PROJECT SPECIAL PROVISIONS

ROADWAY

CLEARING AND GRUBBING METHODS:

Perform clearing on this project to the limits established by Method "II" shown on Standard Drawing No. 200.02 of the 2012 Roadway Standard Drawings at the following locations:

Randolph St. and all wetland areas

Perform clearing on this project to the limits established by Method "III" shown on Standard Drawing No. 200.03 of the 2012 Roadway Standard Drawings at the following locations:

-L- line outside of wetland areas

BURNING RESTRICTIONS:

(7-1-95) 200, 210, 215 SP2 R05

Open burning is not permitted on any portion of the right-of-way limits established for this project. Do not burn the clearing, grubbing or demolition debris designated for disposal and generated from the project at locations within the project limits, off the project limits or at any waste or borrow sites in this county. Dispose of the clearing, grubbing and demolition debris by means other than burning, according to state or local rules and regulations.

BUILDING AND UNDERGROUND STORAGE TANK REMOVAL (U-4444AB):

(1-1-02) (Rev. 1-17-12)

215

SP2 R15 B

Remove the buildings, underground storage tanks and appurtenances listed below in accordance with Section 215 of the 2012 Standard Specifications:

Building Removal Number 1 Parcel 002A – Left of Survey Station 151+80, Line -L-One-Story Metal Business

Building Removal Number 2 Parcel 002A – Left of Survey Station 152+80, Line -L-Metal Canopy

Building Removal Number 3 Parcel 016 – Right of Survey Station 10+00, Line -Y5-One-Story Metal Business

Building Removal Number 4
Parcel 019 – Left of Survey Station 27+00, Line -Y6One-Story Brick Business – Partially Outside of PUE and/or Construction Line
This item was appraised as a "cut-of" item and only first three (3) bays are to be removed.

When the description of the work for an item requires a portion of the building to be cut off, that portion of the buildings and appurtenances located within the right of way and/or construction area shall be cut off by the Contractor and disposed of by him. The Engineer will denote on the building, the line where the building is to be cut off. The Contractor will be required to cut the building off on a neat line along the construction line or right of way boundary designated by the Engineer. The Contractor will not be required to do any repairing to that portion of the building located outside the right of way or construction area or to shore it up in any respect. All of the Contractor's work shall be confined to the right of way and construction area designated by the Engineer. (This paragraph pertains to Item No. 4)

BUILDING AND UNDERGROUND STORAGE TANK REMOVAL (U-4444B):

(1-1-02) (Rev. 1-17-12)

215

SP2 R15 C

Remove the buildings, underground storage tanks and appurtenances listed below in accordance with Section 215 of the 2012 Standard Specifications:

Building Removal Number 1

Parcel 005 - Right of Survey Station 27+20, Line -Y6-

One-Story Frame Dwelling - Partially Outside of PUE and/or Construction Line

Building Removal Number 2

Parcel 011 - Left of Survey Station 170+00, Line -L-

One-Story Brick Business - Partially Outside of PUE and/or Construction Line

Building Removal Number 3

Parcel 024- Center Line of Survey Station 15+00, Line -Y6C-

One-Story Metal Business

Building Removal Number 4

Parcel 034 - Right of Survey Station 18+10, Line -Y6C-

One-Story Frame Dwelling

Building Removal Number 5

Parcel 035 - Right of Survey Station 18+65, Line -Y6C-

One-Story Frame Dwelling - Partially Outside of PUE and/or Construction Line

Building Removal Number 6

Parcel 080 - Right of Survey Station 19+15, Line -Y6C-

One-Story Frame Dwelling - Partially Outside of PUE and/or Construction Line

Building Removal Number 7

Parcel 075 – Left of Survey Station 21+25, Line -Y10-

One-Story Brick Dwelling - Partially Outside of PUE and/or Construction Line

When the description of the work for an item indicates a building partially inside and partially outside the right of way and/or construction area, but does not require the building to be cut off, the entire building shall be removed. (This paragraph pertains to item No.'s 1, 2, 5, 6 and 7).

TEMPORARY DETOURS:

(7-1-95) (Rev. 4-15-08) 1101 SP2 R30 A

Construct temporary detours required on this project in accordance with the typical sections in the plans or as directed.

After the detours have served their purpose, remove the portions deemed unsuitable for use as a permanent part of the project as directed by the Engineer. Salvage and stockpile the aggregate base course removed from the detours at locations within the right of way, as directed by the Engineer, for removal by State Forces. Place pavement and earth material removed from the detour in embankments or dispose of in waste areas furnished by the Contractor.

Aggregate base course and earth material that is removed will be measured and will be paid at the contract unit price per cubic yard for *Unclassified Excavation*. Pavement that is removed will be measured and will be paid at the contract unit price per square yard for *Removal of Existing Pavement*. Pipe culverts removed from the detours remain the property of the Contractor. Pipe culverts that are removed will be measured and will be paid at the contract unit price per linear foot for *Pipe Removal*. Payment for the construction of the detours will be made at the contract unit prices for the various items involved.

Such prices and payments will be full compensation for constructing the detours and for the work of removing, salvaging, and stockpiling aggregate base course; removing pipe culverts; and for placing earth material and pavement in embankments or disposing of earth material and pavement in waste areas.

SHOULDER AND FILL SLOPE MATERIAL:

(5-21-02) 235, 560

SP2 R45 B

Description

Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 560 and Section 235 of the 2012 Standard Specifications.

Measurement and Payment

When the Contractor elects to obtain material from an area located beneath a proposed fill sections which does not require excavation for any reason other than to generate acceptable shoulder and fill slope material, the work of performing the excavation will be considered incidental to the item of Borrow Excavation or Shoulder Borrow. If there is no pay item for Borrow or Shoulder Borrow in the contract, this work will be considered incidental to Unclassified Excavation. Stockpile the excavated material in a manner to facilitate measurement by the Engineer. Fill the void created by the excavation of the shoulder and fill slope material with suitable material. Payment for material used from the stockpile will be made at the contract unit price for Borrow Excavation or Shoulder Borrow, then the material will be paid for at the contract unit price for Unclassified Excavation. The material used to fill the void created by the excavation of the shoulder and fill slope material will be made at the contract unit price for Unclassified Excavation, Borrow Excavation, or Shoulder Borrow, depending on the source of the material.

Material generated from undercut excavation, unclassified excavation or clearing and grubbing operations that is placed directly on shoulders or slope areas, will not be measured separately for payment, as payment for the work requiring the excavation will be considered adequate compensation for depositing and grading the material on the shoulders or slopes.

When undercut excavation is performed at the direction of the Engineer and the material excavated is found to be suitable for use as shoulder and fill slope material, and there is no area on the project currently prepared to receive the material generated by the undercut operation, the Contractor may construct a stockpile for use as borrow at a later date. Payment for the material used from the stockpile will be made at the contract unit price for *Borrow Excavation* or *Shoulder Borrow*.

When shoulder material is obtained from borrow sources or from stockpiled material, payment for the work of shoulder construction will be made at the contract unit price per cubic yard for *Borrow Excavation* or *Shoulder Borrow* in accordance with the applicable provisions of Section 230 or Section 560 of the 2012 Standard Specifications.

SELECT GRANULAR MATERIAL:

(3-16-10) (Rev. 1-17-12)

265

SP2 R80

Revise the 2012 Standard Specifications as follows:

Page 2-28, Article 265-2 MATERIALS, add the following:

Use only Class III select material for select granular material.

Page 2-28, Article 265-4 MEASUREMENT AND PAYMENT, lines 13-30, replace all occurrences of Select Granular Material with Select Granular Material, Class III.

Page 2-28, Article 265-4 MEASUREMENT AND PAYMENT, after line 31, delete the pay item and replace with the following:

Payment will be made under:

Pay Item
Select Granular Material, Class III

Pay Unit Cubic Yard

15" WELDED STEEL PIPE UNDER THE TRACKS OF CAPE FEAR RAILROAD AT STATION -Y15- 30+84.19:

The 15" welded steel pipe required under the tracks of Cape Fear Railroad shall conform with Section 330 of the *Standard Specifications*. The thickness of the wall shall be 0.5 inches.

The pipe shall be installed by dry boring and jacking under the tracks as shown in the plans. The pipe shall be carefully dry bored true to the line and grade given. The bore shall be held to a minimum to insure that there will be no settlement. Pipe which has been damaged due to the

Contractor's operation shall be removed and replaced at the Contractor's expense. All voids around the outside of the pipe shall be completely filled to the satisfaction of the Engineer.

The Contractor shall notify Nick Darnell, Superintendent, Cape Fear Railways, (910) 396-7683/Office, (910) 409-6629/Cell, charles.n.darnell.ctr@mail.mil) 15 days before any work is begun on the railroad's right of way. This will enable them to have a representative present, if they so desire, while the work is being performed to determine if the work is being performed in accordance with the approved plans and Special Provisions. The railroad will advise the Contractor when the work is to be done between trains and provide a flagman, if required.

The quantity of pipe to be paid for will be the actual number of linear feet of pipe which has been incorporated in the completed and accepted work. Measurement will be made by counting the number of joints used and multiplying by the length of the joint. Where partial joints are used, measurement will be made along the longest length of the partial joint to the nearest 0.1 of a foot.

The quantity of pipe measured as provided for above will be paid for at the contract unit price per linear foot for 15" Welded Steel Pipe, 0.500" Thick, Grade B, (Under RR). Such price and payment will be full compensation for all work described herein including dry boring, jacking, tools, materials, labor, workmanship and all other incidentals necessary to complete the work.

The Contractor shall submit two (2) sets of detailed plans and a written description of his proposed method of pipe installation for approval by the Engineer and the Railway Company. Plans should include the size and location of any required jacking pits and shoring for support of the railroad roadbed if necessary.

FLOWABLE FILL:

(9-17-02) (Rev 1-17-12)

300, 340, 450, 1000, 1530, 1540, 1550

SP3 R30

Description

This work consists of all work necessary to place flowable fill in accordance with these provisions, the plans, and as directed.

Materials

Refer to Division 10 of the 2012 Standard Specifications.

ItemSectionFlowable Fill1000-6

Construction Methods

Discharge flowable fill material directly from the truck into the space to be filled, or by other approved methods. The mix may be placed full depth or in lifts as site conditions dictate. The Contractor shall provide a method to plug the ends of the existing pipe in order to contain the flowable fill.

Measurement and Payment

At locations where flowable fill is called for on the plans and a pay item for flowable fill is included in the contract, *Flowable Fill* will be measured in cubic yards and paid as the actual number of cubic yards that have been satisfactorily placed and accepted. Such price and payment will be full compensation for all work covered by this provision including, but not limited to, the mix design, furnishing, hauling, placing and containing the flowable fill.

Payment will be made under:

Pay Item	Pay Unit
Flowable Fill	Cubic Yard

BRIDGE APPROACH FILLS:

(10-19-10) (Rev. 1-17-12) 422 SP4 R02

Description

Bridge approach fills include bridge approach fills for sub regional tier bridges and reinforced bridge approach fills. Construct bridge approach fills in accordance with the contract and Standard Drawing No. 422.10 or 422.11 of the 2012 Roadway Standard Drawings. Define "geosynthetics" as geotextiles or geomembranes.

Materials

Refer to Division 10 of the 2012 Standard Specifications.

Item ,	Section
Anchor Pins	1056-2
Geotextiles	1056
Portland Cement Concrete	1000
Select Material	1016
Subsurface Drainage Materials	1044
Wire Staples	1060-8(D)

For bridge approach fills for sub regional tier bridges, provide Type 1 geotextile for filtration geotextiles. For reinforced bridge approach fills, provide Type 5 geotextile for geotextile reinforcement and Type 1 geotextile and No. 78M stone for drains. Use Class B concrete for concrete pads.

Use Class III or V select material for reinforced bridge approach fills and only Class V select material (standard size No. 78M stone) for bridge approach fills for sub regional tier bridges. Provide PVC pipes, fittings and outlet pipes for subsurface drainage materials. For drains and PVC pipes behind end bents, use pipes with perforations that meet AASHTO M 278.

Use PVC, HDPE or linear low density polyethylene (LLDPE) geomembranes for reinforced bridge approach fills. For PVC geomembranes, provide grade PVC30 geomembranes that meet ASTM D7176. For HDPE and LLDPE geomembranes, use geomembranes with a nominal thickness of at least 30 mils that meet Geosynthetic Research Institute Standard Specifications GM13 or GM17, respectively. Handle and store geomembranes in accordance with Article 1056-2 of the 2012 Standard Specifications. Provide material certifications for geomembranes in accordance with Article 1056-3 of the 2012 Standard Specifications.

Construction Methods

Excavate as necessary for bridge approach fills in accordance with the contract. Notify the Engineer when foundation excavation is complete. Do not place geomembranes or filtration geotextiles until excavation dimensions and foundation material are approved. Attach geomembranes and filtration geotextiles to end bent cap back and wing walls with adhesives, tapes or other approved methods. Glue or weld geomembrane seams to prevent leakage.

For reinforced bridge approach fills, place geotextile reinforcement within 3" of locations shown in Standard Drawing No. 422.10 of the 2012 Roadway Standard Drawings and in slight tension free of kinks, folds, wrinkles or creases. Install geotextile reinforcement with the orientation, dimensions and number of layers shown in Standard Drawing No. 422.10 of the 2012 Roadway Standard Drawings. Place first layer of geotextile reinforcement directly on geomembranes with no void or material in between. Install geotextile reinforcement with the machine direction (MD) parallel to the roadway centerline. The MD is the direction of the length or long dimension of the geotextile roll. Do not splice or overlap geotextile reinforcement in the MD so seams are perpendicular to the roadway centerline. Wrap geotextile reinforcement at end bent cap back and wing walls as shown in Standard Drawing No. 422.10 of the 2012 Roadway Standard Drawings and directed by the Engineer. Extend geotextile reinforcement at least 4 ft back behind end bent cap back and wing walls into select material.

Overlap adjacent geotextiles at least 18" with seams oriented parallel to the roadway centerline. Hold geotextiles in place with wire staples or anchor pins as needed. Contact the Engineer when existing or future obstructions such as foundations, pavements, pipes, inlets or utilities will interfere with geosynthetics.

For reinforced bridge approach fills, construct one foot square drains consisting of 4" diameter continuous perforated PVC pipes surrounded by No. 78M stone wrapped in Type 1 geotextiles. Install drains in accordance with Standard Drawing No. 422.10 of the 2012 Roadway Standard Drawings. For bridge approach fills for sub regional tier bridges, install 4" diameter continuous perforated PVC drain pipes in accordance with Standard Drawing No. 422.11 of the 2012 Roadway Standard Drawings.

Use solvent cement to connect PVC pipes so joints do not leak. Connect perforated pipes to outlet pipes just behind wing walls. Provide drain pipes and drains with positive drainage towards outlets. Place pipe sleeves in or under wing walls for outlet pipes so positive drainage is maintained. Use sleeves that can withstand wing wall loads.

Place select material in 8" to 10" thick lifts. Use only hand operated compaction equipment to compact select material for bridge approach fills. Compact Class III select material in accordance with Subarticle 235-3(C) of the 2012 Standard Specifications. Compact No. 78M stone with a vibratory compactor to the satisfaction of the Engineer. Do not displace or damage geosynthetics, drain pipes or drains when placing and compacting select material. End dumping directly on geosynthetics is not permitted. Do not operate heavy equipment on geosynthetics, drain pipes or drains until they are covered with at least 8" of select material. Replace any damaged geosynthetics, drain pipes or drains to the satisfaction of the Engineer.

Cover open ends of outlet pipes with rodent screens as shown in Standard Drawing No. 815.03 of the 2012 Roadway Standard Drawings. Connect ends of outlet pipes to concrete pads or existing drainage structures as directed by the Engineer. Construct concrete pads with an Ordinary surface finish that meets Subarticle 825-6(B) of the 2012 Standard Specifications.

Measurement and Payment

Reinforced Bridge Approach Fill, Station

Bridge Approach Fill - Sub Regional Tier, Station

Lump Sum

Lump Sum

ASPHALT PAVEMENTS - SUPERPAVE:

(6-19-12) 605

SP6 R01

Revise the 2012 Standard Specifications as follows:

Page 6-3, Article 605-7 APPLICATION RATES AND TEMPERATURES, replace this article, including Table 601-1, with the following:

Apply tack coat uniformly across the existing surface at target application rates shown in Table 605-1.

TABLE 605-1 APPLICATION RATES FOR TACK COAT

Ewisting Courts as	Target Rate (gal/sy)
Existing Surface	Emulsified Asphalt
New Asphalt	0.04 ± 0.01
Oxidized or Milled Asphalt	0.06 ± 0.01
Concrete	0.08 ± 0.01

Apply tack coat at a temperature within the ranges shown in Table 605-2. Tack coat shall not be overheated during storage, transport or at application.

TABLE 605-2 APPLICATION TEMPERATURE FOR TACK COAT

Asphalt Material	Temperature Range
Asphalt Binder, Grade PG 64-22	350 - 400°F
Emulsified Asphalt, Grade RS-1H	130 - 160°F
Emulsified Asphalt, Grade CRS-1	130 - 160°F
Emulsified Asphalt, Grade CRS-1H	130 - 160°F
Emulsified Asphalt, Grade HFMS-1	130 - 160°F
Emulsified Asphalt, Grade CRS-2	130 - 160°F

Page 6-18, Article 610-1 DESCRIPTION, lines 40-41, delete the last sentence of the last paragraph.

Page 6-19, Subarticle 610-3(A) Mix Design-General, line 5, add the following as the first paragraph:

Warm mix asphalt (WMA) is allowed for use at the Contractor's option in accordance with the NCDOT Approved Products List for WMA Technologies available at:

http://www.ncdot.org/doh/operations/materials/pdf/wma.pdf.

ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:

(11-21-00) (Rev. 7-17-12)

509

SP6 R15

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

Asphalt Concrete Base Course	Type B 25.0	4.4%
Asphalt Concrete Intermediate Course	Type I 19.0	4.8%
Asphalt Concrete Surface Course	Type S 4.75A	6.8%
Asphalt Concrete Surface Course	Type SA-1	6.8%
Asphalt Concrete Surface Course	Type SF 9.5A	6.7%
Asphalt Concrete Surface Course	Type S 9.5	6.0%
Asphalt Concrete Surface Course	Type S 12.5	5.6%

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2012 Standard Specifications.

ASPHALT PLANT MIXTURES:

(7-1-95)

609

SP6 R20

Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer.

MATERIAL TRANSFER VEHICLE:

Use a Material Transfer Vehicle (MTV) when placing all intermediate and surface course asphalt concrete plant mix pavements, in accordance with the applicable requirements of Section 610-8 of the Standard Specifications.

PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:

(11-21-00)

620

SP6 R25

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2012 Standard Specifications.

The base price index for asphalt binder for plant mix is \$568.67 per ton.

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **September 1, 2012**.

MEDIAN HAZARD PROTECTION:

Description

Construct Median Hazard Protection at locations indicated in the plans in accordance with the detail in the plans and as directed by the Engineer.

Measurement and Payment

Median Hazard Protection will be measured and paid for per linear feet that are completed and accepted. Such price and payment will be full compensation for all labor, materials (including, but not limited to, concrete barrier, earth material, #57 stone, concrete cover, galvanized bar and grout) and incidentals necessary construct the Median Hazard Protection.

Payment will be made under:

Pay ItemPay UnitMedian Hazard ProtectionLinear Foot

GUARDRAIL ANCHOR UNITS, TYPE M-350:

(4-20-04) (Rev. 1-17-12) 862

SP8 R60

Description

Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2012 Standard Specifications, and at locations shown in the plans.

Materials

The Contractor may, at his option, furnish any one of the following guardrail anchor units or approved equal.

The guardrail anchor unit (SRT-350) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976

The guardrail anchor unit (FLEAT) as manufactured by:

Road Systems, Inc. 3616 Old Howard County Airport Big Springs, Texas 79720 Telephone: 915-263-2435

The guardrail anchor unit (REGENT) as manufactured by:

Energy Absorption Systems, Inc. One East Wacker Drive Chicago, Illinois 60601-2076 Telephone: 888-32-ENERGY Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Article 106-2 of the 2012 Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Article 105-2 of the 2012 Standard Specifications.

No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

Construction Methods

Guardrail end delineation shall be required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Article 1088-3 of the 2012 Standard Specifications and is incidental to the cost of the guardrail anchor unit.

Measurement and Payment

Measurement and payment will be made in accordance with Article 862-6 of the 2012 Standard Specifications.

Payment will be made under:

Pay ItemPay UnitGuardrail Anchor Units, Type M-350Each

GUARDRAIL ANCHOR UNITS, TYPE 350: (4-20-04) (Rev. 8-16-11)

SP8 R65

Description

Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2012 Standard Specifications, and at locations shown in the plans.

Materials

The Contractor may at his option, furnish any one of the guardrail anchor units or approved equal.

Guardrail anchor unit (ET-Plus) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976

The guardrail anchor unit (SKT 350) as manufactured by:

Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435

Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Article 106-2 of the 2012 Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Article 105-2 of the 2012 Standard Specifications.

No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

Construction Methods

Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Article 1088-3 of the 2012 Standard Specifications and is incidental to the cost of the guardrail anchor unit.

Measurement and Payment

Measurement and payment will be made in accordance with Article 862-6 of the 2012 Standard Specifications.

Payment will be made under:

Pay Item
Guardrail Anchor Units, Type 350

Pay Unit Each

IMPACT ATTENUATOR UNITS, TYPE 350:

(4-20-04) (Rev. 1-17-12) SP8 R75

Description

Furnish and install impact attenuator units and any components necessary to connect the impact attenuator units in accordance with the manufacturer's requirement, the details in the plans and at locations shown in the plans.

Materials

The Contractor may at his option, furnish any one of the **NON-GATING** impact attenuator units or approved equal:

The impact attenuator unit (QUADGUARD) as manufactured by:

Energy Absorption Systems, Inc.

One East Wacker Drive

Chicago, Illinois 60601-2076

Telephone: 312-467-6750

The impact attenuator unit (TRACC) as manufactured by:

Trinity Industries, Inc.

2525 N. Stemmons Freeway

Dallas, Texas 75207

Telephone: 800-644-7976

The Contractor may at his option, furnish any one of the GATING impact attenuator units or approved equal:

The impact attenuator unit (BRAKEMASTER) as manufactured by:

Energy Absorption Systems, Inc.

One East Wacker Drive

Chicago, Illinois 60601-2076

Telephone: 312-467-6750

The impact attenuator unit (CAT) as manufactured by:

Trinity Industries, Inc.

2525 N. Stemmons Freeway

Dallas, Texas 75207

Telephone: 800-644-7976

Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each impact attenuator unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Article 106-2 of the 2012 Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each impact attenuator unit in accordance with Article 105-2 of the 2012 Standard Specifications.

No modifications shall be made to the impact attenuator unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

Construction Methods

If the median width is 40 feet or less, the Contractor shall supply one of the NON-GATING Impact Attenuator Units listed in the Materials Section herein.

If the median width is greater than 40 feet, the Contractor may use any of the GATING or NON-GATING Impact Attenuator Units listed in the Materials Section herein.

Measurement and Payment

Impact Attenuator Unit, Type 350 will be measured and paid at the contract unit price per each. Such prices and payment will be full compensation for all work covered by this provision including, but not limited to, furnishing, installing and all incidentals necessary to complete the work.

Payment will be made under:

Pay Item
Impact Attenuator Units, Type 350

Pay Unit Each

84" CHAIN LINK SECURITY FENCE:

Description

Construct 84" chain link security fence at locations indicated in the plans, in accordance with the detail in the plans, this provision and as directed by the Engineer.

Construction Methods

Construct 84" chain link security fence in accordance with the detail in the plans and the applicable requirements of Section 866 of the *Standard Specifications*.

Measurement and Payment

84" Chain Link Security Fence will be measured and paid for per linear foot of fence that has been completed and accepted. Such price and payment shall include, but not be limited to all materials, hardware, labor, tools and incidentals necessary to satisfactorily complete the work. Line posts, terminal posts and gates will be measured and paid for separately.

Payment will be made under:

Pay Item 84" Chain Link Security Fence Pay Unit Linear Foot

DETECTABLE WARNINGS FOR PROPOSED CURB RAMPS:

(6-15-10) (Rev. 8-16-11)

848

SP8 R126

Description

Construct detectable warnings consisting of integrated raised truncated domes on proposed concrete curb ramps in accordance with the 2012 Standard Specifications, plan details, the requirements of the 28 CFR Part 36 ADA Standards for Accessible Design and this provision.

Materials

Detectable warning for proposed curb ramps shall consist of integrated raised truncated domes. The description, size and spacing shall conform to Section 848 of the 2012 Standard Specifications.

Use material for detectable warning systems as shown herein. Material and coating specifications must be stated in the Manufacturers Type 3 Certification and all Detectable Warning systems must be on the NCDOT Approved Products List.

Install detectable warnings created from one of the following materials: precast concrete blocks or bricks, clay paving brick, gray or ductile iron castings, mild steel, stainless steel, and engineered plastics, rubber or composite tile. Only one material type for detectable warning will be permitted per project, unless otherwise approved by the Engineer.

- (A) Detectable Warnings shall consist of a base with integrated raised truncated domes, and when constructed of precast concrete they shall conform to the material requirements of Article 848-2 of the 2012 Standard Specifications.
- (B) Detectable Warnings shall consist of a base with integrated raised truncated domes, and may be comprised of other materials including, but not limited, to clay paving brick, gray iron or ductile iron castings, mild steel, stainless steel, and engineered plastics, rubber or composite tile, which are cast into the concrete of the curb ramps. The material shall have an integral color throughout the thickness of the material. The detectable warning shall include fasteners or anchors for attachment in the concrete and shall be furnished as a system from the manufacturer.

Prior to installation, the Contractor shall submit to the Engineer assembling instructions from the manufacturer for each type of system used in accordance with Article 105-2 of the 2012 Standard Specifications. The system shall be furnished as a kit containing all consumable materials and consumable tools, required for the application. They shall be capable of being affixed to or anchored in the concrete curb ramp, including green concrete (concrete that has set but not appreciably hardened). The system shall be solvent free and contain no volatile organic compounds (VOC). The static coefficient of friction shall be 0.8 or greater when measured on top of the truncated domes and when measured between the domes in accordance with ASTM C1028 (dry and wet). The system shall be resistant to deterioration due to exposure to sunlight, water, salt or adverse weather conditions and impervious to degradation by motor fuels, lubricants and antifreeze.

(C) When steel or gray iron or ductile iron casting products are provided, only products that meet the requirements of Subarticle 106-1(B) of the 2012 Standard Specifications may be Submit to the Engineer a Type 6 Certification, catalog cuts and installation procedures at least 30 days prior to installation for all.

Construction Methods

- (A) Prior to placing detectable warnings in proposed concrete curb ramps, adjust the existing subgrade to the proper grade and in accordance with Article 848-3 of the 2012 Standard Specifications.
- (B) Install all detectable warning in proposed concrete curb ramps in accordance with the manufacturer's recommendations.

Measurement and Payment

Detectable Warnings installed for construction of proposed curb ramps will not be paid for separately. Such payment will be included in the price bid for Concrete Curb Ramps.

STREET SIGNS AND MARKERS AND ROUTE MARKERS:

SP9 R02

Cumberland County

Move any existing street signs, markers, and route markers out of the construction limits of the project and install the street signs and markers and route markers so that they will be visible to the traveling public if there is sufficient right of way for these signs and markers outside of the construction limits.

Near the completion of the project and when so directed by the Engineer, move the signs and markers and install them in their proper location in regard to the finished pavement of the project.

Stockpile any signs or markers that cannot be relocated due to lack of right of way, or any signs and markers that will no longer be applicable after the construction of the project, at locations directed by the Engineer for removal by others.

The Contractor shall be responsible to the owners for any damage to any street signs and markers or route markers during the above described operations.

No direct payment will be made for relocating, reinstalling, and/or stockpiling the street signs and markers and route markers as such work shall be considered incidental to other work being paid for by the various items in the contract.

FOUNDATIONS AND ANCHOR ROD ASSEMBLIES FOR METAL POLES:

(1-17-12) (Rev. 8-21-12)

9, 14, 17

SP9 R05

Description

Foundations for metal poles include foundations for signals, cameras, overhead and dynamic message signs (DMS) and high mount and low level light standards supported by metal poles or upright trusses. Foundations consist of footings with pedestals and drilled piers with or without grade beams or wings. Anchor rod assemblies consist of anchor rods (also called anchor bolts) with nuts and washers on the exposed ends of rods and nuts and a plate or washers on the other ends of rods embedded in the foundation.

Construct concrete foundations with the required resistances and dimensions and install anchor rod assemblies in accordance with the contract and accepted submittals. Construct drilled piers consisting of cast-in-place reinforced concrete cylindrical sections in excavated holes. Provide temporary casings or polymer slurry as needed to stabilize drilled pier excavations. Use a prequalified Drilled Pier Contractor to construct drilled piers for metal poles. Define "excavation" and "hole" as a drilled pier excavation and "pier" as a drilled pier.

This provision does not apply to materials and anchor rod assemblies for standard foundations for low level light standards. See Section 1405 of the 2012 Standard Specifications and Standard Drawing No. 1405.01 of the 2012 Roadway Standard Drawings for materials and anchor rod assemblies for standard foundations. For construction of standard foundations for low level light standards, standard foundations are considered footings in this provision.

This provision does not apply to foundations for signal pedestals; see Section 1743 of the 2012 Standard Specifications and Standard Drawing No. 1743.01 of the 2012 Roadway Standard Drawings.

Materials

Refer to the 2012 Standard Specifications.

Item	Section
Conduit	1091-3
Grout, Nonshrink	1003
Polymer Slurry	411-2(B)
Portland Cement Concrete	1000
Reinforcing Steel	1070
Rollers and Chairs	411-2(C)
Temporary Casings	411-2(A)

Provide Type 3 material certifications in accordance with Article 106-3 of the 2012 Standard Specifications for conduit, rollers, chairs and anchor rod assemblies. Store steel materials on blocking at least 12" above the ground and protect it at all times from damage; and when placing in the work make sure it is free from dirt, dust, loose mill scale, loose rust, paint, oil or other foreign materials. Load, transport, unload and store foundation and anchor rod assembly materials so materials are kept clean and free of damage. Damaged or deformed materials will be rejected.

Use conduit type in accordance with the contract. Use Class A concrete for footings and pedestals, Class Drilled Pier concrete for drilled piers and Class AA concrete for grade beams and wings including portions of drilled piers above bottom of wings elevations. Corrugated temporary casings may be accepted at the discretion of the Engineer. A list of approved polymer slurry products is available from:

www.ncdot.org/doh/preconstruct/highway/geotech/leftmenu/Polymer.html

Provide anchor rod assemblies in accordance with the contract consisting of the following:

- (A) Straight anchor rods,
- (B) Heavy hex top and leveling nuts and flat washers on exposed ends of rods, and
- (C) Nuts and either flat plates or washers on the other ends of anchor rods embedded in foundations.

Do not use lock washers. Use steel anchor rods, nuts and washers that meet ASTM F1554 for Grade 55 rods and Grade A nuts. Use steel plates and washers embedded in concrete with a thickness of at least 1/4". Galvanize anchor rods and exposed nuts and washers in accordance with Article 1076-4 of the 2012 Standard Specifications. It is not necessary to galvanize nuts, plates and washers embedded in concrete.

Construction Methods

Install the required size and number of conduits in foundations in accordance with the plans and accepted submittals. Construct top of piers, footings, pedestals, grade beams and wings flat, level and within 1" of elevations shown in the plans or approved by the Engineer. Provide an Ordinary Surface finish in accordance with Subarticle 825-6(B) of the 2012 Standard Specifications for portions of foundations exposed above finished grade. Do not remove anchor bolt templates or pedestal or grade beam forms or erect metal poles or upright trusses onto foundations until concrete attains a compressive strength of at least 3,000 psi.

(A) Drilled Piers

Before starting drilled pier construction, hold a predrill meeting to discuss the installation, monitoring and inspection of the drilled piers. Schedule this meeting after the Drilled Pier Contractor has mobilized to the site. The Resident or Division Traffic Engineer, Contractor and Drilled Pier Contractor Superintendent will attend this predrill meeting.

Do not excavate holes, install piles or allow equipment wheel loads or vibrations within 20 ft of completed piers until 16 hours after Drilled Pier concrete reaches initial set.

Check for correct drilled pier alignment and location before beginning drilling. Check plumbness of holes frequently during drilling.

Construct drilled piers with the minimum required diameters shown in the plans. Install piers with tip elevations no higher than shown in the plans or approved by the Engineer.

Excavate holes with equipment of the sizes required to construct drilled piers. Depending on the subsurface conditions encountered, drilling through rock and boulders may be required. Do not use blasting for drilled pier excavations.

Contain and dispose of drilling spoils and waste concrete as directed and in accordance with Section 802 of the 2012 Standard Specifications. Drilling spoils consist of all materials and fluids removed from excavations.

If unstable, caving or sloughing materials are anticipated or encountered, stabilize holes with temporary casings and/or polymer slurry. Do not use telescoping temporary casings. If it becomes necessary to replace a temporary casing during drilling, backfill the excavation, insert a larger casing around the casing to be replaced or stabilize the excavation with polymer slurry before removing the temporary casing.

If temporary casings become stuck or the Contractor proposes leaving casings in place, temporary casings should be installed against undisturbed material. Unless otherwise approved, do not leave temporary casings in place for mast arm poles and cantilever signs. The Engineer will determine if casings may remain in place. If the Contractor proposes leaving temporary casings in place, do not begin drilling until a casing installation method is approved.

Use polymer slurry and additives to stabilize holes in accordance with the slurry manufacturer's recommendations. Provide mixing water and equipment suitable for polymer slurry. Maintain polymer slurry at all times so slurry meets Table 411-3 of the 2012 Standard Specifications except for sand content.

Define a "sample set" as slurry samples collected from mid-height and within 2 ft of the bottom of holes. Take sample sets from excavations to test polymer slurry immediately after filling holes with slurry, at least every 4 hours thereafter and immediately before placing concrete. Do not place Drilled Pier concrete until both slurry samples from an excavation meet the required polymer slurry properties. If any slurry test results do not meet the requirements, the Engineer may suspend drilling until both samples from a sample set meet the required slurry properties.

Remove soft and loose material from bottom of holes using augers to the satisfaction of Assemble rebar cages and place cages and Drilled Pier concrete in the Engineer. accordance with Subarticle 411-4(E) of the 2012 Standard Specifications except for the following:

Cumberland County

- Inspections for tip resistance and bottom cleanliness are not required, (1)
- **(2)** Temporary casings may remain in place if approved, and
- Concrete placement may be paused near the top of pier elevations for anchor rod (3) assembly installation and conduit placement or
- **(4)** If applicable, concrete placement may be stopped at bottom of grade beam or wings elevations for grade beam or wing construction.

If wet placement of concrete is anticipated or encountered, do not place Drilled Pier concrete until a concrete placement procedure is approved. If applicable, temporary casings and fluids may be removed when concrete placement is paused or stopped in accordance with the exceptions above provided holes are stable. Remove contaminated concrete from exposed Drilled Pier concrete after removing casings and fluids. If holes are unstable, do not remove temporary casings until a procedure for placing anchor rod assemblies and conduit or constructing grade beams or wings is approved.

Use collars to extend drilled piers above finished grade. Remove collars after Drilled Pier concrete sets and round top edges of piers.

If drilled piers are questionable, pile integrity testing (PIT) and further investigation may be required in accordance with Article 411-5 of the 2012 Standard Specifications. A drilled pier will be considered defective in accordance with Subarticle 411-5(D) of the 2012 Standard Specifications and drilled pier acceptance is based in part on the criteria in Article 411-6 of the 2012 Standard Specifications except for the top of pier tolerances in Subarticle 411-6(C) of the 2012 Standard Specifications.

If a drilled pier is under further investigation, do not grout core holes, backfill around the pier or perform any work on the drilled pier until the Engineer accepts the pier. If the drilled pier is accepted, dewater and grout core holes and backfill around the pier with approved material to finished grade. If the Engineer determines a pier is unacceptable, remediation is required in accordance with Article 411-6 of the 2012 Standard Specifications. No extension of completion date or time will be allowed for remediation of unacceptable drilled piers or post repair testing.

Permanently embed a plate in or mark top of piers with the pier diameter and depth, size and number of vertical reinforcing bars and the minimum compressive strength of the concrete mix at 28 days.

(B) Footings, Pedestals, Grade Beams and Wings

Excavate as necessary for footings, grade beams and wings in accordance with the plans, accepted submittals and Section 410 of the 2012 Standard Specifications. If unstable, caving or sloughing materials are anticipated or encountered, shore foundation excavations as needed with an approved method. Notify the Engineer when foundation excavation is complete. Do not place concrete or reinforcing steel until excavation dimensions and foundation material are approved.

Construct cast-in-place reinforced concrete footings, pedestals, grade beams and wings with the dimensions shown in the plans and in accordance with Section 825 of the 2012 Standard Specifications. Use forms to construct portions of pedestals and grade beams protruding above finished grade. Provide a chamfer with a 3/4" horizontal width for pedestal and grade beam edges exposed above finished grade. Backfill and fill in accordance with Article 410-8 of the 2012 Standard Specifications. Proper compaction around footings and wings is critical for foundations to resist uplift and torsion forces. Place concrete against undisturbed soil and do not use forms for standard foundations for low level light standards.

(C) Anchor Rod Assemblies

Size anchor rods for design and the required projection above top of foundations. Determine required anchor rod projections from nut, washer and base plate thicknesses, the protrusion of 3 to 5 anchor rod threads above top nuts after tightening and the distance of one nut thickness between top of foundations and bottom of leveling nuts.

Protect anchor rod threads from damage during storage and installation of anchor rod assemblies. Before placing anchor rods in foundations, turn nuts onto and off rods past leveling nut locations. Turn nuts with the effort of one workman using an ordinary wrench without a cheater bar. Report any thread damage to the Engineer that requires extra effort to turn nuts.

Arrange anchor rods symmetrically about center of base plate locations as shown in the plans. Set anchor rod elevations based on required projections above top of foundations. Securely brace and hold rods in the correct position, orientation and alignment with a steel template. Do not weld to reinforcing steel, temporary casings or anchor rods.

Install top and leveling (bottom) nuts, washers and the base plate for each anchor rod assembly in accordance with the following procedure:

- (1) Turn leveling nuts onto anchor rods to a distance of one nut thickness between the top of foundation and bottom of leveling nuts. Place washers over anchor rods on top of leveling nuts.
- (2) Determine if nuts are level using a flat rigid template on top of washers. If necessary, lower leveling nuts to level the template in all directions or if applicable, lower nuts to tilt the template so the metal pole or upright truss will lean as shown in the plans. If leveling nuts and washers are not in full contact with the template, replace washers with galvanized beveled washers.
- (3) Verify the distance between the foundation and leveling nuts is no more than one nut thickness.

- (4) Place base plate with metal pole or upright truss over anchor rods on top of washers. High mount luminaires may be attached before erecting metal poles but do not attach cables, mast arms or trusses to metal poles or upright trusses at this time.
- (5) Place washers over anchor rods on top of base plate. Lubricate top nut bearing surfaces and exposed anchor rod threads above washers with beeswax, paraffin or other approved lubricant.
- (6) Turn top nuts onto anchor rods. If nuts are not in full contact with washers or washers are not in full contact with the base plate, replace washers with galvanized beveled washers.
- (7) Tighten top nuts to snug-tight with the full effort of one workman using a 12" wrench. Do not tighten any nut all at once. Turn top nuts in increments. Follow a star pattern cycling through each nut at least twice.
- (8) Repeat (7) for leveling nuts.
- (9) Replace washers above and below the base plate with galvanized beveled washers if the slope of any base plate face exceeds 1:20 (5%), any washer is not in firm contact with the base plate or any nut is not in firm contact with a washer. If any washers are replaced, repeat (7) and (8).
- (10) With top and leveling nuts snug-tight, mark each top nut on a corner at the intersection of 2 flats and a corresponding reference mark on the base plate. Mark top nuts and base plate with ink or paint that is not water-soluble. Use the turn-of-nut method for pretensioning. Do not pretension any nut all at once. Turn top nuts in increments for a total turn that meets the following nut rotation requirements:

NUT ROTATION RE (Turn-of-Nut Pretens	
Anchor Rod Diameter, inch	Requirement
≤ 1 1/2	1/3 turn (2 flats)
> 1 1/2	1/6 turn (1 flat)

Follow a star pattern cycling through each top nut at least twice.

(11) Ensure nuts, washers and base plate are in firm contact with each other for each anchor rod. Cables, mast arms and trusses may now be attached to metal poles and upright trusses.

(12) Between 4 and 14 days after pretensioning top nuts, use a torque wrench calibrated within the last 12 months to check nuts in the presence of the Engineer. Completely erect mast arm poles and cantilever signs and attach any hardware before checking top nuts for these structures. Check that top nuts meet the following torque requirements:

TORQUE REQU	JIREMENTS
Anchor Rod Diameter, inch	Requirement, ft-lb
7/8	180
1	270
1 1/8	380
1 1/4	420
≥ 1 1/2	600

If necessary, retighten top nuts in the presence of the Engineer with a calibrated torque wrench to within \pm 10 ft-lb of the required torque. Do not overtighten top nuts.

(13) Do not grout under base plate.

Measurement and Payment

Foundations and anchor rod assemblies for metal poles and upright trusses will be measured and paid for elsewhere in the contract.

No payment will be made for temporary casings that remain in drilled pier excavations. No payment will be made for PIT. No payment will be made for further investigation of defective piers. Further investigation of piers that are not defective will be paid as extra work in accordance with Article 104-7 of the 2012 Standard Specifications. No payment will be made for remediation of unacceptable drilled piers or post repair testing.

RIPRAP ENERGY DISSIPATOR BASIN:

Description

This work consists of the construction and maintenance of an armored outlet structure located at culvert outlets or ditch termini.

Materials

Refer to Division 10 of the Standard Specifications.

Item	Section
Class I Riprap	Section 1042
Filter Fabric for Drainage, Type 2	Section 1056

Construction Methods

Riprap energy dissipators shall be constructed in accordance with the detail shown in the plans or as directed. From the outlet, invert of a culvert or bottom of a ditch excavation will drop to a specified depth. Excavation will continue to widen through the dissipator. Riprap shall be placed along the banks and bottom of the dissipator and along the apron.

Excavate ditch in accordance with Section 240 of the Standard Specifications.

The quantity of energy dissipator material may be affected by site conditions during construction of the project. The quantity of materials may be increased, decreased, or eliminated at the direction of the Engineer. Such variations in quantity will not be considered as alterations in the details of construction or a change in the character of the work.

Measurement and Payment

Energy Dissipator Basin will be paid for on a per each basis. Such price and payment will be full compensation for all work covered by this section, including, but not limited to furnishing and placing stone, filter fabric, materials, labor, tools, equipment, and incidentals necessary to complete the work.

Payment will be made under:

Pay Item Energy Dissipator Basin Pay Unit Each

MATERIALS: (2-21-12) (Rev. 9-18-12)

1005, 1081, 1092

SP10 R01

Revise the 2012 Standard Specifications as follows:

Page 10-5, Table 1000-1, REQUIREMENTS FOR CONCRETE, replace with the following:

			REQ	TA UIREME	BLE 1000 NTS FOR		CRETE					
	·	Maxir		er-Cement		Con	sistency . Slump	Cement Content				
Class of Concrete	Min. Comp. Strength at 28 days	Air-En Con	trained crete	Entra	Air- ained crete	Vibrated	Non- Vibrated	Vib	rated	Non- V	ibrated/	
00	Mir S at	Rounded Aggre-gate	Angular Aggre- gate	Rounded Aggre-gate	Angular Aggre- gate	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N Sib	Min.	Max.	Min.	Max.	
Units	psi					inch	inch	lb/cy	lb/cy	lb/cy	lb/cy	
AA	4,500	0.381	0.426	-	-	3.5	-	639	715	-	-	
AA Slip Form	4,500	0.381	0.426	-	-	1.5	-	639	715		-	
Drilled Pier	4,500	_	, -	0.450	0.450		5-7 dry 7-9 wet	-	-	640	800	
A	3,000	0.488	0.532	0.550	0.594	3.5	4	564	-	602	-	
В	2,500	0.488	0.567	0.559	0.630	2.5	. 4	508	-	545	_	
B Slip Formed	2,500	0.488	0.567	-	-	1.5	-	508	-	-	-	
Sand Light- weight	4,500	_	0.420	_	-	4	-	715	-		-	
Latex Modified	3,000 7 day	0.400	0.400	_	-	6	-	658	-	-	-	
Flowable Fill excavatable	150 max. at 56 days	as needed	as needed	as needed	as needed		Flow- able	-	-	40	100	
Flowable Fill non-excavatable	125	as needed	as needed	as needed	as needed	-	Flow- able	-	. -	100	as needed	
Pavement	4,500 design, field 650 flexural, design only	0.559	0.559	_	-	1.5 slip form 3.0 hand place	- -	526		- :	-	
Precast	See Table 1077-1	as needed	as needed	<u>-</u>	_	6	as needed	as needed	as needed	as needed	as needed	
Prestress	per contract	See Table 1078-1	See Table 1078-1	-	-	8	-	564	as needed	-	-	

Page 10-23, Table 1005-1, AGGREGATE GRADATION-COARSE AGGREGATE, replace with the following:

Light- weight	ABC (M)	ABC	. 9	14M	78M	67	6M	57M	57	5	467M	4	Std. Size#	
	•	•			•		. •	. •	•	•	100	100	2"	:
	100	100		. •	ı	•		100	100	100	95- 100	90 <u>-</u>	1 1/2"	
	75- 100	75- 97	ı	ı	•	100	100	95 - 100	95- 100	100	, 1	20- 55	1	••
	1	ı	:		100	100	100	ı	ı	20- 55	35 - 70	0-15	3/4"	
100	45- 79	55- 80	1		98 -		20- 55	25- 45	25- 60	0-10	· I	i ,	1/2"	Percentage of Total by Weight Passing
80- 100	ı		100	100	75- 100	20- 55	0-20	, 1		0-5	0-30	0-5	3/8"	tage o
5· 40	20- 40	35- 55	85- 100	35- 70	20- 45	0-10	0-8	0-10	0-10	ı	0-5	· • • · · · · · · · · · · · · · · · · ·	#	of Tota
0-20	J	J	10 <u>-</u>	5-20	0-15	0-5	ı	0-5	0-5	ı	,		#	ıl by \
ı	0- 25	25- 45				•		,				:	#10	Weigh
0-10	•	ı	0-10	0-8	ı				•				#16	t Pass
. ;	ı	14 - 30	•	ı	ı	•	:		ı	ı			#40	ing
0-2.5	0- 12 B	4- 12 ^B	>	>	>	>	· >	>	>	A	>	>	#200	
AST	Maintenance Stabilization	Aggregate Base Course, Aggregate Stabilization	AST	Asphalt Plant Mix, AST, Weep Hole Drains, Str. Concrete	Asphalt Plant Mix, AST, Str. Conc, Weep Hole Drains	AST, Str. Concrete, Asphalt Plant Mix	AST	AST, Concrete Pavement	AST, Str. Concrete, Shoulder Drain, Sediment Control Stone	AST, Sediment Control Stone	Asphalt Plant Mix	Asphalt Plant Mix	Remarks	

Page 10-126, Table 1078-1, REQUIREMENTS FOR CONCRETE, replace with the following:

TABLE 1078-1 REQUIREMENTS FOR CONCRETE				
Property	28 Day Design Compressive Strength 6,000 psi or less	28 Day Design Compressive Strength greater than 6,000 psi		
Maximum Water/Cementitious Material Ratio	0.45	0.40		
Maximum Slump without HRWR	3.5"	3.5"		
Maximum Slump with HRWR	8"	8"		
Air Content (upon discharge into forms)	5 + 2%	5 + 2%		

Page 10-162, Subarticle 1081-1(A) Classifications, lines 4-7, delete the second and third sentences of the description for Type 3A.

Page 10-162, Subarticle 1081-1(B) Requirements, lines 26-30, replace the second paragraph with the following:

For epoxy resin systems used for embedding dowel bars, threaded rods, rebar, anchor bolts and other fixtures in hardened concrete, the manufacturer shall submit test results showing that the bonding system will obtain 125% of the specified required yield strength of the fixture. Furnish certification that, for the particular bolt grade, diameter and embedment depth required, the anchor system will not fail by adhesive failure and that there is no movement of the anchor bolt. For certification and anchorage, use 3,000 psi as the minimum Portland cement concrete compressive strength used in this test. Use adhesives that meet Section 1081.

List the properties of the adhesive on the container and include density, minimum and maximum temperature application, setting time, shelf life, pot life, shear strength and compressive strength.

Page 10-169, Subarticle 1081-3(G) Anchor Bolt Adhesives, delete this subarticle.

Page 10-204, Subarticle 1092-2(A) Performance and Test Requirements, replace

Table 1092-3 Minimum Coefficient of Retroreflection for NC Grade A with the following:

TABLE 1092-3 MINIMUM COEFFICIENT OF RETROREFLECTION FOR NC GRADE A (Candelas Per Lux Per Square Meter)

Observation Angle, degrees	Entrance Angle, degrees	White	Yellow	Green	Red	Blue	Fluorescent Yellow Green	Fluorescent Yellow
0.2	-4.0	525	395	52	95	30	420	315
. 0.2	30.0	215	162	22	43	10	170	130
0.5	-4.0	310	230	31	56	18	245	185
0.5	30.0	135	100	14	27	6	110	81
1.0	-4.0	120	60	8	16	3.6	64	48
1.0	30.0	45	34	4.5	9	2	36	27

HIGH STRENGTH CONCRETE FOR DRIVEWAYS:

(11-21-00) (Rev. 1-17-12)

SP10 R02

Use high early strength concrete for all driveways shown in the plans and as directed by the Engineer. Provide high early strength concrete that meets the requirements of Article 1000-5 of the 2012 Standard Specifications.

Measurement and payment will be in accordance with Section 848 of the 2012 Standard Specifications.

SELECT MATERIAL, CLASS III, TYPE 3: 1016, 1044

SP10 R05

Revise the 2012 Standard Specifications as follows:

Page 10-39, Article 1016-3, CLASS III, add the following after line 14:

Type 3 Select Material

Type 3 select material is a natural or manufactured fine aggregate material meeting the following gradation requirements and as described in Sections 1005 and 1006:

Percentage of Total by Weight Passing							
3/8"	#4	#8	#16	#30	#50	#100	#200
100	95-100	65-100	35-95	15-75	5-35	0-25	0-8

Page 10-39, Article 1016-3, CLASS III, line 15, replace "either type" with "Type 1, Type 2 or Type 3".

Page 10-62, Article 1044-1, line 36, delete the sentence and replace with the following:

Subdrain fine aggregate shall meet Class III select material, Type 1 or Type 3.

Page 10-63, Article 1044-2, line 2, delete the sentence and replace with the following:

Subdrain coarse aggregate shall meet Class V select material.

#57 STONE:

7-18-06

SPI0 -1

Description

The Contractor shall place #57 stone in the in accordance with the details in the plans and the following provision.

Materials

ItemSection# 57 Stone1005

Construction Methods

The stone shall be placed and compacted as directed by the Engineer.

Measurement and Payment

#57 stone will be measured and paid for in tons that are completed and accepted. The stone will be measured by being weighed in trucks on certified platform scales or other certified weighing devices. The price and payment will be full compensation for furnishing, hauling, placing, and all incidentals necessary to complete the work.

Payment will be made under:

Pay ItemPay Unit#57 StoneTon

TRUCK MOUNTED CHANGEABLE MESSAGE SIGNS:

-21-12) 1101

SP11 R10

Revise the 2012 Roadway Standard Drawings as follows:

Drawing No. 1101.02, Sheet 12, TEMPORARY LANE CLOSURES, replace General Note #11 with the following:

- 11- TRUCK MOUNTED CHANGEABLE MESSAGE SIGNS (TMCMS) USED ON SHADOW VEHICLES FOR "IN LANE" ACTIVITIES SHALL BE A MINIMUM OF 43" X 73". THE DISPLAY PANEL SHALL HAVE FULL MATRIX CAPABILITY WITH THE CAPABILITY TO PROVIDE 2 MESSAGE LINES WITH 7 CHARACTERS PER LINE WITH A MINIMUM CHARACTER HEIGHT OF 18". FOR ADDITIONAL MESSAGING, CONTACT THE WORK ZONE TRAFFIC CONTROL SECTION.
- 12- TMCMS USED FOR ADVANCED WARNING ON VEHICLES LOCATED ON THE SHOULDER MAY BE SMALLER THAN 43" X 73". THE DISPLAY PANEL SHALL HAVE THE CAPABILITY TO PROVIDE 2 MESSAGE LINES WITH 7 CHARACTERS PER LINE WITH A MINIMUM CHARACTER HEIGHT OF 18". FOR ADDITIONAL MESSAGING, CONTACT THE WORK ZONE TRAFFIC CONTROL SECTION.

Drawing No. 1101.02, Sheet 13, TEMPORARY LANE CLOSURES, replace General Note #12 with the following:

12- TRUCK MOUNTED CHANGEABLE MESSAGE SIGNS (TMCMS) USED ON SHADOW VEHICLES FOR "IN LANE" ACTIVITIES SHALL BE A MINIMUM OF

43" X 73". THE DISPLAY PANEL SHALL HAVE FULL MATRIX CAPABILITY WITH THE CAPABILITY TO PROVIDE 2 MESSAGE LINES WITH 7 CHARACTERS PER LINE WITH A MINIMUM CHARACTER HEIGHT OF 18". FOR ADDITIONAL MESSAGING, CONTACT THE WORK ZONE TRAFFIC CONTROL SECTION.

13- TMCMS USED FOR ADVANCED WARNING ON VEHICLES LOCATED ON THE SHOULDER MAY BE SMALLER THAN 43" X 73". THE DISPLAY PANEL SHALL HAVE THE CAPABILITY TO PROVIDE 2 MESSAGE LINES WITH 7 CHARACTERS PER LINE WITH A MINIMUM CHARACTER HEIGHT OF 18". FOR ADDITIONAL MESSAGING, CONTACT THE WORK ZONE TRAFFIC CONTROL SECTION.

PERMANENT SEEDING AND MULCHING:

SP16 R02

The Department desires that permanent seeding and mulching be established on this project as soon as practical after slopes or portions of slopes have been graded. As an incentive to obtain an early stand of vegetation on this project, the Contractor's attention is called to the following:

For all permanent seeding and mulching that is satisfactorily completed in accordance with the requirements of Section 1660 in the 2012 Standard Specifications and within the following percentages of elapsed contract times, an additional payment will be made to the Contractor as an incentive additive. The incentive additive will be determined by multiplying the number of acres of seeding and mulching satisfactorily completed times the contract unit bid price per acre for Seeding and Mulching times the appropriate percentage additive.

Percentage of Elapsed Contract Time	Percentage Additive
0% - 30%	30%
30.01% - 50%	15%

Percentage of elapsed contract time is defined as the number of calendar days from the date of availability of the contract to the date the permanent seeding and mulching is acceptably completed divided by the total original contract time.