

Project Special Provisions (Version 06.6) Signals and Intelligent Transportation Systems

Prepared By: MKM 7-Sep-10

Contents

1.	200	6 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES	.2		
		GENERAL REQUIREMENTS (1098-1)			
	1.2.	WOOD POLES (1098-6)	. 3		
	1.3.	Wood Poles (1098-6)	. 3		
	1.4.	UNDERGROUND CONDUIT – CONSTRUCTION METHODS (1715-3)	. 3		
	1.5.	RISER ASSEMBLIES – CONSTRUCTION METHODS (1722-3)	. 3		
		INDUCTIVE DETECTION LOOPS – CONSTRUCTION METHODS (1725-3)			
	1.7	LOOP LEAD-IN CABLE – MEASUREMENT AND PAYMENT (1726-4)	. 3		
2.	. ELECTRICAL REQUIREMENTS				
•	CIC	GNAL HEADS	_		
3.					
	3.1.	MATERIALS	. 4		
	A .	General:	٠ -		
	B .	Vehicle Signal Heads:			
	C.	Signal Cable:			

1. 2006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES

The 2006 Standard Specifications are revised as follows:

1.1. General Requirements (1098-1)

Page 10-268, Subarticle 1098-1(H)

In the first paragraph, revise the second sentence to "Ensure service disconnects are listed as meeting UL Standard UL-489 and marked as being suitable for use as service equipment."

In the second paragraph, revise the first sentence to "Furnish NEMA Type 3R meter base rated 100 Ampere minimum that meets the requirements of the local utility. Provide meter base with sockets' ampere rating based on sockets being wired with minimum of 167 degrees F insulated wire."

In the second paragraph, last item on page, revise to "With or without horn bypass."

Page 10-269, Subarticle 1098-1(H)

Revise the second line to "Listed as meeting UL Standard UL-414."

In the first full paragraph on page, remove the first sentence.

Revise the last paragraph to "If meter base and electrical service disconnect are supplied in the same enclosure, ensure assembly is marked as being suitable for use as service equipment. Ensure combination meter and disconnect mounted in a pedestal for underground service is listed as meeting UL Standard UL-231. Otherwise, ensure combination meter and disconnect is listed as meeting UL Standard UL-67.

Page 10-269, Subarticle 1098-1 (J)

ADD new Subarticle 1098-1 (J) Performance of Warranty Repair and Maintenance

Provide authorization to the Traffic Electronics Center of the North Carolina Department of Transportation (NCDOT) to perform all warranty repairs after project acceptance. The decision to perform warranty work at the Traffic Electronics Center by NCDOT electronics technicians or to have warranty work performed by the vendor shall be at the discretion of the State. Provide any training required by the manufacturer to authorize the Traffic Electronics Center to perform warranty work and ensure manufacturer will furnish parts to the Traffic Electronics Center for all warranty repairs at no cost to the State. In addition, ensure the manufacturer agrees to provide prompt technical support to the NCDOT electronics technicians for a period of one year after the end of the warranty period at no cost to the State. Defective parts replaced under warranty by the Traffic Electronics Center will be returned to the vendor at the vendor's request. Provide schematics, part lists, and other documentation to perform bench repair to the Traffic Electronics Center within two weeks upon request. The Department agrees not to divulge any proprietary information in the schematics, part lists, and other documentation upon request from the vendor. After project acceptance and at the request of the State, manufacturer shall perform warranty repairs to equipment which fails during the warranty period at no cost to the State including freight costs to ship repaired equipment back to the Traffic Electronics Center. Ensure all equipment is repaired and returned to the Traffic Electronics Center within twenty-one calendar days of receipt by the manufacturer.

Page 10-269, Subarticle 1098-1 (K)

ADD new Subarticle 1098-1 (K) Maintenance and Repair of Materials

Perform maintenance (testing) on all Traffic Signal Conflict Monitors every twelve (12) months for the life of the project beginning with the initial test and every twelve (12) months thereafter. Provide the initial test date via the manufacturer's certification or via testing prior to installation of

Version 06.6 2 print date: 09/07/10

Signals & Intelligent Transportation Systems

the conflict monitor at an intersection. Use the ATSI Incorporated Model PCMT-2600 Conflict Monitor Tester, or an Engineer approved equivalent. Ensure that the Conflict Monitor Tester is maintained and calibrated per the manufacturer's recommendation. Provide to the Engineer a copy of the manufacturer's certification that the Conflict Monitor Tester is in proper working order before testing the Traffic Signal Conflict Monitors. Perform the test on the Traffic Signal Conflict Monitors per the manufacturer's recommendation. For each Traffic Signal Conflict Monitor tested, provide two (2) dated copies of the test results: one (1) copy for the Engineer and one (1) copy for the traffic signal cabinet.

1.2. Wood Poles (1098-6)

Page 10-272, Delete article. Refer to Subarticles 1082 –3(F) and 1082-4(G).

1.3. Loop Lead-in Cable (1098-8)

Page 10-274, Delete article and replace with the following:

Furnish lead-in cable with two conductors of number 14 AWG fabricated from stranded tinned copper that complies with IMSA Specification 50-2 except as follows:

Ensure conductor is twisted with a maximum lay of 2.0 inches, resulting in a minimum of 6 turns per foot.

Provide a ripcord to allow cable jacket to be opened without using a cutter.

Provide length markings in a contrasting color showing sequential feet and within one percent of actual cable length. Ensure character height of the markings is approximately 0.10 inch.

1.4. Underground Conduit – Construction Methods (1715-3)

Page 17-10, Subarticle 1715-3(B) Section (1), Revise 1st paragraph, 2nd sentence to:

Install rigid metallic conduit for all underground runs located inside railroad right-of-way.

1.5.Riser Assemblies – Construction Methods (1722-3)

Page 17-18, Subarticle 1722-3, Add the following:

Transition from the rigid galvanized steel risers to underground PVC conduits using an approved rigid galvanized steel sweeping elbow with PVC female adaptor.

1.6. Inductive Detection Loops – Construction Methods (1725-3)

Page 17-20, Subarticle 1725-3, In the first paragraph, revise the first sentence to:

"Between where loop conductor pairs leave saw cut in pavement and junction boxes, twist loop conductor pairs a minimum of 5 turns per foot."

1.7. Loop Lead-in Cable – Measurement and Payment (1726-4)

Page 17-20, Delete first paragraph and replace with the following:

Lead-in cable will be measured and paid as the actual linear feet of lead-in cable furnished, installed, and accepted. Measurement will be made by calculating the difference in length markings located on outer jacket from start of run to end of run for each run. Terminate all cables before determining length of cable run.

2. ELECTRICAL REQUIREMENTS

Ensure that an IMSA certified, or equivalent, Level II traffic qualified signal technician is standing by to provide emergency maintenance services whenever work is being performed on traffic signal controller cabinets and traffic signal controller cabinet foundations. Stand by status is

Version 06.6 3 print date: 09/07/10

defined as being able to arrive, fully equipped, at the work site within 30 minutes ready to provide maintenance services.

3. SIGNAL HEADS

3.1. MATERIALS

A. General:

Fabricate vehicle signal head housings and end caps from die-cast aluminum. Fabricate 12-inch and 16-inch pedestrian signal head housings and end caps from die-cast aluminum. Fabricate 9-inch pedestrian signal head housings, end caps, and visors from virgin polycarbonate material. Provide visor mounting screws, door latches, and hinge pins fabricated from stainless steel. Provide interior screws, fasteners, and metal parts fabricated from stainless steel or corrosion resistant material.

Fabricate tunnel and traditional visors from sheet aluminum.

Paint all surfaces inside and outside of signal housings and doors. Paint outside surfaces of tunnel and traditional visors, messenger cable mounting assemblies, pole and pedestal mounting assemblies, and pedestrian pushbutton housings. Have electrostatically-applied, fused-polyester paint in highway yellow (Federal Standard 595A, Color Chip Number 13538) a minimum of 2.5 to 3.5 mils thick. Do not apply paint to the latching hardware or rigid vehicle signal head mounting brackets for mast-arm attachments.

Have the interior surfaces of tunnel and traditional visors painted an alkyd urea black synthetic baking enamel with a minimum gloss reflectance and meeting the requirements of MIL-E-10169, "Enamel Heat Resisting, Instrument Black."

For pole mounting, provide side of pole mounting assemblies with framework and all other hardware necessary to make complete, watertight connections of the signal heads to the poles and pedestals. Fabricate the mounting assemblies and frames from aluminum with all necessary hardware, screws, washers, etc. to be stainless steel. Provide mounting fittings that match the positive locking device on the signal head with the serrations integrally cast into the brackets. Provide upper and lower pole plates that have a 1 ¼-inch vertical conduit entrance hubs with the hubs capped on the lower plate and 1 ½-inch horizontal hubs. Ensure that the assemblies provide rigid attachments to poles and pedestals so as to allow no twisting or swaying of the signal heads. Ensure that all raceways are free of sharp edges and protrusions, and can accommodate a minimum of ten Number 14 AWG conductors.

For pedestal mounting, provide a post-top slipfitter mounting assembly that matches the positive locking device on the signal head with serrations integrally cast into the slipfitter. Provide stainless steel hardware, screws, washers, etc. Provide a minimum of six 3/8 X 3/4-inch long square head bolts for attachment to pedestal. Provide a center post for multi-way slipfitters.

For light emitting diode (LED) traffic signal modules, provide the following requirements for inclusion on the Department's Qualified Products List for traffic signal equipment.

- 1. Sample submittal,
- 2. Third-party independent laboratory testing results for each submitted module with evidence of testing and conformance with all of the Design Qualification Testing specified in section 6.4 of each of the following Institute of Transportation Engineers (ITE) specifications:
 - Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Circular Signal Supplement
 - Vehicle Traffic Control Signal Heads Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement

Version 06.6 4 print date: 09/07/10

Pedestrian Traffic Control Signal Indications – Part 2: Light Emitting Diode (LED)
 Pedestrian Traffic Signal Modules.

(Note: The Department currently recognizes two approved independent testing laboratories. They are Intertek ETL Semko and Light Metrics, Incorporated with Garwood Laboratories. Independent laboratory tests from other laboratories may be considered as part of the QPL submittal at the discretion of the Department,

- 3. Evidence of conformance with the requirements of these specifications,
- 4. A manufacturer's warranty statement in accordance with the required warranty, and
- 5. Submittal of manufacturer's design and production documentation for the model, including but not limited to, electrical schematics, electronic component values, proprietary part numbers, bill of materials, and production electrical and photometric test parameters.

In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL).

B. Vehicle Signal Heads:

Comply with the ITE standard "Vehicle Traffic Control Signal Heads". Provide housings with provisions for attaching backplates.

Provide visors that are 8 inches in length for 8-inch vehicle signal head sections. Provide visors that are 10 inches in length for 12-inch vehicle signal heads.

Provide a termination block with one empty terminal for field wiring for each indication plus one empty terminal for the neutral conductor. Have all signal sections wired to the termination block. Provide barriers between the terminals that have terminal screws with a minimum Number 8 thread size and that will accommodate and secure spade lugs sized for a Number 10 terminal screw.

Mount termination blocks in the yellow signal head sections on all in-line vehicle signal heads. Mount the termination block in the red section on five-section vehicle signal heads.

Furnish vehicle signal head interconnecting brackets. Provide one-piece aluminum brackets less than 4.5 inches in height and with no threaded pipe connections. Provide hand holes on the bottom of the brackets to aid in installing wires to the signal heads. Lower brackets that carry no wires and are used only for connecting the bottom signal sections together may be flat in construction.

For messenger cable mounting, provide messenger cable hangers, wire outlet bodies, balance adjusters, bottom caps, wire entrance fitting brackets, and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the messenger cable. Fabricate mounting assemblies from malleable iron or steel and provide serrated rings made of aluminum. Provide messenger cable hangers and balance adjusters that are galvanized before being painted. Fabricate balance adjuster eyebolt and eyebolt nut from stainless steel or galvanized malleable iron. Provide messenger cable hangers with U-bolt clamps. Fabricate washers, screws, bolts, clevis pins, cotter pins, nuts, and U-bolt clamps from stainless steel.

For mast-arm mounting, provide rigid vehicle signal head mounting brackets and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the mast arms and to provide a means for vertically adjusting the vehicle signal heads to proper alignment. Fabricate the mounting assemblies from malleable iron or aluminum, and provide serrated rings made of aluminum.

Version 06.6 5 print date: 09/07/10

Provide LED vehicular traffic signal modules (hereafter referred to as modules) that consist of an assembly that uses LEDs as the light source in lieu of an incandescent lamp for use in traffic signal sections. Use LEDs that are aluminum indium gallium phosphorus (AlInGaP) technology for red and yellow indications and indium gallium nitride (InGaN) for green indications. Install the ultra bright type LEDs that are rated for 100,000 hours of continuous operation from -40°F to +165°F. Design modules to have a minimum useful life of 60 months and to meet all parameters of this specification during this period of useful life.

For the modules, provide spade terminals crimped to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard signal head. Do not provide other types of crimped terminals with a spade adapter.

Ensure the power supply is integral to the module assembly. On the back of the module, permanently mark the date of manufacture (month & year) or some other method of identifying date of manufacture.

Tint the red, yellow and green lenses to correspond with the wavelength (chromaticity) of the LED. Transparent tinting films are unacceptable. Provide a lens that is integral to the unit with a smooth outer surface.

1. LED Circular Signal Modules:

Provide modules in the following configurations: 12-inch circular sections, and 8-inch circular sections. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL).

Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2006 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the *Standard Specifications*, that each module meets or exceeds the ITE "Vehicle Traffic Control Signal Heads – Light Emitting Diode (LED) Circular Signal Supplement" dated June 27, 2005 (hereafter referred to as VTCSH Circular Supplement) and other requirements stated in this specification.

Provide modules that meet the following requirements when tested under the procedures outlined in the VTCSH Circular Supplement:

Module Type	Max. Wattage at 165° F	Nominal Wattage at 77° F
12-inch red circular	17	11
8-inch red circular	13	8
12-inch green circular	15	15
8-inch green circular	12	12

For yellow circular signal modules, provide modules tested under the procedures outlined in the VTCSH Circular Supplement to insure power required at 77° F is 22 Watts or less for the 12-inch circular module and 13 Watts or less for the 8-inch circular module.

Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of a circular traffic signal module. Power may also be derived from voltage, current and power factor measurements.

2. LED Arrow Signal Modules

Provide 12-inch omnidirectional arrow signal modules. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL).

Version 06.6 print date: 09/07/10

Signals & Intelligent Transportation Systems.

Provide the manufacturer's model number and the product number (assigned by the Department) for each module that appears on the 2006 or most recent Qualified Products List. In addition, provide manufacturer's certification in accordance with Article 106-3 of the Standard Specifications, that each module meets or exceeds the requirements for 12-inch omnidirectional modules specified in the ITE "Vehicle Traffic Control Signal Heads - Light Emitting Diode (LED) Vehicle Arrow Traffic Signal Supplement" dated July 1, 2007 (hereafter referred to as VTCSH Arrow Supplement) and other requirements stated in this specification.

Provide modules that meet the following requirements when tested under the procedures outlined in the VTCSH Arrow Supplement:

Module Type	Max. Wattage at 165° F	Nominal Wattage at 77° F
12-inch red arrow	12	9
12-ınch green arrow	11	11

For yellow arrow signal modules, provide modules tested under the procedures outlined in the VTCSH Arrow Supplement to insure power required at 77° F is 12 Watts or less.

Note: Use a wattmeter having an accuracy of $\pm 1\%$ to measure the nominal wattage and maximum wattage of an arrow traffic signal module. Power may also be derived from voltage, current and power factor measurements.

C. Signal Cable:

Furnish 16-4 and 16-7 signal cable that complies with IMSA specification 20-1 except provide the following conductor insulation colors:

- For 16-4 cable: white, yellow, red, and green
- For 16-7 cable: white, yellow, red, green, yellow with black stripe tracer, red with black stripe tracer, and green with black stripe tracer. Apply continuous stripe tracer on conductor insulation with a longitudinal or spiral pattern.

Provide a ripcord to allow the cable jacket to be opened without using a cutter. IMSA specification 19-1 will not be acceptable. Provide a cable jacket labeled with the IMSA specification number and provide conductors constructed of stranded copper.

7 Version 06.6 print date: 09/07/10