
Project B-4646

Surry County

Project Special Provisions Structure

Table of Contents

			Page
			#
Drilled Piers (11	-17-06)		1
Crosshole Sonic Logging	(11-17-06)		21
Falsework and Formwork	(7-18-06)		28
Submittal of Working Draw	ings (9-16-08)		33
Crane Safety (8-15-0	05)		39
Grout for Structures	(7-12-07)		40
Prestressed Concrete Memb	ers (4-02-07)	•	43
Adhesively Anchored Anche	or Bolts or Dowels	(6-11-07)	44

PROJECT SPECIAL PROVISIONS STRUCTURE

PROJCT B-4646

SURRY COUNTY

DRILLED PIERS

(11-17-06)

1.0 GENERAL

A. Description

This special provision governs the construction of Drilled Piers, also known as "Drilled Shafts" and "Caissons". Drilled piers are a reinforced concrete section, cast-in-place against in situ material or permanent steel casing. Drilled piers are a straight shaft type and vertical. Construct drilled piers in accordance with the details and dimensions shown on the plans and this provision.

B. Prequalification and Experience Requirements

Use a Drilled Pier Contractor prequalified by the Contractual Services Unit of the Department for drilled pier work (work code 3090).

Submit documentation that the Drilled Pier Contractor has successfully completed at least 5 drilled pier projects within the last 3 years with diameters, lengths and subsurface conditions similar to those anticipated for this project. Documentation should include the General Contractor and Owner's name and current contact information with descriptions of each past project. Also, submit documentation of experience with dry and wet placement of concrete and the use of temporary casing or slurry.

Provide a list of the Drilling Superintendent, Drill Rig Operators and Project Manager that will be assigned to this project. Submit documentation for these personnel verifying employment with the Drilled Pier Contractor and a minimum of 5 years experience in drilled pier construction with past projects of scope and complexity similar to that anticipated for this project. Documentation should include resumes, references, certifications, project lists, experience descriptions and details, etc. Perform work with the personnel submitted and accepted. If personnel changes are required during construction, suspend drilled pier construction until replacement personnel are submitted and accepted.

C. Construction Sequence Plan

Submit two hard copies and an electronic copy (pdf or jpeg format on CD or DVD) of a drilled pier construction sequence plan for all the drilled piers 30 days before beginning drilled pier construction. Provide detailed project specific information in this plan including:

- 1. Experience documentation in accordance with Section 1.0, Item B
- 2. List and size of equipment including: cranes, kelly bars, drill rigs, vibratory hammers, augers, core barrels, cleanout buckets, airlifts and/or submersible pumps, tremies and/or concrete pumps, casing (diameters, thicknesses and lengths), desanding equipment (for slurry construction), etc.
- 3. Order of drilled pier construction
- 4. Casing installation and temporary casing removal methods including the order of telescoped casing removal
- 5. Drilled pier excavation and bottom cleaning methods
- 6. Reinforcement placement methods including how the cage will be supported and centered in the excavation
- 7. Concrete placement procedures including how the tremie or pump will be controlled and what type of discharge control will be used to prevent concrete contamination when the tremie or pump is initially placed in the excavation
- 8. Concrete mix design in accordance with Section 1000 of the Standard Specifications
- 9. Slurry details (if applicable) including intended purpose, product information, manufacturer's recommendations for use, slurry equipment information and written approval from the slurry supplier that the mixing water is acceptable
- 10. Procedures for handling drilling spoils and slurry overflow including environmental controls to prevent the loss of concrete, slurry and spoils
- 11. Methods of how the slurry level will be maintained above the highest piezometric head (if applicable)
- 12. Crosshole sonic logging (CSL) submittals (if applicable) in accordance with the Crosshole Sonic Logging Special Provision
- 13. Other information shown on the plans or requested by the Engineer

Do not begin drilled pier construction until the construction sequence plan is accepted. If alternate drilled pier construction procedures are proposed or necessary, a revised submittal may be required. If the work deviates from the accepted submittal without prior approval, the Engineer may suspend drilled pier construction until a revised drilled pier construction sequence plan is submitted and accepted.

D. Preconstruction Meeting

Conduct a drilled pier preconstruction meeting with the Project Manager, Drilling Superintendent, the Resident or Bridge Maintenance Engineer and/or his or her representatives, the Bridge Construction Engineer and the Geotechnical Operations Engineer to discuss construction and inspection of the drilled piers. This meeting should occur after the Drilled Pier Contractor has mobilized to the site and the construction sequence plan has been reviewed and accepted.

E. Definition of Rock

For the purposes of this provision, "Rock" is defined as a continuous intact natural material in which the penetration rate with a rock auger is less than 2 in (50 mm) per 5 minutes of drilling at full crowd force. This definition excludes discontinuous loose natural materials such as boulders and man-made materials such as concrete, steel, timber, etc. This definition of rock is not for pay purposes; see Section 8.0 for method of measurement of "Drilled Piers Not in Soil".

F. Rock Socket

When required by a note on plans, provide a minimum penetration into rock as directed by the Engineer.

2.0 EXCAVATION

Perform the excavations required for the drilled piers to the dimensions and elevations shown on the plans or otherwise required by the Engineer, including any miscellaneous grading or excavation to install the pier.

Excavate with a drill rig of adequate capacity. Use a rig that is capable of drilling through soil and non-soil including rock, boulders, timbers, man-made objects and any other materials encountered. Blasting is not permitted to advance the excavation. Blasting for core removal is only permitted when approved by the Engineer.

Use a drill rig capable of drilling a minimum of 25% deeper than the deepest drilled pier shown on the plans. Use drilling tools equipped with vents designed to stabilize the hydrostatic pressure above and below the tool during extraction from the excavation. For drilled piers constructed with slurry, monitor the rate at which the drilling tools are inserted and extracted so as to minimize sidewall suction action in the excavation. Drilling below the tip elevations shown on the plans may be required to achieve adequate bearing.

A drilling log signed by the Drilled Pier Contractor that includes material descriptions and depths and drilling times and tools used for each material is required for each pier.

Dispose of drilling spoils in accordance with Section 802 of the Standard Specifications and as directed by the Engineer. Drilling spoils consist of all excavated material including water removed from the excavation either by pumping or drilling tools. Construct drilled piers at the locations shown on the plans and within the tolerances specified herein. If

B-4646 79

tolerances are exceeded, the Engineer may require corrective measures to meet the tolerances specified. Construct the drilled piers such that the axis at the top of the piers is no more than 3 in (75 mm) in any direction from the position shown in the plans. Build drilled piers within 2% of the plumb deviation for the total length of the piers. Verify the plumbness of the drilled pier excavations by an accurate procedure, such as an inclinometer on the kelly bar or other approved techniques. Unless a plan note requires the construction joint to be moved below the ground line, construct the finished top of pier elevation between 1 in (25 mm) above and 3 in (75 mm) below the top of pier elevation shown on the plans. When drilling from a barge, use a fixed template that maintains pier position and alignment during all excavation and concrete placement operations. Floating templates (attached to a barge) are not allowed.

Stabilize all drilled pier excavations with steel casing and/or slurry except, as approved by the Engineer, the portions of the excavations in rock as defined by Section 1.0, Item E. Stabilize excavations at all times from the beginning of drilling through concrete placement. When using multiple casings in a telescoped arrangement, overlap subsequent casings a minimum of 2 ft (600 mm). Provide casing or slurry in rock if unstable material is anticipated or encountered during drilling. When slurry is used, a partially excavated pier is subject to the time requirements in Section 2.0, Item C, Number 1. When slurry is not used, do not leave a drilled pier excavation open overnight unless it is cased to rock.

If a note on plans does not prohibit dewatering and the tip of the drilled pier excavation is in rock as defined by Section 1.0, Item E, dewater the excavation to the satisfaction of the Engineer. The minimum diameter of a drilled pier excavation in rock or an excavation constructed with slurry may be 2 in (50 mm) less than the design drilled pier diameter shown on the plans.

In order to remove a casing and substitute a larger diameter or longer casing through unstable or caving material, either backfill the excavation, stabilize the excavation with slurry before removing the casing to be replaced or insert the larger casing around the casing to be replaced before removal.

A. Permanent Steel Casing

Use permanent steel casings as directed by the Engineer and/or as required by a note on plans. Use permanent casings that are clean smooth non-corrugated watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Provide permanent steel casings conforming to ASTM A252, Grade 2 and the following minimum wall thickness requirements.

CASING WALL THICKNESS

Casing Diameter	Minimum Wall Thickness
Less than or equal to 48 in (1220 mm)	3/8 in (9 mm)
Greater than 48 in (1220 mm) and less than or equal to 78 in (1982 mm)	1/2 in (12 mm)
Greater than 78 in (1982 mm)	5/8 in (16 mm)

Provide permanent casings with an outside diameter not less than the specified size of the drilled pier. If approved by the Engineer, a permanent casing larger in diameter than the drilled pier design diameter is permitted. However, no payment will be made for any costs associated with larger permanent casings. Extend the permanent casings from the top of pier elevation or top of permanent casing elevation, if shown on the plans, to a depth no deeper than the permanent casing tip elevation shown on the plans or the revised permanent casing tip elevation approved by the Engineer. Do not extend permanent casings below the permanent casing tip elevation shown on the plans without prior approval from the Engineer. Additional drilled pier length and reinforcement may be required if permanent casings are extended below the permanent casing tip elevation shown on the plans. No payment will be made for the resulting additional drilled pier length, reinforcement and permanent casing unless the Engineer approves the revised permanent casing tip elevation. Install permanent casings in one continuous unit. If splices are necessary for the casing, use an approved method of Splices are considered incidental and no additional compensation will be splicing. made.

Remove any portion of the permanent steel casing that extends above the top of the drilled pier after the Drilled Pier Concrete has achieved a compressive strength of 4500 psi (31.0 MPa). The cost of casing removal will be considered incidental to the cost of the permanent steel casing.

B. Temporary Steel Casing

Provide temporary steel casing to stabilize drilled pier excavations, protect personnel and prevent caving or sloughing, that is clean smooth non-corrugated watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use temporary steel casings with a minimum wall thickness of 3/8 in (9 mm) and an outside diameter not less than the specified size of the drilled pier.

Temporary steel casings that become bound or fouled during construction and cannot be practically removed may constitute a defect in the drilled pier. Improve defective piers to the satisfaction of the Engineer by removing the concrete and extending the pier deeper, providing a replacement drilled pier or other acceptable means. Complete all corrective measures including any additional design work to the satisfaction of the Engineer without additional compensation or an extension of the completion date of the project.

C. Slurry

When slurry use is not noted on the plans, slurry construction is an option. If slurry use is required or an option, polymer slurry use may either be required or prohibited as noted on the plans. If slurry use is required or an option and polymer slurry use is not noted on the plans, polymer slurry use is an option.

81

If polymer slurry is required or an option, use one of the following polymers listed in the table below:

PRODUCT	MANUFACTURER
SlurryPro CDP	KB Technologies Ltd. 3648 FM 1960 West, Suite 107 Houston, TX 77068 (800) 525-5237
Super Mud	PDS Company 105 West Sharp Street El Dorado, AR 71730 (800) 243-7455
Shore Pac GCV	CETCO Drilling Products Group 1500 West Shure Drive Arlington Heights, IL 60004 (800) 527-9948
Novagel Polymer	Geo-Tech Drilling Fluids 220 North Zapata Hwy, Suite 11A Laredo, TX 78043 (210) 587-4758

Use polymer slurry and associated additives in accordance with the manufacturer's guidelines and recommendations unless otherwise approved by the Engineer. The Drilled Pier Contractor should be aware that polymer slurry might not be appropriate for a given site. Polymer slurry should not be used for excavations in soft or loose soils as determined by the Engineer. When using polymer slurry, a representative of the manufacturer must be on-site to assist and guide the Contractor during the construction of the first three drilled piers unless otherwise approved by the Engineer. This representative must also be available for on-site assistance to the Contractor if problems are encountered during the construction of the remaining drilled piers as requested by the Engineer. The cost of all on-site assistance and representation will be considered incidental to the cost of the drilled piers.

If mineral slurry is required or an option, use mineral slurry composed of bentonite having a mineral grain size that remains in suspension and sufficient viscosity and gel characteristics to transport excavated material to a suitable screening system to minimize bottom sedimentation. Provide bentonite slurry to maintain the stability of the excavation and allow for proper concrete placement. The Drilled Pier Contractor should be aware that salt water with salt concentrations in excess of 500 ppm may adversely affect bentonite slurry.

When slurry is used and permanent steel casing is not required, use temporary casing a minimum of 10 ft (3 m) long at the top of the excavation. Maintain the top of the temporary casing a minimum of 1 ft (300 mm) above the ground surface surrounding the casing.

Maintain the slurry in the pier excavation at a level not less than 5 ft (1.5 m) or the drilled pier diameter (whichever is greater) above the highest piezometric head along the depth of the pier. It is anticipated that the highest piezometric head is the static water or groundwater elevation (elevation head). However, the Drilled Pier Contractor is responsible for determining the highest piezometric head. The use of steel casing to maintain the required slurry level is permitted; however, no payment will be made for casing that is used for this purpose. If the slurry level in the excavation suddenly changes or cannot be practically maintained, or the slurry construction method does not produce the desired result, stop the pier construction until an alternate construction procedure is accepted by the Engineer.

Thoroughly premix the slurry with water in tanks before introducing the slurry into the excavation. Submit written approval from the slurry supplier that the mixing water is acceptable. Allow bentonite slurry to hydrate 24 hours in tanks before use. Slurry tanks of adequate capacity are required for slurry circulation, storage and treatment. Excavated slurry pits are not allowed in lieu of slurry tanks without prior approval from the Engineer. Take all steps necessary to prevent the slurry from "setting up" in the excavation. Such methods include, but are not limited to agitation, circulation and/or adjusting the properties of the slurry. Perform desanding operations as necessary to achieve the acceptable sand contents before placing reinforcing steel.

1. Time

Adjust the excavation operations so that the maximum time the slurry is in contact with the sidewalls of the uncased portions of the drilled pier excavation (from time of drilling to concrete placement) does not exceed 36 hours. Do not work on more than two drilled piers per drill rig below the steel casing at any time.

Agitate bentonite slurry in the drilled pier excavations a minimum of every 4 hours. If the bentonite slurry is not agitated a minimum of every 4 hours or the 36 hour time limit is exceeded, the Engineer may require the excavation to be overreamed beneath the steel casing a minimum of 1 in (25 mm) and a maximum of 3 in (75 mm) before performing any other operations in the excavation. Overream with a grooving tool, overreaming bucket or other approved equipment at a minimum spacing of 12 in (300 mm). All costs associated with both overreaming and the resulting additional concrete placement will be considered incidental to the cost of the drilled piers.

If concrete placement is not completed within three days of beginning drilling, enlarge the design drilled pier diameter by a minimum of 6 in (150 mm), or as required by the Engineer, the entire length of the pier at no additional cost to the Department. Enlarging the drilled pier includes replacing the steel casing with steel casing the same size to which the drilled pier is enlarged at no additional cost to the Department.

Û

2. Sampling

Collect all slurry samples using an approved sampling tool. Test slurry samples to determine density, viscosity, pH and sand content to establish an acceptable working pattern during slurry use. Test a minimum of 4 samples during each 8 hours of slurry use for each drilled pier. Take the first sample for the first 8 hours from the slurry tank before introducing slurry into the excavation. Collect the remaining samples from the bottom of the pier excavation. When the test results are acceptable and consistent, a decrease in the testing frequency to one sample per 4 hours of slurry use is permitted.

Before placing reinforcing steel in the drilled pier excavation, extract slurry samples from the bottom of each excavation and at intervals not exceeding 10 ft (3 m) up the excavation, until two consecutive samples produce acceptable values for density, viscosity, pH and sand content.

3. Testing

Have qualified personnel conduct slurry tests to determine density, viscosity, pH and sand content. The following tables show the acceptable range of values for the slurry properties:

	Sodium Montmorillor	NITE SLURRY nite (Commercial Bent Range of Values	onite)
Property (units)	At Time of Slurry Introduction	In Excavation Immediately Before Concrete Placement	Test Method
Density, pcf (kg/m ³)	64.3 – 69.1 (1030- 1107)	64.3 – 75.0 (1030- 1201)	Mud Weight (Density) API 13B-1 Section 1
Viscosity, sec./quart (sec./0.95 liters)	28 – 45	28 – 45	Marsh Funnel and Cup API 13B-1 Section 2.2
рH	8 – 11	8 – 11	pH Paper or Glass Electrode pH Meter
Sand Content (percent)	Less than or equal to 4	Less than or equal to 2	Sand API 13B-1 Section 5

Notes:

- 1. Perform tests when the slurry temperature is above 40°F (4.4°C).
- 2. Increase density by 2 pcf (32 kg/m³) in saltwater.

SLURRYPRO CDP

KB Technologies Ltd. Acceptable Range of Values

Property (units)	At Time of Slurry Introduction	In Excavation Immediately Before Concrete Placement	Test Method
Density, pcf (kg/m ³)	Less than or equal to 67 (1073)	Less than or equal to 64 (1025)	Mud Weight (Density) API 13B-1 Section 1
Viscosity, sec./quart (sec./0.95 liters)	50 – 120	Less than or equal to 70	Marsh Funnel and Cup API 13B-1 Section 2.2
pН	6 – 11.5	6 – 11.5	pH Paper or Glass Electrode pH Meter
Sand Content (percent)	Less than or equal to 0.5	Less than or equal to 0.5	Sand API 13B-1 Section 5

Notes:

- 1. Perform tests when the slurry temperature is above 40°F (4.4°C).
- 2. Increase density by 2 pcf (32 kg/m³) in saltwater.

SUPER MUD PDS Company Acceptable Range of Values

Property (units)	At Time of Slurry Introduction	In Excavation Immediately Before Concrete Placement	Test Method
Density, pcf (kg/m ³)	Less than or equal to 64 (1025)	Less than or equal to 64 (1025)	Mud Weight (Density) API 13B-1 Section 1
Viscosity, sec./quart (sec./0.95 liters)	32 – 60	Less than or equal to 60	Marsh Funnel and Cup API 13B-1 Section 2.2
pH ·	8 – 10	8 – 10	pH Paper or Glass Electrode pH Meter
Sand Content	Less than or equal	Less than or equal	Sand

to 0.5

API 13B-1

Section 5

Notes:

(percent)

- 1. Perform tests when the slurry temperature is above 40°F (4.4°C).
- 2. Increase density by 2 pcf (32 kg/m³) in saltwater.

to 0.5

SHORE PAC GCV

CETCO Drilling Products Group Acceptable Range of Values

Property (units)	At Time of Slurry Introduction	In Excavation Immediately Before Concrete Placement	Test Method
Density, pcf (kg/m ³)	Less than or equal to 64 (1025)	Less than or equal to 64 (1025)	Mud Weight (Density) API 13B-1 Section 1
Viscosity, sec./quart (sec./0.95 liters)	33 – 74	Less than or equal to 57	Marsh Funnel and Cup API 13B-1 Section 2.2
pH	8 – 11	8 – 11	pH Paper or Glass Electrode pH Meter
Sand Content (percent)	Less than or equal to 0.5	Less than or equal to 0.5	Sand API 13B-1 Section 5

Notes:

- 1. Perform tests when the slurry temperature is above 40°F (4.4°C).
- 2. Increase density by 2 pcf (32 kg/m³) in saltwater.

	Geo-Tech	EL POLYMER Drilling Fluids Range of Values	
Property (units)	At Time of Slurry Introduction	In Excavation Immediately Before Concrete Placement	Test Method
Density, pcf (kg/m³)	Less than or equal to 67 (1073)	Less than or equal to 64 (1025)	Mud Weight (Density) API 13B-1 Section 1
Viscosity, sec./quart (sec./0.95 liters)	45 – 104	Less than or equal to 104	Marsh Funnel and Cup API 13B-1 Section 2.2
pН	6.5 – 11.5	6.5 – 11.5	pH Paper or Glass Electrode pH Meter
Sand Content (percent)	Less than or equal to 0.5	Less than or equal to 0.5	Sand API 13B-1 Section 5

Notes:

- Perform tests when the slurry temperature is above 40°F (4.4°C). 1.
- Increase density by 2 pcf (32 kg/m³) in saltwater. 2.

When any slurry samples are found to be unacceptable, take whatever action is necessary to bring the slurry within specification requirements. Do not place reinforcement steel until resampling and testing produce acceptable results.

Sign and submit reports of all slurry tests required above to the Engineer upon completion of each drilled pier. The Department reserves the right to perform comparison slurry tests at any time.

4. Slurry Disposal

Comply with all applicable local, state and federal regulations, as well as with the environmental permits of the project when disposing of excavated materials contaminated with slurry. Keep all excavated materials, spoils from the desanding unit and slurry out of the water and contain them at all times. The cost of the containment, removal and disposal of excavated materials contaminated with slurry, as well as the slurry itself, is incidental to the cost of the drilled piers.

3.0 CLEANING

Excavate the bottom of the drilled pier to a level plane or stepped with a maximum step height of 12 in (300 mm). Clean the bottom of the excavation of loose material using a technique accepted in the construction sequence plan. When the drilled pier excavation is not hand cleaned, clean the bottom of the excavation with a cleanout bucket and an airlift or submersible pump.

4.0 Inspection Methods and Requirements

After the drilled pier excavation is complete and immediately before placing reinforcing steel and concrete, demonstrate the proper condition of the drilled pier excavation to the Engineer. Provide bosun chairs, gas meters, safety equipment, lights, mirrors, weighted tape measures, steel probes, personnel and all assistance required for the Engineer to inspect the drilled pier excavations.

A. Bearing Capacity

If the required end bearing capacity is not satisfied, increase the drilled pier length as directed by the Engineer. Payment for the additional drilled pier length to achieve adequate bearing will be made per the drilled pier pay items.

One or more of the following tests may be used to verify the conditions and continuity of the bearing material before placing reinforcing steel.

1. Visual Inspection

The end bearing of the drilled pier excavation may be inspected either by entering the excavation or visually from the top of the excavation.

2. Test Hole

If the tip of the drilled pier excavation is in rock as defined by Section 1.0, Item E, drill a 1-1/2 in (38 mm) diameter test hole in each drilled pier to a depth at least 6 ft (1.8 m) below the tip elevation.

3. Standard Penetration Test (SPT)

When noted on the plans that a SPT is required, drive a split barrel sampler a minimum of 18 in (450 mm) below the drilled pier tip elevation or to refusal in accordance with ASTM D1586, "Penetration Test and Split-Barrel Sampling of Soils". Complete the SPT using NW rods through casing or another stabilizing method as approved by the Engineer. Extend the SPT rods from the top of the drilled pier excavation to the drilled pier tip elevation. Firmly support the SPT casing at the top of the drilled pier excavation and rest it on the bottom of the excavation. Conduct the SPT a minimum of 12 in (300 mm) away from the sidewalls of the excavation and be sure not to scrape the sidewalls of the excavation while inserting or withdrawing the SPT equipment. Have the SPT device on-site

before reaching the drilled pier tip elevation. Report the number of blows for each 6 in (150 mm) increment driven and a description of the recovered soil sample to the Engineer. The Engineer determines the number of blows required for bearing.

B. Bottom Cleanliness

The pier excavation bottom is considered clean if a minimum of 50% of the bottom area has less than 1/2 in (13 mm) of sediment and no portion of the bottom area has more than 1-1/2 in (38 mm) of sediment as determined by the Engineer.

One or more of the following inspection procedures may be used to inspect the cleanliness of the pier excavation bottom before placing the reinforcing steel and concrete.

1. Visual Inspection

The cleanliness of the drilled pier excavation bottom may be observed either by entering the excavation or from the top of the excavation.

2. Steel Probe

If the excavation is not dewatered or if the Engineer requires it, lower a steel probe to the bottom of the drilled pier excavation to ensure that cleaning has been satisfactorily completed. Supply a steel probe that is 2 ft (0.6 m) long with a flat tip on the sounding end, weighs approximately 9 lbs, #10 rebar (4 kg, #32 rebar), and is suspended from the opposite end with a non-stretch cable.

3. Shaft Inspection Device (SID)

The Department may use the SID to take sediment measurements and observe the bottom conditions of the drilled pier excavation at a minimum of five locations selected by the Engineer. The SID is a remotely operated camera capable of observing bottom conditions and measuring sediment underwater and slurry. Each SID inspection (including all 5 locations) takes approximately 1 hour after the equipment has been set up. The Engineer provides the SID and the personnel to operate the device. Notify the Engineer a minimum of 2 days before beginning the drilled pier excavation so the Engineer can arrange for the transportation of the SID to the site and the personnel to perform the inspections. SID inspections are required until the cleanliness of the drilled pier excavation bottom is acceptable in accordance with Section 4.0, Item B of this provision. Do not conduct operations that interfere with the SID inspections. Remove all cleaning and drilling equipment from the drilled pier excavation during any SID inspection. Provide a working area large enough for the SID equipment and within reach of the cabling supplied and clear sight distance of the drilled pier excavation. Assist the Engineer in the transportation and handling of the SID and all the associated equipment and in supporting the electric hoist and/or hoisting tripod for the SID. If required, provide a safe and secure location to park the trailer for the SID while it is unattended on the project site. If any of the SID equipment is damaged due to the Contractor's

negligence, then replace the equipment at no additional cost to the Department. Provide replacement equipment that exactly matches the damaged equipment as directed by the Engineer. All costs involved with the initial SID inspection of each drilled pier excavation will be made per the SID pay item. No additional payment will be made for subsequent or repeated SID inspections of the same drilled pier excavation. No claims for either lost time or actual expense of any SID inspections that do not find the cleanliness of the drilled pier excavation bottom in compliance with this provision will be paid.

5.0 REINFORCING STEEL

Reinforcing steel shall conform to Section 1070 of the Standard Specifications. Completely assemble a cage of reinforcing steel, consisting of longitudinal and spiral bars and place it in the drilled pier excavation as a unit immediately after the proper condition of the excavation is demonstrated to the Engineer. When concrete placement does not follow immediately after cage placement, remove the steel from the pier excavation unless the Engineer directs otherwise. If the cage is removed, recheck pier excavation cleanliness in accordance with this provision before reinstalling the cage.

If the drilled pier excavation is cased down to rock, immediate placement of the reinforcing steel and the concrete is not required. If electing to delay placement of the reinforcing steel and concrete due to the presence of rock, recheck the excavation for proper cleanliness immediately before placing reinforcing steel.

A. Construction, Placement, Support and Alignment

If it is determined in the field that the drilled pier must be longer, adequate reinforcement may be required in the extended length as directed by the Engineer. Lift the cage so racking and cage distortion does not occur. Keep the cage plumb during concrete operations and casing extraction. Check the position of the cage before and after placing the concrete. Position the splice length of the drilled pier cage so that the column or footing has the minimum concrete cover shown on the plans.

Securely cross-tie the vertical and spiral reinforcement at each intersection with double wire. Support or hold down the cage so that the vertical displacement during concrete placement and casing extraction does not exceed 6 in (150 mm).

B. Bolsters and Spacers

Set the rebar cage directly on the bottom of the drilled pier excavation with plastic bolsters under each vertical reinforcing bar. Ensure that spacers are tall enough to raise the rebar cage off the bottom of the drilled pier excavation a minimum of 3 in (75 mm). If approved by the Engineer, the rebar cage may be hung in the excavation provided the mechanisms supporting the cage are left in place until the Drilled Pier Concrete strength has achieved 3000 psi (20.7 MPa).

In order to ensure the minimum required concrete cover and achieve concentric spacing of the cage within the pier, attach plastic spacer wheels at five points around the cage perimeter. Use spacer wheels that provide a minimum of 4 in (100 mm) "blocking" from the outside face of the spiral bars to the outermost surface of the drilled pier except in rock as defined by Section 1.0, Item E and when using slurry construction. Use spacer wheels for slurry construction or in rock that provide a minimum of 2 in (50 mm) "blocking". Tie spacer wheels that snap together with wire and allow them to rotate. Use spacer wheels that span at least two adjacent vertical bars. Start placing spacer wheels at the bottom of the cage and continue up along its length at maximum 10 ft (3 m) intervals.

6.0 CONCRETE

Drilled Pier Concrete shall conform to Section 1000 of the Standard Specifications. Begin concrete placement immediately after inserting reinforcing steel into the drilled pier excavation.

A. Concrete Mix

As an option, use Type IP blended cement with a minimum cement content of 665 lbs/yd³ (395 kg/m³) and a maximum cement content of 833 lbs/yd³ (494 kg/m³). Use No. 78M coarse aggregate in the mix.

Use an approved water-reducer, water-reducing retarder, high-range water-reducer or high-range water-reducing retarder to facilitate placement of the concrete if necessary. Do not use a stabilizing admixture as a retarder in Drilled Pier Concrete without approval of the Engineer. Use admixtures that satisfy AASHTO M194 and add them at the concrete plant when the mixing water is introduced into the concrete. Redosing of admixtures is not permitted.

B. Concrete Placement

Place concrete such that the drilled pier is a monolithic structure. Vibration is only permitted, if needed, in the top 10 ft (3 m) of the drilled pier. Remove any contaminated concrete from the top of the drilled pier at the time of concrete placement. Contain and remove all wasted concrete that spills over the casing.

Do not twist, move or otherwise disturb temporary casings until the concrete depth in the casing is in excess of 10 ft (3 m) above the bottom of the casing being disturbed. If the head is greater than 30 ft (9 m), the Engineer may require a concrete depth greater than 10 ft (3 m). The head is defined as the difference between the highest piezometric head along the depth of the pier and the static water elevation inside the excavation. If the Engineer requires a concrete depth greater than 10 ft (3 m), the Drilled Pier Contractor may choose to either place concrete with this required concrete depth or place concrete with the wet method and a minimum concrete depth of 10 ft (3 m).

Maintain the required concrete depth above the bottom of the innermost casing during casing removal, except when the concrete level is at or above the top of drilled pier elevation. Sustain a sufficient concrete depth above the bottom of casing to overcome outside soil and water pressure. As the casing is withdrawn, exercise care in maintaining an adequate concrete depth within the casing so that fluid trapped behind the casing is displaced upward and discharged at the ground surface without contaminating or displacing the Drilled Pier Concrete. Exerting downward pressure, hammering and/or vibrating the temporary casing is permitted to facilitate removal.

Use the water inflow rate to determine the concrete placement procedure after any pumps have been removed from the excavation. If the inflow rate is less than 6 in (150 mm) per half hour, the concrete placement is considered dry. If the water inflow rate is greater than 6 in (150 mm) per half hour, the concrete placement is considered wet.

Keep a record of the volume of concrete placed in each drilled pier excavation and make it available to the Engineer. For drilled piers constructed with slurry or as directed by the Engineer, record a graphical plot of the depth versus theoretical concrete volume and actual measured concrete volume for each drilled pier and provide it to the Engineer when finished placing concrete.

1. Dry Placement

Before concrete placement, make certain the drilled pier excavation is dry so the flow of concrete around the reinforcing steel can be verified by visual inspection. If the concrete free fall does not exceed 60 ft (18.3 m), placing the concrete by a central drop method where the concrete is chuted directly down the center of the excavation is permitted.

For drilled piers exceeding 60 ft (18.3 m) in length, use a tremie or a pump to place concrete unless otherwise approved by the Engineer. Support the tremie or pump pipe so that the concrete free fall is less than 60 ft (18.3 m) at all times.

2. Wet Placement

Maintain a static water or slurry level in the excavation before placing concrete underwater. When temporary casing is used as the method to stabilize the excavation, place concrete with a sectional tremie or pump (no continuous tremie).

Once the concrete in the excavation reaches the same elevation as the static water level, placing concrete with the dry method is permitted. Before changing to the dry method of concrete placement, remove the water above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete.

3. Pump and Tremie

Pump concrete in accordance with Article 420-5 of the Standard Specifications. Use a steel tremie with watertight joints and a minimum diameter of 10 in (250 mm). Use a discharge control to prevent concrete contamination when the tremie tube or pump pipe is initially placed in the excavation. Extend the tremie tube or pump pipe into the concrete a minimum of 5 ft (1.5 m) at all times except when the concrete is initially introduced into the pier excavation. If the tremie tube or pump pipe pulls out of the concrete for any reason after the initial concrete is placed, restart concrete placement with a steel capped tremie tube or pump pipe.

4. Placement Time

Place concrete within the time frames specified in Table 1000-2 of the Standard Specifications for Class AA concrete. Do not place concrete so fast as to trap air, slurry, water, fluids, soil or any other deleterious materials in the vicinity of the reinforcing steel and the annular zone between the rebar cage and the excavation walls.

7.0 SCHEDULING AND RESTRICTIONS

If caving or sloughing occurs, compensation will not be provided for additional concrete to fill the resulting voids.

For the first 16 hours after a drilled pier has achieved its initial concrete set (as determined by the Engineer), do not drill adjacent piers, do not install adjacent piles, and do not allow any equipment wheel loads or "excessive" vibrations within 20 ft (6 m) of the drilled pier.

In the event that the procedures described herein are performed unsatisfactorily, the Engineer may suspend drilled pier construction in accordance with Article 108-7 of the Standard Specifications. If the integrity of the drilled pier is in question, the Engineer reserves the right to reject the drilled piers and require remediation. Remedial measures are proposed by the Contractor and require approval of the Engineer. No compensation will be paid for losses or damage due to remedial work or any investigation of drilled piers found defective or not in accordance with this provision or the plans.

8.0 MEASUREMENT AND PAYMENT

A. Method of Measurement

1. Drilled Piers in Soil

The quantity of "Drilled Piers in Soil" to be paid for will be the linear feet (meters) of the drilled piers exclusive of the linear feet (meters) of "Drilled Piers Not in Soil" computed from elevations and dimensions as shown on the plans or from revised dimensions authorized by the Engineer. Drilled piers through air or water will be paid for as "Drilled Piers in Soil".

2. Drilled Piers Not in Soil

The quantity of "Drilled Piers Not in Soil" to be paid for will be the linear feet (meters) of drilled piers excavated in non-soil as determined by the Engineer. Non-soil is defined as material that can not be cut with a rock auger and requires excavation by coring, air tools, hand removal or other acceptable methods. Top of non-soil elevation is that elevation where the rock auger penetration rate is less than 2 in (50 mm) per 5 minutes of drilling at full crowd force and coring, air tools, etc. are used to advance the excavation. For pay purposes, after non-soil is encountered, earth seams, rock fragments and voids in the excavation less than 3 ft (0.9 m) in total length will be considered "Drilled Piers Not in Soil". If the non-soil is discontinuous, payment will revert to "Drilled Piers in Soil" at the elevation where non-soil is no longer encountered.

3. Permanent Steel Casing

The quantity of "Permanent Steel Casing" to be paid for will be the linear feet (meters) of permanent steel casing as directed or required to be used. The length to be paid for will be measured along the permanent casing from the top of the casing elevation or top of the pier elevation, whichever is lower, to the permanent casing tip elevation. The Department will also pay for up to an additional 3 ft (1 m) of permanent casing cut off if the casing can not be installed to the permanent casing tip elevation shown on the plans. Permanent casing will be paid for only when permanent casing is authorized or when the Engineer directs the Contractor to leave a casing in place such that it becomes a permanent part of the pier. No payment will be made for temporary steel casings that become bound or fouled during pier construction and cannot be practically removed.

4. Shaft Inspection Device (SID)

The quantity of "SID Inspection" to be paid for will be per drilled pier as noted on the plans and/or directed by the Engineer. SID inspections are performed until the bottom cleanliness of the drilled pier excavation is acceptable by this provision; however, payment will only be made for the initial SID inspection of each drilled pier excavation.

5. Standard Penetration Test (SPT)

The quantity of "SPT Testing" to be paid for will be the actual number of SPT tests performed as noted on the plans and/or directed by the Engineer.

B. Basis of Payment

1. Drilled Piers in Soil

 place and all incidentals necessary to excavate the drilled piers and complete the work as described in this provision. No additional payment will be made for slurry use. No additional payment will be made for any miscellaneous grading or excavation to install the drilled pier. "Reinforcing Steel" and "Spiral Column Reinforcing Steel" will be paid for separately and will not be part of the unit bid price for "Drilled Piers in Soil".

2. Drilled Piers Not in Soil

Payment will be made at the contract unit price per linear foot (meter) for "_______ Dia. Drilled Piers Not in Soil". Such payment will include, but is not limited to, furnishing all labor, tools, equipment, materials including concrete complete and in place and all incidentals necessary to excavate the drilled piers and complete the work as described in this provision. No additional payment will be made for slurry use. No additional payment will be made for any miscellaneous grading or excavation to install the drilled pier. "Reinforcing Steel" and "Spiral Column Reinforcing Steel" will be paid for separately and will not be part of the unit bid price for "Drilled Piers Not in Soil".

3. Permanent Steel Casing

Payment will be made at the contract unit price per linear foot (meter) for "Permanent Steel Casing for ____ Dia. Drilled Pier". Such payment will include, but is not limited to, furnishing all material, labor, tools, equipment and all incidentals necessary to install the casing in the pier excavation.

4. Shaft Inspection Device (SID)

Payment for SID will be at the contract unit price per each for "SID Inspection". Such payment will include, but is not limited to, furnishing all materials, labor, tools, equipment and all incidentals necessary to complete the SID inspection as described in this provision.

5. Standard Penetration Test (SPT)

Payment for SPT will be at the contract unit price per each for "SPT Testing". Such payment will include, but is not limited to, furnishing all materials, labor, tools, equipment and all incidentals necessary to complete the SPT at each test location.

CROSSHOLE SONIC LOGGING

(11-17-06)

1.0 GENERAL

Use the non-destructive testing method crosshole sonic logging (CSL) to verify the integrity of the drilled pier and quality of concrete. The CSL test method is described in ASTM D6760, "Integrity Testing of Concrete Deep Foundations by Ultrasonic Crosshole Testing". The Engineer will determine the number of CSL tests and which drilled piers will be CSL tested. Drilled piers are referred to as piers in this special provision.

The CSL test measures the time for an ultrasonic pulse to travel from a signal source in one tube to a receiver in another tube. In uniform, good quality concrete, the travel time between equidistant tubes should yield relatively consistent arrival times and correspond to a reasonable pulse velocity, signal amplitude and energy from the bottom to the top of the pier. Longer travel times, decrease in pulse velocity and lower amplitude/energy signals indicate the presence of irregularities such as poor quality concrete, voids, honeycombing, cracking and soil intrusions. The signal may be completely lost by the receiver and CSL recording system for severe defects such as voids.

Retain a CSL Consultant to perform CSL testing on the selected drilled piers. The CSL Consultant shall supply the Contractor with technical assistance and guidance during preparation and testing. Provide suitable access to the site and to the top of piers to be tested. Follow instructions from the CSL Consultant unless directed otherwise by the Engineer.

Place CSL tubes in all drilled piers. Perform CSL testing after concrete achieves a minimum compressive strength of 3000 psi (20.7 MPa) and within 7 to 30 days after concrete placement. After CSL test results have been reviewed and the Engineer has accepted the drilled pier, dewater the tubes and core holes, if any, and fill with an approved grout. If the Engineer elects not to CSL test a pier, obtain approval from the Engineer to dewater the tubes and fill them with an approved grout. Provide, mix and place grout in accordance with the Grout for Structures Special Provision.

2.0 PREQUALIFICATION AND EXPERIENCE REQUIREMENTS

Use a CSL Consultant prequalified by the Contractual Services Unit of the Department for Non-Destructive Foundation Testing work (work code 3070).

Submit documentation that the CSL Consultant has successfully completed at least 5 CSL testing projects within the last 3 years of a scope and complexity similar to that anticipated for this project. Documentation should include the General Contractor and Owner's name and current contact information with descriptions of each past project.

Provide the name of the Project Engineer that will be assigned to this project. Submit documentation for the Project Engineer verifying employment with the CSL Consultant, registration as professional engineer in North Carolina and a minimum of 5 years experience in CSL testing with past projects of scope and complexity similar to that anticipated for this project. Documentation should include resumes, references, certifications, project lists, experience descriptions and details, etc.

3.0 Preparation For CSL

Submit grout mix design or packaged grout type, CSL Consultant experience documentation, CSL tube size and Type 7 Contractor's Certification, cap details, couplings or joint details and the method for attaching the tubes. Provide this information with the drilled pier construction sequence plan.

Install 4 tubes in each drilled pier with a diameter of 5 ft (1524 mm) or less and 6 tubes in each pier with a diameter of greater than 5 ft (1524 mm). Provide 2 in (50 mm) inside diameter Schedule 40 steel pipe conforming to ASTM A53, Grade A or B, Type E, F or S. The tubes shall have a round, regular internal diameter free of defects or obstructions, including any at tube joints, in order to permit the free, unobstructed passage of source and receiver probes. The tubes shall provide a good bond with the concrete and be watertight.

Fit the tubes with a watertight threaded cap on the bottom and a removable threaded cap on the top. Securely attach the tubes to the interior of the reinforcing cage. Install the tubes in each drilled pier in a regular, symmetric pattern such that each tube is equally spaced from the others around the perimeter of the cage. Place tubes such that large vertical reinforcing bars do not block the direct line between adjacent tubes. The tubes are typically wire-tied to the reinforcing cage every 3 ft (1 m) or otherwise secured such that the tubes remain in position during placement of the cage and concrete. Install tubes as near to vertical and as parallel as possible, as non-vertical tubes can adversely affect data analysis. Extend the tubes from 6 in (150 mm) above the pier tip to at least 3 ft (1 m) above the top of the pier. If the pier top elevation is below ground elevation, extend tubes at least 2 ft (610 mm) above ground surface. If the drilled pier tip elevation is excavated more than 1 ft (305 mm) below the tip elevation shown on the plans, extend the tubes using proper threaded mechanical couplings to within 6 in (150 mm) of the revised pier tip elevation.

Before placing the reinforcing cage, record the tube lengths and positions along the length of the cage. After concrete placement, measure the stickup of the tubes above the top of the drilled piers and verify tube spacing.

After placing reinforcement and before placing concrete, fill the CSL tubes with clean water and cap them to keep out debris. CSL tubes that are not filled with water and capped will be rejected. When removing the caps, use care not to apply excess torque, force or stress, which could break the bond between the tubes and the concrete.

4.0 CSL EQUIPMENT

The minimum requirements of the CSL equipment are as follows:

- A microprocessor based CSL system for display of individual CSL records, analogdigital conversion and recording of CSL data, analysis of receiver responses and printing of report quality CSL logs
- Ultrasonic source and receiver probes which can travel through 2 in (50 mm) I.D. steel pipe
- An ultrasonic voltage pulser to excite the source with a synchronized triggering system to start the recording system
- A depth measurement device to electronically measure and record the source and receiver depths associated with each CSL signal
- Appropriate filter/amplification and cable systems for CSL testing

- An acquisition system that stores each log in digital format, with drilled pier identification, date, time and test details, including the source and receiver gain and displays arrival time data graphically during data acquisition
- 3D tomographic imaging software or source for completing the work

5.0 CSL TEST PROCEDURE

Perform CSL testing between each adjacent perimeter CSL tube pair and opposite tube pairs along the cross section diameter. Maintain the source and receiver probes in the same horizontal plane unless test results indicate defects or poor concrete zones, in which case, further evaluate the defect zones with angle tests (source and receiver vertically offset at greater than 1.5 ft (460 mm) in the tubes). Report any defects indicated by decreased signal velocity and lower amplitude/energy signals at the time of testing and conduct angle tests in the zones of the defects as defined by the Concrete Condition Rating Criteria (CCRC) in Section 6.0 of this provision. Make CSL measurements at depth intervals of 2.5 in (65 mm) or less from the bottom of the tubes to the top of each pier. Pull the probes simultaneously, starting from the bottom of the tubes, using a depth-measuring device to electronically measure and record the depths associated with each CSL signal. Remove any slack from the cables before pulling to provide for accurate depth measurements of the CSL records. In the event defects are detected, conduct additional logs at no additional cost to the Department.

If CSL probes will not pass through the entire length of the CSL tubes, core a 2 in (50 mm) diameter hole through the concrete the full length of the drilled pier for each inaccessible tube. If the CSL tubes debond from the concrete, core a 2 in (50 mm) diameter hole through the concrete to the depth of the debonding for each debonded tube. Locate core holes approximately 9 in (230 mm) inside the reinforcement as directed by the Engineer. Fill core holes with clean water and cover to keep out debris. No additional payment will be made for coring due to inaccessible or debonded tubes.

6.0 CSL RESULTS AND REPORTING

Submit two hard copies and an electronic copy (pdf or jpeg format on CD or DVD) of a CSL report sealed by the Project Engineer within 5 calendar days after field testing is complete. The CSL report should include but not limited to the following:

A. Title Sheet

- NCDOT TIP number and WBS element number
- Project description
- County
- Bridge station number
- Pier location
- Personnel
- Report date

- B. Introduction
- C. Site and Subsurface Conditions (including water table elevation)
- D. Pier Details
 - Pier and casing diameters, lengths and elevations
 - Concrete compressive strength
 - Installation methods and details including use of casing, slurry, pump, tremie, dry or wet placement of concrete, etc.
- E. CSL Logs
- F. Results/Conclusions
- G. Attachments
 - Boring log(s)
 - Field Drilled Pier Inspection Forms, Drilling Logs, SID Inspection Forms and Concrete Curves (from Engineer)
 - CSL tube locations, elevations, lengths and identifications
 - CSL hardware model
 - Electronic copy of all CSL raw data

Include CSL logs for each tube pair tested with analysis of the initial pulse arrival time, velocity, relative pulse energy/amplitude and stacked waveform plotted versus depth. List all zones defined by the CCRC in a tabular format including the percent velocity reduction and the velocity values used from the nearby zone of good quality concrete. Discuss each zone defined by the CCRC in the CSL report as appropriate. Base the results on the percent reduction in velocity value from a nearby zone of good quality concrete with good signal amplitude and energy as correlated to the following:

Concrete Condition Rating Criteria (CCRC)				
CCRC	Rating Symbol	Velocity Reduction	Indicative Results	
Good	G	≤ 10 %	Good quality concrete	
Questionable Defect	Q	>10 % & < 20 %	Minor concrete contamination or intrusion and questionable quality concrete	
Poor	P/D	≥ 20 %	Defects exist, possible water/slurry contamination, soil intrusion and/or poor quality concrete	
No Signal	NS	No Signal received	Soil intrusion or other severe defect absorbed the signal (assumes good bond of the tube-concrete interface)	
Water	W	V = 4750 fps (1450 mps) to 5000 fps (1525 mps)	Water intrusion or water filled gravel intrusion with few or no fines present	

The following are a few examples of types and causes of defects:

- Necking or arching of the concrete on withdrawal of the temporary casing.
- Necking or contamination of the concrete due to collapse of the side walls.
- Soft toe due to incomplete cleaning or collapse of the side walls.
- Horizontal lenses of silt\mud\slurry due to the tremie pipe rising above the concrete.
- Voids due to the use of low-slump concrete.
- Honeycombing due to washout of fines.
- Trapping of contaminants due to pumping concrete to fast.

The Engineer will require 5 working days to evaluate the CSL test results and determine whether or not the drilled pier is acceptable. Evaluation of CSL test results, with ratings other than good (G) per the CCRC may require further investigation and additional time for review and analysis of the data. Do not grout the CSL tubes or perform any further work on the CSL tested drilled pier until the Engineer determines whether the drilled pier is acceptable.

Perform tomography in order to further investigate and delineate the boundaries of any defective/unconsolidated zones with 20% or more reduction in velocity value as correlated to the CCRC. Process CSL data to construct easy to understand 2D/3D (2D cross-sections between tubes and 3D volumetric images for the entire pier) color-coded tomographic images indicating velocity variations along the pier. Identify the location and geometry of defective/unconsolidated zones in 3D color images with detailed discussion in the CSL

report. Any further tests deemed necessary by the Engineer in order to determine the acceptability of the drilled pier will be determined after reviewing the CSL report. Additional test or analysis options include 3D tomographic imaging, single-hole sonic testing, sonic echo or impact response tests and concrete coring.

The Engineer determines the depth, location, diameter (PQ or NQ size) and number of core holes when concrete coring is required. If the Engineer is concerned about concrete strength or requires the use of a borehole camera for inspection, large diameter cores (PQ size) are required. Drill a minimum of 2 core holes to intercept the suspected defect zones. Use a coring method that provides maximum core recovery and minimizes abrasion and erosion. Provide concrete cores properly marked in a wooden crate labeled with the drilled pier depth at each interval of core recovery to the NCDOT Materials and Test Unit for evaluation and testing. Submit coring records, signed by the Contractor that include NCDOT project number, name of the Drilling Contractor, date cored and percent core recovery. Allow 5 working days after submitting the core records for the Department's review.

7.0 CORRECTION OF UNACCEPTABLE DRILLED PIER

When the Engineer determines a drilled pier is unacceptable, submit remedial measures to the Department for approval. No compensation will be made for remedial work or losses or damage due to remedial work of drilled piers found defective or not in accordance with the Drilled Piers Special Provision or the plans. Modifications to the drilled pier design or any load transfer mechanisms required by the remedial action shall be designed by a Registered North Carolina Professional Engineer. Include supporting calculations and drawings sealed by a Registered North Carolina Professional Engineer for all foundation elements affected. Do not begin remedial action work until the Department has reviewed and accepted the remedial action plan. Allow 5 working days after submitting the remedial work plan for the Department's review and acceptance. Furnish all materials and work necessary to correct defective drilled piers.

8.0 MEASUREMENT AND PAYMENT

The complete and accepted CSL will be paid for at the unit bid price for "Crosshole Sonic Logging" per each. The Department will only pay for the initial CSL test on a drilled pier; no additional payment will be made for subsequent CSL tests performed on the same drilled pier. Include in this unit bid price all costs incurred for procurements, conducting the CSL testing, reporting of results and incidentals necessary to complete the work including any other test required to determine the acceptability of the drilled pier.

Include the cost of the crosshole sonic logging tubes in the unit bid price for drilled piers. No separate payment will be made for the CSL tubes. The unit bid price for the drilled piers will include full compensation for furnishing, installing, extending tubes, dewatering and grouting of all CSL tubes and core holes, if applicable, and all materials, labor, tools, equipment and incidentals necessary to complete the work.

FALSEWORK AND FORMWORK

(7-18-06)

1.0 DESCRIPTION

Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork.

Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure.

Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure.

2.0 MATERIALS

Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required.

3.0 DESIGN REQUIREMENTS

A. Working Drawings

Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work.

When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract.

When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design.

Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein.

1. Wind Loads

Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina.

Pressure, lb/ft² (kPa) for Indicated Wind Velocity, Height Zone mph (km/hr) 70 90 feet (m) above ground 80 100 110 (112.7)(128.7)(144.8)(160.9)(177.0)0 to 30 (0 to 9.1) 15 25 30 35 20 (0.72)(0.96)(1.20)(1.44)(1.68)30 to 50 (9.1 to 15.2) 20 25 30 35 40 (0.96)(1.20)(1.44)(1.68)(1.92)50 to 100 (15.2 to 30.5) 25

30

(1.44)

35

(1.68)

35

(1.68)

40

(1.92)

40

(1.92)

45

(2.15)

45

(2.15)

50

(2.39)

Table 2.2 - Wind Pressure Values

2. Time of Removal

over 100 (30.5)

The following requirements replace those of Article 3.4.8.2.

(1.20)

30

(1.44)

Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions.

Do not remove forms until the concrete has sufficient strength to prevent damage to the surface.

B-4646 105

Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina

COUNTY	25 YR (mph) (km/hr)	COUNTY	25 YR (mph) (km/hr)	COUNTY	25 YR (mph) (km/hr)
Alamance	70 (112.7)	Franklin	70 (112.7)	Pamlico	100 (160.9)
Alexander	70 (112.7)	Gaston	70 (112.7)	Pasquotank	100 (160.9)
Alleghany	70 (112.7)	Gates	90 (144.8)	Pender	100 (160.9)
Anson	70 (112.7)	Graham	80 (128.7)	Perquimans	100 (160.9)
Ashe	70 (112.7)	Granville	70 (112.7)	Person	70 (112.7)
Avery	70 (112.7)	Greene	80 (128.7)	Pitt	90 (144.8)
Beaufort	100 (160.9)	Guilford	70 (112.7)	Polk	80 (128.7)
Bertie	90 (144.8)	Halifax	80 (128.7)	Randolph	70 (112.7)
Bladen	90 (144.8)	Harnett	70 (112.7)	Richmond	70 (112.7)
Brunswick	100 (160.9)	Haywood	80 (128.7)	Robeson	80 (128.7)
Buncombe	80 (128.7)	Henderson	80 (128.7)	Rockingham	70 (112.7)
Burke	70 (112.7)	Hertford	90 (144.8)	Rowan	70 (112.7)
Cabarrus	70 (112.7)	Hoke	70 (112.7)	Rutherford	70 (112.7)
Caldwell	70 (112.7)	Hyde	110 (177.0)	Sampson	90 (144.8)
Camden	100 (160.9)	Iredell	70 (112.7)	Scotland	70 (112.7)
Carteret	110 (177.0)	Jackson	80 (128.7)	Stanley	70 (112.7)
Caswell	70 (112.7)	Johnston	80 (128.7)	Stokes	70 (112.7)
Catawba	70 (112.7)	Jones	100 (160.9)	Surry	70 (112.7)
Cherokee	80 (128.7)	Lee	70 (112.7)	Swain	80 (128.7)
Chatham	70 (112.7)	Lenoir	90 (144.8)	Transylvania	80 (128.7)
Chowan	90 (144.8)	Lincoln	70 (112.7)	Tyrell	100 (160.9)
Clay	80 (128.7)	Macon	80 (128.7)	Union	70 (112.7)
Cleveland	70 (112.7)	Madison	80 (128.7)	Vance	70 (112.7)
Columbus	90 (144.8)	Martin	90 (144.8)	Wake	70 (112.7)
Craven	100 (160.9)	McDowell	70 (112.7)	Warren	70 (112.7)
Cumberland	80 (128.7)	Mecklenburg	70 (112.7)	Washington	100 (160.9)
Currituck	100 (160.9)	Mitchell	70 (112.7)	Watauga	70 (112.7)
Dare	110 (177.0)	Montgomery	70(112.7)	Wayne	80 (128.7)
Davidson	70 (112.7)	Moore	70 (112.7)	Wilkes	70 (112.7)
Davie	70 (112.7)	Nash	80 (128.7)	Wilson	80 (128.7)
Duplin	90 (144.8)	New Hanover	100 (160.9)	Yadkin	70 (112.7)
Durham	70 (112.7)	Northampton	80 (128.7)	Yancey	70 (112.7)
Edgecombe	80 (128.7)	Onslow	100 (160.9)	-	
Forsyth	70 (112.7)	Orange	70 (112.7)		

Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize, metallize or otherwise protect these devices as directed by the Engineer. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works.

B. Review and Approval

The Engineer is responsible for the review and approval of temporary works' drawings.

Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work.

Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings.

The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer.

On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer.

If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete.

4.0 CONSTRUCTION REQUIREMENTS

All requirements of Section 420 of the Standard Specifications apply.

Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings.

Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm). For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips.

A. Maintenance and Inspection

Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site.

Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading.

B. Foundations

Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations.

The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure.

Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports.

If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations.

The Engineer reviews and approves the proposed pile and soil bearing capacities.

5.0 REMOVAL

Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work.

Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight.

6.0 METHOD OF MEASUREMENT

Unless otherwise specified, temporary works will not be directly measured.

7.0 BASIS OF PAYMENT

Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork.

SUBMITTAL OF WORKING DRAWINGS

(9-16-08)

1.0 GENERAL

Submit working drawings in accordance with Article 105-2 of the *Standard Specifications* and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals.

If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below.

In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items.

2.0 ADDRESSES AND CONTACTS

For submittals to the Structure Design Unit, use the following addresses:

Via US mail:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581

Attention: Mr. P. D. Lambert, P. E.

Via other delivery service:

Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610

Attention: Mr. P. D. Lambert, P. E.

For submittals to the Geotechnical Engineering Unit, use the following addresses:

For projects in Divisions 1-7, use the following Eastern Regional Office address:

Via US mail:

Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Via other delivery service:

Mr. K. J. Kim, Ph. D., P. E.
Eastern Regional Geotechnical
Manager
North Carolina Department
of Transportation
Geotechnical Engineering Unit
Eastern Regional Office
3301 Jones Sausage Road, Suite 100
Garner, NC 27529

For projects in Divisions 8-14, use the following Western Regional Office address:

Via US mail:

Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager
North Carolina Department of Transportation
Geotechnical Engineering Unit Western Regional Office
5253 Z Max Boulevard
Harrisburg, NC 28075

Via other delivery service:

Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager
North Carolina Department of Transportation
Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075

Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts:

Primary Structures Contact:

Paul Lambert

(919) 250 - 4041

(919) 250 – 4082 facsimile

plambert@ncdot.gov

Secondary Structures Contacts:

James Gaither (919) 250 – 4042 David Stark

(919) 250 - 4044

Eastern Regional Geotechnical Contact (Divisions 1-7):

K. J. Kim

(919) 662 - 4710

(919) 662 - 3095 facsimile

kkim@ncdot.gov

Western Regional Geotechnical Contact (Divisions 8-14):

John Pilipchuk

(704) 455 - 8902

(704) 455 - 8912 facsimile

jpilipchuk@ncdot.gov

3.0 SUBMITTAL COPIES

Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit.

The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit.

B-4646 111

Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed by the Engineer.

STRUCTURE SUBMITTALS

Submittal	Copies Required by Structure Design Unit	Copies Required by Geotechnical Engineering Unit	Contract Reference Requiring Submittal ¹
Arch Culvert Falsework	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Box Culvert Falsework ⁷	5	0	Plan Note, SN Sheet & "Falsework and Formwork"
Cofferdams	6	2	Article 410-4
Evazote Joint Seals ⁶	9	0	"Evazote Joint Seals"
Expansion Joint Seals (hold down plate type with base angle)	9	0	"Expansion Joint Seals"
Expansion Joint Seals (modular)	2, then 9	0	"Modular Expansion Joint Seals"
Expansion Joint Seals (strip seals)	9	0	"Strip Seals"
Falsework & Forms ² (substructure)	8	0	Article 420-3 & "Falsework and Formwork"
Falsework & Forms (superstructure)	8	0	Article 420-3 & "Falsework and Formwork"
Girder Erection over Railroad	5	0	Railroad Provisions
Maintenance and Protection of Traffic Beneath Proposed Structure	8	0	"Maintenance and Protection of Traffic Beneath Proposed Structure at Station"
Metal Bridge Railing	8	0	Plan Note
Metal Stay-in-Place Forms	8	0	Article 420-3
Metalwork for Elastomeric Bearings ^{4,5}	7	0	Article 1072-10

Miscellaneous Metalwork ^{4,5}	7	0	Article 1072-10
Optional Disc Bearings 4	8	0	"Optional Disc Bearings"
Overhead Signs	13	0	Article 903-3(C) & Applicable Provisions
Pile Splicers	7	2	Subarticle 450-7(C) & "Piles"
Pile Points	7	2	Subarticle 450-7(D) & "Piles"
Placement of Equipment on Structures (cranes, etc.)	7	0	Article 420-20
Pot Bearings ⁴	8	0	"Pot Bearings"
Precast Concrete Box Culverts	2, then 1 reproducible	0	"Optional Precast Reinforced Concrete Box Culvert at Station"
Precast Retaining Wall Panels	10	1	Article 1077-2
Prestressed Concrete Cored Slab (detensioning sequences) 3	. 6	0	Article 1078-11
Prestressed Concrete Deck Panels	6 and 1 reproducible	0	Article 420-3
Prestressed Concrete Girder (strand elongation and detensioning sequences)	6	0	Articles 1078-8 and 1078- 11
Removal of Existing Structure over Railroad	5	0	Railroad Provisions
Revised Bridge Deck Plans (adaptation to prestressed deck panels)	2, then 1 reproducible	0	Article 420-3
Revised Bridge Deck Plans (adaptation to modular expansion joint seals)	2, then 1 reproducible	0	"Modular Expansion Joint Seals"
Sound Barrier Wall Casting Plans	10	0	Article 1077-2 & "Sound Barrier Wall"
Sound Barrier Wall Steel Fabrication Plans ⁵	7	0	Article 1072-10 & "Sound Barrier Wall"
Structural Steel ⁴	2, then 7	0	Article 1072-10

			Article 400-3 &
			"Construction,
Temporary Detour Structures	10	2	Maintenance and Removal
			of Temporary Structure at
			Station"
TFE Expansion Bearings ⁴	8	0	Article 1072-10

FOOTNOTES

- 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles and subarticles refer to the *Standard Specifications*.
- 2. Submittals for these items are necessary only when required by a note on plans.
- 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit.
- 4. The fabricator may submit these items directly to the Structure Design Unit.
- 5. The two sets of preliminary submittals required by Article 1072-10 of the *Standard Specifications* are not required for these items.
- 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision.
- 7. Submittals are necessary only when the top slab thickness is 18" or greater.

GEOTECHNICAL SUBMITTALS

Submittal ¹	Copies Required by Geotechnical Engineering Unit	Copies Required by Structure Design Unit	Contract Reference Requiring Submittal ²
Crosshole Sonic Logging (CSL) Reports	1	0	"Crosshole Sonic Logging"
Drilled Pier Construction Sequence Plans	1	. 0	"Drilled Piers"
Pile Driving Analyzer (PDA) Reports	2	0	"Pile Driving Analyzer"
Pile Driving Equipment Data ³	1	0	Article 450-5 & "Piles"
Retaining Walls	8	2	Applicable Provisions
Contractor Designed Shoring	7	2	"Temporary Shoring", "Anchored Temporary Shoring" & "Temporary Soil Nail Walls"

FOOTNOTES

- 1. With the exception of "Pile Driving Equipment Data", electronic copies of geotechnical submittals are required. See referenced provision.
- 2. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the Standard Specifications.
- 3. Download Pile Driving Equipment Data Form from following link: http://www.ncdot.org/doh/preconstruct/highway/geotech/formdet/
 Submit one hard copy of the completed form to the Resident Engineer. Submit a second copy of the completed form electronically, by facsimile or via US Mail or other delivery service to the Geotechnical Engineering Unit. Electronic submission is preferred. See second page of form for submittal instructions.

CRANE SAFETY (8-15-05)

Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA).

Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations.

CRANE SAFETY SUBMITTAL LIST

- A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns.
- B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices.
- C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request.
- D. <u>Certifications:</u> By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator.

GROUT FOR STRUCTURES

(7-12-07)

1.0 DESCRIPTION

This special provision addresses grout for use in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and anchored retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Provide grout composed of portland cement, water and at the Contractor's option, fine aggregate and/or pozzolan. If necessary, use set controlling admixtures. Proportion, mix and place grout in accordance with the plans, the applicable section of the *Standard Specifications* or special provision for the application and this provision.

2.0 MATERIALS

Refer to Division 10 of the Standard Specifications:

Item	Article
Portland Cement	1024-1
Water	1024-4
Fine Aggregate	1014-1
Fly Ash	1024-5
Ground Granulated Blast Furnace Slag	1024-6
Admixtures	1024-3

At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements.

3.0 REQUIREMENTS

Unless required elsewhere in the Contract, provide non-metallic grout with minimum compressive strengths as follows:

Property	Requirement
Compressive Strength @ 3 days	2500 psi (17.2 MPa)
Compressive Strength @ 28 days	4500 psi (31.0 MPa)

For applications other than micropiles, soil nails and ground anchors, use non-shrink grout with shrinkage of less than 0.15%.

When using approved packaged grout, a grout mix design submittal is not required. Submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in accordance with the applicable section of the *Standard Specifications* or special provision for the structure. Use an approved testing laboratory to determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal is accepted.

For each grout mix design, provide laboratory test results for compressive strength, density, flow and if applicable, aggregate gradation and shrinkage. Submit compressive strength for at least 3 cube and 2 cylinder specimens at the age of 3, 7, 14 and 28 days for a total of at least 20 specimens tested. Perform laboratory tests in accordance with the following:

Property	Test Method
Compressive Strength	AASHTO T106 and T22
Density	AASHTO T133
Flow for Sand Cement Grout	ASTM C939 (as modified below)
Flow for Neat Cement Grout	Marsh Funnel and Cup
(no fine aggregate)	API RP 13B-1, Section 2.2
Aggregate Gradation for Sand Cement Grout	AASHTO T27
Shrinkage for Non-shrink Grout	ASTM C1090

When testing grout for flow in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ inch (13 to 19 mm).

When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements.

Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects.

4.0 SAMPLING AND PLACEMENT

The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. Use API RP 13B-1 for field testing grout flow and density of neat cement grout. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days.

Do not place grout if the grout temperature is less than 50°F (10°C) or more than 90°F (32°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 40°F (4°C).

Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement.

Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below.

ELAPSED TIME FOR PLACING GROUT (with continuous agitation)			
Maximum Elap		lapsed Time	
Air or Grout Temperature Whichever is Higher	No Set Retarding Admixture Used	Set Retarding Admixture Used	
90°F (32°C) or above	30 min.	1 hr. 15 min.	
80°F (27°C) through 89°F (31°C)	45 min.	1 hr. 30 min.	
79°F (26°C) or below	60 min.	1 hr. 45 min.	

5.0 MISCELLANEOUS

Comply with Articles 1000-9 through 1000-12 of the *Standard Specifications* to the extent applicable for grout in lieu of concrete.

PRESTRESSED CONCRETE MEMBERS

(4-02-07)

The 2006 Standard Specifications shall be revised as follows:

In Section 1078-1 "General" of the Standard Specifications, add the following after the second paragraph:

(A) Producer Qualification

Producers of precast, prestressed concrete members are required to establish proof of their competency and responsibility in accordance with the Precast/Prestressed Concrete Institute's (PCI) Plant Certification Program in order to perform work for the project. Certification of the manufacturing plant under the PCI program and submission of proof of certification to the State Materials Engineer is required prior to beginning fabrication. Maintain certification at all times while work is being performed for the Department. Submit proof of certification following each PCI audit to the State Materials Engineer for continued qualification. These same requirements apply to producers subcontracting work from the producer directly employed by the Contractor.

Employ producers PCI certified in Product Group B, Bridge Products, and in one of the appropriate categories as listed below:

- B2 Prestressed Miscellaneous Bridge Products: Includes solid piles, sheet piles and bent caps.
- B3 Prestressed Straight-Strand Bridge Members: Includes all box beams, cored slabs, straight-strand girders and bulb-tees, bridge deck panels, hollow piles, prestressed culverts and straight strand segmental components.

• B4 Prestressed Deflected-Strand Bridge Members: Includes deflected strand girders and bulb-tees, haunched girders, deflected strand segmental superstructure components and other post-tensioned elements.

Categories for other elements will be as required by the project special provision or plans.

ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS

(6-11-07)

1.0 GENERAL

Installation and Testing of Adhesively anchored anchor bolts and dowels shall be in accordance with Section 420-13, 420-21 and 1081-1 of the Standard Specifications except as modified in this provision.

2.0 INSTALLATION

Installation of the adhesive anchors shall be in accordance with manufacturer's recommendations and shall occur when the concrete is above 40 degrees Fahrenheit and has reached its 28 day strength.

The anchors shall be installed before the adhesive's initial set ('gel time').

3.0 FIELD TESTING

Replace the third paragraph of Section 420-13 (C) with the following:

"In the presence of the Engineer, field test the anchor bolt or dowel in accordance with the test level shown on the plans and the following:.

Level One Field testing: Test a minimum of 1 anchor but not less than 10% of all anchors to 50% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors.

Level Two Field testing: Test a minimum of 2 anchors but not less than 10% of the all anchors to 80% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors.

B-4646 1.20

Testing should begin only after the Manufacturer's recommended cure time has been reached. For testing, apply and hold the test load for three minutes. If the jack experiences any drop in gage reading, the test must be restarted. For the anchor to be deemed satisfactory, the test load must be held for three minutes with no movement or drop in gage reading."

4.0 REMOVAL AND REPLACEMENT OF FAILED TEST SPECIMENS:

Remove all anchors and dowels that fail the field test without damage to the surrounding concrete. Redrill holes to remove adhesive bonding material residue and clean the hole in accordance with specifications. For reinstalling replacement anchors or dowels, follow the same procedures as new installations. Do not reuse failed anchors or dowels unless approved by the Engineer.

5.0 USAGE

The use of adhesive anchors for overhead installments is not permitted without written permission from the Engineer.

6.0 BASIS OF PAYMENT

No separate measurement or payment will be made for furnishing, installing, and testing anchor bolts/dowels. Payment at the contract unit prices for the various pay items will be full compensation for all materials, equipment, tools, labor, and incidentals necessary to complete the work.