M2 R45 C

PROJECT SPECIAL PROVISIONS

ROADWAY

BURNING RESTRICTIONS:

-1-95) M2 R05

Open burning is not permitted on any portion of the right-of-way limits established for this project. Do not burn the clearing, grubbing or demolition debris designated for disposal and generated from the project at locations within the project limits, off the project limits or at any waste or borrow sites in this county. Dispose of the clearing, grubbing and demolition debris by means other than burning, according to state or local rules and regulations.

EMBANKMENTS:

(5-16-06) (Rev 10-19-10) M2 R18

Revise the 2006 Metric Standard Specifications as follows:

Page 2-17, Article 235-3 MATERIALS, amend as follows:

Add the following as the second sentence of the first paragraph:

Do not use material meeting the requirements of AASHTO M145 for soil classification A-2-5 and A-5 with a plasticity index (PI) of less than 8 within 300 mm of the subgrade.

Add the following as the second sentence of the second paragraph:

Aerate and dry material containing moisture content in excess of what is required to achieve embankment stability and specified density.

Page 2-18, Subarticle 235-4(B) Embankment Formation, add the following:

(16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting.

SHOULDER AND FILL SLOPE MATERIAL:

(5-21-02)

Description

Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2006 Metric Standard Specifications except as follows:

Construct the top 150 mm of shoulder and fill slopes with soils capable of supporting vegetation.

Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 50 mm or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer.

Obtain material from within the project limits or approved borrow source.

Compensation

When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of Borrow Excavation or Shoulder Borrow. If there is no pay item for Borrow or Shoulder Excavation in the contract, this work will be considered incidental to Unclassified Excavation. Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for Borrow Excavation or Shoulder Borrow, then the material will be paid for at the contract unit price for Unclassified Excavation. The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for Unclassified Excavation, Borrow Excavation, or Shoulder Borrow, depending on the source of the material.

Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes.

When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*.

When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard for *Borrow Excavation* or *Shoulder Borrow* in accordance with the applicable provisions of Section 230 or Section 560 of the 2006 Metric Standard Specifications.

FINE GRADING SUBGRADE, SHOULDERS AND DITCHES: (7-21-09)

M5 R01

Revise the 2006 Metric Standard Specifications as follows:

Page 5-1, Article 500-1 DESCRIPTION, replace the first sentence with the following:

Perform the work covered by this section including but not limited to preparing, grading, shaping, manipulating moisture content, and compacting either an unstabilized or stabilized roadbed to a condition suitable for placement of base course, pavement, and shoulders.

AGGREGATE BASE COURSE:

12-19-06 M5 R03

Revise the 2006 Metric Standard Specifications as follows:

Page 5-9, Article 520-5 Hauling and Placing Aggregate Base Material, 6th paragraph, replace the first sentence with the following:

Base course that is in place on November 15 shall have been covered with a subsequent layer of pavement structure or with a sand seal. Base course that has been placed between November 16 and March 15 inclusive shall be covered within 7 calendar days with a subsequent layer of pavement structure or with a sand seal.

PREPARATION OF SUBGRADE AND BASE:

(1-16-96)

M5 R05 (Rev.)

On all portions of this project except -Y- lines, prepare the subgrade and base beneath the pavement structure in accordance with the applicable sections of the 2006 Metric Standard Specifications except use an automatically controlled fine grading machine utilizing string lines, laser controls, or other approved methods to produce final subgrade and base surfaces meeting the lines, grades, and cross sections required by the plans or established by the Engineer.

No direct payment will be made for the work required by this provision as it will be considered incidental to other work being paid for by the various items in the contract.

ASPHALT PAVEMENTS - SUPERPAVE:

(7-18-06)(Rev 10-18-11)

M6 R01

Revise the 2006 Metric Standard Specifications as follows:

Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph.

Page 6-10, Subarticle 609-5(C)(2), Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and replace with the following:

If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-10, Subarticle 609-5(C)(2), Quality Control Minimum Sampling and Testing Schedule, first paragraph and replace with the following:

Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production:

Second paragraph, delete the fourth sentence and replace with the following:

When daily production of each mix design exceeds 100 metric tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below.

Page 6-10, Subarticle 609-5(C)(2)(c) Maximum Specific Gravity, add after (AASHTO T 209):

or ASTM D 2041

Page 6-11, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows:

(i) Option 1

Insert the following immediately after the first paragraph:

(ii) Option 2

Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design.

Second paragraph, delete and replace with the following:

Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken.

Page 6-11, Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following:

For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained.

Page 6-12, Subarticle 609-5(C)(3) Control Charts, fourth paragraph on this page, delete the last sentence and replace with the following:

Denote the moving average control limits with a dash green line and the individual test limits with a dash red line.

Page 6-15, Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following:

- (a) A change in the binder percentage, aggregate blend, or G_{mm} is made on the JMF, or
- (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in Subarticle 609-5(C)(6)), or,
- (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, re-establish a new moving average beginning at the actual production stop point.

Page 6-15, Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-13 with the following:

The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source.

Mix Control Criteria	Target Source	Moving Average Limit	Individual Limit	
2.36 mm Sieve	JMF	±4.0 %	±8.0 %	
0.075 mm Sieve	JMF	±1.5 %	±2.5 %	
Binder Content	JMF	±0.3 %	±0.7 %	
VTM @ N _{des}	JMF	±1.0 %	±2.0 %	
VMA @ N _{des}	Min. Spec. Limit	Min Spec. Limit	-1.0%	
P _{0.075} / P _{be} Ratio	1.0	±0.4	±0.8	
%G _{mm} @ N _{ini}	Max. Spec. Limit	N/A	+2.0%	
TSR	Min. Spec. Limit	N/A	- 15%	

Page 6-13, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety.

Pages 6-13 through 6-15, Subarticle 609-5(C)(6) Corrective Actions, delete the word "warning" and replace with the words "moving average".

Page 6-13, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following:

Immediately notify the Engineer when moving averages exceed the moving average limits.

Page 6-14, Subarticle 609-5(C)(6) Corrective Actions, second paragraph, delete and replace with the following:

Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable.

Fifth full paragraph, delete the first, second, and third sentence and replace with the following:

Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits.

Page 6-14, Subarticle 609-5(C)(6) Corrective Actions, eighth paragraph, delete and replace with the following:

If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment.

Page 6-14, Subarticle 609-5(C)(6) Corrective Actions, delete the last paragraph and the first paragraph on Page 6-15, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following:

If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work.

Page 6-15, Second full paragraph, delete and replace with the following:

Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts.

Page 6-16, Subarticle 609-5(D)(1) General, delete the last paragraph, and replace with the following:

Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-18, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence:

Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed.

Page 6-18, Subarticle 609-5(D)(5) Limited Production Procedure, delete the last paragraph including (a), (b), (c) and substitute the following:

Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below).

- (a) Two consecutive failing lots, except on resurfacing*
- (b) Three consecutive failing lots on resurfacing*
- (c) Two consecutive failing nuclear control strips.

Page 6-20, Article 609-6 QUALITY ASSURANCE, DENSITY QUALITY ASSURANCE, insert the following items after item (E):

- (F) By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor;
- (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or
- (H) By any combination of the above.

Page 6-23 through Page 6-24, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following:

Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements.

Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type.

For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22.

^{*} Resurfacing is defined as the first new uniform layer placed on an existing pavement.

For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type.

When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Article 1012-1.

When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Subarticle 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used.

Page 6-28, Subarticle 610-3(C) Job Mix Formula, delete Table 610-2 and associated notes and replace with the following:

TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA

Mix Type	Design ESALs	s PG	PG Gyrations		Max. Rut Depth (mm)		Volumetric Properties (c)			
	Millions (a)	Grade (b)	N _{ini}	N_{des}		VMA % Min.	% VIM Min		%G _{mm} @ N _{ini}	
S-4.75A(e)	< 0.3	64 -22	6	50		20.0	7.0 - 15.0			
SF-9.5A	< 0.3	64 -22	6	50	11.5	16.0	3.0 - 5.0	70 - 80	≤ 91.5	
S-9.5B	0.3 - 3	64 -22	7	65	9.5	15.5	3.0 - 5.0	65 - 80	≤ 90.5	
S-9.5C	3 - 30	70 -22	7	75	6.5	15.5	3.0 - 5.0	65 - 78	≤ 90.5	
S-9.5D	> 30	76 -22	8	100	4.5	15.5	3.0 - 5.0	65 - 78	≤ 90.0	
S-12.5C	3 - 30	70 -22	7	75	6.5	14.5	3.0 - 5.0	65 - 78	≤ 90.5	
S-12.5D	> 30	76 -22	8	100	4.5	14.5	3.0 - 5.0	65 - 78	≤ 90.0	
I-19.0B	< 3	64 -22	7	65		13.5	3.0 - 5.0	65 - 78	≤ 90.5	
I-19.0C	3 - 30	64 -22	7	75		13.5	3.0 - 5.0	65 - 78	≤ 90.0	
I-19.0D	> 30	70 -22	8	100		13.5	3.0 - 5.0	65 - 78	≤ 90.0	
B-25.0B	< 3	64 -22	7	65		12.5	3.0 - 5.0	65 - 78	≤ 90.5	
B-25.0C	> 3	64 -22	7	75	****	12.5	3.0 - 5.0	65 - 78	≤ 90.0	
	Design Pa	rameter					Design	Criteria		
All Mix Types	1. Dust to Binder Ratio (P _{0.075} / P _{be}) 2. Retained Tensile Strength (TSR) (AASHTO T283 Modified)							— 1.4 Min. (d)		

Notes:

- (a) Based on 20 year design traffic.
- (b) Volumetric Properties based on specimens compacted to Ndes as modified by the Department.
- (c) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0B, and Type B 25.0C mixes is 80% minimum.
- (d) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer.

Page 6-28, Insert the following immediately after Table 610-2:

TABLE 610-2A SUPERPAVE MIX DESIGN CRITERIA

	Percentage of RAP in Mix						
	Category 1	Category 2	Category 3				
Mix Type	% RAP ≤20%	$20.1\% \le \% RAP \le 30.0\%$	%RAP > 30.0%				
All A and B Level Mixes, 119.0C, B25.0C	PG 64 -22	PG 64 -22	TBD				
S9.5C, S12.5C, I19.0D	PG 70 -22	PG 64-22	TBD				
S 9.5D and S12.5D	PG 76-22	N/A	N/A				

- Note: (1) Category 1 RAP has been processed to a maximum size of 50mm.
 - (2) Category 2 RAP has been processed to a maximum size of 25 mm by either crushing and or screening to reduce variability in the gradations.
 - (3) Category 3 RAP has been processed to a maximum size of 25 mm, fractionating the RAP into 2 or more sized stockpiles.

Page 6-29, Table 610-3 delete and replace with the following:

TABLE 610-3 ASPHALT PLACEMENT- MINIMUM TEMPERATURE REOUIREMENTS

Asphalt Concrete Mix Type	Minimum Air Temperature	Minimum Surface Temperature	
ACBC, Type B 25.0B, C, B 37.5C	2°C	2°C	
ACIC, Type I 19.0B, C, D	. 2°C	2°C	
ACSC, Type S 4.75A, SF 9.5A, S 9.5B	4°C	10°C*	
ACSC, Type S 9.5C, S 12.5C	7°C	10°C	
ACSC, Type S 9.5D, S 12.5D	10°C	10°C	

^{* 2°}C if surface is soil or aggregate base for secondary road construction.

Page 6-36, Article 610-8 SPREADING AND FINISHING, sixth paragraph, replace the first sentence with the following:

Use the 9 m minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 7.3 m to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved.

Page 6-37, Article 610-8 SPREADING AND FINISHING, delete the fourth paragraph on page 6-37 and replace with the following:

Use a Material Transfer Vehicle (MTV) when placing all asphalt concrete plant mix pavements which require the use of asphalt binder grade PG 76-22 and for all types of OGAFC, unless otherwise approved. Use a MTV for all surface mix regardless of binder grade placed on Interstate and US routes that have four or more lanes and median divided. Where required above, utilize the MTV when placing all full width travel lanes, and collector lanes. Use MTV for all ramps, loops, -Y- line travel lanes, full width acceleration and deceleration lanes, and full width turn lanes that are greater than 305 m in length.

Page 6-36, Article 610-8 SPREADING AND FINISHING, sixth paragraph, replace the first sentence with the following:

Use the 9 m minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved.

Page 6-41, Article 610-13 DENSITY ACCEPTANCE, delete the second full paragraph and replace with the following:

As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category.

Page 6-41, Article 610-13 DENSITY ACCEPTANCE, delete the formula and description in the middle of the page and replace with the following:

 $PF = 100 - 10(D)^{1.465}$

Where: PF = Pay Factor (computed to 0.1%)

D = the deficiency of the lot average density,

not to exceed 2.0%

Page 6-42, Article 610-15 MEASUREMENT AND PAYMENT, fourth paragraph, delete and replace with the following:

Furnishing asphalt binder will be paid for as provided in Article 620-4.

Page 6-43, Article 620-4 MEASUREMENT AND PAYMENT, modify as follows:

First Paragraph, delete and replace with the following:

Asphalt Binder for Plant Mix and Polymer Modified Asphalt Binder for Plant Mix will be measured and paid for as the theoretical number of tons required by the applicable job mix formula based on the actual number of tons of plant mix completed and accepted on the job.

Second paragraph, delete entire paragraph.

Sixth paragraph, delete the last sentence.

Seventh paragraph, delete the paragraph and replace with the following:

The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that

where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula.

Delete pay items and add the following pay items:

Pay ItemPay UnitAsphalt Binder for Plant MixMetric TonPolymer Modified Asphalt Binder for Plant MixMetric Ton

Page 6-45, Article 650-2 Materials, insert the following at the end of the list of items.

Reclaimed asphalt shingles

1012-1(F)

Page 6-47, Subarticle 650-3(B), Mix Design Criteria, insert the following as the fourth paragraph.

Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture. The maximum percentage of binder contributed from reclaimed asphalt material will be 20% of the total binder in the completed mix.

Page 6-49, Article 650-5 CONSTRUCTION REQUIREMENTS delete the seventh paragraph beginning "Use a Material Transfer Vehicle (MTV)..." and replace with the following:

Use a Material Transfer Vehicle (MTV) when placing all asphalt concrete plant mix pavements which require the use of asphalt binder grade PG 76-22 and for all types of OGAFC, unless otherwise approved. Use a MTV for all surface mix regardless of binder grade placed on Interstate and US routes that have four or more lanes and median divided. Where required above, utilize the MTV when placing all full width travel lanes and collector lanes. Use MTV for all ramps, loops, -Y- line travel lanes, full width acceleration and deceleration lanes, and full width turn lanes that are greater than 305 m in length.

Page 6-50, Article 650-7 MEASUREMENT AND PAYMENT delete the second paragraph and replace with the following:

Furnishing asphalt binder for the mix will be paid for as provided in Article 620-4 for Asphalt Binder for Plant Mix or Polymer Modified Asphalt Binder for Plant Mix. Adjustments in contract unit price due to asphalt binder price fluctuations will be made in accordance with Article 620-4.

Page 6-53, Article 652-6 MEASUREMENT AND PAYMENT delete the second paragraph and replace with the following:

Asphalt Binder for Plant Mix will be paid for in accordance with Article 620-4.

Page 6-57, TABLE 660-1 MATERIAL APPLICATION RATES AND TEMPERATURES, add the following:

Type of Coat	Grade of Asphalt	Asphalt Rate L/M²	Application Temperature °C	Aggregate Size	Aggregate Rate KG/ M ² Total
Sand Seal	CRS-2 or CRS-2P	1.00-1.36	66-79	Blotting Sand	6-8

Page 6-62, Subarticle 660-9(B) Asphalt Seal Coat, add the following as sub-item (5):

(5) Sand Seal

Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling.

Immediately after the aggregate has been uniformly spread, perform rolling.

When directed, broom excess aggregate material from the surface of the seal coat.

When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved.

Page 6-63, Article 661-1 DESCRIPTION, add the following as the 2nd paragraph:

Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with *Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)*, included in the contract.

Page 6-63, Article 661-2 MATERIALS, add the following after Asphalt Binder, Grade 70-28:

Item	Section
Asphalt Binder, Grade 76-22	1020
Reclaimed Asphalt Shingles	1012

Page 6-65, Subarticle 661-2(E), Asphalt Binder For Plant Mix, Grade PG 70-28, rename as POLYMER MODIFIED ASPHALT BINDER FOR PLANT MIX and add the following as the first paragraph:

Use either PG 70-28 or PG 76-22 binder in the mix design. The grade of asphalt binder to be paid for the production of Ultra-thin will be *Polymer Modified Asphalt Binder For Plant Mix*.

Page 6-65, Subarticle 661-2(G) Composition of Mix, add the following as the third sentence of the first paragraph:

The percent of asphalt binder contributed from the RAS shall not exceed 20% of the total binder in the completed mix.

Page 6-66, Article 661-2(G) Composition of Mix, replace Table 661-4 and associated notes with the following:

		661-4 – MIXTURE DI			
	Gradatio	n Design Criteria (%	Passing by Weight)		
Standar	d Sieves	12.7 mm Type A	9.5 mm Type B	6.4 mm Type C	
ASTM	mm		(% Passing by Weig	ht)	
³ / ₄ inch 19.0		100			
½ inch	12.5	8 5 - 100	100		
3/8 inch	9.5	60 - 80	85 - 100	100	
#4	4.75	28 - 38	28 – 44	40 - 55	
#8	2.36	19 - 32	17 – 34	22 - 32	
#16	1.18	15 - 23	13 - 23	15 - 25	
#30	0.600	10 - 18	8 - 18	10 - 18	
#50	0.300	8 - 13	6 - 13	8 - 13	
#100	0.150	6 - 10	4 - 10	6 - 10	
#200	0.075	4.0 - 7.0	3.0 - 7.0	4.0 - 7.0	
		Mix Design Crit	eria		
		12.7 mm Type A	9.5 mm Type B	6.4 mm Type C	
Asphalt Content, 9	6	4.6 - 5.6	4.6 - 5.8	5.0 - 5.8	
Draindown Test, AASHTO T 305			0.1% max.		
Moisture Sensitivit AASHTO T 283*	ty,		80% min.	AAANIA (1900) AAANIA (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900) (1900	
Application Rate,	Kg/M ²	49	38	27	
Approximate Appl mm	ication Depth,	19.0	15.9	12.5	
Asphalt PG Grade,)	PG 70-28 or	PG 70-28 or	PG 70-28 or	
AASHTO M 320		PG 76-22	PG 76-22	PG 76-22	

NOTE: *Specimens for T-283 testing are to be compacted using the SUPERPAVE gyratory compactor. The mixtures shall be compacted using 100 gyrations to achieve specimens approximately 95 mm in height. Use mixture and compaction temperatures recommended by the binder supplier.

Page 6-66, Subarticle 661-3(A) Equipment, add the following as the first paragraph:

Use asphalt mixing plants in accordance with Article 610-5 of the Standard Specifications.

Page 6-68, Subarticle 661-3(C), Application of Ultra-thin Bonded Wearing Course, delete the first paragraph and add the following as the first and second paragraphs:

Use only one asphalt binder PG grade for the entire project, unless the Engineer gives written approval.

Do not place Ultra-thin Bonded Wearing Course between October 31 and April 1, when the pavement surface temperature is less than 10°C or on a wet pavement. In addition, when PG 76-22 binder is used in the JMF, place the wearing course only when the road pavement surface temperature is 16°C or higher and the air temperature in the shade away from artificial heat is 16°C or higher.

Page 6-69, Article 661-4, MEASUREMENT AND PAYMENT delete third paragraph and replace with the following:

Polymer Modified Asphalt Binder For Plant Mix will be paid for in accordance with Article 620-4. Asphalt binder price adjustments when applicable will be based on Grade PG 64-22, regardless of the grade used.

Page 10-33, Subarticle 1012-1(A) General, add the following at the end of the last paragraph, last sentence:

or ultra-thin bonded wearing course.

Page 10-34, Table 1012-1, delete the entries for OGAFC and add new entries for OGAFC and a row for UBWC with entries:

Mix Type	Coarse Aggregate Angularity ^(b) ASTM D5821	Fine Aggregate Angularity % Minimum AASHTO T304 Method A	Sand Equivalent % Minimum AASHTO T176	Flat & Elongated 5:1 Ratio % Maximum ASTM D4791 Section 8.4	
S 9.5 D	100/100	45	50	10	
OGAFC	100/100	N/A	N/A	10	
UBWC	100/85	<u> 40</u>	45	. 10	

Delete Note (c) under the Table 1012-1 and replace with the following:

(c) Does not apply to Mix Types SF 9.5A and S 9.5B.

Page 10-34, Subarticle 1012-1(B)(6) Toughness (Resistance to Abrasion), add as the last sentence:

The percentage loss for aggregate used in UBWC shall be no more than 35%.

Page 10-35, Subarticle 1012-1(F) Reclaimed Asphalt Shingle Material (RAS), delete and replace with the following:

(F) Reclaimed Asphalt Shingles (RAS)

For use in asphalt mix, Reclaimed Asphalt Shingles (RAS) can be either manufacturer- waste shingles or post-consumer shingles that have been processed into a product that meets the requirements of this section.

Manufacturer-waste RAS (MRAS) are processed shingle materials discarded from the manufacturing of new asphalt shingles. It may include asphalt shingles or shingle tabs that have been rejected by the shingle manufacturer.

Post-consumer RAS (PRAS) are processed shingle materials recovered from mixed roofing material scrap removed from existing structures. Tear-off shingle scrap must be sorted and other roofing debris, including nails, plastic, metal, wood, coal tar epoxy, rubber materials, or other undesirable components, shall be removed. This sorting of the scrap must be done prior to grinding of the PRAS for use in asphalt production.

Sample and test PRAS for asbestos and provide results demonstrating that the bulk samples contain less than one percent of asbestos containing material in accordance with Federal, State of North Carolina, and Local regulations. Use NC-accredited Asbestos Inspectors or Roofing Supervisors to sample the PRAS to meet the above criteria. Maintain records on-site indicating shingle source(s), asbestos operation plan approved by Division of Public Health's Health Hazards Control Unit, and all asbestos analytical reports. All documentation will be subject to review by the Department.

Process RAS by ambient grinding or granulating methods such that 100% of the particles will pass the 9.50 mm (3/8") sieve when tested in accordance with AASHTO T27. Perform sieve analysis on processed asphalt shingles prior to ignition or solvent extraction testing.

RAS shall contain no more than 0.5% by total cumulative weight of deleterious materials. These materials include, but are not limited to, excessive dirt, debris, concrete, metals, glass, paper, rubber, wood, plastic, soil, brick, tars, or other contaminating substances.

Blend RAS with fine aggregate or RAP, meeting the requirements of this Section, if needed to keep the processed material workable.

MRAS and PRAS shall not be blended together for the production of hot mix asphalt.

(1) Mix Design RAS

Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design.

(2) Mix Production RAS

New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will meet the gradation requirements prior to introduction into the plant mixer unit.

After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile.

Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix. Store RAS materials in such a manner as to prevent contamination.

Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

GRADATION TOLERANCES (Apply Tolerances to Mix Design Data)					
P _b %	±2.5				
Sieve Size, mm	Tolerance				
4.75	±5				
2.36	±4				
1.18	±4				
0.300	<u>±4</u>				
0.150	<u>±4</u>				
0.075	±2.0				

NEW SOURCE RAS RINDER AND

Page 10-35 through 10-37, Subarticle 1012-1(G), delete this subarticle in its entirety and replace with the following:

(G) Reclaimed Asphalt Pavement (RAP)

(1) Mix Design RAP

Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications.

(a) Millings

Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform gradation and binder content and all materials will pass a 50 mm sieve prior to introduction into the plant mixer unit.

(b) Processed RAP

RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 25 mm sieve prior to introduction into the plant mixer unit.

(c) Fractionated RAP

Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 25 mm sieve. The coarse RAP stockpile shall only contain material retained on a 9.5 mm screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 9.5 mm screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 9.5 mm screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used.

(d) Approved Stockpiled RAP

Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Subarticle 1012-1(G)(1)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used.

Perform extraction tests at a rate of 1 per 1,000 metric tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials.

Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request:

- (1) Approximate tons of materials in stockpile
- (2) Name or Identification number for the stockpile
- (3) Asphalt binder content and gradation test results
- (4) Asphalt characteristics of the Stockpile.

For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the target, will be accepted if within the tolerances listed below:

APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data)

(Apply Tolera	ances to mix Design Data)				
P _b %	±0.3%				
Sieve Size (mm)	Percent Passing				
25.0	±5%				
19.0	±5%				
. 12.5	±5%				
9.5	±5%				
4.75	±5%				
2.36	±4%				
1.18	±4%				
0.300	±4%				
0.150	±4%				
0.075	±1.5%				

Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile.

Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer.

Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics).

(2) Mix Production RAP

During mix production, use RAP that meets the criteria for one of the following categories:

(a) Mix Design RAP

RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2).

(b) New Source RAP

New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 50 mm sieve prior to introduction into the plant mixer unit.

After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile.

Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above.

Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data)									
Mix Type	()-20% RA	P	20) ⁺ -30 % R∆	AP	3	30 ⁺ % RAP	
Sieve (mm)	Base	Inter.	Surf.	Base	Inter.	Surf.	Base	Inter.	Surf.
P _b %		± 0.7%		***************************************	± 0.4%	*		± 0.3%	
25.0	±10	-	-	±7	-		±5	-	-
19.0	±10	±10	-	±7	±7	-	±5	±5	-
12.5	-	±10	±10	-	±7	±7	-	±5	±5
9.5	-	-	±10	-	-	±7	-	-	±5
4.75	±10	-	±10	±7	-	±7	±5	-	±5
2.36	±8	±8	±8	±5	±5	±5	±4	±4	±4
1.18	±8	±8	±8	±5	±5	±5	±4	±4	±4
0.300	±8	±8	±8	±5	±5	±5	±4	±4	±4
0.150	-	-	±8	-	-	±5	-	-	±4
0.075	±4	±4	±4	±2	±2	±2	±1.5	±1.5	±1.5

ASPHALT PAVEMENTS - WARM MIX ASPHALT SUPERPAVE:

(1-18-11) (Rev 2-15-11)

M6 R02A

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed.

Notify the Engineer at least 2 weeks before producing the WMA so the Engineer can arrange a pre-pave meeting. Discuss special testing requirements necessary for WMA at the pre-pave meeting. Include at the pre-pave meeting the Contractor's QC manager, Paving Superintendent, and manufacturer's representative for the WMA technology, the Department's Roadway Construction Engineer, Resident Engineer, State Pavement Construction Engineer, and Quality Assurance Supervisor.

Require a manufacturer's representative for the WMA technology used to be present on site at the plant during the initial production and on the roadway during the laydown of the warm mix asphalt.

The requirement for the manufacturer's representative to be present at the pre-pave meeting and on-site at the plant may be waived by the Engineer based on previous work experience with the specific WMA technology used.

If the use of WMA is suspended during production, and the Contractor begins using Hot Mix Asphalt (HMA), then the Contractor shall be required to use HMA for the remainder of the specific route or map unless otherwise approved by the Engineer.

Revise the 2006 Metric Standard Specifications as follows:

Page 6-7, Article 609-1 Description, insert the following as the second paragraph:

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option when shown in the contract.

Page 6-7, Article 609-4 Field Verification of Mixture and Job Mix Formula Adjustments, second paragraph, insert the following immediately after the first sentence:

When producing a WMA, perform field verification testing including Tensile Strength Ratio (TSR) testing in accordance with AASHTO T 283 as modified by the Department.

Third paragraph, delete the third sentence and replace with the following:

Verification is satisfactory for HMA when all volumetric properties except $G_{mm}@N_{ini}$ are within the applicable mix design criteria and the gradation, binder content, and $G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced. Verification is satisfactory for WMA when all volumetric properties except $G_{mm}@N_{ini}$ are within the applicable mix design criteria, the TSR meets the design criteria, and the gradation, binder content, and $G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced.

Page 6-10, Subarticle 609-5(C)(2)(d) Bulk Specific Gravity of Compacted Specimens, add after (AASHTO T 312):

When producing WMA, gyrate specimens to specified N_{des} compaction effort without reheating mix other than to desired compaction temperature. Record time needed to reheat samples (if any).

Page 6-11, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio, insert the following immediately after the third paragraph:

When producing WMA, perform TSR testing:

- (i.) Prior to initial production for each JMF and
- (ii.) Every 13,600 metric tons.

After three (3) consecutive passing TSR tests for a specific JMF, a request may be submitted to the State Asphalt Design Engineer to revert the *Hot-Mix Asphalt QMS Manual* procedures for TSR testing on that JMF. This request shall be submitted in writing and include all Material and Tests Unit Form 612s performed on the specific JMF.

Page 6-22, Article 610-1 Description, insert the following as the third paragraph:

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option when shown in the contract.

Page 6-23, Article 610-2 Materials, insert the following at the end of this Article:

Use only WMA technologies on the allowable routes listed on the Department's approved list maintained by the Materials and Tests Unit. The Department's approved list can be found at the following website: http://www.ncdot.org/doh/operations/materials/pdf/wma.pdf.

Page 6-26, Subarticle 610-3(B) Mix Design-Criteria, add the following as the fifth paragraph:

When WMA is used, submit the mix design without including the WMA additive.

Page 6-26, Subarticle 610-3(C) Job Mix Formula, add the following as the second paragraph:

When WMA is used, document the technology used, the recommended dosage rate, and the requested plant mix temperature on the JMF submittal. Verify the JMF based on plant produced mixture from the field verification test.

Immediately following PG 76-22 335°F, add the following paragraph:

When WMA is used, produce an asphalt mixture within the temperature range of 107°C to 135°C.

ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:

(11-21-00) (Rev 7-17-12)

M6 R15

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

Asphalt Concrete Base Course	Type B 25.0	4.4%
Asphalt Concrete Intermediate Course	Type I 19.0	4.8%
Asphalt Concrete Surface Course	Type S 4.75A	6.8%
Asphalt Concrete Surface Course	Type SA-1	6.8%
Asphalt Concrete Surface Course	Type SF 9.5A	6.7%
Asphalt Concrete Surface Course	Type S 9.5	6.0%
Asphalt Concrete Surface Course	Type S 12.5	5.6%

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Metric Standard Specifications.

PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:

(11-21-00)

M6 R25

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Metric Standard Specifications.

The base price index for asphalt binder for plant mix is \$ 626.84 per metric ton.

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **September 1, 2012**.

FINAL SURFACE TESTING - ASPHALT PAVEMENTS (Rideability):

(5-18-04) (Rev. 7-15-08)

M6 R45

On portions of this project where the typical section requires two or more layers of new pavement, perform acceptance testing of the longitudinal profile of the finished pavement surface in accordance with these provisions using a North Carolina Hearne Straightedge (Model No. 1). Furnish and operate the straightedge to determine and record the longitudinal profile of the pavement on a continuous graph. Final surface testing is an integral part of the paving operation and is subject to observation and inspection by the Engineer as deemed necessary.

Push the straightedge manually over the pavement at a speed not exceeding 2 miles per hour. For all lanes, take profiles in the right wheel path approximately 3 feet from the right edge of pavement in the same direction as the paving operation, unless otherwise approved due to traffic control or safety considerations. As an exception, lanes adjacent to curb and gutter, expressway gutter, or shoulder berm gutter may be tested in the left wheel path. Make one pass of the straightedge in each full width travel lane. The full lane width should be comparable in ride quality to the area evaluated with the Hearne Straightedge. If deviations exist at other locations across the lane width, utilize a 10 foot non-mobile straightedge or the Hearne Straightedge to evaluate which areas may require corrective action. Take profiles as soon as practical after the pavement has been rolled and compacted, but no later than 24 hours following placement of the pavement, unless otherwise authorized by the Engineer. Take profiles over the entire length of final surface travel lane pavement exclusive of -Y- line travel lanes less than or equal to 1000 feet in length, ramps less than or equal to 1000 feet in length, turn lanes less than or equal to 1000 feet in length, structures, approach slabs, paved shoulders, loops, and tapers or other irregular shaped areas of pavement, unless otherwise approved by the Engineer. accordance with this provision all mainline travel lanes, full width acceleration or deceleration lanes, -Y- line travel lanes greater than 1000 feet in length, ramps, full width turn lanes greater than 1000 feet in length, and collector lanes.

At the beginning and end of each day's testing operations, and at such other times as determined by the Engineer, operate the straightedge over a calibration strip so that the Engineer can verify correct operation of the straightedge. The calibration strip shall be a 100 foot section of pavement that is reasonably level and smooth. Submit each day's calibration graphs with that day's test section graphs to the Engineer. Calibrate the straightedge in accordance with the current NCDOT procedure titled North Carolina Hearne Straightedge - Calibration and Determination of Cumulative Straightedge Index. Copies of this procedure may be obtained from the Department's Pavement Construction Section.

Plot the straightedge graph at a horizontal scale of approximately 25 feet per inch with the vertical scale plotted at a true scale. Record station numbers and references (bridges, approach slabs, culverts, etc.) on the graphs. Distances between references/stations must not exceed 100 feet. Have the operator record the Date, Project No., Lane Location, Wheel Path Location, Type Mix, and Operator's Name on the graph.

Upon completion of each day's testing, evaluate the graph, calculate the Cumulative Straightedge Index (CSI), and determine which lots, if any, require corrective action. Document the evaluation of each lot on a QA/QC-7 form. Submit the graphs along with the completed QA/QC-7 forms to the Engineer, within 24 hours after profiles are completed, for verification of the results. The Engineer will furnish results of their acceptance evaluation to the Contractor within 48 hours of receiving the graphs. In the event of discrepancies, the Engineer's evaluation of the graphs will prevail for acceptance purposes. The Engineer will retain all graphs and forms.

Use blanking bands of 0.2 inches, 0.3 inches, and 0.4 inches to evaluate the graph for acceptance. The 0.2 inch and 0.3 inch blanking bands are used to determine the Straightedge Index (SEI), which is a number that indicates the deviations that exceed each of the 0.2 inch and 0.3 inch bands within a 100 foot test section. The Cumulative Straightedge Index (CSI) is a number representing the total of the SEIs for one lot, which consist of not more than 25 consecutive test sections. In addition, the 0.4 inch blanking band is used to further evaluate deviations on an individual basis. The CSI will be determined by the Engineer in accordance with the current procedure titled "North Carolina Hearne Straightedge - Calibration and Determination of Cumulative Straightedge Index".

The pavement will be accepted for surface smoothness on a lot by lot basis. A test section represents pavement one travel lane wide not more than 100 feet in length. A lot will consist of 25 consecutive test sections, except that separate lots will be established for each travel lane, unless otherwise approved by the Engineer. In addition, full width acceleration or deceleration lanes, ramps, turn lanes, and collector lanes, will be evaluated as separate lots. For any lot that is less than 2500 feet in length, the applicable pay adjustment incentive will be prorated on the basis of the actual lot length. For any lot which is less than 2500 feet in length, the applicable pay adjustment disincentive will be the full amount for a lot, regardless of the lot length.

If during the evaluation of the graphs, 5 lots require corrective action, then proceed on limited production for unsatisfactory laydown in accordance with Article 610-12 of the *Standard Specifications*. Proceeding on limited production is based upon the Contractor's initial evaluation of the straightedge test results and shall begin immediately upon obtaining those results. Additionally, the Engineer may direct the Contractor to proceed on limited production in accordance with Article 610-12 due to unsatisfactory laydown or workmanship.

Limited production for unsatisfactory laydown is defined as being restricted to the production, placement, compaction, and final surface testing of a sufficient quantity of mix necessary to construct only 2500 feet of pavement at the laydown width. Once this lot is complete, the final surface testing graphs will be evaluated jointly by the Contractor and the Engineer. Remain on limited production until such time as acceptable laydown results are obtained or until three

consecutive 2500 foot sections have been attempted without achieving acceptable laydown results. The Engineer will determine if normal production may resume based upon the CSI for the limited production lot and any adjustments to the equipment, placement methods, and/or personnel performing the work. Once on limited production, the Engineer may require the Contractor to evaluate the smoothness of the previous asphalt layer and take appropriate action to reduce and/or eliminate corrective measures on the final surface course. Additionally, the Contractor may be required to demonstrate acceptable laydown techniques off the project limits prior to proceeding on the project.

If the Contractor fails to achieve satisfactory laydown results after three consecutive 2500 foot sections have been attempted, cease production of that mix type until such time as the cause of the unsatisfactory laydown results can be determined.

As an exception, the Engineer may grant approval to produce a different mix design of the same mix type if the cause is related to mix problem(s) rather than laydown procedures. If production of a new mix design is allowed, proceed under the limited production procedures detailed above.

After initially proceeding under limited production, the Contractor shall immediately notify the Engineer if any additional lot on the project requires corrective action. The Engineer will determine if limited production procedures are warranted for continued production.

If the Contractor does not operate by the limited production procedures as specified above, the 5 lots, which require corrective action, will be considered unacceptable and may be subject to removal and replacement. Mix placed under the limited production procedures for unsatisfactory laydown will be evaluated for acceptance in accordance with Article 105-3.

The pay adjustment schedule for the Cumulative Straightedge Index test results per lot is as follows:

Pay Adjustment Schedule for Cumulative Straightedge Index (CSI) (Obtained by adding SE Index of up to 25 consecutive 100 foot test sections)					
			PAY ADJUSTMENT		
*CSI	ACCEPTANCE	CORRECTIVE		After Corrective	
	CATEGORY	ACTION	Before Corrective	Action	
0-0	Acceptable	None	\$300 incentive	None	
1-0 or 2-0	Acceptable	None	\$100 incentive	None	
3-0 or 4-0	Acceptable	None	No Adjustment	No Adjustment	
1-1, 2-1,	Acceptable	Allowed	\$300 disincentive	\$300 disincentive	
5-0 or 6-0					
3-1, 4-1,	Acceptable	Allowed	\$600 disincentive	\$600 disincentive	
5-1 or 6-1					
Any other	T		Per CSI after Correction(s)		
Number	Unacceptable	Required	(not to exceed 100% Pay)		

^{*}Either Before or After Corrective Actions

Correct any deviation that exceeds a 0.4 inch blanking band such that the deviation is reduced to 0.3 inches or less.

Corrective actions shall be performed at the Contractor's expense and shall be presented for evaluation and approval by the Engineer prior to proceeding. Any corrective action performed shall not reduce the integrity or durability of the pavement that is to remain in place. Corrective action for deviation repair may consist of overlaying, removing and replacing, indirect heating and rerolling. Scraping of the pavement with any blade type device will not be allowed as a corrective action. Provide overlays of the same type mix, full roadway width, and to the length and depth established by the Engineer. Tapering of the longitudinal edges of the overlay will not be allowed.

Corrective actions will not be allowed for lots having a CSI of 4-0 or better. If the CSI indicates *Allowed* corrective action, the Contractor may elect to take necessary measures to reduce the CSI in lieu of accepting the disincentive. Take corrective actions as specified if the CSI indicates *Required* corrective action. The CSI after corrective action shall meet or exceed *Acceptable* requirements.

Where corrective action is allowed or required, the test section(s) requiring corrective action will be retested, unless the Engineer directs the retesting of the of the entire lot. No disincentive will apply after corrective action if the CSI is 4-0 or better. If the retested lot after corrective action has a CSI indicating a disincentive, the appropriate disincentive will be applied.

Test sections and/or lots that are initially tested by the Contractor that indicate excessive deviations such that either a disincentive or corrective action is necessary, may be re-rolled with asphalt rollers while the mix is still warm and in a workable condition, to possibly correct the problem. In this instance, reevaluation of the test section(s) shall be completed within 24 hours of pavement placement and these test results will serve as the initial test results.

Incentive pay adjustments will be based only on the initially measured CSI, as determined by the Engineer, prior to any corrective work. Where corrective actions have been taken, payment will be based on the CSI determined after correction, not to exceed 100 percent payment.

Areas excluded from testing by the N.C. Hearne Straightedge will be tested by using a non-mobile 10-foot straightedge. Assure that the variation of the surface from the testing edge of the straightedge between any two contact points with the surface is not more than 1/8 inch. Correct deviations exceeding the allowable tolerance in accordance with the corrective actions specified above, unless the Engineer permits other corrective actions.

Furnish the North Carolina Hearne Straightedge(s) necessary to perform this work. Maintain responsibility for all costs relating to the procurement, handling, and maintenance of these devices. The Department has entered into a license agreement with a manufacturer to fabricate, sell, and distribute the N.C. Hearne Straightedge. The Department's Pavement Construction Section may be contacted for the name of the current manufacturer and the approximate price of the straightedge.

No direct payment will be made for the work covered by this section. Payment at the contract unit prices for the various items covered by those sections of the specifications directly applicable to the work constructed will be full compensation for all work covered by this section including, but not limited to, performing testing in accordance with this specification, any corrective work required as a result of this testing and any additional traffic control as may be necessary.

MILLED RUMBLE STRIPS (Concrete Shoulder)

Description

Mill rumble strips on portland cement concrete shoulders in accordance with the plans and as directed by the Engineer.

Equipment

Provide equipment consisting of a rotary type cutting head with an outside diameter of no more than 61cm and no less than 41cm long. Provide a cutting head that has the cutting tips arranged in such a pattern as to provide a relatively smooth cut as well as a cutting head that is on its own independent suspension from that of the power unit to allow the tool to self align with the slope of the shoulder and/or any irregularities in the shoulder surface. Provide a cutting tool equipped with guides to establish consistent alignment and uniformity of each cut in relation to the roadway.

Construction Methods

Demonstrate the ability to achieve desired surface inside each depression without tearing or snagging the portland cement concrete prior to beginning the work.

Provide rumble strips that have finished dimensions and pattern as detailed on the plans.

Material resulting from the operation shall become the property of the Contractor. Remove and dispose of material in accordance with the requirements of Section 802 of *Standard Specifications*.

Remove all equipment to a location where it does not present a traffic hazard and clean pavement before reopening work area to traffic.

Measurement and Payment

Milled Rumble Strips (Concrete Shoulder) will be measured and paid for the actual number of linear meters of shoulder, measured longitudinally along the surface of each shoulder, where rumble strips have been constructed.

Payment will be made under:

Pay Item
Milled Rumble Strips (Concrete Shoulder)

Pay Unit Meter

CONCRETE PAVEMENTS AND SHOULDERS:

(10-16-07) M7 R20

Revise the 2006 Metric Standard Specifications as follows:

Page 10-1, Subarticle 1000-3(A) Composition and Design, delete the Subarticle and substitute the following:

Submit concrete paving mix design in terms of saturated surface dry weights on M&T Form 312U for approval a minimum of 30 days prior to proposed use. Use a mix that contains a minimum of 239 kg of cement per cubic yard, a maximum water cement ratio of 0.559, an air content in the range of 4.5 to 5.5 percent, a maximum slump of 1.5" and a minimum flexural strength of 4.5 MPa and a minimum compressive strength of 31 MPa at 28 days.

The cement content of the mix design may be reduced by a maximum of 20% and replaced with fly ash at a minimum rate of 0.5 kg of fly ash to each pound of cement replaced. Use a maximum water-cementitious material ratio not to exceed 0.538.

The cement content of the mix design may be reduced by a maximum of 50% and replaced with blast furnace slag pound for pound.

Include in the mix design the source of aggregates, cement, fly ash, slag, and admixtures; the gradation and specific gravity of the aggregates; the fineness modulus (F.M.) of the fine aggregate; and the dry rodded unit weight and size of the coarse aggregate. Submit test results showing that the mix design conforms to the criteria, including the 1, 3, 7, 14 and 28-day strengths of the average of two beams and the average of two cylinders for each age made and tested in accordance with AASHTO R39, T22 and T97. Design the mix to produce an average strength sufficient to indicate that a minimum strength of 4.5 MPa in flexure and 31 MPa in compression will be achieved in the field within 28 days.

If any change is made to the mix design, submit a new mix design.

If any major change is made to the mix design, also submit new test results showing the mix design conforms to the criteria. A major change to the mix design is defined as:

- 1) A source change in Coarse aggregate, Fine aggregate, Cement or Pozzolan (applies only to a change from one type of pozzolan to another; e.g., Class F fly ash to Class C fly ash).
- 2) A quantitative change in Coarse aggregate (applies to an increase or decrease greater than 5%), Fine aggregate (applies to an increase or decrease greater than 5%), Water (applies to an increase only), Cement (applies to a decrease only), Pozzolan (applies to a decrease only).

Where concrete with a higher slump for hand methods of placing and finishing is necessary, submit an adjusted mix design for approval to provide a maximum slump of 75 mm and to maintain the water-cementitious material ratio established by the original mix design.

Page 10-5, Table 1000-1, under column titled "Minimum compressive Strength at 28 days, MPa", in row titled "Pavement", delete "4.5 (flexural)" and substitute "31.0".

SECTION 700 GENERAL REQUIREMENT FOR PORTLAND CEMENT CONCRETE PAVING

Page 7-1, Article 700-3, Concrete Hauling Equipment, delete the fourth paragraph and substitute the following:

For concrete hauled in a transit mix (ready mix) truck, use Table 1000-2 to determine the maximum elapsed time. For concrete hauled in other equipment, minimize the elapsed time to be 60 minutes or less, unless otherwise approved. The elapsed time is defined as the period from first contact between mixing water and cement until the entire operation of placing and finishing up to micro-surfacing, including corrective measures if necessary, has been completed.

Page 7-2, Article 700-4 Preparation of Subgrade and Base, last paragraph, delete the 3rd and 4th sentence and substitute the following:

Set pins at a distance no farther than 15 m apart. When located on a vertical curve, set pins no farther than 7.5 m apart.

Page 7-2, Subarticle 700-5 (A)(4), delete the 2nd and 3rd paragraph and substitute the following:

Where additional pavement, aggregate or soil must be placed adjacent to new pavement by machine methods, do not place it until the concrete has attained a compressive strength of at least 20.6 MPa.

Construction equipment or hauling equipment will not be allowed over the pavement until the concrete has attained a compressive strength of 20.6 MPa.

Page 7-4, Article 700-7 Finishing, insert the following as the second sentence:

The use of excessive water for finishing will not be allowed.

Page 7-4, Subarticle 700-8(C) Hot Weather, 1st sentence:

Substitute 32°C for 27°C.

Page 7-6, 700-11(A) General, delete the fourth paragraph and substitute the following:

Immediately after sawing the joint to the dimensions shown on the plans, completely remove the resulting slurry from the joint. Immediately reapply curing membrane following the sawing operation to damaged areas in the vicinity of the joint.

Page 7-7, insert the following as Subarticle 700-11(G):

(G) Verification of Dowel Bar Alignment

Use either properly secured dowel baskets or a dowel bar inserter, provided the ability to correctly locate and align the dowels at the joints is demonstrated as described below.

Provide a calibrated magnetic imaging device that will document dowel bar location and alignment. Calibrate the magnetic imaging device to the type and size dowel bar used in the work. Utilize this device as a process control and make necessary adjustment to ensure the dowels are placed in the correct location.

Scan at least 25% percent of the joints in the initial placement or 1.6 km of pavement, whichever is greater, at random intervals throughout the pavement each time the paving train is mobilized. Mark scanned joints on the pavement.

Scan all joints in this initial placement if the dowel bars exhibit longitudinal translation (side shift), horizontal translation, vertical translation (depth), horizontal skew, or vertical tilt, above the allowable tolerances defined below. In addition, continue scanning no less than 25% of the joints until it is established that the dowel bar inserter or secured dowel basket assemblies are consistently placing the dowel bars at the correct location (meeting the tolerances defined below). Once the engineer determines that consistency is established, the contractor may reduce the percentage of scanned joints to no less than 10%. Any time inconsistency in the placement of the dowel bars becomes evident, additional scanning may be required up to 100% of the joints.

If consistency of the proper dowel bar alignment cannot be established within a reasonable time frame, the Engineer will have the option of suspending the paving operation.

Provide a report of the scanned joints within 48 hours of completing the day's production. The report should include the station and lane of the joint scanned, as well as the horizontal location, depth, longitudinal translation (side shift), horizontal skew, and vertical tilt, of each dowel bar in the joint. If a dowel bar inserter is used, the joint score described below should also be provided in the report.

Longitudinal translation (side shift) is defined as the position of the center of the dowel bar in relation to the sawed joint. The maximum allowable longitudinal translation (side shift) is 50 mm.

Horizontal translation is defined as difference in the actual dowel bar location from its theoretical position as detailed in the standard details. The maximum allowable horizontal translation is 50 mm.

Vertical translation (depth) is the difference in the actual dowel bar location from the theoretical midpoint of the slab. The maximum allowable vertical translation is 12.5 mm higher than the theoretical midpoint, and 25 mm lower than the theoretical midpoint.

Dowel bar misalignment, either vertical tilt or horizontal skew is defined as the difference in position of the dowel bar ends with respect to each other. Vertical tilt is measured in the vertical axis whereas horizontal skew is measured in the horizontal axis.

If a dowel bar inserter is used, determine a joint score for each joint scanned. The joint score is a measure of the combined effects from the dowel's horizontal skew or vertical tilt. The joint score is determined by summing the product of the weight (shown in the table below) and the number of bars in each misalignment category and adding 1. The vertical tilt and horizontal skew should be evaluated and the greater misalignment shall be utilized in determining the joint score. If two lanes are poured simultaneously, the joint score is calculated for the 730 cm section.

Misalignment Category, mm	Weight	
$0 \le d \le 15$	_	0
$15 < d \le 20$		2
20 < d <= 25		4
25 < d <= 38		5
38 <= d	10	

where d is the individual dowel bar misalignment.

A joint that has a joint score of 10 or greater will be considered locked.

When a locked joint as defined above is discovered, scan the two joints immediately adjacent to the locked joint. If either of the adjacent joints are deemed to be locked, provide a written proposal to address the dowel misalignment for each locked joint. No corrective action should be performed without written approval.

Any and all corrective action necessitated by improper joint alignment shall be at no cost to the Department.

Page 7-8, Article 700-13 USE OF NEW PAVEMENT OR SHOULDER, delete the Article and substitute the following:

Traffic or other heavy equipment will not be allowed on the concrete pavement or shoulder until the estimated compressive strength of the concrete using the maturity method has exceeded 20.6 MPa unless otherwise permitted.

Estimate the compressive strength of concrete pavement in accordance with the most current version of ASTM C1074 unless otherwise specified herein.

Furnish thermocouples or thermistors and digital data logging maturity meters that automatically compute and display the maturity index in terms of a temperature-time factor. The maturity meters must be capable of storing a minimum of 28 days worth of data and exporting data into an Excel spreadsheet. Submit the proposed equipment to the Engineer for approval.

When establishing a strength-maturity relationship, perform compressive tests at ages 1, 3, 7, 14 and 28 days in accordance with AASHTO Test Method T22.

Use the temperature-time factor maturity function to compute the maturity index from the measured temperature history of the concrete. Set the datum temperature at -10° C to calculate the temperature-time factor in Equation 1 of ASTM C1074.

Establish and submit a strength-maturity relationship in conjunction with each concrete pavement mix design. Determine the temperature-time factor corresponding to the strength-maturity relationship at 20.6 MPa, TTF. Any changes to plant operations, material sources, or mix proportions will affect the strength-maturity relationship. If any changes occur during production, develop a new strength-maturity relationship unless otherwise directed.

Verify the strength-maturity relationship during the first day's production. Utilize the temperature-time factor developed at mix design TTF to verify the production strength-maturity relationship. Verify the strength-maturity relationship at a minimum of every 10 calendar days or when production is suspended for more than 10 days. If the verification sample's compressive strength when tested at TTF is less than 20.6 MPa, immediately suspend early opening of traffic on pavement that has not obtained TTF until a new strength-maturity relationship is developed.

No permanent traffic will be allowed on the pavement until construction of the joints, including all sawing, sealing, and curing that is required, has been completed.

Take particular care to protect the exposed pavement edges and ends.

Page 7-9, Subarticle 700-15(E) Flexural Strength, delete the Subarticle and replace with the following:

(E) Compressive Strength

Determine the compressive strength of concrete using one set of two 15cm x 30.5 cm cylinders at 28 calendar days. Test samples will be made by the Engineer from the concrete as it comes from the mixer. The samples will be made and cured in accordance with AASHTO T 23. Test specimens will be tested by the Engineer in accordance with AASHTO T22. Furnish curing facilities for the test samples in accordance with Section 725.

Page 7-9, Subarticle 700-15(F) Thickness, delete the first and second paragraphs and replace with the following:

The thickness of the pavement will be determined by measurement of cores in accordance with AASHTO T148.

Take 10 cm diameter cores in the presence of the Engineer. Take the cores when the concrete has attained a compressive strength of at least 20.6 MPa and at least 72 hours have elapsed since placement of the pavement. If the concrete has not attained a compressive strength of at least 20.6 MPa, the gross vehicle weight rating of vehicles supporting the coring operation may not exceed 3,175 kg. Take cores no later than 30 days after the pavement has been placed. The core locations for each lot will be selected at random by the Engineer.

Patch all core holes within 72 hours of taking the core, using a Department approved nonshrink grout compatible with the pavement or shoulder concrete.

SECTION 710 CONCRETE PAVEMENT

Page 7-10, Article 710-1 DESCRIPTION, 1st sentence:

Insert and cylinders after the words test beams.

Insert verifying dowel bar alignment; after the words sealing joints;

Page 7-10, Article 710-3 COMPOSITION OF CONCRETE, after the first paragraph, insert the following:

Prior to placement, concrete produced by the plant must demonstrate that it is represented by the mix design submitted. The Engineer will make compressive and flexural samples from plant produced mix for testing at 1, 3, 7, 14 and 28 days of age. The strength results must be within 10% of the strengths reported by the Contractor during the mix design process. If the plant produced mix meets this criteria at 14 days of age, the Engineer will notify the Contractor that placement of concrete may commence.

If any major change as defined in Article 1000-3 is made to the mix design, the process shall be initiated again.

Page 7-10, Article 710-4 ACCEPTANCE OF CONCRETE, delete the first sentence and replace with the following:

Test the concrete pavement for acceptance with respect to compressive strength and thickness on a lot by lot basis in accordance with the requirements of Article 700-15 and the following requirements:

For all concrete pavement, including mainline, shoulders, ramps, tapers, intersections, entrances, crossovers, and irregular areas not otherwise defined, produce a lot consisting of 1,333.3 square yards or fraction thereof placed within 28 calendar days. From each lot, make a minimum of one set of two 15 cm x 30.5 cm cylinders from a randomly selected batch of concrete. The average compression strength of the two cylinders is considered one test. If Division of Highways personnel make and test additional sets of cylinders for a lot, these sets will be averaged with the original set to determine the strength. In the case of low strength, the Engineer will perform an investigation.

Page 7-10, Article 710-6 FINISHING, insert the following at the end of the last paragraph:

Provide a textured surface with an average texture depth of 0.8 mm as tested in accordance with ASTM E965 (*Test Method for Measuring Pavement Macrotexture Depth Using a Sand Volumetric Technique*) with no single test having a texture depth of 0.5 mm or less. Perform four randomly located tests in accordance with ASTM E965 within the initial pavement lot of each mobilization and provide test results to the Engineer. A lot is defined in Article 710-4. If

the average of the four tests does not meet the above criteria, make appropriate changes to the surface texture operations and test the next lot as detailed above. Once the surface texture process is established to meet minimum texture requirements, maintain consistency within the operation to provide the above minimum texture depth. Perform additional sand patch tests in accordance with ASTM E965 when directed.

Should the surface texture become damaged or reduced by rain, grinding or any other action, reestablish or restore surface texture by an approved method.

Page 7-12, Article 710-9 Thickness Tolerances, delete the 4th and 5th paragraph and substitute with the following:

When the measurement of the core from a lot is deficient by 5.1 mm or less from the plan thickness, full payment will be made. When such measurement is deficient by more than 5.1 mm from the plan thickness, take 2 additional cores at random within the lot and calculate the average thickness of the lot from the 3 cores. In determining the average thickness of the pavement lot, the Engineer will use all 3 core measurements. Individual core measurements which are greater than the plan thickness plus 5.1 mm will be considered as the plan thickness plus 5.1 mm. Individual cores which are less than the plan thickness minus 25 mm will be considered as the plan thickness minus 25 mm. If the average measurement of the 3 cores is within 5.1 mm from the plan thickness, full payment will be made. If the average measurement of the 3 cores is deficient by more than 5.1 mm from the plan thickness, an adjusted unit price in accordance with Subarticle 710-10(B) will be paid for the lot represented.

Areas found deficient in thickness by more than 1.0" will be removed and replaced with concrete of the thickness shown on the plans. Any full lane or full shoulder width repairs to the concrete pavement must be performed in accordance with the *North Carolina Department of Transportation Partial and Full Depth Repair Manual* and not be less than 1/2 of the panel length (2.3 meters).

When the measurement of any core (original core or additional cores taken to calculate the average) is less than the plan thickness by more than 25 mm, the extent of the removal area due to thickness deficiency will be determined by taking additional exploratory cores at approximately 3 meter intervals parallel to the center line in each direction from the deficient core until an exploratory core is found in each direction which is within 25 mm of the plan thickness. The pavement between these exploratory cores will be removed full lane width wide and replaced with concrete of the thickness shown on the plans. Exploratory cores for deficient thickness will not be used in averages for adjusted unit price. Patch all core holes within 72 hours of taking the core, using a Department approved nonshrink grout compatible with the pavement concrete.

Page 7-12, Subrticle 710-10 (A) General, delete the second paragraph and substitute the following:

Separate measurement will be made of pavement that is deficient in thickness by more than 5.1 mm and of pavement that is deficient in compressive strength.

Page 7-13, Subarticle 710-10(C) Concrete Pavement Varying In Flexural Strength, delete the title, first paragraph and the equation for the pay factor calculation and substitute the following:

(C) Concrete Pavement Varying in Compressive Strength

The pay factor for pavement achieving a compressive strength in 28 days of 31.0 MPa or greater is 100%. The pay factor for pavement achieving a compressive strength in 28 days between 20.6 MPa and 31.0 MPa is determined by the following formula:

Pay Factor (%) = 0.0002296(MPa) - 50

(pay factor rounded to nearest tenth of one percent)

Page 7-13, Subarticle 710-10(C) Concrete Pavement Varying In Flexural Strength, delete the first sentence of the third paragraph and substitute the following:

Any pavement that fails to attain 20.6 MPa in compression is subject to removal.

Page 7-15, Article 720-4 ACCEPTANCE OF CONCRETE, delete the first sentence and substitute the following:

Concrete shoulders will be tested for acceptance with respect to compressive strength and thickness on a lot by lot basis.

Page 7-15, Article 720-9 THICKNESS TOLERANCES, replace the first paragraph with the following:

The thickness of the shoulder will be determined by measurement of cores in accordance with AASHTO T148.

Page 7-16, Subarticle 720-10(C) Concrete Shoulder Varying in Flexural Strength, delete the title and the first sentence of the second paragraph and substitute the following, respectively:

(C) Concrete Pavement Varying in Compressive Strength

The quantities of concrete shoulder that fail to meet 31.0 MPa, measured as provided in Article 710-10, will be paid for at an adjusted unit price per square yard completed in place and accepted.

SECTION 725 FIELD LABORATORY FOR PORTLAND CEMENT CONCRETE PAVEMENT

Page 7-17, Subarticle 725-2, General Requirements, replace with the following:

Furnish and maintain for the exclusive use of the Engineer a field office and laboratory in which to house and use all testing equipment needed. Only Department representatives will have access to these facilities. Provide a field office that is dust and water tight, floored, and has an adequate foundation so as to prevent excessive floor movement. Provide a field office that contains 6 or more 110 volt electrical double outlets properly grounded and spaced; a telephone;

at least 2 windows, satisfactory locks on all doors and windows; adequate lighting, heating, and air conditioning; sink; running water to sink; and satisfactory exhaust fan. Provide a field office that meets the following approximate minimum requirements: 18.6m² of floor space; 3 meter interior width; 2 meters interior height; 1.9 m² of counter space, 0.8 to 0.9 meters high and 0.6 meters deep with cabinets or drawers below the counter top; and 0.6 m² of desk space not enclosed with cabinets. Locate the office in a position that will permit full view of the plant from the interior of the office. At or near the office, furnish toilet facilities, with waste disposal, available for use of the Department personnel. Maintain these toilets in a neat and clean condition.

Provide a laboratory trailer adjacent to the field office that is at least 37.2 m² in area, approximately 6.1 meters wide, 6.1 meters long, and 2.1 meters in height. Provide a laboratory trailer that contains 6 or more 110 volt electrical double outlets properly grounded and spaced; satisfactory locks on all doors and windows; adequate lighting, heating, and air conditioning; sink; running water to sink; and satisfactory exhaust fans. Provide two workbenches that are approximately 3 meters long, 0.6 meters wide, and 0.8 meters high. One workbench shall be installed inside the trailer and the other across the end of the trailer. Provide a shelter or roof over the outside workbench to provide protection from weather. Provide, in the laboratory, an adequate number of water storage tanks to hold all acceptance beams and any additional beams made for the purpose of determining early strengths. Construct the water storage tanks of noncorroding materials and have requirements for automatic control of the water temperature. Maintain the water in the tank at a temperature of 23°C ±1.7°C. Equip each tank with a recording thermometer with its bulb located in the water. Provide sufficient tank volume to maintain all beams, stored with the long axis vertical, in a fully submerged condition for the duration of the required curing period. Furnish a wooden mixing board at least 19 mm thick and approximately 1.2 meters wide and 1.2 meters long, that is covered on one side with sheet metal of at least 22 gage, at the shelter. Provide facilities to maintain the test beams at temperature between 16°C and 27°C during initial curing.

BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES:

(12-18-07) (4-15-08) M8 R02

Revise the 2006 Metric Standard Specifications as follows:

Division 2 Earthwork

Page 2-12, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence.

Page 2-13, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following:

Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places.

Division 8 Incidentals

Page 8-8, Article 802-2 General Requirements, add the following as the 1st paragraph:

Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site.

Page 8-8, Article 802-2, General Requirements, 7th paragraph, add the following as the 2nd sentence:

The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project.

GUARDRAIL ANCHOR UNITS, TYPE M-350:

(4-20-04) M8 R60

Description

Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Metric Standard Specifications, and at locations shown in the plans.

Materials

The Contractor may, at his option, furnish any one of the following guardrail anchor units.

The guardrail anchor unit (SRT-350) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976

The guardrail anchor unit (FLEAT) as manufactured by:

Road Systems, Inc. 3616 Old Howard County Airport Big Springs, Texas 79720 Telephone: 915-263-2435

The guardrail anchor unit (REGENT) as manufactured by:

Energy Absorption Systems, Inc. One East Wacker Drive Chicago, Illinois 60601-2076 Telephone: 888-32-ENERGY Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Metric Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Metric Standard Specifications.

No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

Construction Methods

Guardrail end delineation shall be required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Metric Standard Specifications and is incidental to the cost of the guardrail anchor unit.

Measurement and Payment

Measurement and payment will be made in accordance with Article 862-6 of the 2006 Metric Standard Specifications.

Payment will be made under:

Pay ItemPay UnitGuardrail Anchor Units, Type M-350Each

GUARDRAIL ANCHOR UNITS, TYPE 350:

(4-20-04) (Rev 8-16-11)

M8 R65

Description

Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Metric Standard Specifications, and at locations shown in the plans.

Materials

The Contractor may at his option, furnish any one of the guardrail anchor units or approved equal.

Guardrail anchor unit (ET-Plus) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976

The guardrail anchor unit (SKT 350) as manufactured by:

Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435

Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Metric Standard Specifications.

No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

Construction Methods

Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Metric Standard Specifications and is incidental to the cost of the guardrail anchor unit.

Measurement and Payment

Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Metric Standard Specifications.

Payment will be made under:

Pay ItemPay UnitGuardrail Anchor Units, Type 350Each

STEEL U-CHANNEL POSTS AND STEEL SQUARE TUBE SUPPORTS:

(7-18-06) (Rev 1-18-11)

M9 R02

Revise the 2006 Standard Specifications as follows:

Page 9-15 Subarticle 903-3(D) delete the last sentence in the first paragraph and add the following:

Use posts of sufficient length to permit the appropriate sign mounting height. Spliced posts are not permitted on new construction.

Page 9-16 Subarticle 903-3(G) delete the last sentence in the first paragraph and add the following:

Use posts of sufficient length to permit the appropriate sign mounting height. Spliced posts are not permitted on new construction.

Page 9-16 Subarticle 903-3(G), delete the fourth paragraph and add the following:

Do not weld or cut supports in the field except for the saw cutting of steel square tube material for the frames and cross-braces that may be required for Types D, E, and F signs with two or more supports.

SHIPPING SIGNS:

5 15 07

M9 R03

Revise the 2006 Metric Standard Specifications as follows:

Page 9-2, Section 901-3(A), General, add the following as the 7th paragraph:

Ship all multi-panel signs to the project intact, completely assembled and ready to be hung. Fabricate signs taller than 3.6 m as 2 separate signs with a horizontal splice, ready to be spliced and hung. No assembly other than a horizontal splice will be permitted.

GALVANIZED HIGH STRENGTH BOLTS, NUTS AND WASHERS:

(2-17-09) (Rev 5-17-11)

M10 R02

Revise the *Metric Standard Specifications* as follows:

Page 10-101, Subarticle 1072-7(F)(3) Change the AASHTO reference to ASTM B695 Class 55.

Page 10-201, Table 1092-2, Steel Sign Materials, Change High Strength Bolts, Nuts & Washers ASTM Specifications for Galvanizing to B695 Class 55.

Page 10-211, Subarticle 1094-1(A) Breakaway or Simple Steel Beam Sign Supports, replace the first full paragraph with the following:

Fabricate high strength bolts, nuts, and washers required for breakaway supports from steel in accordance with ASTM A325 and galvanize in accordance with ASTM B695 Class 55.

Page 10-212, Article 1096-2 Steel Overhead Sign Structures, replace the last sentence with the following:

The galvanizing shall meet ASTM B695 Class 55 for fasteners and ASTM A123 for other structural steel.

GALVANIZING:

(8-17-10) M10 R03

Revise the 2006 Metric Standard Specifications as follows:

Page 10-121, Subarticle 1076-1, Galvanizing, add a second paragraph as the follows:

Allow the Engineer to obtain samples of molten zinc directly from the galvanizing vat upon request.

AGGREGATE PRODUCTION:

(11-20-01) M10 R05

Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Metric Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

CONCRETE BRICK AND BLOCK PRODUCTION:

(11-20-01) M10 R10

Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Metric Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

VOLUMETRIC CONCRETE BATCHING:

(5-18-10) M10 R13

Revise the 2006 Standard Specifications as follows:

Page 10-19, after Article 1000-12, add the following as a new article:

1000-13 VOLUMETRIC MIXED CONCRETE

Upon written request by the contractor, the Department may approve the use of concrete proportioned by volume. The volumetric producer must submit and have approved a process control plan and product quality control plan by the Materials and Tests Unit. If concrete is

proportioned by volume, the other requirements of these specifications with the following modifications will apply. Unless otherwise approved by the Department, use of concrete proportioned by volume shall be limited to Class B concrete and a maximum of 22.94 cubic meters per unit per day.

(A) Materials

Use materials that meet the requirements for the respective items in the *Standard Specifications* except that they will be measured by a calibrated volume-weight relationship.

Storage facilities for all material shall be designed to permit the Department to make necessary inspections prior to the batching operations. The facilities shall also permit identification of approved material at all times, and shall be designed to avoid mixing with or contaminating by unapproved material. Coarse and fine aggregate shall be furnished and handled so variations in the moisture content affecting the uniform consistency of the concrete will be avoided.

Moisture content of the coarse and fine aggregate will be made available onsite for the Engineer's review for each load. The frequency of moisture testing will be dependent on certain variables such as weather, season and source; however, moisture tests should be performed at least once at the beginning of the work day for each source material. Additional daily moisture tests for the coarse and fine aggregate shall be performed if requested by the Engineer.

Unused materials should be emptied from hopper daily. Concrete should not be mixed with materials that have been left in the hopper overnight.

(B) Equipment

Provide volumetric mixers with rating plates indicating that the performance of the mixer is in accordance with the Volumetric Mixer Manufacturer Bureau or equivalent. Mixers must comply with ASTM C685. Unless otherwise specified, all mixing operations must be in strict accordance with the manufacturer's recommended procedures. Such procedures shall be provided to the Department for review upon request.

The volumetric mixer shall be capable of carrying sufficient unmixed dry bulk cement, pozzolan (if required), fine aggregate, coarse aggregate, admixtures and water, in separate compartments and accurately proportioning the specified mix. Each batching or mixing unit (or both) shall carry in a prominent place a metal plate or plates on which are plainly marked the gross volume of the unit in terms of mixed concrete, discharge speed and the weight-calibrated constant of the machine in terms of a revolution counter or other output indicator.

The concrete mixing device shall be an auger-type continuous mixer used in conjunction with volumetric proportioning. The mixer shall produce concrete, uniform in color and

appearance, with homogeneous distribution of the material throughout the mixture. Mixing time necessary to produce uniform concrete shall be established by the contractor and shall comply with other requirements of these specifications. Only equipment found acceptable in every respect and capable of producing uniform results will be permitted.

Each volumetric mixer shall be equipped with an onboard ticketing system that will electronically produce a record of all material used and their respective weights and the total volume of concrete placed. Alternate methods of recordation may be used if approved by the Engineer. Tickets should also identify the following information, at minimum:

- Contractor Name
- Contractor Phone Number
- NCDOT Project No. and TIP No.
- Date
- Truck No.
- Ticket No.
- Time Start/End of Pour
- Mix ID & Description (Strength)
- Aggregate Moisture Before Mixing

(C) Proportioning Devices

Volume proportioning devices, such as counters, calibrated gate openings or flow meters, shall be easily accessible for controlling and determining the quantities of the ingredients discharged. All indicating devices that affect the accuracy of proportioning and mixing of concrete shall be in full view of and near enough to be read by the operator and Engineer while concrete is being produced. In operation, the entire measuring and dispensing mechanism shall produce the specified proportions of each ingredient.

The volumetric mixer shall provide positive control of the flow of water and admixtures into the mixing chamber. Water flow shall be indicated by a flow meter and be readily adjustable to provide for slump control and/or minor variations in aggregate moisture. The mixer shall be capable of continuously circulating or mechanically agitating the admixtures.

Liquid admixtures shall be dispensed through a controlled, calibrated flow meter. A positive means to observe the continuous flow of material shall be provided. If an admixture requires diluting, the admixture shall be diluted and thoroughly mixed prior to introducing the admixture into the dispenser. When admixtures are diluted, the ratio of dilution and the mixing shall be approved by and performed in the presence of the Department.

The volumetric mixer shall be capable of measurement of cement, pozzolan (if required), liquids and aggregate being introduced into the mix.

(D) Calibration

Volume-weight relationships will be based on calibration. The proportioning devices shall be calibrated by the contractor prior to the start of each NCDOT job, and subsequently at intervals recommended by the equipment manufacturer. Calibrations will be performed in the presence of the Department and subject to approval from the Department. Calibration of the cement and aggregate proportioning devices shall be accomplished by weighing (determining the mass of) each component. Calibration of the admixture and water proportioning devices shall be accomplished by weight (mass) or volume. Tolerances in proportioning the individual components will be as follows:

TABLE 1000-4
VOLUMETRIC MIXED CONCRETE CALIBRATION
PROPORTION TOLERANCES

Item	Tolerance
Cement, Weight (Mass) percent	0 to +4
Fine Aggregate, Weight (Mass) percent	± 2
Coarse Aggregate, Weight (Mass) percent	± 2
Admixtures, Weight (Mass) or Volume percent	± 3
Water, Weight (Mass) or Volume percent	± 1

Each volumetric mixer must be accompanied at all times by completed calibration worksheets and they shall be made available to the Department upon request.

(E) Verification of Yield

Verification of the proportioning devices may be required at any time by the Department. Verification shall be accomplished by proportioning the rock and sand based on the cement meter count for each concrete mobile mixer. Once the count (revolutions) for 42.64 kilograms of cement has been determined then delivery of the correct amount of rock and sand can be verified.

(F) Uniformity

When concrete is produced, have present during all batching operations a Certified Concrete Batch Technician. During batching and placement, the sole duty of this employee is to supervise the production and control of the concrete, perform moisture tests, adjust mix proportions of aggregates for free moisture, complete and sign approved delivery tickets, and assure quality control of the batching.

Two samples of sufficient size to make the required tests will be taken after discharge of approximately 15 and 85 percent of the load. Each of the 2 samples of concrete will be separately tested for the properties listed in Table 1000-3. Tests will be conducted in accordance with the test procedures specified in Table 1000-3 or procedures established by the Materials and Tests Unit. The Engineer may recheck mixer performance at any time when in his opinion satisfactory mixing is not being accomplished.

PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction): (2-20-07)

M10 R16

Revise the 2006 Metric Standard Specifications as follows:

Article 1024-1(A), replace the 2nd paragraph with the following:

Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1.

Obtain the list of reactive aggregates documented by the Department at: http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf

Table 1024-1 Pozzolans for Use in Portland Cement Concrete		
Pozzolan	Rate	
Class F Fly Ash	20% by weight of required cement content, with 1.2 kg Class F fly ash per kg of cement replaced	
Ground Granulated Blast Furnace Slag	35%-50% by weight of required cement content with 1 kg slag per kg of cement replaced	
Microsilica	4%-8% by weight of required cement content, with 1 kg microsilica per kg of cement replaced	

WATER FOR CONCRETE:

M10 R17

Revise the 2006 Metric Standard Specifications for Roads and Structures as follows:

Page 10-51, Article 1024-4, replace article with the following:

1024-4 WATER

Ensure that water used to condition, wash, or as an integral part of materials is clear and free from injurious amounts of oil, acid, alkali, organic matter, or other deleterious substance. It shall not be salty or brackish. Water used in the production of concrete or grout shall be from wells or public water systems which are suitable for drinking and must meet the criteria listed in Table 1024-1.

Test all water from wells and public water supplies from all out of state locations and in the following counties: Beaufort, Bertie, Brunswick, Camden, Carteret, Chowan, Craven, Currituck, Dare, Gates, Hyde, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrell,

M10 R35

and Washington unless the Engineer waives the testing requirements. Water from a municipal water supply in all other NC counties may be accepted by the Engineer without testing.

TABLE 1024-1 ACCEPTANCE CRITERIA FOR WATER USED IN THE PRODUCTION OF CONCRETE

Requirement	Limit	Test Method
Compressive Strength, minimum	00 manaamt	NCDOT Modified /
percent of control at 3 and 7 days	90 percent	AASHTO T106
Time of set, deviation from	From 1:00 hr. earlier	NCDOT Modified /
control	to 1:30 hr. later	AASHTO T131
	4.5 to 8.5	NCDOT Modified /
рН	4.5 10 6.5	AASHTO T26
Chloride Ion Content, Max.	250 ppm	ASTM D512
Total Solids Content (Residue), Max.	1000 ppm	NCDOT Modified / Standard
		Methods for Examination of Water
		and Wastewater
Resistivity, Min.	0.500 kohm-cm	NCDOT Modified /
	0.300 komm-cm	ASTM D1125
Sulfate as SO _{4,} , Max.	1500 ppm	NCDOT Modified /
		ASTM D516
Presence of Sugar	None	NCDOT Procedure
	N	NCDOT Modified /
Dissolved Organic Matter	None	AASHTO T26

Page 10-53, Article 1026-4, replace article with the following:

1026-4 WATER

All water used for curing concrete shall meet the requirements of Article 1024-4 and Table 1024-1. Water from wells, streams, ponds, or public water systems may be used.

GLASS BEADS: (7-18-06)(Rev 10-19-10)

Revise the 2006 Metric Standard Specifications as follows:

Page 10-181, 1087-4(A) Composition, add the following as the fourth paragraph:

Glass beads shall have no more than 75 parts per million of arsenic as determined by the United States Environmental Protection Agency Method 6010B in conjunction with the United States Environmental Protection Agency Method 3052 modified.

Page 10-182, 1087-4(C) Gradation & Roundness, delete the last paragraph and replace the second sentence of the first paragraph with the following:

All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155.

Page 10-184, 1087-8 Material Certification, add the following below the first sentence:

Glass Beads (for paint, thermoplastic and polyurea) – Type 3 Material Certification for no more than 75 parts per million of arsenic

ENGINEERING FABRICS:

(7-18-06) (Rev 10-19-10)

M10 R40

Revise the 2006 Metric Standard Specifications as follows:

Page 10-78, Delete Section 1056 ENGINEERING FABRICS and replace it with the following:

SECTION 1056 ENGINEERING FABRICS

1056-1 General

Use engineering fabrics that meet the requirements of Article 4.1 of AASHTO M288 and have been evaluated by National Transportation Product Evaluation Program (NTPEP). When required, sew fabrics together in accordance with Article X1.1.4 of AASHTO M288. Provide sewn seams with seam strengths meeting the required strengths for the engineering fabric type and class specified.

Load, transport, unload and store fabrics such that they are kept clean and free of damage. Label, ship and store fabrics in accordance with Section 7 of AASHTO M288. Fabrics with defects, flaws, deterioration or damage will be rejected. Do not unwrap fabrics until just before installation. With the exception of fabrics for temporary silt fences and mechanically stabilized earth (MSE) wall faces, do not leave fabrics exposed for more than 7 days before covering fabrics with material.

When required, use pins a minimum of 5 mm in diameter and 450 mm long with a point at one end and a head at the other end that will retain a steel washer with a minimum outside diameter of 38 mm. When wire staples are required, provide staples in accordance with Subarticle 1060-8(D) of the 2006 Metric Standard Specifications.

1056-2 Fabric Properties

Provide Type 1 Certified Mill Test Report, Type 2 Typical Certified Mill Test Report or Type 4 Certified Test Report in accordance with Article 106-3 of the 2006 Metric Standard Specifications. Furnish certifications with minimum average roll values (MARV) as defined by ASTM D4439 for all fabric properties with the exception of elongation and apparent opening size (AOS). For testing fabrics, a lot is defined as a single day's production.

M10 R43

Provide engineering fabric types and classes in accordance with the contract. Machine direction (MD) and cross-machine direction (CD) are as defined by ASTM D4439. Use woven or nonwoven fabrics with properties meeting the requirements of Table 1056-1.

TABLE 1056-1
FABRIC PROPERTY REQUIREMENTS

Property	ASTM	Requirements (MARV ¹)				
Test Method	Type 1	Type 2	Type 3 ²	Type 4	Type 5 ³	
Typical Application		Shoulder Drains	Under Riprap	Temporary Silt Fence	Soil Stabilization	Temporary MSE Walls
Elongation (MD & CD)	D4632	≥ 50 %	≥ 50 %	≤25 %	< 50 %	< 50 %
Grab Strength (MD & CD)	D4632	400 N	900 N	445 N	800 N	
Tear Strength (MD & CD)	D4533	180 N	350 N		300 N	·
Puncture Strength	D6241	900 N	1925 N		1650 N	·
Wide Width Tensile Strength @ Ultimate (MD & CD)	D4595					35 kN/m (unless required otherwise in the contract)
Permittivity	D4491	0.20 sec ⁻¹	0.20 sec ⁻¹	0.05 sec ⁻¹	0.05 sec ⁻¹	$0.20~{\rm sec^{-1}}$
Apparent Opening Size (AOS) ⁴	D4751	0.25 mm	0.25 mm	0.60 mm	0.43 mm	0.60 mm
Ultraviolet Stability (retained strength) ⁵	D4355	50 %	50 %	70 %	50 %	50%

¹MARV does not apply to elongation and AOS

QUALIFICATION OF WELDS AND PROCEDURES:

(7-21-09)

Page 10-114, Subarticle 1072-20(D) Qualification of Welds and Procedures, replace the third sentence of the first paragraph with the following:

For all prequalified field welds, submit Welding Procedure Specifications (WPS) for each joint configuration for approval at least 30 days prior to performing any welding. In lieu of this, use

²Minimum roll width of 900 mm required

³Minimum roll width of 4 m required unless otherwise approved

⁴Maximum average roll value

⁵After 500 hours of exposure

the WPS provided and preapproved by the Department. These preapproved WPS are available from the Materials and Tests Unit or at:

http://www.ncdot.org/doh/operations/materials/structural/appr_proc.html. Use non-prequalified welds only if approved by the Engineer. Submit WPS for all non-prequalified welds to the Engineer for approval. At no cost to the Department, demonstrate their adequacy in accordance with the requirements of the Bridge Welding Code.

CHANNELIZING DEVICES (Drums):

7-20-10 M10 R60

Revise the 2006 Metric Standard Specifications as follows:

Page 10-192, Subarticle 1089-5(A) Drums (1) General, replace the paragraph with the following:

(1) General

Provide drums composed of a body, alternating orange and white 4 band pattern of Type III-High Intensity Microprismatic Sheeting and ballasts that have been evaluated by NTPEP.

The following guidelines will be used during the transition from drums with the standard 5 band engineer's grade sheeting to the new 4 band configuration.

- (a) All <u>new</u> drums purchased <u>after July 20, 2010</u> shall have the new sheeting and 4 band configuration.
- (b) Existing 5 band drums with engineer's grade sheeting (both new and used devices in existing inventories) will be allowed for use on all on-going construction projects until project completion and will also be allowed for use on other projects until a sunset date has been established.
- (c) Intermixing of "old drums" and "new drums" on the same project is acceptable during the transition.
- (d) 4 band drums with engineer's grade sheeting will not be allowed at anytime.

Page 10-192, Subarticle 1089-5(A) Drums (3) Retroreflective Stripes, replace the paragraph with the following:

(3) Retroreflective Bands

Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands. The top band shall always be orange. Use a 150mm to 200 mm wide band Type III—High Intensity Microprismatic Retroreflective Sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 50 mm for any non-reflective spaces between orange and white stripes. Do not splice the

retroreflective sheeting to create the 150 mm band. Apply the retroreflective sheeting directly to the drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the drums, or vehicle impact.

Page 10-193, Subarticle 1089-5(B) Skinny-Drums (1) General, replace the paragraph with the following:

(1) General

All existing skinny-drums that do not have Type III-High Intensity Microprismatic Sheeting as a minimum will have the same transition requirements as drums as stated above. All <u>new</u> skinny-drums purchased <u>after July 20, 2010</u> shall have Type III-High Intensity Microprismatic Sheeting as the minimum. Type IV and higher grade sheeting is acceptable for use on both new and used devices.

Provide skinny-drums composed of a body, reflective bands, and ballasts that have been evaluated by NTPEP.

Page 10-193, Subarticle 1089-5(B) Skinny Drums (3) Retroreflective Stripes, replace the paragraph with the following:

(3) Retroreflective Bands

Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands for each skinny-drum. The top band shall always be orange. Use a 150mm to 200 mm wide band Type III—High Intensity Microprismatic Retroreflective Sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 50 mm for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 150 mm band. Apply the retroreflective sheeting directly to the skinny-drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the skinny-drums, or vehicle impact.

CHANGEABLE MESSAGE SIGNS

(11-21-06) M11 R11

Revise the 2006 Metric Standard Specifications as follows:

Page 11-7, Article 1120-3, Replace the 3rd sentence with the following:

Sign operator will adjust flash rate so that no more than two messages will be displayed and be legible to a driver when approaching the sign at the posted speed.

WORK ZONE TRAFFIC CONTROL:

(8-16-11) M11 R20

Revise the 2006 Metric Standard Specifications as follows:

Page 11-3, Article 1101-12 Traffic Control Supervision, in addition to the stated requirements, add the following:

Provide the service of at least one qualified Work Zone Supervisor. The Work Zone Supervisor shall have the overall responsibility for the proper implementation of the traffic management plan, as well as ensuring all employees working inside the NCDOT Right of Way have received the proper training appropriate to the job decisions each individual is required to make.

The work zone supervisor is not required to be on site at all times but must be available to address concerns of the Engineer. The name and contact information of the work zone supervisor shall be provided to the Engineer prior to or at the preconstruction conference.

Qualification of Work Zone Supervisors shall be done by an NCDOT approved training agency or other approved training provider. For a complete listing of these, see the Work Zone Traffic Control's webpage, http://www.ncdot.gov/doh/preconstruct/wztc/.

Page 11-10, Article 1150-3 Construction Methods, replace the article with the following:

Provide the service of properly equipped and qualified flaggers (see *Roadway Standard Drawings* No. 1150.01) at locations and times for such period as necessary for the control and protection of vehicular and pedestrian traffic. Anyone who controls traffic is required to be qualified. Qualification consists of each flagger receiving proper training in the set-up and techniques of safely and competently performing a flagging operation. Qualification of flaggers is to be done at an NCDOT approved training agency. For a complete listing of these, see the Work Zone Traffic Control's webpage, http://www.ncdot.gov/doh/preconstruct/wztc/.

Prior to beginning work on the project, a Qualification Statement that all flaggers used on the project have been properly trained through an NCDOT approved training resource shall be provided to the Engineer.

Flagging operations are not allowed for the convenience of the Contractor's operations. However, if safety issues exist (i.e. sight or stopping sight distance), the Engineer may approve the use of flagging operations. Use flagging methods that comply with the guidelines in the MUTCD.

M12 R01

PAVEMENT MARKING LINES:

(11-21-06) (Rev. 08-17-10)

Revise the 2006 Metric Standard Specifications as follows:

Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart:

Facility Type	Marking Type	Replacement Deadline
Full-control-of-access multi-lane	All markings	By the end of each workday's
roadway (4 or more total lanes) and	including	operation if the lane is opened to
ramps, including Interstates	symbols	traffic

Page 12-4, 1205-3 (H) Observation Period, delete 1205-3 (H) and replace with the following:

Maintain responsibility for debonding and color of the pavement markings during a 12 month observation period beginning upon final acceptance of the project as defined under Article 105-17. Guarantee the markings under the payment and performance bond in accordance with Article 105-17.

During the 12 month observation period, provide pavement marking material that shows no signs of failure due to blistering, chipping, bleeding, discoloration, smearing or spreading under heat or poor adhesion to the pavement materials. Pavement markings that debond due to snowplowing will not be considered a failed marking. Replace, at no additional expense to the Department, any pavement markings that do not perform satisfactorily under traffic during the 12 month observation period.

Page 12-6, 1205-4 (C) Application, delete the last two sentences of the second paragraph and replace with the following:

Produce in place markings with minimum retroreflective values shown below, as obtained with a LTL 2000 Retroreflectometer or Department approved mobile retroreflectometer. Retroreflective measurements will be taken within 30 days after final placement of the pavement marking.

Page 12-7, 1205-4 (D) Observation Period, delete the entire section and replace with the following:

In addition to the requirements of Subarticle 1205-3(H), maintain responsibility for minimum retroreflective values for a 30-day period beginning upon the Engineer's acceptance of all markings on the project. Guarantee retroreflective values of the markings during the 30-day period under the payment and performance bond in accordance with Article 105-17.

Page 12-8, 1205-5 (B) Application, delete the second sentence of the fourth paragraph and replace with the following:

Produce in place markings with minimum retroreflective values shown below, as obtained with a LTL 2000 Retroreflectometer or Department approved mobile retroreflectometer. Retroreflective measurements will be taken within 30 days after final placement of the pavement marking.

Page 12-8, 1205-5 (C) Observation Period, delete this entire section and replace with the following:

Maintain responsibility for minimum retroreflective values for a 30-day period beginning upon satisfactory final placement of all markings on the project. Guarantee retroreflective values of the markings during the 30-day period under the payment and performance bond in accordance with Article 105-17.

Page 12-11, Article 1205-9, Maintenance, delete Article 1205-9 and replace with the following:

Replace pavement markings that prematurely deteriorate, fail to adhere to the pavement, lack reflectorization, or are otherwise unsatisfactory during the life of the project or during the 12 month observation period as determined by the Engineer at no cost to the Department.

Upon notification from the Engineer, winterize the project by placing an initial or additional application of paint pavement marking lines in accordance with Article 1205-8. Payment for *Paint Pavement Marking Lines* required to winterize the project will be made in accordance with Article 1205-10 except that no payment will be made on resurfacing projects where paving is completed more than 30 days prior to the written notification by the Department that winterization is required.

Page 12-11, Article 1205-10, Measurement and Payment, add the following after the first sentence of the first paragraph:

In addition, *Paint Pavement Marking Lines* will be paid per linear foot for each 15 mil application placed in accordance with Subarticle 1205-8(C).

PERMANENT SEEDING AND MULCHING: (7-1-95)

M16 R01

The Department desires that permanent seeding and mulching be established on this project as soon as practical after slopes or portions of slopes have been graded. As an incentive to obtain an early stand of vegetation on this project, the Contractor's attention is called to the following:

For all permanent seeding and mulching that is satisfactorily completed in accordance with the requirements of Section 1660, Seeding and Mulching, and within the following percentages of elapsed contract times, an additional payment will be made to the Contractor as an incentive additive. The incentive additive will be determined by multiplying the number of acres of seeding and mulching satisfactorily completed times the contract unit bid price per acre for Seeding and Mulching times the appropriate percentage additive.

Percentage of	Percentage	
Elapsed Contract Time	Additive	
0% - 30%	30%	
30.01% - 50%	15%	

Percentage of elapsed contract time is defined as the number of calendar days from the date of availability of the contract to the date the permanent seeding and mulching is acceptably completed divided by the total original contract time.