Preliminary Site Assessment Ray Khan Property Parcel #38 Boone, Watauga County, NC

> State Project U-4020 WBS Element # 35015.1.1 H&H Job No. ROW-148 May 29, 2008

2923 South Tryon Street Suite 100 Charlotte, NC 28203 704-586-0007

3334 Hillsborough Street Raleigh, NC 27607 919-847-4241

Preliminary Site Assessment Report Ray Khan Property, Parcel #38 Boone, Watauga County, North Carolina H&H Project ROW-148

Table of Contents

<u>Page No.</u>
1.0 Introduction
2.0 Site Assessment
3.0 Analytical Results
4.0 Summary and Regulatory Considerations 3
5.0 Signature Page5
List of Tables
Table 1 Soil Analytical Results – Ray Khan Property Parcel #38
List of Figures
Figure 1 Site Location Map
Figure 2 Site Map and Soil Analytical Results
List of Appendices
Appendix A NC DOT Preliminary Plan
Appendix B URS Geophysical Services Report
Appendix C Soil Boring Logs
Appendix D Laboratory Analytical Report

Preliminary Site Assessment Ray Khan Property, Parcel #38 Boone, Watauga County, North Carolina H&H Project ROW-148

1.0 Introduction

Hart & Hickman, PC (H&H) has prepared this Preliminary Site Assessment (PSA) to document assessment activities performed at the Ray Khan property (Parcel #38) located at 450 East King Street (US Highway 421) at the southeast corner of the East King Street and NC Highway 105 intersection in Boone, Watauga County, North Carolina. This assessment was conducted on behalf of the North Carolina Department of Transportation (NC DOT) in accordance with the scope of work outlined in our February 29, 2008 proposal.

The purpose of this assessment was to determine the presence or absence of impacted soil at the subject property in the proposed right-of-way (ROW) construction areas related to the widening of US Highway 421 (State Project U-4020). Because Parcel 38 may be a total take by NC DOT, the entire parcel was investigated. A site location map is included as Figure 1 and a site map is presented as Figure 2. The NC DOT preliminary plan of the US Highway 421 widening area near the Ray Khan property is included in Appendix A.

Based on information provided by NC DOT and visual inspection, the Ray Khan property operates as an active gas station identified as Pennywise Food Store. According to NC DOT, the property contains five registered USTs. H&H confirmed surface evidence of current USTs (fill ports and vent pipes). The USTs are situated in a common basin.

2.0 Site Assessment

Soil Assessment Field Activities

H&H mobilized to the Ray Khan property on April 9 and 10, 2008 to advance 21 soil borings (38-1 through 38-21) by direct push technology (DPT). Prior to advancing the soil borings, H&H reviewed a Geophysical Investigation Report (GIR) and UST Delineation report prepared by URS Corporation (URS) dated March 31, 2008. URS utilized ground penetrating radar (GPR) and time

domain electromagnetic (TDEM) technology to identify potential geophysical anomalies, potential USTs, and underground utilities at the site. The URS report indicated three TDEM anomalies on the property. GPR did not confirm potential USTs at these three locations. The GPR was used to outline the active UST basin. URS's GIR, including a map depicting the results of the geophysical survey, is included in Appendix B.

Prior to conducting soil borings, utilities were marked by NC One Call and by DOTS's contractor, Vaughn and Melton. Borings were also cleared of potential utilities to 5 foot depth by hand auger. H&H utilized Geologic Exploration of Statesville, North Carolina to advance soil borings 38-1 through 38-21 by DPT at the locations shown on Figure 2. To facilitate the selection of soil samples for laboratory analysis from these borings, soil was screened continuously for the presence of volatile organic compounds (VOCs) with an organic vapor analyzer (OVA). Additionally, H&H observed the soil for visual and olfactory indications of petroleum impacts. In general, soil samples that exhibited the highest readings on the OVA were selected for laboratory analysis. Soil boring logs are included in Appendix C.

Samples were collected around the existing UST basin, between the UST basin and the dispensers, and near each dispenser. H&H submitted 21 samples for laboratory analysis (Table 1). Soil Samples are identified by the NC DOT Parcel Number, soil boring, and the depth interval in ft. All samples were sent to Prism Laboratories Inc., of Charlotte, North Carolina for analysis of total petroleum hydrocarbons (TPH) for gasoline-range organics (GRO) and diesel-range organics (DRO) by EPA Method 8015B. Sample depths and analytical results are summarized in Table 1. Laboratory analytical data sheets for Parcel 38 soil samples and chain-of-custody documentation for this site are provided in Appendix D. The chain-of-custody includes samples collected from other sites during the same mobilization. The analytical results are discussed below.

3.0 Analytical Results

Target analytes were detected the soil samples collected from Parcel 38. TPH GRO (up to 8,000 mg/kg) and DRO (up to 950 mg/kg) were detected in 10 of the 21 samples analyzed. TPH DRO concentrations were detected in samples 38-3 (5-7 ft), 38-4 (0-2 ft), 38-7 (0-2 ft), 38-12 (5-7 ft), 38

18 (5-7 ft), and 38-20 (5-7 ft) above the NC DENR Action Level of 10 mg/kg. TPH GRO concentrations were detected in samples 38-4 (0-2 ft), 38-6 (2-5 ft), 38-10 (8-12 ft) and 38-13 (0-2.5 ft) above the NC DENR Action Level of 10 mg/kg. Impacts are present beneath the pump island and near the northeastern and western ends of the active UST basin.

Based on laboratory analytical results and OVA readings, TPH impacts are present along and within the proposed right of way line. H&H estimates that there are roughly 1,150 cubic yards (1610 tons) of impacted soil beneath the dispenser area and west of the UST basin between the surface and a depth of 12 ft. In addition, there are roughly 750 cubic yards (1,050 tons) north and east of the UST basin between the surface and a depth of 12 ft. Soil impacts are also likely present at depths greater than 12 ft. DOT plans indicate a proposed fill of approximately 2 ft in this area. Because this is a fill area, most of the impacted soil will not likely be disturbed. However, impacted soil will be generated by any soil grading work below the existing grade, during UST system removal work, and during utility line installations in the aforementioned areas. Of the above total impacts, H&H estimates that roughtly 200 cubic yards (280 tons) of impacted soil may be excavated during removal of the UST system. Impacted soil that is removed should be properly managed and disposed at a permitted facility.

The active UST basin and the dispenser area straddle the proposed right of way line. The UST system and its contents should be removed and disposed in accordance with NCDENR regulations.

4.0 Summary and Regulatory Considerations

H&H has reviewed Geophysical survey results and collected soil samples at Parcel 38. A basin containing five USTs and a dispenser area straddle the proposed right of way line. Analytical results and OVA readings indicate TPH GRO and TPH DRO above NC DENR Action Levels. H&H estimates that there are a total of 1,900 cubic yards (2,660 tons) of impacted soil above 12 ft at Parcel 38. DOT plans indicate a proposed fill of 2 ft in this area. Because this is a fill area, most of the impacted soil will not likely be disturbed. However, impacted soil will be generated by UST system removal work, any soil grading work below the existing grade and during utility line installations in the aforementioned areas. Impacted soil that is removed should be properly

managed and disposed at a permitted facility. The UST system and its contents should also be removed and disposed in accordance with NCDENR regulations.

5.0 Signature Page

This report was prepared by:

David Graham

Project Geologist for

Hart and Hickman, PC

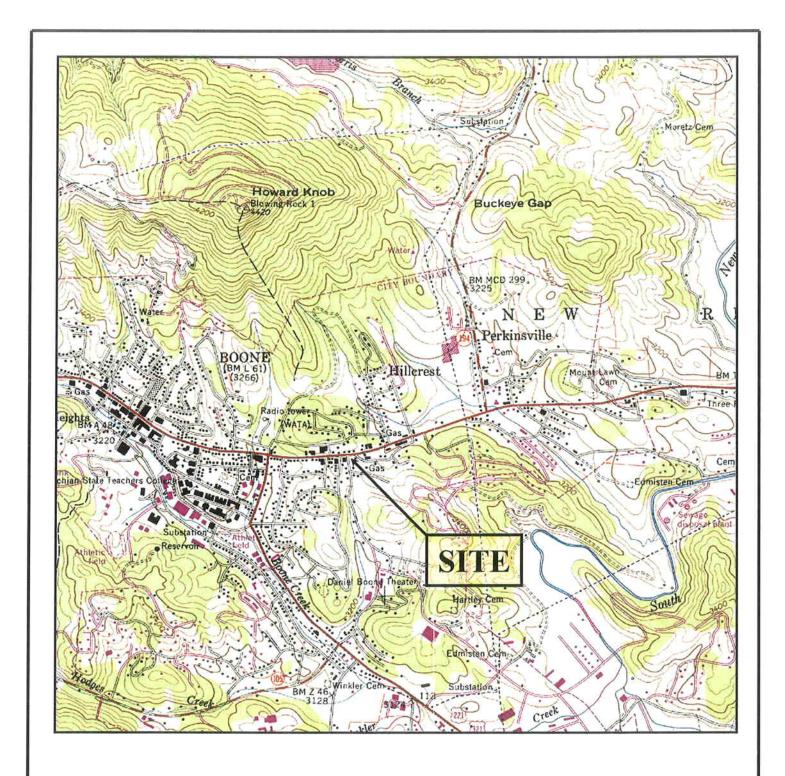
This report was reviewed by:

Matt Bramblett, PE

Principal and Project Manager for

Hart and Hickman, PC

Table 1
Soil Analytical Results
Ray Khan Property, Parcel #38
Boone, North Carolina
H&H Job No. ROW-148


Sample ID	38-1	38-2	38-3	38-4	38-5	38-6	38-7	38-8	38-9	38-10	NC DENR
Sample Depth (ft) Sample Date Units	2-4 4/9/2008 (mg/kg)	9-12 4/9/2008 (mg/kg)	5-7 4/9/2008 (mg/kg)	0-2 4/9/2008 (mg/kg)	1-3 4/9/2008 (mg/kg)	2-5 4/9/2008 (mg/kg)	0-2 4/9/2008 (mg/kg)	0-2 4/9/2008 (mg/kg)	0-2 4/9/2008 (mg/kg)	8-12 4/9/2008 (mg/kg)	Action Level (mg/kg)
TPH-DRO/GRO (8015B) Diesel-Range Organics (DRO) Gasoline-Range Organics (GRO)	<7.8 <5.6	<7.7 <5.5	43 <5.5	950 8,000	<8.8 <6.3	<8.0 37	15 <6.6	<9.3 9.1	<9.2 <6.7	<9.0 220	10 10

Sample ID	38-11	38-12	38-13	38-14	38-15	38-16	38-17	38-18	38-19	38-20	38-21	NC DENR
Sample Depth (ft)	2-5	2-3	0-2.5	4-6	10-12	5-7	2-5	10-12	7-9	7-9	7-9	Action
Sample Date Units	4/9/2008 (mg/kg)	4/9/2008 (mg/kg)	4/9/2008 (mg/kg)	4/9/2008 (mg/kg)	4/10/2008 (mg/kg)	4/10/2008 (mg/kg)	4/10/2008 (mg/kg)	4/10/2008 (mg/kg)	4/10/2008	4/10/2008	4/10/2008	Level
			· 0 0/	(3 - 3/	(99)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
TPH-DRO/GRO (8015B) Diesel-Range Organics (DRO) Gasoline-Range Organics (GRO)	<9.5 <6.9	21 <5.9	<8.3 16	<8.4 <6.1	<8.7 <6.3	<9.1 <6.5	<8.5 <6.1	17 <5.6	<7.5 <5.4	41 <6.5	<7.7 <5.5	10 10

Notes:

EPA Method follows parameter in parenthesis **Bold** denotes a value exceeds NCDENR Action Level

TPH = Total petroleum hydrocarbons

U.S.G.S. QUADRANGLE MAP

BOONE, NC 1959 PHOTOREVISED 1978

QUADRANGLE 7.5 MINUTE SERIES (TOPOGRAPHIC) TITLE

SITE LOCATION MAP

PROJECT

RAY KHAN PROPERTY PARCEL #38 BOONE, NORTH CAROLINA

DATE:

4-28-08

REVISION NO:

JOB NO:

ROW-148

FIGURE NO:

1

0

AAA-Waster Projects/NC DOT Right-of-Way -ROWROW-148 Boone PSAs/Files from DOTI-ProjI-FIGURES/37,38,41-43,45,47,48 A-dwg, 38, 5/29/2008 12:22-

Appendix A

NC DOT Preliminary Plan

Appendix B

URS Geophysical Services Report

URS

March 31, 2008

Mr. Matt Bramblett, P.E. Hart & Hickman 2923 South Tryon Street Suite 100 Charlotte, North Carolina 28203

Subject: Geophysical Investigation Report and UST Delineation

NCDOT State Project U-4020, Watauga County

Parcels #30, 31, 33, 35, 37, 38 Boone, North Carolina URS Project No. 31825704

Dear Mr. Bramblett:

In accordance with our technical and cost proposal (TCP) submitted to North Carolina Department of Transportation (NCDOT) on March 7, 2008, URS Corporation (URS) is pleased to present the findings of the geophysical investigation conducted as part of NCDOT State Project U-4020, Watagua County, WBS Element 35015.1.1. The objective of the investigation was to locate underground storage tanks (USTs) within the NCDOT right-of-way and construction easements along US 421/King Street in Boone, North Carolina. The geophysical investigation was conducted in advance of proposed widening of US 421/King Street and will be used to assist with the Preliminary Site Assessment (PSA) of individual parcels within the right-of-way and easement.

Site Description

The geophysical investigation was conducted for Hart & Hickman at Parcels #30, 31, 33, 35, 37, and 38. According to the Request for Proposal (RFP) issued by NCDOT, dated February 20, 2008, Parcels #30, 33, and 35 are expected to be total takes. Therefore, all accessible portions of these parcels were surveyed for this investigation. For Parcels #31, 37, and 38, the right-of-way and construction easements were surveyed for this investigation. These limits had been physically marked in the field by others prior to conducting the geophysical investigation. None of these parcels were abandoned at the time of the geophysical investigation. The majority of the survey areas consisted of asphalt driveways or parking lots.

Survey Methods

The geophysical investigation was conducted using primarily the electromagnetic (EM) method. The Geonics, Ltd. EM-61 MKII (EM-61) instrument was used to perform the investigation. Ground-penetrating radar (GPR) was used as a follow-up technique to the

URS Corporation – North Carolina 6135 Park South Drive, Suite 300 Charlotte, NC 28210 Tel: 704.522.0330 Fax: 704.522.0063 www.urscorp.com

EM-61 survey. The GPR survey was completed using a Sensors & Software, Inc. Noggin PLUS Smart Cart System with a 250 MHz scanning antenna.

Electromagnetic Surveying with the EM-61 MKII (EM-61)

The EM-61 is a time domain EM instrument specifically designed to detect buried metal objects. The EM-61 generates rapid EM pulses through a transmitter coil. These pulses induce secondary EM fields in the near subsurface. The secondary EM fields induced from moderately conductive subsurface materials (i.e. soil and rock) are of relatively short duration. However, the secondary EM fields induced from metallic objects, such as reinforced concrete or steel drums, are of relatively long duration. The EM-61 measures this prolonged response from metallic objects after the EM response from conductive earth materials dissipates. This design provides high resolution of metallic targets. The depth of investigation of the instrument is relatively unaffected by site specific subsurface conditions.

The EM-61 measures the EM response in milliVolts (mV). The variations in EM response readings from some background level are more diagnostic than the absolute values. EM response values can be plotted and contoured to evaluate the variations across the site. Variations in the EM response resulting from buried metallic objects such as cast iron pipes are generally manifested by relatively large amplitude (greater than about 50 mV) anomalies.

The response amplitude for a given buried metallic object is primarily a function of burial depth and size of the object. It is thus useful to have some means of interpreting the depth of a given object. The EM-61 uses a two receiver coil system consisting of a top coil and a bottom coil. This design facilitates the recognition of near-surface objects from deeper targets. The EM-61 record includes the response from the top coil, the bottom coil and the differential response between the two coils. Near surface objects, such as small pieces of scrap metal, can mask the response from larger objects, such as utility lines, drums or underground storage tanks, at deeper depths. The two-coil design of the EM-61, and differential processing, allows for this masking effect to be significantly reduced. Although the EM-61 is designed to mitigate interference from surface features, large metallic objects at the surface, such as cars, buildings, and fences can effectively saturate the EM response and mask potential buried metal objects below.

Ground Penetrating Radar (GPR)

The GPR method involves transmitting relatively high-frequency electromagnetic pulses into the subsurface using a transducer antenna, and recording the subsequent signal from reflected and refracted electromagnetic energy using a receiving antenna. The electromagnetic pulses, or radar waves are influenced by many factors in the subsurface, the most important being the dielectric constant of the soil. The dielectric constant is the ratio of the speed of light in a vacuum (0.3m/ns) to the velocity of the GPR wave, quantity squared. Therefore, changes in dielectric constant correspond to changes in electromagnetic wave propagation velocity. When the wavelength is short compared to the thickness of soil layers, which is generally

true, electromagnetic waves are reflected at the interfaces of dielectric contrast in accordance with the principles of optics.

GPR is useful in mapping and locating subsurface features and stratigraphy under a variety of conditions. The method is useful in many types of geologic, environmental, and engineering applications including: locating and mapping buried waste materials; locating and delineating metallic and nonmetallic utilities, pipes, underground storage tanks and drums; mapping geological strata, fractures, and voids; and delineating and mapping previously excavated and backfilled areas.

The effectiveness of GPR surveying at a given site is directly related to the dielectric properties of the subsurface materials. The effective depth of exploration provided by the method can be limited by subsurface materials characterized with high conductivity and dielectric constants, including clay, metal and metallic minerals, or reinforced pavement, all of which absorb radar energy instead of reflecting waves back to the surface receiver. In general, the depth of investigation at a given site is inversely proportional to frequency and the degree of feature resolution is proportional to frequency. Irregular and/or rough terrain can negatively impact the quality of GPR data.

Field Investigation

The field investigation was conducted between March 18 and 22, 2008. EM-61 data were collected along parallel profiles spaced approximately 3 feet apart across the portions of the survey areas that were accessible with the EM-61. Inaccessible areas included portions of the parcels containing parked cars, dumpsters, and landscaping features. EM-61 data were recorded at a rate of 5 readings per second, which equates to an along-profile data point spacing of less than 1 foot.

A Trimble ProXRS global positioning system (GPS) was used to record simultaneous positional data coincident with the EM-61 data. The ProXRS system provides real-time differential corrections via an Omnistar subscription service. The acquired differential GPS (DGPS) have a horizontal accuracy of approximately 3 feet. URS also used the GPS system to record the locations of relevant site features.

Prior to conducting the GPR investigation, URS performed preliminary in-field analysis of the EM-61 data to identify anomalies potentially indicative of USTs. GPR follow-up was conducted at individual point target locations identified in the EM-61 data or within the sections of the parcels that could not be accessed using the EM-61. Because GPR was used as a follow-up technique, no data sets were post-processed for purposes of this investigation.

Data Processing

The EM-61 data were pre-processed using the program DAT61 MK2, issued by Geonics Ltd. The program was used primarily to prepare the data for contouring in Surfer, issued by Golden Software. Contoured data represent EM-61 Channel 3 response data. Channel 3 data include milliVolt readings recorded at a relatively later time interval during the measured response from the secondary EM field. Thus, this channel generally records secondary field responses from depths consistent with USTs. Interference from surface or near-surface features (e.g. reinforced concrete, buried catch basin, etc.) will also be recorded by this channel, which is why the GPR follow-up survey was conducted over EM-61 anomalies that could not be readily attributed to existing site features.

Investigation Results

The results of the geophysical investigation for Parcels #30, 31, and 33 are presented as **Figure 1**. The results for Parcel #35 are presented as **Figures 2 and 3**. The results for Parcels #37 and 38 are presented as **Figures 4 and 5**, respectively.

Responses from metallic objects are represented by color-shaded contours outside the interpreted background response range. Relatively strong responses (i.e. yellow to dark red contours) generally indicate buried objects of significant metal mass or surface or near-surface features (e.g. reinforced concrete pad). Relatively muted responses (i.e. dark blue contours) generally indicate decreased metal mass or metallic objects potentially buried to greater depths. Sources of known or suspected metallic interference are identified accordingly in **Figures 1 through 5**. Anomalies consistent with EM-61 response patterns for USTs are identified in **Figures 1 through 5** with either green or magenta ellipses. These anomalies were subsequently targeted for GPR follow-up surveying.

The EM-61 anomaly annotated with the green ellipse in **Figure 1** indicates a potential UST as indicated by both the EM-61 and GPR surveys. GPR surveying across this anomaly revealed parabolic-shaped reflection patterns that are consistent with USTs. The EM-61 anomalies annotated with magenta ellipses in **Figures 1**, **4**, and **5** indicate that the GPR follow-up survey did not reveal the characteristic parabolic-shaped reflection patterns typically associated with USTs. However, it should be noted that USTs that may no longer be intact may not exhibit characteristic GPR reflection patterns. Therefore, intrusive investigations of the EM-61 anomalies annotated with magenta ellipses in **Figures 1**, **4**, and **5** may be warranted if it is necessary for completion of the PSA to have confirmation of the identity of these anomalies.

A single UST appears to be buried along the southern edge of the building situated at Parcel #35. The EM-61 results in **Figure 2** indicate high-amplitude responses consistent with the presence of a UST. Follow-up GPR surveying also revealed the presence of parabolic-shaped reflection patterns associated with USTs. A fill port is situated within the center of the geophysical anomaly. The GPR antenna was used to identify the perimeter of the UST.

Figure 3 presents a photo of the field markings that indicate the interpreted UST perimeter at Parcel #35.

In general, sections of the parcels that are represented by the interpreted background range of colors in the EM-61 results appear to be free of buried metal to depths within the survey capabilities of the instrument. The results presented in **Figures 1 through 5** do not constitute an underground utility avoidance survey and therefore should be used in conjunction with proper utility marking protocol prior to beginning any intrusive work at these parcels.

Limitations

This geophysical investigation was conducted in accordance with reasonable and accepted engineering geophysics practices, and the interpretations and conclusions are rendered in a manner consistent with other consultants in our profession. All geophysical techniques have some level of uncertainty and limitations. No other representations of the reported information is expressed or implied, and no warranty or guarantee is included or intended.

We greatly appreciate the opportunity to work with you on this project. We will transmit AutoCAD files (.DXF type) of the geophysical results in a separate submittal. Please contact Matt Barner at (704) 716-0737 if you have any questions regarding this report.

W. Plekon

Very truly yours,

URS Corporation - North Carolina

Matthew A. Barner

Senior Geophysicist

Timothy J. King

Principal Geophysicist

Walt Plekan, L.G.

Project Manager

Figure 1 – Geophysical Investigation Results, Parcels #30, 31, 33

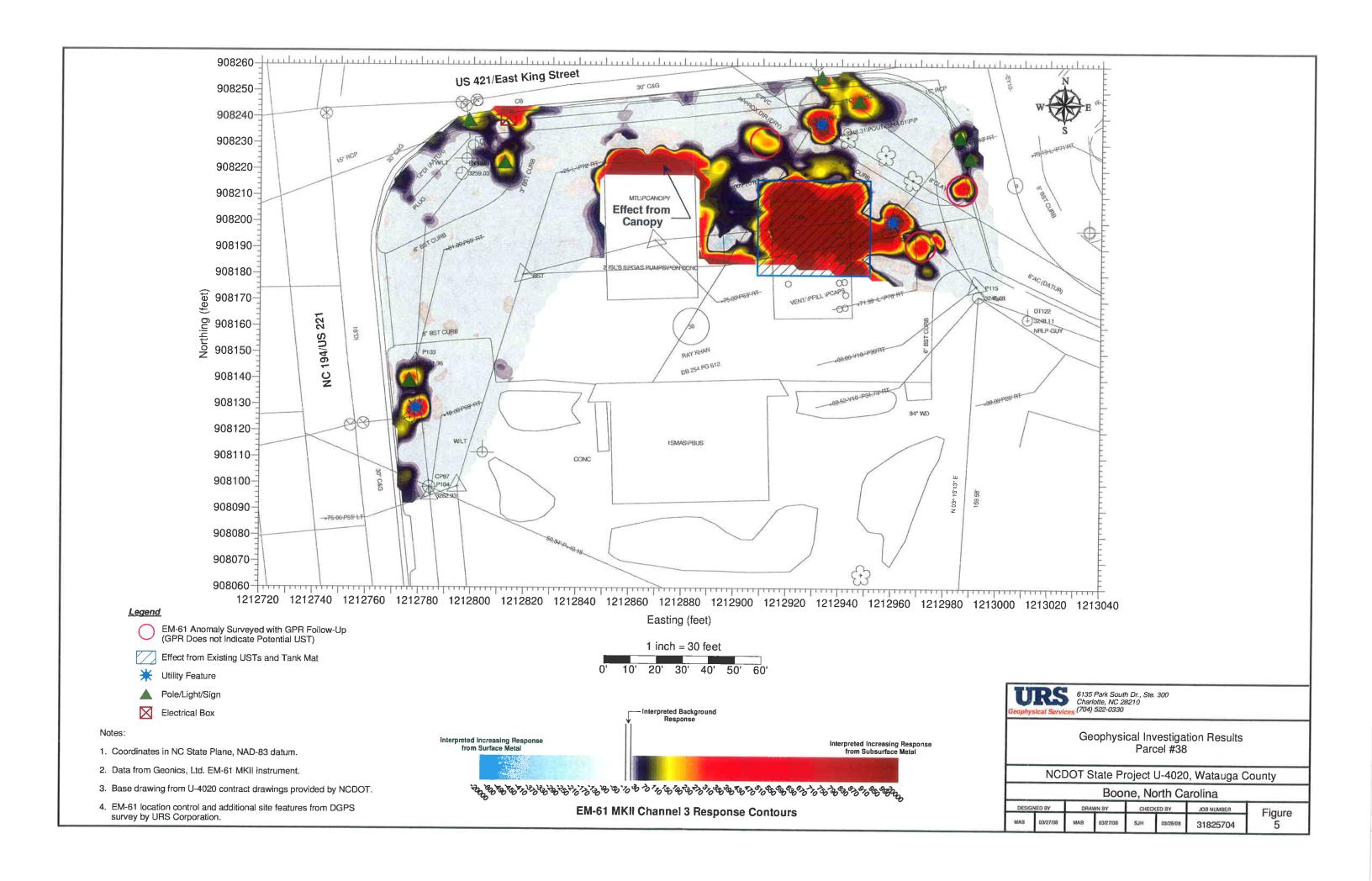

Figure 2 – Geophysical Investigation Results, Parcel #35

Figure 3 – Site Photograph, Parcel #35

Figure 4 – Geophysical Investigation Results, Parcel #37 Figure 5 – Geophysical Investigation Results, Parcel #38

1c: Vernon Keys, URS, Raleigh

File 3182 5704 – 4.2

Appendix C

Soil Boring Logs

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-1

PROJECT: Boone PSAs **JOB NUMBER:** ROW-148

LOCATION: Bo	oone, NC
--------------	----------

DEPTH (#)	RECOVERY (%)	BLOW COUNT	BKG.	SAMP.	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
-0.0-	-		苗	N S	तान्त्र :	Brown, orange, medium sandy, SILT, dry		-0.0-
PSAS/BORING LOGS/ROW-148 (38),GPJ	100		0.5	12.4		Brown, tan, fine to medium, sandy, SILT		2.5
5.0	_			16.7	壯	Light red, brown, tan, medium silty, SAND, with some partially weathered rock (PWR)	-	-5.0 -
- HART HICKMAN GDT - 5/29/08 08:32 - S:AAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSAS/BORING LOGS/ROW-148 (38),GPJ C C C C C C C C C C C C C C C C C C C				7,6		weathered rock (PWR) White, grey, silty, medium SAND, with some PWR		-7.5 -10.0
S:\AA								
- HART HICKMAN.GDT - 5/29/08 08:32		CONTRA	CTOP	Geol	ogic Eve	Bottom of borehole at 12.0 feet. Oration BORING STARTED 4/9/08 Remains	arks:	-12.5 -15.0

DRILLING CONTRACTOR: Geologic Exploration

DRILL RIG/ METHOD: Geoprobe 66DT **SAMPLING METHOD:** DPT Sleeves

LOGGED BY MHF DRAWN BY: BORING STARTED 4/9/08

BORING COMPLETED: 4/9/08 TOTAL DEPTH: 12

TOTAL DEPTH: 12 SURFACE ELEV: DEPTH TO WATER: Borehole hand-augered to 5' Soil sample collected from 2-4' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-2

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OvA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH
Sac W	REC	BL(BKG.	SAMP.	5			0
-0.0			0.3	0.8		Brown, fine to medium, sandy, SILT		
2.5-	100			0.7				2
5.0				1		Brown, red, medium, sandy, SILT		
7.5-	100			1.4				
10.0				3.1		Light green, brown, medium, sandy, SILT, with some red clay		
12.5-	80					Bottom of borehole at 12.0 feet.		-1
15.0-		CONTRAC				ploration BORING STARTED 4/9/08 Re	emarks:	-

LOGGED BY MHF

LOG OF

DRAWN BY:

TOTAL DEPTH: 12 SURFACE ELEV: **DEPTH TO WATER:**

Remarks:

Borehole hand-augered to 5' Soil sample collected from 9-12' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-3

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OVA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
	REC	BLC	BKG.	SAMP.	5			-0.0-
38).GPJ			0,5	17.1		Black, brown, silty, medium SAND		-
2.5	100			10.2		Brown, medium, sandy SILT	- - - - - - - - - -	- -2,5 - - - - -
5.0				38.1				-5.0 -5.0
7.5	75			15.2		Light green, brown, medium sandy, SILT, dry	-	-7.5 -
10.0-	100			15.7				-10.0 -10.0 - - -
-					111	Dattern of herabala at 12.0 feet	-	_
BOKING - HART HICKWARN, 60.1 - 5.29/08 08:53 - 5:VAAA-MARS LEK PROJECT SINC DOT RIGHT-OF-WAY - ROWROW-148 BOONE PSAS/BORING LOGS/ROW-148 (38), GFJ 2. 2. 2. 5. 10. 0. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						Bottom of borehole at 12.0 feet.		-12.5 -12.5
DRILLI DRILLI SAME	L RIG/	CONTRAC METHOD METHOD	: Geo	probe	66DT	BORING COMPLETED: 4/9/08		-15.0

LOGGED BY MHF **DRAWN BY:**

OG OF

TOTAL DEPTH: 12 **SURFACE ELEV: DEPTH TO WATER:** Borehole hand-augered to 5' Soil sample collected from 5-7' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-4

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

### ### ### ### ### ### #### #### ######								
-0.0	DEPTH (ff) COVERY (%)	OW COUNT			THOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
Tan, brown, fine sandy, SILT		BL(BKG.	SAMP.	5			-0.0-
7.5- 10.0- 12.5- 12.5- 12.5- 13.5- 14.635 Bottom of borehole at 5.0 feet.	-		0.5	2285		Brown, fine sandy, SILT		
7.5-	-5.0 -			1635		Bottom of borehole at 5.0 feet.		- -5.0-
	7.5-							-10.0

DRILLING CONTRACTOR: GEOLOGIC EXPLORATION

DRILL RIG/ METHOD: Hand Auger

SAMPLING METHOD: Hand Auger

LOGGED BY MHF

DRAWN BY:

BORING STARTED 4/9/08

BORING COMPLETED: 4/9/08 **TOTAL DEPTH:** 5

SURFACE ELEV: DEPTH TO WATER:

Remarks:

Borehole hand-augered to 5' Soil sample collected from 0-2' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-5

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OvA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
-0.0-	REC	BL	BKG.	SAMP.				-0.0-
-	100		0.5	64.5		Dark brown, medium sandy, SILT		-
2.5-	100							- -2.5 -
- HART HICKMAN, GDT - 5/29/08 08:33 - S:VAAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWNROW-148 BOONE PSAS/BORING LOGS/ROW-148 (38), GPJ						Bottom of borehole at 3.0 feet.		-7.5 -10.0
± DRIL	LING	CONTRAC	TOR:	GEO	LOGIC E	EXPLORATION BORING STARTED 4/9/08 Ren	narks:	

DRILLING CONTRACTOR: GEOLOGIC EXPLORATION

DRILL RIG/ METHOD: Hand Auger

SAMPLING METHOD: Hand Auger

LOGGED BY MHF DRAWN BY:

BORING STARTED 4/9/08

BORING COMPLETED: 4/9/08

TOTAL DEPTH: 3 **SURFACE ELEV: DEPTH TO WATER:**

Remarks:

Borehole hand-augered to 3' Soil sample collected from 1-3' for laboratory analysis.

DRILL RIG/ METHOD: Hand Auger

SAMPLING METHOD: Hand Auger

LOGGED BY MHF

DRAWN BY:

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-6

PROJECT: Boone PSAs **JOB NUMBER**: ROW-148

LOCATION: Boone, NC

DEPTH (ft)	RECOVERY (%)	BLOW COUNT	BKG.	SAMP.	ПТНОГОБУ	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
-0.0-			<u> </u>	\ _A				-0.0-
=	100		0.5	116		Brown, medium sandy, SILT		
2.5— -5.0— 10.0- 12.5—	100			776		Tan, brown, medium sandy, SILT		2.5
-5.0 -		-				Bottom of borehole at 5.0 feet.		-5.0-
						Bottom of boreflore at 5.0 feet.		F
=								F
								_
7.5-							1	-7.5
7.5-								
=								_
=								E
10.0-								-10.0
10.0-								E.O.O
\exists								E
								-12.5
12.5								-12.5
								-
								_
=								_
								_
15.0-								-15.0

BORING COMPLETED: 4/9/08

TOTAL DEPTH: 5

SURFACE ELEV:

DEPTH TO WATER:

Borehole hand-augered to 5'

Soil sample collected from 2-5' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-7

PROJECT: Boone PSAs JOB NUMBER: ROW-148

LOCATION: Boone, NC

Hard									1
-0.0- Red, brown, fine sandy, SILT, dry	DEPTH (ft)	COVERY (%)	LOW COUNT			-ІТНОLОGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
Red, brown, fine sandy, SILT, dry		W	<u> </u>	BKG	SAME				
8. Bottom of borehole at 3.0 feet. 7.57.5 -10.0 -10.0 -15.0	-			0,5					
7.5- -	2.5	100					Pottom of barahala at 3.0 feet		-
145 0	7.5								-7.5 -10.0

DRILLING CONTRACTOR: GEOLOGIC EXPLORATION

DRILL RIG/ METHOD: Hand Auger

SAMPLING METHOD: Hand Auger

LOGGED BY MHF DRAWN BY:

BORING STARTED 4/9/08 BORING COMPLETED: 4/9/08

TOTAL DEPTH: 3 SURFACE ELEV: DEPTH TO WATER:

Remarks:

Borehole hand-augered to 3' Soil sample collected from 0-2' for

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-8

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

							_
DEPTH (ft)	RECOVERY (%)	BLOW COUNT	(2000)	OVA (ppm)	LITHOLOGY	WELL DIAGRAM MATERIAL DESCRIPTION	DEPTH (ft)
1 1	REC	BLC	BKG	SAMP.	5		-0.0-
-0.0-			0.5	206		Brown, grey, silty, medium, SAND, with rock fragments	
2.5 - 1.0 -	100			118.6			-2.5 -2.5 -
-5.0-				19.7		Bottom of borehole at 5.0 feet.	-5.0-
7.5-							
7.5							
10.0-							-10.0 -
12.5							-12.5
12.5							
15.0						Daniel Control of the	- -15.0

DRILLING CONTRACTOR: GEOLOGIC EXPLORATION

DRILL RIG/ METHOD: Hand Auger

SAMPLING METHOD: Hand Auger

LOGGED BY MHF DRAWN BY:

BORING STARTED 4/9/08

BORING COMPLETED: 4/9/08

TOTAL DEPTH: 5 SURFACE ELEV: DEPTH TO WATER:

Remarks:

Borehole hand-augered to 5' Soil sample collected from 0-2' for

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-9

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OVA (ppm)	LITHOLOGY	MA	TERIAL DESCRIPTION		WELL DIAGRAM	DEPTH (ft)
W. 540	REC	BLC	BKG.	SAMP.	=					-0.0-
-0.0- - - - - - -			0.5	6.2		Red, brown, silty, medi	um SAND			
2.5	100			4.7						-2.5 - - -
-5.0-				3.1		Bott	om of borehole at 5.0 feet.			5.0-
11111										
7.5-										-7.5
10.0-										-10.0
12.5- - - 12.5-										-12.5
15.0-								1-		- -15.0
DRIL SAM	LLING CONTRACTOR: GEOLOGIC EXPLORATION LL RIG/ METHOD: Hand Auger					BORII TOTA	NG STARTED 4/9/08 NG COMPLETED: 4/9/08 LL DEPTH: 5	Remai Boreh Soil sa Jabora	rks: ole hand-augered to 5' ample collected from 0-2' for tory analysis.	

LOG OF LOGGED BY MHF

DRAWN BY:

TOTAL DEPTH: 5 SURFACE ELEV: **DEPTH TO WATER:**

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-10

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OvA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
-0.0-	REC	BLO	BKG.	SAMP.	5			-0.0-
-	100		0.5	47.6		Light brown, medium sandy, SILT, dry		
2.5-				61.2		Dark brown, tan, silty, SAND		2.5
2.5 – 2.5 –				80.7		Dark blown, tall, saty, GAND		-5.0 -5.0 7.5
10.0-	90			136				-10.0
12.5-1 15.0-1	90			3876				
70.0						Bottom of borehole at 12.0 feet.		- -12.5
12.5								F.2.3
7/0-								
20 -	1							E
- AMAIN								E
2 -		i						E.
15.0								-15.0
Loon		CONTRA	TOD.	000	10010	EVELOPATION BODING STARTED 4/0/09	arke:	

DRILLING CONTRACTOR: GEOLOGIC EXPLORATION

DRILL RIG/ METHOD: Geoprobe 6620DT **SAMPLING METHOD:** DPT Sleeves

LOGGED BY MHF DRAWN BY: BORING STARTED 4/9/08
BORING COMPLETED: 4/9/08

TOTAL DEPTH: 12 SURFACE ELEV: DEPTH TO WATER:

Remarks:

Borehole hand-augered to 5' Soil sample collected from 8-12' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-11

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

DEPTH	RECOVERY (%)	BLOW COUNT		OvA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	(#)
		BLOV	BKG.	SAMP.	Ė			
38) GPJ	- - - - 100		0.5	0.9		Red, brown, medium silty, SAND, dry		
BORING - HART HICKMAN, GDT - 5/29/08 08:32 - S:AAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWNROW-148 BOONE PSAS/BORING LOGS/ROW-148 (38), GPJ PSAS/BORING LOGS/ROW-148 (38), GPJ	75			1.1			-2. -2. 	
S:AAA-MASTER PROJECTSINC DOT RIGHT-0F-WAY 0 0 C C	75			1			-7. - - - - - - - - - - - - - - - - - -	
8:32 -	_				1 1	Bottom of borehole at 12.0 feet.	-12	2.5
12. 11. HICKMAN GDT - 5/29/08 0	0-1 - - - - - - - - -						- - - - - - - - - - - - - - - - - - -	
DRI DRI SAI	ILLING ILL RIG MPLING	CONTRAC METHOD METHOD	: Geo	probe	6620D	EXPLORATION BORING STARTED 4/9/08 BORING COMPLETED: 4/9/08 TOTAL DEPTH: 12 SUBSACE EL EV:	arks: nole hand-augered to 5' sample collected from 2-5' for atory analysis.	

LOGGED BY MHF DRAWN BY:

LOG 0F

TOTAL DEPTH: 12 **SURFACE ELEV: DEPTH TO WATER:**

Remarks:

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-12

PROJECT: Boone PSAs JOB NUMBER: ROW-148

LOCATION: Boone, NC

DEPTH	REC	BLOW COUNT	BKG.	SAMP.	гітногосу	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
O.0.0			0.5	1.7		Red, brown, fine sandy, SILT, dry Light brown, white, sandy SILT, with some clays, dry		-2.5
- HART HICKMAN GDT - 5/29/08 08:32 - S:VAAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSAS:BORING LOG	5	CONTRAC METHOD METHOD METHOD Y MHF	TOR	GEO	OGIC	XPLORATION BORING STARTED 4/9/08 Rem	arks:	
DRI SAM LOC DRA	LL RIGAMPLING GGED E	METHOD METHOD METHOD MHF	: Han	d Aug	er	BORING COMPLETED: 3/9/08 TOTAL DEPTH: 3 Bore Soil:	hole hand-augered to 3' sample collected from 2-3' for atory analysis.	

Remarks:

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-13

PROJECT: Boone PSAs **JOB NUMBER:** ROW-148

LOCATION: Boone, NC

	DEPTH (ft)	RECOVERY (%)	BLOW COUNT	BKG,	SAMP.	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ff)
	اے م_				တဲ				
- HART HICKMAN, GDT - 5/29/08 08:32 - S.VAAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWIROW-148 BOONE PSASIBORING LOGSIROW-148 (38), GPJ	7.5-			BK	24.6		Dark brown, silty SAND, dry, some rock fragment Bottom of borehole at 2.5 feet.		-0.0- 2.5- 5.0 10.0
TAR.	15.0-								-15.0
+	DRILL	ING (CONTRAC	TOR:	GEO	OGIC F	EXPLORATION BORING STARTED 4/9/08 Rema	arks:	

DRILLING CONTRACTOR: GEOLOGIC EXPLORATION

DRILL RIG/ METHOD: Hand Auger

SAMPLING METHOD: Hand Auger

LOGGED BY MHF DRAWN BY:

BORING STARTED 4/9/08

BORING COMPLETED: 4/9/08

TOTAL DEPTH: 2.5 SURFACE ELEV: DEPTH TO WATER:

Remarks:

Borehole hand-augered to 2.5' Soil sample collected from 0-2.5' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-14

PROJECT: Boone PSAs JOB NUMBER: ROW-148

OOD NOMBE	IVO VV- I T
LOCATION:	Boone, NC

	DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OVA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)				
	-0.0-	REC	ВГС	BKG.	SAMP.	5			0.0-				
	0.0			0.6	6.9		Light brown, grey, silty SAND, coarse						
RING LOGS/ROW-148	2.5-				7.8				-2.5				
BORING - HART HICKMAN, GDT - 5/29/08 08:32 - S:AAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGS/ROW-148 (38), GPJ YEAR DOT RIGHT-OF-WAY -ROWROW-148 (38), GPJ	5.0-								224		Light brown, white, silty SAND, medium density		-5.0
T-OF-WAY -ROWROW	7.5-				144								
ECTS/NC DOT RIGHT.	10.0-				93.4				-10.0				
- S:VAAA-MASTER PR(10.0												
38 08:32	12.5-						Bottom of borehole at 12.0 feet.		_ -12.5				
T - 5/29/0													
MAN.GD	=								-				
RT HICK	15.0-								- -15.0				
G - HA	DRILL						XPLORATION BORING STARTED 4/9/08 Rema						
F BORIN			METHOD:				BORING COMPLETED: 4/9/08 TOTAL DEPTH: 12 Soil sa	ample collected from 4-6' for					

LOGGED BY MHF

DRAWN BY:

SURFACE ELEV: DEPTH TO WATER: Borehole hand-augered to 5' Soil sample collected from 4-6' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-15

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

DЕРТН (ft)	RECOVERY (%)	BLOW COUNT		OvA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
	REC	BLO	BKG.	SAMP.	=			-0.0-
(38).GPJ			0.5	1.1		Brown, red SILT, dry		
ABORING LOGS/ROW-148				2.3		Dark brown, fine sandy SILT, dry		-2.5 -
- S:NAAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGSIROW-148 (38),GPJ 1				2.2		Brown, orange, SILT, dry		-5.0 -5.0 -
ROJECTSINC DOT RIGHT-0 100				19.8				10.0
S:VAAA-MASTER F				26.8				-
- HART HICKMAN GDT - 5/29/08 08:32 - 6						Bottom of borehole at 12.0 feet.		-12.5 - - - - - - - - - - - - - - - - - - -
DRILL SAMI	L RIGA PLING GED E	METHOD METHOD Y MHF	: Geo	probe	6620D1	BORING STARTED 4/10/08 BORING COMPLETED: 4/10/08 BORING COMPLETED: 4/10/08 BORING COMPLETED: 4/10/08 Borek Soil s SURFACE ELEV: DEPTH TO WATER:	arks: nole hand-augered to 5' ample collected from 10-12' for atory analysis.	

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-16

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

			_					
DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OVA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM	DEPTH (ft)
-0.0-	REC	BLC	BKG.	SAMP.	5			-0.0-
2.5-			0.5	0.7		Brown, fine, sandy SILT Brown, fine, sandy SILT Brown, fine, sandy SILT, slightly micaceous		-2.5 5.0 7.5
12.5- - - -						Bottom of borehole at 12.0 feet,		- -12.5 - - -
15.0-				050	0010.5	VELODATION PODING STARTED 4/40/09		-15.0

DRILLING CONTRACTOR: GEOLOGIC EXPLORATION

DRILL RIG/ METHOD: Geoprobe 6620DT

SAMPLING METHOD: DPT Sleeves

LOGGED BY MHF

DRAWN BY:

OG OF BORING - HART HICKMAN GDT - 5/29/08 08:32 - SNAAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGSIROW-148 (38),GPJ

BORING STARTED 4/10/08

BORING COMPLETED: 4/10/08

TOTAL DEPTH: 12 SURFACE ELEV: DEPTH TO WATER:

Remarks:

Borehole hand-augered to 5' Soil sample collected from 5-7' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-17

PROJECT: Boone PSAs JOB NUMBER: ROW-148

70	Chanotte, North Carolina 26203 Raleigh, North Carolin 704-586-0007(p) 704-586-0373(f) 919-847-4241(p) 919-6						LOCATION: Boone, NC			
DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OVA (ppm)	гногову	WELL DIAGRED WELL				
	REC	BLC	BKG.	SAMP.] 5					DEPTH
2.5-			0.5	2.3		Tan, beige, medium, san	ndy SILT ndy SILT, w/ partially weathered rock	(PWR)		
-5.0						Botto	om of borehole at 5.0 feet.			-5
7.5-										-10 -11 -12 -13
DRILL SAMPI	RIG/ LING ED B	METHOD: METHOD: Y MHF	: Hand	d Auge	er	BORING TOTAL SURFA	G STARTED 4/10/08 G COMPLETED: 4/10/08 DEPTH: 5 CE ELEV: TO WATER:	Rema Boring Soil sa labora	rks: hand-augered to 5' ample collected from 2-5' for tory analysis.	

Remarks:

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-18

PROJECT: Boone PSAs JOB NUMBER: ROW-148 LOCATION: Boone, NC

DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OVA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM
	REC	BLC	BKG.	SAMP.] 5		
-0.0			0.5	1.8		Tan, beige, medium SAND, dry	-
2.5-				2.4	· · · · ·	Tan, beige, silty, fine, SAND	-
5.0-				2.3			
7.5-				1.9		Dark brown, clayey SILT	
10.0-				4.9			
2.5-						Bottom of borehole at 12.0 feet.	
DRILLI DRILL	RIG/	ONTRAC METHOD: METHOD:	Geop	orobe (6620DT		

SAMPLING METHOD: DPT Sleeves **LOGGED BY MHF**

DRAWN BY:

TOTAL DEPTH: 12 **SURFACE ELEV: DEPTH TO WATER:**

Remarks:

Borehole hand-augered to 5' Soil sample collected from 10-12' for laboratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-19

PROJECT: Boone PSAs JOB NUMBER: ROW-148

LOCATION: Boone, NC

DEPTH (ft)	RECOVERY (%)	BLOW COUNT		OVA (ppm)	LITHOLOGY	MATERIAL DESCRIPTION	WELL DIAGRAM
-0.0-	7 1	BL(BKG.	SAMP.	_ _		
=			0.05	2.3		Orange, tan, medium SAND, dry	-0.c
2.5-							-2.5
- - - - - -				2,2			
5.0—							-5.0 -5.0
				2.4			
2.5- 				3.6		Light tan, fine sandy, SILT, dry	-7.5 - - - - - - - - - - - - - - -
				2,2			
12.5-						Bottom of borehole at 12.0 feet.	-12.5
=							
=							
15.0-							-15.0
DRILLING DRILL RI SAMPLIN LOGGED DRAWN I	G/ ME IG ME By I	ETHOD: ETHOD:	Geop	robe	6620DT		narks: shole hand-augered to 5' sample collected from 7-9' for ratory analysis.

3334 Hillsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-20

PROJECT: Boone PSAs JOB NUMBER: ROW-148

LOCATION: Boone, NC

DEPTH	(ft) RECOVERY (%)	BLOW COUNT	<u> </u>	P. OVA (ppm)	ПТНОГОСУ	MATERIAL DESCRIPTION	WELL DIAGRAM	(±)
-0.			BKG	SAMP.				0.0-
	- - - 100		0.5	1.8		Red, brown, medium sandy SILT, dry		
HART HICKMAN, GDT - 5/29/08 08:33 - S:AAAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWROW-148 BOONE PSASIBORING LOGSIROW-148 (38), GPJ 19	_ _ _ _ _ _ _			1.9		Brown, pink, silty, medium, SAND, dry		2.5
AY -ROWROW-148 BOONE	50			2,1		Light orange, brown, silty, medium SAND, dry	-5 -	.0
NC DOT RIGHT-OF-W	50			2.4		Light orange, brown, medium SAND, with some PWR, dry	-7 - - - - - - - -	.5
S:VAAA-MASTER PROJECTS/V	0- 33			1.9			-10 -10 	0.0
12.	5- 					Bottom of borehole at 12.0 feet.	-12 -13 	2.5
15.		:#:					-15	5.0
DR DR DR DR DR	ILL RIG	CONTRAC METHOL METHOL BY MHF Y:	: Geo	probe	6620DT	Remai BORING STARTED 4/10/08 BORING COMPLETED: 4/10/08 TOTAL DEPTH: 12 SURFACE ELEV: DEPTH TO WATER:	rks: ole hand-augered to 5' imple collected from 7-9' for tory analysis.	

Remarks:

3334 Hilfsborough Street Raleigh, North Carolina 27607 919-847-4241(p) 919-847-4261(f)

BORING NUMBER 38-21

PROJECT: Boone PSAs JOB NUMBER: ROW-148

LOCATION: Boone, NC

	DEPTH (ft)	RECOVERY (%)	BLOW COUNT	BKG.	SAMP. OVA (ppm)	ПТНОГОСУ	MATERIAL DESCRIPTION	WELL DIAGRAM DEPTH
-	-0.0-			à	SA		Dark brown, red, clayey, SILT, dry	-0.0-
-148 (38).GPJ	-			0.5	1.9		Red, brown, fine sandy, SILT, dry	
ASIBORING LOGSIROW	2.5-	100			2.3			-2.5
HART HICKMAN GDT - 5/29/08 08:33 - S:AAA-MASTER PROJECTSINC DOT RIGHT-OF-WAY -ROWIROW-148 BOONE PSASIBORING LOGSIROW-148 (38).GPJ	5.0-				1,4			 -5.0
IT RIGHT-OF-WAY -ROV	7.5-	75			2.7		Tan, beige, fine sandy, SILT, dry	 -7.5
NINC DO	_						Bottom of borehole at 9.0 feet.	
ASTER PROJECTS	10.0-							-10.0
18 08:33 - S:VAAA-MA	2.5-							-12.5
KMAN.GDT - 5/29/0								
ART HIC	5.0-							-15.0
OF BORING -	ORILL SAMP OGG	RIG/	METHOD: METHOD: Y MHF	TOR: Geor	GEOL probe Sleev	OGIC E 6620DT es	Soil sa	

Appendix D

Laboratory Analytical Report

Laboratory Report

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.:

WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-1 (2-4)

Prism Sample ID: 211280

COC Group:

G0408351

Time Collected: 04/09/08 15:00

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	88.9	%			1	SM2540 G	04/15/08 11:15	mbarber	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.8	1.3	1	8015B	04/23/08 10:54	jvogel	Q 31936
Sample Preparation:			25.	16 g /	1 mL	3545	04/21/08 15:15	wconder	P21394
					Surrogate		% Recovery	Conti	ol Limits
					o-Terphen	/I	120	4	9 - 124
Sample Weight Determination									
Weight 1	5.95	g			1	GRO	04/15/08 0:00	Lbrown	
Weight 2	5.83	g			1	GRO	04/15/08 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	5.6	3.5	50	8015B	04/18/08 17:34	grappaccioli	Q31819
					Surrogate		% Recovery	Contr	ol Limits
					aaa-TFT		124		5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

North Carolina Department of

Transportation Attn: David Graham

c/o Hart and Hickman 2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.:

WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-2 (9-12) Prism Sample ID: 211284

COC Group:

G0408351

Time Collected:

04/09/08 15:35

ime Submitted: (04/11/08	9:20
------------------	----------	------

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
Percent Solids Determination Percent Solids	90.3	%			1	SM2540 G	04/15/08	11:15	mbarber	
Diesel Range Organics (DRO) by Go	C-FID									
Diesel Range Organics (DRO)	BRL	mg/kg	7.7	1.2	1	8015B	04/23/08	14:51	jvogel	Q31961
Sample Preparation:			25.	12 g	/ 1 mL	3545	04/22/08	16:30	wconder	P21413
					Surrogate		% Re	covery	Con	trol Limits
					o-Terphen	γl		51		49 - 124
Sample Weight Determination					.==:					
Weight 1	6.42	g			1	GRO	04/15/08	0:00	Lbrown	
Weight 2	5.64	g			1	GRO	04/15/08	0:00	lbrown	
Weight 2 Gasoline Range Organics (GRO) by		g			1	GRO	04/15/08	0:00	lbrown	

One surrogate recovery was outside the control limits. No target compounds were detected in this sample. No further action was taken.

Surrogate	% Recovery	Control Limits
aaa-TFT	151 #	55 - 129
P-		

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Laboratory Report

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID: **ROW-148** Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-3 (5-7) Prism Sample ID: 211281 COC Group: G0408351

Time Collected:

04/09/08 15:15

me Submitted: 04/11/0	8 9:20
-----------------------	--------

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination			_						
Percent Solids	90.6	%			1	SM2540 G	04/15/08 11:1	5 mbarber	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	43	mg/kg	7,.7	1.2	1	8015B	04/23/08 11:3	1 jvogel	Q3193
Sample Preparation:			25.	14 g /	1 mL	3545	04/21/08 15:1	5 wconder	P21394
					Surrogate		% Recover	y Cont	rol Limits
					o-Terphen	yl	121	4	19 - 124
Sample Weight Determination									
Weight 1	4.20	g			1	GRO	04/15/08 0:00	Lbrown	
Weight 2	4.54	g			1	GRO	04/15/08 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	5.5	3.5	50	8015B	04/18/08 18:06	grappaccioli	Q31819
					Surrogate		% Recover	y Conti	ol Limits
					aaa-TFT		126	5	5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

4/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.:

WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-4 (0-2) Prism Sample ID: 211278

COC Group:

G0408351

Time Collected:

04/09/08 14:15

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analy Date/T		Analysi	Batch ID
Percent Solids Determination Percent Solids	85.5	%			1	SM2540 G	04/15/08	11:18	5 mbarber	
Diesel Range Organics (DRO) by (GC-FID									
Diesel Range Organics (DRO)	950	mg/kg	82	13	10	8015B	04/22/08	17:39) jvogel	Q3193
Sample Preparation:			25.	25 g .	/ 1 mL	3545	04/21/08	15:15	wconder	P21394
					Surrogate		% Re	cover	y Cor	trol Limits
					o-Terpheny	/		DO ;	¥	49 - 124
Sample Weight Determination										
Weight 1	5.60	g			3	GRO	04/17/08	0:00	athao	
Weight 2	5.57	g			1	GRO	04/17/08	0:00	athao	
Gasoline Range Organics (GRO) by	GC-FID									
Gasoline Range Organics (GRO)	8000	mg/kg	230	150	2000	8015B	04/19/08	4:39	grappaccioli	Q31819
					Surrogate		% Red	covery	Con	trol Limits
					aaa-TFT			DO #		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

04/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No .:

WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-5 (1-3)

Prism Sample ID: 211282

G0408351

Time Collected:

COC Group:

04/09/08 15:20

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analy Date/T		Analys	t Batch
Percent Solids Determination										
Percent Solids	79.0	%			1	SM2540 G	04/15/08	11:15	mbarber	
Diesel Range Organics (DRO) by GO	-FID									
Diesel Range Organics (DRO)	BRL	mg/kg	8.8	1.4	1	8015B	04/22/08	19:32	jvogel	Q31936
Sample Preparation:			25.	07 g /	1 mL	3545	04/21/08	15:15	wconder	P21394
					Surrogate		% Re	cover	/ Coi	ntrol Limits
					o-Terpheny	4		76		49 - 124
Sample Weight Determination										
Weight 1	6.03	9			1	GRO	04/15/08	0:00	Lbrown	
Weight 2	6.51	g			1	GRO	04/15/08	0:00	Ibrown	
Gasoline Range Organics (GRO) by (GC-FID									
Gasoline Range Organics (GRO)	BRL	mg/kg	6.3	4.0	50	8015B	04/18/08	18:38	grappaccioli	Q31819

One surrogate recovery was outside the control limits. No target compounds were detected in this sample. No further action was taken.

Surrogate	% Recovery	Control Limits
aaa-TFT	133 #	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances Indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Page 80 of 112

Laboratory Report

04/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.:

WBS# 35015.1.1

Sample Matrix: Soil

Prism Sample ID: 211279

Client Sample ID: 38-6 (2-5)

COC Group:

G0408351

Time Collected:

04/09/08 14:30

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	87.7	%			1	SM2540 G	04/15/08 11:15	mbarber	
Diesel Range Organics (DRO) by GO	:-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	8.0	1.3	Ĩ	8015B	04/23/08 12:09	jvogel	Q31936
Sample Preparation:			25.	06 g /	1 mL	3545	04/21/08 15:15	wconder	P21394
					Surrogate		% Recovery	Conti	ol Limits
					o-Terpheny	/	105	4	9 - 124
Sample Weight Determination									
Weight 1	5.53	g			1	GRO	04/15/08 0:00	Lbrown	
Weight 2	5.96	g			1	GRO	04/15/08 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	37	mg/kg	5.7	3.6	50	8015B	04/18/08 16:41	grappaccioli	Q31819
					Surrogate		% Recovery	Contr	ol Limits
€					aaa-TFT	191	112		5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID: Project No.:

Sample Matrix: Soil

ROW-148 WBS# 35015.1.1

Client Sample ID: 38-7 (0-2) Prism Sample ID: 211288

COC Group:

G0408351

Time Collected:

04/09/08 16:05

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analys	Batch
Percent Solids Determination									
Percent Solids	75.6	%			1	SM2540 G	04/15/08 11:	5 mbarber	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	15	mg/kg	9,1	1.5	1	8015B	04/23/08 17:5	1 jvogel	Q3196 ⁻
Sample Preparation:			25.	37 g /	1 mL	3545	04/22/08 16:3	0 wconder	P21413
					Surrogate		% Recove	ry Con	trol Limits
					o-Terpheny	l	69	The second secon	49 - 124
Sample Weight Determination									
Welght 1	4.87	g			1	GRO	04/15/08 0:00	Lbrown	
Weight 2	4.84	g			1	GRO	04/15/08 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	6.6	4.1	50	00450	0.4/4.0/00 00 44		
, , , , ,		mg/kg	0.0	7.1	50	8015B	04/18/08 22:19	grappaccioli	Q3181

One surrogate recovery was outside the control limits. No target compounds were detected in this sample. No further action was taken.

Surrogate	% Recovery	Control Limits
aaa-TFT	133 #	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Laboratory Report

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID: Project No.:

ROW-148 WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-8 (0-2)

Prism Sample ID: 211289

COC Group:

G0408351

Time Collected:

16:10

04/09/08

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analy: Date/Ti		Analyst	Batch ID
Percent Solids Determination Percent Solids	75.0	%			1	SM2540 G	04/15/08	11:15	mbarber	
Diesel Range Organics (DRO) by Go	C-FID									
Diesel Range Organics (DRO)	BRL	mg/kg	9.3	1.5	1	8015B	04/24/08	9:53	jvogel	Q3196
Sample Preparation:			2 5.	22 g /	1 mL	3545	04/22/08	16:30	wconder	P21413
					Surrogate		% Re	covery	Cont	rol Limits
					o-Terphen	/l		50	4	9 - 124
Sample Weight Determination										
Weight 1	5.67	9			1	GRO	04/15/08	0:00	Lbrown	
Weight 2	5.53	g			1	GRO	04/15/08	0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID									
Gasoline Range Organics (GRO)	9.1	mg/kg	6.7	4,2	50	8015B	04/18/08	22:51	grappaccioli	Q31819
					Surrogate		% Re	covery	Contr	ol Limits
					aaa-TFT			122	5	5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs Project ID:

ROW-148 Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-9 (0-2) Prism Sample ID: 211283

COC Group:

G0408351

Time Collected: Time Submitted: 04/11/08 9:20

04/09/08 15:30

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysi Date/Tin		Analys	t Batch ID
Percent Solids Determination										
Percent Solids	74.5	%			1	SM2540 G	04/15/08	11:15	mbarber	
Diesel Range Organics (DRO) by GC	-FID									
Diesel Range Organics (DRO)	BRL	mg/kg	9.2	1.5	1	8015B	04/22/08	18:16	jvogel	Q3193
Sample Preparation:			25.	61 g /	1 mL	3545	04/21/08	15:15	wconder	P21394
					Surrogate		% Rec	overy	Cor	ntrol Limits
					o-Terpheny	/l		80		49 - 124
Sample Weight Determination										
Weight 1	4.63	g			1	GRO	04/15/08 (0:00	Lbrown	
Weight 2	4.36	g			1	GRO	04/15/08 (0:00	Ibrown	
Gasoline Range Organics (GRO) by G	GC-FID									
Gasoline Range Organics (GRO)	BRL	mg/kg	6.7	4.2	50	8015B	04/18/08 1	19:09	grappaccioli	Q3181

One surrogate recovery was outside the control limits. No target compounds were detected in this sample. No further action was taken.

Surrogate	% Recovery	Control Limits
aaa-TFT	133 #	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Laboratory Report

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Prism Sample ID: 211285

COC Group:

G0408351

Time Collected:

Client Sample ID: 38-10 (8-12)

% Recovery

136 #

04/09/08 15:40

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analys	t Batch ID
Percent Solids Determination								W 11		
Percent Solids	77.6	%			1	SM2540 G	04/15/08	11:15	mbarber	
Diesel Range Organics (DRO) by GC	-FID									
Diesel Range Organics (DRO)	BRL	mg/kg	9.0	1.5	1	8015B	04/23/08	15:27	jvogel	Q31961
Sample Preparation:			25	5.1 g /	1 mL	3545	04/22/08	16:30	wconder	P21413
					Surrogate		% Red	overy:	Cor	ntrol Limits
					o-Terpheny			49		49 - 124
Sample Weight Determination										
Weight 1	5.82	g			1	GRO	04/15/08	0:00	Lbrown	
Weight 2	5.85	9			1	GRO	04/15/08	0:00	Ibrown	
Gasoline Range Organics (GRO) by G	C-FID									
Gasoline Range Organics (GRO)	220	mg/kg	6.4	4.0	50	8015B			grappaccioli	Q31819

One surrogate recovery was outside of the control limits. Matrix interference is suspected.

Surrogate

aaa-TFT

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Control Limits

55 - 129

Laboratory Report

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs Project ID: **ROW-148**

Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-11 (2-5) Prism Sample ID: 211287

COC Group:

G0408351

Time Collected:

04/09/08 16:00 Time Submitted: 04/11/08

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analy Date/T		Analyst	Batch ID
Percent Solids Determination										
Percent Solids	72.4	%			1	SM2540 G	04/15/08	11:15	mbarber	
Diesel Range Organics (DRO) by G	C-FID									
Diesel Range Organics (DRO)	BRL	mg/kg	9.5	1.5	1	8015B	04/23/08	17:15	jvogel	Q3196
Sample Preparation:			25.	.33 g /	1 mL	3545	04/22/08	16:30	wconder	P21413
					Surrogate		% Re	covery	Cont	rol Limits
					o-Terphen	yl		49	4	9 - 124
Sample Weight Determination Weight 1	4.89	g			1	GRO	04/15/08	0.00	Lbrown	
Weight 2	4.75	g			1	GRO	04/15/08		Ibrown	
Gasoline Range Organics (GRO) by	GC-FID									
Gasoline Range Organics (GRO)	BRL	mg/kg	6.9	4.3	50	8015B	04/18/08	21:47	grappaccioli	Q 31819
					Surrogate		% Re	covery	Contr	ol Limits
					aaa-TFT			112	5	5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

North Carolina Department of

Transportation Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.:

WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-12 (2-3) Prism Sample ID: 211292

COC Group: G0408351

Time Collected:

04/09/08 16:45

itted: 04/11/08 9:20

Time Submit

Parameter	Result	Units	Report Limit	MDL.	Dilution Factor	Method	Analysis Date/Time	Analys	t Batch ID
Percent Solids Determination									
Percent Solids	85.4	%			1	SM2540 G	04/15/08 11:15	mbarber .	
Diesel Range Organics (DRO) by GO	C-FID								
Diesel Range Organics (DRO)	21	mg/kg	8,1	1.3	1	8015B	04/23/08 20:50) jvogel	Q31961
Sample Preparation:			25.	31 g	1 mL	3545	04/22/08 16:30) wconder	P21413
					Surrogate		% Recover	y Cor	ntrol Limits
					o-Terpheny	A	74		49 - 124
Sample Weight Determination									
Weight 1	2.89	g			1	GRO	04/17/08 0:00	athao	
Weight 2	5.69	g			1	GRO	04/17/08 0:00	athao	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	5.9	3.7	50	8015B	04/19/08 0:27	grappaccioli	Q31819

One surrogate recovery was outside the control limits. No target compounds were detected in this sample. No further action was taken.

Surrogate	% Recovery	Control Limits
aaa-TFT	138 #	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Page 90 of 112

Laboratory Report

14/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs Project ID: ROW-148

Project ID: ROW-148
Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-13 (0-25)

COC Group:

G0408351

Time Collected: 04/09/08 Time Submitted: 04/11/08 16:30 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analys	Batch ID
Percent Solids Determination									
Percent Solids	84.1	%			1	SM2540 G	04/15/08 11:15	mbarber	
Diesel Range Organics (DRO) by GC	-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	8.3	1.3	1	8015B	04/23/08 20:14	l jvogel	Q31961
Sample Preparation:			25.	.22 g /	1 mL	3545	04/22/08 16:30) wconder	P21413
					Surrogate		% Recover	y Cor	ntrol Limits
					o-Terpheny	yl	73		49 - 124
Sample Weight Determination									
Weight 1	6.33	g			1	GRO	04/15/08 0:00	Lbrown	
Weight 2	6.95	g			1	GRO	04/15/08 0:00	lbrown	
Gasoline Range Organics (GRO) by C	GC-FID								
Gasoline Range Organics (GRO)	16	mg/kg	5.9	3.7	50	8015B	04/18/08 23:54	grappaccioli	Q31819

One surrogate recovery was outside the control limits. No target compounds were detected in this sample. No further action was taken.

Surrogate	% Recovery	Control Limits
aaa-TFT	136 #	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Page 89 of 112

Laboratory Report

04/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs Project ID: ROW-148

Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-14 (4-6)
Prism Sample ID: 211286
COC Group: G0408351

Time Collected: 04/09/08 15:45 Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	81.7	%			1	SM2540 G	04/15/08 11:	15 mbarber	
Diesel Range Organics (DRO) by GC	-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	8.4	1.3	1	8015B	04/23/08 16:	39 jvogel	Q3196
Sample Preparation:			25.	.63 g /	1 mL	3545	04/22/08 16:	30 woonder	P21413
					Surrogate		% Recove	ery Con	trol Limits
					o-Terphen	yl	53		49 - 124
Sample Weight Determination									
Weight 1	4.57	g			1	GRO	04/17/08 0:00) athao	
Weight 2	4.64	g			1	GRO	04/17/08 0:00) athao	
Gasoline Range Organics (GRO) by (GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	6.1	3.8	50	8015B	04/18/08 20:4	3 grappaccioli	Q31819

One surrogate recovery was outside the control limits. No target compounds were detected in this sample. No further action was taken.

Surrogate	% Recovery		Control Limits
aaa-TFT	148 #	ŧ	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Laboratory Report

04/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-15 (10-12)

Prism Sample ID: 211293

COC Group:

G0408351

Time Collected:

04/10/08 8:45

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	79.6	%			1	SM2540 G	04/16/08 15:15	5 mbarber	
<u>Diesel Range Organics (DRO) by G</u> Diesel Range Organics (DRO)	<u>C-FID</u> BRL	mg/kg	8.7	1.4	1	8015B	04/24/08 1:01	jbamette	Q31961
Sample Preparation:		5 0	2	5.3 g /	1 mL	3545	04/22/08 16:3) wconder	P21413
					Surrogate		% Recover	y Con	trol Limits
					o-Terphen	yl	62		49 - 124
Sample Weight Determination Weight 1	5.02	g			1	GRO	04/17/08 0:00	athao	
Weight 2	5.29	g			1	GRO	04/17/08 0:00	athao	
Gasoline Range Organics (GRO) by Gasoline Range Organics (GRO)	GC-FID BRL	mg/kg	6,3	3,9	50	8015B	04/19/08 13:57	7 grappaccioli	Q31853
					Surrogate		% Recover	y Con	trol Limits
					aaa-TFT		102		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Laboratory Report

04/28/08

North Carolina Department of Transportation

Attn: David Graham

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs Project ID: ROW-148

Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-16 (5-7)

Prism Sample ID: 211294

COC Group: G0408351

Time Collected: 04/10/08 8:55 Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
Percent Solids Determination Percent Solids	76.6	%			1	SM2540 G	04/16/08	15:15	mbarber	
Diesel Range Organics (DRO) by GO			- 1							
Diesel Range Organics (DRO)	BRL	mg/kg	9.1	1.5	1	8015B	04/24/08	2:14	jvogel	Q31961
Sample Preparation:			25.	24 g /	1 mL	3545	04/22/08	16:30	wconder	P21413
					Surrogate		% Re	cover	y Cont	trol Limits
					o-Terphen	γl		57	4	49 - 124
Sample Weight Determination										
Weight 1	6.72	g			1	GRO	04/17/08	0:00	athao	
Weight 2	6.63	g			1	GRO	04/17/08	0:00	athao	
Gasoline Range Organics (GRO) by	GC-FID									
Gasoline Range Organics (GRO)	BRL	mg/kg	6.5	4.1	50	8015B	04/19/08	15:00	grappaccioli	Q31853
					Surrogate		% Re	covery	, Cont	rol Limits
					aaa-TFT			114		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

4/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs
Project ID: ROW-148

Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-17 (2-5)
Prism Sample ID: 211295
COC Group: G0408351

Time Collected: 04/10/08 9:15

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	81.6	%			1	SM2540 G	04/16/08 15:1	5 mbarber	
Diesel Range Organics (DRO) by GC	-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	8.5	1.4	1	8015B	04/23/08 19:02	2 jvogel	Q31961
Sample Preparation:			:	25.1 g /	1 mL	3545	04/22/08 16:3) wconder	P21413
					Surrogate		% Recover	y Cor	itrol Limits
					o-Terphen	yl	54		49 - 124
Sample Weight Determination									
Weight 1	8.64	g			1	GRO	04/15/08 0:00	Lbrown	
Weight 2	12.15	g			1	GRO	04/15/08 0:00	lbrown	
Gasoline Range Organics (GRO) by (GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	6.1	3.8	50	8015B	04/19/08 15:32	grappaccioli	Q31853

One surrogate recovery was outside of the control limits. The analysis was repeated, with no improvement in recovery. Matrix interference is suspected.

% Recovery						
51	#	55 - 129				

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Page 93 of 112

Laboratory Report

04/28/08

North Carolina Department of Transportation

Attn: David Graham
c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs Project ID: ROW-148

Project No.: WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-18 (10-12) Prism Sample ID: 211296

COC Group: G0408351

Time Collected: 04/10/08 9:20 Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	89.7	%			1	SM2540 G	04/16/08 15:1	5 mbarber	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	17	mg/kg	7.7	1.3	1	8015B	04/23/08 21:2	6 jvogel	Q31961
Sample Preparation:			25.	18 g	/ 1 mL	3545	04/22/08 16:3	0 wconder	P21413
					Surrogate		% Recove	ry Con	trol Limits
					o-Terphen	yl .	66		49 - 124
Sample Weight Determination									
Weight 1	5.73	g			1	GRO	04/15/08 0:00	Lbrown	
Weight 2	5.76	g			1	GRO	04/15/08 0:00	Ibrown	
Gasoline Range Organics (GRO) by	<u>/ GC-FID</u>								
Gasoline Range Organics (GRO)	BRL	mg/kg	5.6	3.5	50	8015B	04/19/08 16:0	4 grappaccioli	Q31853
					Surrogate		% Recove	rv Cont	rol Limits
					aaa-TFT		117	-	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

04/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.:

WBS# 35015.1.1

Sample Matrix: Soil

Client Sample ID: 38-19 (7-9)

Prism Sample ID: 211299

COC Group:

G0408351

Time Collected: 04/10/08 9:45

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analys	Batch ID
Percent Solids Determination									
Percent Solids	91.9	%			1	SM2540 G	04/16/08 15:	15 mbarber	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.5	1.2	1	8015B	04/23/08 23:	13 jvogel	Q3196
Sample Preparation:				51g /	1 mL	3545	04/22/08 16:	30 wconder	P21413
					Surrogate		% Recov	ery Cor	trol Limits
	2				o-Terpheny	/	79		49 - 124
Sample Weight Determination Weight 1	5,77	g			1	GRO	04/15/08 0:0) Lbrown	
Weight 2	5.62	g			1	GRO	04/15/08 0:0		
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	5.4	3,4	50	8015B	04/19/08 17:3	38 grappaccioll	Q31853
					Surrogate		% Recove	ry Con	trol Limits
					aaa-TFT		109		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID:

ROW-148

Project No.:

WBS# 35015.1.1

Sample Matrix: Soil

Prism Sample ID: 211298

Client Sample ID: 38-20 (7-9)

COC Group:

G0408351

Time Collected:

04/10/08 9:40

Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysi Date/Tin		Analyst	Batch ID
Percent Solids Determination Percent Solids	76.7	%			1	SM2540 G	04/16/08	15:15	mbarber	
Diesel Range Organics (DRO) by G	C-FID									
Diesel Range Organics (DRO)	41	mg/kg	9.0	1.5	1	8015B	04/23/08	22:37	jvogel	Q3196
Sample Preparation:			25.	38 g /	1 mL	3545	04/22/08	16:30	wconder	P21413
					Surrogate		% Rec	overy	Conti	rol Limits
					o-Terpheny	/		78	4	9 - 124
Sample Weight Determination										
Weight 1	4.19	g			1	GRO	04/15/08	0:00	Lbrown	
Weight 2	5.12	g			1	GRO	04/15/08 0	0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID									
Gasoline Range Organics (GRO)	BRL	mg/kg	6.5	4.1	50	8015B	04/19/08 1	7:06	grappaccioli	Q31853
					Surrogate		% Reco	очегу	Contr	ol Limits
					aaa-TFT		1.	<u>-</u> 12		5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Laboratory Report

04/28/08

North Carolina Department of Transportation

Attn: David Graham c/o Hart and Hickman

2923 South Tryon St. Ste 100

Charlotte, NC 28203

Project Name: Boone PSAs

Project ID: ROW-148
Project No.: WBS# 35015,1.1

Sample Matrix: Soil

Client Sample ID: 38-21 (7-9)
Prism Sample ID: 211297
COC Group: G0408351

Time Collected: 04/10/08 9:30 Time Submitted: 04/11/08 9:20

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analy	st Batch ID
Percent Solids Determination Percent Solids	90.8	%			1	SM2540 G	04/16/08 15	:15 mbarber	
Diesel Range Organics (DRO) by GO	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.7	1.2	1	8015B	04/23/08 22	.01 jvogel	Q31961
Sample Preparation:			25.	13 g /	1 mL	3545	04/22/08 16	:30 wconde	er P21413
					Surrogate		% Recov	ery C	ontrol Limits
					o-Terpheny	/l	60	1	49 - 124
Sample Weight Determination									
Weight 1	5.28	g			1	GRO	04/17/08 0:0	0 athao	
Weight 2	5.33	g			1	GRO	04/17/08 0:0	0 athao	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GRO)	BRL	mg/kg	5,5	3,4	50	8015B	04/19/08 16:	35 grappacció	oli Q31853
					Surrogate		% Recov	ery Co	ontrol Limits
					aaa-TFT		118		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

Values are reported down to the reporting limit only. No J-Flags applied.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Short Hold Analysis: (Yes) (No) Project Name: Invoice To: 449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409 Hickman Full Service Analytical & Environmental Solutions J. Grahan 404 Reporting Address: 2023 Report To/Contact Name: Client Company Name:

Purchase Order No./Billing Reference Address: Email (Yos) (No) Email Address defeatones for this bonnes con po 1000 Phone: 704-586-0001 Fax (Yes) (NO); EDD Týpe: Site Locat Site Locati

LAB USE ONLY **CHAIN OF CUSTODY RECORD** *Please ATTACH any project/Specific reporting (QC LEVEL I III III I **UST Project:** PAGE Z OF 10 QUOTE # TO ENSURE PROPER BILLING: ROW-148 provisions and/or QC Requirements

Samples INTACT upon arrival? Received ON WET ICE? Temp	PROPER PRESERVATIVES Indicated? Received WITHIN HOLDING TIMES? 12	CUSTODY SEALS INTACT? VOLATILES recd W/OUT HEADSPACE?	PROPER CONTAINERS used?
Samples II Received 0	PROPER I	CUSTODY	PROPER (

TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL

NC		2000	LAB ID NO.	STEILE STEILE	21273	HERIE	Buars	ALISTA	ררצוומ	311373	RIBTO	SIISE	Allasi	3 COPIES
NELAC USACE FL	SCOTHERN/A Water Chlorinated: YESNOSample Iced Upon Collection: YESNO		REMARKS											PRESS DOWN FIRMLY - 3 COPIES
Certification:	Water Chlorinat	ANALYSES REQUESTED												<u>+</u>
Days D 5 Days Rush Work Must Be	Samples received after 15:00 will be processed next business day. Turnaround time is based on business days, excluding weekends and holidays. (SEE REVENSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRISM LARORATORIES. INC. TO CHEMP.	10	odd indi	+	×	, x	×	×	\×	×	X	.×	<u>×</u>	Affiliation H
"Working Days" D.S.9 Days O.S. Days	Samples received after 15:00 will be processed next business day. Tumaround time is based on business days, excluding weekends and (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES. RENDERED BY PRISM LARORATORIES INC. TO CHEMP		PRESERVA- TIVES	Nonelan								2	>	Vo
Luay Lizua	6:00 will be proof on business de ERMS & CONDI	AINER	SIZE	יונייר ו	\								>	(TA lleno A
rate	afte s bas SE FC BY PI	SAMPLE CONTAINER	NO.	43								-	7	N
"Working Days"	Samples receive Turnaround time (SEE REVER	SAMPL	*TYPE SEE BELOW	669									>	Sampled By (Print Name)
		MATRIX	WATER OR SLUDGE)	Spil	\ightarrow	Soil	Soil	50:1	\ies	Soil	Soil	Soil	Soil	Sampled By
) (Desce N	TIME	MILITARY	000	1210	1220	1230	040	1300	415	1430	500	1515	
Excel Other	Address:	DATE	COLLECTED	80/6/7									>	Bar
DD Type: PDF E	ite Location Name: 150000	CLIENT	SAMPLE DESCRIPTION	42-21(2-4)	42-23(2-5)	42-34(2-3)	42-25(6-1)	42-26 (5-7)	42-27(5-7)	38-4(0-2)	38-6(2-5)	38-1 (2-4)	38-3 (5-1)	Sampler's Signature

PRISM USE ONLY Site Departure Time: Site Arrival Time; Field Tech Fee: Mileage: Additional Comments:

Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.

Received By: (Signature

Received By: (Signature)

Relinquished By: (Signaturo)

Refinquished By: (Signature)

or Prism La

SEE REVERSE FOR TERMS & CONDITIONS

ONC OSC

ONC OSC

DNC DSC CERCLA

RCRA:

SOLID WASTE: ONC OSC

DRINKING WATER:

GROUNDWATER: ☐ Prism Fleld Service

*CONTAINED TVDE CONES.

ONC OSC ONC

UST

NPDES:

Hand-delivered

D Fed Ex D UPS

OTHER:

LANDFILL

15880409

920

H I I O'S

Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT! WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY. SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST GOC UNTIL RECEIVED AT THE LABORATORY.

Date

A - Amhar P - Place B - Plactic TI - Tatlon I inad Can VOA - Volatila Ornanics Analysis (7am Head Snace)

Full Service Analytical & Environmental Solutions

449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409 Report To/Contact Name: Client Company Name: ___

Email (Ygs) (No) Email Address dy Colombia prothabana was EDD Type: PDF / Excel Other Site Location Name: (200x - DO) Phone: 704-536-0007 Fax (Yes) (Na);

CHAIN OF CUSTODY RECORD

LAB USE ONLY

200-12K

*Please ATTACH any project specific reporting (QC LEVEL I II III IV provisions and/or QC Requirements UST Project: (Yes) Short Hold Analysis: (Yes) (No) Project Name: _ Invoice To:

Address:

Genton

Reporting Address: _

Samples INTACT upon arrival?	Ž	YES NO NA
Received ON WET ICE? Temp	3	
PROPER PRESERVATIVES indicated?	ated?	
Received WITHIN HOLDING TIMES?	Ss? (
CUSTODY SEALS INTACT?		
VOLATILES rec'd W/OUT HEADSPACE?	PACE?	
PROPER CONTAINERS used?		

Purchase Order N	Purchase Order No./Billing Reference	1
Requested Due Date	Requested Due Date G 1 Day G 2 Days G 4 Days G 5 Days	1
"Working Days"	☐ 6-9 Days ☐ Standard 10 days ☐ Rush Work Must Be	
Samples received after	Samples received after 15:00 will be processed next business day.	
Turnaround time is ba.	Turnaround time is based on business days, excluding weekends and holidays.	
(SEE REVERSE F((SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRISM LABORATORIES, INC. TO CLIENT	

	I O BE FILLED IN BY CLIENT/SAMPLING PERSONNEL	IN BY CLII	ENT/SAMPLI	ING PER	SONNEL	_
	Certification: NELAC_	NELAC	USACE	님	NC /	-
		SCOO	ОТНЕВ	N/A		
100	Water Chlorinated: YES	ated: YES_	NO	\		
	Sample Iced Upon Collection: YES	pon Collect	ion: YES	NO		
ANAL	ANALYSES REQUESTED					

CLIENT	DATE	COLLECTED	(SOIL,	SAMPL	SAMPLE CONTAINER	NER	DRECEDVA	100	ANALYSE	ANALYSES REQUESTED	,		PRISM
SAMPLE DESCRIPTION	COLLECTED	MILITARY HOURS	WATER OR SLUDGE)	SEE BELOW	NO.	SIZE	TIVES	Cockey			REMARKS	KS	LAB ID NO.
28-5(1-3)	1/9/08	1521	1:00	V. P. P.	2	Your,	More Jall	7		-			0.0
7 5 00	2	0 (-	3 .	7.	(96)	5	7					वावर
(2-0)1-88		1530	Soil					×					211322
38-2(9-12)		1535	50°					\ \>					Super
38-10/8-01		STO	15		-			<>					Poor S
20.17.17		2	-					<					CENTRE
(3-1-1 (4-4)		1545	201					X					Allass
38-11/2-5)		1600	20,1					. 5					211327
38-7/0-3)		1605	\					2>					211333
28-9 h-7		0/0/1	-										000
>		0 /	100		Ţ	-		X.					ત્રાવજ,
(2-0) 1-20		1615	Soil	1		/		· 火					311395
38-13(0-25)		630	18	>	\geq	7	>	×			(1840) 2-2-4 211393-		Blizgi
38-0 (2-3)	>	1.25	105		10	4		×	1 1	11	PRESS DOWN FIBMI V 2 COBIES	VINCIPI	2 Poples
Sampler's Signature	den		Sampled By	Sampled By (Print Name)	5	MITAINON	N.	Affiliation	4	+	1000 2000	Telletti Telle	SCOPIES
Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	Chain of Custo he Prism Projec	dyls your authout Manager. The	orization for Fere will be cha	Prism to proce arges for any c	sed with the	ne analyses (eed with the analyses as requested above. An changes after analyses have been initialized.	ove. Any chang	jes must b	9		PRISM U	PRISM USE ONLY
Relinquished By: (Signature)	(Receiv					Date	Mair	Military/Hours Addii	Additional Comments:	She Arrival Time.	

Site Departure Time: Field Tech Fee: Mileage: SEE REVERSE FOR TERMS & CONDITIONS

OTHER:

LANDFILL

CERCLA

SOLID WASTE:

DRINKING WATER:

GROUNDWATER:

☐ Fed Ex ☐ UPS NPDES:

BCRA:

GO423351

MII JOS

ORIGINAL

Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

Relinquished By: (Signature)

Relinquished By: (Signature)

Received By: (Signature)

CHAIN OF CUSTODY RECORD

PAGE 2 OF 10 QUOTE # TO ENSURE PROPER BILLING. POW- (4 (Yes) (Ng) Short Hold Analysis: Project Name: 449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409 HILLMON Full Service Analytical & Environmental Solutions HARTS Report To/Contact Name: _ Client Company Name:

Mass

Reporting Address: 297

Email Mes) (No) Email Address data non planthiblemen BOONE, LL Sport - DAT Phone: 724-536-0001 Fax (Yes) (NO): Other Site Location Physical Address: Excel Site Location Náme: EDD Type: PDF_

9 VOLATILES rec'd W/OUT HEADSPACE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? Samples INTACT upon arrival? Received ON WET ICE? Temp PROPER CONTAINERS used? CUSTODY SEALS INTACT?

LAB USE ONLY

Short Hold Analysis: (Yes) (No) UST Project: (Yes) (No) *Please ATTACH any project specific reporting (QC LEVEL I II III IV) © 6-9 Days © Standard 10 days © Pre-Approved Turnaround time is based on business days, excluding weekends and holidays.

(SEE REVERSE POR TERMS & CONDITIONS REGARDING SERVICES
RENDERED BY PRISM IABORATORIES. INC. TO CLIFNY UST Project: (Yes) Samples received after 15:00 will be processed next business day. Purchase Order No./Billing Reference provisions and/or QC Requirements "Working Days" Invoice To: Address:

TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL ¥N. 냅 ON. USACE Sample Iced Upon Collection: YES Water Chlorinated: YES NO OTHER Certification: NELAC

TIME	_		MATRIX	SAMPL	E CONTAINER	INER	LE CONTAINER	13	NALYSE	S REQUESTED	
COLLECTED (SOIL,	(SOIL,			ا بَ			PRESERVA-	S. S.			PRISM
COLLECTED MILITARY WATER OR *TYPE HOURS SLUDGE) SEE BELOW	WATER OR SLUDGE)	_	*TYPE SEE BELOW		NO.	SIZE		COCKEY!		HEMARKS	LAB ID NO.
4) 1008 0845 Soil 100A	38		Sep.		2	Hank	monethi	+			211292
4 10 08 0855 soil	,	(joj) -	_	×			311361
0915 50:1	1	50;/						×			21050
0920 Soil	_	1:05						×			311396
0930 Soil		Soil						2			COCIE
1/20 07-60	7	, <u> </u>						X			Alibor
) Sei	,	\				_		×			211349
1000 5001	^	Soil						2			A11300
1010 50:1		Soil			-			X			311301
1020 Soil V		Soil	7		>	>	>	X			Ali Bo
Rempled By (Print Name)	Sampled By (Print Nam	Sampled By (Print Nam	(Print Nan	Je)	N	FA Krok	7.	Affiliation	+1,4+1	PRESS DOWN FIRMLY - 3 COPIES	3 COPIES
Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	dy is your authorization for Prism to pro	orization for Prism to pro	Prism to pro arges for an	200	sed with t	he analyses after analyse	eed with the analyses as requested above. An changes after analyses have been initialized.	ove. Any changalized.	ges must be	PRISM U	PRISM USE ONLY
Received By: (Signa	Received By: (Signature)	Received By: (Signa	red By: (Signa	(aun				Date	Military/Hours		The second second

SEE REVERSE FOR TERMS & CONDITIONS Site Departure Time: Field Tech Fee: Mileage:

Site Arrival Time:

Additional Comments:

Date

Received By: (Signature)

For Prism Lab

Relinquished By: (Signature)

linquished By: (Signature)

ORIGINAL

ONC OSC OTHER:

ONC OSC

ONC OSC

ONC OSC

LANDFILL

CERCLA

RCRA:

SOLID WASTE:

DRINKING WATER:

Other

☐ Prism Field Service GROUNDWATER:

UNC USC

ONC DSC DNC DSC ONC DSC

UST

☐ Fed Ex ☐ UPS NPDES:

Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT MITH CUSTODY SEALS POR TRANSPORTATION TO THE LABORATORY. SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.

158.8cho5)

*CONTAINER TYPE CODES: A = Amber C = Clear G = Glass P = Plastic TI = Teffon-I ined Cab VOA = Volatile Ornanics Analysis (Zero Head Snace)