PROJECT SPECIAL PROVISIONS

ROADWAY

SHOULDER RECONSTRUCTION PER SHOULDER MILE:

(1-18-00) (Rev 5-17-11)

R1 R07A (Rev.)

Description

This work consists of reconstructing each shoulder (including median shoulders as applicable) in accordance with Roadway Standard Nos. 560.01 and 560.02 except that the rate of slope and width will be as shown on typical section, or to the existing shoulder point, whichever is nearer, as long as the desired typical is achieved, and when completed, seeding and mulching. This work shall be performed immediately after the resurfacing operations are complete as directed by the Engineer.

Materials

The Contractor shall furnish all earth material necessary for the construction of the shoulders. Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8 and capable of supporting vegetation. Remove stones and other foreign material 2 inches or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer.

The Contractor will have the option of using Aggregate Shoulder Borrow (ASB) which meets the following gradation on all maps.

<u>Sieve</u>	Percent Passing
1 1/2"	100
1/2"	55 – 95
#4	35 - 74

Construction Methods

Obtain material from within the project limits or approved borrow source. Prior to adding borrow material, the existing shoulder shall be scarified to provide the proper bond and shall be compacted to the satisfaction of the Engineer.

Any excess material generated by the shoulder reconstruction shall be disposed of by the Contractor in an approved disposal site.

Measurement and Payment

Shoulder Reconstruction will be measured and paid as the actual number of miles of shoulders that have been reconstructed. Measurement will be made along the surface of each shoulder to the nearest 0.01 of a mile. Such price will include disposing of any excess material in an approved disposal site, and for all labor, tools, equipment, and incidentals necessary to complete the work.

Borrow Excavation will be paid in accordance with Section 230 of the Standard Specifications for earth material furnished by the Contractor. The requirements of Article 104-5 of the Standard Specifications pertaining to revised contract prices for overrunning minor items will not apply to the item of Borrow Excavation. If ASB is used for borrow, a unit weight of 140 pounds per cubic foot will be used to convert the weight of ASB to cubic yards.

Incidental Stone Base will be measured and paid as provided in Article 545-6 of the *Standard Specifications*. If ASB is used for Incidental Stone Base, payment will be made for borrow as referenced above.

Seeding and Mulching will be measured and paid as shown elsewhere in the contract documents. Where ASB is used, seeding and mulching will not be required.

Payment will be made under:

Pay Item
Shoulder Reconstruction
Borrow Excavation

Pay Unit Shoulder Mile Cubic Yard

INCIDENTAL STONE BASE:

(7-1-95) (Rev.7-18-06)

R5 R28

Description

Place incidental stone base on driveways, mailboxes, etc. immediately after paving and do not have the paving operations exceed stone base placement by more than one week without written permission of the Engineer.

Materials and Construction

Provide and place incidental stone base in accordance with the requirements of Section 545 of the 2006 Standard Specifications.

Measurement and Payment

Incidental Stone Base will be measured and paid for in accordance with Article 545-6 of the 2006 Standard Specifications.

ASPHALT PAVEMENTS - SUPERPAVE:

(7-18-06)(Rev 3-15-11)

R6 R01

Revise the 2006 Standard Specifications as follows:

Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph.

Page 6-12, Subarticle 609-5(C)(2), Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and replace with the following:

If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-12, Subarticle 609-5(C)(2), Quality Control Minimum Sampling and Testing Schedule, first paragraph, delete and replace with the following:

Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production:

Second paragraph, delete the fourth sentence and replace with the following:

When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below.

Page 6-12, Subarticle 609-5(C)(2)(c) Maximum Specific Gravity, add after (AASHTO T 209):

or ASTM D 2041

Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows:

(i) Option 1

Insert the following immediately after the first paragraph:

(ii) Option 2

Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design.

Second paragraph, delete and replace with the following:

Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken.

Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following:

For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained.

Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following:

Denote the moving average control limits with a dash green line and the individual test limits with a dash red line.

Page 6-15, Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following:

- (a) A change in the binder percentage, aggregate blend, or G_{mm} is made on the JMF, or,
- (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in Subarticle 609-5(C)(6) or,
- (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, re-establish a new moving average beginning at the actual production stop point.

Page 6-15, Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following:

The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source.

CONTROL LIMITS							
Mix Control Criteria	Target Source	Moving Average Limit	Individual Limit				
2.36 mm Sieve	JMF	±4.0 %	±8.0 %				
0.075 mm Sieve	JMF	±1.5 %	±2.5 %				
Binder Content	JMF	±0.3 %	±0.7 %				
VTM @ N _{des}	JMF	±1.0 %	±2.0 %				
VMA @ N _{des}	Min. Spec. Limit	Min Spec. Limit	-1.0%				
P _{0.075} / P _{be} Ratio	1.0	±0.4	±0.8				
%G _{mm} @N _{ini}	Max. Spec. Limit	N/A	+2.0%				
TSR	Min. Spec. Limit	N/A	- 15%				

Page 6-16, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety.

Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and replace with the words "moving average".

Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following:

Immediately notify the Engineer when moving averages exceed the moving average limits.

Page 6-17, Subarticle 609-5(C)(6) Corrective Actions, delete the third full paragraph and replace with the following:

Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next

individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable.

Sixth full paragraph, delete the first, second, and third sentence and replace with the following:

Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits.

Page 6-18, Subarticle 609-5(C)(6) Corrective Actions, second full paragraph, delete and replace with the following:

If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment.

Page 6-18, Subarticle 609-5(C)(6) Corrective Actions, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following:

If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work.

Page 6-19, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, delete and replace with the following:

Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts.

Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following:

Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without

the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence:

Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed.

Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following:

Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below).

- (a) Two consecutive failing lots, except on resurfacing*
- (b) Three consecutive failing lots on resurfacing*
- (c) Two consecutive failing nuclear control strips.

Page 6-25, Article 609-6 QUALITY ASSURANCE, DENSITY QUALITY ASSURANCE, insert the following items after item (E):

- (F) By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor;
- (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or
- (H) By any combination of the above.

Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following:

Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements.

Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix,

^{*} Resurfacing is defined as the first new uniform layer placed on an existing pavement.

the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type.

For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type.

When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Article 1012-1.

When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Subarticle 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used.

Page 6-34, Subarticle 610-3(C) Job Mix Formula, delete Table 610-2 and associated notes and replace with the following:

TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA

Mix Type	Design Binder ESALs PG		Compaction Levels No. Gyrations @		Max. Rut Depth (mm)		Volumetric Properties (c)			
	Millions (a)	Grade (b)	N _{ini}	N _{des}		VMA % Min.	VTM %	VFA Min Max.	%G _{mm} @ N _{ini}	
S-4.75A(e)	< 0.3	64 -22	6	50		20.0	7.0 - 15.0			
SF-9.5A	< 0.3	64 -22	6	50	11.5	16.0	3.0 - 5.0	70 - 80	≤ 91.5	
S-9.5B	0.3 - 3	64 -22	7	65	9.5	15.5	3.0 - 5.0	65 - 80	≤ 90.5	
S-9.5C	3 - 30	70 -22	7	75	6.5	15.5	3.0 - 5.0	65 - 78	≤ 90.5	
S-9.5D	> 30	76 -22	8	100	4.5	15.5	3.0 - 5.0	65 - 78	≤ 90.0	
S-12.5C	. 3 - 30	70 -22	7	75	6.5	14.5	3.0 - 5.0	65 - 78	≤ 90.5	
S-12.5D	> 30	76 -22	8	100	4.5	14.5	3.0 - 5.0	65 - 78	≤ 90.0	
I-19.0B	< 3	64 -22	7	65		13.5	3.0 - 5.0	65 - 78	≤ 90.5	
I-19.0C	3 - 30	64 -22	7	75		13.5	3.0 - 5.0	65 - 78	≤ 90.0	
I-19.0D	> 30	70 -22	8	100		13.5	3.0 - 5.0	65 - 78	≤ 90.0	
B-25.0B	· <3	64 -22	7	65		12.5	3.0 - 5.0	65 - 78	≤ 90.5	
B-25.0C	> 3	64 -22	. 7	75		12.5	3.0 - 5.0	65 - 78	≤ 90.0	
Design Parameter						1	Design	n Criteria		
All Mix	1. Dust to	Binder Ra	atio (P _{0.0}	₀₇₅ / P _{be})	*	1	0.6	5 – 1.4		
All Mix Types	2. Retaine	d Tensile	Strengt	h (TSR)	ŧ	85% Min. (d)				

Notes:

Types

(a) Based on 20 year design traffic.

(AASHTO T283 Modified)

- (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A). Payment for Binder Grade for recycled mixes shall be based solely on the grade for the specified mix type as shown in the above table.
- (c) Volumetric Properties based on specimens compacted to N_{des} as modified by the Department.
- (d) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0B, and Type B 25.0C mixes is 80% minimum.
- (e) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer.

Page 6-34, Insert the following immediately after Table 610-2:

TABLE 610-2A SUPERPAVE MIX DESIGN CRITERIA

1	Percentage of RAP in Mix				
1	Category 1	Category 2	Category 3		
Mix Type	% RAP ≤20%	$20.1\% \le \% RAP \le 30.0\%$	%RAP > 30.0%		
All A and B Level Mixes, I19.0C, B25.0C	PG 64 -22	PG 64 -22	TBD		
S9.5C, S12.5C, I19.0D	PG 70 -22	PG 64-22	TBD		
S 9.5D and S12.5D	PG 76-22	N/A	N/A		

- Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches.
 - (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations.
 - (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles
 - (4) Payment for binder grade shall be based solely on Table 610-2.

Page 6-35, Table 610-3 delete and replace with the following:

TABLE 610-3 ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS

Asphalt Concrete Mix Type	Minimum Air Temperature	Minimum Surface Temperature		
ACBC, Type B 25.0B, C, B 37.5C	35°F	35°F		
ACIC, Type I 19.0B, C, D	35°F	35°F		
ACSC, Type S 4.75A, SF 9.5A, S 9.5B	40°F	50°F*		
ACSC, Type S 9.5C, S 12.5C	45°F	50°F		
ACSC, Type S 9.5D, S 12.5D	50°F	50°F		

^{* 35°}F if surface is soil or aggregate base for secondary road construction.

Page 6-45, Article 610-8 SPREADING AND FINISHING delete the third paragraph on page 6-45 and replace with the following:

Use a Material Transfer Vehicle (MTV) when placing all asphalt concrete plant mix pavements which require the use of asphalt binder grade PG 76-22 and for all types of OGAFC, unless otherwise approved. Use a MTV for all surface mix regardless of binder grade placed on Interstate facilities. Where required above, utilize the MTV when placing all full width travel lanes, collector lanes, ramps, and loops.

Page 6-44, Article 610-8 SPREADING AND FINISHING, third full paragraph, replace the first sentence with the following:

Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length

of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved.

Page 6-50, Article 610-13 DENSITY ACCEPTANCE, delete the second paragraph and replace with the following:

As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category.

Page 6-50, Article 610-13 DENSITY ACCEPTANCE, delete the formula and description in the middle of the page and replace with the following:,

 $PF = 100 - 10(D)^{1.465}$

Where: PF = Pay Factor (computed to 0.1%)

D = the deficiency of the lot average density,

not to exceed 2.0%

Page 6-51, Article 610-15 MEASUREMENT AND PAYMENT, fourth paragraph, delete and replace with the following:

Furnishing asphalt binder will be paid for as provided in Article 620-4.

Page 6-53, Article 620-4 MEASUREMENT AND PAYMENT, modify as follows:

Second paragraph, delete the first sentence and replace with the following:

Where recycled plant mix is being produced, the grade of asphalt binder shall be paid for based on the grade for the specified mix type as shown in Table 610-2.

Sixth paragraph, delete the last sentence.

Seventh paragraph, delete the paragraph and replace with the following:

The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula.

Add the following pay item:

Pay ItemPay UnitAsphalt Binder for Plant Mix, Grade PG 70-28Ton

Page 6-59, Article 650-5 CONSTRUCTION REQUIREMENTS delete the second paragraph from the bottom of the page beginning "Use a Material Transfer Vehicle (MTV)..." and replace with the following:

Use a Material Transfer Vehicle (MTV) when placing all asphalt concrete plant mix pavements which require the use of asphalt binder grade PG 76-22 and for all types of OGAFC, unless otherwise approved. Use a MTV for all surface mix regardless of binder grade placed on Interstate facilities. Where required above, utilize the MTV when placing all full width travel lanes, collector lanes, ramps, and loops.

Page 6-69, TABLE 660-1 MATERIAL APPLICATION RATES AND TEMPERATURES, add the following:

Type of Coat	Grade of Asphalt	Asphalt Rate gal/yd²	Application Temperature °F	Aggregate Size	Aggregate Rate lb./sq. yd. Total
Sand Seal	CRS-2 or CRS-2P	0.22-0.30	150-175	Blotting Sand	12-15

Page 6-75, Subarticle 660-9(B) Asphalt Seal Coat, add the following as sub-item (5)

(5) Sand Seal

Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling.

Immediately after the aggregate has been uniformly spread, perform rolling.

When directed, broom excess aggregate material from the surface of the seal coat.

When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved.

Page 6-76, Article 661-1 DESCRIPTION, add the following as the 2nd paragraph:

Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with *Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)*, included in the contract.

Page 6-76, Article 661-2 MATERIALS, add the following after Asphalt Binder, Grade 70-28:

Item	Section
Asphalt Binder, Grade 76-22	1020
Reclaimed Asphalt Shingles	1012

Page 6-78, Subarticle 661-2(E), Asphalt Binder For Plant Mix, Grade PG 70-28, rename as ASPHALT BINDER FOR PLANT MIX and add the following as the first paragraph:

Use either PG 70-28 or PG 76-22 binder in the mix design. Where PG 76-22 is being used in the production of Ultra-thin, the grade of asphalt binder to be paid for will be PG 70-28, unless otherwise approved.

Page 6-79, Subarticle 661-2(G) Composition of Mix, add the following as the third sentence of the first paragraph.

The percent of asphalt binder contributed from the RAS shall not exceed 20% of the total binder in the completed mix.

Page 6-80, Article 661-2(G) Composition of Mix, replace Table 661-4 and associated notes with the following:

-		1-4 – MIXTURE DE Design Criteria (%					
Standard Sic	eves	1/2 in. Type A	3/8 in. Type B	1/4 in. Type C			
ASTM	mm		(% Passing by Weight)				
¾ inch	19.0	100					
½ inch	12.5	85 - 100	100				
3/8 inch	9.5	60 - 80	85 - 100	100			
#4	4.75	28 - 38	28 – 44	40 - 55			
#8 .	2.36	19 - 32	17 – 34	22 - 32			
#16	1.18	15 - 23	13 - 23	15 - 25			
#30	0.600	10 - 18	8 - 18	10 - 18			
#50	0.300	8 - 13	6 - 13	8 - 13			
#100	0.150	6 - 10	4 - 10	6 - 10			
#200 0.075		4.0 - 7.0 3.0 - 7.0		4.0 - 7.0			
		Mix Design Crit	teria				
		1/2 in. Type A	3/8 in. Type B	1/4 in. Type C			
Asphalt Content, %		4.6 - 5.6	4.6 - 5.8	5.0 – 5.8			
Draindown Test, AASHTO T 305		t t t	0.1% max.				
Moisture Sensitivity, AASHTO T 283*			80% min.				
Application Rate, lb/ yd ²		90	70	. 50			
Approximate Application Depth, in.		3/4	. 5/8	1/2			
Asphalt PG Grade,		PG 70-28 or	PG 70-28 or	PG 70-28 or			
AASHTO M 320		PG 76-22	PG 76-22	PG 76-22			

NOTE: *Specimens for T-283 testing are to be compacted using the SUPERPAVE gyratory compactor. The mixtures shall be compacted using 100 gyrations to achieve specimens approximately 95 mm in height. Use mixture and compaction temperatures recommended by the binder supplier.

Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph:

Use asphalt mixing plants in accordance with Article 610-5 of the Standard Specifications.

Page 6-82, Subarticle 661-3(C), Application of Ultra-thin Bonded Wearing Course, delete the first paragraph and add the following as the first and second paragraphs.

Use only one asphalt binder PG grade for the entire project, unless the Engineer gives written approval.

Do not place Ultra-thin Bonded Wearing Course between October 31 and April 1, when the pavement surface temperature is less than 50°F or on a wet pavement. In addition, when PG 76-22 binder is used in the JMF, place the wearing course only when the road pavement surface temperature is 60°F or higher and the air temperature in the shade away from artificial heat is 60°F or higher.

Page 10-40, Subarticle 1012-1(A) General, add the following at the end of the last paragraph, last sentence:

or ultra-thin bonded wearing course.

Page 10-41, Table 1012-1, delete the entries for OGAFC and add new entries for OGAFC and a row for UBWC with entries:

Міх Туре	Coarse Aggregate Angularity ^(b) ASTM D5821	Fine Aggregate Angularity % Minimum AASHTO T304 Method A	% Minimum	Flat & Elongated 5:1 Ratio % Maximum ASTM D4791 Section 8.4	
S 9.5 D	100/100	45	50	10	
OGAFC	100/100	N/A	N/A	10	
UBWC	100/85	40	45	10	

Delete Note (c) under the Table 1012-1 and replace with the following:

(c) Does not apply to Mix Types SF 9.5A and S 9.5B.

Page 10-42, Subarticle 1012-1(B)(6) Toughness (Resistance to Abrasion), add as the last sentence:

The percentage loss for aggregate used in UBWC shall be no more than 35%.

Page 10-43, Subarticle 1012-1(F) Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph:

(1) Mix Design RAS

Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design.

(2) Mix Production RAS

New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit.

After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile.

Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed.

Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

NEW SOURCE RAS GRADATION and BINDER TOLERANCES
(Apply Tolerances to Mix Design Date)

(Apply 1 olerances to	(Apply Tolerances to Mix Design Data)							
	0-6% RAS							
P _b %	±1.6%							
Sieve Size (mm)	Tolerance							
9.5	±1							
4.75	±5							
2.36	±4							
1.18	±4							
0.300	±4							
0.150	±4							
0.075	±2.0							

Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following:

(G) Reclaimed Asphalt Pavement (RAP)

(1) Mix Design RAP

Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications.

(a) Millings

Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform

gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit.

(b) Processed RAP

RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit.

(c) Fractionated RAP

Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used.

(d) Approved Stockpiled RAP

Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Subarticle 1012-1(G)(1)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used.

Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials.

Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request:

- (1) Approximate tons of materials in stockpile
- (2) Name or Identification number for the stockpile
- (3) Asphalt binder content and gradation test results
- (4) Asphalt characteristics of the Stockpile.

For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the target, will be accepted if within the tolerances listed below:

APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES
(Apply Tolerances to Mix Design Data)

ces to mix Design Data)
±0.3%
Percent Passing
±5%
±5%
±5%
±5%
±5%
±4%
±4%
±4%
±4%
±1.5%

Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile.

Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer.

Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics).

(2) Mix Production RAP

During mix production, use RAP that meets the criteria for one of the following categories:

(a) Mix Design RAP

RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2).

(b) New Source RAP

New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit.

After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile.

Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above.

Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data)										
Mix Type	0-20% RAP			20	20 ⁺ -30 % RAP			30 ⁺ % RAP		
Sieve (mm)	Base	Inter.	Surf.	Base	Inter.	Surf.	Base	Inter.	Surf.	
P _b %		± 0.7%			± 0.4%			± 0.3%		
25.0	±10			±7	-	-	±5		-	
19.0	±10	±10	_	±7	±7		±5	±5		
12.5	-	±10	±10	-	±7	±7		±5	±5	
9.5	-		±10			±7	-	-	±5	
4.75	±10	-	±10	±7	_	±7	. ±5	_	±5	
2.36	±8	±8	±8	±5	±5	±5	±4	±4	±4	
1.18	±8	±8	±8	±5	±5	±5	±4	±4	±4	
0.300	±8	±8	±8	±5	±5	±5	±4	±4	±4	
0.150	-	-	±8		-	±5	-		±4	
0.075	±4	±4	±4	±2	±2	±2	±1.5	±1.5	±1.5	

ASPHALT PAVEMENTS - WARM MIX ASPHALT SUPERPAVE:

(5-19-09) (Rev 2-15-11)

R6 R02A

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed.

Notify the Engineer at least 2 weeks before producing the WMA so the Engineer can arrange a pre-pave meeting. Discuss special testing requirements necessary for WMA at the pre-pave meeting. Include at the pre-pave meeting the Contractor's QC manager, Paving Superintendent, and manufacturer's representative for the WMA technology, the Department's Roadway Construction Engineer, Resident Engineer, State Pavement Construction Engineer, and Quality Assurance Supervisor.

Require a manufacturer's representative for the WMA technology used to be present on site at the plant during the initial production and on the roadway during the laydown of the warm mix asphalt.

The requirement for the manufacturer's representative to be present at the pre-pave meeting and on-site at the plant may be waived by the Engineer based on previous work experience with the specific WMA technology used.

If the use of WMA is suspended during production, and the Contractor begins using Hot Mix Asphalt (HMA), then the Contractor shall be required to use HMA for the remainder of the specific route or map unless otherwise approved by the Engineer.

Revise the 2006 Standard Specifications as follows:

Page 6-8, Article 609-1 Description, insert the following as the second paragraph:

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option when shown in the contract.

Page 6-9, Article 609-4 Field Verification of Mixture and Job Mix Formula Adjustments, second paragraph, insert the following immediately after the first sentence:

When producing a WMA, perform field verification testing including Tensile Strength Ratio (TSR) testing in accordance with AASHTO T 283 as modified by the Department.

Third paragraph, delete the third sentence and replace with the following:

Verification is satisfactory for HMA when all volumetric properties except $G_{mm}@N_{ini}$ are within the applicable mix design criteria and the gradation, binder content, and $G_{mm}@N_{ini}$ are within the individual limits for the mix type being produced. Verification is satisfactory for WMA when all volumetric properties except $G_{mm}@N_{ini}$ are within the applicable mix design

criteria, the TSR meets the design criteria, and the gradation, binder content, and G_{mm} are within the individual limits for the mix type being produced.

Page 6-12, Subarticle 609-5(C)(2)(d) Bulk Specific Gravity of Compacted Specimens, add after (AASHTO T 312):

When producing WMA, gyrate specimens to specified N_{des} compaction effort without reheating mix other than to desired compaction temperature. Record time needed to reheat samples (if any).

Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio, insert the following immediately after the third paragraph:

When producing WMA, perform TSR testing:

- (i.) Prior to initial production for each JMF and
- (ii.) Every 15,000 tons.

After three (3) consecutive passing TSR tests for a specific JMF, a request may be submitted to the State Asphalt Design Engineer to revert to the *Hot-Mix Asphalt QMS Manual* procedures for TSR testing on that JMF. This request shall be submitted in writing and shall include all test result data (Material and Tests Unit Form 612s) performed on the specific JMF.

Page 6-27, Article 610-1 Description, insert the following as the third paragraph:

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option when shown in the contract.

Page 6-27, Article 610-2 Materials, insert the following at the end of this Article:

Use only WMA technologies on the allowable routes listed on the Department's approved list maintained by the Materials and Tests Unit. The Department's approved list can be found at the following website: http://www.ncdot.org/doh/operations/materials/pdf/wma.pdf.

Page 6-31, Subarticle 610-3(B) Mix Design-Criteria, add the following as the fifth paragraph:

When WMA is used, submit the mix design without including the WMA additive.

Page 6-32, Subarticle 610-3(C) Job Mix Formula, add the following as the second paragraph:

When WMA is used, document the technology used, the recommended dosage rate, and the requested plant mix temperature on the JMF submittal. Verify the JMF based on plant produced mixture from the field verification test.

Immediately following PG 76-22 335°F, add the following paragraph:

When WMA is used, produce an asphalt mixture within the temperature range of 225°F to 275°F.

INCIDENTAL MILLING:

(11-07-06)

Where transverse joints are necessary at bridge approaches and other areas directed by the Engineer, the Contractor shall mill transversely across the roadway to create a "paving notch." The extent of milling required shall be determined by the Engineer.

Incidental Milling will be measured and paid for in accordance with Subarticle 607-5(C) of the Standard Specifications. Such price will include the work described herein.

ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:

(11-21-00) (Rev 7-19-11)

R6 R15

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

Asphalt Concrete Base Course	Type B 25.0	4.4%
Asphalt Concrete Intermediate Course	Type I 19.0	4.8%
Asphalt Concrete Surface Course	Type S 4.75A	6.8%
Asphalt Concrete Surface Course	Type SF 9.5A	6.7%
Asphalt Concrete Surface Course	Type S 9.5	6.0%
Asphalt Concrete Surface Course	Type S 12.5	5.5%

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications.

PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:

(11-21-00)

R6 R25

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications.

The base price index for asphalt binder for plant mix is \$621.33 per ton.

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **June 1, 2011**.

RESURFACING EXISTING BRIDGES:

(7-1-95)

R6 R61

The Contractor's attention is directed to the fact that he will be required to resurface the bridges on this project if directed by the Engineer.

Place the surface so as to follow a grade line set by the Engineer with the minimum thickness as shown on the sketch herein or as directed by the Engineer. State Forces will make all necessary repairs to the bridge floors prior to the time that the Contractor places the proposed surfacing. Give the Engineer at least 15 days notice prior to the expected time to begin operations so that State Forces will have sufficient time to complete their work.

At all bridges that are not to be resurfaced, taper out the proposed resurfacing layer adjacent to the bridges to insure a proper tie-in with the bridge surface.

PAVING INTERSECTIONS, DRIVEWAYS, AND MAILBOX TURNOUTS:

(7-1-95)

R6 R70

Surface all unpaved intersections back from the edge of the pavement on the main line of the project at least 50 feet. Surface all driveway and mailbox turnouts as directed by the Engineer. The pavement placed in the intersections shall be of the same material and thickness as being used on the main line. Use material to pave driveway and mailbox turnouts that are being used on the project and place it in depths directed by the Engineer.

Resurface all paved intersections back to the ends of the radii, or as directed by the Engineer.

The unpaved intersections, driveways, and mailbox turnouts will be prepared for surfacing by State Forces.

Widen the pavement on curves as directed by the Engineer.

PAVEMENT WIDTH VARIES:

(7-1-95)

R6 R76

The Contractor's attention is directed to the fact that the existing pavement varies in width and the Contractor will be required to widen the pavement as directed by the Engineer in order to obtain a uniform edge of pavement.

BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES:

(12-18-07) (4-15-08)

R8 R02

Revise the 2006 Standard Specifications as follows:

Division 2 Earthwork

Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence.

Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following:

Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural

Resources certifying that the removal of the borrow material from the borrow sources(s) will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places.

Division 8 Incidentals

Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph:

Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site.

Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence:

The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project.

AGGREGATE PRODUCTION:

(11-20-01) (Rev. 11-21-06)

R10 R05

Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program which is in effect at the time of shipment.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

CONCRETE BRICK AND BLOCK PRODUCTION:

(11-20-01) (Rev. 11-21-06)

R10 R10

Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

WATER FOR CONCRETE:

Revise the Standard Specifications for Roads and Structures as follows:

Page 10-63, Article 1024-4, replace article with the following:

1024-4 WATER

Ensure that water used to condition, wash, or as an integral part of materials is clear and free from injurious amounts of oil, acid, alkali, organic matter, or other deleterious substance. It shall not be salty or brackish. Water used in the production of concrete or grout shall be from wells or public water systems which are suitable for drinking and must meet the criteria listed in Table 1024-1.

R10 R17

Test all water from wells and public water supplies from all out of state locations and in the following counties: Beaufort, Bertie, Brunswick, Camden, Carteret, Chowan, Craven, Currituck, Dare, Gates, Hyde, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrell, and Washington unless the Engineer waives the testing requirements. Water from a municipal water supply in all other NC counties may be accepted by the Engineer without testing.

TABLE 1024-1
ACCEPTANCE CRITERIA FOR WATER
USED IN THE PRODUCTION OF CONCRETE

Requirement	Limit	Test Method		
Compressive Strength, minimum	90 percent	NCDOT Modified /		
percent of control at 3 and 7 days	90 percent	AASHTO T106		
Time of set, deviation from	From 1:00 hr. earlier	NCDOT Modified /		
control	to 1:30 hr. later	AASHTO T131		
рН	4.5 to 8.5	NCDOT Modified /		
	4.5 10 6.5	AASHTO T26		
Chloride Ion Content, Max.	250 ppm	ASTM D512		
Total Solids Content (Residue), Max.	1000 ppm	NCDOT Modified / Standard		
		Methods for Examination of Water		
		and Wastewater		
Resistivity, Min.	0.500 kohm-cm	NCDOT Modified /		
	. U.JUU KUIIII-CIII	ASTM D1125		
Sulfate as SO ₄ , Max.	1500 ppm	NCDOT Modified /		
		ASTM D516		
Presence of Sugar	None	NCDOT Procedure		
Dissolved Organic Matter	None	NCDOT Modified /		
	None	AASHTO T26		

Page 10-65, Article 1026-4, replace article with the following:

1026-4 WATER

All water used for curing concrete shall meet the requirements of Article 1024-4 and Table 1024-1. Water from wells, streams, ponds, or public water systems may be used.

GLASS BEADS:

(7-18-06)(Rev 10-19-10) R10 R35

Revise the 2006 Standard Specifications as follows:

Page 10-223, 1087-4(A) Composition, add the following as the fourth paragraph:

Glass beads shall have no more than 75 parts per million of arsenic as determined by the United States Environmental Protection Agency Method 6010B in conjunction with the United States Environmental Protection Agency Method 3052 modified.

Page 10-223, 1087-4(C) Gradation & Roundness, delete the last paragraph and replace the second sentence of the first paragraph with the following:

All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155.

Page 10-226, 1087-8 Material Certification, add the following below the first sentence:

Glass Beads (for paint, thermoplastic and polyurea) – Type 3 Material Certification for no more than 75 parts per million of arsenic

ENGINEERING FABRICS:

(7-18-06) (Rev 10-19-10)

R10 R40

Revise the *Standard Specifications* as follows:

Page 10-99, Delete Section 1056 ENGINEERING FABRICS and replace it with the following:

SECTION 1056 ENGINEERING FABRICS

1056-1 General

Use engineering fabrics that meet the requirements of Article 4.1 of AASHTO M288 and have been evaluated by National Transportation Product Evaluation Program (NTPEP). When required, sew fabrics together in accordance with Article X1.1.4 of AASHTO M288. Provide sewn seams with seam strengths meeting the required strengths for the engineering fabric type and class specified.

Load, transport, unload and store fabrics such that they are kept clean and free of damage. Label, ship and store fabrics in accordance with Section 7 of AASHTO M288. Fabrics with defects, flaws, deterioration or damage will be rejected. Do not unwrap fabrics until just before installation. With the exception of fabrics for temporary silt fences and mechanically stabilized earth (MSE) wall faces, do not leave fabrics exposed for more than 7 days before covering fabrics with material.

When required, use pins a minimum of 3/16" in diameter and 18" long with a point at one end and a head at the other end that will retain a steel washer with a minimum outside diameter of 1.5". When wire staples are required, provide staples in accordance with Subarticle 1060-8(D) of the Standard Specifications.

1056-2 Fabric Properties

Provide Type 1 Certified Mill Test Report, Type 2 Typical Certified Mill Test Report or Type 4 Certified Test Report in accordance with Article 106-3 of the *Standard Specifications*. Furnish certifications with minimum average roll values (MARV) as defined by ASTM D4439 for all fabric properties with the exception of elongation. For testing fabrics, a lot is defined as a single day's production.

Provide engineering fabric types and classes in accordance with the contract. Machine direction (MD) and cross-machine direction (CD) are as defined by ASTM D4439. Use woven or nonwoven fabrics with properties meeting the requirements of Table 1056-1.

TABLE 1056-1 FABRIC PROPERTY REQUIREMENTS

Property	ASTM	Requirements (MARV ¹)				
	Test Method	Type 1	Type 2	Type 3 ²	Type 4	Type 5 ³
Typical Application	1	Shoulder Drains	Under Riprap	Temporary Silt Fence	Soil Stabilization	Temporary MSE Walls
Elongation (MD & CD)	D4632	≥ 50 %	≥ 50 %	≤25 %	< 50 %	< 50 %
Grab Strength (MD & CD)	D4632	90 lbs	205 lbs	100 lbs	180 lbs	
Tear Strength (MD & CD)	D4533	40 lbs	80 lbs		70 lbs	
Puncture Strength	D6241	220 lbs	440 lbs		370 lbs	
Wide Width Tensile Strength @ Ultimate (MD & CD)	D4595		:			2400 lbs/ft (unless required otherwise in the contract)
Permittivity	D4491	0.20 sec ⁻¹	0.20 sec ⁻¹	0.05 sec ⁻¹	0.05 sec ⁻¹	0.20 sec ⁻¹
Apparent Opening Size ⁴	D4751	#60	#60	#30	#40	#30
Ultraviolet Stability (retained strength) ⁵	D4355	50 %	50 %	: 70 % :	50 %	50%

¹MARV does not apply to elongation

²Minimum roll width of 36" required

³Minimum roll width of 13 ft required

⁴US Sieve No. per AASHTO M92

⁵After 500 hours of exposure

<u>CHANNELIZING DEVICES (Drums)</u> 7-20-10

R10 R60

Revise the 2006 Standard Specifications as follows:

Page 10-236, Subarticle 1089-5 (A) Drums (1) General, replace the paragraph with the following:

(1) General

Provide drums composed of a body, alternating orange and white 4 band pattern of Type III-High Intensity Microprismatic sheeting and ballasts that have been evaluated by NTPEP.

The following guidelines will be used during the transition from drums with the standard 5 banded engineer's grade sheeting to the new 4 banded configuration.

- (a) All new drums purchased after July 20, 2010 shall have the new sheeting and 4 band configuration.
- (b) Existing 5 band drums with Engineer's Grade sheeting (both new and used devices in existing inventories) will be allowed for use on all on-going construction projects until project completion and will also be allowed for use on other projects until a sunset date has been established.
- (c) Intermixing of "old drums" and "new drums" on the same project is acceptable during the transition.
- (d) 4 band drums with Engineer's Grade sheeting will not be allowed at anytime.

Page 10-236, Subarticle 1089-5 (A) Drums (3) Retroreflective Stripes, replace the paragraph with the following:

(3) Retroreflective Bands

Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands. The top band shall always be orange. Use a 6" to 8" wide band Type III - High Intensity microprismatic retroreflective sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 2" for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 6inch band. Apply the retroreflective sheeting directly to the drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the drums, or vehicle impact.

Page 10-237, Subarticle 1089-5 (B) Skinny-Drums (1) General, replace the paragraph with the following:

(1) General

All existing skinny-drums that do not have Type III-High Intensity microprismatic sheeting as a minimum will have the same transition requirements as drums as stated above. All <u>new</u> skinny-drums purchased <u>after July 20, 2010</u> shall have Type III – High Intensity microprismatic sheeting as the minimum. Type IV and higher grade sheeting is acceptable for use on both new and used devices.

Provide skinny-drums composed of a body, reflective bands, and ballasts that have been evaluated by NTPEP.

Page 10-237, Subarticle 1089-5 (B) Skinny Drums (3) Retroreflective Stripes, replace the paragraph with the following

(3) Retroreflective Bands

Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands for each skinny-drum. The top band shall always be orange. Use a 6" to 8" wide band Type III — High Intensity microprismatic retroreflective sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 2" for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 6-inch band. Apply the retroreflective sheeting directly to the skinny-drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the skinny-drums, or vehicle impact.

CHANGEABLE MESSAGE SIGNS:

(11-21-06)

R11 R11

Revise the 2006 Standard Specifications as follows:

Page 11-9, Article 1120-3, Replace the 3rd sentence with the following:

Sign operator will adjust flash rate so that no more than two messages will be displayed and be legible to a driver when approaching the sign at the posted speed.

WORK ZONE TRAFFIC CONTROL:

(7-19-11) R11 R20

Revise the 2006 Standard Specifications as follows:

Page 11-3, Article 1101-12 Traffic Control Supervision, in addition to the stated requirements, add the following:

Provide the service of at least one qualified Work Zone Supervisor. The Work Zone Supervisor shall have the overall responsibility for the proper implementation of the traffic management plan, as well as ensuring all employees working inside the NCDOT Right of Way have received the proper training appropriate to the job decisions each individual is required to make.

The work zone supervisor is not required to be on site at all times but must make periodic project reviews and be available to address concerns of the Engineer. The name and contact information of the work zone supervisor shall be provided to the Engineer prior to or at the preconstruction conference.

Qualification of Work Zone Supervisors shall be done by an NCDOT approved training agency or other approved training provider. For a complete listing of these, see the Work Zone Traffic Control's webpage, http://www.ncdot.gov/doh/preconstruct/wztc/.

Page 11-13, Article 1150-3 Construction Methods, replace the article with the following:

Provide the service of properly equipped and qualified flaggers (see *Roadway Standard Drawings* No. 1150.01) at locations and times for such period as necessary for the control and protection of vehicular and pedestrian traffic. Anyone who controls traffic is required to be qualified. Qualification consists of each flagger receiving proper training in the set-up and techniques of safely and competently performing a flagging operation. Qualification of flaggers is to be done at an NCDOT approved training agency. For a complete listing of these, see the Work Zone Traffic Control's webpage, http://www.ncdot.gov/doh/preconstruct/wztc/.

Prior to beginning work on the project, a Qualification Statement that all flaggers used on the project have been properly trained through an NCDOT approved training resource shall be provided to the Engineer.

Flagging operations are not allowed for the convenience of the Contractor's operations. However, if safety issues exist (i.e. sight or stopping sight distance), the Engineer may approve the use of flagging operations. Use flagging methods that comply with the guidelines in the MUTCD.

PAVEMENT MARKING LINES:

(11-21-06) (Rev. 08-17-10)

R12 R01

Revise the 2006 Standard Specifications as follows:

Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart:

Facility Type Marking Type		Replacement Deadline		
Full-control-of-access multi-lane	All markings B	By the end of each workday's		
roadway (4 or more total lanes) and	including o	operation if the lane is opened to		
ramps, including Interstates	symbols tr	raffic		

Page 12-5, 1205-3 (H) Observation Period, delete 1205-3 (H) and replace with the following:

Maintain responsibility for debonding and color of the pavement markings during a 12 month observation period beginning upon final acceptance of the project as defined under Article 105-17. Guarantee the markings under the payment and performance bond in accordance with Article 105-17.

During the 12 month observation period, provide pavement marking material that shows no signs of failure due to blistering, chipping, bleeding, discoloration, smearing or spreading under heat or poor adhesion to the pavement materials. Pavement markings that debond due to snowplowing will not be considered a failed marking. Replace, at no additional expense to the Department, any pavement markings that do not perform satisfactorily under traffic during the 12 month observation period.

Page 12-8, 1205-4 (C) Application, delete the last two sentences of the second paragraph and replace with the following:

Produce in place markings with minimum retroreflective values shown below, as obtained with a LTL 2000 Retroreflectometer or Department approved mobile retroreflectometer. Retroreflective measurements will be taken within 30 days after final placement of the pavement marking.

Page 12-9, 1205-4 (D) Observation Period, delete the entire section and replace with the following:

In addition to the requirements of Subarticle 1205-3(H), maintain responsibility for minimum retroreflective values for a 30-day period beginning upon the Engineer's acceptance of all markings on the project. Guarantee retroreflective values of the markings during the 30-day period under the payment and performance bond in accordance with Article 105-17.

Page 12-9, 1205-5 (B) Application, delete the second sentence of the fourth paragraph and replace with the following:

Produce in place markings with minimum retroreflective values shown below, as obtained with a LTL 2000 Retroreflectometer or Department approved mobile retroreflectometer.

Retroreflective measurements will be taken within 30 days after final placement of the pavement marking.

Page 12-10, 1205-5 (C) Observation Period, delete this entire section and replace with the following:

Maintain responsibility for minimum retroreflective values for a 30-day period beginning upon satisfactory final placement of all markings on the project. Guarantee retroreflective values of the markings during the 30-day period under the payment and performance bond in accordance with Article 105-17.

Page 12-14, Article 1205-9, Maintenance, delete Article 1205-9 and replace with the following:

Replace pavement markings that prematurely deteriorate, fail to adhere to the pavement, lack reflectorization, or are otherwise unsatisfactory during the life of the project or during the 12 month observation period as determined by the Engineer at no cost to the Department.

Upon notification from the Engineer, winterize the project by placing an initial or additional application of paint pavement marking lines in accordance with Article 1205-8. Payment for *Paint Pavement Marking Lines* required to winterize the project will be made in accordance with Article 1205-10 except that no payment will be made on resurfacing projects where paving is completed more than 30 days prior to the written notification by the Department that winterization is required.

Page 12-14, Article 1205-10, Measurement and Payment, add the following after the first sentence of the first paragraph:

In addition, *Paint Pavement Marking Lines* will be paid per linear foot for each 15 mil application placed in accordance with Subarticle 1205-8(C).

EROSION AND STORMWATER CONTROL FOR SHOULDER CONSTRUCTION AND RECONSTRUCTION:

(11-16-10) R16 R02

Land disturbing operations associated with shoulder construction/reconstruction may require erosion and sediment control/stormwater measure installation. National Pollutant Discharge Elimination System (NPDES) inspection and reporting may be required.

Erosion control measures shall be installed per the erosion control detail in any area where the vegetated buffer between the disturbed area and surface waters (streams, wetlands, or open waters) or drainage inlet is less than 10 feet. The Engineer may reduce the vegetated buffer threshold for this requirement to a value between 5 and 10 feet. Erosion control measures shall be spot checked every 14 days until permanent vegetative establishment.

In areas where shoulder construction/reconstruction includes disturbance or grading on the front slope or to the toe of fill, relocating ditch line or backslope, or removing vegetation from the ditch line or swale, NPDES inspection and monitoring are required every 14 days or within 24

hours of a rainfall event of 0.5" or greater. Maintain daily rainfall records. Install erosion control measures per detail.

In areas where the vegetated buffer is less than 10 feet between the disturbed area and waters of the State classified as High Quality Water (HQW), Outstanding Resource Water (ORW), Critical Areas, or Unique Wetlands, NPDES inspection and monitoring are required every 14 days or within 24 hours of a rainfall event of 0.5" or greater. The Engineer may reduce the vegetated buffer threshold for this requirement to a value between 5 and 10 feet. The plans or provisions will indicate the presence of these water classifications. Maintain daily rainfall records. Install erosion control measures per detail.

Land disturbances hardened with aggregate materials receiving sheet flow are considered non-erodible.

Sites that require lengthy sections of silt fence may substitute with rapid permanent seeding and mulching as directed by the Engineer.

NPDES documentation shall be performed by a Level II Erosion and Sediment Control/Stormwater certificate holder.

Materials used for erosion control will be measured and paid as stated in the contract.