Project Special Provisions Structures # **Table of Contents** | | | Page | |----|---|------| | | | # | | 1 | Pot Bearings (6-7-05) | 1 | | 2 | Thermal Sprayed Coatings (Metallization) (6-7-05) | 5 | | 3 | Expansion Joint Seals (10-12-01) | 9 | | 4 | Falsework and Formwork (7-18-06) | 13 | | 5 | Submittal of Working Drawings (9-16-08) | 18 | | 6 | Construction, Maintenance & Removal of Temporary Access | | | | at Sta. 39+59.00 -L- (11-17-06) | 25 | | 7 | Optional Disc Bearings (6-7-05) | 25 | | 8 | Crane Safety (8-15-05) | 30 | | 9 | Pile Driving Analyzer (11-17-06) | 31 | | 10 | Shipping Steel Structural Members (7-18-06) | 35 | | 11 | Grout for Structures (7-12-07) | 37 | | 12 | High Strength Bolts (11-17-06) | 39 | | 13 | Prestressed Concrete Members (04-02-07) | 39 | | 14 | 18" Steel Sheet Piles (SPECIAL) | 40 | | 15 | Classic Concrete Bridge Rails (SPECIAL) | 40 | | 16 | 10-inch Water Main (SPECIAL) | 42 | | 17 | 6-inch Sewer Force Main (SPECIAL) | 47 | | 18 | Telephone Conduits (SPECIAL) | 52 | | 19 | Messenger Cable System and Existing Lighting (SPECIAL) | 55 | # PROJECT SPECIAL PROVISIONS STRUCTURES PROJECT B-2965 **EDGECOMBE COUNTY** POT BEARINGS (6-07-05) #### 1.0 GENERAL This item consists of furnishing, fabrication and installation of pot bearings in accordance with AASHTO Standard Specifications, the Standard Specifications, the recommendations of the manufacturer and the details shown on the plans and as specified herein. Fixed pot bearings consist of a sole plate, a disc of elastomer in a steel cylinder with a snug fitting steel piston, masonry plate, anchor bolts, nuts and washers. Expansion pot bearings consist of a sole plate, a top steel plate with a polished stainless steel sheet facing bearing on a fixed pot bearing with a layer of virgin polytetraflouroethylene (PTFE) material on its top, masonry plate, anchor bolt assembly which includes anchor bolts, nuts, washers, pipe sleeves, a closure plate, grout and various sizes of standard pipe and any other necessary material as detailed on the plans. #### 2.0 MATERIALS Use pot bearings produced by the same manufacturer. Use AASHTO M270 Grade 50W (345W) for all steel in the pot bearings. Clean, coat, and seal the plates in the pot bearing assemblies except for the areas with special facings and the internal surfaces of pot, in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)". Metallization of the internal surfaces of the pot is permitted provided these surfaces are then polished to a surface smoother than 63 micro inches (0.0016 mm) root mean square. Coat surfaces to a thickness of 8 mils (0.200 mm) minimum on all external parts. Repair surfaces that are abraded or damaged after the application of metallizing in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)". Galvanize all fill plates specified on the plans. Provide anchor bolts and nuts in accordance with the Standard Specifications. When the maximum plan dimension of the sheet is 12" (300 mm) or less, provide a stainless steel sheet in expansion pot bearings that is at least 16 gage or 1/16" (1.6 mm). When the maximum plan dimension is greater than 12" (300 mm), provide a stainless steel sheet that is at least 11 gage or 1/8" (3 mm). Ensure that all stainless steel sheets are in conformance with ASTM A240/A167 Type 304 and polished to a minimum #8 mirror surface finish. 124 Blast clean the surface of the plate that will be attached to the stainless sheet to a near white condition in accordance with the Standard Specifications. Position and clamp the back of the stainless sheet that is to be in contact with the steel plate on the steel plate. Apply the stainless steel to the blast cleaned surface of the steel plate as soon as possible after blasting and before any visible oxidation of the blast cleaned surface occurs. Weld the stainless sheet continuously around its perimeter using a tungsten inert gas, wire-fed welder. For the PTFE sheet, used as a mating surface for the stainless sheet, provide an unfilled virgin PTFE Sheet (Recessed) or a glass-fiber filled PTFE sheet, resulting from skiving billets formed under hydraulic pressure and heat. Provide resin that conforms to the requirements of ASTM D4894 or D4895. To bond the PTFE and the piston, use heat cured high temperature epoxy capable of withstanding temperature of -320°F to 500°F (-195°C to 260°C). Provide a neoprene or natural rubber elastomer with a durometer hardness of 50 that allows for a minimum rotation of 0.02 radians. Place a 1/64" (0.4 mm) thick unfilled PTFE disc on either side of the elastomer inside the bearing. Use a brass sealing ring with the neoprene or natural rubber elastomer. #### 3.0 DESIGN Have the manufacturer design the pot bearings for the loads and movements shown on the contract plans. However, use the anchor bolt size, length, spacing and masonry plate thickness as shown on the contract plans and provide an overall height of the bearing assembly that is at least the height shown on the contract plans, but no more than 1/2 inch (13 mm) greater than this height. Either combine, cast as a single piece, or weld together the sole plate and top plate/piston and the cylinder with the masonry plate. When designing the bearings, use the following allowable bearing stresses: - On confined elastomer: 3500 psi (24.1 MPa) - On PTFE Sliding Surface, filled or unfilled PTFE (recessed): 3500 psi (24.1 MPa) Submit eight sets of shop drawings and one set of design calculations for review, comments and acceptance. Have a North Carolina Registered Professional Engineer check and seal the shop drawings and design calculations. After the Engineer reviews the drawings and, if necessary, corrections are made, submit one 22" x 34" reproducible set of the working drawings. #### 4.0 SAMPLING AND TESTING # A. Sampling The manufacturer is responsible for randomly selecting and testing sample bearings from completed lots of bearings. The manufacturer is also responsible for certifying that the completed bearings and their components have been tested and are in compliance with the requirements of this Special Provision. Have the manufacturer furnish the results of the tests to the Materials and Tests Engineer. # B. Testing ## 1. Proof Load Test Load a test bearing to 150% of the bearing's rated design capacity and simultaneously subject it to a rotational range of 0.02 radians (1.146°) for a period of 1 hour. Have the bearing visually examined both during the test and upon disassembly after the test. Any resultant visual defects, such as extruded or deformed elastomer or PTFE, damaged seals or rings, or cracked steel is cause for rejection. Keep the steel bearing plate and steel piston in continuous and uniform contact for the duration of the test. Any observed lift-off is cause for rejection. # 2. Sliding Coefficient of Friction For all guided and non-guided expansion type bearings, measure the sliding coefficient of friction at the bearing's design capacity in accordance with the test method described below, and on the fifth and fiftieth cycles, at a sliding speed of 1 in/min (25 mm/min). Calculate the sliding coefficient of friction as the horizontal load required to maintain continuous sliding of one bearing, divided by the bearing's vertical design capacity. The test results are evaluated as follows: - A maximum measured sliding coefficients of friction of 3%. - A visual examination both during and after the test. Any resultant visual defects, such as bond failure, physical destruction, cold flow of PTFE to the point of debonding, or damaged components is cause for rejection of the lot. Using undamaged test bearings in the work is permitted. #### 3. Test Method For the test method and equipment, meet the following requirements: - a. Arrange the test to determine the coefficient of friction on the first movement of the manufactured bearing. - b. Clean the bearing surface prior to testing. - c. Conduct the test at maximum working stress for the PTFE surface with the test load applied continuously for 12 hours prior to measuring friction. - d. Determine the first movement static and dynamic coefficient of friction of the test bearing at a sliding speed of less than 1 in/min (25 mm/min), not to exceed: 0.04 unfilled PTFE 0.08 filled PTFE e. Subject the bearing specimen to 100 movements of at least 1 inch (25 mm) of relative movement and, if the test facility permits, the full design movement at a speed of less than 1 ft/min (300 mm/min). Following this test determine the static and kinetic coefficient of friction again. The specimen is considered a failure if it exceeds the values measured in (d) above or if it shows any signs of bond failure or other defects. Bearings represented by test specimens passing the above requirements are approved for use in the structure subject to on-site inspection for visible defects. #### 5.0 Installation Prior to shipment, seal the joint between the steel piston and the steel cylinder with a bead of caulk. Store pot bearings delivered to the bridge site under cover on a platform above the ground surface. Protect the bearings from injury at all times and, before placing the bearings, dry and clean all dirt, oil, grease or other foreign substances from the bearing. Do not disassemble the bearings during installation, except at the manufacturer's direction. Place the bearings in accordance with the recommendations of the manufacturer, Contract Drawings, and as directed by the Engineer. If there is any discrepancy between the recommendations of the manufacturer, Special Provisions, and Contract Drawings, the Engineer is the sole judge in reconciling any such discrepancy. Provide preformed bearing pads under the masonry plates in accordance with Article 1079-1 of the Standard Specifications. Do not install any bearing before the Engineer approves it. #### 6.0 BASIS OF PAYMENT
Payment will be at the lump sum contract price bid for "Pot Bearings" which price will be full compensation for furnishing all labor, materials, tools, equipment and incidentals required to complete the work in accordance with the Standard Specifications, this Special Provision, the manufacturer's requirements and as directed by the Engineer. # THERMAL SPRAYED COATINGS (METALLIZATION) (6-07-05) #### 1.0 DESCRIPTION Apply a thermal sprayed coating (TSC) and sealer to metal surfaces as specified herein when called for on the plans or by other Special Provisions, or when otherwise approved by the Engineer in accordance with the SSPC-CS 23.00/AWS C2.23/NACE No. 12 Specification. Only Arc Sprayed application methods are used to apply TSC coatings, the Engineer must approve other methods of application. # 2.0 QUALIFICATIONS Only use NCDOT approved TSC Contractors meeting the following requirements: - 1. Who have the capability of blast cleaning steel surfaces to SSPC SP-5 and SP-10 Finishes. - 2. Who employ a Spray Operator(s) qualified in accordance with AWS C.16/C2.16M2002 and a Quality Control Inspector(s) who have documented training in the applicable test procedures of ASTM D-3276 and SSPC-CS 23.00. A summary of the contractor's related work experience and the documents verifying each Spray Operator's and Quality Control Inspector's qualifications are submitted to the Engineer before any work is performed. #### 3.0 MATERIALS Provide wire in accordance with the metallizing equipment manufacturer's recommendations. Use the wire alloy specified on the plans which meets the requirements in Annex C of the SSPC-CS 23.00 Specification. Have the contractor provide a certified analysis (NCDOT Type 2 Certification) for each lot of wire material. Apply an approved sealer to all metallized surfaces in accordance with Section 9 of SSPC-CS 23. The sealer must either meet SSPC Paint 27 or is an alternate approved by the Engineer. #### 4.0 SURFACE PREPARATION AND TSC APPLICATION Grind flame cut edges to remove the carbonized surface prior to blasting. Bevel all flame cut edges in accordance with Article 442-10(D) regardless of included angle. Blast clean surfaces to be metallized with grit or mineral abrasive in accordance with Steel Structures Painting Council SSPC SP-5/10(as specified) to impart an angular surface profile of 2.5 - 4.0 mils (0.063 - 0.100 mm). Surface preparation hold times are in accordance with Section 7.32 of SSPC-CS 23. If flash rusting occurs prior to metallizing, blast clean the metal surface again. Apply the thermal sprayed coating only when the surface temperature of the steel is at least 5°F (3°C) above the dew point. At the beginning of each work period or shift, conduct bend tests in accordance with Section 6.5 of SSPC-CS 23.00. Any disbonding or delamination of the coating that exposes the substrate requires corrective action, additional testing, and the Engineer's approval before resuming the metallizing process. Apply TSC with the alloy to the thickness specified on the plans or as provided in the table below. All spot results (the average of 3 to 5 readings) must meet the minimum requirement. No additional tolerance (as allowed by SSPC PA-2) is permitted. (For Steel Beams: For pieces with less than 200 ft² (18.6m²) measure 2 spots/surface per piece and for pieces greater than 200 ft² (18.6m²) add 1 additional spots/surface for each 500 ft² (46.5m²)). | Application | Thickness | Alloy | Seal Coat | |------------------------|-----------|------------------------|-----------| | Pot Bearings | 8 mil | 85/15 Zinc (W-Zn-Al-2) | 0.5 mil | | Armored Joint Angles | 8 mil | 85/15 Zinc (W-Zn-Al-2) | 0.5 mil | | Modular Joints | 8 mil | 99.99% Zn (W-Zn-1) | 0.5 mil | | Expansion Joint Seals | 8 mil | 99.99% Zn (W-Zn-1) | 0.5 mil | | Optional Disc Bearings | 8 mil | 85/15 Zinc (W-Zn-Al-2) | 0.5 mil | When noted on the plans or as specified in the above chart, apply the sealer to all metallized surfaces in accordance with the manufacturer's recommendations and these provisions. Apply the seal coat only when the air temperature is above 40°F (4°C) and the surface temperature of the steel is at least 5°F (3°C) above the dew point. If the sealer is not applied within eight hours after the final application of TSC, the applicator verifies acceptable TSC surfaces and obtains approval from the Engineer before applying the sealer. # 5.0 Inspection Frequency The TSC Contractor must conduct the following tests at the specified frequency and the results documented in a format approved by the Engineer. | Test/Standard | Location | Frequency | Specification | |--|---------------------------------|--|--| | Ambient Conditions | Site | Each Process | 5°F (3°C) above the dew point | | Abrasive Properties | Site | Each Day | Size, angularity, cleanliness | | Surface Cleanliness
SSPC Vis 1 | All Surfaces | Visual All Surfaces | SSPC-SP-10 Atmospheric Service
SSPC-SP - 5 Immersion Service | | Surface Profile ASTM D-4417 Method C | Random Surfaces | 3 per 500 ft ² | 2.5 - 4.0 mils | | Bend Test
SSPC-CS 23.00 | Site | 5 per shift | Pass Visual | | Thickness
SSPC PA-2R
SSPC-CS 23.00 | Each Surface | Use the method in PA-2 Appendix 3 for Girders and Appendix 4 for frames and miscellaneous steel. See Note 1. | Zn - 8 mils minimum Al - 8 mils minimum Zn Al - 8 mils minimum Areas with more than twice the minimum thickness are inspected for compliance to the adhesion and cut testing requirements of this specification. | | Adhesion ASTM 4541 | Random Surfaces
Splice Areas | 1 set of 3 per 500 ft ² | Zn > 500 psi
Al > 1000 psi
Zn Al > 750 psi | | Cut Test - SSPC-CS 23.00 | Random Surfaces | 3 sets of 3 per 500 ft ² | No peeling or delamination | | Job Reference Std.
SSPC-CS 23.00 | Site | 1 per job | Meets all the above requirements | # 130 #### 6.0 REPAIRS All Repairs are to be performed in accordance with the procedures below, depending on whether the repair surface is hidden or exposed. As an exception to the following, field welded splices on joint angles and field welding bearing plates to girders may be repaired in accordance with the procedures for hidden surfaces. For hidden surfaces (including but not limited to interior girders, interior faces of exterior girders, and below-grade sections of piles): - 1. Welding of metallized surfaces may be performed only if specifically permitted by the Engineer. Remove metallizing at the location of field welds by blast cleaning (SSPC SP-6 finish), or hand (SSPC SP-2 finish) or power tool cleaning (SSPC SP-3 finish) just prior to welding. Clean sufficiently to prevent contamination of the weld. All repairs to welded connections are metallized in accordance with SSPC CS 23.00. - 2. Minor areas less than or equal to 0.1 ft² (9300mm²) exposing the substrate are metallized in accordance with SSPC CS 23.00 or painted in accordance with ASTM A780, "Repair of Damaged and Uncoated Areas of Hot Dip Galvanized Coatings." - 3. Large areas greater than 0.1 ft² (9300mm²) exposing the substrate are metallized in accordance with SSPC CS 23.00. - 4. Damaged (burnished) areas not exposing the substrate with less than the specified coating thickness are metallized in accordance with SSPC CS 23.00 or painted in accordance with ASTM A780, "Repair of Damaged and Uncoated Areas of Hot Dip Galvanized Coatings." - 5. Damaged (burnished) areas not exposing the substrate with more than the specified coating thickness are not repaired. - 6. Defective coating is repaired by either method 2 or 3 depending on the area of the defect. For Exposed Surfaces (including but not limited to exterior faces of exterior girders and above-grade sections of piles): - 1. Welding of metallized surfaces may be performed only if specifically permitted by the Engineer. Remove metallization at the location of field welds by blast cleaning (SSPC SP-6 finish), or hand (SSPC SP-2 finish) or power tool cleaning (SSPC SP-3 finish) just prior to welding. Clean sufficiently to prevent contamination of the weld. All repairs to welded connections are metallized in accordance with SSPC CS 23.00. - 2. All areas exposing the substrate are metallized in accordance with SSPC CS 23.00 - 3. Defective coating is repaired by either method 2 or 3 depending on the area of the defect. #### 7.0 TWELVE MONTH OBSERVATION PERIOD The contractor maintains responsibility for the coating system for a twelve (12) month observation period beginning upon the satisfactory completion of all the work required in the plans or as directed by the engineer. The contractor must guarantee the coating system under the payment and performance bond (refer to article 109-10). To successfully complete the observation period, the coating system must meet the following requirements after twelve(12) months service: - No visible rust, contamination or application defect is observed in any coated area. - Painted surfaces have a uniform color and gloss. - Surfaces have an adhesion of no less than 500 psi (3.45 MPa) when tested in accordance with ASTM D-4541. #### 8.0 BASIS OF PAYMENT The contract price bid for the bridge component to which the coating is applied will be full compensation for the thermal sprayed coating. #### **EXPANSION JOINT SEALS** (10-12-01) # 1.0 GENERAL The work covered by this Special Provision consists of furnishing and installing the expansion joint seals as shown on the contract drawings. All materials, labor, equipment and incidentals necessary for the proper installation of the expansion joint seals are included. #### 2.0 MATERIAL Provide expansion joint seals capable of accommodating
a total movement measured parallel to the centerline of the roadway as shown on plans. Provide an elastomeric component for each expansion joint seal that is a continuous unit for the entire length of the joint. Do not field splice the elastomeric component. Only vulcanized shop splicing of the elastomeric component is permitted. The minimum length of an elastomeric component before shop splicing is 20 feet (6.1 m). However, one piece shorter than 20 feet (6.1 m) is permitted. Provide an elastomeric component that is clearly shop marked to indicate the top side and joint location of the elastomeric component. On skewed bridges, or under unsymmetrical conditions, clearly mark the left side of the elastomeric component also. Left is defined as being on the left when facing in the direction of increasing station. Inspect the seals upon receipt to ensure that the marks are clearly visible upon installation. Make sure the convolution of the gland does not project above the top of the hold-down plates when the joint opening is in the most compressed condition. Use either elastic polychloroprene (neoprene) or ethyl propylene diene monomer (EPDM) for the elastomer that meets the following minimum properties: | | ASTM
TEST METHOD | REQUIREMENTS | |--|---|--| | Hardness, Durometer -
Shore A | D2240 | 60 ± 5, Neoprene (upward
corrugated shape -
fabric reinforced) | | | | 75 ± 5, EPDM and Neoprene
(upward non-corrugated
shape) | | | | 80 ± 5, EPDM (upward corrugated shape-fabric reinforced) | | Tensile Strength | D412 | 2000 psi (13.8 MPa), min. | | Elongation at Break | D412 | 250% min. | | Width of Gland in Relaxed Condition | N/A | 10" ± 0.25" (254 mm ± 6 mm) | | Thickness of Upturned portion of gland | N/A 0.25" (6 mm) non-corrugated shape,
-0.032" to +0.032" (-0 mm to +0.8 mm) | | | Thickness of Upturned portion of gland | N/A | 0.1875" (5 mm) corrugated shape,
-0.032" to +0.032" (-0.8
mm to +0.8 mm) | | Thickness of Flat portion of gland | N/A | 0.1563" (4 mm), -0.032" to
+0.032" (-0.8 mm to +0.8
mm) | For fabric reinforced glands, submit one unreinforced sample per lot number, up to 500 feet (152.4 m) of Expansion Joint Seal, to the Engineer for testing. Only field splice hold-down plates at crown points, at abrupt changes in the deck slab cross slope, and on lane lines. Splicing within travel lanes is not permitted and splicing on edge lines is not required. Field splice hold-down plates between the edge line and gutter upturn and where necessary for proper installation and alignment is permitted. Show all splice locations on the working drawings for approval. For the location of lane markings at the expansion joint seal, see the Structure plans. At the splice locations, locate the hold-down bolts 3 inches (76 mm) from the end of the hold-down plate. At splice locations where changes in deck slab cross slope occur, cut the ends of hold-down plates parallel to the bridge centerline for skews less than 80° and greater than 100°. Do not use welded shop splices in hold-down plates. # 133 #### 3.0 SHOP DRAWINGS Submit nine sets of working drawings to the Engineer for review, comments and acceptance. Show complete details drawn to scale and include: - The proposed template details including the makeup of the template - The proposed method of holding the base angle assembly in place while concrete is cast around it - The proposed procedure to correct for the effects of beam movement and rotation when setting width of joint opening - The proposed chronology of installation including the sequence and direction of the concrete casting - The details of cross connectors between base angles, such as steel bars with slots bolted to angles, to maintain evenness between the adjacent base angles while accommodating movement that occurs when concrete is cast. Indicate when bolts are loosened to allow movement. - The proposed method for removing the hold-down plate - A section detail through the joint showing horizontal offset dimensions of the base angles from the centerline joint. This detail is required when the vertical face of the joint opening is not perpendicular to the roadway surface (e.g. when the roadway grade is significant). Have someone other than the one who prepares the drawing check all detailed drawings and include the signatures of both the drafter and checker on each sheet of the drawings. The Engineer returns unchecked drawings to the Contractor. Provide all completed drawings well in advance of the scheduled installation time for the expansion joint seal. ### 4.0 INSTALLATION Provide supports for the base angle assembly at a maximum spacing of 9 feet (2.75 m). Place supports near field splices of base angles to ensure that field splices are straight and even. Provide base angles with ½" (13 mm) diameter weep holes at 12 inch (305 mm) centers to allow bleeding of trapped air and/or water. Do not obstruct the weep holes with falsework. Make the bottom of the trough parallel to grade and the sides parallel to the sides of the expansion joint seal. For damaged areas, depressions, spalls, cracks, or irregularities of curbs or decks adjacent to the expansion joint, submit a proposed method of repair and repair material specifications for approval. If the Engineer deems any aspects of the expansion joint seals unacceptable, make necessary corrections. #### 5.0 INSPECTION When concrete is cast, use a non-aluminum, 10 foot (3 m), true to line straight edge to check and grade the top of the slab on each side of the joint to ensure smooth transition between spans. # Watertight Integrity Test - Upon completion of an expansion joint seal, perform a water test on the top surface to detect any leakage. Cover the roadway section of the joint from curb to curb, or barrier rail to barrier rail, with water, either ponded or flowing, not less than 1 inch (25 mm) above the roadway surface at all points. Block sidewalk sections and secure an unnozzled water hose delivering approximately 1 gallon (3.8 liters) of water per minute to the inside face of the bridge railing, trained in a downward position about 6 inches (150 mm) above the sidewalks, such that there is continuous flow of water across the sidewalk and down the curb face of the joint. - Maintain the ponding or flowing of water on the roadway and continuous flow across sidewalks and curbs for a period of 5 hours. At the conclusion of the test, the underside of the joint is closely examined for leakage. The expansion joint seal is considered watertight if no obvious wetness is visible on the Engineer's finger after touching a number of underdeck areas. Damp concrete that does not impart wetness to the finger is not a sign of leakage. - If the joint system leaks, locate the place(s) of leakage and take any repair measures necessary to stop the leakage at no additional cost to the Department. Use repair measures recommended by the manufacturer and approved by the Engineer prior to beginning corrective work. - If measures to eliminate leakage are taken, perform a subsequent water integrity test subject to the same conditions as the original test. Subsequent tests carry the same responsibility as the original test and are performed at no extra cost to the Department. #### 6.0 BASIS OF PAYMENT Basis of payment for all expansion joint seals will be at the lump sum contract price for "Expansion Joint Seals" which price and payment will be full compensation for furnishing all material, including any steel accessory plates for sidewalks, medians and rails, labor, tools, and incidentals necessary for installing the expansion joint seal in place and including all materials, labor, tools and incidentals for performing the original watertight integrity test. # FALSEWORK AND FORMWORK (7-18-06) #### 1.0 DESCRIPTION Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork. Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure. Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure. #### 2.0 MATERIALS Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required. #### 3.0 DESIGN REQUIREMENTS #### A. Working Drawings Provide working drawings for items as specified in the contract, or as required by the
Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work. When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract. When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design. Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein. # 1. Wind Loads Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina. **Table 2.2 - Wind Pressure Values** | Height Zone | Pressure, lb/ft² (kPa) for Indicated Wind Velocity, mph (km/hr) | | | | | | | | |--------------------------|---|---------|---------|---------|---------|--|--|--| | feet (m) above ground | 70 | 80 | 90 | 100 | 110 | | | | | | (112.7) | (128.7) | (144.8) | (160.9) | (177.0) | | | | | 0 to 30 (0 to 9.1) | 15 | 20 | 25 | 30 | 35 | | | | | | (0.72) | (0.96) | (1.20) | (1.44) | (1.68) | | | | | 30 to 50 (9.1 to 15.2) | 20 | 25 | 30 | 35 | 40 | | | | | | (0.96) | (1.20) | (1.44) | (1.68) | (1.92) | | | | | 50 to 100 (15.2 to 30.5) | 25 | 30 | 35 | 40 | 45 | | | | | | (1.20) | (1.44) | (1.68) | (1.92) | (2.15) | | | | | over 100 (30.5) | 30 | 35 | 40 | 45 | 50 | | | | | | (1.44) | (1.68) | (1.92) | (2.15) | (2.39) | | | | # 2. Time of Removal The following requirements replace those of Article 3.4.8.2. Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions. Do not remove forms until the concrete has sufficient strength to prevent damage to the surface. Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina | COUNTY | 25 YR (mph) | COUNTY | 25 YR (mph) | COUNTY | 25 YR | |------------|-------------|-------------|-------------|--------------|------------------| | COUNTY | (km/hr) | | (km/hr) | | (mph)
(km/hr) | | Alamance | 70 (112.7) | Franklin | 70 (112.7) | Pamlico | 100 (160.9) | | Alexander | 70 (112.7) | Gaston | 70 (112.7) | Pasquotank | 100 (160.9) | | Alleghany | 70 (112.7) | Gates | 90 (144.8) | Pender | 100 (160.9) | | Anson | 70 (112.7) | Graham | 80 (128.7) | Perquimans | 100 (160.9) | | Ashe | 70 (112.7) | Granville | 70 (112.7) | Person | 70 (112.7) | | Avery | 70 (112.7) | Greene | 80 (128.7) | Pitt | 90 (144.8) | | Beaufort | 100 (160.9) | Guilford | 70 (112.7) | Polk | 80 (128.7) | | Bertie | 90 (144.8) | Halifax | 80 (128.7) | Randolph | 70 (112.7) | | Bladen | 90 (144.8) | Harnett | 70 (112.7) | Richmond | 70 (112.7) | | Brunswick | 100 (160.9) | Haywood | 80 (128.7) | Robeson | 80 (128.7) | | Buncombe | 80 (128.7) | Henderson | 80 (128.7) | Rockingham | 70 (112.7) | | Burke | 70 (112.7) | Hertford | 90 (144.8) | Rowan | 70 (112.7) | | Cabarrus | 70 (112.7) | Hoke | 70 (112.7) | Rutherford | 70 (112.7) | | Caldwell | 70 (112.7) | Hyde | 110 (177.0) | Sampson | 90 (144.8) | | Camden | 100 (160.9) | Iredell | 70 (112.7) | Scotland | 70 (112.7) | | Carteret | 110 (177.0) | Jackson | 80 (128.7) | Stanley | 70 (112.7) | | Caswell | 70 (112.7) | Johnston | 80 (128.7) | Stokes | 70 (112.7) | | Catawba | 70 (112.7) | Jones | 100 (160.9) | Surry | 70 (112.7) | | Cherokee | 80 (128.7) | Lee | 70 (112.7) | Swain | 80 (128.7) | | Chatham | 70 (112.7) | Lenoir | 90 (144.8) | Transylvania | 80 (128.7) | | Chowan | 90 (144.8) | Lincoln | 70 (112.7) | Tyrell | 100 (160.9) | | Clay | 80 (128.7) | Macon | 80 (128.7) | Union | 70 (112.7) | | Cleveland | 70 (112.7) | Madison | 80 (128.7) | Vance | 70 (112.7) | | Columbus | 90 (144.8) | Martin | 90 (144.8) | Wake | 70 (112.7) | | Craven | 100 (160.9) | McDowell | 70 (112.7) | Warren | 70 (112.7) | | Cumberland | 80 (128.7) | Mecklenburg | 70 (112.7) | Washington | 100 (160.9) | | Currituck | 100 (160.9) | Mitchell | 70 (112.7) | Watauga | 70 (112.7) | | Dare | 110 (177.0) | Montgomery | 70(112.7) | Wayne | 80 (128.7) | | Davidson | 70 (112.7) | Moore | 70 (112.7) | Wilkes | 70 (112.7) | | Davie | 70 (112.7) | Nash | 80 (128.7) | Wilson | 80 (128.7) | | Duplin | 90 (144.8) | New Hanover | 100 (160.9) | Yadkin | 70 (112.7) | | Durham | 70 (112.7) | Northampton | 80 (128.7) | Yancey | 70 (112.7) | | Edgecombe | 80 (128.7) | Onslow | 100 (160.9) | | | | Forsyth | 70 (112.7) | Orange | 70 (112.7) | | | Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize, metallize or otherwise protect these devices as directed by the Engineer. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works. # B. Review and Approval The Engineer is responsible for the review and approval of temporary works' drawings. Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work. Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings. The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer. On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer. If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete. #### 4.0 Construction Requirements All requirements of Section 420 of the Standard Specifications apply. Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings. Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm). For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips. # A. Maintenance and Inspection Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site. Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading. #### B. Foundations Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations. The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure. Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports. If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations. The Engineer reviews and approves the proposed pile and soil bearing capacities. #### 5.0 REMOVAL Unless otherwise permitted, remove and keep all temporary works
upon completion of the work. Do not disturb or otherwise damage the finished work. Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight. ### 6.0 METHOD OF MEASUREMENT Unless otherwise specified, temporary works will not be directly measured. #### 7.0 BASIS OF PAYMENT Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork. # SUBMITTAL OF WORKING DRAWINGS (9-16-08) #### 1.0 GENERAL Submit working drawings in accordance with Article 105-2 of the *Standard Specifications* and this provision. For this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for the project. Submittals are only necessary for those items as required by the contract. Make submittals that are not specifically noted in this provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals. If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below. In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items. B-2965 141 #### 2.0 ADDRESSES AND CONTACTS For submittals to the Structure Design Unit, use the following addresses: Via US mail: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581 Attention: Mr. P. D. Lambert, P. E. Via other delivery service: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610 Attention: Mr. P. D. Lambert, P. E. For submittals to the Geotechnical Engineering Unit, use the following addresses: For projects in Divisions 1-7, use the following Eastern Regional Office address: Via US mail: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Via other delivery service: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 3301 Jones Sausage Road, Suite 100 Garner, NC 27529 For projects in Divisions 8-14, use the following Western Regional Office address: Via US mail: Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Via other delivery service: Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts: Primary Structures Contact: Paul Lambert (919) 250 - 4041 (919) 250 - 4082 facsimile plambert@ncdot.gov **Secondary Structures Contacts:** James Gaither (919) 250 - 4042 David Stark (919) 250 - 4044 Eastern Regional Geotechnical Contact (Divisions 1-7): K. J. Kim (919)662 - 4710 (919) 662 - 3095 facsimile kkim@ncdot.gov Western Regional Geotechnical Contact (Divisions 8-14): John Pilipchuk (704) 455 - 8902 (704) 455 – 8912 facsimile jpilipchuk@ncdot.gov #### 3.0 SUBMITTAL COPIES Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit. The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit. Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed by the Engineer. # **STRUCTURE SUBMITTALS** | Submittal | Copies
Required by
Structure
Design Unit | Copies Required by Geotechnical Engineering Unit | Contract Reference
Requiring Submittal ¹ | |--|---|--|--| | Arch Culvert Falsework | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Box Culvert Falsework ⁷ | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Cofferdams | 6 | 2 | Article 410-4 | | Evazote Joint Seals ⁶ | 9 | 0 | "Evazote Joint Seals" | | Expansion Joint Seals (hold down plate type with base angle) | 9 | 0 | "Expansion Joint Seals" | | Expansion Joint Seals (modular) | 2, then 9 | 0 | "Modular Expansion Joint Seals" | | Expansion Joint Seals (strip seals) | 9 | 0 | "Strip Seals" | | Falsework & Forms ² (substructure) | . 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Falsework & Forms (superstructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Girder Erection over Railroad | 5 | 0 | Railroad Provisions | | Maintenance and Protection of
Traffic Beneath Proposed
Structure | 8 | 0 | "Maintenance and
Protection of Traffic
Beneath Proposed Structure
at Station" | | Metal Bridge Railing | 8 | 0 | Plan Note | | Metal Stay-in-Place Forms | 8 | 0 | Article 420-3 | | Metalwork for Elastomeric Bearings ^{4,5} | 7 | 0 | Article 1072-10 | | | | | | |--|---------------------------|---|---| | Miscellaneous Metalwork ^{4,5} | 7 | 0 | Article 1072-10 | | Optional Disc Bearings 4 | 8 | 0 | "Optional Disc Bearings" | | Overhead Signs | 13 | 0 | Article 903-3(C) & Applicable Provisions | | Pile Splicers | 7 | 2 | Subarticle 450-7(C) & "Piles" | | Pile Points | 7 | 2 | Subarticle 450-7(D) & "Piles" | | Placement of Equipment on Structures (cranes, etc.) | 7 | 0 | Article 420-20 | | Pot Bearings 4 | 8 | 0 | "Pot Bearings" | | Precast Concrete Box Culverts | 2, then
1 reproducible | 0 | "Optional Precast Reinforced Concrete Box Culvert at Station" | | Precast Retaining Wall Panels | 10 | 1 | Article 1077-2 | | Prestressed Concrete Cored Slab (detensioning sequences) ³ | 6 | 0 | Article 1078-11 | | Prestressed Concrete Deck Panels | 6 and
1 reproducible | 0 | Article 420-3 | | Prestressed Concrete Girder
(strand elongation and
detensioning sequences) | 6 | 0 | Articles 1078-8 and 1078-
11 | | Removal of Existing Structure over Railroad | 5 | 0 | Railroad Provisions | | Revised Bridge Deck Plans
(adaptation to prestressed deck
panels) | 2, then
1 reproducible | 0 | Article 420-3 | | Revised Bridge Deck Plans
(adaptation to modular
expansion joint seals) | 2, then
1 reproducible | 0 | "Modular Expansion Joint Seals" | | Sound Barrier Wall Casting Plans | 10 | 0 | Article 1077-2 & "Sound Barrier Wall" | | Sound Barrier Wall Steel Fabrication Plans ⁵ | 7 | 0 | Article 1072-10 & "Sound Barrier Wall" | | Structural Steel ⁴ | 2, then 7 | 0 | Article 1072-10 | | | | | | B-2965 | | | | Article 400-3 & | |-------------------------------------|----|---|---------------------------| | | | | "Construction, | | Temporary Detour Structures | 10 | 2 | Maintenance and Removal | | | | | of Temporary Structure at | | | | | Station" | | TFE Expansion Bearings ⁴ | 8 | 0 | Article 1072-10 | #### **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles and subarticles refer to the *Standard Specifications*. - 2. Submittals for these items are necessary only when required by a note on plans. - 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials & Tests Unit. - 4. The fabricator may submit these items directly to the Structure Design Unit. - 5. The two sets of preliminary submittals required by Article 1072-10 of the *Standard Specifications* are not required for these items. - 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced provision. - 7. Submittals
are necessary only when the top slab thickness is 18" or greater. # **GEOTECHNICAL SUBMITTALS** | Submittal ¹ | Copies Required by Geotechnical Engineering Unit | Copies
Required by
Structure
Design Unit | Contract Reference
Requiring Submittal ² | |---|--|---|---| | Crosshole Sonic Logging (CSL)
Reports | 1 | 0 | "Crosshole Sonic Logging" | | Drilled Pier Construction
Sequence Plans | 1 | 0 | "Drilled Piers" | | Pile Driving Analyzer (PDA)
Reports | 2 | 0 | "Pile Driving Analyzer" | | Pile Driving Equipment Data ³ | 1 | 0 | Article 450-5 & "Piles" | | Retaining Walls | 8 | 2 | Applicable Provisions | | Contractor Designed Shoring | 7 | 2 | "Temporary Shoring", "Anchored Temporary Shoring" & "Temporary Soil Nail Walls" | #### **FOOTNOTES** - 1. With the exception of "Pile Driving Equipment Data", electronic copies of geotechnical submittals are required. See referenced provision. - 2. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the provision by that name. Articles refer to the *Standard Specifications*. - 3. Download Pile Driving Equipment Data Form from following link: http://www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ Submit one hard copy of the completed form to the Resident Engineer. Submit a second copy of the completed form electronically, by facsimile or via US Mail or other delivery service to the Geotechnical Engineering Unit. Electronic submission is preferred. See second page of form for submittal instructions. # CONSTRUCTION, MAINTENANCE AND REMOVAL OF TEMPORARY ACCESS AT STATION 39+59.00 -L- (11-17-06) #### 1.0 GENERAL Construct, maintain, and remove the temporary access required to provide the working area necessary for construction of the new bridge, construction of the temporary detour structure, or for the removal of an existing bridge, as applicable. Temporary access may include other methods than those outlined in this Special Provision; however, all types of temporary access are required to meet the requirements of all permits, the Standard Specifications, and this Special Provision. #### 2.0 TEMPORARY WORK BRIDGE Construction of a temporary work bridge is permitted as shown on the plans. The temporary work bridge shall have a minimum span length of 20 feet. Submit details of the temporary work bridge to the Engineer prior to constructing the work bridge to ensure conformance with the plans and all permits. Completely remove the temporary bridge prior to final acceptance or as otherwise required by the permits. ## 3.0 BASIS OF PAYMENT The lump sum price bid for "Construction, Maintenance and Removal of Temporary Access at Station _____" will be full compensation for the above work, or other methods of access, including all material, work bridge components, equipment, tools, labor, disposal, and incidentals necessary to complete the work. #### **OPTIONAL DISC BEARINGS** (6-07-05) #### 1.0 GENERAL This item consists of furnishing, fabrication and installation of disc bearings in accordance with AASHTO Standard Specifications, the Standard Specifications, the recommendations of the manufacturer and as specified herein. In addition, all plan notes pertaining to furnishing and installing pot bearing assemblies shall also apply to disc bearing assemblies, except as noted herein. Disc Bearings consist of a polyether urethane structural element (disc) confined by upper and lower steel bearing plates. Equip disc bearings with a shear restriction mechanism to prevent movement of the disc. Supply disc bearings as fixed bearings and guided expansion bearings as designated by the Contract Documents. Fixed disc bearings allow rotation but no longitudinal or transverse movement in the bearing plane. Fixed bearings consist of a sole plate, an elastomer disc, upper bearing plate, lower bearing plate, masonry plate, anchor bolts, nuts and washers. Guided expansion disc bearings allow rotation and only longitudinal movement in the bearing plane. Guided expansion disc bearings consist of a sole plate, a top steel plate with a polished stainless steel sheet facing bearing on a fixed disc bearing with a layer of virgin polytetraflouroethylene (PTFE) material on its top, masonry plate, anchor bolt assembly which includes anchor bolts, nuts, washers, pipe sleeves, a closure plate, grout and various sizes of standard pipe and any other necessary material as detailed on the plans. To allow longitudinal movement, bond a polytetraflouroethylene (PTFE) sheet to the upper steel bearing plate. Support a sliding steel top bearing plate with the upper steel bearing plate. Face the mating surface of the sliding steel top bearing plate with polished stainless steel. Use either a guide bar or keyway system to restrict transverse movement. Face the sliding surfaces of the guide bar or keyway systems with either PTFE sheets or stainless steel. #### 2.0 MATERIALS Use disc bearings produced by the same manufacturer. Use AASHTO M270 Grade 50W (345W) for all steel in the disc bearings. Clean, coat, and seal the plates in the disc bearing assemblies except for the areas with special facings and the areas that come in contact with the elastomer disc, in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)". Coat surfaces to a thickness of 8 mils (0.200 mm) minimum on all external parts. Repair surfaces that are abraded or damaged after the application of metallizing in accordance with the Special Provision for "Thermal Sprayed Coatings (Metallization)". Provide anchor bolts and nuts in accordance with the Standard Specifications. When the maximum plan dimension of the sheet is 12" (300 mm) or less, provide a stainless steel sheet in expansion disc bearings that is at least 16 gage or 1/16" (1.6 mm). When the maximum plan dimension is greater than 12" (300 mm), provide a stainless steel sheet that is at least 11 gage or 1/8" (3 mm). Ensure that all stainless steel sheets are in conformance with ASTM A167/A240 Type 304 and polished to a minimum #8 mirror surface finish. Blast clean the surface of the plate that will be attached to the stainless sheet to a near white condition in accordance with the Standard Specifications. Position and clamp the back of the stainless sheet that is to be in contact with the steel plate on the steel plate. Apply the stainless steel to the blast cleaned surface of the steel plate as soon as possible after blasting and before any visible oxidation of the blast cleaned surface occurs. Weld the stainless sheet continuously around its perimeter using a tungsten inert gas, wire-fed welder. For the PTFE sheet, used as a mating surface for the stainless sheet, provide an unfilled virgin PTFE Sheet (Recessed) or a glass-fiber filled PTFE sheet, resulting from skiving billets formed under hydraulic pressure and heat. Provide resin that conforms to the requirements of ASTM D4894 or D4895. To bond the PTFE and the bearing plate, use heat cured high temperature epoxy capable of withstanding temperature of -320°F to 500°F (-195 °C to 260 °C). Mold the polyether urethane structural element from a polyether urethane compound. Conform the physical properties of the polyether urethane to the following requirements: | Physical Property | ASTM Test | Requirements | | |--|-----------|----------------------------|------| | | Method | Min. | Max. | | Hardness, Type D Durometer | D2240 | 60 | 64 | | Tensile Stress psi (Mpa) At 100% elongation At 200% elongation | D412 | 2000 (13.8)
3700 (25.5) | | | Tensile Strength psi (Mpa) | D412 | 5000 (34.5) | | | Ultimate Elongation % | D412 | 220 | | | Compression Set % 22 hrs. at 158°F (70°C) | D395 | | 40 | #### 3.0 DESIGN Design the disc bearings for the loads and movements shown on the contract plans. However, use the anchor bolt size, length, spacing and masonry plate thickness as shown on the contract plans and provide an overall height of the bearing assembly that is at least the height shown on the contract plans, but no more than 1/2 inch (13 mm) greater than this height. Either combine and cast the sole plate and top plate/upper bearing plate and the lower bearing plate and masonry plate as a single unit or weld together prior to the installation of the disc. When designing the bearings, use the following allowable bearing stresses: - On polyether urethane structural element: 5000 psi (34.5 MPa) - On PTFE Sliding Surface, filled or unfilled PTFE (recessed): 3500 psi (24.1 MPa) Submit eight sets of shop drawings and one set of design calculations for review, comments and acceptance. Have a North Carolina Registered Professional Engineer check and seal the shop drawings and design calculations. After the Engineer reviews the drawings and, if necessary, corrections are made, submit one 22" x 34" reproducible set of the working drawings. #### 4.0 SAMPLING AND TESTING ## A. Sampling The manufacturer is responsible for randomly selecting and testing sample bearings from completed lots of bearings. The manufacturer is also responsible for certifying that the completed bearings and their components have been tested and are in compliance with the requirements of this Special Provision. Have the manufacturer furnish the results of the tests to the Materials and Tests Engineer. ## B. Testing #### 1. Proof Load Test Load a test bearing to 150% of the bearing's rated design capacity and simultaneously subject it to a rotational range of 0.02 radians (1.146°) for a period of 1 hour. Have the bearing visually examined both during the test and upon disassembly after the test. Any
resultant visual defects, such as extruded or deformed elastomer or PTFE, damaged seals or rings, or cracked steel is cause for rejection. Keep continuous and uniform contact between the polyether urethane element and the bearing plates and between the sliding steel top plate and the upper bearing plate for the duration of the test. Any observed lift-off is cause for rejection. #### 2. Sliding Coefficient of Friction For all guided and non-guided expansion type bearings, measure the sliding coefficient of friction at the bearing's design capacity in accordance with the test method described below, and on the fifth and fiftieth cycles, at a sliding speed of 1 in/min (25 mm/min). Calculate the sliding coefficient of friction as the horizontal load required to maintain continuous sliding of one bearing, divided by the bearing's vertical design capacity. The test results are evaluated as follows: - A maximum measured sliding coefficient of friction of 3%. - A visual examination both during and after the test. Any resultant visual defects, such as bond failure, physical destruction, cold flow of PTFE to the point of debonding, or damaged components is cause for rejection of the lot. Using undamaged test bearings in the work is permitted. # 3. Test Method The test method and equipment shall meet the following requirements: - f. Arrange the test to determine the coefficient of friction on the first movement of the manufactured bearing. - g. Clean the bearing surface prior to testing. - h. Conduct the test at maximum working stress for the PTFE surface with the test load applied continuously for 12 hours prior to measuring friction. - i. Determine the first movement static and dynamic coefficient of friction of the test bearing at a sliding speed of less than 1 in/min (25 mm/min), not to exceed: 0.04 unfilled PTFE 0.08 filled PTFE j. Subject the bearing specimen to 100 movements of at least 1 inch (25 mm) of relative movement and, if the test facility permits, the full design movement at a speed of less than 1 ft/min (300 mm/min). Following this test determine the static and kinetic coefficient of friction again. The specimen is considered a failure if it exceeds the values measured in (d) above or if it shows any signs of bond failure or other defects. Bearings represented by test specimens passing the above requirements are approved for use in the structure subject to on-site inspection for visible defects. #### 5.0 INSTALLATION Store disc bearings delivered to the bridge site under cover on a platform above the ground surface. Protect the bearings from injury at all times and, before placing the bearings, dry and clean all dirt, oil, grease or other foreign substances from the bearing. Do not disassemble the bearings during installation, except at the manufacturer's direction. Place the bearings in accordance with the recommendations of the manufacturer, Contract Drawings, and as directed by the Engineer. If there is any discrepancy between the recommendations of the manufacturer, Special Provisions, and Contract Drawings, the Engineer is the sole judge in reconciling any such discrepancy. Provide preformed bearing pads under the masonry plates in accordance with Article 1079-1 of the Standard Specifications. Do not install any bearing before the Engineer approves it. #### 6.0 BASIS OF PAYMENT Payment for all optional disc bearings will be at the lump sum contract price bid for "Pot Bearings" which includes full compensation for furnishing all disc bearings, labor, materials, tools, equipment, testing and incidentals required to complete the work in accordance with the Standard Specifications, this Special Provision, the manufacturer's requirements and as directed by the Engineer. CRANE SAFETY (8-15-05) Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA). Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations. #### CRANE SAFETY SUBMITTAL LIST - A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns. - B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices. - C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request. - D. <u>Certifications:</u> By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator. #### PILE DRIVING ANALYZER (11-17-06) #### 1.0 GENERAL This special provision governs driving piles with a pile dynamic analyzer (PDA) in accordance with the plans and as directed by the Engineer. The PDA test method is described in ASTM D4945, "Standard Test Method for High-Strain Dynamic Testing of Piles". Install piles in accordance with Section 450 of the Standard Specifications and this provision. Submit the proposed pile driving methods and equipment (Pile Driving Equipment Data Form) in accordance with the Submittal of Working Drawings Special Provision and the Standard Specifications. The Engineer will respond with preliminary approval or rejection of the proposed pile driving methods and equipment within 10 calendar days. Preliminary approval is required before driving piles with a PDA. Notify the Engineer of the pile driving schedule a minimum of 14 calendar days in advance. Either a PDA Consultant or the NCDOT Geotechnical Engineering Unit, as directed by the Engineer, shall perform PDA testing and analysis. If required, retain a PDA Consultant and submit experience documentation with the proposed pile driving methods and equipment. The Engineer will determine the number of piles and which piles to be tested with the PDA based upon the subsurface conditions and the pile installation sequence and progress. The Engineer will complete the review of the proposed pile driving methods and equipment and provide the required driving resistance within 10 calendar days after the Engineer receives the PDA report or the Geotechnical Engineering Unit completes the PDA testing. A PDA report for PDA testing on multiple piles may be required as directed by the Engineer before the 10 day time period begins. #### 2.0 PREQUALIFICATION AND EXPERIENCE REQUIREMENTS Use a PDA Consultant prequalified by the Contractual Services Unit of the Department for Pile Driving Analyzer work (work code 3060). Submit documentation that the PDA Consultant has successfully completed at least 5 PDA testing projects within the last 3 years of a scope and complexity similar to that anticipated for this project. Documentation should include the General Contractor and Owner's name and current contact information with descriptions of each past project. Also, submit documentation of experience with PDA manufactured by Pile Dynamics, Inc and the CAse Pile Wave Analysis Program (CAPWAP). Provide a list of PDA Operators and the Project Engineer that will be assigned to this project. Submit documentation for each PDA Operator verifying employment with the PDA Consultant and a minimum of 1 year experience in collecting PDA data with past projects of scope and complexity similar to that anticipated for this project. Submit documentation for the Project Engineer verifying employment with the PDA Consultant, registration as professional engineer in North Carolina and a minimum of 5 years experience in PDA testing and analysis with past projects of scope and complexity similar to that anticipated for this project. Documentation should include resumes, references, certifications, project lists, experience descriptions and details, etc. #### 3.0 Preparation for PDA Testing Provide piles for PDA testing that are 5 ft (1.5 m) longer, or as directed by the Engineer, than the estimated pile lengths shown on the plans. Supply 110 V, 60 Hz, 30 Amp of AC electrical power to operate the PDA equipment. Direct current welders or non-constant power sources are unacceptable. Provide a suitable shelter to protect the PDA equipment and operator from conditions of sun, water, wind and temperature. The shelter should have a minimum floor size of 6 ft x 6 ft (2 m x 2 m) and a minimum roof height of 8 ft (2.5 m). If necessary, heat or cool the shelter to maintain a temperature between 50 and 85 degrees F (10 and 30 degrees C). Place the shelter within 75 ft (23 m) of the pile such that the PDA cables reach the computer and the operator can clearly observe the pile. The Engineer may waive the shelter requirement if
weather conditions allow. Drill up to a total of 16 bolt holes in either 2 or 4 sides of the pile, as directed by the PDA Consultant or the Engineer, at an approximate distance equal to 3 times the pile diameter below the head of the pile. If the PDA Consultant or the Engineer choose to drill the bolt holes, provide the necessary equipment, tools and assistance to do so. A hammer drill is required for concrete piles and up to 2 hours may be required to drill the holes. Lift, align and rotate the pile to be tested with the PDA as directed by the PDA Consultant or the Engineer. Place the pile in the leads and template so that the PDA instruments and their accompanying wires will not be damaged. The PDA Consultant or the Engineer will furnish the PDA measuring instruments and materials for installing the instruments. Attach the PDA instruments as directed by the PDA Consultant or the Engineer after the pile is placed in the leads and the template. #### 4.0 PDA TESTING Use only the preliminarily approved pile driving methods and equipment to drive piles with the PDA instruments attached. Drive the pile as directed by the PDA Operator or the Engineer in order to measure the wavespeed of the pile. Drive the pile to the required bearing capacity and specified tip elevation, if applicable, as shown on the plans or as directed by the PDA Consultant or the Engineer. During pile driving, the PDA will be used to evaluate, including but not limited to, the following: hammer performance, bearing capacity, distribution of soil resistance, pile driving stresses, energy transfer, pile integrity and various soil parameters such as quake and damping. The PDA Operator or the Engineer may require the Contractor to modify the pile installation procedure during driving as follows: - Reduce the hammer energy - Drive deeper or shallower because of variations in the subsurface conditions - Readjust the transducers - Realign the pile The Contractor is responsible in terms of both actual expense and time delays for any damage to the PDA instruments and supporting equipment due to the Contractor's fault or negligence. Replace any damaged equipment at no additional cost to the Department. # 5.0 REDRIVING PILES When directed by the Engineer, reattach the PDA instruments and restrike or redrive the pile in accordance with Section 4.0 above and Subarticle 450-7(E) of the Standard Specifications. Obtain the required stroke and penetration (at least 6 in or 150 mm) or as directed by the PDA Operator or the Engineer. The PDA Operator or the Engineer will record dynamic measurements during restriking and redriving. The Engineer may require restriking and redriving more than once on the same pile. The Engineer will determine when PDA testing has been satisfactorily completed. # 6.0 CAPWAP ANALYSIS AND PDA REPORT The PDA Consultant shall perform analysis of the PDA raw data with the CAPWAP (version 2006 or later). At a minimum, analysis is required for a hammer blow near the end of initial drive and for each restrike and redrive. Additional CAPWAP analysis may be required as determined by the PDA Consultant or the Engineer. Submit three hard copies and an electronic copy (pdf or jpeg format on CD or DVD) of a PDA report sealed by the Project Engineer within 7 calendar days after field testing is complete. The PDA report shall include but not be limited to the following: #### A. Title Sheet - NCDOT TIP number and WBS element number - Project description - County - Bridge station number - Pile location - Personnel - Report date - B. Introduction - C. Site and Subsurface Conditions (including water table elevation) #### D. Pile Details - Pile type and length - Required bearing capacity and factor of safety - Concrete compressive strength and/or steel pile yield strength - Pile splice type and locations - Pile batter - Installation methods including use of jetting, preaugering, spudding, vibratory hammer, template, barge, etc. # E. Driving Details - Hammer make, model and type - Hammer and pile cushion type and thickness - Pile helmet weight - Hammer efficiency and operation data including fuel settings, bounce chamber pressure, blows per minute, equipment volume and pressure - Ground or mud line elevation and template reference elevation at the time of driving - Final pile tip elevation - Driving resistance (ram stroke, blows per foot (0.3 meter) and set for last 10 hammer blows) - Restrike and redrive information #### F. PDA field work details #### G. CAPWAP analysis results Table showing percent skin and tip, skin and toe damping, skin and toe quake and match quality # H. Summary/Conclusions #### I. Attachments - Boring log(s) - Pile Driving Equipment Data Form (from Contractor) - Field pile driving inspection data (from Engineer) - Accelerometer and strain gauge locations - Accelerometer and strain gauge serial numbers and calibration information - PDA hardware model and CAPWAP software version information - Electronic copy of all PDA raw data and executable CAPWAP input and output files (version 2006 format) #### 7.0 MEASUREMENT AND PAYMENT The complete and accepted PDA testing will be paid for at the unit bid price for "PDA Testing" per each. Include in the unit bid price for "PDA Testing" all costs for providing the PDA, PDA instruments and materials for installing the instruments and recording the dynamic measurements the first time the pile is tested with the PDA. Costs for providing these items for the same pile after the pile is initially tested with the PDA will be considered incidental to the unit bid price for "Pile Redrives". Also include in the unit bid price for "PDA Testing" all costs for performing the CAPWAP analysis on data collected during initial drive, restrikes and redrives and preparing and submitting the PDA report. No payment for "PDA Testing" will be made if the PDA report submitted is incomplete as described in Section 6.0. No payment for "PDA Testing" will be made if the Department performs PDA testing. If the Department does not perform PDA testing, the number of "PDA Testing" per pile will be equal to one. The complete and accepted PDA assistance will be paid for at the unit bid price for "PDA Assistance" per each. Include in the unit bid price for "PDA Assistance" all costs for PDA preparation and support including all materials, labor, tools, equipment, mobilization and incidentals necessary to complete the work described in this provision excluding the costs for the PDA testing described above. Costs for PDA preparation and support for restrikes and redrives will not be paid for separately. The number of "PDA Assistance" per pile will be equal to one for each pile tested with the PDA. The cost of the pile and the installation including driving, restriking and redriving will be paid for separately in accordance with the Standard Specifications and will not be part of these PDA pay items. # **SHIPPING STEEL STRUCTURAL MEMBERS** (7-18-06) #### Section 1072-23 Marking and Shipping Add the following paragraphs after the third paragraph of the Section. Load and ship steel beams and girders in accordance with the Figure below for all types of transportation. Below is the sketches provided to Materials and Tests Unit on May 8, 1991. When the contractor wishes to place members on trucks not in accordance with these limits, to ship by rail, to attach shipping restraints to the members, to ship horizontally curved steel members, or to invert members, he shall submit a shipping plan prior to shipping. See also Article 1072-11. 158 #### LIMITS FOR PLACEMENT OF BEAMS AND GIRDERS DURING SHIPMENT WHEN 'C' = 15' (4.6m) OR LESS WHEN 'C' = OVER 15' (4.6m) THRU 30' (9.1m) | | L | MIN. 'C' | | MAX 'C' | |-----|---------------|-------------|-------|------------| | 75 | (22.9m) | (15 (4.6m) | (| 22½(6.9m) | | | (24.4m) | 16 (4.9m) | | 24 (7.3m) | | | (25.9m) | 17 (5.2m) | 0.3L< | 25½(7.8m) | | | (27.4m) | 18 (5.5m) | | 27 (8.2m) | | | (29.0m) 0.2L< | (19 (5.8m) | | 28½(8.7m) | | 100 | (30.5m) | 20 (6.1m) | (| _30 (9.1m) | | | (32.Om) | 21 (6.4m) | | 30 (9.1m) | | | (33.5m) | 22 (6.7m) | | 30 (9.1m) | | 115 | (35.1m) | 23 (7.Om) | | 30 (9.1m) | | 120 | (36.6m) | 24 (7.3m) | | 30 (9.1m) | NOTES: ALL DIMENSIONS ARE IN FEET (METERS). TRUCK LOADING SHOWN FOR SIMPLICITY DIMENSIONS APPLY TO ALL TYPES OF SHIPMENTS. ## **GROUT FOR STRUCTURES** (7-12-07) #### 1.0 DESCRIPTION This special provision addresses grout for use in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and anchored retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Provide grout composed of portland cement, water and at the Contractor's option, fine aggregate and/or pozzolan. If necessary, use set controlling admixtures. Proportion, mix and place grout in accordance with the plans, the applicable section of the *Standard Specifications* or special provision for the application and this provision. ## 2.0 MATERIALS Refer to Division 10 of the Standard Specifications: | Item | Article | |--------------------------------------|---------| | Portland Cement | 1024-1 | | Water | 1024-4 | | Fine Aggregate | 1014-1 | | Fly Ash | 1024-5 | | Ground Granulated Blast Furnace Slag | 1024-6 | | Admixtures | 1024-3 | At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements. ## 3.0 REQUIREMENTS Unless required elsewhere in the Contract, provide non-metallic grout with minimum compressive strengths as follows: | Property | Requirement |
--------------------------------|---------------------| | Compressive Strength @ 3 days | 2500 psi (17.2 MPa) | | Compressive Strength @ 28 days | 4500 psi (31.0 MPa) | For applications other than micropiles, soil nails and ground anchors, use non-shrink grout with shrinkage of less than 0.15%. When using approved packaged grout, a grout mix design submittal is not required. Submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in accordance with the applicable section of the *Standard Specifications* or special provision for the structure. Use an approved testing laboratory to determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal is accepted. For each grout mix design, provide laboratory test results for compressive strength, density, flow and if applicable, aggregate gradation and shrinkage. Submit compressive strength for at least 3 cube and 2 cylinder specimens at the age of 3, 7, 14 and 28 days for a total of at least 20 specimens tested. Perform laboratory tests in accordance with the following: | Property | Test Method | |---|-------------------------------| | Compressive Strength | AASHTO T106 and T22 | | Density | AASHTO T133 | | Flow for Sand Cement Grout | ASTM C939 (as modified below) | | Flow for Neat Cement Grout | Marsh Funnel and Cup | | (no fine aggregate) | API RP 13B-1, Section 2.2 | | Aggregate Gradation for Sand Cement Grout | AASHTO T27 | | Shrinkage for Non-shrink Grout | ASTM C1090 | When testing grout for flow in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ inch (13 to 19 mm). When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements. Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects. ## 4.0 SAMPLING AND PLACEMENT The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. Use API RP 13B-1 for field testing grout flow and density of neat cement grout. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days. Do not place grout if the grout temperature is less than 50°F (10°C) or more than 90°F (32°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 40°F (4°C). Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement. 161 Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below. | ELAPSED TIME FOR PLACING GROUT (with continuous agitation) | | | | |--|---------------------------------------|------------------------------------|--| | Maximum Elapsed Time | | | | | Air or Grout Temperature
Whichever is Higher | No Set Retarding
Admixture
Used | Set Retarding
Admixture
Used | | | 90°F (32°C) or above | 30 min. | 1 hr. 15 min. | | | 80°F (27°C) through 89°F (31°C) | 45 min. | 1 hr. 30 min. | | | 79°F (26°C) or below | 60 min. | 1 hr. 45 min. | | ## 5.0 MISCELLANEOUS Comply with Articles 1000-9 through 1000-12 of the *Standard Specifications* to the extent applicable for grout in lieu of concrete. ## **HIGH STRENGTH BOLTS** (11-17-06) In Section 440-8(A) of the Standard Specifications, revise the third paragraph and insert a new paragraph four, respectively, as follows: "Make sure that plain bolts and washers have a thin coat of lubricant at the time of installation." "Use nuts that are pre-waxed by the producer/supplier prior to shipping to the project." # PRESTRESSED CONCRETE MEMBERS (4-02-07) The 2006 Standard Specifications shall be revised as follows: In Section 1078-1 "General" of the Standard Specifications, add the following after the second paragraph: # (A) Producer Qualification Producers of precast, prestressed concrete members are required to establish proof of their competency and responsibility in accordance with the Precast/Prestressed Concrete Institute's (PCI) Plant Certification Program in order to perform work for the project. Certification of the manufacturing plant under the PCI program and submission of proof of certification to the State Materials Engineer is required prior to beginning fabrication. Maintain certification at all times while work is being performed for the Department. Submit proof of certification following each PCI audit to the State Materials Engineer for continued qualification. These same requirements apply to producers subcontracting work from the producer directly employed by the Contractor. B-2965 162 Employ producers PCI certified in Product Group B, Bridge Products, and in one of the appropriate categories as listed below: - B2 Prestressed Miscellaneous Bridge Products: Includes solid piles, sheet piles and bent caps. - B3 Prestressed Straight-Strand Bridge Members: Includes all box beams, cored slabs, straight-strand girders and bulb-tees, bridge deck panels, hollow piles, prestressed culverts and straight strand segmental components. - B4 Prestressed Deflected-Strand Bridge Members: Includes deflected strand girders and bulb-tees, haunched girders, deflected strand segmental superstructure components and other post-tensioned elements. Categories for other elements will be as required by the project special provision or plans. ## 18" STEEL SHEET PILES (SPECIAL) Complete all work in accordance with the contract plans and Section 452 of the Standard Specifications except measurement and payment for the steel sheet piles will be as described below. Sheet piles will be measured and paid as the actual number of square feet of sheet piles completed and accepted. In determining this quantity, the sheet pile length used in the computation is the sheet pile length shown on the plans. The sheet pile heights are measured as the difference between the top elevation as shown on the plans and the bottom of the steel sheet piles. Payment will be made under: 18" Steel Sheet Piles......Sq. Ft. ## **CLASSIC CONCRETE BRIDGE RAILS:** (SPECIAL) #### 1.0 General The "Classic Concrete Bridge Rail" shall be in accordance with applicable parts of the Standard Specifications, the details shown on the plans and as outlined in these special provisions. Plans for the bridge rails are detailed for cast in place concrete and must be placed using conventional forms. #### 2.0 Concrete Mix Concrete for the bridge rail shall meet the requirements for class AA concrete with exception noted below: The maximum size coarse aggregate used in the concrete mix shall be #78M. The slump shall be within the range of 5" to 8" when tested in accordance with AASHTO T119. A high range water reducer shall be used. The quantity of high range water reducer per pound of cement shall be within the range recommended on the current list of approved admixtures issued by M&T Unit. ## 3.0 Construction The bridge rails shall be placed to the established shape, line, grade and dimensions shown on the plans. Joints in the rails shall be constructed at the locations and of the type specified on the plans. # 4.0 Finishing All exposed surfaces which are not satisfactory to the Engineer as to uniformity of color and texture or because of excessive patching shall be corrected as required by the Engineer. All surfaces of the bridge rails shall be given a Class I surface finish in accordance with the Standard Specifications unless directed otherwise by the Engineer. ## 5.0 Measurement The quantity to be paid for under this item shall be the actual number of linear feet of "Classic Concrete Bridge Rail", complete in place and accepted, measured continuously along the top surface of completed rail from end to end without deductions for spaces between sections. # 6.0 Payment The quantity, measured as described above, will be paid for at the contract unit price per linear foot bid for "Classic Concrete Bridge Rail", which price and payment shall be full compensation for all materials, admixtures, forms, falsework, curing, surface finish, tools, labor, equipment and incidentals necessary to complete the item. Prepared by: DAVIS-MARTIN-POWELL & ASSOCIATES, INC ENGINEERING - LAND PLANNING - SURVEYING 6415 Old Plank Road High Point, NC 27265 Phone: (336) 886-4821 Fax: (336) 886-4458 B2965 Water Line Bridge Attachment Spec.doc September 8, 2008 # **10-INCH WATER MAIN** Bridge at Station -L- STA. 39+59.00 Project: B-2965 Edgecombe County #### 1.0 SCOPE OF WORK The Contractor shall be responsible for furnishing all equipment, labor and materials necessary to install a 10-inch ductile iron restrained joint water main from -L- Station 36+83 to -L- Station 42+37, including attachment of the water main to the proposed bridge. All work shall be performed in accordance with the Structure Plans, these special provisions, the S-N sheet and as directed by the Engineer and subject to the approval of the Owner. ## 2.0 GENERAL CONSTRUCTION REQUIREMENTS ## 2.1 Material Specifications When brand names of materials have been
determined, the Contractor shall obtain approval, through the State Project Services Engineer and the Owner prior to their use and/or installation. The Contractor shall furnish, but is not limited to furnishing catalog cuts and/or shop drawings, of the materials. Thirty days shall be allowed for the Engineer's review of each submittal. <u>Eight copies of each</u> catalog cut and/or shop drawing shall be submitted. #### Pipe Sleeves The pipe sleeves shall be of the thickness shown on the plans and shall conform to the requirements of ASTM A53 Grade B or API 5L Grade B. The pipe sleeves are to be installed in the end bents as shown on the plans. The pipe sleeves are to be of one piece construction and cut to fit the skew of the end bents. Both ends of the sleeves shall be flush with both faces of the end bents, and the vertical grade that the main will be installed. If not fabricated to fit, a torch shall be used to cut the ends of the sleeves, and protective shields are to be placed on both faces of the concrete. All rough edges on the ends and inside of the sleeves caused by cutting shall be removed by filing or reaming. A waterstop ring shall be continuously welded around the exterior of the pipe sleeve, projecting a minimum of 1/4" from the exterior face of the sleeve and positioned approximately halfway between each end of the sleeve. # Concrete Inserts Concrete inserts shall be of an approved galvanized type having a minimum working load tension capacity of 2,500 lbs. (to accommodate $7/8" \varnothing$ rod size) and threads to match the galvanized threaded rods to be used. The inserts shall be designed so as to provide a method of fastening or securing the base of the inserts to the deck forms to avoid movement while concrete is being poured. ## Hardware Bolts, nuts, and washers shall be high strength and galvanized in accordance with Article 1072-7 of the Standard Specifications. # Hanger Rods The hanger rods shall be of the approved galvanized type, threaded on both ends or threaded continuously and conforming to ASTM A36 or A575. The hanger rods shall be of a proper length so as to place the main at the vertical location shown on the plans. ## Pipe Hangers The pipe hangers shall be an approved adjustable steel pipe roll hanger capable of supporting the ductile iron restrained joint water main and accepting the hanger rod. The bottom yoke is to be coated with a minimum of 5 mils thickness of polyvinyl chloride or neoprene. The entire hanger assembly is to be galvanized in accordance with Section 1076 of the Standard Specifications. # **Ductile Iron Pipe - Restrained Joint** The ductile iron restrained joint water pipe shall be new pipe of the pressure class and pressure rating shown on the plans and shall conform to ANSI A21.51 (AWWA C151). All ductile iron restrained joint water pipe shall be cement mortar lined in accordance with ANSI A21.4 (AWWA C104). The outside surface of all ductile iron restrained joint water pipe shall be bituminous coated in accordance with ANSI A21.51 (AWWA C151). The design of the restrained joint shall utilize a welded full-circumference restraining ring on the spigot end of the pipe, in conjunction with a locking ring that is placed on the backside of the restraining ring to lock the joint into place after the spigot is inserted into the bell end of the pipe joint. The restrained joint shall provide a positive locking system that permits deflection of the joint after assembly while maintaining uniform load distribution, but prevents the joint from separating under pressure. The design of the restrained joint shall provide for quick and easy disassembly should the need arise. # **Expansion Joint** Approved expansion joints shall be installed as shown on plans, capable of providing 10" of concentrated axial pipe movement. They should be furnished with flanged end connections. Expansion joints shall have adjustable limit rods which limit the travel of the slip pipe. Such expansion joints should have a carbon steel body conforming to AISI C1015-20, ASTM A283, or ASTM A285 and carbon steel slip pipe conforming to ASTM A53, ASTM A285, or AISC C1015-20. Gaskets should be made from Grade 60 rubber. ## Sleeve Seal Seals shall be placed to fill the annular space between the carrier pipe and the pipe sleeves in the end bents, as indicated on the plans. The seal shall be of an approved link, lock or modular sleeve and casing type. Seals shall be modular mechanical types consisting of interlocking synthetic or rubber links shaped to continuously fill the annular space between the sleeve and carrier pipe. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and nut. The seal shall be recessed a minimum of 2 inches from the fill face of the end walls. After the seal assembly is positioned in the sleeve, tightening of the bolts shall cause the rubber sealing elements to expand and provide a watertight seal between the sleeve and the carrier pipe. The seal shall be constructed so as to provide insulation between the pipe and sleeve, thus preventing the flow of stray currents from the main to the bridge. # Waterproofing After the seal has been placed in the sleeve and recessed 2 inches inside the fill face of the end walls, the remaining space shall be filled with an approved type jute with a 2 inch recess at the opposite end of the pipe sleeve. The recesses are to be filled with an approved mastic or plastic caulking compound that conforms to the existing concrete and finished smooth with the face of the end wall. ## Lateral Brace Assemblies The lateral brace assemblies, including the U-bolts, shall be fabricated from ASTM A36 steel in accordance with the details shown on the plans. U-bolts, with the exception of the threaded ends, shall be coated with a minimum of 5 mils thickness of polyvinyl chloride or neoprene. The Contractor shall furnish the braces with a galvanized finish. Only the non-coated ends of the U-bolts are required to be galvanized. The 1/4" neoprene or PVC (or equal) pads shall be secured to the end plates and the contact surface of the angle iron with the pipe with epoxy cement or other suitable material. # **Painting** The surface of all exposed metallic materials that are not galvanized or otherwise coated shall be painted in accordance with the Standard Specifications using the materials specified herein. Surface Preparation - Surface preparation shall be in accordance with Subarticle 442-8(A) of the Standard Specifications. Shop Paint - All steel shall have shop coat of self-curing inorganic zinc paint conforming to Article 1080-7 of the Standard Specifications. Field Paint - All surfaces shall be given two (2) coats of a minimum dry thickness of 1 ½ mils for each coat of an approved type zinc rich paint conforming to Section 1080-9 of the Standard Specifications. # 2.2 Pressure Test, Leakage Test and Sterilization The pressure test, leakage test and sterilization of the water main shall be performed as provided for in the Utility Construction Special Provisions and in the Standard Specifications. The pressure test and leakage test of the water main attached to the bridge shall be performed prior to connecting to the buried piping beyond the ends of the approach slabs. The Contractor shall provide temporary restrained end caps to be used while pressure testing and leakage testing the water main attached to the bridge. The Contractor shall follow the recommendations of the expansion joint manufacturer regarding hydrostatic testing to avoid compromising the functionality of the expansion joint. ## 2.3 Installation and Attachment of Main to Bridge When installing and attaching the main to the bridge, the Contractor shall make only one connection at a time. Both ends of the pipe shall be thoroughly cleaned of foreign matter, using a wire brush if necessary. The restrained joint pipe shall be installed in strict compliance with the manufacturer's recommendations and with the "Piping Industry Standards". The Contractor shall pull the slack out of each restrained joint as the pipe is being installed. As each pipe joint is assembled, the spigot end of the pipe should be pushed home into the bell end of the previously installed pipe, then "backed out" so as to engage its restraints. Rigging shall be utilized to prevent previously extended joints from being pushed back in. The expansion joint shall be installed in strict compliance with the manufacturer's recommendations. The expansion joint shall be installed approximately at the mid-point of the water main which is attached to the bridge. The Contractor shall extend and cap the water main 2 feet beyond the ends of the approach slabs. From that point, the main shall be installed as shown in the Utility Construction Plans and paid for as provided for in the "Utility Construction Special Provisions". The pipe shall be marked (by painting) at the backface of the end wall at each end of the structure to monitor any movement of the main. When installing the lateral brace assemblies, the Contractor's procedure shall include but not necessarily be limited to include the following: - 1. If not galvanized, the lateral brace assemblies shall be painted in accordance with the paint specifications. - 2. A lateral brace assembly shall be provided <u>at each pipe joint and located at the bell end of each section of pipe as near to the bell as possible.</u> - 3. Install complete brace assembly with U-bolts, nuts and washers loose. - 4. Place snug against the bridge girders as shown on the plans. Do not force or jack. - 5. After pipe is installed at each lateral brace assembly, the U-bolts shall be tightened down against the pipe to sufficiently prevent lateral movement, while still allowing axial movement of the pipe due to thermal expansion and contraction. - 6. After making all necessary adjustments and tightening all bolts, the threads of the bolts and
nuts shall be burred with a sharp pointed tool. - 7. Touch up all marred surfaces in accordance with the painting specifications and as directed by the Engineer. - 2.4 The backfill shall be placed in accordance with the Contract Standard Specifications. ## 3.0 PAYMENT Payment shall be made at the contract lump sum bid price for "10-Inch Water Main". The lump sum bid price shall be full compensation for all labor, materials, and equipment necessary to complete the work in accordance with the Plans, Specifications, and as directed by the Engineer. DAVIS-MARTIN-POWELL & ASSOCIATES, INC September 8, 2008 ENGINEERING - LAND PLANNING - SURVEYING 6415 Old Plank Road High Point, NC 27265 Phone: (336) 886-4821 Fax: (336) 886-4458 MAIN (+59.00 6-INCH SEWER FORCE MAIN Bridge at Station -L- STA. 39+59.00 Edgecombe County ## 1.0 SCOPE OF WORK Project: B-2965 The Contractor shall be responsible for furnishing all equipment, labor and materials necessary to install a 6-inch ductile iron restrained joint sewer force main from -L- Station 36+83 to -L- Station 42+37, including attachment of the force main to the proposed bridge. All work shall be performed in accordance with the Structure Plans, these special provisions, the S-N sheet and as directed by the Engineer and subject to the approval of the Owner. ## 2.0 GENERAL CONSTRUCTION REQUIREMENTS ## 2.1 Material Specifications When brand names of materials have been determined, the Contractor shall obtain approval, through the State Project Services Engineer and the Owner prior to their use and/or installation. The Contractor shall furnish, but is not limited to furnishing catalog cuts and/or shop drawings, of the materials. Thirty days shall be allowed for the Engineer's review of each submittal. Eight copies of each catalog cut and/or shop drawing shall be submitted. ## **Pipe Sleeves** The pipe sleeves shall be of the thickness shown on the plans and shall conform to the requirements of ASTM A53 Grade B or API 5L Grade B. The pipe sleeves are to be installed in the end bents as shown on the plans. The pipe sleeves are to be of one piece construction and cut to fit the skew of the end bents. Both ends of the sleeves shall be flush with both faces of the end bents, and the vertical grade that the main will be installed. If not fabricated to fit, a torch shall be used to cut the ends of the sleeves, and protective shields are to be placed on both faces of the concrete. All rough edges on the ends and inside of the sleeves caused by cutting shall be removed by filing or reaming. A waterstop ring shall be continuously welded around the exterior of the pipe sleeve, projecting a minimum of 1/4" from the exterior face of the sleeve and positioned approximately halfway between each end of the sleeve. # Concrete Inserts Concrete inserts shall be of an approved galvanized type having a minimum working load tension capacity of 2,500 lbs. (to accommodate 3/4" \varnothing rod size) and threads to match the galvanized threaded rods to be used. The inserts shall be designed so as to provide a method of fastening or securing the base of the inserts to the deck forms to avoid movement while concrete is being poured. # Hardware Bolts, nuts, and washers shall be high strength and galvanized in accordance with Article 1072-7 of the Standard Specifications. # Hanger Rods The hanger rods shall be of the approved galvanized type, threaded on both ends or threaded continuously and conforming to ASTM A36 or A575. The hanger rods shall be of a proper length so as to place the main at the vertical location shown on the plans. # Pipe Hangers The pipe hangers shall be an approved adjustable steel pipe roll hanger capable of supporting the ductile iron restrained joint force main and accepting the hanger rod. The bottom yoke is to be coated with a minimum of 5 mils thickness of polyvinyl chloride or neoprene. The entire hanger assembly is to be galvanized in accordance with Section 1076 of the Standard Specifications. ## Ductile Iron Pipe - Restrained Joint The ductile iron restrained joint force main pipe shall be new pipe of the pressure class and pressure rating shown on the plans and shall conform to ANSI A21.51 (AWWA C151). All ductile iron restrained joint force main pipe shall be cement mortar lined in accordance with ANSI A21.4 (AWWA C104). The outside surface of all ductile iron restrained joint force main pipe shall be bituminous coated in accordance with ANSI A21.51 (AWWA C151). The design of the restrained joint shall utilize a welded full-circumference restraining ring on the spigot end of the pipe, in conjunction with a locking ring that is placed on the backside of the restraining ring to lock the joint into place after the spigot is inserted into the bell end of the pipe joint. The restrained joint shall provide a positive locking system that permits deflection of the joint after assembly while maintaining uniform load distribution, but prevents the joint from separating under pressure. The design of the restrained joint shall provide for quick and easy disassembly should the need arise. # **Expansion Joint** Approved expansion joints shall be installed as shown on plans, capable of providing 10" of concentrated axial pipe movement. They should be furnished with flanged end connections. Expansion joints shall have adjustable limit rods which limit the travel of the slip pipe. Such expansion joints should have a carbon steel body conforming to AISI C1015-20, ASTM A283, or ASTM A285 and carbon steel slip pipe conforming to ASTM A53, ASTM A285, or AISC C1015-20. Gaskets should be made from Grade 60 rubber. ## Sleeve Seal Seals shall be placed to fill the annular space between the carrier pipe and the pipe sleeves in the end bents, as indicated on the plans. The seal shall be of an approved link, lock or modular sleeve and casing type. Seals shall be modular mechanical types consisting of interlocking synthetic or rubber links shaped to continuously fill the annular space between the sleeve and carrier pipe. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and nut. The seal shall be recessed a minimum of 2 inches from the fill face of the end walls. After the seal assembly is positioned in the sleeve, tightening of the bolts shall cause the rubber sealing elements to expand and provide a watertight seal between the sleeve and the carrier pipe. The seal shall be constructed so as to provide insulation between the pipe and sleeve, thus preventing the flow of stray currents from the main to the bridge. # Waterproofing After the seal has been placed in the sleeve and recessed 2 inches inside the fill face of the end walls, the remaining space shall be filled with an approved type jute with a 2 inch recess at the opposite end of the pipe sleeve. The recesses are to be filled with an approved mastic or plastic caulking compound that conforms to the existing concrete and finished smooth with the face of the end wall. ## **Lateral Brace Assemblies** The lateral brace assemblies, including the U-bolts, shall be fabricated from ASTM A36 steel in accordance with the details shown on the plans. U-bolts, with the exception of the threaded ends, shall be coated with a minimum of 5 mils thickness of polyvinyl chloride or neoprene. The Contractor shall furnish the braces with a galvanized finish. Only the non-coated ends of the U-bolts are required to be galvanized. The 1/4" neoprene or PVC (or equal) pads shall be secured to the end plates and the contact surface of the angle iron with the pipe with epoxy cement or other suitable material. # Painting The surface of all exposed metallic materials that are not galvanized or otherwise coated shall be painted in accordance with the Standard Specifications using the materials specified herein. Surface Preparation - Surface preparation shall be in accordance with Subarticle 442-8(A) of the Standard Specifications. Shop Paint - All steel shall have shop coat of self-curing inorganic zinc paint conforming to Article 1080-7 of the Standard Specifications. Field Paint - All surfaces shall be given two (2) coats of a minimum dry thickness of 1 ½ mils for each coat of an approved type zinc rich paint conforming to Section 1080-9 of the Standard Specifications. # 2.2 Pressure Test and Leakage Test The pressure test and leakage test of the sewer force main shall be performed as provided for in the Utility Construction Special Provisions and in the Standard Specifications. The pressure test and leakage test of the force main attached to the bridge shall be performed prior to connecting to the buried piping beyond the ends of the approach slabs. The Contractor shall provide temporary restrained end caps to be used while pressure testing and leakage testing the force main attached to the bridge. The Contractor shall follow the recommendations of the expansion joint manufacturer regarding hydrostatic testing to avoid compromising the functionality of the expansion joint. ## 2.3 Installation and Attachment of Main to Bridge When installing and attaching the main to the bridge, the Contractor shall make only one connection at a time. Both ends of the pipe shall be thoroughly cleaned of foreign matter, using a wire brush if necessary. The restrained joint pipe shall be installed in strict compliance with the manufacturer's recommendations and with the "Piping Industry Standards". The Contractor shall pull the slack out of each restrained joint as the pipe is being installed. As each pipe joint is assembled, the spigot end of the pipe should be pushed home into the bell end of the previously installed pipe, then "backed out" so as to engage its restraints. Rigging shall be utilized to prevent previously extended joints from being pushed back in. The expansion joint shall be installed in strict compliance with the manufacturer's recommendations. The expansion joint shall be installed
approximately at the mid-point of the force main which is attached to the bridge. The Contractor shall extend and cap the force main 2 feet beyond the ends of the approach slabs. From that point, the main shall be installed as shown in the Utility Construction Plans and paid for as provided for in the "Utility Construction Special Provisions". The pipe shall be marked (by painting) at the backface of the end wall at each end of the structure to monitor any movement of the main. When installing the lateral brace assemblies, the Contractor's procedure shall include but not necessarily be limited to include the following: - 1. If not galvanized, the lateral brace assemblies shall be painted in accordance with the paint specifications. - 2. A lateral brace assembly shall be provided <u>at each pipe joint and located at the bell end of each section of pipe as near to the bell as possible.</u> - 3. Install complete brace assembly with U-bolts, nuts and washers loose. - 4. Place snug against the bridge girders as shown on the plans. Do not force or jack. - 5. After pipe is installed at each lateral brace assembly, the U-bolts shall be tightened down against the pipe to sufficiently prevent lateral movement, while still allowing axial movement of the pipe due to thermal expansion and contraction. - 6. After making all necessary adjustments and tightening all bolts, the threads of the bolts and nuts shall be burred with a sharp pointed tool. - 7. Touch up all marred surfaces in accordance with the painting specifications and as directed by the Engineer. - 2.4 The backfill shall be placed in accordance with the Contract Standard Specifications. ## 3.0 PAYMENT Payment shall be made at the contract lump sum bid price for "6-Inch Sewer Force Main". The lump sum bid price shall be full compensation for all labor, materials, and equipment necessary to complete the work in accordance with the Plans, Specifications, and as directed by the Engineer. DAVIS-MARTIN-POWELL & ASSOCIATES, TNC 174 ENGINEERING - LAND PLANNING - SURVEYING 6415 Old Plank Road High Point, NC 27265 Phone: (336) 886-4821 Fax: (336) 886-4458 September 9, 2008 September 9, 2008 ROFESSION SEAL ANNUAL ANN # **TELEPHONE CONDUITS** Bridge at Station -L- STA. 39+59.00 **Edgecombe County** ## 1.0 SCOPE OF WORK Project: B-2965 The Contractor shall be responsible for furnishing all equipment, labor and materials necessary to install six (6) 4" I.D. telephone conduits from -L-Station 36+83 to -L- Station 42+37, including attachment of the telephone conduits to the proposed bridge, and also including installation of six (6) 4" underground telephone conduits beyond each end of the bridge to their respective points of termination as shown on the Utility Construction Plans. All work shall be performed in accordance with the Structure Plans, these special provisions, the S-N sheet and as directed by the Engineer and subject to the approval of the Owner. ## 2.0 GENERAL CONSTRUCTION REQUIREMENTS ## 2.1 Material Specifications When brand names of materials have been determined, the Contractor shall obtain approval, through the State Project Services Engineer and the Owner prior to their use and/or installation. The Contractor shall furnish, but is not limited to furnishing catalog cuts and/or shop drawings, of the materials. Thirty days shall be allowed for the Engineer's review of each submittal. <u>Eight copies of each</u> catalog cut and/or shop drawing shall be submitted. ## Steel Plate Sleeves The steel plate sleeves shall be of the thickness shown on the plans and shall conform to the requirements of ASTM A53 Grade B or API 5L Grade B. The sleeves are to be installed in the end bents as shown on the plans. The sleeves are to be of one piece construction and cut to fit the skew of the end bents. Both ends of the sleeves shall be flush with both faces of the end bents, and the vertical grade that the telephone conduits will be installed. If not fabricated to fit, a torch shall be used to cut the ends of the sleeves, and protective shields are to be placed on both faces of the concrete. All rough edges on the ends and inside of the sleeves caused by cutting shall be removed by filing or reaming. A waterstop ring shall be continuously welded around the exterior of the sleeve, projecting a minimum of 1/4" from the exterior face of the sleeve and positioned approximately halfway between each end of the sleeve. ## Concrete Inserts Concrete inserts shall be of an approved galvanized type having a minimum working load tension capacity of 1,260 lbs. (to accommodate $5/8" \varnothing$ rod size) and threads to match the galvanized threaded rods to be used. The inserts shall be designed so as to provide a method of fastening or securing the base of the inserts to the deck forms to avoid movement while concrete is being poured. ## Hardware Bolts, nuts, and washers shall be high strength and galvanized in accordance with Article 1072-7 of the Standard Specifications. # Hanger Rods The hanger rods shall be of the approved galvanized type, threaded on both ends or threaded continuously and conforming to ASTM A36 or A575. The hanger rods shall be of a proper length so as to place the telephone conduits at the vertical location shown on the plans. # **Hangers** The hanger assemblies shall be fabricated as shown on the plans and shall be capable of supporting the telephone conduits and accepting the hanger rods. The entire hanger assembly is to be galvanized in accordance with Section 1076 of the Standard Specifications. ## Plastic Conduit 4" I.D. plastic conduit shall be Schedule 40 PVC, with Type "B" PVC being used for underground installations and Type "D" being used for above ground installations. #### **Expansion Joints** Expansion joints shall be installed as shown on plans, to permit pipe axial movement of the telephone conduits. #### Waterproofing After the telephone conduits have been placed through the sleeve in the backwall of the end bent, the space between the conduits and the sleeve shall be filled with an approved type jute with a 2 inch recess at the opposite end of the sleeve. The recesses are to be filled with an approved mastic or plastic caulking compound that conforms to the existing concrete and finished smooth with the face of the end wall. #### **Painting** The surface of all exposed metallic materials that are not galvanized or otherwise coated shall be painted in accordance with the Standard Specifications using the materials specified herein. Surface Preparation - Surface preparation shall be in accordance with Subarticle 442-8(A) of the Standard Specifications. Shop Paint - All steel shall have shop coat of self-curing inorganic zinc paint conforming to Article 1080-7 of the Standard Specifications. Field Paint - All surfaces shall be given two (2) coats of a minimum dry thickness of 1 ½ mils for each coat of an approved type zinc rich paint conforming to Section 1080-9 of the Standard Specifications. # 2.2 Installation and Attachment of Telephone Conduits to Bridge The telephone conduits shall be installed in strict compliance with the manufacturer's recommendations and with the "Piping Industry Standards". When installing the hanger assemblies, the Contractor's procedure shall include but not necessarily be limited to include the following: - 1. After installing the hanger assemblies and making all necessary adjustments and tightening all bolts, the threads of the bolts and nuts shall be burred with a sharp pointed tool. - 2. Touch up all marred surfaces in accordance with the painting specifications and as directed by the Engineer. 4" I.D. Type "D" plastic conduits are to run from fill face to fill face of the end bents, then transition to 4" I.D. Type "B" plastic PVC conduits which will be installed underground as shown on the plans. ## 2.3 Installation of Underground Telephone Conduits Beyond the fill face of the backwall of the end bents on each side of the bridge, the Contractor shall extend the telephone conduits in a trench and cap the telephone conduits 1 foot from the existing/proposed telephone handholes on each side of the bridge, as shown on the Utility Construction Plans. Type "B" plastic PVC conduit shall be used for underground installations as shown on the plans. Backfill shall be placed in accordance with the Contract Standard Specifications. Embarq will be responsible for installing telephone cables through the conduits following the Contractor's installation of the conduit system. ## 3.0 PAYMENT Payment shall be made at the contract lump sum bid price for "Telephone Conduits". The lump sum bid price shall be full compensation for all labor, materials, and equipment necessary to complete the work in accordance with the Plans, Specifications, and as directed by the Engineer. # PROJECT SPECIAL PROVISIONS Messenger Cable System and Existing Lighting ## 1.00 DESCRIPTION The work covered by this section consists of furnishing and installing a proposed new messenger cable system and electrical conductors for roadway lighting on the bridge. Relocate existing light standards to new bridge. Install new luminaire and new conductors inside the light standard. Roadway lighting circuitry connection to the local utility power lines will be provided by others. Perform all work in accordance with these Special Provisions, the Plans, the National Electrical Code, and North Carolina Department of Transportation "2006 Standard Specifications for Roads and Structures" (Standard Specifications). Use Division 14 of the Standard Specifications except as modified or added to by these Special Provisions. #### 2.00 RELOCATE LIGHT STANDARDS #### 2.10 DESCRIPTION The work covered by this section consists of providing all equipment, labor and materials necessary to relocate existing light standards from existing bridge to new locations on a proposed bridge as shown on the structure plans. It also includes storage of materials to be reused. ## 2.20 MATERIALS Reuse
existing materials, including the light standard and arm. Shims and washers may be reused, but new connecting bolts are required. Replace materials that are to be reused, if they are damaged during relocation. Damaged materials will be replaced with new materials, at no additional cost to the Department. The Contractor is responsible for the storage and protection of the reused materials against loss or damage. #### 2.30 CONSTRUCTION METHODS Dismount existing light standards from existing lighting outrigger, and reinstall on new lighting outrigger on proposed bridge. Provide new connecting bolts and attachment hardware for the standard-to-arm connection. Use rope or web slings when hoisting or lifting the light standard, to prevent damage or marking. If the light standards are to be stored between dismounting and reinstalling, provide proper transportation and supports to prevent warping. Provide protection against the elements. # 178 Abandon or remove existing conductors and conduit as required by construction. Refer to Standard Specifications Section 1400-10. Install new 250 watt, Medium, Cutoff, Type III luminaires and new conductors inside the standard. Refer to Section 1406 for luminaires. Install new feeder circuitry supported by messenger cable system as shown on the plans. ## 2.40 MEASUREMENT AND PAYMENT The quantity of relocated light standards to be paid for will be the actual number, which have been installed at proposed locations in a satisfactory manner and have been accepted by the Engineer. Relocated light standards measured as provided above will be paid for at the contract unit bid price per each "Relocate Light Standard". Such price and payment will be considered full compensation for disconnecting circuitry, disassembly, transportation, storage, reassembly, installing new connecting bolts, connection of new circuitry, and all incidentals necessary to complete the work. Payment will be made under: Relocate Light Standard Each # 3.00 MESSENGER SUPPORTED CIRCUITRY #### 3.10 DESCRIPTION The work covered by this section consists of providing and installing a messenger cable system and electrical conductors that provide power to the light standards installed on the proposed bridge. #### 3.20 MATERIALS Provide stainless steel (SS) stranded messenger cable conforming to ASTM A475, extrahigh-strength grade, sized as shown in the plans. Provide SS deadends sized to accommodate the combined weight of messenger and conductors. Provide SS steel hangers, eyebolts and inserts sized as shown in the plans. Provide SS concrete inserts with a minimum load tension capacity of 900 lb and threads to match the threaded eyebolts to be used. The inserts shall be designed to provide a method of fastening or securing the base of the inserts to the deck forms to avoid movement while concrete is being poured. Use SS high-strength eyebolts and any incidental nuts and washers, in accordance with Section 1072-7 of the Standard Specifications. Provide PVC conduit in conformance with Section 1400-2(B) of the Standard Specifications. Provide 11"(W) x 17"(L) x 18"(H), polymer concrete junction boxes with outside flanges, and a watertight gasketed recessed cover in accordance with Section 1411 of the Standard Specifications. # 179 Provide stranded copper conductors with cross-linked polyethylene insulation (Type XLPE) sized as shown on the plans. Provide conductors that conform to ICEA specifications and have marks identifying the manufacturer, type insulation, gauge of conductor and the UL label. #### 3.30 CONSTRUCTION METHODS Fasten and secure the base of the concrete insert to the deck form to prevent movement during concrete placement. Install messenger cable in lengths of no more than 300 feet. Secure ends of each section of messenger with a SS deadend. Install hangers and conductors as shown in the plans. Terminate messenger cable at each bent as shown in the plans. Install a PVC sleeve. Completely fill the void between the conduit and PVC sleeve in the backwall, as shown in the plans. Add an underground marking tape in the trench with the stubbed conduit, and extend it up to natural ground to ensure location by others. Install junction boxes on the road shoulder near the end of the wing walls, and arrange conduits to best fit field conditions. Place the top of the junction box on the same grade as surrounding area and raise slightly to prevent surface drainage from entering the box in accordance with Section 1411-3. Terminate conductors inside Junction Box with sufficient length for use by others to complete the circuit. ## 3.40 MEASUREMENT AND PAYMENT The quantity of messenger cable to be paid for will be the actual number of linear feet that have been installed and accepted. Length will be measured to the nearest foot between the two end bents. Include the cost of providing and installing the conductors, the conduit and junction boxes in the overall price bid per feet for this pay item. Messenger cable will be paid for at the contract unit price per linear foot for "Messenger Cable System". Such price and payment will be full compensation for all materials, equipment and labor necessary to complete the work in accordance with the plans and these special provisions. | Payment will be made un | der: | | |-------------------------|------|-------------| | Messenger Cable System | | Linear Feet | | 40 | 1 | | |----|--------|------------| | 7 | \sim | | | | _{ } | 4 9 | | | | | | 4.00 | LIGHT | STANDA | RDI | HIM | INA | IRF | |------|-------|---------------|--------------|-----|--------------|------| | 4.00 | LIUII | SIANDA | \mathbf{u} | | \mathbf{I} | TIII | ## 4.10 DESCRIPTION Same as Section 1406-1. ## 4.20 MATERIALS Same as Section 1406-2. ## 4.30 CONSTRUCTION METHODS Same as Section 1406-3. ## 4.40 MEASUREMENT AND PAYMENT Light Standard Luminaire, Cobrahead, HPS, 250W, Flat Glass, IES Distribution: Type III, will be measured and paid for as the actual number of luminaires that have been installed and accepted. Payment will be made under: Light Standard Luminaires, Type RDW, 250W, HPS Each