Project Special Provisions Structure

Table of Contents

			Page
			#
Electrical Conduit System for Signals	(9-30-11)		1
Falsework and Formwork (9-30-1	1)		4
Submittal of Working Drawings (9	-30-11)		10
Crane Safety (8-15-05)			17
Grout for Structures (9-30-11)			17
MSE Retaining Walls (1-17-12)		•••••	19
Classic Concrete Bridge Rail (SPEC)	IAL)		28
Electrical Conduit System (SPEC	CIAL)		30
Railroad Provisions (SPECIAL)		•••••	33

SEAL COLLEGE OF CHARLES LIVE 1/28/4

Except for: Electrical Conduit system Railroad Provisions

PROJECT SPECIAL PROVISIONS STRUCTURE

PROJECT B-3421

CABARRUS COUNTY

ELECTRICAL CONDUIT SYSTEM FOR SIGNALS

(9-30-11)

1.0 GENERAL

The work covered by this section consists of furnishing and installing a conduit system suspended beneath structures and buried. Perform all work in accordance with these special provisions, the plans, and the National Electrical Code (NEC). Install the conduit system in accordance with NEC requirements as an approved raceway for electrical circuits.

The Contractor actually performing the work described in these special provisions is required to have a license of the proper classification from the North Carolina State Board of Examiners of Electrical Contractors.

The licensed Electrical Contractor is required to be available on the job site when the work is being performed or when requested by the Engineer. The licensed Electrical Contractor is required to have a set of plans and special provisions in his possession on the job site, and must maintain accurate "as built" plans.

2.0 MATERIALS

Submit eight (8) copies of catalog cuts and/or drawings for all proposed materials for the Engineer's review and approval. Include the brand name, stock number, description, size, rating, manufacturing specification, and applicable contract item number(s) on each submittal. Allow forty (40) days for submittal review. The Engineer will advise the Contractor of reasons for rejected submittals and will return approved submittals to the Contractor. Do not deliver material to the project prior to submittal approval.

For the work covered by this section, the term conduit applies to a system of components consisting of an outer duct, 4 inner ducts, internal spacers, special-purpose spin couplings and all necessary components, referred to as a multi-cell raceway system.

For the outer duct of RGC multi-cell raceway, use rigid galvanized conduit per UL 6 "Rigid Metallic Conduit" with rigid full weight galvanized threaded fittings. Provide factory installed reverse-spin couplings with 3 set screws, to allow assembly without turning the outer duct, and prevent the coupling from backing off before and after installation. Provide an O-ring gasket in the coupling body to resist pullout and to create a watertight seal. Provide pre-installed, smooth walled, pre-lubricated PVC inner ducts, with one white "tracer" duct and internal spacers to maintain alignment throughout the raceway system. Do not use materials provided by more than one manufacturer.

When deflection couplers are detailed on the plans, use deflection couplers that are designed for use with RGC multi-cell raceway, and meet all the requirements for RGC outer duct stated above. Provide deflection couplers that allow a 30 degree bend in any direction and ¾ inch mis-alignment in all axis. Provide factory installed reverse-spin couplings with 3 set screws, to allow assembly without turning the outer duct, and prevent the coupling from backing off before and after installation. Provide deflection couplers with a middle section consisting of a rubber boot attached by spin couplings and galvanized straps, with inner ducts that bend in unison with the rubber boot.

Use expansion joints that are designed for use with RGC multi-cell raceway, and meet the requirements for RGC outer duct stated above. Provide expansion joints that allow 8 inches of longitudinal movement. Use expansion joints consisting of a female end with a lead-in coupling body and spin coupling, an exterior sliding joint, and a fixed inner duct with an internal sliding joint. Provide expansion joints that have factory installed reverse-spin couplings with 3 set screws, to allow assembly without turning the outer duct and prevent the coupling from backing off before and after installation.

Use transition adapters that allow RGC raceway and PVC raceway to be coupled together while maintaining the same inner duct alignment. Provide adapters consisting of a threaded female adapter, an outer duct adapter, and a modified coupling body with a sleeve, thin wall couplings and an end spacer.

For the outer duct of PVC multi-cell raceway use schedule 40 PVC per UL 651 "Rigid Nonmetallic Conduit." Use PVC raceway with 6 inch bell ends and an O-ring gasket to resist pullout and provide a watertight seal. Provide PVC raceway having a print line that states "Install Print Line Up" to help facilitate correct installation. Use PVC raceway with pre-lubricated PVC inner ducts, with one white "tracer" duct and internal spacers to maintain alignment throughout the raceway system. Do not use material provided by more than one manufacturer.

Use terminations designed for PVC raceway, to seal each inner duct and the outer duct, and to provide watertight protection.

Use schedule 40 PVC for sleeves in accordance with UL 651 "Rigid Nonmetallic Conduit."

Provide concrete inserts made of galvanized malleable iron, with internal threads for suspending loads from a fixed point beneath a concrete ceiling or deck where no lateral adjustment is required. Use inserts that can be secured to the concrete forms, preventing movement during concrete placement.

For stabilizers and hangers, use galvanized rods that conform to ASTM-A36 or A-575. Galvanized rods may be threaded on both ends or threaded continuously. Use steel stabilizer clamps and attachment brackets, sized as noted in the plans and hot dipped galvanized per ASTM-A123. Provide high strength bolts, nuts and washers that are galvanized in accordance with Article 1072-5 of the Standard Specifications.

Use adjustable clevis-type pipe hangers that allow for vertical adjustment and limited movement of the pipe. Use galvanized pipe hangers that are listed with Underwriters Laboratories, or are Factory Mutual approved for the size conduit shown in the plans. Use

hangers that comply with Federal Specification WW-H-171E Type 1 and Manufacturers Standardization Society SP-69 Type 1. Plastic-coat the saddle area of the hanger.

Provide pull lines specifically designed for pulling rope through conduit. Use pull lines made of 2-ply line, with a tensile strength of 240 pounds minimum. Use rot and mildew resistant pull lines that are resistant to tangling when being dispensed.

Use mastic that is a permanent, non-hardening, water sealing compound that adheres to metal, plastic, and concrete.

Provide jute that is a burlap-like material used for filling voids and protecting components from waterproofing and adhesive compounds.

Provide zinc rich paint conforming to Section 1080-9 of the Standard Specifications.

3.0 Installation

To ensure against corrosion in the area where hot dipped galvanizing has been damaged, cover all raw metal surfaces with a cold galvanized, zinc rich paint.

Stub the raceway out at an accessible location and seal with termination kits designed specifically for that purpose. Use termination kits of the same material as the raceway.

Install Stabilizers as shown on the plans to assure proper movement of the conduit expansion joints. Securely fasten the clamps with attachment brackets and stabilizer rods to the conduit at the indicated locations to assure these locations remain stationary. Install the stabilizer rods parallel to the alignment of the conduit, and tilt rod upward at an orientation of 45 degrees to the bottom of the bridge deck.

Insert a pull line in each inner duct with sufficient slack for future use.

Securely fasten all components to prevent movement during concrete placement.

Smooth all sleeve ends and make them flush with surrounding concrete surfaces. Remove burrs and rough edges by filing or grinding. A torch may be used to cut the ends of metal sleeves. Use shields to protect all surfaces during torch-cutting operations.

Place backfill in accordance with Section 300-7 of the Standard Specifications.

Fill the space between the raceway and the sleeve with mastic and jute. Install the mastic with a minimum distance of 2 inches at each end of the sleeve and the remaining interior space filled with jute. Finish the mastic by making it smooth and flush with the concrete.

Coordinate electrical conduit system work with work by others, and allow installation of circuitry or fiber optic cables during the construction process as directed by the Engineer.

Ensure that the concrete inserts are in the proper position and installed correctly, including when they are located in prestressed concrete deck panels.

B-3421 123

Keep the raceway system clean of all debris during construction, with the completed system clean and ready for installation of circuitry or fiber optic cables.

The Engineer must inspect and approve all work before concealment.

4.0 BASIS OF PAYMENT

No direct measurement will be made for the conduit system, since it will be paid for on a lump sum basis.

Payment for the conduit system will be made at the contract lump sum price for "Electrical Conduit System for Signals at station".

Such price and payment for the conduit system as provided above will be considered full compensation for all materials, equipment, and labor necessary to complete the work in accordance with the plans and these special provisions.

Payment will be made under:

Electrical Conduit System for Signals at station _____ Lump Sum

FALSEWORK AND FORMWORK

(9-30-11)

1.0 DESCRIPTION

Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork.

Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure.

Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure.

2.0 MATERIALS

Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required.

3.0 DESIGN REQUIREMENTS

A. Working Drawings

Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work.

On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer.

When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract.

When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design.

If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed on concrete girders with thin top flanges. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete.

When staged construction of the bridge deck is required, detail falsework and forms for screed and fluid concrete loads to be independent of any previous deck pour components when the mid-span girder deflection due to deck weight is greater than 34".

Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize or metalize these devices. Electroplating will not be allowed. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works.

Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein.

1. Wind Loads

Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph. In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina.

Table 2.2 - Wind Pressure Values

Height Zone	Pressure, lb/ft² for Indicated Wind Velocity, mph				
feet above ground	70	80	90	100	110
0 to 30	15	20	25	30	35
30 to 50	20	25	30	35	40
50 to 100	25	30	35	40	45
over 100	30	35	40	45	50

2. Time of Removal

The following requirements replace those of Article 3.4.8.2.

Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions.

Do not remove forms until the concrete has sufficient strength to prevent damage to the surface.

B-3421 126

Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina

COUNTY	25 YR (mph)	COUNTY	25 YR (mph)	COUNTY	25 YR (mph)
Alamance	70	Franklin	70	Pamlico	100
Alexander	70	Gaston	70	Pasquotank	100
Alleghany	70	Gates	90	Pender	100
Anson	70	Graham	80	Perquimans	100
Ashe	70	Granville	70	Person	70
Avery	70	Greene	80	Pitt	90
Beaufort	100	Guilford	70	Polk	80
Bertie	90	Halifax	80	Randolph	70
Bladen	90	Harnett	70	Richmond	70
Brunswick	100	Haywood	80	Robeson	80
Buncombe	80	Henderson	80	Rockingham	70
Burke	70	Hertford	90	Rowan	70
Cabarrus	70	Hoke	70	Rutherford	70
Caldwell	70	Hyde	110	Sampson	90
Camden	100	Iredell	70	Scotland	70
Carteret	110	Jackson	80	Stanley	70
Caswell	70	Johnston	80	Stokes	70
Catawba	70	Jones	100	Surry	70
Cherokee	80	Lee	70	Swain	80
Chatham	70	Lenoir	90	Transylvania	80
Chowan	90	Lincoln	70	Tyrell	100
Clay	80	Macon	80	Union	70
Cleveland	70	Madison	80	Vance	70
Columbus	90	Martin	90	Wake	70
Craven	100	McDowell	70	Warren	70
Cumberland	80	Mecklenburg	70	Washington	100
Currituck	100	Mitchell	70	Watauga	70
Dare	110	Montgomery	70	Wayne	80
Davidson	70	Moore	70	Wilkes	70
Davie	70	Nash	80	Wilson	80
Duplin	90	New Hanover	100	Yadkin	70
Durham	70	Northampton	80	Yancey	70
Edgecombe	80	Onslow	100		
Forsyth	70	Orange	70		

7

B. Review and Approval

The Engineer is responsible for the review and approval of temporary works' drawings.

Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work.

The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer.

Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings.

4.0 CONSTRUCTION REQUIREMENTS

All requirements of Section 420 of the Standard Specifications apply.

Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings.

Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch. For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips.

A. Maintenance and Inspection

Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site.

Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading.

B. Foundations

Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations.

The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure.

Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports.

If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations.

The Engineer reviews and approves the proposed pile and soil bearing capacities.

5.0 REMOVAL

Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work.

Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight.

6.0 METHOD OF MEASUREMENT

Unless otherwise specified, temporary works will not be directly measured.

7.0 Basis of Payment

Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork.

SUBMITTAL OF WORKING DRAWINGS

(9-30-11)

1.0 GENERAL

Submit working drawings in accordance with Article 105-2 of the Standard Specifications and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals.

If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below.

In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items.

2.0 **ADDRESSES AND CONTACTS**

For submittals to the Structure Design Unit, use the following addresses:

Via US mail:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581

Attention: Mr. P. D. Lambert, P. E.

Submittals may also be made via email.

Send submittals to:

plambert@ncdot.gov (Paul Lambert)

Send an additional e-copy of the submittal to the following address:

jgaither@ncdot.gov (James Gaither) Via other delivery service:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610

For submittals to the Geotechnical Engineering Unit, use the following addresses:

For projects in Divisions 1-7, use the following Eastern Regional Office address:

Via US mail:

Via other delivery service:

Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Eastern Regional Office

1570 Mail Service Center

Raleigh, NC 27699-1570

May V I View Db D D

Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Eastern Regional Office

3301 Jones Sausage Road, Suite 100

Garner, NC 27529

For projects in Divisions 8-14, use the following Western Regional Office address:

Via US mail:

Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Via other delivery service:

Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075

The status of the review of structure-related submittals sent to the Structure Design Unit can be viewed from the Unit's web site, via the "Contractor Submittal" link.

Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts:

Primary Structures Contact:

Paul Lambert

(919) 707 - 6407

(919) 250 - 4082 facsimile

plambert@ncdot.gov

Secondary Structures Contacts:

James Gaither

(919) 707 - 6409

Eastern Regional Geotechnical Contact (Divisions 1-7):

K. J. Kim

(919) 662 - 4710

(919) 662 - 3095 facsimile

kkim@ncdot.gov

B-3421 1.31

Western Regional Geotechnical Contact (Divisions 8-14):

John Pilipchuk (704) 455 – 8902 (704) 455 – 8912 facsimile ipilipchuk@ncdot.gov

3.0 SUBMITTAL COPIES

Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit.

The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit.

Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed.

STRUCTURE SUBMITTALS

Submittal	Copies Required by Structure Design Unit	Copies Required by Geotechnical Engineering Unit	Contract Reference Requiring Submittal ¹
Arch Culvert Falsework	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Box Culvert Falsework ⁷	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Cofferdams	6	2	Article 410-4
Foam Joint Seals 6	9	0	"Foam Joint Seals"
Expansion Joint Seals (hold down plate type with base angle)	9	0	"Expansion Joint Seals"
Expansion Joint Seals (modular)	2, then 9	0	"Modular Expansion Joint Seals"
Expansion Joint Seals (strip seals)	9	0	"Strip Seals"
Falsework & Forms ² (substructure)	8	0	Article 420-3 & "Falsework and Formwork"
Falsework & Forms (superstructure)	8	0	Article 420-3 & "Falsework and Formwork"
Girder Erection over Railroad	5	0	Railroad Provisions
Maintenance and Protection of Traffic Beneath Proposed Structure	8	0	"Maintenance and Protection of Traffic Beneath Proposed Structure at Station"
Metal Bridge Railing	8	0	Plan Note
Metal Stay-in-Place Forms	8	0	Article 420-3

Metalwork for Elastomeric Bearings ^{4,5}	7	0	Article 1072-8
Miscellaneous Metalwork ^{4,5}	7	0	Article 1072-8
Optional Disc Bearings 4	8	0	"Optional Disc Bearings"
Overhead and Digital Message Signs (DMS) (metalwork and foundations)	13	0	Applicable Provisions
Placement of Equipment on Structures (cranes, etc.)	7	0	Article 420-20
Pot Bearings ⁴	8	0	"Pot Bearings"
Precast Concrete Box Culverts	2, then 1 reproducible	0	"Optional Precast Reinforced Concrete Box Culvert at Station"
Prestressed Concrete Cored Slab (detensioning sequences) ³	6	0	Article 1078-11
Prestressed Concrete Deck Panels	6 and 1 reproducible	0	Article 420-3
Prestressed Concrete Girder (strand elongation and detensioning sequences)	6	0	Articles 1078-8 and 1078- 11
Removal of Existing Structure over Railroad	5	0	Railroad Provisions
Revised Bridge Deck Plans (adaptation to prestressed deck panels)	2, then 1 reproducible	0	Article 420-3
Revised Bridge Deck Plans (adaptation to modular expansion joint seals)	2, then 1 reproducible	0	"Modular Expansion Joint Seals"
Sound Barrier Wall (precast items)	10	0	Article 1077-2 & "Sound Barrier Wall"
Sound Barrier Wall Steel Fabrication Plans ⁵	7	0	Article 1072-8 & "Sound Barrier Wall"
Structural Steel ⁴	2, then 7	0	Article 1072-8

134

Temporary Detour Structures	10	2	Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station"
TFE Expansion Bearings ⁴	8	0	Article 1072-8

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the *Standard Specifications*.
- 2. Submittals for these items are necessary only when required by a note on plans.
- 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit.
- 4. The fabricator may submit these items directly to the Structure Design Unit.
- 5. The two sets of preliminary submittals required by Article 1072-8 of the *Standard Specifications* are not required for these items.
- 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision.
- 7. Submittals are necessary only when the top slab thickness is 18" or greater.

GEOTECHNICAL SUBMITTALS

Submittal	Copies Required by Geotechnical Engineering Unit	Copies Required by Structure Design Unit	Contract Reference Requiring Submittal ¹
Drilled Pier Construction Plans ²	1	0	Subarticle 411-3(A)
Crosshole Sonic Logging (CSL) Reports ²	1	0	Subarticle 411-5(A)(2)
Pile Driving Equipment Data Forms ^{2,3}	1	0	Subarticle 450-3(D)(2)
Pile Driving Analyzer (PDA) Reports ²	1	0	Subarticle 450-3(F)(3)
Retaining Walls ⁴	8 drawings, 2 calculations	2 drawings	Applicable Provisions
Temporary Shoring ⁴	5 drawings, 2 calculations	2 drawings	"Temporary Shoring" & "Temporary Soil Nail Walls"

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Subarticles refer to the *Standard Specifications*.
- 2. Submit one hard copy of submittal to the Resident or Bridge Maintenance Engineer. Submit a second copy of submittal electronically (PDF via email) or by facsimile, US mail or other delivery service to the appropriate Geotechnical Engineering Unit regional office. Electronic submission is preferred.
- 3. The Pile Driving Equipment Data Form is available from: www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ See second page of form for submittal instructions.
- 4. Electronic copy of submittal is required. See referenced provision.

CRANE SAFETY (8-15-05)

Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA).

Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations.

CRANE SAFETY SUBMITTAL LIST

- A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns.
- B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices.
- C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request.
- D. <u>Certifications</u>: By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator.

GROUT FOR STRUCTURES

9-30-11

1.0 DESCRIPTION

This special provision addresses grout for use in pile blockouts, grout pockets, shear keys, dowel holes and recesses for structures. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Mix and place grout in accordance with the manufacturer's recommendations, the applicable sections of the Standard Specifications and this provision.

2.0 MATERIAL REQUIREMENTS

Use a Department approved pre-packaged, non-shrink, non-metallic grout. Contact the Materials and Tests Unit for a list of approved pre-packaged grouts and consult the manufacturer to determine if the pre-packaged grout selected is suitable for the required application.

When using an approved pre-packaged grout, a grout mix design submittal is not required.

The grout shall be free of soluble chlorides and contain less than one percent soluble sulfate. Supply water in compliance with Article 1024-4 of the Standard Specifications.

Aggregate may be added to the mix only where recommended or permitted by the manufacturer and Engineer. The quantity and gradation of the aggregate shall be in accordance with the manufacturer's recommendations.

Admixtures, if approved by the Department, shall be used in accordance with the manufacturer's recommendations. The manufacture date shall be clearly stamped on each container. Admixtures with an expired shelf life shall not be used.

The Engineer reserves the right to reject material based on unsatisfactory performance.

Initial setting time shall not be less than 10 minutes when tested in accordance with ASTM C266.

Test the expansion and shrinkage of the grout in accordance with ASTM C1090. The grout shall expand no more than 0.2% and shall exhibit no shrinkage. Furnish a Type 4 material certification showing results of tests conducted to determine the properties listed in the Standard Specifications and to assure the material is non-shrink.

Unless required elsewhere in the contract the compressive strength at 3 days shall be at least 5000 psi. Compressive strength in the laboratory shall be determined in accordance with ASTM C109 except the test mix shall contain only water and the dry manufactured material. Compressive strength in the field will be determined by molding and testing 4" x 8" cylinders in accordance with AASHTO T22. Construction loading and traffic loading shall not be allowed until the 3 day compressive strength is achieved.

When tested in accordance with ASTM C666, Procedure A, the durability factor of the grout shall not be less than 80.

3.0 SAMPLING AND PLACEMENT

Place and maintain components in final position until grout placement is complete and accepted. Concrete surfaces to receive grout shall be free of defective concrete, laitance, oil, grease and other foreign matter. Saturate concrete surfaces with clean water and remove excess water prior to placing grout.

Do not place grout if the grout temperature is less than 50°F or more than 90°F or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 45°F.

Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement.

Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes.

The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days.

4.0 BASIS OF PAYMENT

No separate payment will be made for "Grout for Structures". The cost of the material, equipment, labor, placement, and any incidentals necessary to complete the work shall be considered incidental to the structure item requiring grout.

MECHANICALLY STABILIZED EARTH RETAINING WALLS

(1-17-12)

1.0 GENERAL

Construct mechanically stabilized earth (MSE) retaining walls consisting of steel or geogrid reinforcements in the reinforced zone connected to vertical facing elements. The facing elements may be precast concrete panels or segmental retaining wall (SRW) units unless required otherwise in the plans or the *NCDOT Policy for Mechanically Stabilized Earth Retaining Walls* prohibits the use of SRW units. At the Contractor's option, use coarse or fine aggregate in the reinforced zone of MSE retaining walls except do not use fine aggregate for walls subject to scour, walls that support or are adjacent to railroads or walls with design heights greater than 35 ft or internal acute corners less than 45°. Provide reinforced concrete coping as required. Design and construct MSE retaining walls based on actual elevations and wall dimensions in accordance with the contract and accepted submittals. Use a prequalified MSE Wall Installer to construct MSE retaining walls.

Define "MSE wall" as a mechanically stabilized earth retaining wall and "MSE Wall Vendor" as the vendor supplying the chosen MSE wall system. Define a "segmental retaining wall" as an MSE wall with SRW units and an "abutment wall" as an MSE wall with bridge foundations in the reinforced zone. Define "reinforcement" as steel or geogrid reinforcement and "aggregate" as coarse or fine aggregate. Define "panel" as a precast concrete panel and "coping" as precast or cast-in-place concrete coping.

Use an approved MSE wall system in accordance with the plans, NCDOT MSE wall policy and any NCDOT restrictions for the chosen system. Value engineering proposals for other

MSE wall systems will not be considered. Do not use segmental retaining walls or MSE wall systems with an "approved for provisional use" status code for critical walls or MSE walls connected to critical walls. Critical walls are defined in the NCDOT MSE wall policy. The list of approved MSE wall systems and NCDOT MSE wall policy are available from:

www.ncdot.org/doh/preconstruct/highway/geotech/msewalls

2.0 MATERIALS

Refer to the Standard Specifications.

Item	Section
Aggregate	1014
Anchor Pins	1056-2
Curing Agents	1026
Geotextiles	1056
Joint Materials	1028
Portland Cement Concrete	1000
Precast Retaining Wall Coping	1077
Reinforcing Steel	1070
Retaining Wall Panels	1077
Segmental Retaining Wall Units	1040-4
Shoulder Drain Materials	816-2
Wire Staples	1060-8(D)

Provide Type 2 geotextile for filtration and separation geotextiles. Use Class A concrete for cast-in-place coping, leveling concrete and pads.

Provide panels and SRW units produced by a manufacturer approved or licensed by the MSE Wall Vendor. Unless required otherwise in the contract, produce panels with a smooth flat final finish that meets Article 1077-11 of the *Standard Specifications*. Accurately locate and secure reinforcement connectors in panels and maintain required concrete cover. Produce panels within 1/4" of the panel dimensions shown in the accepted submittals.

Damaged panels or SRW units with excessive discoloration, chips or cracks as determined by the Engineer will be rejected. Do not damage reinforcement connection devices or mechanisms in handling or storing panels and SRW units.

Store steel materials on blocking at least 12" above the ground and protect it at all times from damage; and when placing in the work make sure it is free from dirt, dust, loose mill scale, loose rust, paint, oil or other foreign materials. Handle and store geogrids in accordance with Article 1056-2 of the *Standard Specifications*. Load, transport, unload and store MSE wall materials so materials are kept clean and free of damage.

A. Aggregate

Use standard size No. 57, 57M, 67 or 78M that meets Table 1005-1 of the Standard Specifications for coarse aggregate except do not use No. 57 or 57M stone in the

reinforced zone of MSE walls with geogrid reinforcement. Use the following for fine aggregate:

- 1. Standard size No. 1S, 2S, 2MS or 4S that meets Table 1005-2 of the *Standard Specifications* or
- 2. Gradation that meets Class III, Type 3 select material in accordance with Article 1016-3 of the Standard Specifications.

Fine aggregate is exempt from mortar strength and siliceous particle content referenced in Subarticles 1014-1(E) and 1014-1(H) of the *Standard Specifications*. Provide fine aggregate that meets the following requirements:

F	INE AC	GGREGATE RE	QUIREMEN	ITS	
Reinforcement or	pН	Resistivity	Chlorides	Sulfates	Organics
Connector Material	:			· · ·	
Steel	5-10	\geq 3,000 $\Omega \cdot \text{cm}$	≤ 100 ppm	\leq 200 ppm	≤1%
Geogrid	5-8	N/A*	N/A*	N/A*	≤1%

^{*} Resistivity, chlorides and sulfates are not applicable to geogrid.

Use fine aggregate from a source that meets the *Mechanically Stabilized Earth Wall Fine Aggregate Sampling and Testing Manual*. Perform organic content tests in accordance with AASHTO T 267 instead of Subarticle 1014-1(D) of the *Standard Specifications*. Perform electrochemical tests in accordance with the following test procedures:

Property	Test Method
pH	AASHTO T 289
Resistivity	AASHTO T 288
Chlorides	AASHTO T 291
Sulfates	AASHTO T 290

B. Reinforcement

Provide steel or geogrid reinforcement supplied by the MSE Wall Vendor or a manufacturer approved or licensed by the vendor. Use approved reinforcement for the chosen MSE wall system. The list of approved reinforcement for each MSE wall system is available from the website shown elsewhere in this provision.

1. Steel Reinforcement

Provide Type 1 material certifications in accordance with Article 106-3 of the *Standard Specifications* for steel reinforcement. Use welded wire grid reinforcement ("mesh", "mats" and "ladders") that meet Article 1070-3 of the *Standard Specifications* and metallic strip reinforcement ("straps") that meet ASTM A572 or A1011. Galvanize steel reinforcement in accordance with Section 1076 of the *Standard Specifications*.

2. Geogrid Reinforcement

Define "machine direction" (MD) for geogrids in accordance with ASTM D4439. Provide Type 1 material certifications for geogrid strengths in the MD in accordance with Article 1056-3 of the *Standard Specifications*. Test geogrids in accordance with ASTM D6637.

C. Bearing Pads

Use bearing pads that meet Section 3.6.1.a of the FHWA Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume I (Publication No. FHWA-NHI-10-024).

D. Miscellaneous Components

Miscellaneous components may include connectors (e.g., anchors, bars, clamps, pins, plates, ties, etc.), fasteners (e.g., bolts, nuts, washers, etc.) and any other MSE wall components not included above. Galvanize steel components in accordance with Section 1076 of the *Standard Specifications*. Provide approved miscellaneous components for the chosen MSE wall system. The list of approved miscellaneous components for each MSE wall system is available from the website shown elsewhere in this provision.

3.0 PRECONSTRUCTION REQUIREMENTS

A. MSE Wall Surveys

The Retaining Wall Plans show a plan view, typical sections, details, notes and an elevation or profile view (wall envelope) for each MSE wall. Before beginning MSE wall design, survey existing ground elevations shown in the plans and other elevations in the vicinity of MSE wall locations as needed. Based on these elevations, finished grades and actual MSE wall dimensions and details, submit revised wall envelopes for acceptance. Use accepted wall envelopes for design.

B. MSE Wall Designs

Submit 11 copies of working drawings and 3 copies of design calculations and a PDF copy of each for MSE wall designs at least 30 days before the preconstruction meeting. Do not begin MSE wall construction until a design submittal is accepted.

Use a prequalified MSE Wall Design Consultant to design MSE walls. Provide designs sealed by a Design Engineer approved as a Geotechnical Engineer (key person) for the MSE Wall Design Consultant.

Design MSE walls in accordance with the plans, AASHTO LRFD Bridge Design Specifications and any NCDOT restrictions for the chosen MSE wall system unless otherwise required. Design MSE walls for seismic if walls are located in seismic

zone 2 in accordance with Figure 2-1 of the Structure Design Unit Design Manual. Use a uniform reinforcement length throughout the wall height of at least 0.7H with H as defined for the embedment requirements in this provision or 6 ft, whichever is greater, unless shown otherwise in the plans. Extend the reinforced zone at least 6" beyond end of reinforcement. Do not locate drains, the reinforced zone or leveling pads outside right-of-way or easement limits.

Use the simplified method for determining maximum reinforcement loads and approved design parameters for the chosen MSE wall system or default values in accordance with the AASHTO LRFD specifications. Design steel components including reinforcement and connectors for the design life noted in the plans and aggregate type in the reinforced zone. Use corrosion loss rates for galvanizing in accordance with the AASHTO LRFD specifications for nonaggressive backfill and carbon steel corrosion rates in accordance with the following:

CARBON STEEL COR	ROSION RATES
Aggregate Type	Corrosion Loss Rate
(in the reinforced zone)	(after zinc depletion)
Coarse	0.47 mil/year
Fine (except abutment walls)	0.58 mil/year
Fine (abutment walls)	0.70 mil/year

For geogrid reinforcement and connectors, use approved geogrid properties for the design life noted in the plans and aggregate type in the reinforced zone.

When noted in the plans, design MSE walls for a live load (traffic) surcharge of 250 lb/sf in accordance with Figure C11.5.5-3(b) of the AASHTO LRFD specifications. For steel beam guardrail with 8 ft posts or concrete barrier rail above MSE walls, analyze top 2 reinforcement layers for traffic impact loads in accordance with Section 7.2 of the FHWA MSE wall manual shown elsewhere in this provision except use the following for geogrid reinforcement rupture:

		$\phi T_{al} R_c \ge T_{max} + (T_I / RF_{CR})$
Where,		
ф	=	resistance factor for tensile resistance in accordance with Section 7.2.1 of the FHWA MSE wall manual,
T_{al}	=	long-term geogrid design strength approved for chosen MSE wall system,
R_c	=	reinforcement coverage ratio = 1 for continuous geogrid reinforcement,
T_{max}	=	factored static load in accordance with Section 7.2 of the FHWA MSE wall manual,
T_{I}	=	factored impact load in accordance with Section 7.2 of the FHWA MSE wall manual, and
RF_{CR}	=	creep reduction factor approved for chosen MSE wall system.

If existing or future obstructions such as foundations, guardrail, fence or handrail posts, moment slabs, pavements, pipes, inlets or utilities will interfere with reinforcement, maintain a clearance of at least 3" between obstructions and reinforcement unless otherwise approved. Locate reinforcement layers so all of reinforcement length is within 3" of corresponding connection elevations.

Use 6" thick cast-in-place unreinforced concrete leveling pads beneath panels and SRW units that are continuous at steps and extend at least 6" in front of and behind bottom row of panels or SRW units. Unless required otherwise in the plans, embed top of leveling pads in accordance with the following requirements:

EMBEDMENT REQUIREMENTS				
Minimum Embedment Depth ² (whichever is greater)				
			11/20	1 ft for $H \le 10$ ft
H/20	2 ft for H > 10 ft			
H/10	2 ft			
H/10	2 ft			
H/7	2 ft			
	Minimun (whice H/20 H/10 H/10			

- 1. Front slope shown in the plans.
- 2. Define "H" as the maximum design height plus embedment per wall with the design height and embedment as shown in the plans.

When noted in the plans, locate a continuous aggregate shoulder drain along base of reinforced zone behind aggregate. Provide wall drainage systems consisting of drains and outlet components in accordance with Standard Drawing No. 816.02 of the *Roadway Standard Drawings*.

For MSE walls with panels, place at least 2 bearing pads in each horizontal panel joint so the final horizontal joint opening is between 5/8" and 7/8". Additional bearing pads may be required for panels wider than 5 ft as determined by the Engineer. Cover joints at back of panels with filtration geotextiles at least 12" wide.

For segmental retaining walls, fill SRW unit core spaces with coarse aggregate and between and behind SRW units with coarse aggregate for a horizontal distance of at least 18".

Separation geotextiles are required between aggregate and overlying fill or pavement sections except when concrete pavement, full depth asphalt or cement treated base is placed directly on aggregate. Separation geotextiles may also be required between coarse aggregate and backfill or natural ground as determined by the Engineer.

Unless required otherwise in the plans, use reinforced concrete coping at top of walls. Extend coping at least 6" above where the grade intersects back of coping unless required otherwise in the plans. Use coping dimensions shown in the plans and cast-in-

place concrete coping for segmental retaining walls and when noted in the plans. At the Contractor's option, connect cast-in-place concrete coping to panels and SRW units with dowels or extend coping down back of MSE walls. Also, connect cast-in-place leveling concrete for precast concrete coping to panels with dowels. When concrete barrier rail is required above MSE walls, use concrete barrier rail with moment slab as shown in the plans.

Submit working drawings and design calculations for acceptance in accordance with Article 105-2 of the Standard Specifications. Submit working drawings showing plan views, wall profiles with required resistances, typical sections with reinforcement and connection details, aggregate locations and types, geotextile locations and details of leveling pads, panels or SRW units, coping, bin walls, slip joints, etc. If necessary, include details on working drawings for concrete barrier rail with moment slab, geogrid splices if allowed for the chosen MSE wall system, reinforcement connected to end bent caps and obstructions extending through walls or interfering with reinforcement, leveling pads, barriers or moment slabs. Submit design calculations for each wall section with different surcharge loads, geometry or material parameters. At least one analysis is required for each wall section with different reinforcement lengths. When designing MSE walls with computer software other than MSEW, use MSEW version 3.0 with update 14.2 or later, manufactured by ADAMA Engineering, Inc. to verify the design. At least one MSEW analysis is required per 100 ft of wall length with at least one MSEW analysis for the wall section with the longest reinforcement length. Submit electronic MSEW input files and PDF output files with design calculations.

C. Preconstruction Meeting

Before starting MSE wall construction, hold a preconstruction meeting to discuss the construction and inspection of the MSE walls. Schedule this meeting after all MSE wall submittals have been accepted. The Resident or Bridge Maintenance Engineer, Bridge Construction Engineer, Geotechnical Operations Engineer, Contractor and MSE Wall Installer Superintendent will attend this preconstruction meeting.

4.0 CORROSION MONITORING

Corrosion monitoring is required for MSE walls with steel reinforcement. The Engineer will determine the number of monitoring locations and where to install the instrumentation. Contact the Materials and Tests (M&T) Unit before beginning wall construction. M&T will provide the corrosion monitoring instrumentation kits and if necessary, assistance with installation.

5.0 SITE ASSISTANCE

Unless otherwise approved, provide an MSE Wall Vendor representative to assist and guide the MSE Wall Installer on-site for at least 8 hours when the first panels or SRW units and reinforcement layer are placed. If problems are encountered during construction, the Engineer may require the vendor representative to return to the site for a time period determined by the Engineer.

6.0 CONSTRUCTION METHODS

Control drainage during construction in the vicinity of MSE walls. Direct run off away from MSE walls, aggregate and backfill. Contain and maintain aggregate and backfill and protect material from erosion.

Excavate as necessary for MSE walls in accordance with the accepted submittals. If applicable and at the Contractor's option, use temporary shoring for wall construction instead of temporary slopes to construct MSE walls. Define "temporary shoring for wall construction" as temporary shoring not shown in the plans or required by the Engineer including shoring for OSHA reasons or the Contractor's convenience.

Unless required otherwise in the plans, install foundations located in the reinforced zone before placing aggregate or reinforcement. Notify the Engineer when foundation excavation is complete. Do not place leveling pad concrete, aggregate or reinforcement until excavation dimensions and foundation material are approved.

Construct cast-in-place concrete leveling pads at elevations and with dimensions shown in the accepted submittals and in accordance with Section 420 of the *Standard Specifications*. Cure leveling pads at least 24 hours before placing panels or SRW units.

Erect and support panels and stack SRW units with no negative batter (wall face leaning forward) so the final wall position is as shown in the accepted submittals. Place SRW units with a maximum vertical joint width of 3/8".

Set panels with a vertical joint width of 3/4". Place bearing pads in horizontal panel joints and cover all panel joints with filtration geotextiles as shown in the accepted submittals. Attach filtration geotextiles to back of panels with adhesives, tapes or other approved methods.

Stagger panels and SRW units to create a running bond by centering panels or SRW units over joints in the row below as shown in the accepted submittals. Construct MSE walls with the following tolerances:

- A. SRW units are level from front to back and between units when checked with a 3 ft long level,
- B. Final wall face is within 3/4" of horizontal and vertical alignment shown in the accepted submittals when measured along a 10 ft straightedge, and
- C. Final wall plumbness (batter) is within 0.5° of vertical unless otherwise approved.

Place reinforcement at locations and elevations shown in the accepted submittals and within 3" of corresponding connection elevations. Install reinforcement with the direction shown in the accepted submittals. Place reinforcement in slight tension free of kinks, folds, wrinkles or creases. Do not splice steel reinforcement. Geogrids may be spliced once per reinforcement length if shown in the accepted submittals. Use geogrid pieces at least 6 ft long. Contact the Engineer when unanticipated existing or future obstructions such as foundations, guardrail, fence or handrail posts, pavements, pipes, inlets or utilities will interfere with reinforcement. To avoid obstructions, deflect, skew or modify reinforcement as shown in the accepted submittals.

Place aggregate in the reinforced zone in 8" to 10" thick lifts. Compact fine aggregate in accordance with Subarticle 235-3(C) of the *Standard Specifications*. Use only hand operated compaction equipment to compact aggregate within 3 ft of panels or SRW units. At a distance greater than 3 ft, compact aggregate with at least 4 passes of an 8 ton to 10 ton vibratory roller in a direction parallel to the wall face. Smooth wheeled or rubber tired rollers are also acceptable for compacting aggregate. Do not use sheepsfoot, grid rollers or other types of compaction equipment with feet. Do not displace or damage reinforcement when placing and compacting aggregate. End dumping directly on geogrids is not permitted. Do not operate heavy equipment on reinforcement until it is covered with at least 8" of aggregate. Replace any damaged reinforcement to the satisfaction of the Engineer.

Backfill for MSE walls outside the reinforced zone in accordance with Article 410-8 of the *Standard Specifications*. If a drain is required, install wall drainage systems as shown in the accepted submittals and in accordance with Section 816 of the *Standard Specifications*.

Place and construct coping and leveling concrete as shown in the accepted submittals. Construct leveling concrete in accordance with Section 420 of the *Standard Specifications*. Construct cast-in-place concrete coping in accordance with Subarticle 452-3(C) of the *Standard Specifications*. When single faced precast concrete barrier is required in front of and against MSE walls, stop coping just above barrier so coping does not interfere with placing barrier up against wall faces.

When separation geotextiles are required, overlap adjacent geotextiles at least 18" and hold separation geotextiles in place with wire staples or anchor pins as needed. Seal joints above and behind MSE walls between coping and ditches or concrete slope protection with silicone sealant.

7.0 MEASUREMENT AND PAYMENT

MSE Retaining Walls will be measured and paid in square feet. MSE walls will be measured as the square feet of exposed wall face area with the height equal to the difference between top and bottom of wall elevations. Define "top of wall" as top of coping or top of panels or SRW units for MSE walls without coping. Define "bottom of wall" as shown in the plans and no measurement will be made for portions of MSE walls embedded below bottom of wall elevations.

The contract unit price for MSE Retaining Walls will be full compensation for providing designs, submittals, labor, tools, equipment and MSE wall materials, excavating, backfilling, hauling and removing excavated materials and supplying site assistance, leveling pads, panels, SRW units, reinforcement, aggregate, wall drainage systems, geotextiles, bearing pads, coping, miscellaneous components and any incidentals necessary to construct MSE walls. The contract unit price for MSE Retaining Walls will also be full compensation for reinforcement connected to and aggregate behind end bent caps in the reinforced zone, if required.

No separate payment will be made for temporary shoring for wall construction. Temporary shoring for wall construction will be incidental to the contract unit price for MSE Retaining Walls.

B-3421 1.4'7

The contract unit price for MSE Retaining Walls does not include the cost for ditches, fences, handrails, barrier or guardrail associated with MSE walls as these items will be paid for elsewhere in the contract.

Where it is necessary to provide backfill material behind the reinforced zone from sources other than excavated areas or borrow sources used in connection with other work in the contract, payment for furnishing and hauling such backfill material will be paid as extra work in accordance with Article 104-7 of the *Standard Specifications*. Placing and compacting such backfill material is not considered extra work but is incidental to the work being performed.

Payment will be made under:

Pay ItemMSE Retaining Walls

Pay Unit Square Foot

CLASSIC CONCRETE BRIDGE RAIL

(SPECIAL)

1.0 General

The "Classic Concrete Bridge Rail" shall be in accordance with applicable parts of the Standard Specifications, the details shown on the plans and as outlined in these special provisions. Plans for the bridge rails are detailed for cast in place concrete and must be placed using conventional forms.

2.0 Concrete Mix

Concrete for the bridge rail shall meet the requirements for class AA concrete with exception noted below:

The maximum size coarse aggregate used in the concrete mix shall be #78M. The slump shall be within the range of 5" to 8" when tested in accordance with AASHTO T119. A high range water reducer shall be used. The quantity of high range water reducer per pound of cement shall be within the range recommended on the current list of approved admixtures issued by M&T Unit.

3.0 Construction

The bridge rails shall be placed to the established shape, line, grade and dimensions shown on the plans.

Joints in the rails shall be constructed at the locations and of the type specified on the plans.

4.0 Finishing

All exposed surfaces which are not satisfactory to the Engineer as to uniformity of color and texture or because of excessive patching shall be corrected as required by the Engineer. All surfaces of the bridge rails shall be given a Class I surface finish in accordance with the Standard Specifications unless directed otherwise by the Engineer.

5.0 Measurement

The quantity to be paid for under this item shall be the actual number of linear feet of "Classic Concrete Bridge Rail", complete in place and accepted, measured continuously along the top surface of completed rail from end to end without deductions for spaces between sections.

6.0 Payment

The quantity, measured as described above, will be paid for at the contract unit price per linear foot bid for "Classic Concrete Bridge Rail", which price and payment shall be full compensation for all materials, admixtures, forms, falsework, curing, surface finish, tools, labor, equipment and incidentals necessary to complete the item.

PROJECT SPECIAL PROVISIONS ELECTRICAL CONDUIT SYSTEM

OFESSION OFESSION OFESSION OFESSION OFESSION OFESSION OFESSION OF THE PROPERTY OF THE PROPERTY

September 6, 2011

DESCRIPTION:

The work covered by this section consists of furnishing and installing a conduit system embedded in concrete, for light standards to be installed by others. Perform all work in accordance with these special provisions, the plans, the National Electrical Code (NEC), and Division 14 of the North Carolina Department of Transportation "Standard Specifications for Roads and Structures."

The Contractor actually performing the work described in these special provisions shall have a license of the proper classification from the North Carolina State Board of Examiners of Electrical Contractors.

The licensed Electrical Contractor must be available on the job site when the work is being performed or when requested by the Engineer. The licensed Electrical Contractor shall have a set of plans and special provisions in his possession on the job site, and must maintain accurate "as built" plans.

MATERIALS

Submit eight (8) copies of catalog cuts and/or drawings for all proposed materials for the Engineer's review and approval. Include the brand name, stock number, description, size, rating, manufacturing specification, and applicable contract item number(s) on each submittal. Allow forty (40) days for submittal review. The Engineer will advise the Contractor of reasons for rejected submittals and will return approved submittals to the Contractor. Do not deliver material to the project prior to submittal approval.

Conduit shall be non-metallic, rigid PVC (Polyvinyl chloride), Schedule 40, approved for above ground and underground use without concrete encasement per U.L. 651 "Rigid Non-Metallic Conduit". Use Terminations designed for PVC conduit, to seal and stub out each PVC conduit, and to provide watertight protection.

Provide expansion fittings of the appropriate size as noted in the plans. Expansion fittings shall be weatherproof, designed for Schedule 40 PVC conduit and provide 100mm (4") minimum of conduit movement.

Type SW junction box shall be NEMA Type-4 cast iron, hot-dipped galvanized with external recess flange for flush mounting sized as shown on the plans. It shall have a neoprene gasketed cover with brass or stainless steel screws and shall be suitable for a watertight installation. A mounting button with a blind tapped bolt hole shall be provided on the interior for future connection of a grounding lug. The junction box shall have a replaceable checkered cover made

to withstand pedestrian and light vehicular traffic. The covers shall be a standardized design so that replacement can be done without disturbing the box or conduit system. Provide pull lines specifically designed for pulling rope through conduit. Use pull lines made of 2-ply line, with a tensile strength of 240 pounds minimum. Use rot and mildew resistant pull lines that are resistant to tangling when being dispensed.

Use mastic that is a permanent, non-hardening, water sealing compound that adheres to metal, plastic, and concrete.

Provide zinc rich paint conforming to Section 1080-9 of the Standard Specifications.

The Eastern Band of the Cherokee Indians will provide light standard anchor bolts.

CONSTRUCTION METHODS

All conduit and boxes shall be securely fastened with ties prior to placing any concrete. After the conduit is encased in concrete, the Contractor shall clean each conduit by snaking with a steel band to which shall be attached an approved tube cleaner equipped with a mandrel of a diameter not less than 85% of the nominal inside diameter of the conduit. To ensure against corrosion in the areas where hot dipped galvanizing has been damaged, cover all raw metal surfaces with a cold galvanized, zinc rich paint. Install mastic around the flange of the junction box as indicated on the plans before placing concrete.

Stub the conduit out at an accessible location and seal with termination kits designed specifically for that purpose. Use termination kits of the same material as the conduit. Place backfill in accordance with Section 300-7 of the Standard Specifications. Conduit may enter junction boxes through field drilled holes protected with zinc rich paint before the conduit is inserted. Use threaded adapter and insulating bushing at all junction box to conduit connections. Install a pull line in each conduit for future use. Leave sufficient slack for attachment of a rope that will be used to install conductors. Coordinate electrical conduit system work with work by others, and allow installation of light standards, luminaires and circuitry as directed by the Engineer.

Install anchor bolts according to light standard manufacturer's specifications.

All work must be inspected and approved by the Engineer before concealment.

METHOD OF MEASUREMENT

No direct measurement will be made for the conduit system, since it will be paid for on a lump sum basis.

BASIS OF PAYMENT

Lump Sum Basis:			
Payment for the conduit system	n will be made at th	e contract lump sum	price for "Electrical
Conduit System at Station	".	-	•

B-3421

Compensation:

151

Such price and payment for the conduit system as provided above will be considered full compensation for all materials, equipment, and labor necessary to complete the work in accordance with the plans and these special provisions.

Payment will be made under:

Electrical Conduit System

_Lurdp Sum

TIP: B-3421 Cabarrus County

SPECIAL PROVISIONS FOR PROTECTION OF RAILWAY INTEREST

Under the terms of these provisions, the North Carolina Department of Transportation shall hereinafter be called "Department", the North Carolina Railroad Company shall hereinafter be called "Company" and the Norfolk Southern Railway Company shall hereinafter be called "Railroad".

1. AUTHORITY OF RAILROAD ENGINEER AND DEPARTMENT ENGINEER:

The authorized representative of the Railroad, hereinafter referred to as Railroad Engineer, shall have final authority in all matters affecting the safe maintenance of Railroad traffic including the adequacy of the foundations and structures supporting the Railroad tracks.

The authorized representative of the North Carolina Department of Transportation, hereinafter referred to as the Department Engineer, shall have authority over all other matters as prescribed herein including Project Specifications, Special Provisions, and the plans.

2. NOTICE OF STARTING WORK:

- A. The Contractor shall not commence any work on Company's corridor until he has complied with the following conditions:
 - (1) Give the Company and Railroad written notice, with copy to the Department Engineer who is designated to be in charge of the work, at least ten (10) days in advance of the date he proposes to begin work on Company's corridor to:

Office of Chief Engineer - Bridges & Structures Norfolk Southern Corporation 1200 Peachtree Street NE Internal Box 142 Atlanta, Georgia 30309

- (2) Obtain written approval from the Company and Railroad of Railroad Protective Liability Insurance coverage as required by section 14 herein. The Railroad does not accept notation of Railroad protective insurance on a certificate of liability insurance form or Binders as Railroad must have the full original countersigned policy. The policy will be reviewed for compliance prior to written approval. Due to the number of projects system-wide, it typically takes a minimum of 30-45 days for Railroad to review.
- (3) Obtain Railroad's Flagging Services as required by section 7 herein.

- (4) Obtain written authorization from the Railroad to begin work on Company's corridor, such authorization to include an outline of specific conditions with which he must comply.
- (5) Furnish a schedule for all work within the Company corridor as required by section 7B1 herein.
- B. The Railroad's written authorization to proceed with the work will include the names, addresses, and telephone numbers of the Railroad's representatives who are to be notified as hereinafter required. Where more than one representative is designated, the area of responsibility of each representative will be specified.

3. INTERFERENCE WITH RAILROAD OPERATIONS:

- A. The Contractor shall so arrange and conduct his work that there will be no interference with Railroad operations, including train, signal, telephone and telegraphic services, or damage to the property of the Company or Railroad or to poles, wires, and other facilities of tenants on the corridor of the Company. Whenever work is liable to affect the operations or safety of trains, the method of doing such work shall first be submitted to the Railroad Engineer for approval, but such approval shall not relieve the Contractor from liability. Any work to be performed by the Contractor which requires flagging service or inspection service (watchman) shall be deferred by the Contractor until the flagging protection or inspection service required by the Railroad is available at the job site.
- B. Whenever work within Company's corridor is of such a nature that impediment to Railroad operations such as use of runaround tracks or necessity for reduced speed is unavoidable, the Contractor shall schedule and conduct his operations so that such impediment is reduced to the absolute minimum.
- C. Should conditions arising from, or in connection with the work, require that immediate and unusual provisions be made to protect operations and property of the Company and Railroad, the Contractor shall make such provisions. If in the judgment of the Railroad Engineer, or in his absence, the Railroad's Division Engineer, such provision is insufficient, either may require or provide such provisions as he deems necessary. In any event, such unusual provisions shall be at the Contractor's expense and without cost to the Department, Company, or Railroad.

4. TRACK CLEARANCES:

- A. The minimum track clearances to be maintained by the Contractor during construction are as follows:
 - (1) Horizontal clearance measured from centerline of track to falsework:

13'-0" on tangent track 14'-0" on curved track

- (2) Vertical clearance from top of rail to falsework: 22'-0"
- B. However, before undertaking any work within Company's corridor, or before placing any obstruction over any track, the Contractor shall:
 - (1) Notify the Railroad Engineer at least 72 hours in advance of the work.
 - (2) Receive assurance from the Railroad Engineer that arrangements have been made for flagging service as may be necessary.
 - (3) Receive permission from the Railroad Engineer to proceed with the work.
 - (4) Ascertain that the Department Engineer has received copies of notice to the Railroad and of the Railroad's response thereto.

5. <u>CONSTRUCTION PROCEDURES:</u>

A. General:

Construction work and operations by the Contractor on Company's corridor, tracks and other facilities shall be:

- (1) Subject to the inspection and approval of the Railroad.
- (2) In accord with the Railroad's written outline of specific conditions.
- (3) In accord with the Railroad's general rules, regulations and requirements including those relating to safety, fall protection and personal protective equipment.
- (4) In accord with these Special Provisions.

B. Excavation:

The subgrade of an operated track shall be maintained with edge of berm at least 10'-0" from centerline of track and not more than 24 inches below top of rail. The Contractor will not be required to make existing section meet this specification if substandard, in which case existing section will be maintained.

Additionally, the Railroad Engineer may require the Contractor to install orange construction safety fencing for protection of the work area.

C. Excavation for Structures:

The Contractor will be required to take special precaution and care in connection with excavating and shoring pits, and in driving piles or sheeting, for footings adjacent to tracks to provide adequate lateral support for the tracks and the loads which they carry, without disturbance of track alignment and surface, and to avoid obstructing track clearances with working equipment, tools or other material. All plans and calculations for shoring shall be prepared and signed by a North Carolina Registered Professional Engineer. The Professional Engineer will be responsible for the accuracy for all controlling dimensions as well as the selection of soil design values which will accurately reflect the actual field conditions. The procedure for doing such work, including need of and plans for shoring, shall first be reviewed by the Department Engineer then reviewed and approved by the Railroad Engineer, but such approval shall not relieve the Contractor from liability.

Additionally, a walkway with handrail protection may be required as noted in section 11 herein.

D. <u>Demolition, Erection, Hoisting:</u>

- (1) Railroad tracks and other Company corridor or Railroad property must be protected from damage during the procedure.
- (2) The Contractor is required to submit a plan showing the locations of cranes, horizontally and vertically, operating radii, with delivery or disposal locations shown. The location of all tracks and other railroad facilities as well as wire lines, poles, adjacent structures, etc. must also be shown.
- (3) Crane rating sheets showing cranes to be adequate for 150% of the actual weight of the pick. A complete set of crane charts, including crane, counterweight, and boom nomenclature is to be submitted.
- (4) Plans and computations showing the weight of the picks must be submitted. Calculations shall be made from plans of the existing and/or proposed structure showing complete and sufficient details with supporting data for the demolition or erection of the structure. If plans do not exist, lifting weights must be calculated from field measurements. The field measurements are to be made under the supervision of the North Carolina Registered Professional Engineer submitting the procedure and calculations.
- (5) A data sheet must be submitted listing the types, size and arrangements of all rigging and connection equipment.
- (6) A complete written procedure is to be submitted, including the order of lifts, time required for each lift, and any repositioning or rehitching of the crane or cranes.

- (7) All erection or demolition plans, procedures, data sheets, etc. submitted must be prepared, signed and sealed by a North Carolina Registered Professional Engineer.
- (8) The Railroad Engineer or his designated representative must be present at the site during the entire demolition and erection procedure period.
- (9) All procedures, plans and calculations shall first be reviewed by the Department Engineer and then approved by the Railroad Engineer, but such approval does not relieve the Contractor from liability.

E. Blasting:

- (1) The Contractor shall obtain advance approval of the Railroad Engineer and Department Engineer for use of explosives on or adjacent to Company corridor. The request for permission to use explosives shall include a detailed blasting plan. If permission for use of explosives is granted, the Contractor will be required to comply with the following:
 - (a) Blasting shall be done with light charges under the direct supervision of a responsible officer or employee of the Contractor and a licensed blaster.
 - (b) Electric detonating fuses shall not be used because of the possibility of premature explosions resulting from operation of two-way train radios.
 - (c) No blasting shall be done without the presence of the Railroad Engineer or his authorized representative. At least 72 hours advance notice to the person designated in the Railroad's notice of authorization to proceed (see section 2B above) will be required to arrange for the presence of an authorized Railroad representative and such flagging as the Railroad may require.
 - (d) Have at the job site adequate equipment, labor and materials and allow sufficient time to clean up debris resulting from the blasting without delay to trains, as well as correcting at his expense any track misalignment or other damage to Company corridor resulting from the blasting as directed by the Railroad Engineer. If his actions result in delay of trains, the Contractor shall bear the entire cost thereof.

(2) The Railroad Engineer will:

- (a) Determine the approximate location of trains and advise the Contractor the approximate amount of time available for the blasting operation and clean-up.
- (b) Have the authority to order discontinuance of blasting if, in his opinion, blasting is too hazardous or is not in accord with these special provisions.

157

5 3t x

F. Maintenance of Railroad Facilities:

(1) The Contractor will be required to maintain all ditches and drainage structures free of silt or other obstructions which may result from his operations and provide and maintain any erosion control measures as required. The Contractor will promptly repair eroded areas within Company's corridor and repair any other damage to the property of the Company or its tenants.

(2) All such maintenance and repair of damages due to the Contractor's operations shall be done at the Contractor's expense.

G. Storage of Materials and Equipment:

Materials and equipment shall not be stored where they will interfere with Railroad operations, nor on the corridor of the Company without first having obtained permission from the Railroad Engineer, and such permission will be with the understanding that neither the Company nor Railroad will be liable for damage to such material and equipment from any cause and that the Railroad Engineer may move or require the Contractor to move, at the Contractor's expense, such material and equipment.

All grading or construction machinery that is left parked near the track unattended by a watchman shall be effectively immobilized so that it cannot be moved by unauthorized persons. The Contractor shall protect, defend, indemnify and save Company and Railroad, and any associated, controlled or affiliated corporation, harmless from and against all loss, costs, expenses, claim or liability for loss of or damage to property or the loss of life or personal injury, arising out of or incident to the Contractor's failure to immobilize grading or construction machinery.

H. Cleanup:

Upon completion of the work, the Contractor shall remove from within the limits of the Company's corridor, all machinery, equipment, surplus materials, falsework, rubbish or temporary buildings of the Contractor, and leave said corridor in a neat condition satisfactory to the Chief Engineer of the Railroad or his authorized representative and satisfactory to the Company's authorized representative. Cleanup also included removal, replacement or cleaning of soiled or contaminated ballast in the construction area

6. <u>DAMAGES</u>:

- A. The Contractor shall assume all liability for any and all damages to his work, employees, servants, equipment and materials caused by Railroad traffic.
- B. Any cost incurred by the Company or Railroad for repairing damages to its corridor or to property of its tenants, caused by or resulting from the operations of the Contractor, shall be paid directly to the Company or Railroad by the Contractor.

7. FLAGGING SERVICES:

A. Requirements:

Flagging services will not be provided until the Contractor's insurance has been reviewed and approved by the Company and Railroad.

Under the terms of the agreement between the Department, Company and Railroad, the Railroad has sole authority to determine the need for flagging required to protect its operations. In general, the requirements of such services will be whenever the Contractor's men or equipment are, or are likely to be, working on the Company's corridor, or across, over, adjacent to or under a track, or when such work has disturbed or is likely to disturb a Railroad structure, Railroad roadbed, or surface and alignment of any track to such extent that the movement of trains must be controlled by flagging.

Normally, the Railroad will assign one flagman to a project; but in some cases, more than one may be necessary, such as yard limits where three (3) flagmen may be required. However, if the Contractor works within distances that violate instructions given by the Railroad Engineer or performs work that has not been scheduled with the Railroad Engineer, a flagman or flagmen may be required full time until the project has been completed. Should such violations or unscheduled, unauthorized work by the Contractor result in full time flagging being required by the Railroad, the additional cost of such flagging above normal flagging cost shall be deducted from the final payment to the Contractor as provided in Article 109-9 of the Standard Specifications. Neither the Department, Company nor Railroad will be liable for damages resulting from unscheduled or unauthorized work.

B. <u>Scheduling and Notification:</u>

- (1) The Contractor's work requiring railroad flagging should be scheduled to limit the presence of a flagman at the site to a maximum of 50 hours per week. The Contractor shall receive Railroad approval of work schedules requiring a flagman presence in excess of 40 hours per week.
- (2) No later than the time that approval is initially requested to begin work on Company corridor, the Contractor shall furnish to the Department, Company, and Railroad a schedule for all work required to complete the portion of the project within Company corridor and arrange for a job site meeting between the Contractor, Department, and Railroad. Flagman or flagmen may not be provided until the job site meeting has been conducted and the Contractor's work scheduled.
- (3) The Contractor will be required to give the Railroad Engineer at least 10 working days of advance written notice of intent to begin work within Company's corridor in accordance with this special provision. Once begun, when such work is then suspended at any time, or for any reason, the Contractor will be required to give the Railroad Engineer at least 3 working days of advance notice before resuming work

on Company's corridor. Such notices shall include sufficient details of the proposed work to enable the Railroad Engineer to determine if flagging will be required. If such notice is in writing, the Contractor shall furnish the Department Engineer a copy; if notice is given verbally, it shall be confirmed in writing with a copy to the Department Engineer.

- (4) If flagging is required, no work shall be undertaken until the flagman, or flagmen, is present at the job site. It may take up to 30 days to obtain flagging initially from the Railroad. When flagging begins, the flagman is usually assigned by the Railroad to work at the project site on a continual basis until no longer needed and cannot be called for on a spot basis. If flagging becomes unnecessary and is suspended, it may take up to 30 days to again obtain from the Railroad. Due to labor agreements, it is necessary to give 5 working days notice before flagging service may be discontinued and responsibility for payment stopped.
- (5) If, after the flagman is assigned to the project site, emergencies arise which require the flagman's presence elsewhere, the Contractor shall delay work on Company's corridor until such time as the flagman is again available. Any additional costs resulting from such delay shall be borne by the Contractor and not the Department, Company, or Railroad.

C. Payment:

- (1) The Department will be responsible for paying the Railroad directly for any and all costs of flagging which may be required to accomplish the construction. The Contractor shall reimburse the Railroad for any costs of the flagging which is required for work for the benefit of the Contractor.
- (2) The estimated cost of flagging service is the current rate per day based on a 10-hour work day. This cost includes the base pay for each flagman, overhead, and a per diem charge for travel expenses, meals and lodging. The charge by the Railroad will be the actual cost based on the rate of pay for the Railroad's employees who are available for flagging service at the time the service is required.
- (3) Work by a flagman in excess of 8 hours per day or 40 hours per week, but not more than 12 hours a day will result in overtime pay at 1½ times the appropriate rate. Work by a flagman in excess of 12 hours per day will result in overtime pay at 2 times the appropriate rate. If work is performed on a holiday, the flagging rate is 2½ times the normal rate.

(4) Railroad work involved in preparing and handling bills will also be charged to the Department. Charges to the Department by the Railroad shall be in accordance with applicable provisions of the Federal-Aid Policy Guide, Title 23 Subchapter B, Part 140I and Subchapter G, Part 646B issued by the Federal Highway Administration on December 9, 1991, including all current amendments. Flagging costs are subject to change. The above estimates of flagging costs are provided for information only and are not binding in any way.

D. <u>Verification</u>:

(1) Railroad's flagman will electronically enter flagging time via Railroad's electronic billing system. Any complaints concerning flagman or flagmen must be resolved in a timely manner. If need for flagman or flagmen is questioned, please contact Railroad's System Engineer of Public Improvements at (404) 529-1641. All verbal complaints must be confirmed in writing by the Contractor within 5 working days with copy to the Department Engineer. Address all written correspondence to:

Office of Chief Engineer-Bridges & Structures Attn: System Engineer of Public Improvements Norfolk Southern Corporation 1200 Peachtree St. NE Internal Box 142 Atlanta, GA 30309

(2) The Railroad flagman assigned to the project will be responsible for notifying the Department Engineer upon arrival at the job site on the first day (or as soon thereafter as possible) that flagging services begin and on the last day that he performs such services for each separate period that services are provided. The Department Engineer will document such notification and general flagging times for verification purposes in the project records. When requested, the Department Engineer will also sign the flagman's diary showing daily time spent and activity at the project site. Also if requested, the flagman will cooperate with the Department by submitting daily timesheets or signing the Department Engineer's diary showing daily time spent at the project site.

8. <u>HAUL ACROSS RAILROADS</u>:

A. Where the plans show or imply that materials of any nature must be hauled across a Railroad, unless the plans clearly show that the Department has included arrangements for such haul in its agreement with the Railroad, the Contractor will be required to make all necessary arrangements with the Railroad regarding means of transporting such materials across the Railroad. The Contractor will be required to bear all costs incidental, including flagging, to such crossings whether services are performed by his own forces or by Railroad personnel.

B. No crossing may be established for use of the Contractor for transporting materials or equipment across the tracks of the Company unless specific authority for its installation, maintenance, necessary watching and flagging thereof and removal, all at the expense of the Contractor, is first obtained from the Railroad Engineer. The approval process for a temporary private crossing agreement executed between the Contractor and Railroad normally takes 90 days.

9. WORK FOR THE BENEFIT OF THE CONTRACTOR:

- A. All temporary or permanent changes in wire lines or other facilities which are considered necessary to the project are shown on the plans and included in the force account agreement between the Department, Company and Railroad; or will be covered by appropriate revisions to same which will be initiated and approved by the Department and/or Railroad.
- B. Should the Contractor desire any changes in addition to the above, then he shall make separate arrangements with the Railroad for same to be accomplished at the Contractor's expense.

10. COOPERATION AND DELAYS:

- A. It shall be the Contractor's responsibility to arrange a schedule with the Railroad for accomplishing stage construction involving work by the Railroad or tenants of the Railroad. In arranging his schedule he shall ascertain, from the Railroad, the lead time required for assembling crews and materials and shall make due allowance therefore. The Contractor shall cooperate with others in the construction of the project to the end that all work may be accomplished to the best advantage.
- B. No charge or claims of the Contractor against the Department, Company, or Railroad will be allowed for hindrance or delay on account of railroad traffic, any work done by the Railroad or other delay incident to or necessary for safe maintenance of railroad traffic or for any delays due to compliance with these special provisions.
- C. The Contractor's attention is called to the fact that neither the Department, Company nor Railroad assumes any responsibility for any work performed by others in connection with the construction of the project, and the Contractor shall have no claim whatsoever against the Department, Company or Railroad for any inconvenience, delay, or additional cost incurred by him on account of such operations by others.

11. TRAINMAN'S WALKWAYS:

Along the outer side of each exterior track of multiple operated tracks, and on each side of single operated track, an unobstructed continuous space suitable for trainman's use in walking along trains, extending to a line not less than 10' from centerline of track, shall be maintained. Any temporary impediments to walkways and track drainage encroachments or obstructions allowed during work hours while Railroad's protective service is provided shall be removed before the close of each work day. If there is any excavation near the walkway, a handrail, with 10'-0" minimum clearance from centerline of track shall be placed.

12. GUIDELINES FOR PERSONNEL ON COMPANY'S CORRIDOR:

- A. All persons shall wear hard hats. Appropriate eye and hearing protection must be used. Working in shorts is prohibited. Shirts must cover shoulders, back and abdomen. Working in tennis or jogging shoes, sandals, boots with high heels, cowboy and other slipon type boots is prohibited. Hard-sole, lace-up footwear, zippered boots or boots cinched up with straps which fit snugly about the ankle are adequate. Wearing Safety boots is strongly recommended. In the vicinity of at-grade crossings, it is strongly recommended to wear reflective vests.
- B. No one is allowed within 25' of the centerline of track without specific authorization from the flagman.
- C. All persons working near track while train is passing are to lookout for dragging bands, chains and protruding or shifted cargo.
- D. No one is allowed to cross tracks without specific authorization from the flagman.
- E. All welders and cutting torches working within 25' of track must stop when train is passing.
- F. No steel tape or chain will be allowed to cross or touch rails without permission.

13. <u>GUIDELINES FOR EQUIPMENT ON COMPANY'S CORRIDOR:</u>

- A. No crane or boom equipment will be allowed to set up to work or park within boom distance plus 15 ft. of centerline of track without specific permission from Railroad Engineer and flagman.
- B. No crane or boom equipment will be allowed to foul track or lift a load over the track without flag protection and track time.
- C. All employees will stay with their machines when crane or boom equipment is pointed toward track.

- D. All cranes and boom equipment under load will stop work while train is passing (including pile driving).
- E. Swinging loads must be secured to prevent movement while train is passing.
- F. No loads will be suspended above a moving train.
- G. No equipment will be allowed within 25' of centerline of track without specific authorization of the flagman.
- H. Trucks, tractors or any equipment will not touch ballast line without specific permission from railroad official and flagman.
- I. No equipment or load movement within 25' or above a standing train or railroad equipment without specific authorization of the flagman.
- J. All operating equipment within 25' of track must halt operations when a train is passing. All other operating equipment may be halted by the flagman if the flagman views the operation to be dangerous to the passing train.
- K. All equipment, loads and cables are prohibited from touching rails.
- L. While clearing and grubbing, no vegetation will be removed from Railroad embankment with heavy equipment without specific permission from the Railroad Engineer and flagman.
- M. No equipment or materials will be parked or stored on Company's corridor unless specific authorization is granted from the Railroad Engineer.
- N. All unattended equipment that is left parked on Company's corridor shall be effectively immobilized so that it cannot be moved by unauthorized persons.
- O. All cranes and boom equipment will be turned away from track after each work day or whenever unattended by an operator.

14. INSURANCE:

- A. In addition to any other forms of insurance or bonds required under the terms of the contract and specifications, the Prime Contractor will be required to provide coverage conforming to the requirements of the Federal-Aid Policy Guide outlined under Title 23 Subchapter G, Part 646A for all work to be performed on Company's corridor by carrying insurance of the following kinds and amounts:
 - (1) Commercial General Liability Insurance having a combined single limit of not less than \$2,000,000 per occurrence for all loss, damage, cost and expense, including attorneys' fees, arising out of bodily injury liability and property damage liability during the policy period. Said policy shall include explosion, collapse, and underground hazard (XCU) coverage, shall be endorsed to name Company and Railroad specified in section 14A2(c) below both as the certificate holder and as an additional insured, and shall include a severability of interests provision.
 - (2) Railroad Protective Liability Insurance having a combined single limit of not less than \$2,000,000 each occurrence and \$6,000,000 in the aggregate applying separately to each annual period. If the project involves track over which passenger trains operate, the insurance limits required are not less than a combined single limit of \$5,000,000 each occurrence and \$10,000,000 in the aggregate applying separately to each annual period. Said policy shall provide coverage for all loss, damage or expense arising from bodily injury and property damage liability, and physical damage to property attributed to acts or omissions at the job site.

The standards for the Railroad Protective Liability Insurance are as follows:

- (a) The insurer must be rated A- or better by A.M. Best Company, Inc.
- (b) The policy must be written using one of the following combinations of Insurance Services Office ("ISO") Railroad Protective Liability Insurance Form Numbers:
 - (1) CG 00 35 01 96 and CG 28 31 10 93; or
 - (2) CG 00 35 07 98 and CG 28 31 07 98; or
 - (3) CG 00 35 10 01; or
 - (4) CG 00 35 12 04
- (c) The named insured on each policy as required to be issued to each Company and Railroad shall read: (NOTE: The below insured is to be treated separately as an insured on each railroad protective policy for a total of (2) two separate policies being issued.)

North Carolina Railroad Company 2809 Highways Blvd, Suite 100 Raleigh NC 27604-1000 Attn: Property Department; and

Norfolk Southern Railway Company Three Commercial Place Norfolk, Virginia 23510-2191 Attn: Risk Management

(d) The description of operations must appear on the Declarations, must match the project description in this agreement, and must include the appropriate Department project and contract identification numbers.

The Description and Designation shall read:

Description and Designation: Removal of existing Bridge No. 266 and construction of a new overhead bridge on Cabarrus Avenue (SR 1002) over the tracks owned by North Carolina Railroad Company and operated by Norfolk Southern Railway Company in Cabarrus County, North Carolina identified as State TIP B-3421 and Federal Project BRSTP-1002(27).

(e) The job location must appear on the Declarations and must include the city, state, and appropriate highway name/number.

NOTE: Do not include any references to milepost on the insurance policy.

- (f) The name and address of the prime contractor must appear on the Declarations.
- (g) The name and address of the Department must be identified on the Declarations as the "Involved Governmental Authority or Other Contracting Party."
- (h) Other endorsements/forms that will be accepted are:
 - (1) Broad Form Nuclear Exclusion Form IL 00 21
 - (2) 30-day Advance Notice of Non-renewal or cancellation
 - (3) 60-day written notice to the Department prior to cancellation or change
 - (4) Quick Reference or Index Form CL/IL 240
- (i) Endorsements/forms that are **NOT** acceptable are:
 - (1) Any Pollution Exclusion Endorsement except CG 28 31
 - (2) Any Punitive or Exemplary Damages Exclusion
 - (3) Known injury or Damage Exclusion form CG 00 59
 - (4) Any Common Policy Conditions form
 - (5) Any other endorsement/form not specifically authorized in section 14A2(h) above.

- B. If any part of the work is sublet, similar insurance, and evidence thereof as specified in section 14A1 above, shall be provided by or on behalf of the subcontractor to cover its operations on Company's corridor. As an alternative, the Prime Contractor may provide insurance for the subcontractor by means of separate and individual policies.
- C. Prior to entry on Company's corridor, the original and one duplicate copy of the Railroad Protective Liability Insurance Policy shall be submitted by the Prime Contractor to the Department at the address below for its review and transmittal to the Company and Railroad. In addition, certificates of insurance evidencing the Prime Contractor's and any subcontractors' Commercial General Liability Insurance shall be issued to the Department, Company and Railroad at the addresses below, and one certified copy of the Prime Contractor and any Subcontractor's policy is to be forwarded to the Department for its review and transmittal to the Company and Railroad. All policies and certificates of insurance shall state that the insurance coverage will not be suspended, voided, canceled, or reduced in coverage or limits without (30) days advance written notice to the Department, Company and Railroad. The Railroad will not permit any work on Company's corridor until the Company and Railroad has reviewed and approved the evidence of insurance required herein.

DEPARTMENT:

NCDOT Rail Division
Engineering & Safety Branch
C/O State Railroad Agent
1556 Mail Service Center
Raleigh, NC 27699-1556

Norfo

Risk Management Norfolk Southern Railway Company Three Commercial Place Norfolk, Virginia 23510-2191

RAILROAD:

COMPANY:

North Carolina Railroad Company 2809 Highwoods Blvd. Suite 100 Raleigh, NC 27604

- D. The insurance required herein shall in no way serve to limit the liability of Department or its Contractors under the terms of this agreement.
- E. The insurance amounts specified are minimum amounts and the Contractor may carry insurance in larger amounts if he so desires. As to "aggregate limits", if the insurer establishes loss reserves equal to or in excess of the aggregate limit specified in any of the required insurance policies, the Contractor shall immediately notify the Department and shall cease all operations until the aggregate limit is reinstated. If the insurer establishes loss reserves equal to or in excess of one/half of the aggregate limit, the Contractor shall arrange to restore the aggregate limit to at least the minimum amount stated in these requirements. Any insurance policies and certificates taken out and furnished due to these requirements shall be approved by the Department, Company and Railroad as to form and amount prior to beginning work on Company's corridor.

F. All insurance herein before specified shall be carried until the final inspection and acceptance of the project by the Department, Company and Railroad, or acceptance of that portion of the project within Company's corridor. At this point, no work or any other activities by the Contractor shall take place in Company's corridor without written permission from the Department, Company and Railroad.

15. FAILURE TO COMPLY:

- A. In the event the Contractor violates or fails to comply with any of the requirements of these Special Provisions:
 - (1) The Railroad Engineer may require that the Contractor vacate Company's corridor.
 - (2) The Department Engineer may withhold all monies due the Contractor on monthly statements.

Any such orders shall remain in effect until the Contractor has remedied the situation to the satisfaction of the Department Engineer and Railroad Engineer.

16. PAYMENT FOR COST OF COMPLIANCE:

No separate payment will be made for any extra cost incurred on account of compliance with these special provisions. All such cost shall be included in the various prices bid to perform the work.

17. COMPLETION AND ACCEPTANCE:

Upon completion of the work, the Contractor shall remove from within the limits of the Company's corridor all machinery, equipment, surplus materials, rubbish or temporary buildings of the Contractor, and leave said corridor in a neat and orderly condition. After the final inspection has been made and work found to be completed in a satisfactory manner acceptable to the Department and Railroad, the Department will be notified of the Railroad's acceptance in writing by the Railroad's Chief Engineer or his authorized representative within ten (10) days or as soon thereafter as practicable.

B-3421, Cabarrus

Railroad Site Data:

The following information was received from the Railroad on Dec 11, 2009, and is provided as a convenience to the Contractor in bidding this project. This information is subject to change and the Contractor may, at his discretion, contact the Railroad directly to verify its current accuracy. Since this information is shown as a convenience to the Contractor, but is subject to change, the Contractor shall have no claims whatsoever against either the Railroad or the Department of Transportation for any delays or additional costs incurred based on changes in this information which occur after the above date of receipt.

Type and number of tracks within 50 ft. of project (mainline, branchline, siding, yard, etc.).

2 - Mainline

Number of trains on affected track per day.

30

Type of trains (passenger or freight).

```
6 – Passenger
24 – Freight
```

Maximum authorized operating speed of trains.

```
79 mph (Passenger)
50 mph (Freight)
```

Type and number of RR employees assigned to job.

1 - Flagman