### **PROJECT SPECIAL PROVISIONS**

#### **ROADWAY**

#### **CLEARING AND GRUBBING – METHOD II:**

(9-17-02) (Rev 3-18-08)

SP2 R01

Perform clearing on this project to the limits established by Method "II" shown on Standard No. 200.02 of the 2006 Roadway Standard Drawings.

Revise the 2006 Standard Specifications as follows:

#### Page 2-2, Article 200-3, Clearing, add the following as the 6th paragraph:

At bridge sites, clear the entire width of the right of way beginning at a station 3 feet back of the beginning extremity of the structure and ending at a station 3 feet beyond the ending extremity of the structure.

#### **EMBANKMENTS:**

(5-16-06) (Rev 10-19-10)

SP2 R18

Revise the *Standard Specifications* as follows:

# Page 2-22, Article 235-3 MATERIALS, amend as follows:

Add the following as the second sentence of the first paragraph:

Do not use material meeting the requirements of AASHTO M145 for soil classification A-2-5 and A-5 with a plasticity index (PI) of less than 8 within 12" of the subgrade.

Add the following as the second sentence of the second paragraph:

Aerate and dry material containing moisture content in excess of what is required to achieve embankment stability and specified density.

### Page 2-22, Subarticle 235-4(B) Embankment Formation, add the following:

(16) Do not place rock or broken pavement in embankment areas where piles or drilled shaft foundations are to be constructed. This shall include but not be limited to piles and foundations for structures, metal signal poles, overhead sign structures, and high mount lighting.

# **AGGREGATE SUBGRADE:**

(9-18-07) (Rev 3-16-10) SP2 R35

### **Description**

Construct aggregate subgrades in accordance with the contract or as directed by the Engineer. Undercut as needed in cut areas. Install fabric for soil stabilization and place Class IV Subgrade Stabilization at locations shown on the plans.

#### **Materials**

Refer to Division 10 of the Standard Specifications.

| Item                                  | Section |
|---------------------------------------|---------|
| Select Material, Class IV             | 1016    |
| Fabric for Soil Stabilization, Type 4 | 1056    |

Use Class IV Select Material for Class IV Subgrade Stabilization. If Class IV Subgrade Stabilization does not meet the requirements of Article 1010-2 of the *Standard Specifications*, the Engineer may consider the material reasonably acceptable in accordance with Article 105-3 of the *Standard Specifications*.

### **Construction Methods**

When shallow undercut is required to construct aggregate subgrades, undercut 6 to 24 inches as shown on the plans or as directed by the Engineer. Perform undercut excavation in accordance with Section 225 of the *Standard Specifications*. Install fabric for soil stabilization in accordance with Article 270-3 of the *Standard Specifications*. Place Class IV Subgrade Stabilization (standard size no. ABC) by end dumping ABC on the fabric. Do not operate heavy equipment on the fabric until it is covered with Class IV Subgrade Stabilization. Compact ABC to 92% of AASHTO T180 as modified by the Department or to the highest density that can be reasonably obtained.

Maintain Class IV Subgrade Stabilization in an acceptable condition and minimize the use of heavy equipment on ABC in order to avoid damaging aggregate subgrades. Provide and maintain drainage ditches and drains as required to prevent entrapping water in aggregate subgrades.

# **Measurement and Payment**

Shallow Undercut will be measured and paid for in cubic yards. Shallow undercut will be measured in accordance with Article 225-7 of the Standard Specifications. The contract unit price for Shallow Undercut will be full compensation for excavating, hauling and disposing of materials to construct aggregate subgrades.

Class IV Subgrade Stabilization will be measured and paid for in tons. Class IV Subgrade Stabilization will be measured by weighing material in trucks in accordance with Article 106-7 of the Standard Specifications. The contract unit price for Class IV Subgrade Stabilization will be full compensation for furnishing, hauling, handling, placing, compacting and maintaining ABC.

Fabric for Soil Stabilization will be measured and paid for in accordance with Article 270-4 of the Standard Specifications.

Payment will be made under:

Pay Item
Shallow Undercut
Class IV Subgrade Stabilization

Pay Unit
Cubic Yard
Ton

# **SHOULDER AND FILL SLOPE MATERIAL:**

(5-21-02)

SP2 R45 A

# **Description**

Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 226 of the 2006 Standard Specifications except as follows:

Construct the top 6 inches of shoulder and fill slopes with soils capable of supporting vegetation.

Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer.

Obtain material from within the project limits or approved borrow source.

#### **Measurement and Payment**

No direct payment will be made for this work, as the cost of this work will be considered to be a part of the work being paid for at the contract lump sum price for *Grading*.

# **SELECT GRANULAR MATERIAL:**

16-10) SP2 R80

Revise the *Standard Specifications* as follows:

Page 2-29, Delete Section 265 SELECT GRANULAR MATERIAL and replace it with the following:

# SECTION 265 SELECT GRANULAR MATERIAL

### 265-1 Description

Furnish and place select granular material in accordance with the contract or as directed by the Engineer.

#### 265-2 Materials

Refer to Division 10 of the Standard Specifications.

| Item                       | Section |
|----------------------------|---------|
| Select Material, Class II  | 1016    |
| Select Material, Class III | 1016    |

#### **265-3 Construction Methods**

Use Class II or III Select Material over fabric for soil stabilization and only Class III Select Material for backfill in water.

Place select granular material to 3 ft above fabric and water level.

# 265-4 Measurement and Payment

Select granular material will be paid for as *Select Granular Material* unless the material is obtained from the same source as the borrow material and the contract includes a pay item for *Borrow Excavation*. When this occurs, select granular material will be paid for as *Borrow Excavation* in accordance with Article 230-5 of the *Standard Specifications* and no payment for *Select Granular Material* will be made.

Select Granular Material will be measured and paid for in cubic yards. When Undercut Excavation is in accordance with Section 226 (Comprehensive Grading) of the Standard Specifications and the Engineer requires undercut to be backfilled with select granular material, the second sentence of the sixth paragraph of Article 226-3 will not apply, as payment for the backfill will be made as specified in this provision.

Select granular material will be measured by in place measurement in accordance with Article 230-5 of the Standard Specifications or by weighing material in trucks in accordance with

Article 106-7 of the *Standard Specifications* as determined by the Engineer. When select granular material is weighed in trucks, a unit weight of 135 pcf will be used to convert the weight of select granular material to cubic yards. At the Engineer's discretion, truck measurement in accordance with Article 230-5 of the *Standard Specifications* may be used in lieu of weighing material in trucks.

The contract unit prices for *Select Granular Material* and *Borrow Excavation* as described above will be full compensation for furnishing, hauling, handling, placing, compacting and maintaining select granular material.

Payment will be made under:

Pay Item Pay Unit

Select Granular Material Cubic Yard

# **CONTAMINATED SOIL:**

The Contractor's attention is directed to the fact that soil containing petroleum hydrocarbon compounds exist within the project area. Soil samples collected from Carlene Green Crisp Property and Town of Canton Properties indicated petroleum contaminated soil is present in the right of way.

The following are known areas of contamination and their approximate station location:

- -L- Stations 16+10 to 16+30, 35 to 45 Feet Right
- -L- Stations 18+90 to 19+30, 5 to 30 Feet Left
- -Y4- Stations 10+45 to 11+10, 10 to 50 Feet Left and 7 to 18 Feet Right

Information relating to this contaminated area, sample locations, and laboratory results are available at the following web address:

# www.ncdot.org/doh/preconstruct/ps/contracts/letting.html

Impact to contaminated soil is possible during any earthwork activities on the project. The Contractor shall only excavate those soils which the Engineer designates necessary to complete a particular task. The Engineer shall determine if soil is contaminated based on petroleum odors and unusual soil staining. Contaminated soil not required to be excavated is to remain in place and undisturbed. Undisturbed soil shall remain in place, whether contaminated or not. The Contractor shall stockpile all contaminated soil excavated from the project in a location approved by the Engineer. The Contractor shall obtain a permit from NCDENR's UST regional office if the stockpile needs to be stored offsite. The stockpile shall be constructed in accordance with the "Diagram for Temporary Containment of Petroleum Contaminated Soil" detail located in the plans. The Engineer is to notify the Geotechnical Engineering Unit if petroleum contaminated soil is encountered and the Geotechnical Engineering Unit shall arrange for the sampling and disposal of the contaminated soil.

### **Measurement and Payment:**

The quantity of contaminated soil excavated and stockpiled shall be the actual number of tons of material, which has been acceptably excavated, transported, and weighed with certified scales. Include in the unit bid price for *Excavating and Stockpiling Contaminated Soil* all costs associated with this activity including excavation, stockpile construction material, and personal protective equipment.

Payment shall be made under:

Pay ItemPay UnitExcavate and Stockpile Contaminated SoilTon

### **FLOWABLE FILL:**

(9-17-02) (Rev 8-21-07)

SP3 R30

# **Description**

This work consists of all work necessary to place flowable fill in accordance with these provisions, the plans, and as directed.

#### **Materials**

Provide flowable fill material in accordance with Article 340-2 of the 2006 Standard Specifications.

#### **Construction Methods**

Discharge flowable fill material directly from the truck into the space to be filled, or by other approved methods. The mix may be placed full depth or in lifts as site conditions dictate. The Contractor shall provide a method to plug the ends of the existing pipe in order to contain the flowable fill.

#### **Measurement and Payment**

At locations where flowable fill is called for on the plans and a pay item for flowable fill is included in the contract, *flowable fill* will be measured in cubic yards and paid for as the actual number of cubic yards that have been satisfactorily placed and accepted. Such price and payment will be full compensation for all work covered by this provision including but not limited to the mix design, furnishing, hauling, placing and containing the flowable fill.

Payment will be made under:

**Pay Item** Flowable Fill Pay Unit Cubic Yard

### PIPE INSTALLATION AND PIPE CULVERTS:

(1-19-10)(Rev 1-18-11) SP3 R40 B

Revise the *Standard Specifications* as follows:

Replace Section 300 and Section 310 with the following:

#### **SECTION 300**

PIPE INSTALLATION

#### 300-1 DESCRIPTION

Excavate, undercut, provide material, condition foundation, lay pipe, joint and couple pipe sections, and furnish and place all backfill material as necessary to install the various types of pipe culverts and fittings required to complete the project.

Install pipe in accordance with the detail in the plans.

Do not waste excavation unless permitted. Use suitable excavated material as backfill; or in the formation of embankments, subgrades, and shoulders; or as otherwise directed. Furnish disposal areas for the unsuitable material. The Engineer will identify excavated materials that are unsuitable.

Where traffic is to be maintained, install pipe in sections so that half the width of the roadway is available to traffic.

#### 300-2 MATERIALS

Refer to Division 10:

| Item                | Section   |
|---------------------|-----------|
| Flowable Fill       | 1000      |
| Select Materials    | 1016      |
| Joint Materials     | 1032-9(G) |
| Engineering Fabrics | 1056      |

Provide foundation conditioning material meeting the requirements of Article 1016-3 for Class V or VI Select Material as shown in the contract documents.

Provide bedding material meeting the requirements of Article 1016-3 for Class II (Type 1 only) or Class III Select Material as shown in contract documents.

Provide backfill material meeting the requirements of Article 1016-3 for Class II (Type 1 for Flexible Pipe) or Class III Select Material as shown in the contract documents.

Provide filter fabric meeting the requirements of Article 1056-2 for any type of engineering fabric.

Provide foundation conditioning fabric meeting the requirements of Article 1056-2 for Type 2 Engineering Fabric.

Do not use corrugated steel pipe in the following counties:

Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrrell, and Washington.

#### 300-3 UNLOADING AND HANDLING

Unload and handle pipe with reasonable care. Do not roll or drag metal pipe or plates over gravel or rock during handling. Take necessary precautions to ensure the method used in lifting or placing the pipe does not induce stress fatigue in the pipe. Use a lifting device that uniformly distributes the weight of the pipe along its axis or circumference. Repair minor damage to pipe when permitted. Remove pipe from the project that is severely damaged or is rejected as being unfit for use. Undamaged portions of a joint or section may be used where partial lengths are required.

#### 300-4 PREPARATION OF PIPE FOUNDATION

Prepare the pipe foundation in accordance with the applicable method as shown in the contract documents, true to line and grade, and uniformly firm.

Camber invert grade an amount sufficient to prevent the development of sag or back slope in the flow line. The Contractor shall determine the amount of camber required and submit to the Engineer for approval.

Where material is found to be of poor supporting value or of rock and when the Engineer cannot make adjustment in the location of the pipe, undercut existing foundation material within the limits established on the plans. Backfill the undercut with foundation conditioning material. Encapsulate the foundation conditioning material with foundation conditioning fabric prior to placing bedding material. Overlap all transverse and longitudinal joints in the fabric at least 18 inches.

Maintain the pipe foundation in a dry condition.

### 300-5 INVERT ELEVATIONS

The proposed pipe culvert invert elevations shown on the Drainage Summary Sheets are based upon information available when the plans were prepared. If proposed invert elevations are adjusted during construction based upon actual conditions encountered, no claim for an extension of time for any reason resulting from this information will be allowed.

When a pipe culvert is to be installed in a trench and the average actual elevation of the pipe between drainage structures deviates from the average proposed elevation shown on the Drainage Summary Sheets by more than one foot a pay adjustment will be made as follows:

Pay Adjustment (per linear foot) = [(APE-AAE)± 1 foot] (0.15 X CUP)

Where: CUP = Contract Unit Price of Pipe Culvert

AAE = Average Actual Elevation (Actual Inlet elev. + Actual Outlet elev.)

2

APE = Average Plan Elevation (Plan Inlet elev. + Plan Outlet elev.)

2

When the actual location of a pipe culvert is changed from the location shown on the plans, the Engineer will make a pay adjustment deemed warranted based upon the relation of the pipe culvert as shown on the plans to the finished roadway and the relation of the pipe culvert as constructed to the finished roadway.

The top elevation column on the drainage summary sheet indicates the flow elevation at the top of structures intended to collect surface water.

The top elevation column on drainage structures not intended to collect surface water indicates the elevation at the top of the cover.

#### 300 -6 LAYING PIPE

The Department reserves the right to perform forensic testing on any installed pipe.

### (A) Rigid Pipe

Concrete and welded steel pipe will be considered rigid pipe. Lay pipe on prepared foundation, bell or groove end upgrade with the spigot or tongue fully inserted. Check each joint for alignment and grade as the work proceeds.

Use flexible plastic joint material except when material of another type is specified in the contract documents. Joint material of another type may be used when permitted.

Repair lift holes in concrete pipe, if present. Thoroughly clean and soak the lift hole and completely fill the void with an approved non-shrink grout. Submit alternate details for repairing lift holes to the engineer for review and approval.

For all pipes 42 inches in diameter and larger, wrap filter fabric around all pipe joints. Extend fabric at least 12 inches beyond each side of the joint. Secure fabric against the outside of the pipe by methods approved by the Engineer.

# (B) Flexible Pipe (Except Structural Plate Pipe)

Corrugated steel, corrugated aluminum, corrugated polyethylene (HDPE), and polyvinylchloride (PVC) pipe will be considered flexible pipe. Place flexible pipe carefully on the prepared foundation starting at the downstream end with the inside circumferential laps pointing downstream and with the longitudinal laps at the side or quarter points.

Handle coated corrugated steel pipe with special care to avoid damage to coatings.

Join pipe sections with coupling band, fully bolted and properly sealed. Provide coupling bands for annular and helical corrugated metal pipe with circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections, and prevent backfill infiltration. Match-mark all pipe 60 inches or larger in diameter at the plant for proper installation on the project.

At locations indicated in the plans, corrugated steel pipe sections shall be jointed together with rod and lug coupling bands, fully bolted. Sleeve gaskets shall be used in conjunction with rod and lug couplings and the joints properly sealed. Coupling bands shall provide circumferential and longitudinal strength sufficient to preserve the alignment, prevent separation of the sections and prevent infiltration of backfill material.

# 300-7 BEDDING AND BACKFILLING

Loosely place bedding material, in a uniform layer, a depth equal to the inside diameter of the pipe divided by 6 or 6 inches, whichever is greater. Leave bedding material directly beneath the pipe uncompacted and allow pipe seating and backfill to accomplish compaction. Excavate recesses to receive the bells where bells and spigot type pipe is used.

Place fill around the pipe in accordance with the applicable method shown on the plans in layers not to exceed 6 inches loose unless otherwise permitted. Compact to the density required by Subarticle 235-4(C). Approval of the backfill material is required prior to its use. Use select material as shown in the contract documents.

Take care during backfill and compaction operations to maintain alignment and prevent damage to the joints. Keep backfill free from stones, frozen lumps, chunks of highly plastic clay, or other objectionable material.

Grade and maintain all pipe backfill areas in such a condition that erosion or saturation will not damage the pipe foundation or backfill.

Excavatable flowable fill may be used for backfill when approved by the Engineer. When using excavatable flowable fill, ensure that the pipe is not displaced and does not float during backfill. Submit methods for supporting the pipe and material placement to the Engineer for review and approval.

Do not operate heavy equipment over any pipe until it has been properly backfilled with a minimum 3 feet of cover. Place, maintain, and finally remove the required cover that is above the proposed finished grade at no cost to the Department. Remove and replace, at no cost to the Department, pipe that becomes misaligned, shows excessive settlement, or has been otherwise damaged by the Contractor's operations.

### 300-8 INSPECTION AND MAINTENANCE

Prior to final acceptance, the Engineer will perform random video camera and or mandrel inspections to ensure proper jointing and that deformations do not exceed allowable limits. Replace pipes having cracks greater than 0.1 inches or deflections greater than 7.5 percent. Repair or replace pipes with cracks greater than 0.01 inches, exhibiting displacement across a crack, exhibiting bulges, creases, tears, spalls, or delamination. Maintain all pipe installations in a condition such that they will function continuously from the time the pipe is installed until the project is accepted.

#### 300-9 MEASUREMENT AND PAYMENT

#### General

No measurement will be made of any work covered by this section except as listed below. Removal and disposal of existing pavement is a part of the excavation for the new pipe culvert installation. Repair of the pavement will be made in accordance with Section 654.

### **Foundation Conditioning**

#### **Using Local Material**

Undercut excavation is all excavation removed by undercutting below the bottom of the trench as staked. *Undercut Excavation* will be measured as the actual number of cubic yards of undercut excavation, measured in its original position and computed by the average end area method, that has been removed as called for in the contract and will be paid for at double the contract unit price for *Unclassified Excavation* as provided in Article 225-7.

Local material used for conditioning the foundation will be measured and paid for in accordance with Article 225-7 for *Unclassified Excavation* or in accordance with Article 230-5 for *Borrow Excavation* depending on the source of the material.

Local material used to replace pipe undercut excavation will be measured and paid for in accordance with Article 225-7 or Article 230-5.

### **Using Other Than Local Material**

No measurement and payment will be made for *Undercut Excavation*. The material used to replace pipe undercut excavation will be classified as foundation conditioning material.

Foundation Conditioning Material, Minor Structures will be measured and paid for as the actual number of tons of this material weighed in trucks on certified platform scales or other certified weighing devices.

No direct payment will be paid for undercut excavation. Payment at the contract unit price for *Foundation Conditioning Material*, *Minor Structures* will be full compensation for all work of pipe undercut excavation.

# **Foundation Conditioning Fabric**

Foundation Conditioning Fabric will be measured and paid for in square yards. The measurement will be based on the theoretical calculation using length of pipe installed and two times the standard trench width. No separate measurement will be made for overlapping fabric or the vertical fabric dimensions required to encapsulate the foundation conditioning material.

# **Bedding and Backfill - Select Material**

No measurement will be made for select bedding and backfill material required in the contract documents. The select bedding and backfill material will be included in the cost of the installed pipe.

Where unclassified excavation or borrow material meets the requirements for select bedding and backfill and is approved for use by the Engineer, no deductions will be made to these pay items to account for use in the pipe installation.

Payment will be made under:

Pay Item
Foundation Conditioning Material, Minor Structures
Foundation Conditioning Fabric

Pay Unit
Ton
Square Yard

#### **SECTION 310**

#### PIPE CULVERTS

#### 310-1 DESCRIPTION

Furnish and install drainage pipe at locations and size called for in the contract documents. The work includes construction of joints and connections to other pipes, endwalls, and drainage structures.

#### 310-2 MATERIALS

Refer to Division 10:

| Item                                             | Section   |
|--------------------------------------------------|-----------|
| Plain Concrete Pipe Culvert                      | 1032-9(B) |
| Reinforced Concrete Pipe Culvert                 | 1032-9(C) |
| Precast Concrete Pipe End Sections               | 1032-9(D) |
| Concrete Pipe Tees and Elbows                    | 1032-9(E) |
| Corrugated Aluminum Alloy Pipe Culvert           | 1032-2(A) |
| Corrugated Aluminum Alloy Pipe Tees and Elbows   | 1032-2(B) |
| Corrugated Steel Culvert Pipe and Pipe Arch      | 1032-3(A) |
| Prefabricated Corrugated Steel Pipe End Sections | 1032-3(B) |
| Corrugated Steel Pipe Tees and Elbows            | 1032-3(C) |
| Corrugated Steel Eccentric Reducers              | 1032-3(D) |
| HDPE Smooth Lined Corrugated Plastic Pipe        | 1032-10   |
| Polyvinylchloride (PVC) Pipe                     | 1032-11   |

Suppliers that provide metal pipe culverts, fittings, and all other accessories covered by this section shall meet the requirements of the Department's Brand Certification program for metal pipe culverts, and be listed on the Department's pre-approved list for suppliers of metal pipe culvert.

Do not use corrugated steel pipe in the following counties:

Beaufort, Bertie, Bladen, Brunswick, Camden, Carteret, Chowan, Columbus, Craven, Currituck, Dare, Gates, Hertford, Hyde, Jones, Martin, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrell, and Washington.

### 310-3 PIPE INSTALLATION

Install pipe, pipe tees, and elbows in accordance with Section 300.

#### 310-4 SIDE DRAIN PIPE

Side drain pipe is defined as storm drain pipe running parallel to the roadway to include pipe in medians, outside ditches, driveways, and under shoulder berm gutter along outside shoulders greater than 4 feet wide.

Where shown in the plans, side drain pipe may be Class II Reinforced Concrete Pipe, aluminized corrugated steel pipe, corrugated aluminum alloy pipe, HDPE pipe, or PVC pipe. Corrugated steel pipe is restricted in the counties listed in Article 310-2. Install side drain pipe in accordance to Section 300. Cover for side drain pipe shall be at least one foot.

#### 310-5 PIPE END SECTIONS

Choose which material to use for the required end sections. Both corrugated steel and concrete pipe end sections will work on concrete pipe, corrugated steel pipe, and HDPE smooth lined corrugated plastic pipe.

#### 310-6 MEASUREMENT AND PAYMENT

Pipe will be measured and paid as the actual number of linear feet of pipe that has been incorporated into the completed and accepted work. Measurement of pipe will be made by counting the number of joints used and multiplying by the length of the joint to obtain the number of linear feet of pipe installed and accepted. Measurements of partial joints will be made along the longest length of the partial joint to the nearest 0.1 foot. Select bedding and backfill material will be included in the cost of the installed pipe.

Pipe End Sections, Tees, Elbows, and Eccentric Reducers will be measured and paid as the actual number of each of these items that have been incorporated into the completed and accepted work.

Pay Unit

SP4 R01

Payment will be made under:

| i ay item                                  | I ay Unit   |
|--------------------------------------------|-------------|
| " R.C. Pipe Culverts, Class                | Linear Foot |
| " x" x" R.C. Pipe Tees, Class              | Each        |
| " R.C. Pipe Elbows, Class                  | Each        |
| " C.A.A. Pipe Culvert," Thick              | Linear Foot |
| " x" x" C.A.A. Pipe Tees," Thick           | Each        |
| " C.A.A. Pipe Elbows," Thick               | Each        |
| " C.S. Pipe Culverts, " Thick              | Linear Foot |
| " x _ " C.S. Pipe Arch Culverts, _ " Thick | Linear Foot |
| x" x" C.S. Pipe Tees," Thick               | Each        |
| " C.S. Pipe Elbows," Thick                 | Each        |
| " x" C.S. Eccentric Reducers," Thick       | Each        |
| " HDPE Pipe                                | Linear Foot |
| " PVC Pipe                                 | Linear Foot |
| "Side Drain Pipe                           | Linear Foot |
| " Side Drain Pipe Elbows                   | Each        |
| Pipe End Section                           | Each        |
|                                            |             |

### **Description**

(10-19-10)

**BRIDGE APPROACH FILLS:** 

Pay Item

Construct bridge approach fills in accordance with the contract. Bridge approach fills include bridge approach fills for sub regional tier bridges and reinforced bridge approach fills. Geotextiles include engineering fabrics and geomembranes.

#### **Materials**

Refer to Division 10 of the Standard Specifications:

| Item                              | Section |
|-----------------------------------|---------|
| Portland Cement Concrete, Class B | 1000    |
| Select Material                   | 1016    |
| Subsurface Drainage Materials     | 1044    |
| Engineering Fabrics               | 1056    |

Use Class III or V Select Material for reinforced approach fills and only Class V Select Material (standard size no. 78M stone) for bridge approach fills for sub regional tier bridges. Provide polyvinyl chloride (PVC) plastic drainage pipes, fittings and outlet pipes for subsurface drainage materials for all bridge approach fills. For bridge approach fills for sub regional tier bridges, use Type 1 Engineering Fabric for filter fabric to encase no. 78M stone. For reinforced bridge approach fills, use Type 5 Engineering Fabric for woven fabrics and Type 2 Engineering Fabric and no. 78M stone for drains.

Load, transport, unload and store geomembranes such that they are kept clean and free of damage. Geomembranes with defects, flaws, deterioration or damage will be rejected. Do not unwrap geomembranes until just before installation and do not leave geomembranes exposed for more than 7 days before covering geomembranes with woven fabrics.

Use either polyvinyl chloride (PVC), high density polyethylene (HDPE) or linear low density polyethylene (LLDPE) geomembranes. For PVC geomembranes, provide grade PVC30 geomembranes meeting the requirements of ASTM D7176. For HDPE and LLDPE geomembranes, use geomembranes with a nominal thickness of 30 mils meeting the requirements of Geosynthetic Research Institute Standard Specifications GM13 or GM17, respectively.

### **Construction Methods**

Excavate as necessary for bridge approach fills in accordance with the contract. Notify the Engineer when foundation excavation is complete. Do not place geomembranes or filter fabrics until obtaining approval of the excavation depth and foundation material.

Attach geomembranes or filter fabrics to back of end bent caps and wing walls with adhesives, tapes or other approved methods. Use wire staples as needed to hold filter fabrics in place until covered. Overlap adjacent fabrics a minimum of 18" such that overlaps are parallel to the roadway centerline. Glue or weld geomembrane seams to prevent leakage. Contact the Engineer when existing or future structures such as foundations, pavements, pipes, inlets or utilities will interfere with geotextiles.

For reinforced bridge approach fills, place woven fabrics within 2" of locations shown on the plans and in slight tension free of kinks, folds, wrinkles or creases. Place first layer of woven fabric directly on geomembranes with no void or material in between. Install woven fabrics with

the machine direction (MD) parallel to the roadway centerline. The MD is the direction of the length or long dimension of the roll. Do not splice or overlap woven fabrics in the MD such that splices or overlaps are perpendicular to the roadway centerline. Install woven fabrics with the orientation, dimensions and number of layers shown on the plans. Wrap woven fabrics as shown on the plans or as directed by the Engineer.

For reinforced bridge approach fills, construct 1 ft by 1 ft drains consisting of 4" diameter perforated PVC pipes surrounded by no. 78M stone wrapped in type 2 fabric. For bridge approach fills for sub regional tier bridges, install 4" diameter perforated PVC drainage pipes as shown on the plans.

Firmly connect PVC pipes together as needed. Connect perforated pipes to outlet pipes near the back faces of wing walls. Provide drains with positive drainage towards outlets. Place pipe sleeves in or under wing walls for outlet pipes such that positive drainage is maintained. Use sleeves of sufficient strength to withstand wing wall loads.

Place select material in 8 to 10 inch thick lifts. Compact Class III Select Material in accordance with Subarticle 235-4(C) of the *Standard Specifications*. Do not displace or damage fabrics or drains when placing and compacting select material. End dumping directly on fabrics and drains is not permitted. Do not operate heavy equipment on woven fabrics or drains until they are covered with at least 8" of select material. Replace any damaged fabrics and drains to the satisfaction of the Engineer.

Use only hand operated compaction equipment for bridge approach fills for sub regional tier bridges and within 3 ft of end bent cap back or wing walls for reinforced bridge approach fills. At a distance greater than 3 ft for reinforced bridge approach fills, compact select material with at least 4 passes of an 8-10 ton vibratory roller. Smooth wheeled or rubber tired rollers are also acceptable for compacting select material. Do not use sheepsfoot, grid rollers or other types of compaction equipment with feet.

Use solvent cement for connecting outlet pipes and fittings such as wyes, tees and elbows. Provide connectors for outlet pipes and fittings that are watertight and suitable for gravity flow conditions. Cover open ends of outlet pipes with rodent screens as shown on the plans.

Connect drains to concrete pads or existing drainage structures at ends of outlet pipes as directed by the Engineer. Construct concrete pads and provide an Ordinary Surface Finish in accordance with Subarticle 825-6(B) of the *Standard Specifications*.

# **Measurement and Payment**

Reinforced Bridge Approach Fill, Station \_\_\_\_\_ will be paid at the contract lump sum price. Such price and payment will be full compensation for all reinforced bridge approach fills at each bridge for excavating and furnishing, transporting and placing geotextiles, select material, drains, pipe sleeves and concrete pads, compacting select material, connecting pipes to existing drainage structures and providing any labor, tools, equipment and materials to complete the work.

Bridge Approach Fill – Sub Regional Tier, Station \_\_\_\_\_ will be paid at the contract lump sum price. Such price and payment will be full compensation for all bridge approach fills at each sub regional tier bridge for excavating and furnishing, transporting and placing filter fabrics, no. 78M stone, drainage pipes, pipe sleeves and concrete pads, compacting no. 78M stone, connecting pipes to existing drainage structures and providing any labor, tools, equipment and materials to complete the work.

Payment will be made under:

| Pay Item                                          | Pay Unit |
|---------------------------------------------------|----------|
| Reinforced Bridge Approach Fill, Station          | Lump Sum |
| Bridge Approach Fill – Sub Regional Tier, Station | Lump Sum |

# FINE GRADING SUBGRADE, SHOULDERS AND DITCHES:

(7-21-09

SP5 R01

Revise the *Standard Specifications* as follows:

# Page 5-1, Article 500-1 DESCRIPTION, replace the first sentence with the following:

Perform the work covered by this section including but not limited to preparing, grading, shaping, manipulating moisture content, and compacting either an unstabilized or stabilized roadbed to a condition suitable for placement of base course, pavement, and shoulders.

# **AGGREGATE BASE COURSE:**

(12-19-06)

SP5 R03

Revise the 2006 Standard Specifications as follows:

Page 5-11, Article 520-5 Hauling and Placing Aggregate Base Material, 6th paragraph, replace the first sentence with the following:

Base course that is in place on November 15 shall have been covered with a subsequent layer of pavement structure or with a sand seal. Base course that has been placed between November 16 and March 15 inclusive shall be covered within 7 calendar days with a subsequent layer of pavement structure or with a sand seal.

#### **ASPHALT PAVEMENTS - SUPERPAVE:**

(7-18-06)(Rev 3-15-11)

SP6 R01

Revise the 2006 Standard Specifications as follows:

# Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph.

Page 6-12, Subarticle 609-5(C)(2), Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and replace with the following:

If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

# Page 6-12, Subarticle 609-5(C)(2), Quality Control Minimum Sampling and Testing Schedule, first paragraph, delete and replace with the following:

Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production:

### Second paragraph, delete the fourth sentence and replace with the following:

When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below.

# Page 6-12, Subarticle 609-5(C)(2)(c) Maximum Specific Gravity, add after (AASHTO T 209):

or ASTM D 2041

# Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows:

(i) Option 1

# Insert the following immediately after the first paragraph:

# (ii) Option 2

Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design.

#### Second paragraph, delete and replace with the following:

Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken.

# Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following:

For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained.

# Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following:

Denote the moving average control limits with a dash green line and the individual test limits with a dash red line.

### Page 6-15, Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following:

- (a) A change in the binder percentage, aggregate blend, or G<sub>mm</sub> is made on the JMF, or,
- (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in Subarticle 609-5(C)(6) or,
- (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, re-establish a new moving average beginning at the actual production stop point.

# Page 6-15, Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following:

The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source.

| Target Source    | Moving Average                                        |                                                                                                                  |
|------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Turget Source    | Limit                                                 | Individual Limit                                                                                                 |
| JMF              | ±4.0 %                                                | ±8.0 %                                                                                                           |
| JMF              | ±1.5 %                                                | ±2.5 %                                                                                                           |
| JMF              | ±0.3 %                                                | ±0.7 %                                                                                                           |
| JMF              | ±1.0 %                                                | ±2.0 %                                                                                                           |
| Min. Spec. Limit | Min Spec. Limit                                       | -1.0%                                                                                                            |
| 1.0              | ±0.4                                                  | ±0.8                                                                                                             |
| Max. Spec. Limit | N/A                                                   | +2.0%                                                                                                            |
| Min. Spec. Limit | N/A                                                   | - 15%                                                                                                            |
|                  | JMF JMF JMF JMF Min. Spec. Limit 1.0 Max. Spec. Limit | JMF ±4.0 %  JMF ±1.5 %  JMF ±0.3 %  JMF ±1.0 %  Min. Spec. Limit Min Spec. Limit  1.0 ±0.4  Max. Spec. Limit N/A |

Page 6-16, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety.

Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and replace with the words "moving average".

Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following:

Immediately notify the Engineer when moving averages exceed the moving average limits.

# Page 6-17, Subarticle 609-5(C)(6) Corrective Actions, delete the third full paragraph and replace with the following:

Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable.

# Sixth full paragraph, delete the first, second, and third sentence and replace with the following:

Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits.

# Page 6-18, Subarticle 609-5(C)(6) Corrective Actions, second full paragraph, delete and replace with the following:

If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment.

# Page 6-18, Subarticle 609-5(C)(6) Corrective Actions, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following:

If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work.

# Page 6-19, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, delete and replace with the following:

Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts.

# Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following:

Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

# Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence:

Determine the Daily Standard Count in the presence of the QA Roadway Technician or QA Nuclear Gauge Technician on days when a control strip is being placed.

# Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following:

Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below).

- (a) Two consecutive failing lots, except on resurfacing\*
- (b) Three consecutive failing lots on resurfacing\*
- (c) Two consecutive failing nuclear control strips.

# Page 6-25, Article 609-6 QUALITY ASSURANCE, DENSITY QUALITY ASSURANCE, insert the following items after item (E):

- (F) By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor;
- (G) By observing the Contractor perform all standard counts of the Quality Control nuclear gauge prior to usage each nuclear density testing day; or
- (H) By any combination of the above.

# Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following:

Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements.

Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing

<sup>\*</sup> Resurfacing is defined as the first new uniform layer placed on an existing pavement.

reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type.

For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type.

When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Article 1012-1.

When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Subarticle 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used.

Page 6-34, Subarticle 610-3(C) Job Mix Formula, delete Table 610-2 and associated notes and replace with the following:

TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA

| Mix<br>Type | Design<br>ESALs<br>Millions | Binder<br>PG<br>Grade | Leve<br>Gyra | eaction<br>ls No.<br>etions | Max.<br>Rut<br>Depth<br>(mm) |                  | Volumetric | Properties         | (c)                                    |
|-------------|-----------------------------|-----------------------|--------------|-----------------------------|------------------------------|------------------|------------|--------------------|----------------------------------------|
|             | (a)                         | (b)                   | $N_{ini}$    | $N_{des}$                   |                              | VMA<br>%<br>Min. | VTM<br>%   | VFA<br>Min<br>Max. | %G <sub>mm</sub><br>@ N <sub>ini</sub> |
| S-4.75A(e)  | < 0.3                       | 64 -22                | 6            | 50                          |                              | 20.0             | 7.0 - 15.0 |                    |                                        |
| SF-9.5A     | < 0.3                       | 64 -22                | 6            | 50                          | 11.5                         | 16.0             | 3.0 - 5.0  | 70 - 80            | ≤91.5                                  |
| S-9.5B      | 0.3 - 3                     | 64 -22                | 7            | 65                          | 9.5                          | 15.5             | 3.0 - 5.0  | 65 - 80            | ≤ 90.5                                 |
| S-9.5C      | 3 - 30                      | 70 -22                | 7            | 75                          | 6.5                          | 15.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.5                                 |
| S-9.5D      | > 30                        | 76 -22                | 8            | 100                         | 4.5                          | 15.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.0                                 |
| S-12.5C     | 3 - 30                      | 70 -22                | 7            | 75                          | 6.5                          | 14.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.5                                 |
| S-12.5D     | > 30                        | 76 -22                | 8            | 100                         | 4.5                          | 14.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.0                                 |
| I-19.0B     | < 3                         | 64 -22                | 7            | 65                          |                              | 13.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.5                                 |
| I-19.0C     | 3 - 30                      | 64 -22                | 7            | 75                          |                              | 13.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.0                                 |
| I-19.0D     | > 30                        | 70 -22                | 8            | 100                         |                              | 13.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.0                                 |
| B-25.0B     | < 3                         | 64 -22                | 7            | 65                          |                              | 12.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.5                                 |
| B-25.0C     | > 3                         | 64 -22                | 7            | 75                          |                              | 12.5             | 3.0 - 5.0  | 65 - 78            | ≤ 90.0                                 |
|             | Design Pa                   | rameter               |              |                             | ***                          |                  | Design     | Criteria           |                                        |

|         | Design Parameter                                                | Design Criteria |
|---------|-----------------------------------------------------------------|-----------------|
| All Mix | 1. Dust to Binder Ratio (P <sub>0.075</sub> / P <sub>be</sub> ) | 0.6 – 1.4       |
| Types   | 2. Retained Tensile Strength (TSR)                              | 85% Min. (d)    |
| 1 ypes  | (AASHTO T283 Modified)                                          |                 |

Notes:

- (a) Based on 20 year design traffic.
- (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A). Payment for Binder Grade for recycled mixes shall be based solely on the grade for the specified mix type as shown in the above table.
- (c) Volumetric Properties based on specimens compacted to N<sub>des</sub> as modified by the Department.
- (d) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0B, and Type B 25.0C mixes is 80% minimum.
- (e) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer.

# Page 6-34, Insert the following immediately after Table 610-2:

### **TABLE 610-2A** SUPERPAVE MIX DESIGN CRITERIA

| COLEMAN E MIX DESIGN CARTEMA            |                          |                                |              |  |
|-----------------------------------------|--------------------------|--------------------------------|--------------|--|
|                                         | Percentage of RAP in Mix |                                |              |  |
|                                         | Category 1               | Category 2                     | Category 3   |  |
| Mix Type                                | % RAP ≤20%               | $20.1\% \le \% RAP \le 30.0\%$ | %RAP > 30.0% |  |
| All A and B Level Mixes, 119.0C, B25.0C | PG 64 -22                | PG 64 -22                      | TBD          |  |
| S9.5C, S12.5C, I19.0D                   | PG 70 -22                | PG 64-22                       | TBD          |  |
| S 9.5D and S12.5D                       | PG 76-22                 | N/A                            | N/A          |  |

- Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches.
  - (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations.
  - (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles
  - (4) Payment for binder grade shall be based solely on Table 610-2.

# Page 6-35, Table 610-3 delete and replace with the following:

**TABLE 610-3** ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS

| Asphalt Concrete Mix Type           | Minimum Air<br>Temperature | Minimum Surface<br>Temperature |
|-------------------------------------|----------------------------|--------------------------------|
| ACBC, Type B 25.0B, C, B 37.5C      | 35°F                       | 35°F                           |
| ACIC, Type I 19.0B, C, D            | 35°F                       | 35°F                           |
| ACSC, Type S 4.75A, SF 9.5A, S 9.5B | 40°F                       | 50°F*                          |
| ACSC, Type S 9.5C, S 12.5C          | 45°F                       | 50°F                           |
| ACSC, Type S 9.5D, S 12.5D          | 50°F                       | 50°F                           |

<sup>\* 35°</sup>F if surface is soil or aggregate base for secondary road construction.

# Page 6-45, Article 610-8 SPREADING AND FINISHING delete the third paragraph on page 6-45 and replace with the following:

Use a Material Transfer Vehicle (MTV) when placing all asphalt concrete plant mix pavements which require the use of asphalt binder grade PG 76-22 and for all types of OGAFC, unless otherwise approved. Use a MTV for all surface mix regardless of binder grade placed on Interstate facilities. Where required above, utilize the MTV when placing all full width travel lanes, collector lanes, ramps, and loops.

# Page 6-44, Article 610-8 SPREADING AND FINISHING, third full paragraph, replace the first sentence with the following:

Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved.

# Page 6-50, Article 610-13 DENSITY ACCEPTANCE, delete the second paragraph and replace with the following:

As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category.

# Page 6-50, Article 610-13 DENSITY ACCEPTANCE, delete the formula and description in the middle of the page and replace with the following:

 $PF = 100 - 10(D)^{1.465}$ 

Where: PF = Pay Factor (computed to 0.1%)

D = the deficiency of the lot average density,

not to exceed 2.0%

# Page 6-51, Article 610-15 MEASUREMENT AND PAYMENT, fourth paragraph, delete and replace with the following:

Furnishing asphalt binder will be paid for as provided in Article 620-4.

### Page 6-53, Article 620-4 MEASUREMENT AND PAYMENT, modify as follows:

### Second paragraph, delete the first sentence and replace with the following:

Where recycled plant mix is being produced, the grade of asphalt binder shall be paid for based on the grade for the specified mix type as shown in Table 610-2.

Sixth paragraph, delete the last sentence.

### Seventh paragraph, delete the paragraph and replace with the following:

The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula.

#### Add the following pay item:

Pay Item
Asphalt Binder for Plant Mix, Grade PG 70-28

Pay Unit

Ton

Page 6-59, Article 650-5 CONSTRUCTION REQUIREMENTS delete the second paragraph from the bottom of the page beginning "Use a Material Transfer Vehicle (MTV)..." and replace with the following:

Use a Material Transfer Vehicle (MTV) when placing all asphalt concrete plant mix pavements which require the use of asphalt binder grade PG 76-22 and for all types of OGAFC, unless otherwise approved. Use a MTV for all surface mix regardless of binder grade placed on Interstate facilities. Where required above, utilize the MTV when placing all full width travel lanes, collector lanes, ramps, and loops.

Page 6-69, TABLE 660-1 MATERIAL APPLICATION RATES AND TEMPERATURES, add the following:

| Type of<br>Coat | Grade of<br>Asphalt | Asphalt<br>Rate<br>gal/yd² | Application<br>Temperature<br>°F | Aggregate<br>Size | Aggregate<br>Rate lb./sq.<br>yd. Total |
|-----------------|---------------------|----------------------------|----------------------------------|-------------------|----------------------------------------|
| Sand Seal       | CRS-2 or<br>CRS-2P  | 0.22-0.30                  | 150-175                          | Blotting<br>Sand  | 12-15                                  |

Page 6-75, Subarticle 660-9(B) Asphalt Seal Coat, add the following as sub-item (5)

#### (5) Sand Seal

Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling.

Immediately after the aggregate has been uniformly spread, perform rolling.

When directed, broom excess aggregate material from the surface of the seal coat.

When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved.

### Page 6-76, Article 661-1 DESCRIPTION, add the following as the 2nd paragraph:

Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version), included in the contract.

Page 6-76, Article 661-2 MATERIALS, add the following after Asphalt Binder, Grade 70-28:

| Item                        | Section |
|-----------------------------|---------|
| Asphalt Binder, Grade 76-22 | 1020    |
| Reclaimed Asphalt Shingles  | 1012    |

# Page 6-78, Subarticle 661-2(E), Asphalt Binder For Plant Mix, Grade PG 70-28, rename as ASPHALT BINDER FOR PLANT MIX and add the following as the first paragraph:

Use either PG 70-28 or PG 76-22 binder in the mix design. Where PG 76-22 is being used in the production of Ultra-thin, the grade of asphalt binder to be paid for will be PG 70-28, unless otherwise approved.

# Page 6-79, Subarticle 661-2(G) Composition of Mix, add the following as the third sentence of the first paragraph.

The percent of asphalt binder contributed from the RAS shall not exceed 20% of the total binder in the completed mix.

Page 6-80, Article 661-2(G) Composition of Mix, replace Table 661-4 and associated notes with the following:

|                                     |                                        |                 | ESIGN CRITERIA  Passing by Weight) |                                                                        |
|-------------------------------------|----------------------------------------|-----------------|------------------------------------|------------------------------------------------------------------------|
| Standard                            | l Sieves                               | 1/2 in. Type A  | 3/8 in. Type B                     | 1/4 in. Type C                                                         |
| ASTM                                | mm                                     |                 | (% Passing by Weig                 | ······································                                 |
| ¾ inch                              | 19.0                                   | 100             |                                    |                                                                        |
| ½ ınch                              | 12.5                                   | <b>85</b> - 100 | 100                                |                                                                        |
| 3/8 inch                            | 9.5                                    | 60 - 80         | 85 - 100                           | 100                                                                    |
| #4                                  | 4.75                                   | 28 - 38         | 28 – 44                            | 40 - 55                                                                |
| #8                                  | 2.36                                   | 19 - 32         | 17 – 34                            | 22 - 32                                                                |
| #16                                 | 1.18                                   | 15 - 23         | 13 - 23                            | 15 - 25                                                                |
| #30                                 | 0.600                                  | 10 - 18         | 8 - 18                             | 10 - 18                                                                |
| #50                                 | 0.300                                  | 8 - 13          | 6 - 13                             | 8 - 13                                                                 |
| #100                                | 0.150                                  | 6 - 10          | 4 - 10                             | 6 - 10                                                                 |
| #200                                | 0.075                                  | 4.0 - 7.0       | 3.0 - 7.0                          | 4.0 - 7.0                                                              |
|                                     |                                        | Mix Design Cri  | teria                              | an Amarina (1984). A company de la |
|                                     |                                        | 1/2 in. Type A  | 3/8 in. Type B                     | 1/4 in. Type C                                                         |
| Asphalt Content, %                  | 6                                      | 4.6 - 5.6       | 4.6 - 5.8                          | 5.0 - 5.8                                                              |
| Draindown Test,<br>AASHTO T 305     |                                        |                 | 0.1% max.                          |                                                                        |
| Moisture Sensitivi<br>AASHTO T 283* | ty,                                    |                 | 80% min.                           |                                                                        |
| Application Rate,                   | lb/ yd²                                | 90              | 70                                 | 50                                                                     |
| Approximate Appl                    | ************************************** | 3/4             | 5/8                                | 1/2                                                                    |
| Asphalt PG Grade                    |                                        | PG 70-28 or     | PG 70-28 or                        | PG 70-28 or                                                            |
| AASHTO M 320                        |                                        | PG 76-22        | PG 76-22                           | PG 76-22                                                               |

NOTE: \*Specimens for T-283 testing are to be compacted using the SUPERPAVE gyratory compactor. The mixtures shall be compacted using 100 gyrations to achieve specimens approximately 95 mm in height. Use mixture and compaction temperatures recommended by the binder supplier.

# Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph:

Use asphalt mixing plants in accordance with Article 610-5 of the Standard Specifications.

# Page 6-82, Subarticle 661-3(C), Application of Ultra-thin Bonded Wearing Course, delete the first paragraph and add the following as the first and second paragraphs.

Use only one asphalt binder PG grade for the entire project, unless the Engineer gives written approval.

Do not place Ultra-thin Bonded Wearing Course between October 31 and April 1, when the pavement surface temperature is less than 50°F or on a wet pavement. In addition, when PG 76-22 binder is used in the JMF, place the wearing course only when the road pavement surface temperature is 60°F or higher and the air temperature in the shade away from artificial heat is 60°F or higher.

# Page 10-40, Subarticle 1012-1(A) General, add the following at the end of the last paragraph, last sentence:

or ultra-thin bonded wearing course.

Page 10-41, Table 1012-1, delete the entries for OGAFC and add new entries for OGAFC and a row for UBWC with entries:

| Mix Type | Coarse<br>Aggregate<br>Angularity <sup>(b)</sup><br>ASTM D5821 | Fine Aggregate<br>Angularity % Minimum<br>AASHTO T304 Method A | Sand Equivalent<br>% Minimum<br>AASHTO T176 | % Maximum |  |
|----------|----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------|-----------|--|
| S 9.5 D  | 100/100                                                        | 45                                                             | 50                                          | 10        |  |
| OGAFC    | 100/100                                                        | N/A                                                            | N/A                                         | 10        |  |
| UBWC     | 100/85                                                         | 40                                                             | 45                                          | 10        |  |

### Delete Note (c) under the Table 1012-1 and replace with the following:

(c) Does not apply to Mix Types SF 9.5A and S 9.5B.

# Page 10-42, Subarticle 1012-1(B)(6) Toughness (Resistance to Abrasion), add as the last sentence:

The percentage loss for aggregate used in UBWC shall be no more than 35%.

# Page 10-43, Subarticle 1012-1(F) Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph:

# (1) Mix Design RAS

Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design.

# (2) Mix Production RAS

New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit.

After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile.

Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed.

Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

NEW SOURCE RAS GRADATION and BINDER TOLERANCES
(Apply Tolerances to Mix Design Data)

| 0-6% RAS         |           |  |  |  |  |
|------------------|-----------|--|--|--|--|
| P <sub>b</sub> % |           |  |  |  |  |
| Sieve Size (mm)  | Tolerance |  |  |  |  |
| 9.5              | ±1        |  |  |  |  |
| 4.75             | ±5        |  |  |  |  |
| 2.36             | ±4        |  |  |  |  |
| 1.18             | ±4        |  |  |  |  |
| 0.300            | ±4        |  |  |  |  |
| 0.150            | ±4        |  |  |  |  |
| 0.075            | ±2.0      |  |  |  |  |
|                  |           |  |  |  |  |

Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following:

### (G) Reclaimed Asphalt Pavement (RAP)

# (1) Mix Design RAP

Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications.

# (a) Millings

Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit.

#### (b) Processed RAP

RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit.

### (c) Fractionated RAP

Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used.

# (d) Approved Stockpiled RAP

Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Subarticle 1012-1(G)(1)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used.

Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials.

Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request:

- (1) Approximate tons of materials in stockpile
- (2) Name or Identification number for the stockpile
- (3) Asphalt binder content and gradation test results
- (4) Asphalt characteristics of the Stockpile.

For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the target, will be accepted if within the tolerances listed below:

APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES
(Apply Tolerances to Mix Design Data)

|                  | inces to Mix Design Data) |
|------------------|---------------------------|
| P <sub>b</sub> % | ±0.3%                     |
| Sieve Size (mm)  | Percent Passing           |
| 25.0             | ±5%                       |
| 19.0             | ±5%                       |
| 12.5             | ±5%                       |
| 9.5              | ±5%                       |
| 4.75             | ±5%                       |
| 2.36             | ±4%                       |
| 1.18             | ±4%                       |
| 0.300            | ±4%                       |
| 0.150            | ±4%                       |
| 0.075            | ±1.5%                     |
|                  |                           |

Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile.

Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer.

Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics).

# (2) Mix Production RAP

During mix production, use RAP that meets the criteria for one of the following categories:

# (a) Mix Design RAP

RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2).

### (b) New Source RAP

New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that

all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit.

After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile.

Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above.

Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

| TABLE 1012-2  NEW SOURCE RAP GRADATION and BINDER TOLERANCES  (Apply Tolerances to Mix Design Data) |      |        |       |                           |        |                       |      |        |       |
|-----------------------------------------------------------------------------------------------------|------|--------|-------|---------------------------|--------|-----------------------|------|--------|-------|
| Mix<br>Type                                                                                         |      |        | 20    | 20 <sup>+</sup> -30 % RAP |        | 30 <sup>+</sup> % RAP |      |        |       |
| Sieve<br>(mm)                                                                                       | Base | Inter. | Surf. | Base                      | Inter. | Surf.                 | Base | Inter. | Surf. |
| P <sub>b</sub> %                                                                                    |      | ± 0.7% |       | ð                         | ± 0.4% |                       | •    | ± 0.3% |       |
| 25.0                                                                                                | ±10  | -      | -     | ±7                        | -      | -                     | ±5   | -      | -     |
| 19.0                                                                                                | ±10  | ±10    | -     | ±7                        | ±7     | -                     | ±5   | ±5     | -     |
| 12.5                                                                                                | -    | ±10    | ±10   | -                         | ±7     | ±7                    | -    | ±5     | ±5    |
| 9.5                                                                                                 | -    | -      | ±10   | -                         | -      | ±7                    | -    | -      | ±5    |
| 4.75                                                                                                | ±10  | -      | ±10   | ±7                        | -      | ±7                    | ±5   | -      | ±5    |
| 2.36                                                                                                | ±8   | ±8     | ±8    | ±5                        | ±5     | ±5                    | ±4   | ±4     | ±4    |
| 1.18                                                                                                | ±8   | ±8     | ±8    | ±5                        | ±5     | ±5                    | ±4   | ±4     | ±4    |
| 0.300                                                                                               | ±8   | ±8     | ±8    | ±5                        | ±5     | ±5                    | ±4   | ±4     | ±4    |
| 0.150                                                                                               | _    | -      | ±8    | -                         | -      | ±5                    | -    | -      | ±4    |
| 0.075                                                                                               | ±4   | ±4     | ±4    | ±2                        | ±2     | ±2                    | ±1.5 | ±1.5   | ±1.5  |

# <u>ASPHALT PAVEMENTS - WARM MIX ASPHALT SUPERPAVE</u>: (5-19-09) (Rev 2-15-11)

SP6 R02A

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed.

Notify the Engineer at least 2 weeks before producing the WMA so the Engineer can arrange a pre-pave meeting. Discuss special testing requirements necessary for WMA at the pre-pave meeting. Include at the pre-pave meeting the Contractor's QC manager, Paving Superintendent, and manufacturer's representative for the WMA technology, the Department's Roadway Construction Engineer, Resident Engineer, State Pavement Construction Engineer, and Quality Assurance Supervisor.

Require a manufacturer's representative for the WMA technology used to be present on site at the plant during the initial production and on the roadway during the laydown of the warm mix asphalt.

The requirement for the manufacturer's representative to be present at the pre-pave meeting and on-site at the plant may be waived by the Engineer based on previous work experience with the specific WMA technology used.

If the use of WMA is suspended during production, and the Contractor begins using Hot Mix Asphalt (HMA), then the Contractor shall be required to use HMA for the remainder of the specific route or map unless otherwise approved by the Engineer.

Revise the 2006 Standard Specifications as follows:

# Page 6-8, Article 609-1 Description, insert the following as the second paragraph:

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option when shown in the contract.

# Page 6-9, Article 609-4 Field Verification of Mixture and Job Mix Formula Adjustments, second paragraph, insert the following immediately after the first sentence:

When producing a WMA, perform field verification testing including Tensile Strength Ratio (TSR) testing in accordance with AASHTO T 283 as modified by the Department.

### Third paragraph, delete the third sentence and replace with the following:

Verification is satisfactory for HMA when all volumetric properties except  $G_{mm}@N_{ini}$  are within the applicable mix design criteria and the gradation, binder content, and  $G_{mm}@N_{ini}$  are within the individual limits for the mix type being produced. Verification is satisfactory for WMA when all volumetric properties except  $G_{mm}@N_{ini}$  are within the applicable mix design criteria, the TSR meets the design criteria, and the gradation, binder content, and  $G_{mm}@N_{ini}$  are within the individual limits for the mix type being produced.

# Page 6-12, Subarticle 609-5(C)(2)(d) Bulk Specific Gravity of Compacted Specimens, add after (AASHTO T 312):

When producing WMA, gyrate specimens to specified N<sub>des</sub> compaction effort without reheating mix other than to desired compaction temperature. Record time needed to reheat samples (if any).

# Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio, insert the following immediately after the third paragraph:

When producing WMA, perform TSR testing:

- (i.) Prior to initial production for each JMF and
- (ii.) Every 15,000 tons.

After three (3) consecutive passing TSR tests for a specific JMF, a request may be submitted to the State Asphalt Design Engineer to revert to the *Hot-Mix Asphalt QMS Manual* procedures for TSR testing on that JMF. This request shall be submitted in writing and shall include all test result data (Material and Tests Unit Form 612s) performed on the specific JMF.

# Page 6-27, Article 610-1 Description, insert the following as the third paragraph:

Warm Mix Asphalt (WMA) is defined as additives or processes that allow a reduction in the temperature at which asphalt mixtures are produced and placed. Use WMA at the Contractor's option when shown in the contract.

### Page 6-27, Article 610-2 Materials, insert the following at the end of this Article:

Use only WMA technologies on the allowable routes listed on the Department's approved list maintained by the Materials and Tests Unit. The Department's approved list can be found at the following website: http://www.ncdot.org/doh/operations/materials/pdf/wma.pdf.

# Page 6-31, Subarticle 610-3(B) Mix Design-Criteria, add the following as the fifth paragraph:

When WMA is used, submit the mix design without including the WMA additive.

# Page 6-32, Subarticle 610-3(C) Job Mix Formula, add the following as the second paragraph:

When WMA is used, document the technology used, the recommended dosage rate, and the requested plant mix temperature on the JMF submittal. Verify the JMF based on plant produced mixture from the field verification test.

# Immediately following PG 76-22 335°F, add the following paragraph:

When WMA is used, produce an asphalt mixture within the temperature range of 225°F to 275°F.

# **ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:**

(11-21-00) (Rev 7-19-11)

SP6 R15

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

| Asphalt Concrete Base Course         | Type B 25.0  | 4.4% |
|--------------------------------------|--------------|------|
| Asphalt Concrete Intermediate Course | Type I 19.0  | 4.8% |
| Asphalt Concrete Surface Course      | Type S 4.75A | 6.8% |
| Asphalt Concrete Surface Course      | Type SF 9.5A | 6.7% |
| Asphalt Concrete Surface Course      | Type S 9.5   | 6.0% |
| Asphalt Concrete Surface Course      | Type S 12.5  | 5.5% |

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications.

## **ASPHALT PLANT MIXTURES:**

(7-1-95)

Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer.

## PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX: (11-21-00)

SP6 R25

**SP6 R20** 

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications.

The base price index for asphalt binder for plant mix is \$621.33 per ton.

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on **June 1, 2011**.

## **MASONRY DRAINAGE STRUCTURES:**

(10-16-07)

SP8 R01

Revise the 2006 Standard Specifications as follows:

Page 8-31, Article 840-4 Measurement and Payment, add the following at the end of the second paragraph:

For that portion of *Masonry Drainage Structure* measured above a height of 10.0 feet, payment will be made at 1.3 times the contract unit price per linear foot for *Masonry Drainage Structure*.

## BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES:

(12-18-07) (4-15-08) SP8 R02

Revise the 2006 Standard Specifications as follows:

#### **Division 2 Earthwork**

Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence.

## Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following:

Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places.

#### **Division 8 Incidentals**

## Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph:

Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site.

## Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence:

The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project.

## **GUARDRAIL ANCHOR UNITS, TYPE 350:**

 $\overline{(4-20-04)}$ 

SP8 R65

#### **Description**

Furnish and install guardrail anchor units in accordance with the details in the plans, the applicable requirements of Section 862 of the 2006 Standard Specifications, and at locations shown in the plans.

#### **Materials**

The Contractor may at his option, furnish any one of the guardrail anchor units.

Guardrail anchor unit (ET-2000) as manufactured by:

Trinity Industries, Inc. 2525 N. Stemmons Freeway Dallas, Texas 75207 Telephone: 800-644-7976

The guardrail anchor unit (SKT 350) as manufactured by:

Road Systems, Inc. 3616 Old Howard County Airport Big Spring, Texas 79720 Telephone: 915-263-2435 Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each guardrail anchor unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Section 106-2 of the 2006 Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each guardrail anchor unit in accordance with Section 105-2 of the 2006 Standard Specifications.

No modifications shall be made to the guardrail anchor unit without the express written permission from the manufacturer. Perform installation in accordance with the details in the plans, and details and assembling instructions furnished by the manufacturer.

#### **Construction Methods**

Guardrail end delineation is required on all approach and trailing end sections for both temporary and permanent installations. Guardrail end delineation consists of yellow reflective sheeting applied to the entire end section of the guardrail in accordance with Section 1088-3 of the 2006 Standard Specifications and is incidental to the cost of the guardrail anchor unit.

## **Measurement and Payment**

Measurement and payment will be made in accordance with Articles 862-6 of the 2006 Standard Specifications.

Payment will be made under:

Pay ItemPay UnitGuardrail Anchor Units, Type 350Each

## **DETECTABLE WARNINGS FOR PROPOSED WHEELCHAIR RAMPS**; (6-15-10)

SP8 R126

#### **Description**

Construct detectable warnings consisting of integrated raised truncated domes on proposed concrete wheelchair ramps in accordance with the 2006 Standard Specifications, plan details, the requirements of the 28 CFR Part 36 ADA Standards for Accessible Design and this provision.

#### **Materials**

Detectable warning for proposed wheelchair ramps shall consist of integrated raised truncated domes. The description, size and spacing shall conform to Section 848 of the *Standard Specifications*.

Use material for detectable warning systems as shown herein. Material and coating specifications must be stated in the Manufacturers Type 3 Certification and all Detectable Warning systems must be on the NCDOT Approved Product List for Wheelchair Ramps.

Install detectable warnings created from one of the following materials: precast concrete blocks or bricks, clay paving brick, gray or ductile iron castings, mild steel, stainless steel, and engineered plastics, rubber or composite tile. Only one material type for detectable warning will be permitted per project, unless otherwise approved by the Engineer.

- (A) Detectable Warnings shall consist of a base with integrated raised truncated domes, and when constructed of precast concrete they shall conform to the material requirements of Article 848-2 of the Standard Specifications.
- (B) Detectable Warnings shall consist of a base with integrated raised truncated domes, and may be comprised of other materials including but not limited to clay paving brick, gray iron or ductile iron castings, mild steel, stainless steel, and engineered plastics, rubber or composite tile, which are cast into the concrete of the wheelchair ramps. The material shall have an integral color throughout the thickness of the material. The detectable warning shall include fasteners or anchors for attachment in the concrete and shall be furnished as a system from the manufacturer.

Prior to installation, the Contractor shall submit to the Engineer assembling instructions from the manufacturer for each type of system used in accordance with Article 105-2 of the *Standard Specifications*. The system shall be furnished as a kit containing all consumable materials and consumable tools, required for the application. They shall be capable of being affixed to or anchored in the concrete ramp, including green concrete (concrete that has set but not appreciably hardened). The system shall be solvent free and contain no volatile organic compounds (VOC). The static coefficient of friction shall be 0.8 or greater when measured on top of the truncated domes and when measured between the domes in accordance with ASTM C 1028 (dry and wet). The system shall be resistant to deterioration due to exposure to sunlight, water, salt or adverse weather conditions and impervious to degradation by motor fuels, lubricants and antifreeze.

(C) When steel or gray iron or ductile iron casting products are provided, only products that meet the requirements of Article 106-1(B) of the *Standard Specifications* may be used. Submit to the Engineer a Type 6 Certification, catalog cuts and installation procedures at least 30 days prior to installation for all.

### **Construction Methods**

- (A) Prior to placing detectable warnings in proposed concrete ramps, adjust the existing subgrade to the proper grade and in accordance with Article 848-3 of the Standard Specifications.
- **(B)** Install all detectable warning in proposed concrete ramps in accordance with the manufacturer's recommendations.

## **Measurement and Payment**

Detectable Warnings installed for construction of proposed wheelchair ramps will not be paid for separately. Such payment will be included in the price bid for *Concrete Wheelchair Ramps*.

## STEEL U-CHANNEL POSTS AND STEEL SQUARE TUBE SUPPORTS:

(7-18-06) (Rev 1-18-11)

SP9 R02

Revise the 2006 Standard Specifications as follows:

## Page 9-15 Subarticle 903-3(D) delete the last sentence in the first paragraph and add the following:

Use posts of sufficient length to permit the appropriate sign mounting height. Spliced posts are not permitted on new construction.

## Page 9-16 Subarticle 903-3(G) delete the last sentence in the first paragraph and add the following:

Use posts of sufficient length to permit the appropriate sign mounting height. Spliced posts are not permitted on new construction.

## Page 9-16 Subarticle 903-3(G), delete the fourth paragraph and add the following:

Do not weld or cut supports in the field except for the saw cutting of steel square tube material for the frames and cross-braces that may be required for Types D, E, and F signs with two or more supports.

## **HIGH STRENGTH CONCRETE FOR DRIVEWAYS:**

(11-21-00) (7-18-06)

SP10 R01

Use high early strength concrete for all driveways shown in the plans and as directed by the Engineer. Provide high early strength concrete that meets the requirements of Article 1000-6 of the 2006 Standard Specifications.

Measurement and payment will be in accordance with Section 848 of the 2006 Standard Specifications.

#### GALVANIZED HIGH STRENGTH BOLTS, NUTS AND WASHERS:

(2-17-09) (Rev 5-17-11)

SP10 R02

Revise the *Standard Specifications* as follows:

Page 10-126, Subarticle 1072-7(F)(3) Change the AASHTO reference to ASTM B695 Class 55.

Page 10-247, Table 1092-2, Steel Sign Materials, Change High Strength Bolts, Nuts & Washers ASTM Specifications for Galvanizing to B695 Class 55.

Page 10-259, Subarticle 1094-1(A) Breakaway or Simple Steel Beam Sign Supports, replace the third paragraph with the following:

Fabricate high strength bolts, nuts, and washers required for breakaway supports from steel in accordance with ASTM A325 and galvanize in accordance with ASTM B695 Class 55.

Page 10-261, Article 1096-2 Steel Overhead Sign Structures, replace the last sentence with the following:

The galvanizing shall meet ASTM B695 Class 55 for fasteners and ASTM A123 for other structural steel.

**GALVANIZING:** 

(8-17-10) SP10 R03

Revise the Standard Specifications as follows:

Page 10-150, Subarticle 1076-1, Galvanizing, add a second paragraph as the follows:

Allow the Engineer to obtain samples of molten zinc directly from the galvanizing vat upon request.

## **AGGREGATE PRODUCTION:**

(11-20-01)

Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment.

SP10 R05

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

## **CONCRETE BRICK AND BLOCK PRODUCTION:**

(11-20-01) SP10 R10

Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

## **VOLUMETRIC CONCRETE BATCHING:**

(5-18-10)

SP10 R13

Revise the 2006 Standard Specifications as follows:

Page 10-19, after Article 1000-12, add the following as a new article:

### 1000-13 VOLUMETRIC MIXED CONCRETE

Upon written request by the contractor, the Department may approve the use of concrete proportioned by volume. The volumetric producer must submit and have approved a process control plan and product quality control plan by the Materials and Tests Unit. If concrete is proportioned by volume, the other requirements of these specifications with the following modifications will apply. Unless otherwise approved by the Department, use of concrete proportioned by volume shall be limited to Class B concrete and a maximum of 30 cubic yards per unit per day.

### (A) Materials

Use materials that meet the requirements for the respective items in the *Standard Specifications* except that they will be measured by a calibrated volume-weight relationship.

Storage facilities for all material shall be designed to permit the Department to make necessary inspections prior to the batching operations. The facilities shall also permit identification of approved material at all times, and shall be designed to avoid mixing with or contaminating by unapproved material. Coarse and fine aggregate shall be furnished and handled so variations in the moisture content affecting the uniform consistency of the concrete will be avoided.

Moisture content of the coarse and fine aggregate will be made available onsite for the Engineer's review for each load. The frequency of moisture testing will be dependent on certain variables such as weather, season and source; however, moisture tests should be performed at least once at the beginning of the work day for each source material. Additional daily moisture tests for the coarse and fine aggregate shall be performed if requested by the Engineer.

Unused materials should be emptied from hopper daily. Concrete should not be mixed with materials that have been left in the hopper overnight.

## (B) Equipment

Provide volumetric mixers with rating plates indicating that the performance of the mixer is in accordance with the Volumetric Mixer Manufacturer Bureau or equivalent. Mixers must comply with ASTM C685. Unless otherwise specified, all mixing operations must be in strict accordance with the manufacturer's recommended procedures. Such procedures shall be provided to the Department for review upon request.

The volumetric mixer shall be capable of carrying sufficient unmixed dry bulk cement, pozzolan (if required), fine aggregate, coarse aggregate, admixtures and water, in separate compartments and accurately proportioning the specified mix. Each batching or mixing unit (or both) shall carry in a prominent place a metal plate or plates on which are plainly marked the gross volume of the unit in terms of mixed concrete, discharge speed and the weight-calibrated constant of the machine in terms of a revolution counter or other output indicator.

The concrete mixing device shall be an auger-type continuous mixer used in conjunction with volumetric proportioning. The mixer shall produce concrete, uniform in color and appearance, with homogeneous distribution of the material throughout the mixture. Mixing time necessary to produce uniform concrete shall be established by the contractor and shall comply with other requirements of these specifications. Only equipment found acceptable in every respect and capable of producing uniform results will be permitted.

Each volumetric mixer shall be equipped with an onboard ticketing system that will electronically produce a record of all material used and their respective weights and the total volume of concrete placed. Alternate methods of recordation may be used if approved by the Engineer. Tickets should also identify the following information, at minimum:

- Contractor Name
- Contractor Phone Number
- NCDOT Project No. and TIP No.
- Date
- Truck No.
- Ticket No.
- Time Start/End of Pour
- Mix ID & Description (Strength)
- Aggregate Moisture Before Mixing

## (C) Proportioning Devices

Volume proportioning devices, such as counters, calibrated gate openings or flow meters, shall be easily accessible for controlling and determining the quantities of the ingredients discharged. All indicating devices that affect the accuracy of proportioning and mixing of concrete shall be in full view of and near enough to be read by the operator and Engineer while concrete is being produced. In operation, the entire measuring and dispensing mechanism shall produce the specified proportions of each ingredient.

The volumetric mixer shall provide positive control of the flow of water and admixtures into the mixing chamber. Water flow shall be indicated by a flow meter and be readily adjustable to provide for slump control and/or minor variations in aggregate moisture. The mixer shall be capable of continuously circulating or mechanically agitating the admixtures.

Liquid admixtures shall be dispensed through a controlled, calibrated flow meter. A positive means to observe the continuous flow of material shall be provided. If an admixture requires diluting, the admixture shall be diluted and thoroughly mixed prior to introducing the admixture into the dispenser. When admixtures are diluted, the ratio of dilution and the mixing shall be approved by and performed in the presence of the Department.

The volumetric mixer shall be capable of measurement of cement, pozzolan (if required), liquids and aggregate being introduced into the mix.

## (D) Calibration

Volume-weight relationships will be based on calibration. The proportioning devices shall be calibrated by the contractor prior to the start of each NCDOT job, and subsequently at intervals recommended by the equipment manufacturer. Calibrations will be performed in the presence of the Department and subject to approval from the Department. Calibration of the cement and aggregate proportioning devices shall be accomplished by weighing (determining the mass of) each component. Calibration of the admixture and water proportioning devices shall be accomplished by weight (mass) or volume. Tolerances in proportioning the individual components will be as follows:

TABLE 1000-4
VOLUMETRIC MIXED CONCRETE CALIBRATION
PROPORTION TOLERANCES

| Item                                        | Tolerance |  |  |
|---------------------------------------------|-----------|--|--|
| Cement, Weight (Mass) percent               | 0 to +4   |  |  |
| Fine Aggregate, Weight (Mass) percent       | ± 2       |  |  |
| Coarse Aggregate, Weight (Mass) percent     | ± 2       |  |  |
| Admixtures, Weight (Mass) or Volume percent | ± 3       |  |  |
| Water, Weight (Mass) or Volume percent      | ±1 ,      |  |  |

Each volumetric mixer must be accompanied at all times by completed calibration worksheets and they shall be made available to the Department upon request.

## (E) Verification of Yield

Verification of the proportioning devices may be required at any time by the Department. Verification shall be accomplished by proportioning the rock and sand based on the cement meter count for each concrete mobile mixer. Once the count (revolutions) for 94 pounds of cement has been determined then delivery of the correct amount of rock and sand can be verified.

## (F) Uniformity

When concrete is produced, have present during all batching operations a Certified Concrete Batch Technician. During batching and placement, the sole duty of this

employee is to supervise the production and control of the concrete, perform moisture tests, adjust mix proportions of aggregates for free moisture, complete and sign approved delivery tickets, and assure quality control of the batching.

Two samples of sufficient size to make the required tests will be taken after discharge of approximately 15 and 85 percent of the load. Each of the 2 samples of concrete will be separately tested for the properties listed in Table 1000-3. Tests will be conducted in accordance with the test procedures specified in Table 1000-3 or procedures established by the Materials and Tests Unit. The Engineer may recheck mixer performance at any time when in his opinion satisfactory mixing is not being accomplished.

## PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction): (2-20-07)

SP10 R16

Revise the 2006 Standard Specifications as follows:

Article 1024-1(A), replace the 2nd paragraph with the following:

Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1.

Obtain the list of reactive aggregates documented by the Department at:http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf

| Table 1024-1 Pozzolans for Use in Portland Cement Concrete |                                                                                                  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
|                                                            |                                                                                                  |  |  |  |
| Class F Fly Ash                                            | 20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced |  |  |  |
| Ground Granulated Blast Furnace Slag                       | 35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced            |  |  |  |
| Microsilica                                                | 4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced      |  |  |  |

SP10 R17

## **WATER FOR CONCRETE:**

(10.15.10)

Revise the Standard Specifications for Roads and Structures as follows:

Page 10-63, Article 1024-4, replace article with the following:

#### **1024-4 WATER**

Ensure that water used to condition, wash, or as an integral part of materials is clear and free from injurious amounts of oil, acid, alkali, organic matter, or other deleterious substance. It shall not be salty or brackish. Water used in the production of concrete or grout shall be from wells or public water systems which are suitable for drinking and must meet the criteria listed in Table 1024-1.

Test all water from wells and public water supplies from all out of state locations and in the following counties: Beaufort, Bertie, Brunswick, Camden, Carteret, Chowan, Craven, Currituck, Dare, Gates, Hyde, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrell, and Washington unless the Engineer waives the testing requirements. Water from a municipal water supply in all other NC counties may be accepted by the Engineer without testing.

TABLE 1024-1
ACCEPTANCE CRITERIA FOR WATER
USED IN THE PRODUCTION OF CONCRETE

| Requirement                             | Limit                 | Test Method                      |  |  |  |
|-----------------------------------------|-----------------------|----------------------------------|--|--|--|
| Compressive Strength, minimum           | 90 percent            | NCDOT Modified /                 |  |  |  |
| percent of control at 3 and 7 days      | 90 percent            | AASHTO T106                      |  |  |  |
| Time of set, deviation from             | From 1:00 hr. earlier | NCDOT Modified /                 |  |  |  |
| control                                 | to 1:30 hr. later     | AASHTO T131                      |  |  |  |
| рН                                      | 4.5 to 8.5            | NCDOT Modified /                 |  |  |  |
|                                         | 4.5 10 6.5            | AASHTO T26                       |  |  |  |
| Chloride Ion Content, Max.              | 250 ppm               | ASTM D512                        |  |  |  |
| Total Solids Content (Residue),<br>Max. | 1                     | NCDOT Modified / Standard        |  |  |  |
|                                         | 1000 ppm              | Methods for Examination of Water |  |  |  |
|                                         | 1                     | and Wastewater                   |  |  |  |
| Resistivity, Min.                       | 0.500 kohm-cm         | NCDOT Modified /                 |  |  |  |
|                                         | 0.500 Kolilii-Cili    | ASTM D1125                       |  |  |  |
| Sulfate as SO <sub>4</sub> , Max.       | 1500                  | NCDOT Modified /                 |  |  |  |
|                                         | 1500 ppm              | ASTM D516                        |  |  |  |
| Presence of Sugar                       | None                  | NCDOT Procedure                  |  |  |  |
| Dissolved Organic Matter                | None                  | NCDOT Modified /                 |  |  |  |
|                                         | None                  | AASHTO T26                       |  |  |  |

Page 10-65, Article 1026-4, replace article with the following:

#### **1026-4 WATER**

All water used for curing concrete shall meet the requirements of Article 1024-4 and Table 1024-1. Water from wells, streams, ponds, or public water systems may be used.

## **CULVERT PIPE:**

(1-19-10)

SP10 R32

Revise the Standard Specifications for Roads and Structures as follows:

## Page 10-67, Article 1032-1, replace (A), (B), (C), (D), (E) and (F) with the following:

- (A) Coated corrugated metal culvert pipe and pipe arches.
- (B) Coated corrugated metal end sections, coupling band, and other accessories
- (C) Corrugated aluminum alloy structural plate pipe and pipe arches
- (D) Corrugated aluminum alloy end sections, coupling band, and other accessories
- (E) Welded steel pipe

## Page 10-69, Subarticle 1032-3(A)(5) Coating Repair, replace with the following:

Repair shall be in accordance with Section 1076-6 of the Standard Specifications.

## Subarticle 1032-3(A)(7) Aluminized Pipe, replace with the following:

Aluminized pipe shall meet all requirements herein, except that the pipe and coupling bands shall be fabricated from aluminum coated steel sheet meeting the requirements of AASHTO M274.

# Page 10-71, Article 1032-4 Coated Culvert Pipe, replace (A), (1), (2), (3), (4), (B), (C), (D), (E), (F) and (G) with the following:

(A) Coatings for Steel Culvert Pipe or Pipe Arch

The below coating requirements apply for steel culvert pipe, pipe arch, end sections, tees, elbows, and eccentric reducers.

- (1) Steel Culvert pipe shall have an aluminized coating, meeting the requirement of AASHTO M274
- (2) When shown on the plans or as approved by the Engineer, a polymeric coating meeting the requirements of AASHTO M246 for Type B coating may be substituted for aluminized coating.

## (B) Acceptance

Acceptance of coated steel culvert pipe, and its accessories will be based on, but not limited to, visual inspections, classification requirements, check samples taken from material delivered to the project, and conformance to the annual Brand Registration.

Page 10-73, Article 1032-5, sixth paragraph, third sentence, remove the word "spelter"

Page 10-74, 1032-7 Vitrified Clay Culvert Pipe, delete section in its entirety.

Page 10-75, Article 1032-8 Welded Steel Pipe, change title to WELDED STEEL PIPE FOR DRAINAGE

Subarticle 1032-9(B) Plain Concrete Culvert Pipe, delete section in its entirety.

Page 10-77, Article 1032-10 Corrugated Polyethylene Culvert Pipe, change title to CORRUGATED POLYETHYLENE (HDPE) CULVERT PIPE

Add the following: Article 1032-11 Polyvinyl Chloride (PVC) Pipe

Polyvinyl Chloride pipe shall conform to AASHTO M 304 or ASTM 949. When rubber gaskets are to be installed in the pipe joint, the gasket shall be the sole element relied on to maintain a tight joint. Test pipe joints at the plant hydrostatically using test methods in ASTM D 3212. Soil tight joints shall be watertight to 13.8 kPa. Watertight joints shall be watertight to 34.5 kPa unless a higher pressure rating is specified in the plans.

## GLASS BEADS: (7-18-06)(Rev 10-19-10)

Revise the 2006 Standard Specifications as follows:

SP10 R35

Page 10-223, 1087-4(A) Composition, add the following as the fourth paragraph:

Glass beads shall have no more than 75 parts per million of arsenic as determined by the United States Environmental Protection Agency Method 6010B in conjunction with the United States Environmental Protection Agency Method 3052 modified.

Page 10-223, 1087-4(C) Gradation & Roundness, delete the last paragraph and replace the second sentence of the first paragraph with the following:

All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155.

Page 10-226, 1087-8 Material Certification, add the following below the first sentence:

Glass Beads (for paint, thermoplastic and polyurea) – Type 3 Material Certification for no more than 75 parts per million of arsenic

#### **ENGINEERING FABRICS:**

(7-18-06) (Rev 10-19-10) SP10 R40

Revise the Standard Specifications as follows:

Page 10-99, Delete Section 1056 ENGINEERING FABRICS and replace it with the following:

## **SECTION 1056 ENGINEERING FABRICS**

#### 1056-1 General

Use engineering fabrics that meet the requirements of Article 4.1 of AASHTO M288 and have been evaluated by National Transportation Product Evaluation Program (NTPEP). When required, sew fabrics together in accordance with Article X1.1.4 of AASHTO M288. Provide sewn seams with seam strengths meeting the required strengths for the engineering fabric type and class specified.

Load, transport, unload and store fabrics such that they are kept clean and free of damage. Label, ship and store fabrics in accordance with Section 7 of AASHTO M288. Fabrics with defects, flaws, deterioration or damage will be rejected. Do not unwrap fabrics until just before installation. With the exception of fabrics for temporary silt fences and mechanically stabilized earth (MSE) wall faces, do not leave fabrics exposed for more than 7 days before covering fabrics with material.

When required, use pins a minimum of 3/16" in diameter and 18" long with a point at one end and a head at the other end that will retain a steel washer with a minimum outside diameter of 1.5". When wire staples are required, provide staples in accordance with Subarticle 1060-8(D) of the Standard Specifications.

#### 1056-2 Fabric Properties

Provide Type 1 Certified Mill Test Report, Type 2 Typical Certified Mill Test Report or Type 4 Certified Test Report in accordance with Article 106-3 of the Standard Specifications. Furnish certifications with minimum average roll values (MARV) as defined by ASTM D4439 for all fabric properties with the exception of elongation. For testing fabrics, a lot is defined as a single day's production.

Provide engineering fabric types and classes in accordance with the contract. Machine direction (MD) and cross-machine direction (CD) are as defined by ASTM D4439. Use woven or nonwoven fabrics with properties meeting the requirements of Table 1056-1.

## TABLE 1056-1 FABRIC PROPERTY REQUIREMENTS

| Property                                               | ASTM           | Requirements (MARV <sup>1</sup> ) |                        |                         |                        |                                                                     |  |  |
|--------------------------------------------------------|----------------|-----------------------------------|------------------------|-------------------------|------------------------|---------------------------------------------------------------------|--|--|
|                                                        | Test<br>Method | Type 1                            | Type 2                 | Type 3 <sup>2</sup>     | Type 4                 | Type 5 <sup>3</sup>                                                 |  |  |
| Typical<br>Application                                 | ŧ              | Shoulder<br>Drains                | Under<br>Riprap        | Temporary<br>Silt Fence | Soil<br>Stabilization  | Temporary<br>MSE Walls                                              |  |  |
| Elongation<br>(MD & CD)                                | D4632          | ≥ 50 %                            | ≥ 50 %                 | ≤25 %                   | < 50 %                 | < 50 %                                                              |  |  |
| Grab Strength (MD & CD)                                | D4632          | 90 lbs                            | 205 lbs                | 100 lbs                 | 180 lbs                |                                                                     |  |  |
| Tear Strength (MD & CD)                                | D4533          | 40 lbs                            | 80 lbs                 | 1                       | 70 lbs                 |                                                                     |  |  |
| Puncture<br>Strength                                   | D6241          | 220 lbs                           | 440 lbs                |                         | 370 lbs                |                                                                     |  |  |
| Wide Width Tensile Strength @ Ultimate (MD & CD)       | D4595          |                                   | ·                      |                         |                        | 2400 lbs/ft<br>(unless<br>required<br>otherwise in<br>the contract) |  |  |
| Permittivity                                           | D4491          | 0.20 sec <sup>-1</sup>            | 0.20 sec <sup>-1</sup> | 0.05 sec <sup>-1</sup>  | 0.05 sec <sup>-1</sup> | 0.20 sec <sup>-1</sup>                                              |  |  |
| Apparent Opening Size <sup>4</sup>                     | D4751          | #60                               | #60                    | #30                     | #40                    | #30                                                                 |  |  |
| Ultraviolet Stability (retained strength) <sup>5</sup> | D4355          | 50 %                              | 50 %                   | 70 %                    | 50 %                   | 50%                                                                 |  |  |

<sup>&</sup>lt;sup>1</sup>MARV does not apply to elongation

## PRECAST DRAINAGE STRUCTURES - MACRO-SYNTHETIC FIBERS

(7-15-08)(Rev 11-18-08)

SP10 R42

## **Description**

Substitute as an option, macro-synthetic fibers in lieu of 4" x 4" W1.4 x W1.4 welded wire fabric reinforcement for selected precast concrete products in accordance with the following requirements.

<sup>&</sup>lt;sup>2</sup>Minimum roll width of 36" required

<sup>&</sup>lt;sup>3</sup>Minimum roll width of 13 ft required

<sup>&</sup>lt;sup>4</sup>US Sieve No. per AASHTO M92

<sup>&</sup>lt;sup>5</sup>After 500 hours of exposure

#### **Materials**

ItemSectionPortland Cement Concrete1077-5

(A) Substitute macro-synthetic fibers only for steel reinforcement with an area of steel of 0.12 in<sup>2</sup>/ft or less in the following items:

- (1) Precast Drainage Structure units in accordance with the requirements of Standard Drawing 840.45.
- (2) Precast Manhole 4.0' Riser Sections in accordance with the requirements of Standard Drawing 840.52.

All other requirements, including reinforcement for these precast concrete items will remain the same.

(B) Submittal Submit to the Department for approval by the precast producer and fiber manufacturer, independently performed test results certifying the macro-synthetic fibers and the precast concrete products meet the requirements listed herein:

## (C) Macro-Synthetic Fibers

(1) Manufacture from virgin polyolefins (polypropylene and polyethylene) and comply with ASTM C 1116.4.1.3.

Fibers manufactured from materials other than polyolefins Submit test results certifying resistance to long-term deterioration when in contact with the moisture and alkalies present in cement paste and/or the substances present in airentraining and chemical admixtures.

- (2) Fiber length no less than 1-1/2 inch.
- (3) Macro-synthetic fibers aspect ratio (length divided by the equivalent diameter of the fiber) between 45 and 150.
- (4) Macro-synthetic fibers Minimum tensile strength of 40 ksi when tested in accordance with ASTM D 3822.
- (5) Macro-synthetic fibers minimum modulus of elasticity of 400 ksi when tested in accordance with ASTM D 3822.

### (D) Fiber Reinforced Concrete

(1) Approved structural fibers may be used as a replacement of steel reinforcement in allowable structures of NCDOT Standards 840.45 and 840.52. The dosage rate,

in pounds of fibers per cubic yard, shall be as per recommended by the fiber manufacturer to provide a minimum average residual strength (in accordance with ASTM C 1399) of concrete of no less than that of the concrete with the steel reinforcement that is being replaced, but no less than 5 lbs. per cubic yard. Submit the recommendations of the manufacturer that correlate the toughness of steel-reinforced concrete with that of the recommended dosage rate for the fiber-reinforced concrete.

- (2) Fiber reinforced concrete 4.5% air content,  $\pm$  1.5% tolerance.
- (3) Fiber reinforced concrete develop a minimum compressive strength 4000 psi in 28 days.
- (4) Workability of the concrete mix determine in accordance with ASTM C995. The flow time not be less than 7 seconds or greater than 25 seconds.
- (5) Assure the fibers are well dispersed and prevent fiber balling during production. After introduction of all other ingredients, add the plastic concrete and mix the plastic concrete for at least 4 minutes or for 50 revolutions at standard mixing speed.

#### Measurement and Payment

No separate payment will be made for substitution of macro-fiber synthetic reinforcement for the steel reinforcing. The price bid for the precast units will be full compensation for furnishing and incorporating the macro-fiber synthetic reinforcement.

## **QUALIFICATION OF WELDS AND PROCEDURES:** (7-21-09)

SP10 R43

Page 10-143, Subarticle 1072-20(D) Qualification of Welds and Procedures, replace the third sentence of the first paragraph with the following:

For all prequalified field welds, submit Welding Procedure Specifications (WPS) for each joint configuration for approval at least 30 days prior to performing any welding. In lieu of this, use the WPS provided and preapproved by the Department. These preapproved WPS are available from the Materials and Tests Unit or at:

http://www.ncdot.org/doh/operations/materials/structural/appr\_proc.html. Use non-prequalified welds only if approved by the Engineer. Submit WPS for all non-prequalified welds to the Engineer for approval. At no cost to the Department, demonstrate their adequacy in accordance with the requirements of the Bridge Welding Code.

## <u>CHANNELIZING DEVICES (Drums):</u> 7-20-10

7-20-10 SP10 R60

Revise the 2006 Standard Specifications as follows:

Page 10-236, Subarticle 1089-5(A) Drums (1) General, replace the paragraph with the following:

## (1) General

Provide drums composed of a body, alternating orange and white 4 band pattern of Type III-High Intensity Microprismatic Sheeting and ballasts that have been evaluated by NTPEP.

The following guidelines will be used during the transition from drums with the standard 5 band engineer's grade sheeting to the new 4 band configuration.

- (a) All <u>new</u> drums purchased <u>after July 20, 2010</u> shall have the new sheeting and 4 band configuration.
- (b) Existing 5 band drums with engineer's grade sheeting (both new and used devices in existing inventories) will be allowed for use on all on-going construction projects until project completion and will also be allowed for use on other projects until a sunset date has been established.
- (c) Intermixing of "old drums" and "new drums" on the same project is acceptable during the transition.
- (d) 4 band drums with engineer's grade sheeting will not be allowed at anytime.

Page 10-236, Subarticle 1089-5(A) Drums (3) Retroreflective Stripes, replace the paragraph with the following:

### (3) Retroreflective Bands

Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands. The top band shall always be orange. Use a 6" to 8" wide band Type III—High Intensity Microprismatic Retroreflective Sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 2" for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 6-inch band. Apply the retroreflective sheeting directly to the drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the drums, or vehicle impact.

Page 10-237, Subarticle 1089-5(B) Skinny-Drums (1) General, replace the paragraph with the following:

### (1) General

All existing skinny-drums that do not have Type III-High Intensity Microprismatic Sheeting as a minimum will have the same transition requirements as drums as stated above. All <u>new</u> skinny-drums purchased <u>after July 20, 2010</u> shall have Type III-High Intensity Microprismatic Sheeting as the minimum. Type IV and higher grade sheeting is acceptable for use on both new and used devices.

Provide skinny-drums composed of a body, reflective bands, and ballasts that have been evaluated by NTPEP.

Page 10-237, Subarticle 1089-5(B) Skinny Drums (3) Retroreflective Stripes, replace the paragraph with the following:

## (3) Retroreflective Bands

Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands for each skinny-drum. The top band shall always be orange. Use a 6" to 8" wide band Type III—High Intensity Microprismatic Retroreflective Sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 2" for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 6-inch band. Apply the retroreflective sheeting directly to the skinny-drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the skinny-drums, or vehicle impact.

## **CHANGEABLE MESSAGE SIGNS:**

(11-21-06)

SP11 R11

#### Revise the 2006 Standard Specifications as follows:

Page 11-9, Article 1120-3, Replace the 3rd sentence with the following:

Sign operator will adjust flash rate so that no more than two messages will be displayed and be legible to a driver when approaching the sign at the posted speed.

## **WORK ZONE TRAFFIC CONTROL:**

Revise the 2006 Standard Specifications as follows:

SP11 R20

# Page 11-3, Article 1101-12 Traffic Control Supervision, in addition to the stated requirements, add the following:

Provide the service of at least one qualified Work Zone Supervisor. The Work Zone Supervisor shall have the overall responsibility for the proper implementation of the traffic management plan, as well as ensuring all employees working inside the NCDOT Right of Way have received the proper training appropriate to the job decisions each individual is required to make.

The work zone supervisor is not required to be on site at all times but must make periodic project reviews and be available to address concerns of the Engineer. The name and contact information of the work zone supervisor shall be provided to the Engineer prior to or at the preconstruction conference.

Qualification of Work Zone Supervisors shall be done by an NCDOT approved training agency or other approved training provider. For a complete listing of these, see the Work Zone Traffic Control's webpage, http://www.ncdot.gov/doh/preconstruct/wztc/.

## Page 11-13, Article 1150-3 Construction Methods, replace the article with the following:

Provide the service of properly equipped and qualified flaggers (see *Roadway Standard Drawings* No. 1150.01) at locations and times for such period as necessary for the control and protection of vehicular and pedestrian traffic. Anyone who controls traffic is required to be qualified. Qualification consists of each flagger receiving proper training in the set-up and techniques of safely and competently performing a flagging operation. Qualification of flaggers is to be done at an NCDOT approved training agency. For a complete listing of these, see the Work Zone Traffic Control's webpage, http://www.ncdot.gov/doh/preconstruct/wztc/.

Prior to beginning work on the project, a Qualification Statement that all flaggers used on the project have been properly trained through an NCDOT approved training resource shall be provided to the Engineer.

Flagging operations are not allowed for the convenience of the Contractor's operations. However, if safety issues exist (i.e. sight or stopping sight distance), the Engineer may approve the use of flagging operations. Use flagging methods that comply with the guidelines in the MUTCD.

SP12 R01

#### **PAVEMENT MARKING LINES:**

(11-21-06) (Rev. 08-17-10)

Revise the 2006 Standard Specifications as follows:

Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart:

| Facility Type                | Marl             | king Type  |         | Replace  | men   | t Dead | line   |     |
|------------------------------|------------------|------------|---------|----------|-------|--------|--------|-----|
| Full-control-of-access mu    | lti-lane All     | markings \ | By th   | e end    | of    | each   | workda | y's |
| roadway (4 or more total lan | es) and i includ | ing        | operati | on if th | ne la | me is  | opened | to  |
| ramps, including Interstates | symbo            | ols        | traffic |          |       |        |        | •   |

Page 12-5, 1205-3 (H) Observation Period, delete 1205-3 (H) and replace with the following:

Maintain responsibility for debonding and color of the pavement markings during a 12 month observation period beginning upon final acceptance of the project as defined under Article 105-17. Guarantee the markings under the payment and performance bond in accordance with Article 105-17.

During the 12 month observation period, provide pavement marking material that shows no signs of failure due to blistering, chipping, bleeding, discoloration, smearing or spreading under heat or poor adhesion to the pavement materials. Pavement markings that debond due to snowplowing will not be considered a failed marking. Replace, at no additional expense to the Department, any pavement markings that do not perform satisfactorily under traffic during the 12 month observation period.

Page 12-8, 1205-4 (C) Application, delete the last two sentences of the second paragraph and replace with the following:

Produce in place markings with minimum retroreflective values shown below, as obtained with a LTL 2000 Retroreflectometer or Department approved mobile retroreflectometer. Retroreflective measurements will be taken within 30 days after final placement of the pavement marking.

Page 12-9, 1205-4 (D) Observation Period, delete the entire section and replace with the following:

In addition to the requirements of Subarticle 1205-3(H), maintain responsibility for minimum retroreflective values for a 30-day period beginning upon the Engineer's acceptance of all markings on the project. Guarantee retroreflective values of the markings during the 30-day period under the payment and performance bond in accordance with Article 105-17.

Page 12-9, 1205-5 (B) Application, delete the second sentence of the fourth paragraph and replace with the following:

Produce in place markings with minimum retroreflective values shown below, as obtained with a LTL 2000 Retroreflectometer or Department approved mobile retroreflectometer. Retroreflective measurements will be taken within 30 days after final placement of the pavement marking.

Page 12-10, 1205-5 (C) Observation Period, delete this entire section and replace with the following:

Maintain responsibility for minimum retroreflective values for a 30-day period beginning upon satisfactory final placement of all markings on the project. Guarantee retroreflective values of the markings during the 30-day period under the payment and performance bond in accordance with Article 105-17.

Page 12-14, Article 1205-9, Maintenance, delete Article 1205-9 and replace with the following:

Replace pavement markings that prematurely deteriorate, fail to adhere to the pavement, lack reflectorization, or are otherwise unsatisfactory during the life of the project or during the 12 month observation period as determined by the Engineer at no cost to the Department.

Upon notification from the Engineer, winterize the project by placing an initial or additional application of paint pavement marking lines in accordance with Article 1205-8. Payment for *Paint Pavement Marking Lines* required to winterize the project will be made in accordance with Article 1205-10 except that no payment will be made on resurfacing projects where paving is completed more than 30 days prior to the written notification by the Department that winterization is required.

Page 12-14, Article 1205-10, Measurement and Payment, add the following after the first sentence of the first paragraph:

In addition, *Paint Pavement Marking Lines* will be paid per linear foot for each 15 mil application placed in accordance with Subarticle 1205-8(C).

## EXCAVATION, TRENCHING, PIPE LAYING, & BACKFILLING FOR UTILITIES: (2-17-09) SP15 R01

Revise the 2006 Standard Specifications as follows:

Page 15-5, Article 1505-4 Repair of Pavements, Sidewalks and Driveways, first paragraph, add at the end of the first sentence

in accordance with Section 848.

Page 15-6, Article 1505-6 Measurement and Payment,

Second paragraph,

Delete (5) Repair of Sidewalks and Driveways in its entirety.

Add as the eighth paragraph:

\_\_" Concrete Sidewalk and \_\_" Concrete Driveways will be measured and paid for in accordance with Article 848-4.