PROJECT SPECIAL PROVISIONS

ROADWAY

AGGREGATE SUBGRADE:

(9-18-07) (Rev 3-16-10)

SP2 R35

Description

Construct aggregate subgrades in accordance with the contract or as directed by the Engineer. Undercut as needed in cut areas. Install fabric for soil stabilization and place Class IV Subgrade Stabilization at locations shown on the plans.

Materials

Refer to Division 10 of the Standard Specifications.

Item	Section
Select Material, Class IV	1016
Fabric for Soil Stabilization, Type 4	1056

Use Class IV Select Material for Class IV Subgrade Stabilization. If Class IV Subgrade Stabilization does not meet the requirements of Article 1010-2 of the *Standard Specifications*, the Engineer may consider the material reasonably acceptable in accordance with Article 105-3 of the *Standard Specifications*.

Construction Methods

When shallow undercut is required to construct aggregate subgrades, undercut 6 to 24 inches as shown on the plans or as directed by the Engineer. Perform undercut excavation in accordance with Section 225 of the *Standard Specifications*. Install fabric for soil stabilization in accordance with Article 270-3 of the *Standard Specifications*. Place Class IV Subgrade Stabilization (standard size no. ABC) by end dumping ABC on the fabric. Do not operate heavy equipment on the fabric until it is covered with Class IV Subgrade Stabilization. Compact ABC to 92% of AASHTO T180 as modified by the Department or to the highest density that can be reasonably obtained.

Maintain Class IV Subgrade Stabilization in an acceptable condition and minimize the use of heavy equipment on ABC in order to avoid damaging aggregate subgrades. Provide and maintain drainage ditches and drains as required to prevent entrapping water in aggregate subgrades.

Measurement and Payment

Shallow Undercut will be measured and paid for in cubic yards. Shallow undercut will be measured in accordance with Article 225-7 of the Standard Specifications. The contract unit price for Shallow Undercut will be full compensation for excavating, hauling and disposing of materials to construct aggregate subgrades.

Class IV Subgrade Stabilization will be measured and paid for in tons. Class IV Subgrade Stabilization will be measured by weighing material in trucks in accordance with Article 106-7 of the Standard Specifications. The contract unit price for Class IV Subgrade Stabilization will be full compensation for furnishing, hauling, handling, placing, compacting and maintaining ABC.

Fabric for Soil Stabilization will be measured and paid for in accordance with Article 270-4 of the Standard Specifications.

Payment will be made under:

Pay ItemPay UnitShallow UndercutCubic YardClass IV Subgrade StabilizationTon

FINE GRADING SUBGRADE, SHOULDERS AND DITCHES:

(7-21-09)

SP5 R01

Revise the *Standard Specifications* as follows:

Page 5-1, Article 500-1 DESCRIPTION, replace the first sentence with the following:

Perform the work covered by this section including but not limited to preparing, grading, shaping, manipulating moisture content, and compacting either an unstabilized or stabilized roadbed to a condition suitable for placement of base course, pavement, and shoulders.

AGGREGATE BASE COURSE:

SP5 R03

Revise the 2006 Standard Specifications as follows:

Page 5-11, Article 520-5 Hauling and Placing Aggregate Base Material, 6th paragraph, replace the first sentence with the following:

Base course that is in place on November 15 shall have been covered with a subsequent layer of pavement structure or with a sand seal. Base course that has been placed between November 16 and March 15 inclusive shall be covered within 7 calendar days with a subsequent layer of pavement structure or with a sand seal.

ASPHALT PAVEMENTS - SUPERPAVE:

(7-18-06)(Rev 3-15-11)

SP6 R01

Revise the 2006 Standard Specifications as follows:

Page 6-2, Article 600-9 Measurement and Payment, delete the second paragraph.

Page 6-12, Subarticle 609-5(C)(2), Required Sampling and Testing Frequencies, first partial paragraph at the top of the page, delete last sentence and replace with the following:

If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-12, Subarticle 609-5(C)(2), Quality Control Minimum Sampling and Testing Schedule, first paragraph, delete and replace with the following:

Sample and test the completed mixture from each mix design per plant per year at the following minimum frequency during mix production:

Second paragraph, delete the fourth sentence and replace with the following:

When daily production of each mix design exceeds 100 tons and a regularly scheduled full test series random sample location for that mix design does not occur during that day's production, perform at least one partial test series consisting of Items A and B in the schedule below.

Page 6-12, Subarticle 609-5(C)(2)(c) Maximum Specific Gravity, add after (AASHTO T 209):

or ASTM D 2041

Page 6-13, last line and on page and Page 6-14, Subarticle 609-5(C)(2)(e) Tensile Strength Ratio (TSR), add a heading before the first paragraph as follows:

(i) Option 1

Insert the following immediately after the first paragraph:

(ii) Option 2

Mix sampled from truck at plant with one set of specimens prepared by the Contractor and then tested jointly by QA and QC at a mutually agreed upon lab site within the first 7 calendar days after beginning production of each new mix design.

Second paragraph, delete and replace with the following:

Test all TSR specimens required by either option noted above on either a recording test press or a test press that maintains the peak load reading after the specimen has broken.

Subarticle 609-5(C)(3) Control Charts, delete the second sentence of the first paragraph and replace with the following:

For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples that replace regularly scheduled random samples, on control charts the same day the test results are obtained.

Page 6-15, Subarticle 609-5(C)(3) Control Charts, first paragraph on this page, delete the last sentence and substitute the following:

Denote the moving average control limits with a dash green line and the individual test limits with a dash red line.

Page 6-15, Subarticle 609-5(C)(3)(a), (b) and (c), replace (a) (b) and (c) with the following:

- (a) A change in the binder percentage, aggregate blend, or G_{mm} is made on the JMF, or,
- (b) When the Contractor elects to stop or is required to stop production after one or two moving average values, respectively, fall outside the moving average limits as outlined in Subarticle 609-5(C)(6) or,
- (c) If failure to stop production after two consecutive moving averages exceed the moving average limits occurs, but production does stop at a subsequent time, re-establish a new moving average beginning at the actual production stop point.

Page 6-15, Subarticle 609-5(C)(4) Control Limits, replace the first paragraph and the CONTROL LIMITS Table on page 6-16 with the following:

The following are established as control limits for mix production. Apply the individual limits to the individual test results. Control limits for the moving average limits are based on a moving average of the last 4 data points. Apply all control limits to the applicable target source.

CONTROL LIMITS				
Mix Control Criteria	Target Source	Moving Average Limit	Individual Limit	
2.36 mm Sieve	JMF	±4.0 %	±8.0 %	
0.075 mm Sieve	JMF	±1.5 %	±2.5 %	
Binder Content	JMF	±0.3 %	±0.7 %	
VTM @ N _{des}	JMF	±1.0 %	±2.0 %	
VMA @ N _{des}	Min. Spec. Limit	Min Spec. Limit	-1.0%	
P _{0.075} / P _{be} Ratio	1.0	±0.4	±0.8	
%G _{mm} @N _{ini}	Max. Spec. Limit	N/A	+2.0%	
TSR	Min. Spec. Lımıt	N/A	- 15%	
				

Page 6-16, Subarticle 609-5(C)(5) Warning Bands, delete this subarticle in its entirety.

Pages 6-16 through 6-19, Subarticle 609-5(C)(6), delete the word "warning" and replace with the words "moving average".

Page 6-16, Subarticle 609-5(C)(6) Corrective Actions, first paragraph, first sentence, delete and replace with the following:

Immediately notify the Engineer when moving averages exceed the moving average limits.

Page 6-17, Subarticle 609-5(C)(6) Corrective Actions, delete the third full paragraph and replace with the following:

Failure to stop production when required due to an individual mix test not meeting the specified requirements will subject all mix from the stop point tonnage to the point when the next individual test is back on or within the moving average limits, or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable.

Sixth full paragraph, delete the first, second, and third sentence and replace with the following:

Immediately notify the Engineer when any moving average value exceeds the moving average limit. If two consecutive moving average values for any one of the mix control criteria fall outside the moving average limits, cease production of that mix, immediately notify the Engineer of the stoppage, and make adjustments. The Contractor may elect to stop production after only one moving average value falls outside the moving average limits.

Page 6-18, Subarticle 609-5(C)(6) Corrective Actions, second full paragraph, delete and replace with the following:

If the process adjustment improves the property in question such that the moving average after four additional tests is on or within the moving average limits, the Contractor may continue production with no reduction in payment.

Page 6-18, Subarticle 609-5(C)(6) Corrective Actions, delete the third and fourth full paragraphs, including the Table for Payment for Mix Produced in the Warning Bands and substitute the following:

If the adjustment does not improve the property in question such that the moving average after four additional individual tests is outside the moving average limits, the mix will be evaluated for acceptance in accordance with Article 105-3. Reduced payment for or removal of the mix in question will be applied starting from the plant sample tonnage at the stop point to the sample tonnage when the moving average is on or within the moving average limits. In addition, any mix that is obviously unacceptable will be rejected for use in the work.

Page 6-19. Subarticle 609-5(C)(6) Corrective Actions, first paragraph, delete and replace with the following:

Failure to stop production and make adjustments when required due to two consecutive moving average values falling outside the moving average limits will subject all mix produced from the stop point tonnage to the tonnage point when the moving average is back on or within the moving average limits or to the tonnage point when production is actually stopped, whichever occurs first, to being considered unacceptable. Remove this material and replaced with materials that comply with the Specifications at no additional costs to the Department, unless otherwise approved. Payment will be made for the actual quantities of materials required to replace the removed quantities, not to exceed the original amounts.

Page 6-20, Subarticle 609-5(D)(1) General, delete the third full paragraph, and replace with the following:

Perform the sampling and testing at the minimum test frequencies as specified above. Should the density testing frequency fail to meet the minimum frequency as specified above, all mix without the required density test representation will be considered unsatisfactory. If the Engineer allows the mix to remain in place, payment will be made in accordance with Article 105-3.

Page 6-22, Subarticle 609-5(D)(4) Nuclear Gauge Density Procedures, third paragraph, insert the following as the second sentence:

Determine the Daily Standard Count in the presence of the QA Roadway Technician or OA Nuclear Gauge Technician on days when a control strip is being placed.

Page 6-23, Subarticle 609-5(D)(5) Limited Production Procedure, delete the first paragraph including (a), (b), (c) and substitute the following:

Proceed on limited production when, for the same mix type and on the same contract, one of the following conditions occur (except as noted in the first paragraph below).

- Two consecutive failing lots, except on resurfacing* (a)
- Three consecutive failing lots on resurfacing* (b)
- Two consecutive failing nuclear control strips. (c)

Page 6-25, Article 609-6 QUALITY ASSURANCE, DENSITY QUALITY ASSURANCE, insert the following items after item (E):

- **(F)** By retesting Quality Control core samples from control strips (either core or nuclear) at a frequency of 100% of the frequency required of the Contractor;
- By observing the Contractor perform all standard counts of the Quality Control nuclear (G) gauge prior to usage each nuclear density testing day; or
- By any combination of the above. (H)

^{*} Resurfacing is defined as the first new uniform layer placed on an existing pavement.

Page 6-28, Subarticle 610-3(A) Mix Design-General, delete the fourth and fifth paragraphs and replace with the following:

Reclaimed Asphalt Pavement (RAP) or Reclaimed Asphalt Shingles (RAS) may be incorporated into asphalt plant mixes in accordance with Article 1012-1 and the following applicable requirements.

Reclaimed asphalt pavement (RAP) may constitute up to 50% of the total material used in recycled mixtures, except for mix Type S 12.5D, Type S 9.5D, and mixtures containing reclaimed asphalt shingle material (RAS). Reclaimed asphalt shingle (RAS) material may constitute up to 6% by weight of total mixture for any mix. When both RAP and RAS are used, do not use a combined percentage of RAS and RAP greater than 20% by weight of total mixture, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20% but not more than 30% of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type, unless otherwise approved. When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 30% of the total binder in the completed mix, the Engineer will establish and approve the virgin binder PG grade. Use approved methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type.

For Type S 12.5D and Type S 9.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 20% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, the virgin binder PG grade shall be as specified in Table 610-2A for the specified mix type.

When the percentage of RAP is greater than 20% but not more than 30% of the total mixture, use RAP meeting the requirements for processed or fractionated RAP in accordance with the requirements of Article 1012-1.

When the percentage of RAP is greater than 30% of the total mixture, use an approved stockpile of RAP in accordance with Subarticle 1012-1(C). Use approved test methods to determine if any binder grade adjustments are necessary to achieve the performance grade for the specified mix type. The Engineer will establish and approve the virgin asphalt binder grade to be used.

Page 6-34, Subarticle 610-3(C) Job Mix Formula, delete Table 610-2 and associated notes and replace with the following:

TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA

Type ESA	Design ESALs	SALs PG		Gyrations			Volumetric Properties (c)		
-38	Millions (a)	Grade (b)	N _{im}	N _{des}	(mm)	VMA % Min.	VIM Min %G	%G _{mm} @ N _{ini}	
S-4.75A(e)	< 0.3	64 -22	6	50		20.0	7.0 - 15.0		
SF-9.5A	< 0.3	64 -22	6	50	11.5	16.0	3.0 - 5.0	70 - 80	≤ 91.5
S-9.5B	0.3 - 3	64 -22	7	65	9.5	15.5	3.0 - 5.0	65 - 80	≤ 90.5
S-9.5C	3 - 30	70 -22	7	75	6.5	15.5	3.0 - 5.0	65 - 78	≤ 90.5
S-9.5D	> 30	76 -22	8	100	4.5	15.5	3.0 - 5.0	65 - 78	≤ 90.0
S-12.5C	3 - 30	70 -22	7	75	6.5	14.5	3.0 - 5.0	65 - 78	≤ 90.5
S-12.5D	> 30	76 -22	8	100	4.5	14.5	3.0 - 5.0	65 - 78	≤ 90.0
I-19.0B	< 3	64 -22	7	65		13.5	3.0 - 5.0	65 - 78	≤ 90.5
I-19.0C	3 - 30	64 -22	7	75		13.5	3.0 - 5.0	65 - 78	≤ 90.0
I-19.0D	> 30	70 -22	8	100		13.5	3.0 - 5.0	65 - 78	≤ 90.0
B-25.0B	< 3	64 -22	7	65		12.5	3.0 - 5.0	65 - 78	≤ 90.5
B-25.0C	> 3	64 -22	7	75		12.5	3.0 - 5.0	65 - 78	≤ 90.0
	Design P	arameter	•				Design	Criteria	
A 11 B 5:	1. Dust to P _{be})	Bınder F	Ratio (Po	_{0.075} /			0.6	5 – 1.4	
All Mix Types	2. Retain	ed Tensile ASHTO	_	th			85%	Min. (d)	

Notes:

(a) Based on 20 year design traffic.

Modified)

- (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A). Payment for Binder Grade for recycled mixes shall be based solely on the grade for the specified mix type as shown in the above table.
- (c) Volumetric Properties based on specimens compacted to N_{des} as modified by the Department.
- (d) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0B, and Type B 25.0C mixes is 80% minimum.
- (e) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer.

Page 6-34, Insert the following immediately after Table 610-2:

TABLE 610-2A SUPERPAVE MIX DESIGN CRITERIA

	Percentage of RAP in Mix			
	Category 1	Category 2	Category 3	
Mix Type	% RAP ≤20%	$20.1\% \le \%$ RAP $\le 30.0\%$	%RAP > 30.0%	
All A and B Level Mixes,	PG 64 -22	PG 64 -22	TBD	
I19.0C, B25.0C			ŧ	
S9.5C, S12.5C, I19.0D	PG 70 -22	PG 64-22	TBD	
S 9.5D and S12.5D	PG 76-22	N/A	N/A	

Note: (1) Category 1 RAP has been processed to a maximum size of 2 inches.

- (2) Category 2 RAP has been processed to a maximum size of 1 inch by either crushing and or screening to reduce variability in the gradations.
- (3) Category 3 RAP has been processed to a maximum size of 1 inch, fractionating the RAP into 2 or more sized stockpiles
- (4) Payment for binder grade shall be based solely on Table 610-2.

Page 6-35, Table 610-3 delete and replace with the following:

TABLE 610-3
ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS

Asphalt Concrete Mix Type	Minimum Air Temperature	Minimum Surface Temperature
ACBC, Type B 25.0B, C, B 37.5C	35°F	35°F
ACIC, Type I 19.0B, C, D	35°F	35°F
ACSC, Type S 4.75A, SF 9.5A, S 9.5B	40°F	50°F*
ACSC, Type S 9.5C, S 12.5C	45°F	50°F
ACSC, Type S 9.5D, S 12.5D	50°F	50°F

^{* 35°}F if surface is soil or aggregate base for secondary road construction.

Page 6-45, Article 610-8 SPREADING AND FINISHING delete the third paragraph on page 6-45 and replace with the following:

Use a Material Transfer Vehicle (MTV) when placing all asphalt concrete plant mix pavements which require the use of asphalt binder grade PG 76-22 and for all types of OGAFC, unless otherwise approved. Use a MTV for all surface mix regardless of binder grade placed on Interstate facilities. Where required above, utilize the MTV when placing all full width travel lanes, collector lanes, ramps, and loops.

Page 6-44, Article 610-8 SPREADING AND FINISHING, third full paragraph, replace the first sentence with the following:

Use the 30 foot minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all layers, including resurfacing and asphalt in-lays, unless otherwise specified or approved.

Page 6-50, Article 610-13 DENSITY ACCEPTANCE, delete the second paragraph and replace with the following:

As an exception, when the first layer of mix is a surface course and is being placed directly on an unprimed aggregate or soil base, the layer will be included in the "Other" construction category.

Page 6-50, Article 610-13 DENSITY ACCEPTANCE, delete the formula and description in the middle of the page and replace with the following:,

 $PF = 100 - 10(D)^{1.465}$

Where: PF = Pay Factor (computed to 0.1%)

D = the deficiency of the lot average density,

not to exceed 2.0%

Page 6-51, Article 610-15 MEASUREMENT AND PAYMENT, fourth paragraph, delete and replace with the following:

Furnishing asphalt binder will be paid for as provided in Article 620-4.

Page 6-53, Article 620-4 MEASUREMENT AND PAYMENT, modify as follows:

Second paragraph, delete the first sentence and replace with the following:

Where recycled plant mix is being produced, the grade of asphalt binder shall be paid for based on the grade for the specified mix type as shown in Table 610-2.

Sixth paragraph, delete the last sentence.

Seventh paragraph, delete the paragraph and replace with the following:

The adjusted contract unit price will then be applied to the theoretical quantity of asphalt binder authorized for use in the plant mix placed during the partial payment period involved, except that where recycled plant mix is used, the adjusted unit price will be applied only to the theoretical number of tons of additional asphalt binder materials required by the job mix formula.

Add the following pay item:

Pay ItemPay UnitAsphalt Binder for Plant Mix, Grade PG 70-28Ton

Page 6-59, Article 650-5 CONSTRUCTION REQUIREMENTS delete the second paragraph from the bottom of the page beginning "Use a Material Transfer Vehicle (MTV)..." and replace with the following:

Use a Material Transfer Vehicle (MTV) when placing all asphalt concrete plant mix pavements which require the use of asphalt binder grade PG 76-22 and for all types of OGAFC, unless otherwise approved. Use a MTV for all surface mix regardless of binder grade placed on Interstate facilities. Where required above, utilize the MTV when placing all full width travel lanes, collector lanes, ramps, and loops.

Page 6-69, TABLE 660-1 MATERIAL APPLICATION RATES AND TEMPERATURES, add the following:

Type of Coat	Grade of Asphalt	Asphalt Rate gal/yd²	Application Temperature °F	Aggregate Size	Aggregate Rate lb./sq. yd. Total
Sand Seal	CRS-2 or CRS-2P	0.22-0.30	150-175	Blotting Sand	12-15

Page 6-75, Subarticle 660-9(B) Asphalt Seal Coat, add the following as sub-item (5)

(5) Sand Seal

Place the fully required amount of asphalt material in one application and immediately cover with the seal coat aggregate. Uniformly spread the fully required amount of aggregate in one application and correct all non-uniform areas prior to rolling.

Immediately after the aggregate has been uniformly spread, perform rolling.

When directed, broom excess aggregate material from the surface of the seal coat.

When the sand seal is to be constructed for temporary sealing purposes only and will not be used by traffic, other grades of asphalt material meeting the requirements of Articles 1020-6 and 1020-7 may be used in lieu of the grade of asphalt required by Table 660-1 when approved.

Page 6-76, Article 661-1 DESCRIPTION, add the following as the 2nd paragraph:

Provide and conduct the quality control and required testing for acceptance of the UBWC in accordance with *Quality Management System for Asphalt Pavements (OGAFC, PADL, and Ultra-Thin HMA Version)*, included in the contract.

Page 6-76, Article 661-2 MATERIALS, add the following after Asphalt Binder, Grade 70-28:

Item	Section
Asphalt Binder, Grade 76-22	1020
Reclaimed Asphalt Shingles	1012

Page 6-78, Subarticle 661-2(E), Asphalt Binder For Plant Mix, Grade PG 70-28, rename as ASPHALT BINDER FOR PLANT MIX and add the following as the first paragraph:

Use either PG 70-28 or PG 76-22 binder in the mix design. Where PG 76-22 is being used in the production of Ultra-thin, the grade of asphalt binder to be paid for will be PG 70-28, unless otherwise approved.

Page 6-79, Subarticle 661-2(G) Composition of Mix, add the following as the third sentence of the first paragraph.

The percent of asphalt binder contributed from the RAS shall not exceed 20% of the total binder in the completed mix.

Page 6-80, Article 661-2(G) Composition of Mix, replace Table 661-4 and associated notes with the following:

		-4 – MIXTURE DE esign Criteria (%	ESIGN CRITERIA Passing by Weight)	
Standard S	Sieves	1/2 in. Type A	3/8 in. Type B	1/4 in. Type C
ASTM	mm		(% Passing by Weigl	ht)
¾ ınch	19.0	100		
½ ınch	12.5	85 - 100	100	
3/8 inch	9.5	60 - 80	85 - 100	100
#4	4.75	28 - 38	28 – 44	40 - 55
#8	2.36	19 - 32	17 – 34	22 - 32
#16	1.18	15 - 23	13 - 23	15 - 25
#30	0.600	10 - 18	8 - 18	10 - 18
#50	0.300	8 - 13	6 - 13	8 - 13
#100	0.150	6 - 10	4 - 10	6 - 10
#200	0.075	4.0 - 7.0	3.0 - 7.0	4.0 - 7.0
		Mix Design Crit	teria	
		1/2 in. Type A	3/8 in. Type B	1/4 in. Type C
Asphalt Content, %		4.6 - 5.6	4.6 - 5.8	5.0 – 5.8
Draindown Test, AASHTO T 305			0.1% max.	
Moisture Sensitivity AASHTO T 283*	,		80% mın.	
Application Rate, lb	/ yd²	90	70	50
Approximate Applic		3/4	5/8	1/2
Asphalt PG Grade,		PG 70-28 or	PG 70-28 or	PG 70-28 or
AASHTO M 320		PG 76-22	PG 76-22	PG 76-22

NOTE: *Specimens for T-283 testing are to be compacted using the SUPERPAVE gyratory compactor. The mixtures shall be compacted using 100 gyrations to achieve specimens approximately 95 mm in height. Use mixture and compaction temperatures recommended by the binder supplier.

Page 6-80, Subarticle 661-3(A) Equipment, add the following as the first paragraph:

Use asphalt mixing plants in accordance with Article 610-5 of the Standard Specifications.

Page 6-82, Subarticle 661-3(C), Application of Ultra-thin Bonded Wearing Course, delete the first paragraph and add the following as the first and second paragraphs.

Use only one asphalt binder PG grade for the entire project, unless the Engineer gives written approval.

Do not place Ultra-thin Bonded Wearing Course between October 31 and April 1, when the pavement surface temperature is less than 50°F or on a wet pavement. In addition, when PG 76-22 binder is used in the JMF, place the wearing course only when the road pavement surface temperature is 60°F or higher and the air temperature in the shade away from artificial heat is 60°F or higher.

Page 10-40, Subarticle 1012-1(A) General, add the following at the end of the last paragraph, last sentence:

or ultra-thin bonded wearing course.

Page 10-41, Table 1012-1, delete the entries for OGAFC and add new entries for OGAFC and a row for UBWC with entries:

Mix Type	Coarse Aggregate Angularity ^(b) ASTM D5821	Fine Aggregate Angularity % Minimum AASHTO T304 Method A	Sand Equivalent % Minimum AASHTO T176	Flat & Elongated 5:1 Ratio % Maximum ASTM D4791 Section 8.4
S 9.5 D	100/100	45	50	10
OGAFC	100/100	N/A	N/A	10
UBWC	100/85	40	45	10

Delete Note (c) under the Table 1012-1 and replace with the following:

(c) Does not apply to Mix Types SF 9.5A and S 9.5B.

Page 10-42, Subarticle 1012-1(B)(6) Toughness (Resistance to Abrasion), add as the last sentence:

The percentage loss for aggregate used in UBWC shall be no more than 35%.

Page 10-43, Subarticle 1012-1(F) Reclaimed Asphalt Shingle Material (RAS), insert the following immediately following the first paragraph:

(1) Mix Design RAS

Incorporate RAS from stockpiles that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design.

(2) Mix Production RAS

New Source RAS is defined as acceptable material which was not included in the stockpile when samples were taken for mix design purposes. Process new source RAS so that all materials will pass a 1/2" sieve prior to introduction into the plant mixer unit.

After a stockpile of processed RAS has been sampled and mix designs made from these samples, do not add new source RAS to the original stockpile without prior field testing to insure

gradation and binder uniformity. Sample and test new source RAS before blending with the existing stockpile.

Store new source RAS in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAS may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

RAS contamination including but not limited to excessive dirt, debris, clean stone, concrete will not be allowed.

Field approval of new source RAS will be based on the table below and volumetric mix properties on the mix with the new source RAS included. Provided these tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAS may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of the table below, do not use the new source RAS unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

NEW SOURCE RAS GRADATION and BINDER TOLERANCES
(Apply Tolerances to Mix Design Data)

(Apply Tolerances to IV	IIA Design Data)					
0-6%]	0-6% RAS					
P _b %	±1.6%					
Sieve Size (mm)	Tolerance					
9.5	±1					
4.75	±5					
2.36	±4					
1.18	±4					
0.300	±4					
0.150	±4					
0.075	+2.0					

Page 10-43 through 10-45, Subarticle 1012-1(G), delete this in its entirety and replace with the following:

(G) Reclaimed Asphalt Pavement (RAP)

(1) Mix Design RAP

Incorporate RAP from stockpiles or other sources that have been tested for uniformity of gradation and binder content prior to use in an asphalt mix design. Use reclaimed asphalt pavement that meets all requirements specified for *one of* the following *two* classifications.

(a) Millings

Existing reclaimed asphalt pavement (RAP) that is removed from its original location by a milling process as specified in Section 607. Millings should be such that it has a uniform

gradation and binder content and all materials will pass a 2" sieve prior to introduction into the plant mixer unit.

(b) Processed RAP

RAP that is processed in some manner (possibly by crushing and/or use of a blending method) to produce a uniform gradation and binder content in the RAP prior to use in a recycled mix. Process RAP so that all materials have a uniform gradation and binder content and will pass a 1" sieve prior to introduction into the plant mixer unit.

(c) Fractionated RAP

Fractionated RAP is defined as having two or more RAP stockpiles, where the RAP is divided into coarse and fine fractions. Grade RAP so that all materials will pass a 1" sieve. The coarse RAP stockpile shall only contain material retained on a 3/8" screen, unless otherwise approved. The fine RAP stockpile shall only contain material passing the 3/8" screen, unless otherwise approved. The Engineer may allow the Contractor to use an alternate to the 3/8" screen to fractionate the RAP. The maximum percentages of fractionated RAP may be comprised of coarse, fine, or the combination of both. Utilize a separate cold feed bin for each stockpile of fractionated RAP used.

(d) Approved Stockpiled RAP

Approved Stockpiled RAP is defined as fractionated RAP which has been isolated and tested for asphalt content, gradation, and asphalt binder characteristics with the intent to be used in mix designs with greater than 30% RAP materials. Fractionate the RAP in accordance with Subarticle 1012-1(G)(1)(c). Utilize a separate cold feed bin for each approved stockpile of RAP used.

Perform extraction tests at a rate of 1 per 1000 tons of RAP, with a minimum of 5 tests per stockpile to determine the asphalt content and gradation. Separate stockpiles of RAP material by fine and coarse fractions. Erect and maintain a sign satisfactory to the Engineer on each stockpile to identify the material. Assure that no deleterious material is allowed in any stockpile. The Engineer may reject by visual inspection any stockpiles that are not kept clean, separated, and free of foreign materials.

Submit requests for RAP stockpile approval to the Engineer with the following information at the time of the request:

- (1) Approximate tons of materials in stockpile
- (2) Name or Identification number for the stockpile
- (3) Asphalt binder content and gradation test results
- (4) Asphalt characteristics of the Stockpile.

For the Stockpiled RAP to be considered for approval, the gradation and asphalt content shall be uniform. Individual test results, when compared to the target, will be accepted if within the tolerances listed below:

APPROVED STOCKPILED RAP GRADATION and BINDER TOLERANCES
(Apply Tolerances to Mix Design Data)

(Apply Toleral	nces to Mix Design Data)
P _b %	±0.3%
Sieve Size (mm)	Percent Passing
25.0	±5%
19.0	±5%
12.5	±5%
9.5	±5%
4.75	±5%
2.36	±4%
1.18	±4%
0.300	±4%
0.150	±4%
0.075	±1.5%

Note: If more than 20% of the individual sieves are out of the gradation tolerances, or if more than 20% of the asphalt binder content test results fall outside the appropriate tolerances, the RAP shall not be used in HMA unless the RAP representing the failing tests is removed from the stockpile.

Do not add additional material to any approved RAP stockpile, unless otherwise approved by the Engineer.

Maintain at the plant site a record system for all approved RAP stockpiles. Include at a minimum the following: Stockpile identification and a sketch of all stockpile areas at the plant site; all RAP test results (including asphalt content, gradation, and asphalt binder characteristics).

(2) Mix Production RAP

During mix production, use RAP that meets the criteria for one of the following categories:

(a) Mix Design RAP

RAP contained in the mix design stockpiles as described above may be used in all applicable JMFs. These stockpiles have been pretested: however, they are subject to required QC/QA testing in accordance with Subarticle 609-5(C)(2).

(b) New Source RAP

New Source RAP is defined as any acceptable material that was not included in the stockpile or other source when samples were taken for mix design purposes. Process new source RAP so that all materials have a uniform gradation and binder content and will pass a 2" sieve prior to introduction into the plant mixer unit.

After a stockpile of millings, processed RAP, or fractionated RAP has been sampled and mix designs made from these samples, do not add new source RAP to the original stockpile without

prior field testing to insure gradation and binder uniformity. Sample and test new source RAP before blending with the existing stockpile.

Store new source RAP in a separate stockpile until the material can be sampled and tested for comparison with the original recycled mix design data. New source RAP may also be placed against the existing stockpile in a linear manner provided it is sampled for mix design conformity prior to its use in the recycled mix.

Unprocessed RAP is asphalt material that was not milled and/or has not been processed to obtain a uniform gradation and binder content and is not representative of the RAP used during the applicable mix design. Unprocessed RAP shall not be incorporated into any JMFs prior to processing. Different sources of unprocessed RAP may be stockpiled together provided it is generally free of contamination and will be processed prior to use in a recycled mix. RAP contamination in the form of excessive dirt, debris, clean stone, concrete, etc. will not be allowed. Incidental amounts of dirt, concrete, and clean stone may be acceptable. Unprocessed RAP may be processed and then classified as a new source RAP as described above.

Field approval of new source RAP will be based on Table 1012-2 below and volumetric mix properties on the mix with the new source RAP included. Provided the Table 1012-2 tolerances are met, volumetric properties of the new mix will then be performed. If all volumetric mix properties meet the mix design criteria for that mix type, the new source RAP may continue to be used.

If the gradation, binder content, or any of the volumetric mix properties are not within the allowable tolerances of Table 1012-2, do not use the new source RAP unless approved by the Engineer. The Contractor may elect to either not use the stockpile, to request an adjustment to the JMF, or to redesign the mix.

TABLE 1012-2 NEW SOURCE RAP GRADATION and BINDER TOLERANCES (Apply Tolerances to Mix Design Data) 0-20% RAP 30⁺ % RAP Mix 20⁺-30 % RAP **Type** Sieve Inter. Surf. **Base** Inter. Surf. Base Inter. Surf. **Base** (mm) P_b % $\pm 0.7\%$ $\pm 0.4\%$ $\pm 0.3\%$ 25.0 ±5 ±10 ±7 19.0 ±10 ±7 ±7 ±5 ±5 ±10 12.5 ±10 ±7 ±5 ±5 ±10 ±7 9.5 ±5 ±7 ±10 -4.75 ±7 ±7 ±5 ±5 ±10 ±10 2.36 ±5 ±5 ±5 ±4 ±4 ±4 ±8 ±8 ±8 1.18 ±5 ±4 ±8 ±8 ±8 ±5 ±5 ±4 ±4 0.300 ±4 ±8 ±5 ±4 ±4 ±8 ±8 ±5 ±5 0.150 ±8 ±5 ±4

±2

±2

±4

±4

±2

±1.5

±1.5

±1.5

0.075

±4

ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:

(11-21-00) SP6 R15

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

Asphalt Concrete Base Course	Type B 25.0	4.3%
Asphalt Concrete Intermediate Course	Type I 19.0	4.7%
Asphalt Concrete Surface Course	Type S 4.75A	7.0%
Asphalt Concrete Surface Course	Type SF 9.5A	6.5%
Asphalt Concrete Surface Course	Type S 9.5	6.0%
Asphalt Concrete Surface Course	Type S 12.5	5.5%

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the 2006 Standard Specifications.

ASPHALT PLANT MIXTURES:

(7-1-95) SP6 R20

Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer.

PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:

(11-21-00)

SP6 R25

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the 2006 Standard Specifications.

The base price index for asphalt binder for plant mix is \$618.67 per ton.

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on May 1, 2011.

CONCRETE PAVEMENTS AND SHOULDERS:

(10-16-07) (Rev 7-20-10)

SP7 R20

Revise the 2006 Standard Specifications as follows:

Page 10-2, Subarticle 1000-3(A) Composition and Design, delete the Subarticle and substitute the following:

Submit concrete paving mix design in terms of saturated surface dry weights on M&T Form 312U for approval a minimum of 30 days prior to proposed use. Use a mix that contains a minimum of 526 pounds of cement per cubic yard, a maximum water cement ratio of 0.559, an air content in the range of 4.5 to 5.5 percent, a maximum slump of 1.5" and a minimum flexural strength of 650 psi and a minimum compressive strength of 4,500 psi at 28 days.

The cement content of the mix design may be reduced by a maximum of 20% and replaced with fly ash at a minimum rate of 1.2 pounds of fly ash to each pound of cement replaced. Use a maximum water-cementitious material ratio not to exceed 0.538.

The cement content of the mix design may be reduced by a maximum of 50% and replaced with blast furnace slag pound for pound.

Include in the mix design the source of aggregates, cement, fly ash, slag, and admixtures; the gradation and specific gravity of the aggregates; the fineness modulus (F.M.) of the fine aggregate; and the dry rodded unit weight and size of the coarse aggregate. Submit test results showing that the mix design conforms to the criteria, including the 1, 3, 7, 14 and 28-day strengths of the average of two beams and the average of two cylinders for each age made and tested in accordance with AASHTO R39, T22 and T97. Design the mix to produce an average strength sufficient to indicate that a minimum strength of 650 psi in flexure and 4,500 psi in compression will be achieved in the field within 28 days.

If any change is made to the mix design, submit a new mix design.

If any major change is made to the mix design, also submit new test results showing the mix design conforms to the criteria. A major change to the mix design is defined as:

- 1) A source change in Coarse aggregate, Fine aggregate, Cement or Pozzolan (applies only to a change from one type of pozzolan to another; e.g., Class F fly ash to Class C fly ash).
- 2) A quantitative change in Coarse aggregate (applies to an increase or decrease greater than 5 %), Fine aggregate (applies to an increase or decrease greater than 5 %), Water (applies to an increase only), Cement (applies to a decrease only), Pozzolan (applies to a decrease only).

Where concrete with a higher slump for hand methods of placing and finishing is necessary, submit an adjusted mix design for approval to provide a maximum slump of 3" and to maintain the water-cementitious material ratio established by the original mix design.

Page 10-6, Table 1000-1, under column titled "Minimum compressive Strength at 28 days, psi", in row titled "Pavement", delete "560 flexural" and substitute "4,500".

SECTION 700 GENERAL REQUIREMENT FOR PORTLAND CEMENT CONCRETE PAVING

Page 7-1, Article 700-3 CONCRETE HAULING EQUIPMENT, delete the fourth paragraph and substitute the following:

For concrete hauled in a transit mix (ready mix) truck, use Table 1000-2 to determine the maximum elapsed time. For concrete hauled in other equipment, minimize the elapsed time to be 60 minutes or less, unless otherwise approved. The elapsed time is defined as the period from first contact between mixing water and cement until the entire operation of placing and finishing up to micro-surfacing, including corrective measures if necessary, has been completed.

Page 7-2, Article 700-4 PREPARATION OF SUBGRADE AND BASE, fourth paragraph, delete the 3rd and 4th sentence and substitute the following:

Set pins at a distance no farther than 50 feet apart. When located on a vertical curve, set pins no farther than 25 feet apart.

Page 7-3, Subarticle 700-5(A)(4), delete the 2nd and 3rd paragraph and substitute the following:

Where additional pavement, aggregate or soil must be placed adjacent to new pavement by machine methods, do not place it until the concrete has attained a compressive strength of at least 3000 psi.

Construction equipment or hauling equipment will not be allowed over the pavement until the concrete has attained a compressive strength of 3,000 psi.

Page 7-5, Article 700-7 FINISHING, insert the following as the second sentence:

The use of excessive water for finishing will not be allowed.

Page 7-5, Subarticle 700-8(C) Hot Weather, 1st sentence:

Substitute 90°F for 80°F.

Page 7-7, Subarticle 700-11(A) General, delete the fourth paragraph and substitute the following:

Immediately after sawing the joint to the dimensions shown on the plans, completely remove the resulting slurry from the joint. Immediately reapply curing membrane following the sawing operation to damaged areas in the vicinity of the joint.

Page 7-8, insert the following as Subarticle 700-11(G):

(G) Verification of Dowel Bar Alignment

Use either properly secured dowel baskets or a dowel bar inserter, provided the ability to correctly locate and align the dowels at the joints is demonstrated as described below.

Provide a calibrated magnetic imaging device that will document dowel bar location and alignment. Calibrate the magnetic imaging device to the type and size dowel bar used in the work. Utilize this device as a process control and make necessary adjustment to ensure the dowels are placed in the correct location.

Scan at least 25% percent of the joints in the initial placement or 1.0 mile of pavement, whichever is greater, at random intervals throughout the pavement each time the paving train is mobilized. Mark scanned joints on the pavement.

Scan all joints in this initial placement if the dowel bars exhibit longitudinal translation (side shift), horizontal translation, vertical translation (depth), horizontal skew, or vertical tilt, above the allowable tolerances defined below. In addition, continue scanning no less than 25% of the joints until it is established that the dowel bar inserter or secured dowel basket assemblies are consistently placing the dowel bars at the correct location (meeting the tolerances defined below). Once the engineer determines that consistency is established, the contractor may reduce the percentage of scanned joints to no less than 10%. Any time inconsistency in the placement of the dowel bars becomes evident, additional scanning may be required up to 100% of the joints.

If consistency of the proper dowel bar alignment cannot be established within a reasonable time frame, the Engineer will have the option of suspending the paving operation.

Provide a report of the scanned joints within 48 hours of completing the day's production. The report should include the station and lane of the joint scanned, as well as the horizontal location, depth, longitudinal translation (side shift), horizontal skew, and vertical tilt, of each dowel bar in the joint. If a dowel bar inserter is used, the joint score described below should also be provided in the report.

Longitudinal translation (side shift) is defined as the position of the center of the dowel bar in relation to the sawed joint. The maximum allowable longitudinal translation (side shift) is 2 inches.

Horizontal translation is defined as difference in the actual dowel bar location from its theoretical position as detailed in the standard details. The maximum allowable horizontal translation is 2 inches.

Vertical translation (depth) is the difference in the actual dowel bar location from the theoretical midpoint of the slab. The maximum allowable vertical translation is 1/2 inch higher than the theoretical midpoint, and 1 inch lower than the theoretical midpoint.

Dowel bar misalignment, either vertical tilt or horizontal skew is defined as the difference in position of the dowel bar ends with respect to each other. Vertical tilt is measured in the vertical axis whereas horizontal skew is measured in the horizontal axis.

If a dowel bar inserter is used, determine a joint score for each joint scanned. The joint score is a measure of the combined effects from the dowel's horizontal skew or vertical tilt. The joint score is determined by summing the product of the weight (shown in the table below) and the number of bars in each misalignment category and adding 1. The vertical tilt and horizontal skew should be evaluated and the greater

misalignment shall be utilized in determining the joint score. If two lanes are poured simultaneously, the joint score is calculated for the 24 foot section.

Misalignment Category, mm	Weight			
$0 \le d \le 15$	0			
$15 < d \le 20$	2			
$20 < d \le 25$	4			
$25 < d \le 38$	5			
$38 \leq d$	10			

where d is the individual dowel bar misalignment.

A joint that has a joint score of 10 or greater will be considered locked.

When a locked joint as defined above is discovered, scan the two joints immediately adjacent to the locked joint. If either of the adjacent joints are deemed to be locked, provide a written proposal to address the dowel misalignment for each locked joint. No corrective action should be performed without written approval.

Any and all corrective action necessitated by improper joint alignment shall be at no cost to the Department.

Page 7-9, Article 700-13 USE OF NEW PAVEMENT OR SHOULDER, delete the Article and substitute the following:

Traffic or other heavy equipment will not be allowed on the concrete pavement or shoulder until the estimated compressive strength of the concrete using the maturity method has exceeded 3,000 psi unless otherwise permitted.

Estimate the compressive strength of concrete pavement in accordance with the most current version of ASTM C 1074 Standard Practice for Estimating Concrete Strength by the Maturity Method unless otherwise specified herein.

Furnish thermocouples or thermistors and digital data logging maturity meters that automatically compute and display the maturity index in terms of a temperature-time factor. The maturity meters must be capable of storing a minimum of 28 days worth of data and exporting data into an Excel spreadsheet. Submit the proposed equipment to the Engineer for approval.

When establishing a strength-maturity relationship, perform compressive tests at ages 1, 3, 7, 14 and 28 days in accordance with AASHTO Test Method T22.

Use the temperature-time factor maturity function to compute the maturity index from the measured temperature history of the concrete. Set the datum temperature at -10° C to calculate the temperature-time factor in Equation 1 of ASTM C 1074.

Establish and submit a strength-maturity relationship in conjunction with each concrete pavement mix design. Determine the temperature-time factor corresponding to the strength-maturity relationship at 3,000 psi, TTF. Any changes to plant operations, material sources,

or mix proportions will affect the strength-maturity relationship. If any changes occur during production, develop a new strength-maturity relationship unless otherwise directed.

Verify the strength-maturity relationship during the first day's production. Utilize the temperature-time factor developed at mix design TTF to verify the production strength-maturity relationship. Verify the strength-maturity relationship at a minimum of every 10 calendar days or when production is suspended for more than 10 days. If the verification sample's compressive strength when tested at TTF is less than 3,000 psi, immediately suspend early opening of traffic on pavement that has not obtained TTF until a new strength-maturity relationship is developed.

No permanent traffic will be allowed on the pavement until construction of the joints, including all sawing, sealing, and curing that is required, has been completed.

Take particular care to protect the exposed pavement edges and ends.

Page 7-11, Subarticle 700-15(E) Flexural Strength, delete the Subarticle and replace with the following:

(E) Compressive Strength

Determine the compressive strength of concrete using one set of two 6" x 12" cylinders at 28 calendar days. Test samples will be made by the Engineer from the concrete as it comes from the mixer. The samples will be made and cured in accordance with AASHTO T 23. Test specimens will be tested by the Engineer in accordance with AASHTO T 22. Furnish curing facilities for the test samples in accordance with Section 725.

Page 7-11, Subarticle 700-15(F) Thickness, delete the first and second paragraphs and replace with the following:

The thickness of the pavement will be determined by measurement of cores in accordance with AASHTO T 148.

Take 4-inch diameter cores in the presence of the Engineer. Take the cores when the concrete has attained a compressive strength of at least 3,000 psi and at least 72 hours have elapsed since placement of the pavement. If the concrete has not attained a compressive strength of at least 3,000 psi, the gross vehicle weight rating of vehicles supporting the coring operation may not exceed 7,000 pounds. Take cores no later than 30 days after the pavement has been placed. The core locations for each lot will be selected at random by the Engineer.

Patch all core holes within 72 hours of taking the core, using a Department approved nonshrink grout compatible with the pavement or shoulder concrete.

SECTION 710 CONCRETE PAVEMENT

Page 7-12. Article 710-1 DESCRIPTION, 1st sentence:

Insert and cylinders after the words test beams.

Insert verifying dowel bar alignment; after the words sealing joints;.

Page 7-12. Article 710-3 COMPOSITION OF CONCRETE, after the first paragraph, insert the following:

Prior to placement, concrete produced by the plant must demonstrate that it is represented by the mix design submitted. The Engineer will make compressive and flexural samples from plant produced mix for testing at 1, 3, 7, 14 and 28 days of age. The strength results must be within 10% of the strengths reported by the Contractor during the mix design process. If the plant produced mix meets this criteria at 14 days of age, the Engineer will notify the Contractor that placement of concrete may commence.

If any major change as defined in section 1000-3 is made to the mix design, the process shall be initiated again.

Page 7-12. Article 710-4 ACCEPTANCE OF CONCRETE, delete the first sentence and replace with the following:

Test the concrete pavement for acceptance with respect to compressive strength and thickness on a lot by lot basis in accordance with the requirements of Article 700-15 and the following requirements:

For all concrete pavement, including mainline, shoulders, ramps, tapers, intersections, entrances, crossovers, and irregular areas not otherwise defined, produce a lot consisting of 1,333.3 square yards or fraction thereof placed within 28 calendar days. From each lot, make a minimum of one set of two 6" x 12" cylinders from a randomly selected batch of concrete. The average compression strength of the two cylinders is considered one test. If Division of Highways personnel make and test additional sets of cylinders for a lot, these sets will be averaged with the original set to determine the strength. In the case of low strength, the Engineer will perform an investigation.

Page 7-13, Article 710-6 FINISHING, insert the following at the end of the 6th paragraph.

Provide a textured surface with an average texture depth of 0.8 mm as tested in accordance with ASTM E 965 Test Method for Measuring Pavement Macrotexture Depth Using a Sand Volumetric Technique with no single test having a texture depth of 0.5 mm or less. Perform four randomly located tests in accordance with ASTM E 965 within the initial pavement lot of each mobilization and provide test results to the Engineer. A lot is defined in Article 710-4. If the average of the four tests does not meet the above criteria, make appropriate changes to the surface texture operations and test the next lot as detailed above.

Once the surface texture process is established to meet minimum texture requirements, maintain consistency within the operation to provide the above minimum texture depth. Perform additional sand patch tests in accordance with ASTM E 965 when directed.

Should the surface texture become damaged or reduced by rain or any other action, reestablish or restore surface texture by an approved method.

Page 7-15, Article 710-9 THICKNESS TOLERANCES, delete the 4th and 5th paragraph and substitute with the following:

When the measurement of the core from a lot is deficient by 0.2" or less from the plan thickness, full payment will be made. When such measurement is deficient by more than 0.2" from the plan thickness, take 2 additional cores at random within the lot and calculate the average thickness of the lot from the 3 cores.

In determining the average thickness of the pavement lot, the Engineer will use all 3 core measurements. Individual core measurements which are greater than the plan thickness plus 0.2" will be considered as the plan thickness plus 0.2". Individual cores which are less than the plan thickness minus 1.0" will be considered as the plan thickness minus 1.0 inch. If the average measurement of the 3 cores is within 0.2" from the plan thickness, full payment will be made. If the average measurement of the 3 cores is deficient by more than 0.2" from the plan thickness, an adjusted unit price in accordance with Subarticle 710-10(B) will be paid for the lot represented.

Areas found deficient in thickness by more than 1.0" will be removed and replaced with concrete of the thickness shown on the plans. Any full lane or full shoulder width repairs to the concrete pavement must be performed in accordance with the *North Carolina Department of Transportation Partial and Full Depth Repair Manual* and not be less than 1/2 of the panel length (7.5 feet).

When the measurement of any core (original core or additional cores taken to calculate the average) is less than the plan thickness by more than 1.0", the extent of the removal area due to thickness deficiency will be determined by taking additional exploratory cores at approximately 10 foot intervals parallel to the center line in each direction from the deficient core until an exploratory core is found in each direction which is within 1.0" of the plan thickness. The pavement between these exploratory cores will be removed full lane width wide and replaced with concrete of the thickness shown on the plans. Exploratory cores for deficient thickness will not be used in averages for adjusted unit price.

Patch all core holes within 72 hours of taking the core, using a Department approved nonshrink grout compatible with the pavement concrete.

Page 7-16, Subarticle 710-10(A) General, delete the second paragraph and substitute the following:

Separate measurement will be made of pavement that is deficient in thickness by more than 0.2" and of pavement that is deficient in compressive strength.

Page 7-17, Subarticle 710-10(C) Concrete Pavement Varying In Flexural Strength, delete the title, first paragraph and the equation for the pay factor calculation and substitute the following:

(C) Concrete Pavement Varying in Compressive Strength

The pay factor for pavement achieving a compressive strength in 28 days of 4,500 psi or greater is 100%. The pay factor for pavement achieving a compressive strength in 28 days between 3000 psi and 4,500 psi is determined by the following formula:

Pay Factor (%) = 0.0333(PSI) - 50

(pay factor rounded to nearest tenth of one percent)

Page 7-17, Subarticle 710-10(C) Concrete Pavement Varying In Flexural Strength, delete the first sentence of the third paragraph and substitute the following:

Any pavement that fails to attain 3,000 psi in compression is subject to removal.

Page 7-19, Article 720-4 ACCEPTANCE OF CONCRETE, delete the first sentence and substitute the following:

Concrete shoulders will be tested for acceptance with respect to compressive strength and thickness on a lot by lot basis.

Page 7-19, Article 720-9 THICKNESS TOLERANCES, replace the first paragraph with the following:

The thickness of the shoulder will be determined by measurement of cores in accordance with AASHTO T 148.

Page 7-20, Subarticle 720-10(C) Concrete Shoulder Varying in Flexural Strength, delete the title and the first sentence of the second paragraph and substitute the following, respectively:

(C) Concrete Pavement Varying in Compressive Strength

The quantities of concrete shoulder that fail to meet 4,500 psi, measured as provided in Article 710-10, will be paid for at an adjusted unit price per square yard completed in place and accepted.

SECTION 725 FIELD LABORATORY FOR PORTLAND CEMENT CONCRETE PAVEMENT

Page 7-21, Article 725-2, GENERAL REQUIREMENTS, replace with the following:

Furnish and maintain for the exclusive use of the Engineer a field office and laboratory in which to house and use all testing equipment needed. Only Department representatives will have access to these facilities. Provide a field office that is dust and water tight, floored, and

has an adequate foundation so as to prevent excessive floor movement. Provide a field office that contains 6 or more 110 volt electrical double outlets properly grounded and spaced; a telephone; at least 2 windows, satisfactory locks on all doors and windows; adequate lighting, heating, and air conditioning; sink; running water to sink; and satisfactory exhaust fan. Provide a field office that meets the following approximate minimum requirements: 200 square feet of floor space; 10 feet interior width; 6 feet 6 inches interior height; 20 square feet of counter space, 2.5 to 3 feet high and 2 feet deep with cabinets or drawers below the counter top; and 6 square feet of desk space not enclosed with cabinets. Locate the office in a position that will permit full view of the plant from the interior of the office. At or near the office, furnish toilet facilities, with waste disposal, available for use of the Department personnel. Maintain these toilets in a neat and clean condition.

Provide a laboratory trailer adjacent to the field office that is at least 400 square feet in area, approximately 20 feet wide, 20 feet long, and 7 feet in height. Provide a laboratory trailer that contains 6 or more 110 volt electrical double outlets properly grounded and spaced; satisfactory locks on all doors and windows; adequate lighting, heating, and air conditioning; sink; running water to sink; and satisfactory exhaust fans. Provide two workbenches that are approximately 10 feet long, 2 feet wide, and 2.5 feet high. One workbench shall be installed ınsıde the trailer and the other across the end of the trailer. Provide a shelter or roof over the outside workbench to provide protection from weather. Provide, in the laboratory, an adequate number of water storage tanks to hold all acceptance beams and cylinders and any additional beams and cylinders made for the purpose of determining early strengths. Construct the water storage tanks of non-corroding materials and have requirements for automatic control of the water temperature. Maintain the water in the tank at a temperature of 73°F ±3°F. Equip each tank with a recording thermometer with its bulb located in the water. Provide sufficient tank volume to maintain all beams and cylinders, stored with the long axis vertical, in a fully submerged condition for the duration of the required curing period. Furnish a wooden mixing board at least 3/4 inch thick and approximately 4 feet wide and 4 feet long that is covered on one side with sheet metal of at least 22 gage, at the shelter. Provide facilities to maintain the test beams and cylinders at temperature between 60°F and 80°F during initial curing.

BORROW EXCAVATION AND SHPO DOCUMENTATION FOR BORROW/WASTE SITES:

(12-18-07) (4-15-08) SP8 R02

Revise the 2006 Standard Specifications as follows:

Division 2 Earthwork

Page 2-16, Subarticle 230-1(D), add the words: The Contractor specifically waives as the first words of the sentence.

Page 2-17, Article 230-4(B) Contractor Furnished Sources, first paragraph, first sentence replace with the following:

Prior to the approval of any borrow sources developed for use on any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the removal of the borrow material from the borrow sources(s) will

have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places.

Division 8 Incidentals

Page 8-9, Article 802-2 General Requirements, add the following as the 1st paragraph:

Prior to the removal of any waste from any project, obtain certification from the State Historic Preservation Officer of the State Department of Cultural Resources certifying that the deposition of the waste material to the proposed waste area will have no effect on any known district, site building, structure, or object, architectural and/or archaeological that is included or eligible for inclusion in the National Register of Historic Places. Furnish a copy of this certification to the Engineer prior to performing any work in the proposed waste site.

Page 8-10, Article 802-2, General Requirements, 4th paragraph, add the following as the 2nd sentence:

The Department's borrow and waste site reclamation procedures for contracted projects is available on the NCDOT website and shall be used for all borrow and waste sites on this project.

MEDIAN BARRIER MOVABLE GATE:

(12-22-10)

Description

Furnish and install median barrier movable gate and any components necessary to connect the movable gate in accordance with the manufacturer's requirements at locations shown in the plans.

Materials

Provide one of the median barrier gates listed below or an approved equal.

The median barrier movable gate (Vulcan Barrier gate) as manufactured by:

Energy Absorption Systems, Inc. One East Wacker Drive Chicago, IL 60601-2076 Telephone: 804-241-2258 www.energyabsorption.com

The median barrier movable gate (ArmorGuard gate) as manufactured by:

Barrier Systems, Inc. 180 River Road R10 Vista, CA 94571

Telephone: 800-545-6311 ext. 112

www.barriersystemsinc.com

Prior to installation the Contractor shall submit to the Engineer:

- (A) FHWA acceptance letter for each median barrier movable gate unit certifying it meets the requirements of NCHRP Report 350, Test Level 3, in accordance with Article 106-2 of the 2006 Standard Specifications.
- (B) Certified working drawings and assembling instructions from the manufacturer for each median barrier movable gate in accordance with Article 105-2 of the 2006 Standard Specifications.

No modifications shall be made to the median barrier movable gate without the express written permission from the manufacturer.

Construction Methods

Perform installation in accordance with the details in the plans and the details and assembling instructions furnished by the manufacturer. Install the gate to allow it to be removed temporarily to allow access through the median concrete barrier. The gate will be a one piece system that will slide, roll or swing when disengaged.

Measurement and Payment

Median Barrier Movable Gate will be measured and paid at the contract unit price per each. Such prices and payment will be full compensation for all work covered by this provision including but not limited to furnishing, installing and all incidentals necessary to complete the work.

Payment will be made under:

Pay ItemPay UnitMedian Barrier Movable GateEach

REMOVAL OF EXISTING CONCRETE MEDIAN BARRIER:

2-19-09 SP

Description

Remove existing Concrete Median Barrier as shown in plans or as directed by the Engineer.

Methods

Remove Concrete Median Barrier and dispose of material.

Measurement and Payment

Removal of Existing Concrete Median Barrier will be measured and paid at the contract unit price per linear feet. Such prices and payment will be full compensation for all work covered by

this provision including but not limited to removal and disposal of the existing concrete median barrier.

Payment will be made under:

Pay Item
Removal of Existing Concrete Median Barrier

Pay Unit Linear Foot

REMOVAL OF EXISTING CONCRETE MEDIAN BARRIER (w/H-piles):

2-19-09

SP

Description

Remove existing Concrete Median Barrier w/H-piles as shown in plans or as directed by the Engineer.

Methods

Remove Concrete Median Barrier and dispose of material. Cut off H-piles at sub-grade and dispose of material. Remove H-piles as directed by the Engineer.

Measurement and Payment

Removal of Existing Concrete Median Barrier (w/H-piles) will be measured and paid at the contract unit price per linear feet. Such prices and payment will be full compensation for all work covered by this provision including but not limited to removal and disposal of the existing concrete median barrier and H-piles.

Payment will be made under:

Pay Item
Removal of Existing Concrete Median Barrier (w/H-piles)

Pay Unit Linear Foot

GALVANIZING: (8-17-10)

Revise the Standard Specifications as follows:

SP10 R03

Page 10-150, Subarticle 1076-1, Galvanizing, add a second paragraph as the follows:

Allow the Engineer to obtain samples of molten zinc directly from the galvanizing vat upon request.

AGGREGATE PRODUCTION:

(11-20-01)

SP10 R05

Provide aggregate from a producer who uses the current Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

CONCRETE BRICK AND BLOCK PRODUCTION:

(11-20-01)

SP10 R10

Provide concrete brick and block from a producer who uses the current Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project.

No price adjustment is allowed to contractors or producers who use the program. Participation in the program does not relieve the producer of the responsibility of complying with all requirements of the 2006 Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

PORTLAND CEMENT CONCRETE (Alkali-Silica Reaction):

SP10 R16

Revise the 2006 Standard Specifications as follows:

Article 1024-1(A), replace the 2nd paragraph with the following:

Certain combinations of cement and aggregate exhibit an adverse alkali-silica reaction. The alkalinity of any cement, expressed as sodium-oxide equivalent, shall not exceed 1.0 percent. For mix designs that contain non-reactive aggregates and cement with an alkali content less than 0.6%, straight cement or a combination of cement and fly ash, cement and ground granulated blast furnace slag or cement and microsilica may be used. The pozzolan quantity shall not exceed the amount shown in Table 1024-1. For mixes that contain cement with an alkali content between 0.6% and 1.0%, and for mixes that contain a reactive aggregate documented by the Department, regardless of the alkali content of the cement, use a pozzolan in the amount shown in Table 1024-1.

Obtain the list of reactive aggregates documented by the Department at:http://www.ncdot.org/doh/operations/materials/pdf/quarryasrprob.pdf

Table 1024-1 Pozzolans for Use in Portland Cement Concrete				
Class F Fly Ash	20% by weight of required cement content, with 1.2 lbs Class F fly ash per lb of cement replaced			
Ground Granulated Blast Furnace Slag	35%-50% by weight of required cement content with 1 lb slag per lb of cement replaced			
Microsilica	4%-8% by weight of required cement content, with 1 lb microsilica per lb of cement replaced			

WATER FOR CONCRETE:

(10-19-10) SP10 R17

Revise the Standard Specifications for Roads and Structures as follows:

Page 10-63, Article 1024-4, replace article with the following:

1024-4 WATER

Ensure that water used to condition, wash, or as an integral part of materials is clear and free from injurious amounts of oil, acid, alkali, organic matter, or other deleterious substance. It shall not be salty or brackish. Water used in the production of concrete or grout shall be from wells or public water systems which are suitable for drinking and must meet the criteria listed in Table 1024-1.

Test all water from wells and public water supplies from all out of state locations and in the following counties: Beaufort, Bertie, Brunswick, Camden, Carteret, Chowan, Craven, Currituck, Dare, Gates, Hyde, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Tyrell, and Washington unless the Engineer waives the testing requirements. Water from a municipal water supply in all other NC counties may be accepted by the Engineer without testing.

TABLE 1024-1
ACCEPTANCE CRITERIA FOR WATER
USED IN THE PRODUCTION OF CONCRETE

Requirement	Limit	Test Method				
Compressive Strength, minimum percent of control at 3 and 7 days	00 norcent	NCDOT Modified /				
	90 percent	AASHTO T106				
Time of set, deviation from	From 1:00 hr. earlier	NCDOT Modified /				
control	to 1:30 hr. later	AASHTO T131				
pH	4.5 to 8.5	NCDOT Modified /				
	4.5 10 6.5	AASHTO T26				
Chloride Ion Content, Max.	250 ppm	ASTM D512				
Total Solids Content (Residue), Max.		NCDOT Modified / Standard				
	1000 ppm	Methods for Examination of Water				
		and Wastewater				
Resistivity, Min.	0.500 kohm-cm NCDOT Modified /					
	0.500 Koliili-Cili	ASTM D1125				
Sulfate as SO ₄ , Max.	1500 ppm	NCDOT Modified /				
	1300 ppiii	ASTM D516				
Presence of Sugar	None	NCDOT Procedure				
Dissolved Organic Matter	None	NCDOT Modified /				
	none	AASHTO T26				

Page 10-65, Article 1026-4, replace article with the following:

1026-4 WATER

All water used for curing concrete shall meet the requirements of Article 1024-4 and Table 1024-1. Water from wells, streams, ponds, or public water systems may be used.

GLASS BEADS:

(7-18-06)(Rev 10-19-10) SP10 R35

Revise the 2006 Standard Specifications as follows:

Page 10-223, 1087-4(A) Composition, add the following as the fourth paragraph:

Glass beads shall have no more than 75 parts per million of arsenic as determined by the United States Environmental Protection Agency Method 6010B in conjunction with the United States Environmental Protection Agency Method 3052 modified.

Page 10-223, 1087-4(C) Gradation & Roundness, delete the last paragraph and replace the second sentence of the first paragraph with the following:

All Drop-On and Intermixed Glass Beads shall be tested in accordance with ASTM D1155.

Page 10-226, 1087-8 Material Certification, add the following below the first sentence:

Glass Beads (for paint, thermoplastic and polyurea) – Type 3 Material Certification for no more than 75 parts per million of arsenic

ENGINEERING FABRICS:

(7-18-06) (Rev 10-19-10)

SP10 R40

Revise the Standard Specifications as follows:

Page 10-99, Delete Section 1056 ENGINEERING FABRICS and replace it with the following:

SECTION 1056 ENGINEERING FABRICS

1056-1 General

Use engineering fabrics that meet the requirements of Article 4.1 of AASHTO M288 and have been evaluated by National Transportation Product Evaluation Program (NTPEP). When required, sew fabrics together in accordance with Article X1.1.4 of AASHTO M288. Provide sewn seams with seam strengths meeting the required strengths for the engineering fabric type and class specified.

Load, transport, unload and store fabrics such that they are kept clean and free of damage. Label, ship and store fabrics in accordance with Section 7 of AASHTO M288. Fabrics with defects, flaws, deterioration or damage will be rejected. Do not unwrap fabrics until just before

installation. With the exception of fabrics for temporary silt fences and mechanically stabilized earth (MSE) wall faces, do not leave fabrics exposed for more than 7 days before covering fabrics with material.

When required, use pins a minimum of 3/16" in diameter and 18" long with a point at one end and a head at the other end that will retain a steel washer with a minimum outside diameter of 1.5". When wire staples are required, provide staples in accordance with Subarticle 1060-8(D) of the Standard Specifications.

1056-2 Fabric Properties

Provide Type 1 Certified Mill Test Report, Type 2 Typical Certified Mill Test Report or Type 4 Certified Test Report in accordance with Article 106-3 of the *Standard Specifications*. Furnish certifications with minimum average roll values (MARV) as defined by ASTM D4439 for all fabric properties with the exception of elongation. For testing fabrics, a lot is defined as a single day's production.

Provide engineering fabric types and classes in accordance with the contract. Machine direction (MD) and cross-machine direction (CD) are as defined by ASTM D4439. Use woven or nonwoven fabrics with properties meeting the requirements of Table 1056-1.

TABLE 1056-1 FABRIC PROPERTY REQUIREMENTS

Property	ASTM		Requirements (MARV ¹)						
	Test Method	Type 1	Type 2	Type 3 ²	Type 4	Type 5 ³			
Typical Application		Shoulder Drains	Under Riprap	Temporary Silt Fence	Soil Stabilization	Temporary MSE Walls			
Elongation (MD & CD)	D4632	≥ 50 %	≥ 50 %	≤ 25 %	< 50 %	< 50 %			
Grab Strength (MD & CD)	D4632	90 lbs	205 lbs	100 lbs	180 lbs				
Tear Strength (MD & CD)	D4533	40 lbs	80 lbs		70 lbs				
Puncture Strength	D6241	220 lbs	440 lbs		370 lbs				
Wide Width Tensile Strength @ Ultimate (MD & CD)	D4595					2400 lbs/ft (unless required otherwise in the contract			
Permittivity	D4491	0.20 sec ⁻¹	0.20 sec ⁻¹	0.05 sec ⁻¹	0.05 sec ⁻¹	0.20 sec ⁻¹			
Apparent Opening Size ⁴	D4751	#60	#60	#30	#40	#30			
Ultraviolet Stability (retained strength) ⁵	D4355	50 %	50 %	70 %	50 %	50%			

¹MARV does not apply to elongation

QUALIFICATION OF WELDS AND PROCEDURES:

(7-21-09)

Page 10-143, Subarticle 1072-20(D) Qualification of Welds and Procedures, replace the third sentence of the first paragraph with the following:

SP10 R43

For all prequalified field welds, submit Welding Procedure Specifications (WPS) for each joint configuration for approval at least 30 days prior to performing any welding. In lieu of this, use

²Minimum roll width of 36" required

³Minimum roll width of 13 ft required

⁴US Sieve No. per AASHTO M92

⁵After 500 hours of exposure

the WPS provided and preapproved by the Department. These preapproved WPS are available from the Materials and Tests Unit or at:

http://www.ncdot.org/doh/operations/materials/structural/appr_proc.html. Use non-prequalified welds only if approved by the Engineer. Submit WPS for all non-prequalified welds to the Engineer for approval. At no cost to the Department, demonstrate their adequacy in accordance with the requirements of the Bridge Welding Code.

PORTABLE CONCRETE BARRIER:

(2-20-07)

SP10 R50

The 2006 Standard Specifications is revised as follows:

Page 10-245, Article 1090-1(A) General, add the following after the first sentence:

The requirement for approved galvanized connectors will be waived if the barrier remains the property of the Contractor.

CHANNELIZING DEVICES (Drums):

7-20-10

SP10 R60

Revise the 2006 Standard Specifications as follows:

Page 10-236, Subarticle 1089-5(A) Drums (1) General, replace the paragraph with the following:

(1) General

Provide drums composed of a body, alternating orange and white 4 band pattern of Type III-High Intensity Microprismatic Sheeting and ballasts that have been evaluated by NTPEP.

The following guidelines will be used during the transition from drums with the standard 5 band engineer's grade sheeting to the new 4 band configuration.

- (a) All <u>new</u> drums purchased <u>after July 20, 2010</u> shall have the new sheeting and 4 band configuration.
- (b) Existing 5 band drums with engineer's grade sheeting (both new and used devices in existing inventories) will be allowed for use on all on-going construction projects until project completion and will also be allowed for use on other projects until a sunset date has been established.
- (c) Intermixing of "old drums" and "new drums" on the same project is acceptable during the transition.
- (d) 4 band drums with engineer's grade sheeting will not be allowed at anytime.

Page 10-236, Subarticle 1089-5(A) Drums (3) Retroreflective Stripes, replace the paragraph with the following:

(3) Retroreflective Bands

Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands. The top band shall always be orange. Use a 6" to 8" wide band Type III—High Intensity Microprismatic Retroreflective Sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 2" for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 6-inch band. Apply the retroreflective sheeting directly to the drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the drums, or vehicle impact.

Page 10-237, Subarticle 1089-5(B) Skinny-Drums (1) General, replace the paragraph with the following:

(1) General

All existing skinny-drums that do not have Type III-High Intensity Microprismatic Sheeting as a minimum will have the same transition requirements as drums as stated above. All <u>new</u> skinny-drums purchased <u>after July 20, 2010</u> shall have Type III-High Intensity Microprismatic Sheeting as the minimum. Type IV and higher grade sheeting is acceptable for use on both new and used devices.

Provide skinny-drums composed of a body, reflective bands, and ballasts that have been evaluated by NTPEP.

Page 10-237, Subarticle 1089-5(B) Skinny Drums (3) Retroreflective Stripes, replace the paragraph with the following:

(3) Retroreflective Bands

Provide a minimum of 4 retroreflective bands- 2 orange and 2 white alternating horizontal circumferential bands for each skinny-drum. The top band shall always be orange. Use a 6" to 8" wide band Type III—High Intensity Microprismatic Retroreflective Sheeting or better that meets the requirement of Section 1093 for each band. Do not exceed 2" for any non-reflective spaces between orange and white stripes. Do not splice the retroreflective sheeting to create the 6-inch band. Apply the retroreflective sheeting directly to the skinny-drum surface. Do not apply the retroreflective sheeting over a pre-existing layer of retroreflective sheeting. Do not place bands over any protruding corrugations areas. No damage to the reflective sheeting should result from stacking and unstacking the skinny-drums, or vehicle impact.

CHANGEABLE MESSAGE SIGNS:

(11-21-06) SP11 R11

Revise the 2006 Standard Specifications as follows:

Page 11-9, Article 1120-3, Replace the 3rd sentence with the following:

Sign operator will adjust flash rate so that no more than two messages will be displayed and be legible to a driver when approaching the sign at the posted speed.

FLAGGERS:

(2-15-11) SP11 R20

Revise the 2006 Standard Specifications as follows:

Page 11-13, Article 1150-3 Construction Methods, replace the article with the following:

Provide the service of properly equipped and qualified flaggers (see *Roadway Standard Drawing* 1150.01) at locations and times for such period as necessary for the control and protection of vehicular and pedestrian traffic. Anyone who controls traffic is required to be qualified. Qualification consists of each flagger receiving proper training in the set-up and techniques of safely and competently performing a flagging operation. Qualification of flaggers is to be done at an NCDOT approved training agency. For a complete listing of these, see the Work Zone Traffic Control's webpage, http://www.ncdot.gov/doh/preconstruct/wztc/.

Prior to beginning work on the project, a Qualification Statement that all flaggers used on the project have been properly trained through an NCDOT approved training resource shall be provided to the Engineer.

Flagging operations are not allowed for the convenience of the Contractor's operations. However, if safety issues exist (i.e. sight or stopping sight distance), the Engineer may approve the use of flagging operations. Use flagging methods that comply with the guidelines in the MUTCD.

PAVEMENT MARKING LINES:

(11-21-06) (Rev. 08-17-10)

SP12 R01

Revise the 2006 Standard Specifications as follows:

Page 12-2, 1205-3(D) Time Limitations for Replacement, add the following at the beginning of the chart:

Facility Type Marking Type				Re	place	men	t Deac	iline		
Full-control-of-access	multi-lane	All	markings	Ву	the	end	of	each	workda	ay's
roadway (4 or more total	way (4 or more total lanes) and			ope	ration	if tl	ne la	ane is	opened	to
ramps, including Interstates symbols		ls	traf	fic						

Page 12-5, 1205-3 (H) Observation Period, delete 1205-3 (H) and replace with the following:

Maintain responsibility for debonding and color of the pavement markings during a 12 month observation period beginning upon final acceptance of the project as defined under Article 105-17. Guarantee the markings under the payment and performance bond in accordance with Article 105-17.

During the 12 month observation period, provide pavement marking material that shows no signs of failure due to blistering, chipping, bleeding, discoloration, smearing or spreading under heat or poor adhesion to the pavement materials. Pavement markings that debond due to snowplowing will not be considered a failed marking. Replace, at no additional expense to the Department, any pavement markings that do not perform satisfactorily under traffic during the 12 month observation period.

Page 12-8, 1205-4 (C) Application, delete the last two sentences of the second paragraph and replace with the following:

Produce in place markings with minimum retroreflective values shown below, as obtained with a LTL 2000 Retroreflectometer or Department approved mobile retroreflectometer. Retroreflective measurements will be taken within 30 days after final placement of the pavement marking.

Page 12-9, 1205-4 (D) Observation Period, delete the entire section and replace with the following:

In addition to the requirements of Subarticle 1205-3(H), maintain responsibility for minimum retroreflective values for a 30-day period beginning upon the Engineer's acceptance of all markings on the project. Guarantee retroreflective values of the markings during the 30-day period under the payment and performance bond in accordance with Article 105-17.

Page 12-9, 1205-5 (B) Application, delete the second sentence of the fourth paragraph and replace with the following:

Produce in place markings with minimum retroreflective values shown below, as obtained with a LTL 2000 Retroreflectometer or Department approved mobile retroreflectometer. Retroreflective measurements will be taken within 30 days after final placement of the pavement marking.

Page 12-10, 1205-5 (C) Observation Period, delete this entire section and replace with the following:

Maintain responsibility for minimum retroreflective values for a 30-day period beginning upon satisfactory final placement of all markings on the project. Guarantee retroreflective values of the markings during the 30-day period under the payment and performance bond in accordance with Article 105-17.

Page 12-14, Article 1205-9, Maintenance, delete Article 1205-9 and replace with the following:

Replace pavement markings that prematurely deteriorate, fail to adhere to the pavement, lack reflectorization, or are otherwise unsatisfactory during the life of the project or during the 12 month observation period as determined by the Engineer at no cost to the Department.

Upon notification from the Engineer, winterize the project by placing an initial or additional application of paint pavement marking lines in accordance with Article 1205-8. Payment for *Paint Pavement Marking Lines* required to winterize the project will be made in accordance with Article 1205-10 except that no payment will be made on resurfacing projects where paving is completed more than 30 days prior to the written notification by the Department that winterization is required.

Page 12-14, Article 1205-10, Measurement and Payment, add the following after the first sentence of the first paragraph:

In addition, *Paint Pavement Marking Lines* will be paid per linear foot for each 15 mil application placed in accordance with Subarticle 1205-8(C).