
Project Special Provisions Structure

Table of Contents

			Page
			#
Prestressed Concrete Members	(4-02-07)		1
Grout for Structures	(7-12-07)		1
Grout for Pile Blockouts, Backwall and Wings	(SPECIAL)		4
Unclassified Structure Excavation	(SPECIAL)		5
One Bar Metal Rail	(SPECIAL)		5
Submittal of Working Drawings	(9-16-08)		5
Falsework and Formwork	(7-18-06)		10
Crane Safety	(8-15-05)		15
Construction of Superstructure at Station 15+69.00	-L- (Bridge #31)	(7/18/06)	16
Construction of Superstructure at Station 15+29.77	-L- (Bridge #35)	(7/18/06)	16
Construction of Superstructure at Station 15+56.00	-L- (Bridge #40)	(7/18/06)	16
Construction of Superstructure at Station 15+65.09	-L- (Bridge #42)	(7/18/06)	17
Construction of Superstructure at Station 16+05.00	-L- (Bridge #44)	(7/18/06)	17
Construction of Substructure at Station 15+69.00 –	L- (Bridge #31)	(2/14/04)	18
Construction of Substructure at Station 15+29.77 –	L- (Bridge #35)	(2/14/04)	18
Construction of Substructure at Station 15+56.00 –	L- (Bridge #40)	(2/14/04)	18
Construction of Substructure at Station 15+65.09 –	L- (Bridge #42)	(2/14/04)	19
Construction of Substructure at Station 16+05.00 –	L- (Bridge #44)	(2/14/04)	19
16" Composite Prestressed Concrete Piles	(SPECIAL)		19
Pile Driving Analyzer	(11-17-06)		20
Temporary Shoring	(9-25-07)		24
Portable Traffic Signal System	(SPECIAL)		32
Traffic Control	(SPECIAL)		36
Galvanized Steel Piles	(SPECIAL)		37
Adhesively Anchored Anchor Bolts or Dowels	(6-11-07)		37

PROJECT SPECIAL PROVISIONS STRUCTURE

PAMLICO COUNTY

PRESTRESSED CONCRETE MEMBERS

(4-02-07)

The 2006 Standard Specifications shall be revised as follows:

In Section 1078-1 "General" of the Standard Specifications, add the following after the second paragraph:

(A) Producer Qualification

Producers of precast, prestressed concrete members are required to establish proof of their competency and responsibility in accordance with the Precast/Prestressed Concrete Institute's (PCI) Plant Certification Program in order to perform work for the project. Certification of the manufacturing plant under the PCI program and submission of proof of certification to the State Materials Engineer is required prior to beginning fabrication. Maintain certification at all times while work is being performed for the Department. Submit proof of certification following each PCI audit to the State Materials Engineer for continued qualification. These same requirements apply to producers subcontracting work from the producer directly employed by the Contractor. Employ producers PCI certified in Product Group B, Bridge Products, and in one of the appropriate categories as listed below:

- B2 Prestressed Miscellaneous Bridge Products: Includes solid piles, sheet piles and bent caps.
- B3 Prestressed Straight-Strand Bridge Members: Includes all box beams, cored slabs, straight-strand girders and bulb-tees, bridge deck panels, hollow piles, prestressed culverts and straight strand segmental components.
- B4 Prestressed Deflected-Strand Bridge Members: Includes deflected strand girders and bulb-tees, haunched girders, deflected strand segmental superstructure components and other post-tensioned elements.

Categories for other elements will be as required by the project special provision or plans.

GROUT FOR STRUCTURES

(7-12-07)

1.0 Description

This special provision addresses grout for use in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and anchored retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Provide grout composed of portland cement, water and at the Contractor's option, fine aggregate and/or pozzolan. If necessary, use set controlling admixtures.

Proportion, mix and place grout in accordance with the plans, the applicable section of the *Standard Specifications* or special provision for the application and this provision.

2.0 Materials

Refer to Division 10 of the Standard Specifications:

Item	Article
Portland Cement	1024-1
Water	1024-4
Fine Aggregate	1014-1
Fly Ash	1024-5
Ground Granulated Blast Furnace Slag	1024-6
Admixtures	1024-3

At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements.

3.0 Requirements

Unless required elsewhere in the Contract, provide non-metallic grout with minimum compressive strengths as follows:

Property	Requirement
Compressive Strength @ 3 days	2500 psi (17.2 MPa)
Compressive Strength @ 28 days	4500 psi (31.0 MPa)

For applications other than micropiles, soil nails and ground anchors, use non-shrink grout with shrinkage of less than 0.15%.

When using approved packaged grout, a grout mix design submittal is not required. Submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in accordance with the applicable section of the *Standard Specifications* or special provision for the structure. Use an approved testing laboratory to determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal is accepted.

For each grout mix design, provide laboratory test results for compressive strength, density, flow and if applicable, aggregate gradation and shrinkage. Submit compressive strength for at least 3 cube and 2 cylinder specimens at the age of 3, 7, 14 and 28 days for a total of at least 20 specimens tested. Perform laboratory tests in accordance with the following:

Property	Test Method
Compressive Strength	AASHTO T106 and T22
Density	AASHTO T133
Flow for Sand Cement Grout	ASTM C939 (as modified below)
Flow for Neat Cement Grout	Marsh Funnel and Cup
(no fine aggregate)	API RP 13B-1, Section 2.2
Aggregate Gradation for Sand Cement Grout	AASHTO T27
Shrinkage for Non-shrink Grout	ASTM C1090

When testing grout for flow in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ inch (13 to 19 mm).

When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements.

Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects.

4.0 Sampling and Placement

The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. Use API RP 13B-1 for field testing grout flow and density of neat cement grout. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days.

Do not place grout if the grout temperature is less than 50°F (10°C) or more than 90°F (32°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 40°F (4°C).

Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement. Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below.

ELAPSED TIME FOR PLACING GROUT (with continuous agitation)				
Maximum Elapsed Time				
Air or Grout Temperature Whichever is Higher	No Set Retarding Admixture Used Set Retarding Admixture Used Used			
90°F (32°C) or above	30 min.	1 hr. 15 min.		
80°F (27°C) through 89°F (31°C)	45 min.	1 hr. 30 min.		
79°F (26°C) or below	60 min.	1 hr. 45 min.		

5.0 Micellaneous

Comply with Articles 1000-9 through 1000-12 of the *Standard Specifications* to the extent applicable for grout in lieu of concrete.

GROUT FOR PILE BLOCKOUTS, BACKWALLS AND WINGS

(SPECIAL)

Use grout that is a commercially manufactured non-shrink, non-metallic material meeting the requirements of the Standard Specifications when water or water and aggregate is added in accordance with the manufacturer's recommendations.

The grout shall be free of soluble chlorides and contain less than one percent soluble sulfate.

Initial setting time shall not be less than 10 minutes when tested in accordance with ASTM C266.

Compressive strength shall be at least 5000 psi at 3 days.

Compressive strength in the laboratory will be determined in accordance with ASTM C109 except that the test mix shall contain only water and the dry manufactured material. Compressive strength will be determined in the field by molding and testing 4" x 8" cylinders in accordance with AASHTO T22.

When tested in accordance with ASTM C666, Procedure A, the durability factor of the grout shall not be less than 80.

The quantity of water added to the mix shall be in accordance with the manufacturer's recommendations.

Aggregate may be added to the mix only where recommended or permitted by the manufacturer. The quantity and gradation of the aggregate will be in accordance with the manufacturer's recommendations.

Furnish a Type 4 material certification showing results of tests conducted to determine the properties listed in the Standard Specifications and to assure that the material is non-shirk.

The Engineer reserves the right to reject material based on unsatisfactory performance.

UNCLASSIFIED STRUCTURE EXCAVATION

(SPECIAL)

The 2006 Standard Specifications shall be revised as follows:

Unclassified structure excavation shall be in accordance with Section 412 of the Standard Specifications with the following exception:

Basis of Payment:

Payment for "Unclassified Structure Excavation" will be included at the contract lump sum bid price for "Excavation and Embankment". This price shall be full compensation for all materials, tools, equipment, labor, and for all incidentals necessary to complete the work.

ONE BAR METAL RAIL

(SPECIAL)

The 2006 Standard Specifications shall be revised as follows:

The metal rail shall be in accordance with Section 1074 of the Standard Specifications with the following exception:

Basis of Payment:

Payment for "One Bar Metal Rail" will be included in the contract lump sum bid price for "Construction of Superstructure". This price shall be full compensation for all materials, tools, equipment, labor, and for all incidentals necessary to complete the work.

SUBMITTAL OF WORKING DRAWINGS

(9-16-08)

1.0 General

Submit working drawings in accordance with Article 105-2 of the Standard Specifications and the requirements of this special provision. For the purposes of this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for this project. Submittals are only necessary for those items as required by the Standard Specifications, other Special Provisions or contract plans. Make submittals that are not specifically noted in this Special Provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals.

If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal

requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below.

In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items.

2.0 Addresses and Contacts

For submittals to the Structure Design Unit, use the following addresses:

Via US mail:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation
Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581

Attention: Mr. P. D. Lambert, P. E.

Via other delivery service:

Mr. G. R. Perfetti, P. E.
State Bridge Design Engineer
North Carolina Department
of Transportation
Structure Design Unit
1000 Birch Ridge Drive
Raleigh, NC 27610

Attention: Mr. P. D. Lambert, P. E.

For submittals to the Geotechnical Engineering Unit, use the following addresses:

For projects in Divisions 1-7, use the following Eastern Regional Office address:

Via US mail:

Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Via other delivery service:

Mr. K. J. Kim, Ph. D., P. E.
Eastern Regional Geotechnical
Manager
North Carolina Department
of Transportation
Geotechnical Engineering Unit
Eastern Regional Office
3301 Jones Sausage Road, Suite 100
Garner, NC 27529

For projects in Divisions 8-14, use the following Western Regional Office address:

Via US mail:

Via other delivery service:

Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical

Manager

North Carolina Department

of Transportation

Geotechnical Engineering Unit

Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075

Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts:

Primary Structures Contact:

Paul Lambert (919) 250 – 4041

(919) 250 - 4082 facsimile

plambert@ncdot.gov

Secondary Structures Contacts:

James Gaither

(919) 250 - 4042

David Stark

(919) 250 - 4044

Eastern Regional Geotechnical Contact (Divisions 1-7):

K. J. Kim

(919) 662 - 4710

(919) 662 - 3095 facsimile

kkim@ncdot.gov

Western Regional Geotechnical Contact (Divisions 8-14):

John Pilipchuk

(704)455 - 8902

(704) 455 - 8912 facsimile

jpilipchuk@ncdot.gov

3.0 Submittal Copies

Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit.

The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit.

Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed by the Engineer.

STRUCTURE SUBMITTALS

Submittal	Copies Required by Structure Design Unit	Copies Required by Geotechnical Engineering Unit	Contract Reference Requiring Submittal 1
Arch Culvert Falsework	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Box Culvert Falsework ⁷	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Cofferdams	6	2	Article 410-4
Evazote Joint Seals 6	9	0	"Evazote Joint Seals"
Expansion Joint Seals (hold down plate type with base angle)	9	0	"Expansion Joint Seals"
Expansion Joint Seals (modular)	2, then 9	0	"Modular Expansion Joint Seals"
Expansion Joint Seals (strip seals)	9	0	"Strip Seals"
Falsework & Forms ² (substructure)	8	0	Article 420-3 & "Falsework and Formwork"
Falsework & Forms (superstructure)	8	0	Article 420-3 & "Falsework and Formwork"
Girder Erection over Railroad	5	0	Railroad Provisions
Maintenance and Protection of Traffic Beneath Proposed Structure	8	0	"Maintenance and Protection of Traffic Beneath Proposed Structure at Station"
Metal Bridge Railing	8	0	Plan Note
Metal Stay-in-Place Forms	8	0	Article 420-3
Metalwork for Elastomeric Bearings 4,5	7	0	Article 1072-10
Miscellaneous Metalwork 4,5	7	0	Article 1072-10
Optional Disc Bearings 4	8	0	"Optional Disc Bearings"
Overhead Signs	13	0	Article 903-3(C) & Applicable Provisions
Pile Splicers	7	2	Subarticle 450-7(C) & "Piles"
Pile Points	7	2	Subarticle 450-7(D) & "Piles"

Placement of Equipment on Structures (cranes, etc.)	7	0	Article 420-20
Pot Bearings 4	8	0	"Pot Bearings"
Precast Concrete Box Culverts	2, then 1 reproducible	0	"Optional Precast Reinforced Concrete Box Culvert at Station
Precast Retaining Wall Panels	10	1	Article 1077-2
Prestressed Concrete Cored Slab (detensioning sequences) 3	6	0	Article 1078-11
Prestressed Concrete Deck Panels	6 and 1 reproducible	0	Article 420-3
Prestressed Concrete Girder (strand elongation and detensioning sequences)	6	0	Articles 1078-8 and 1078-11
Removal of Existing Structure over Railroad	5	0	Railroad Provisions
Revised Bridge Deck Plans (adaptation to prestressed deck panels)	2, then 1 reproducible	0	Article 420-3
Revised Bridge Deck Plans (adaptation to modular expansion joint seals)	2, then 1 reproducible	0	"Modular Expansion Joint Seals"
Sound Barrier Wall Casting Plans	10	0	Article 1077-2 & "Sound Barrier Wall"
Sound Barrier Wall Steel Fabrication Plans ⁵	7	0	Article 1072-10 & "Sound Barrier Wall"
Structural Steel 4	2, then 7	0	Article 1072-10
Temporary Detour Structures	10	2	Article 400-3 & "Construction, Maintenance and Removal of Temporary Structure at Station ""
TFE Expansion Bearings 4	8	0	Article 1072-10

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the Project Special Provision by that name. Articles or subarticles refer to the Standard Specifications.
- 2. Submittals for these items are necessary only when required by a note on plans.
- 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials and Tests Unit.
- 4. The fabricator may submit these items directly to the Structure Design Unit.
- 5. The two sets of preliminary submittals required by Article 1072-10 of the Standard Specifications are not required for these items.
- 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision.
- 7. Submittals are necessary only when the top slab thickness is 18 inches or greater.

GEOTECHNICAL SUBMITTALS

Submittal ¹	Copies Required by Geotechnical Engineering Unit	Copies Required by Structure Design Unit	Contract Reference Requiring Submittal 2
Crosshole Sonic Logging (CSL) Reports	1	0	"Crosshole Sonic Logging"
Drilled Pier Construction Sequence Plans	1	0	"Drilled Piers"
Pile Driving Analyzer (PDA) Reports	2	0	"Pile Driving Analyzer"
Pile Driving Equipment Data ³	1	0	Article 450-5 & "Piles"
Retaining Walls	8	2	Applicable Provisions
Contractor Designed Shoring	7	2	"Temporary Shoring", Anchored Temporary Shoring" & Temporary Soil Nail Walls"

FOOTNOTES

- 1. With the exception of "Pile Driving Equipment Data", electronic copies of geotechnical submittals are required. See referenced provision.
- 2. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the *Standard Specifications*.
- Download Pile Driving Equipment Data Form from following link: http://www.ncdot.org/doh/preconstruct/highway/geotech/formprovdet/
 Submit one hard copy of the completed form to the Resident Engineer. Submit a second copy of the completed form electronically, by facsimile or via US Mail or other delivery service to the Geotechnical Engineering Unit. Electronic submission is preferred. See second page of form for submittal instructions.

FALSEWORK AND FORMWORK

(7-18-06)

6.0 Description

Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork.

Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure.

Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure.

7.0 Materials

Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required.

8.0 Design Requirements

A. Working Drawings

Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work.

When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract.

When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design.

Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO *Guide Design Specifications for Bridge Temporary Works* except as noted herein.

1. Wind Loads

Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina.

Table 2.2 - Wind Pressure Values

Height Zone	Pressure, lb	Pressure, lb/ft² (kPa) for Indicated Wind Velocity, mph (km/hr)			
feet (m) above ground	70 (112.7)	80 (128.7)	90 (144.8)	100 (160.9)	110 (177.0)
0 to 30 (0 to 9.1)	15 (0.72)	20 (0.96)	25 (1.20)	30 (1.44)	35 (1.68)
30 to 50 (9.1 to 15.2)	20 (0.96)	25 (1.20)	30 (1.44)	35 (1.68)	40 (1.92)
50 to 100 (15.2 to 30.5)	25 (1.20)	30 (1.44)	35 (1.68)	40 (1.92)	45 (2.15)
Over 100 (30.5)	30 (1.44)	35 (1.68)	40 (1.92)	45 (2.15)	50 (2.39)

2. Time of Removal

The following requirements replace those of Article 3.4.8.2.

Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions.

Do not remove forms until the concrete has sufficient strength to prevent damage to the surface.

Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina

Table 2.2.1. Steady State Maximum Wind Speeds by Countries in North Caronna					
COUNTY	25 YR (mph) (km/hr)	COUNTY	25 YR (mph) (km/hr)	COUNTY	25 YR (mph) (km/hr)
Alamance	70 (112.7)	Franklin	70 (112.7)	Pamlico	100 (160.9)
Alexander	70 (112.7)	Gaston	70 (112.7)	Pasquotank	100 (160.9)
Alleghany	70 (112.7)	Gates	90 (144.8)	Pender	100 (160.9)
Anson	70 (112.7)	Graham	80 (128.7)	Perquimans	100 (160.9)
Ashe	70 (112.7)	Granville	70 (112.7)	Person	70 (112.7)
Avery	70 (112.7)	Greene	80 (128.7)	Pitt	90 (144.8)
Beaufort	100 (160.9)	Guilford	70 (112.7)	Polk	80 (128.7)
Bertie	90 (144.8)	Halifax	80 (128.7)	Randolph	70 (112.7)
Bladen	90 (144.8)	Harnett	70 (112.7)	Richmond	70 (112.7)
Brunswick	100 (160.9)	Haywood	80 (128.7)	Robeson	80 (128.7)
Buncombe	80 (128.7)	Henderson	80 (128.7)	Rockingham	70 (112.7)
Burke	70 (112.7)	Hertford	90 (144.8)	Rowan	70 (112.7)
Cabarrus	70 (112.7)	Hoke	70 (112.7)	Rutherford	70 (112.7)
Caldwell	70 (112.7)	Hyde	110 (177.0)	Sampson	90 (144.8)
Camden	100 (160.9)	Iredell	70 (112.7)	Scotland	70 (112.7)
Carteret	110 (177.0)	Jackson	80 (128.7)	Stanley	70 (112.7)
Caswell	70 (112.7)	Johnston	80 (128.7)	Stokes	70 (112.7)
Catawba	70 (112.7)	Jones	100 (160.9)	Surry	70 (112.7)
Cherokee	80 (128.7)	Lee	70 (112.7)	Swain	80 (128.7)
Chatham	70 (112.7)	Lenoir	90 (144.8)	Translyvania	80 (128.7)
Chowan	90 (144.8)	Lincoln	70 (112.7)	Tyrell	100 (160.9)
Clay	80 (128.7)	Macon	80 (128.7)	Union	70 (112.7)
Cleveland	70 (112.7)	Madison	80 (128.7)	Vance	70 (112.7)
Columbus	90 (144.8)	Martin	90 (144.8)	Wake	70 (112.7)
Craven	100 (160.9)	McDowell	70 (112.7)	Warren	70 (112.7)
Cumberland	80 (128.7)	Mecklenburg	70 (112.7)	Washington	100 (160.9)
Currituck	100 (160.9)	Mitchell	70 (112.7)	Watauga	70 (112.7)
Dare	110 (177.0)	Montgomery	70(112.7)	Wayne	80 (128.7)
Davidson	70 (112.7)	Moore	70 (112.7)	Wilkes	70 (112.7)
Davie	70 (112.7)	Nash	80 (128.7)	Wilson	80 (128.7)
Duplin	90 (144.8)	New Hanover	100 (160.9)	Yadkin	70 (112.7)
Durham	70 (112.7)	Northampton	80 (128.7)	Yancey	70 (112.7)
Edgecombe	80 (128.7)	Onslow	100 (160.9)		
Forsyth	70 (112.7)	Orange	70 (112.7)		

Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize, metallize or otherwise protect these devices as directed by the Engineer. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works.

B. Review and Approval

The Engineer is responsible for the review and approval of temporary works' drawings.

Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work.

Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings.

The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer.

On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer.

If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete.

9.0 Construction Requirements

All requirements of Section 420 of the Standard Specifications apply.

Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings.

Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm). For cast-in-place concrete

structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips.

A. Maintenance and Inspection

Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site.

Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading.

B. Foundations

Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations.

The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure.

Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports.

If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations.

The Engineer reviews and approves the proposed pile and soil bearing capacities.

10.0 Removal

Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work.

Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight.

11.0 Method of Measurement

Unless otherwise specified, temporary works will not be directly measured.

12.0 Basis of Payment

Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork.

CRANE SAFETY (8-15-05)

Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA).

Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations.

Crane Safety Submittal List

- A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns.
- B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices.
- C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request.
- D. <u>Certifications</u>: By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator.

CONSTRUCTION OF SUPERSTRUCTURE AT STATION 15+69.00 –L- (Bridge #31) (7/18/06)

Furnish and erect prestressed concrete cored slabs (including anchor assembly for temporary barrier), elastomeric bearings, one bar metal rails and cast-in-place concrete parapets.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all work covered by this provision including but not limited to furnishing all materials, labor, tools, equipment and all incidentals necessary to complete the work.

Payment will be made under:

Construction of Superstructure at Station 15+69.00 -L- (Bridge #31)....Lump Sum

CONSTRUCTION OF SUPERSTRUCTURE AT STATION 15+29.77 –L- (Bridge #35) (7/18/06)

Furnish and erect prestressed concrete cored slabs (including anchor assembly for temporary barrier), elastomeric bearings, one bar metal rails and cast-in-place concrete parapets.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all work covered by this provision including but not limited to furnishing all materials, labor, tools, equipment and all incidentals necessary to complete the work.

Payment will be made under:

Construction of Superstructure at Station 15+29.77 -L- (Bridge #35)....Lump Sum

CONSTRUCTION OF SUPERSTRUCTURE AT STATION 15+56.00 –L- (Bridge #40) (7/18/06)

Furnish and erect prestressed concrete cored slabs (including anchor assembly for temporary barrier), elastomeric bearings, one bar metal rails and cast-in-place concrete parapets.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

77

No measurement will be made for these items. The price and payment below will be full compensation for all work covered by this provision including but not limited to furnishing all materials, labor, tools, equipment and all incidentals necessary to complete the work.

Payment will be made under:

Construction of Superstructure at Station 15+56.00 –L- (Bridge #40)....Lump Sum

CONSTRUCTION OF SUPERSTRUCTURE AT STATION 15+65.09 -L- (Bridge #42) (7/18/06)

Furnish and erect prestressed concrete cored slabs (including anchor assembly for temporary barrier), elastomeric bearings, one bar metal rails and cast-in-place concrete parapets.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all work covered by this provision including but not limited to furnishing all materials, labor, tools, equipment and all incidentals necessary to complete the work.

Payment will be made under:

Construction of Superstructure at Station 15+65.09 –L- (Bridge #42)....Lump Sum

CONSTRUCTION OF SUPERSTRUCTURE AT STATION 16+05.00 –L- (Bridge #44) (7/18/06)

Furnish and erect prestressed concrete cored slabs (including anchor assembly for temporary barrier), elastomeric bearings, one bar metal rails and cast-in-place concrete parapets.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all work covered by this provision including but not limited to furnishing all materials, labor, tools, equipment and all incidentals necessary to complete the work.

Payment will be made under:

Construction of Superstructure at Station 16+05.00 –L- (Bridge #44)....Lump Sum

C202322 78

CONSTRUCTION OF SUBSTRUCTURE AT STATION 15+69.00 –L- (Bridge #31) (2/14/04)

Furnish and place all reinforcing steel and concrete necessary to construct all precast end bents and precast bents. Exclude all piles from the pay item.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all items required to complete the work described above.

Payment will be made under:

Construction of Substructure at Station 15+69.00 -L- (Bridge #31)...Lump Sum

CONSTRUCTION OF SUBSTRUCTURE AT STATION 15+29.77 –L- (Bridge #35) (2/14/04)

Furnish and place all reinforcing steel and concrete necessary to construct all precast end bents and precast bents. Exclude all piles from the pay item.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all items required to complete the work described above.

Payment will be made under:

Construction of Substructure at Station 15+29.77 -L- (Bridge #35)...Lump Sum

CONSTRUCTION OF SUBSTRUCTURE AT STATION 15+56.00 –L- (Bridge #40) (2/14/04)

Furnish and place all reinforcing steel and concrete necessary to construct all precast end bents and precast bents. Exclude all piles from the pay item.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all items required to complete the work described above.

Payment will be made under:

Construction of Substructure at Station 15+56.00 –L- (Bridge #40)...Lump Sum

CONSTRUCTION OF SUBSTRUCTURE AT STATION 15+65.09 -L- (Bridge #42) (2/14/04)

Furnish and place all reinforcing steel and concrete necessary to construct all precast end bents and precast bents. Exclude all piles from the pay item.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all items required to complete the work described above.

Payment will be made under:

Construction of Substructure at Station 15+65.09 –L- (Bridge #42)...Lump Sum

CONSTRUCTION OF SUBSTRUCTURE AT STATION 16+05.00 –L- (Bridge #44) (2/14/04)

Furnish and place all reinforcing steel and concrete necessary to construct all precast end bents and precast bents. Exclude all piles from the pay item.

Complete all work in accordance with the contract plans and the Standard Specifications except payment for these items will be as described below.

No measurement will be made for these items. The price and payment below will be full compensation for all items required to complete the work described above.

Payment will be made under:

Construction of Substructure at Station 16+05.00 –L- (Bridge #44)...Lump Sum

16" COMPOSITE PRESTRESSED CONCRETE PILES

(SPECIAL)

Provide composite piles in accordance with the plans, Section 450 of the Standard Specifications and this special provision.

Use Section 450-9 of the Standard Specifications for Measurement and Payment except revise the pay item name to Linear Feet of "16" Composite Prestressed Concrete Piles."

(11-17-06)

1. General

This special provision governs driving piles with a pile driving analyzer (PDA) in accordance with the plans and as directed by the Engineer. The PDA test method is described in ASTM D4945, "Standard Test Method for High-Strain Dynamic Testing of Piles". Install piles in accordance with Section 450 of the Standard Specifications and this provision.

Submit the proposed pile driving methods and equipment (Pile Driving Equipment Data Form) in accordance with the Submittal of Working Drawings Special Provision and the Standard Specifications. The Engineer will respond with preliminary approval or rejection of the proposed pile driving methods and equipment within 5 calendar days. Preliminary approval is required before driving piles with a PDA. Notify the Engineer of the pile driving schedule a minimum of 14 calendar days in advance.

Either a PDA Consultant or the NCDOT Geotechnical Engineering Unit, as directed by the Engineer, shall perform PDA testing and analysis. If required, retain a PDA Consultant and submit experience documentation with the proposed pile driving methods and equipment.

The Engineer will determine the number of piles and which piles to be tested with the PDA based upon the subsurface conditions and the pile installation sequence and progress.

The Engineer will complete the review of the proposed pile driving methods and equipment and provide the required driving resistance within 10 calendar days after the Engineer receives the PDA report or the Geotechnical Engineering Unit completes the PDA testing. A PDA report for PDA testing on multiple piles may be required as directed by the Engineer before the 10 day time period begins.

2. Prequalification and Experience Requirements

Use a PDA Consultant prequalified by the Contractual Services Unit of the Department for Pile Driving Analyzer work (work code 3060).

Submit documentation that the PDA Consultant has successfully completed at least 5 PDA testing projects within the last 3 years of a scope and complexity similar to that anticipated for this project. Documentation should include the General Contractor and Owner's name and current contact information with descriptions of each past project. Also, submit documentation of experience with PDA manufactured by Pile Dynamics, Inc and the CAse Pile Wave Analysis Program (CAPWAP).

Provide a list of PDA Operators and the Project Engineer that will be assigned to this project. Submit documentation for each PDA Operator verifying employment with the PDA Consultant and a minimum of 1 year experience in collecting PDA data with past projects of scope and complexity similar to that anticipated for this project. Submit documentation for the Project Engineer verifying employment with the PDA Consultant, registration as professional engineer in North Carolina and a minimum of 5 years experience in PDA testing and analysis with past projects of scope and complexity similar to that anticipated for this project. Documentation

should include resumes, references, certifications, project lists, experience descriptions and details, etc.

3. Preparation for PDA Testing

Provide piles for PDA testing that are 5 ft (1.5 m) longer, or as directed by the Engineer, than the estimated pile lengths shown on the plans. Supply 110 V, 60 Hz, 30 Amp of AC electrical power to operate the PDA equipment. Direct current welders or non-constant power sources are unacceptable.

Provide a suitable shelter to protect the PDA equipment and operator from conditions of sun, water, wind and temperature. The shelter should have a minimum floor size of 6 ft x 6 ft (2 m x 2 m) and a minimum roof height of 8 ft (2.5 m). If necessary, heat or cool the shelter to maintain a temperature between 50 and 85 degrees F (10 and 30 degrees C). Place the shelter within 75 ft (23 m) of the pile such that the PDA cables reach the computer and the operator can clearly observe the pile. The Engineer may waive the shelter requirement if weather conditions allow.

Drill up to a total of 16 bolt holes in either 2 or 4 sides of the pile, as directed by the PDA Consultant or the Engineer, at an approximate distance equal to 3 times the pile diameter below the head of the pile. If the PDA Consultant or the Engineer choose to drill the bolt holes, provide the necessary equipment, tools and assistance to do so. A hammer drill is required for concrete piles and up to 2 hours may be required to drill the holes.

Lift, align and rotate the pile to be tested with the PDA as directed by the PDA Consultant or the Engineer. Place the pile in the leads and template so that the PDA instruments and their accompanying wires will not be damaged.

The PDA Consultant or the Engineer will furnish the PDA measuring instruments and materials for installing the instruments. Attach the PDA instruments as directed by the PDA Consultant or the Engineer after the pile is placed in the leads and the template.

4. PDA Testing

Use only the preliminarily approved pile driving methods and equipment to drive piles with the PDA instruments attached. Drive the pile as directed by the PDA Operator or the Engineer in order to measure the wavespeed of the pile.

Drive the pile to the required bearing capacity and specified tip elevation, if applicable, as shown on the plans or as directed by the PDA Consultant or the Engineer. During pile driving, the PDA will be used to evaluate, including but not limited to, the following: hammer performance, bearing capacity, distribution of soil resistance, pile driving stresses, energy transfer, pile integrity and various soil parameters such as quake and damping.

The PDA Operator or the Engineer may require the Contractor to modify the pile installation procedure during driving as follows:

- Reduce the hammer energy
- Drive deeper or shallower because of variations in the subsurface conditions

- Readjust the transducers
- Realign the pile

The Contractor is responsible in terms of both actual expense and time delays for any damage to the PDA instruments and supporting equipment due to the Contractor's fault or negligence. Replace any damaged equipment at no additional cost to the Department.

5. Redriving Piles

When directed by the Engineer, reattach the PDA instruments and restrike or redrive the pile in accordance with Section 4.0 above and Subarticle 450-7(E) of the Standard Specifications. Obtain the required stroke and penetration (at least 6 in or 150 mm) or as directed by the PDA Operator or the Engineer. The PDA Operator or the Engineer will record dynamic measurements during restriking and redriving. The Engineer may require restriking and redriving more than once on the same pile. The Engineer will determine when PDA testing has been satisfactorily completed.

6. CAPWAP Analysis and PDA Report

The PDA Consultant shall perform analysis of the PDA raw data with the CAPWAP (version 2006 or later). At a minimum, analysis is required for a hammer blow near the end of initial drive. Additional CAPWAP analysis may be required as determined by the PDA Consultant or the Engineer.

Submit three hard copies and an electronic copy (pdf or jpeg format on CD or DVD) of a PDA report sealed by the Project Engineer within 7 calendar days after field testing is complete. The PDA report shall include but not be limited to the following:

A. Title Sheet

- NCDOT TIP number and WBS element number
- Project description
- County
- Bridge station number
- Pile location
- Personnel
- Report date
- B. Introduction
- C. Site and Subsurface Conditions (including water table elevation)
- D. Pile Details
 - Pile type and length
 - Required bearing capacity and factor of safety

C202322 83

- Concrete compressive strength and/or steel pile yield strength
- Pile splice type and locations
- Pile batter
- Installation methods including use of jetting, preaugering, spudding, vibratory hammer, template, barge, etc.

E. Driving Details

- Hammer make, model and type
- Hammer and pile cushion type and thickness
- Pile helmet weight
- Hammer efficiency and operation data including fuel settings, bounce chamber pressure, blows per minute, equipment volume and pressure
- Ground or mud line elevation and template reference elevation at the time of driving
- Final pile tip elevation
- Driving resistance (ram stroke, blows per foot (0.3 meter) and set for last 10 hammer blows)
- Restrike and redrive information

F. PDA field work details

G. CAPWAP analysis results

• Table showing percent skin and tip, skin and toe damping, skin and toe quake and match quality

H. Summary/Conclusions

I. Attachments

- Boring log(s)
- Pile Driving Equipment Data Form (from Contractor)
- Field pile driving inspection data (from Engineer)
- Accelerometer and strain gauge locations
- Accelerometer and strain gauge serial numbers and calibration information
- PDA hardware model and CAPWAP software version information
- Electronic copy of all PDA raw data and executable CAPWAP input and output files (version 2006 format)

7. Measurement And Payment

The complete and accepted PDA testing will be paid for at the unit bid price for "PDA Testing" per each. Include in the unit bid price for "PDA Testing" all costs for providing the PDA, PDA instruments and materials for installing the instruments and recording the dynamic measurements

the first time the pile is tested with the PDA. Also include in the unit bid price for "PDA Testing" all costs for performing the CAPWAP analysis on data collected during initial drive and preparing and submitting the PDA report. No payment for "PDA Testing" will be made if the PDA report submitted is incomplete as described in Section 5.0. No payment for "PDA Testing" will be made if the Department performs PDA testing. If the Department does not perform PDA testing, the number of "PDA Testing" per pile will be equal to one.

The complete and accepted PDA assistance will be paid for at the unit bid price for "PDA Assistance" per each. Include in the unit bid price for "PDA Assistance" all costs for PDA preparation and support including all materials, labor, tools, equipment, mobilization and incidentals necessary to complete the work described in this provision excluding the costs for the PDA testing described above. Costs for PDA preparation will not be paid for separately. The number of "PDA Assistance" per pile will be equal to one for each pile tested with the PDA.

The cost of the pile and the installation including driving, restriking and redriving will be paid for separately in accordance with the Standard Specifications and will not be part of these PDA pay items.

TEMPORARY SHORING

(2-20-07) (9-25-07)

SP11 R02

Description

Design and construct temporary shoring in accordance with the contract. Temporary shoring includes standard shoring, temporary mechanically stabilized earth (MSE) walls and non-anchored temporary shoring. Trench boxes are not considered temporary shoring. "Standard shoring" refers to standard temporary shoring and standard temporary MSE walls. Notes on plans may restrict the use of one or both types of standard shoring. Notes on plans may also require or prohibit temporary MSE walls.

Unless noted otherwise on the plans, temporary shoring is required as shown on the plans and to maintain traffic. Temporary shoring to maintain traffic is defined as shoring necessary to provide lateral support to the side of an excavation or embankment parallel to an open travelway when a theoretical 2:1 (H:V) slope from the bottom of the excavation or embankment intersects the existing ground line closer than 5 ft from the edge of pavement of the open travelway.

This provision is not applicable to anchored temporary shoring or the installation of pipes, drop inlets and utilities unless noted otherwise on the plans. Provide all shoring submittals before beginning work.

Materials

(A) Certifications, Storage and Handling

Provide Type 7 Contractor's Certifications in accordance with Article 106-3 of the *Standard Specifications* for all shoring materials used with the exception of reinforcing fabrics and geogrids. Furnish Type 2 Typical Certified Mill Test Reports in accordance with Article 106-3 of the *Standard Specifications* for all

seam strengths and reinforcing fabric and geogrid properties. Provide minimum average roll values (MARV) in accordance with ASTM D4759 for test reports. For testing reinforcing fabric and geogrids, a lot is defined as a single day's production.

Load, transport, unload and store shoring materials such that they are kept clean and free of damage. Identify, store and handle all geogrids and geotextile fabrics in accordance with ASTM D4873. Geogrids and fabrics with defects, flaws, deterioration or damage will be rejected. Do not leave fabrics or geogrids uncovered for more than 7 days.

(B) Shoring Backfill

Use shoring backfill for the construction of all temporary shoring including backfilling behind non-anchored temporary shoring and in the reinforced zone for temporary MSE walls. Unless backfilling around culverts, use shoring backfill that meets the requirements of Class II Type I, Class III, Class V or Class VI select material in accordance with Section 1016 of the *Standard Specifications* or AASHTO M145 for soil classification A-2-4 with a maximum plasticity index (PI) of 6. For backfilling around culverts, use shoring backfill as defined herein except for A-2-4 soil.

(C) Non-anchored Temporary Shoring

Use steel shapes, plates and piles that meet the requirements of ASTM A36 and steel sheet piles that meet the requirements of Article 1084-2 of the *Standard Specifications*. Use timber lagging with a minimum allowable bending stress of 1000 psi that meets the requirements of Article 1082-1 of the *Standard Specifications*. For standard temporary shoring, use pile sections and lengths and lagging sizes as shown on the plans.

(D) Temporary MSE Walls

Use welded wire reinforcement forms, facings, mesh and mats that meet the requirements of AASHTO M55 or M221. Use connector bars and wires for welded wire wall components and support struts that meet the requirements of AASHTO M32. For standard temporary MSE walls, use wire gauges, strut sizes and welded wire components as shown on the plans.

(1) Geotextile Fabrics

Use geotextile fabrics that meet the requirements of Article 1056-1 of the *Standard Specifications*.

(a) Reinforcing Fabric

The reinforcement direction (RD) is defined as the direction perpendicular to the wall face and the cross-reinforcement direction (CRD) is defined as the direction parallel to the wall face.

Use woven polyester or polypropylene fabric that meets the following properties:

Property	Test Method	Requirement (MARV)
Wide Width Tensile	ASTM D4595	Varies –
Strength @ Ultimate (RD)	ł : :	200 lb/in min
Wide Width Tensile Strength @ Ultimate (CRD)	ASTM D4595	100 lb/in min
Trapezoidal Tear Strength	ASTM D4533	100 lb min
CBR Puncture Strength	ASTM D6241	600 lb min
UV Resistance after 500 hrs	ASTM D4355	70 %
Apparent Opening Size (AOS), US Sieve	ASTM D4751	20 min – 70 max
Permittivity	ASTM D4491	0.20 sec ⁻¹

For standard temporary MSE walls (temporary fabric wall) use reinforcing fabric wide width tensile strengths and lengths in the RD as shown on the plans.

(b) Retention Fabric

Retain shoring backfill at the face of temporary MSE walls with retention fabric. Use fabric that meets the requirements of Class 3 and the UV resistance, AOS and permittivity for separation geotextile in accordance with AASHTO M288.

(2) SierraScape Temporary Wall

Use uniaxial (UX) geogrids composed of high-density polyethylene (HDPE) manufactured by Tensar Earth Technologies. Test geogrids in accordance with ASTM D6637. Use connection rods manufactured by Tensar Earth Technologies to transfer the load between the facings and geogrids.

For standard temporary MSE walls (SierraScape temporary wall) use geogrid types and lengths as shown on the plans.

(3) Terratrel Temporary Wall

Use ribbed reinforcing steel strips manufactured by The Reinforced Earth Company that meet the requirements of ASTM A572, Grade 65. Use connector rods that meet the requirements of AASHTO M31, Grade 60 and hair pin connectors that meet the requirements of ASTM A1011,

Grade 50. Use bolts, nuts and washers that meet the requirements of AASHTO M164.

For standard temporary MSE walls (Terratrel temporary wall) use ribbed steel strip size and lengths, rod lengths and diameters, hairpin connectors, bolts, nuts and washers as shown on the plans.

Embedment

"Embedment" is defined as the depth of shoring below the bottom of the excavation or the grade in front of the shoring. For cantilever shoring, embedment is the depth of the piling below the grade in front of the shoring. For temporary MSE walls, embedment is the difference between the grade elevation in front of the wall and the elevation of the bottom of the reinforced zone.

Portable Concrete Barriers

Provide portable concrete barriers in accordance with the plans and if shoring is located within the clear zone as defined in the *AASHTO Roadside Design Guide*. Use NCDOT portable concrete barriers (PCBs) in accordance with Roadway Standard Drawing No. 1170.01 and Section 1170 of the *Standard Specifications*. Use Oregon Tall F-Shape Concrete Barriers in accordance with detail drawing and special provision obtained from:

http://www.ncdot.org/doh/preconstruct/wztc/DesRes/English/DesResEng.html

The clear distance is defined as the horizontal distance from the back face of the barrier to the edge of pavement and the minimum required clear distance is shown on the traffic control plans. At the Contractor's option or if the minimum required clear distance is not available, set an unanchored PCB against the traffic side of the shoring and design shoring for traffic impact or use the "surcharge case with traffic impact" for the standard temporary shoring. An anchored PCB or Oregon barrier is required for barriers above and behind temporary MSE walls.

Contractor Designed Shoring

"Contractor designed shoring" is defined as non-anchored temporary shoring or temporary MSE walls designed by the Contractor. Unless prohibited or required, Contractor designed shoring is optional. Contractor designed shoring is required when notes on plans prohibit the use of standard shoring. Non-anchored Contractor designed shoring is prohibited when notes on plans require the use of temporary MSE walls and Contractor designed temporary MSE walls are prohibited when notes on plans prohibit the use of temporary MSE walls.

Before beginning design, survey the shoring location to determine existing elevations and actual design heights. Submit design calculations and drawings including typical sections for review and acceptance showing details of the proposed design and construction sequence in accordance with Article 105-2 of the *Standard Specifications*. Have shoring designed, detailed and sealed by a Professional Engineer registered in the State of North Carolina. Submit 3 hard copies of design calculations and 10 hard copies of drawings and an electronic copy (pdf or jpeg format on CD or DVD) of both the calculations and drawings.

88

Design non-anchored temporary shoring in accordance with the AASHTO Guide Design Specifications for Bridge Temporary Works and temporary MSE walls in accordance with the AASHTO Allowable Stress Design Standard Specifications for Highway Bridges. Use the following soil parameters for shoring backfill in the reinforced zone.

Total Unit Weight = 120 pcf Friction Angle = 30 degrees Cohesion = 0 psf

Design temporary shoring in accordance with the in-situ assumed soil parameters shown on the plans. Design shoring for a 3-year design service life and a traffic surcharge equal to 240 psf. This surcharge is not applicable for construction traffic. If a construction surcharge will be present within a horizontal distance equal to the height of the shoring, design the shoring for the required construction surcharge. If the edge of pavement or a structure to be protected is within a horizontal distance equal to the height of the shoring, design shoring for a maximum deflection of 3". Otherwise, design shoring for a maximum deflection of 6".

For non-anchored temporary shoring, the top of shoring elevation is defined as the elevation where the grade intersects the back face of the shoring. For traffic impact, apply 2 kips/ft to the shoring 1.5 ft above the top of shoring elevation. When designing for traffic impact, extend shoring at least 32" above the top of shoring elevation. Otherwise, extend shoring at least 6" above the top of shoring elevation.

Standard Shoring

Unless notes on plans prohibit the use of one or both types of standard shoring, standard shoring is optional. Submit a "Standard Temporary MSE Wall Selection Form" for each standard temporary MSE wall location and a "Standard Temporary Shoring Selection Form" for up to three standard temporary shoring locations. Submit selection forms at least 14 days before beginning shoring construction. Obtain standard shoring selection forms from:

http://www.ncdot.org/doh/preconstruct/highway/geotech/formdet/standards.html

(A) Standard Temporary Shoring

Determine the shoring height, traffic impact, groundwater condition and slope or surcharge case for each standard temporary shoring location. Determine the minimum required extension, embedment and sheet pile section modulus or H pile section from the plans for each location.

(B) Standard Temporary MSE Walls

Choose a standard temporary MSE wall from the multiple temporary MSE wall options shown in the plans. Do not use more than one option per wall location.

Step bottom of reinforced zone in increments equal to vertical reinforcement spacing for the wall option chosen. Determine the wall height and slope or surcharge case for each section of standard temporary MSE wall. With the

exception of either the first or last section of wall, use horizontal section lengths in increments equal to the following for the wall option chosen.

Standard Temporary MSE Wall Option	Increment
Temporary Fabric Wall	9 ft min (varies)
Hilfiker Temporary Wall	10 ft min (varies)
SierraScape Temporary Wall	18 ft – 7 ¼ in
Retained Earth Temporary Wall	24 ft
Terratrel Temporary Wall	19 ft – 8 in

Determine the appropriate facings and/or forms and reinforcement length, spacing, strength, type, density and/or size from the plans for each wall section.

Construction Methods

When using an anchored PCB, anchor the barrier in accordance with Roadway Standard Drawing 1170.01 and Section 1170 of the *Standard Specifications*. Control drainage during construction in the vicinity of temporary shoring. Collect and direct run off away from temporary MSE walls, shoring and shoring backfill.

(A) Non-anchored Temporary Shoring

Install and interlock sheet piling or install piles as shown on the plans or accepted submittals with a tolerance of 1/2 inch per foot from vertical. Contact the Engineer if the design embedment is not achieved. If piles are placed in drilled holes, perform pile excavation to the required elevations and backfill excavations with concrete and lean sand grout.

Remove grout as necessary to install timber lagging. Install timber lagging with a minimum bearing distance of 3" on each pile flange. Backfill voids behind lagging with shoring backfill.

Perform welding in accordance with the accepted submittals and Article 1072-20 of the *Standard Specifications*.

(1) Pile Excavation

Excavate a hole with a diameter that will result in at least 3" of clearance around the entire pile. Use equipment of adequate capacity and capable of drilling through soil and non-soil including rock, boulders, debris, manmade objects and any other materials encountered. Blasting is not permitted to advance excavations. Blasting for core removal is permitted only when approved by the Engineer. Dispose of drilling spoils in accordance with Section 802 of the *Standard Specifications*. Drilling

spoils consist of all excavated material including water removed from excavations by either pumping or drilling tools.

If unstable, caving or sloughing soils are encountered, stabilize excavations with clean watertight steel casing. Steel casings may be either sectional type or one continuous corrugated or non-corrugated piece. Provide casings of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the hole size and a minimum wall thickness of 1/4 inch.

Before placing concrete, check the water inflow rate in the excavation after any pumps have been removed. If the inflow rate is less than 6" per half hour, remove any water and free fall the concrete into the excavation. Ensure that concrete flows completely around the pile. If the water inflow rate is greater than 6" per half hour, propose and obtain approval of the concrete placement procedure before placing concrete.

Center the pile in the excavation and fill the excavation with Class A concrete in accordance with Section 1000 of the *Standard Specifications* except as modified herein. Provide concrete with a slump of 6 to 8 inches. Use an approved high-range water reducer to achieve this slump. Place concrete in a continuous manner to the bottom of shoring or the elevations shown on the accepted submittals. Fill the remainder of the excavation with a lean sand grout and remove all casings.

(B) Temporary MSE Walls

The Engineer may require a wall preconstruction meeting to discuss the construction and inspection of the temporary MSE walls. If required, conduct the meeting with the Site Superintendent, the Resident or Bridge Maintenance Engineer, the Bridge Construction Engineer and the Geotechnical Operations Engineer before beginning wall construction.

Perform all necessary clearing and grubbing in accordance with Section 200 of the *Standard Specifications*. Excavate as necessary as shown on the plans or accepted submittals. Notify the Engineer when foundation excavation is complete. Do not place shoring backfill or first reinforcement layer until obtaining approval of the excavation depth and foundation material.

If applicable, install foundations located within the reinforced zone in accordance with the plans or accepted submittals.

Erect and maintain facings and forms as shown on the plans or accepted submittals. Stagger vertical joints of facings and forms to create a running bond when possible unless shown otherwise on the plans or accepted submittals.

Place facings and forms as near to vertical as possible with no negative batter. Construct temporary MSE walls with a vertical and horizontal tolerance of 3" when measured with a 10 ft straight edge and an overall vertical plumbness (batter) and horizontal alignment of less than 6".

Place reinforcement at locations and elevations shown on the plans or accepted submittals and in slight tension free of kinks, folds, wrinkles or creases. Repair or replace any damaged reinforcement. Contact the Engineer when existing or future structures such as foundations, pavements, pipes, inlets or utilities will interfere with reinforcement. To avoid structures, deflect, skew and modify reinforcement.

Do not splice reinforcement in the reinforcement direction (RD), i.e., parallel to the wall face. Seams are allowed in the cross-reinforcement direction (CRD). Bond or sew adjacent reinforcing fabric together or overlap fabric a minimum of 18" with seams oriented perpendicular to the wall face.

Place shoring backfill in 8 to 10 inch thick lifts and compact in accordance with Subarticle 235-4(C) of the *Standard Specifications*. Use only hand operated compaction equipment within 3 ft of the wall face. Do not damage reinforcement when placing and compacting shoring backfill. End dumping directly on the reinforcement is not permitted. Do not operate heavy equipment on reinforcement until it is covered with at least 10" of shoring backfill. Do not use sheepsfoot, grid rollers or other types of compaction equipment with feet.

Cover reinforcing and retention fabric with at least 3" of shoring backfill. Place top reinforcement layer between 4 and 24 inches below top of wall as shown on the plans or accepted submittals.

Bench temporary MSE walls into the sides of excavations where applicable. If the top of wall is within 5 ft of finished grade, remove top form or facing and incorporate the top reinforcement layer into the fill when placing fill in front of the wall. Temporary MSE walls remain in place permanently unless required otherwise.

Measurement and Payment

Temporary Shoring will be measured and paid for at the contract unit price per square feet of exposed face area at locations shown on the plans or required by the Engineer. For temporary MSE walls, the wall height will be measured as the difference between the top and bottom of wall and does not include the embedded portions of the wall or any pavement thickness above the wall. For all other temporary shoring, the shoring height will be measured as the difference between the top and bottom of shoring elevation. The bottom of shoring elevation is defined as where the grade intersects the front face of the shoring. The top of shoring elevation is defined as where the grade intersects the back face of the shoring. No payment will be made for any extension of shoring above the top of shoring or any embedment below the bottom of shoring. Such price and payment will be full compensation for furnishing all labor, tools, equipment, materials and all incidentals necessary to design and install the temporary shoring and complete the work as described in this provision.

No payment will be made for temporary shoring not shown on the plans or required by the Engineer including shoring for OSHA reasons or the Contractor's convenience. No value engineering proposals will be accepted based solely on revising or eliminating the shoring locations shown on the plans or the estimated quantities shown in the bid item sheets as a result of actual field measurements or site conditions.

No additional payment will be made for anchoring PCBs or providing Oregon barriers in lieu of unanchored PCBs. Additional costs for anchoring PCBs or providing Oregon barriers will be considered incidental to *Temporary Shoring*.

Payment will be made under:

Pay Item

Temporary Shoring

Pay Unit

Square Foot

PORTABLE TRAFFIC SIGNAL SYSTEM

(SPECIAL)

Description:

Furnish, install, place in operation, repair, maintain, relocate, and remove portable traffic signal systems. Comply with the provisions of Section 1700 of the 2006 *Standard Specifications for Roads and Structures*.

Materials:

Provide a complete portable traffic signal system that is totally mobile and capable of being relocated as traffic conditions demand. Design the system for operation both with and without an external power source. Furnish two signal control trailers with two vehicle signal heads per trailer and one operator unit for each portable traffic signal system. Furnish transmitters, generators, batteries, controls, back-up systems and all other components necessary to operate the system.

Ensure each system meets the physical display and operational requirements of conventional traffic signals as specified in PART IV of the *Manual on Uniform Traffic Control Devices* (MUTCD) and the North Carolina Supplement to the MUTCD in effect on the date of advertisement.

Used equipment will be acceptable if the equipment is in good working condition. Contractor retains ownership of the portable traffic signal systems.

Provide yellow 12-inch aluminum or polycarbonate vehicle signal heads with 10-inch tunnel visors, backplates and Light Emitting Diode (LED) modules. Provide aluminum signal heads and backplates listed on the Department's Qualified Products List (QPL) for traffic signal equipment. Provide polycarbonate signal heads and visors that comply with the provisions pertaining to Signal Heads within these *Project Special Provisions* with the following exceptions:

Fabricate signal head housings, end caps, and visors from virgin polycarbonate material. Provide U.V. stabilized polycarbonate plastic with a minimum thickness of 0.1 ± 0.01 inches that is highway yellow (Federal Standard 959A, Color Chip 13538). Ensure the color is incorporated into the plastic material before molding the signal head housings and end caps. Ensure the plastic formulation provides the following physical properties in the assembly (tests may be performed on separately molded specimens):

<u>Test</u>	Required	Method
Specific Gravity	1.17 minimum	ASTM D 792
Vicat Softening Temperature, F (C)	305-325 (152-163)	ASTM D 1525
Brittleness Temperature, F (C)	Below -200 (-129)	ASTM D 746
Flammability	Self-extinguishing	ASTM D 635
Tensile Strength, yield, PSI (MPa)	8500 (58) minimum	ASTM D 638
Elongation at yield, %	5.5-8.5	ASTM D 638
Shear, strength, yield, PSI (MPa)	5500 (38) minimum	ASTM D 732
Izod impact strength, ft-lb/in (j/m) [notched, 1/8 inch (3.2 mm)]	15 (800) minimum	ASTM D 256
Fatigue strength, PSI (Mpa) at 2.5 mm cycles	950 (6.5) minimum	ASTM D 671

To minimize signal head movement due to wind, mount top and bottom of signal heads to the signal head supports.

Provide 120V AC powered LED modules listed on the QPL, or provide 12V DC powered LED modules that meet the *ITE VTCSH Part 2: Light Emitting Diode (LED) Vehicle Signal Modules (Interim Purchase Specification)* with the exception of paragraphs 5.2, 5.3, 5.7, and testing associated with 120V AC. DC powered LED modules should operate with input power between 9V DC and 15V DC.

Provide trailers that have durable paint in highway orange, Federal Standard 595a Color Chip ID # 12473 with a minimum paint thickness of 2.5 mils (64 µm.).

Provide trailers with a 12-volt trailer lighting system complying with *Federal Motor Carrier Safety Regulations 393*, safety chains, and a 2-inch ball hitch. When provided, locate generators, fuel tanks, batteries and electronic controls in protective housings that are provided with locks to restrict access.

94

Design the trailer assembly and signal supports to withstand an 80 MPH wind load with the signal supports raised in the operating position. Provide independent certification from a registered Professional Engineer that the assembly meets this 80 MPH wind load requirement. Provide a reliable hydraulic, electric or manual means for raising and lowering the signal support members. Provide screw-type stabilizing and leveling devices with a self-leveling foot to support the unit in the operating position on slopes 1V:3H or flatter when detached from the transporting vehicle.

During manual operation, ensure the system provides a means of informing the operator of signal indications, such as a light on the back of each signal head that illuminates when the signal displays a red indication.

Design the portable traffic signal system to perform without interruption during the time it is in operation.

Where a traffic actuated system is required, provide a system control unit that is capable of pretimed operation, traffic actuated operation, a variable green time interval dependent upon vehicle actuations, and programmable yellow clearance and red clearance intervals. Furnish all sensors to monitor vehicle demands for vehicle actuation per the Project Special Provisions and Section 1098 of the Standard Specifications.

Design the systems to be fail-safe. Ensure the system monitors the following conditions: lack of green, yellow, and red signal indication voltage, total loss of indication on any approach, presence of multiple signal indications on any approach, conflicting green/yellow signal indications, and low power condition. In the event any of these conditions are detected, immediately begin flashing operation of red indications in all directions.

Provide either hard-wired, microwave, or radio controlled type communications for pre-timed and traffic actuated portable traffic signal systems. In the event a loss of communication is detected, immediately begin flashing operation of red indications in all directions.

Ensure systems that use wireless communication links continuously monitor and verify proper transmission and reception of data used to monitor and control each signal head. Ensure ambient mobile or other radio transmissions or adverse weather conditions do not affect the system. Encode signal transmissions digitally to protect radio transmissions from interference. Do not violate FCC regulations and ensure radio frequencies are appropriate for portable signal equipment applications.

Upon detecting a malfunction, ensure all signals go to a flashing red condition and the operator is notified by a reliable means approved by the Engineer. Provide a battery back-up system for generator and direct current powered signal systems to power the warning means and "flashing red" condition. Provide a back-up system with a 72-hour minimum reserve.

Ensure the system meets the Environmental Standards for traffic signals in accordance with NEMA TS-1, Section 2.

Construction Methods:

Do not use portable traffic signal systems in a work area with intersecting streets or driveways, unless directed by the Engineer.

Do not install portable traffic signal within 300 feet of at-grade railroad crossing.

During automatic operation, ensure the motorist has an unobstructed view of opposing traffic.

Install stop bars and warning signs and operate portable traffic signals in accordance with the drawing designated "Temporary Lane Closures Using Portable Traffic Signals" unless otherwise shown on the plans or directed by the Engineer. This drawing is located on the Department's website:

http://www.ncdot.org/doh/preconstruct/traffic/tmssu/

Ensure the distance between signal units does not exceed 500 feet unless otherwise shown on the plans or directed by the Engineer. If modification to the distance between signal units is required after the units are positioned, relocate the signals or the system and make the necessary timing revisions only as directed by the Engineer.

Submit a traffic signal timing plan to the Engineer for approval a minimum of two weeks prior to installation. Include the following items in the plan: distance between stop bars, speed limit to be posted during operation, each approach grade, recommended yellow change interval, recommended red clearance interval, recommended minimum and maximum green intervals. Make timing changes to approved signal timing plan only as authorized by the Engineer. Keep a written record of all timing changes.

Allow only trained operators to set up and operate the system. Provide an experienced operator at all times for each portable traffic signal system during periods of manual operation. Do not violate yellow change and red clearance intervals during periods of manual operation. During manual operation, ensure the operator has an unobstructed view of the motorists and all signal head units. Locate the operator as close to the center of the operation as possible.

Perform all maintenance operations required by the system manufacturer including periodic cleaning of the systems. Have properly skilled and trained maintenance personnel available to maintain the system in good working order and to perform all emergency and preventive maintenance as recommended by the system manufacturer.

Furnish the Engineer with the name, office telephone number, cellular (mobile) telephone number, and pager number of the supervisory employee who will be responsible for maintenance and repair of equipment during all hours.

For all failures, malfunctions, or damage to this equipment, begin necessary repairs within four hours of notification. Complete repairs within eight hours of notification. Comply with Section 150 for maintenance of traffic flow. The inability to contact the supervisory employee or prearranged alternate will not extend repair time requirements.

In the event that the system becomes inoperative, be prepared at all times to revert to flagging operations or suspend all construction activities requiring the use of the portable traffic signal system until the system is restored to proper operation. Implement flagging operations as shown on 2006 Roadway Standard Drawing No. 1101.02 Sheet 1 (Closure of one lane of a Two-lane, Two-way Highway).

When not in operation, remove signal heads from the view of traffic or cover signal heads with burlap bags or bags made of non-ripping material specifically designed for covering signal heads. Do not use trash bags of any type. Remove, cover, fold, or turn all inappropriate signs so that they are not readable by oncoming traffic.

Measurement and Payment:

Actual number of portable traffic signal systems furnished, installed, operated, removed, and accepted.

No measurement will be made for operation, relocation, maintenance, removal of each system, or use of flaggers during repair periods as these will be considered incidental to furnishing, installing, and operating the portable traffic signal systems.

No measurement will be made for signal controller, communication cable, messenger cable, wireless communication, inductive loop sawcut, loop emulator detection system, machine vision detection system, microwave detection system, detector channel/unit, detector lead-in cable, trenching, vehicle signal heads, signal head support assemblies, signal cable, and traffic signal software as these will be considered incidental to furnishing, installing, and operating the portable traffic signal systems.

No separate payment will be made for the portable traffic signal systems as they are considered to be incidental work related to traffic control thus payment will be included in the lump sum contract line item "Traffic Control."

TRAFFIC CONTROL (SPECIAL)

The Contractor will be required to give the Engineer a minimum of two (2) weeks written notice before starting work. The Department will be responsible for erection and maintenance of all stationary work zone signing. The Contractor will be responsible for furnishing, installing and maintaining all temporary work zone signing, portable traffic signals, temporary concrete barriers, drums, cones and flaggers which will be required to maintain traffic at all times during the life of the project.

All materials used for traffic control shall meet the applicable requirements for Sections 1089 and 1090 of the July 2006 Standard Specifications for Roads and Structures.

Temporary work zone signing, portable traffic signals, flaggers, drums, cones and temporary concrete barrier shall be placed in accordance with the Manual on Uniform Traffic Control Devices (MUTCD).

Payment for all temporary work zone signing, temporary concrete barrier, portable traffic signals, flaggers, drums, cones and other incidental work related to traffic control will be made by lump sum basis under the contract line item "Traffic Control."

GALVANIZED STEEL PILES

(SPECIAL)

Description

This work consists of surface preparation and galvanizing of steel piles in accordance with section 1076 of the Standard Specifications. For steel piles, angles and plates, prepare the surface and provide materials in accordance with the applicable parts of the Standard Specifications.

Basis of Payment

For the HP 12x 53 steel piles, the work covered by this provision will be included in the contract bid price per linear foot for "HP 12x53 Galvanized Steel Piles". For the HP 10x 57 steel piles, the work covered by this provision will be included in the contract bid price per linear foot for "16" Composite Prestressed Concrete Piles". This compensation includes the galvanizing of pile bracing when required. The above prices and payments will be full compensation for all work covered by this provision including but not limited to furnishing all materials, labor, tools, equipment and all incidentals necessary to complete the work.

ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS

(6-11-07)

General

Installation and Testing of Adhesively anchored anchor bolts and dowels shall be in accordance with Section 420-13, 420-21 and 1081-1 of the Standard Specifications except as modified in this provision.

Installation

Installation of the adhesive anchors shall be in accordance with manufacturer's recommendations and shall occur when the concrete is above 40 degrees Fahrenheit and has reached its 28 day strength.

The anchors shall be installed before the adhesive's initial set ('gel time').

Field Testing

Replace the third paragraph of Section 420-13 (C) with the following:

"In the presence of the Engineer, field test the anchor bolt or dowel in accordance with the test level shown on the plans and the following:

<u>Level One Field testing</u>: Test a minimum of 1 anchor but not less than 10% of all anchors to 50% of the yield load shown on the plans. If less than 60 anchors are to

be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors.

Level Two Field testing: Test a minimum of 2 anchors but not less than 10% of the all anchors to 80% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors.

Testing should begin only after the Manufacturer's recommended cure time has been reached. For testing, apply and hold the test load for three minutes. If the jack experiences any drop in gage reading, the test must be restarted. For the anchor to be deemed satisfactory, the test load must be held for three minutes with no movement or drop in gage reading."

Removal and Replacement of Failed Test specimens:

Remove all anchors and dowels that fail the field test without damage to the surrounding concrete. Redrill holes to remove adhesive bonding material residue and clean the hole in accordance with specifications. For reinstalling replacement anchors or dowels, follow the same procedures as new installations. Do not reuse failed anchors or dowels unless approved by the Engineer.

Usage

The use of adhesive anchors for overhead installments is not permitted without written permission from the Engineer.

Basis of Payment

No separate measurement or payment will be made for furnishing, installing, and testing anchor bolts/dowels. Payment at the contract unit prices for the various pay items will be full compensation for all materials, equipment, tools, labor, and incidentals necessary to complete the work.