COLL	AR ELI	EV . 37	5.0 ft		 		PTH 60.	8 ft		NO	RTHING	999,416		EASTING 1,9	939,308		24 HR.	FIAD
				TE MAC	<u></u>					<u> </u>		DRILL METHOD) Mu	ıd Rotary		HAMN	IER TYPE	Automatic
	LER V						TE 03/0			СО	MP. DAT	E 03/07/12		SURFACE WA	TER DEF	TH N	/A	
	E SIZE				TOTA	AL RUN	V 23.1 f	t						<u> </u>				
ELEV	RUN	DEPTH	RIIN	DRILL	RI	JN RQD	SAMP.	STR		L								
(ft)	ELEV (ft)	(ft)	(ft)	RATE (Min/ft)	REC. (ft) %	(f) (f)	NO.	REC. (ft) %	RQD (ft) %	O G	ELEV. (ft)			DESCRIPTION ANI	REMARK	S		DEPTH (
337.3														Begin Coring (@ 37.7 ft			
335	337.3	37.7	3.1	N=60/0.0 2:45 3:15 5:00/1.1	(2.0) 65%	(1.3) 42%		(10.0) 90%	(7.1) 64%		337.3	Blue-grav. pin	k. slial	CRYSTALLIN htly weathered to fr		ately ha	rd to verv ha	37. rd.
333	334.2	40.8	5.0	3:15 5:00/1.1	(4.9)	(4.2)		00,0	0 / / 0		_			ose to moderately of 16 joints at	ose fracturi			,
		‡	3.0	3:45 3:45 3:45	98%	84%	RS-2				-		_	2 joints a	t 30°	25-7		
330	329.2	45.8		3:45 4:00							_		7	R1=7, R2=17, R3=2 RMR=	71	10- 1		
	U20.2	40.6	5.0	3:45	(4.4)	(1.6)					-			Rock Typ	oe=E			
005		‡		2:45 8:00	88%	32%		(1.2)	(0.0)		326.2	Dink moderat	oh co	evere weathering, m	oderately b	ard yea	v close to ck	48
325	324.2	50.8	<u> </u>	4:30 2:45	1(17)	(0.5)		(1.3) 81%	(0.0) 0%		324.6			fracturing,	Gneiss			<u> </u>
		ł	5.0	3:00 3:00	(4.7) 94%	(2.5) 50%		(9.7) 93%	(4.7) 45%		E	Pink and Blue-g	ray, n	noderately weather ery close to close fr	ed to fresh, acturing, G	modera neiss	tely hard to l	nard,
320		<u> </u>		3:00 3:00							Ł			2 joints a 3 joints a				
	319.2	55.8	5.0	2:30 3:00	(5.0)	(2.2)					E			3 joints a	t 80°			
		Ŧ		3:00 3:15	100%	44%					E		F	R1=15, R2=8, R3=1 RMR=		R5=7		
315	314.2	60.8		3:00 4:00			RS-3	<u> </u>		1	314.2			Rock Ty				60
		<u> </u>									Ŀ	Boring Fer	minate	ed at Elevation 314	.2 π in Grys	talline R	ock : Gneiss	•
		+									Ŀ							
	-	Ŧ									F							
		Ŧ									E							
		Ŧ									F							
		Ŧ									F							
		Ŧ									F							
	•	Ŧ									F							
		Ŧ									F							
		Ŧ									F							
		Ŧ									F							
		‡		1							F							
		‡									F			, .				
		‡									F							
		‡		1							F							
		‡		1							ļ.							
		‡									ţ							
		\pm									-							
		±		İ							E							
		±				1					Ł							
		Ŧ									F							
		Ŧ									F							
		‡	1								F							
		‡									F							
		‡									F							
		‡									F							
ı		‡									ļ.							
		#									Ļ							
		+			1						t							


CORE PHOTOGRAPHS

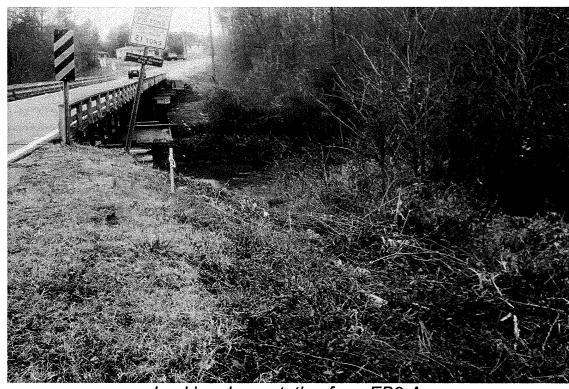
B2-BBOX 1: 37.7 - 47.8 FEET



B2-BBOXES 2 & 3: 47.8 - 60.8 FEET



FEET


WBS 384	499.1.1			TIP	B-4725		COUNT	Y CASW	'ELL			GEOLOGIST Howard	d, J.		WB	S 38	499.1.1			T	IP B-4725		COUNTY	CASWE	LL		GEOL	OGIST Howard,		
SITE DES	CRIPTION	V Bride	je No. 1	12 Ove	r Country	Line Cre	ek on SF	1554 (Ya	rborouç	gh Mill F	Road)			GROUND WTR (ft)	SITI	E DES	CRIPTI	ON E	Bridge N	No. 12 C	ver Country	y Line Cre	ek on SR	1554 (Yarb	orough N	∕IiII Roa	nd)		GROUND WTF	₹ (ft)
BORING N	NO. EB2	-A		STA	TION 20	+69		OFFSET	12 ft	LT		ALIGNMENT -L-		0 HR. 6.4	BOF	RING I	10. E	32-B		S	TATION 2	0+69		OFFSET	8 ft RT		ALIG	NMENT -L-	0 HR.	4.5
COLLAR	ELEV. 3	86.5 ft		тот	AL DEPTI	H 39.2 f	t	NORTHI	NG 99	99,448		EASTING 1,939,336	5	24 HR. 19.8	COL	LLAR	ELEV.	386.6	ft	T	OTAL DEPT	TH 29.8	ft	NORTHIN	G 999,4	28	EAST	ING 1,939,335	24 HR. Caved	17.8
DRILL RIG/	HAMMER E	FF./DAT	E MAC	1145 C	ME-55LC 8	8% 03/01/	2011		DRI	LL METH	OD Mu	ud Rotary	HAMME	R TYPE Automatic	DRIL	LL RIG/	HAMMEI	R EFF./	DATE	MAC1145	CME-55LC	88% 03/01	/2011		DRILL N	METHOD	Mud Rotary		HAMMER TYPE Automa	atic
DRILLER	White, D).		STA	RT DATE	03/06/1	12	COMP. D	ATE	03/06/1	2	SURFACE WATER DE	EPTH N/A	4	DRI	LLER	White	, D.		S	TART DATE	E 03/06/	12	COMP. DA	ATE 03/	06/12	SURF	ACE WATER DEF	PTH N/A	
ELEV DRIV	VE DEPTH	`	N COUN				PER FOO		1 1	MP.	\ L	SOIL AND R	ROCK DESC	RIPTION	ELE/	V DRI	VE DEP	TH_E	BLOW C				PER FOOT		SAMP.		L	SOIL AND RO	CK DESCRIPTION	
(ft) (ft)	(ft)	0.5ft	0.5ft ().5ft () 25	5	50	75 10	00 N	O. M		ELEV. (ft)		DEPTH (f	(ft)	(ft		0.9	5ft 0.5	ft 0.5ft	0 :	25	50	75 100	NO.	МОІ	G			**********
390												_			390	4	\dashv										-			
	‡																‡										F	00010	D 01 IDE 1 0 E	
386 385	5.5 + 0.0	4	5	6	· 1.; ·		 			M			JND SURFA		385	_386	.6 † 0. 1	0 3	3 4	9	13	T	T	T		D	386.6	ROADWAY	D SURFACE EMBANKMENT	0
300	‡				- /		 		-	"		Brown, red, ta			300		‡				1		 	 				Brown, sandy C organics	LAY (A-6), with trace	
_382	2.5 + 4.0	2	3	3	$\mathcal{I}::$:::		1 1	М						_382	$\frac{.7 + 3.9}{1}$	~	5 8	10						$\frac{\nabla}{M}$		· ·	, 0	
380	#				90	• • • •	· · ·			"		- -			380		#					1				101	379.6 374.6			7.
377	+ -5 + 9.0				!÷÷=				:			378.5	RESIDUAL		4	377	.7 + 8.5	9			: : : =			T : : : : :]				ERED ROCK agranite	
	1	3	8	18		26		: : : : :	:	D		Brown, tan, silty, fi		SAND (A-2-4)			Ŧ	2	9 71/0).4	: : : :		1::::	100/0,9	 				agranio	
375	+						\					-			375	+	\pm				l 	 	r	 	 		374.6		SIDUAL	<u>12</u> .
_372	5 14.0	36	30	49	: : : :		1	:] : : : :								372	7 13		8 32	2 35						D		Tan, tan-brown, sil	ty, fine to coarse SAND A-2-4)	
370	<u></u>	"	00	~ [79		D	E	- 260 F		17	370		\pm						• 67					(4	N-2-4)	
207	I								7 3		7/2		HERED RO		1	267	.7 T 18.							1						
	7.5 † 19.0 †	50	50/0.4						. 11	V		I an-brown,	, brown, red,	Gneiss			' Ŧ '°	4	7 52	2 47	::::		1 .	1 : : : : : : : : : : : : : : : : : : :	99	D				
365	Ŧ			1-			 	. 100/0				- -			365	4	Ŧ						 • • • •	/	$\parallel \parallel$					
_362	5 7 24.0															_362	.7 ‡ 23	.9	2 40	2 49	::::			:::/						
360	Ŧ	55	15/0.3					100/0	.8♥						360		‡	3	3 42	2 49	::::		1	1		D				
	‡											-			1 300		‡			į		 		 -	1		359.6 ///		ERED ROCK	<u>27</u> .
_357.	5 + 29.0	100/0.5						100/0	5							_357	7 + 28	.9 5	0 50/0).4		<u> </u>		100/0.9			356.8		tan, Gneiss	29.8
355	‡				• • • •							-					#							100/0.9			L		l at Elevation 356.8 ft In d Rock : Gneiss	
352	5 + 34.0								: []								‡										-			
350	‡	44	6/0.2			: : : :		100/0	7								‡										ļ.			
330	‡											-					‡										F			
347	5 + 39.0	100/0.2			• • • •	• • • •	1	100/0				347.3 Boring Terminate	ed at Flouati	39.	2		‡										<u> </u>			
	#										1		red Rock : G				<u></u>										L			
	‡																‡										<u> </u>			
	‡										1 E	·					±										Ŀ			
	±										1 E	- -					\pm										Ŀ			
	<u> </u>										1 -						Ŧ										E			
	\pm										F	•					Ŧ										F			
	Ŧ										F						Ŧ										F			
	Ŧ										F	•					Ŧ										F			
	Ŧ											-					‡										<u> </u>			
	‡											•					‡													
	‡											•		•			‡										-			
	‡											-					‡													
	‡											•					‡													
	‡										1	=					<u></u>										<u> </u>			
	‡										1 E						ł										Ŀ			
	<u> </u>										F						$\frac{1}{2}$										<u> </u>			
	+										F	- -					Ŧ										ŀ			
	1		ļ								F	•					Ŧ										F			
	Ţ	1										•					‡										F			

SHEET 18	
38449.1.1 (B-4725)	١

			RO	OCK T	EST.	RESULTS	
SAMPLE NO.	OFFSET	STATION	BORING NO.	DEPTH INTERVAL	UNIT WT. lbs/cf	UNCONFINED COMPRESSIVE STRENGTH KSI	ROCK MASS RATING
RS-1	15 LT	19+42	B1-A	34.7-35.50	167.6	8.18	71
RS-2	21 RT	20+42	B2-B	42.40-43.10	169.0	12.87	71
RS-3	21 RT	20+42	B2-B	58.80-59.40	164.5	62.40	60

.

Looking down station from EB2-A

Looking down station from EB2-B

EB1 on -LDET- looking toward existing bridge

EB2 looking down station along -LDET-