PRELIMINARY SITE ASSESSMENT PARCEL 61, COOPER & BROWN INCORPORATED PROPERTY 3701 US HIGHWAY 1 RICHMOND COUNTY, NORTH CAROLINA WBS ELEMENT: 34438.1.1; NCDOT PROJECT: R-2502 A

Prepared for:
NC Department of Transportation
Geotechnical Engineering Unit
GeoEnvironmental Section
1589 Mail Service Center
Raleigh, North Carolina 27699-1589

Prepared by: Solutions-IES 1101 Nowell Road Raleigh, North Carolina 27607

Solutions-IES Project No. 3260.06A3.NDOT

September 27, 2006

Kevin B. Buchanan

Senior Environmental Specialist

Kevi B. Buchanan

SEAL 022585

Sheri L. Knox, P.F. Project Manager

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	BACKGROUND AND SITE DESCRIPTION
_,,	
3.0	FIELD ACTIVITIES
4.0	SAMPLING RESULTS
5.0	DISCUSSION AND CONCLUSIONS
TIA D	A PG
TAB	LES
	TABLE 1 – SUMMARY OF FIELD SCREENING RESULTS FOR SOIL
	TABLE 2 – SUMMARY OF SOIL ANALYTICAL RESULTS
	TABLE 3 – SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

FIGURES

FIGURE 1 – SITE LOCATION MAP

FIGURE 2 – SITE MAP

FIGURE 3 – SOIL BORING LOCATIONS & ESTIMATED EXTENT OF SOIL CONTAMINATION

APPENDICES

APPENDIX A – PHOTOGRAPHS

APPENDIX B - GEOPHYSICAL INVESTIGATION

APPENDIX C - BORING LOGS

APPENDIX D – GPS COORDINATES OF BORING LOCATIONS

APPENDIX E - LABORATORY ANALYTICAL REPORT - SOIL SAMPLES

APPENDIX F – LABORATORY ANALYTICAL REPORT – GROUNDWATER SAMPLE

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is widening the existing alignment of US Highway 1 near the towns of Marston and Hoffman, located in Richmond County, North Carolina. Acquisition of properties within the right-of-way is necessary prior to road construction. On July 19, 2006, Solutions-IES submitted a proposal (NC06554P) to conduct Preliminary Site Assessments (PSAs) on ten parcels of land located within the proposed right-of-way that are of concern to the NCDOT. This report summarizes the results of field activities conducted during the PSA for a portion of the property identified by NCDOT as Parcel 61, Cooper & Brown Incorporated Property (**Figure 1**). The right-of-way portion of this parcel and a portion of Parcel 62, the Veola Watkins property, are more clearly identified on **Figure 2**. These two portions comprise the Study Area. The scope of work executed at the site was performed in general accordance with Solutions-IES proposal NC06554P and was initiated based on a Notice to Proceed issued by the NCDOT Geotechnical Engineering Unit on July 20, 2006 under contract 7000007053, dated June 5, 2006.

2.0 BACKGROUND AND SITE DESCRIPTION

The subject property is located approximately 250 feet southwest of the intersection of US Highway 1 and Little Road (SR-1004) within the Corporate Limits of Hoffman, Richmond County, North Carolina (site). A one-story cinder block building is situated on the site. Dense brush and trees south and west of the building cover portions of the Study Area. The surface of the site is also covered with a mixture of concrete, asphalt, gravel and grass. Several utilities including buried fiber optic cable and water, and overhead electric lines are present within the right-of-way. Photographs of the Study Area at the site are presented in **Appendix A**.

According to information provided by NCDOT via an S&ME, Inc. report dated January 7, 1999, the site had been the location of a retail store (C.C. Grocery, NCDENR Facility ID # 0-019340) and a gas station. According to this report, a total of nine USTs were located at the site and utilized for the storage of gasoline, diesel fuel and kerosene for retail sale by C.C. Grocery. The USTs were owned by Swink Quality Oil Company of Rockingham, NC. Five of the USTs (three gasoline, one diesel and one kerosene) were reportedly closed by removal on July 1, 1988. Four additional tanks (three gasoline and one kerosene) were reportedly closed on September 20, 1996. Closure information could not be found in the public record for the USTs during the work performed by S&ME, Inc. in 1999.

The outline of a former pump island was observed between the existing building and US Highway 1. (Appendix A, Photograph 1). An area of gravel fill was noted southwest of the former pump island location, and is possibly the former location of one or more of the USTs reportedly removed from the site. During the Solutions-IES site visit, numerous discarded 1-gallon paint cans were observed in the brush near the southwestern side of the existing building. A domestic well was noted to exist on Parcel 62, which adjoins the site to the northeast. The operational status of this well is unknown.

If a gas station was operated at the site in the past, petroleum fuels were likely used on the property. Therefore, there is a possibility that these constituents may have been released from one or more of the potential UST systems to the subsurface in the vicinity of the proposed right-of-way.

3.0 FIELD ACTIVITIES

Prior to mobilizing to the site to conduct subsurface sampling, Solutions-IES contacted North Carolina One Call to locate underground utilities in the Study Area. Pyramid Environmental & Engineering, P.C. (Pyramid) was contracted to perform an electromagnetic survey of the subsurface in the proposed right-of-way area within the parcel. Pyramid surveyed the site on July 27 and August 16, 2006. The electromagnetic survey equipment (EM61) identified various magnetic anomalies within the Study Area, and Pyramid returned to the Study Area to perform a ground penetrating radar (GPR) survey utilizing a "Geophysical Survey Systems SIR 2000" instrument. Results of the surveys suggested the presence of buried utility lines or conduits, but did not indicate the presence of buried metallic tanks such as USTs. The EM61 images are included in **Appendix B**, Figures 14 and 15. A GPR image was not included in the geophysical report for the site.

After reviewing the background information and geophysical data, Solutions-IES elected to analyze soil samples collected at designated locations within the Study Area for total petroleum hydrocarbons (TPH). The borings were located so that they might identify contaminants (if present) related to the former UST systems. These activities were conducted on August 21 and 22, 2006. A total of 17 soil borings (borings P61-B1 through P61-B17) were advanced in the locations depicted on **Figure 3**. These borings were labeled with the prefix "P61" to associate their locations with Parcel 61. Borings P61-B1 through P61-B6 were each advanced to a total depth of 8 feet below ground surface (ft bgs), while borings P61-B7 through P61-B17 were advanced to a total depth of 12 ft bgs. Each of these borings was advanced utilizing a truck-mounted Geoprobe[®]. At the completion of the sampling activities, each boring was

backfilled with native soils and bentonite chips. Four of the borings (P61-B1, P61-B2, P61-B4 and P61-B5) were placed within the planned right-of-way on Parcel 62.

Soil samples were obtained from each boring using a MacroCore® sampler fitted with single-use, disposable polyvinyl chloride (PVC) liners. Each liner was 4 feet in length. Upon retrieval, a portion of each 2-foot interval was placed in separate resealable plastic bags. These bags were sealed and placed at ambient temperature for field screening with a flame ionization detector (FID). The remaining portion of each 2-foot interval was left in the PVC liner, wrapped in plastic and placed on ice for possible laboratory analysis.

Volatile organic compounds (VOCs) were allowed to accumulate in the headspace of each bag for approximately 20 minutes, after which time the headspace of each sealed bag was scanned with the FID. The FID readings were entered on the boring logs along with the soil description and indications of staining or odors, if present. Logs for each boring are presented in **Appendix C.** Soils from the borings at the Parcel 61 Study Area generally consisted of silty sand (SM) or clayey sand (SC). The GPS coordinates for the boring locations are provided in **Appendix D**.

Headspace screening of the soil samples with the FID indicated the presence of volatile vapors in several of the samples. Concentrations ranged from no detection to greater than 10,000 parts per million (ppm) in soil samples P61-B8 (10-12 ft bgs), P61-B9 (10-12 ft bgs), and P61-B10 (10-12 ft bgs). These measurements are presented in **Table 1**. Gasoline odor was noted in several of the soil samples.

Soil samples for laboratory analysis were retained from each boring at the sample intervals identified in **Table 1**. These samples were selected for analysis as they presented the highest FID measurements within the borings, or, if no volatile vapors were present, were obtained from the deepest interval within the boring. All soil samples were placed in laboratory-supplied containers and stored on ice pending shipment to Prism Laboratories, Inc. (Prism) in Charlotte, NC. Sample information was recorded on the chain-of-custody and the samples were submitted for chemical analysis of TPH gasoline range organics (GRO) by Modified EPA Method 5030/8015 and TPH diesel range organics (DRO) by Modified EPA Method 3545/8015.

To determine if groundwater has been impacted by the operation of the gasoline station on Parcel 61, Solutions-IES advanced a stainless steel Geoprobe[®] Screen Point[®] sampler to a depth of 16 ft bgs within boring P61-B8. The sleeve of the sampler was retracted, exposing the screen to groundwater. The

groundwater was measured at a depth of 11.6 ft bgs. After development, groundwater within the sampler was purged, and then sampled. Approximately 2.5 gallons of groundwater were extracted during the development and purging process. A groundwater sample (P61-GW1) was collected with a peristaltic pump using 3/8-inch diameter polyethylene tubing. The sample was collected in a laboratory-supplied container, stored on ice pending shipment, and submitted to Prism under chain-of-custody control for chemical analysis of VOCs by EPA Methods 601, 602 and semi-volatile organic compounds (SVOCs) by EPA Method 625 (base-neutral acid extractables with the ten largest non-target peaks identified), as well as the Massachusetts Department of Environmental Protection (MADEP) Volatile Petroleum Hydrocarbon (VPH) and Extractable Petroleum Hydrocarbon (EPH) methods.

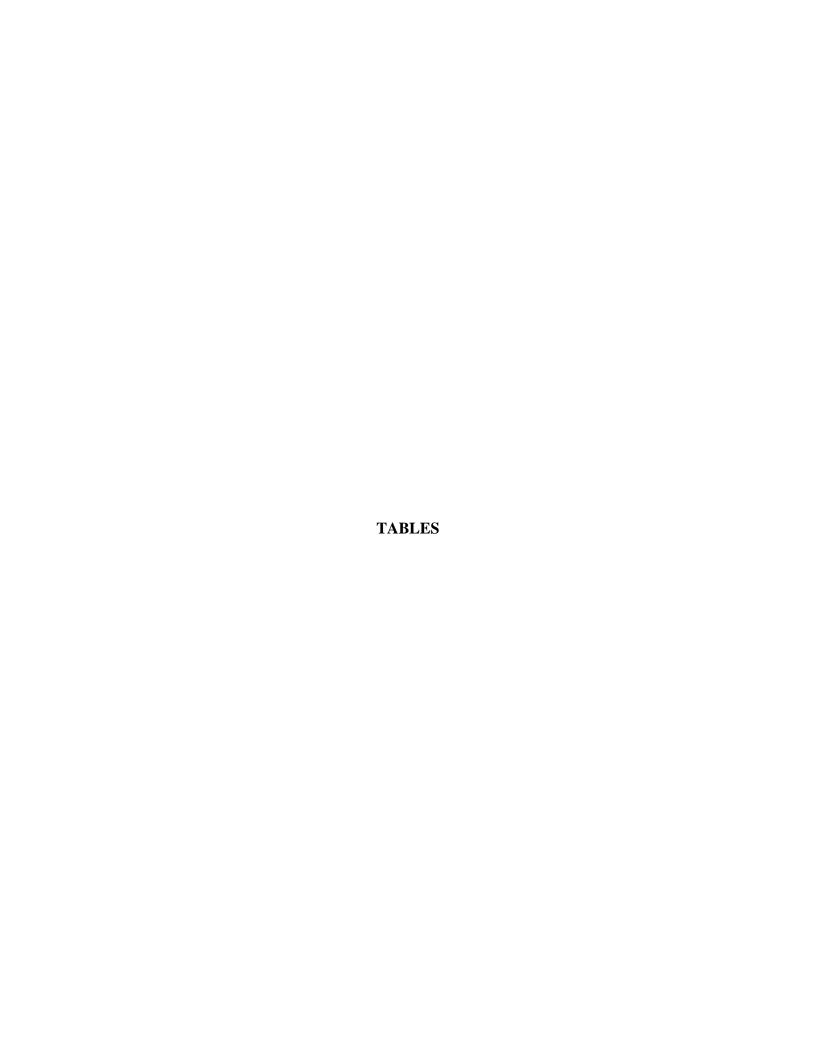
4.0 SAMPLING RESULTS

TPH DRO was detected in 11 of 17 soil samples collected within the Study Area at concentrations ranging from 4.5 mg/kg (P61-B15 (6-8 ft bgs)) to 2,800 mg/kg (P61-B10 (10-12 ft bgs)). TPH GRO was detected in 5 of the 17 soil samples at concentrations ranging from 910 mg/kg (P61-B10 (10-12 ft bgs)) to 3,300 mg/kg (P61-B12 (10-12 ft bgs)). These data are summarized in **Table 2**. Laboratory reports associated with these samples are presented in **Appendix E**.

VOCs, SVOCs, VPH and EPH constituents were detected in groundwater sample P61-GW1. These data are presented in **Table 3**. The laboratory report associated with this sample is presented in **Appendix F**.

5.0 DISCUSSION AND CONCLUSIONS

The geophysical survey conducted at the site did not reveal buried metallic objects such as USTs within the Study Area. The survey did suggest metallic anomalies in locations consistent with the presence of buried utilities (e.g., fiber optic telephone, buried water lines).


The outline of a former pump island was observed between the existing building and US Highway 1. An area of gravel fill was noted southwest of the former pump island location, and is possibly the former location of one or more of the USTs reportedly removed from the site.

According to the laboratory analytical results, TPH DRO was detected in the soil samples from borings P61-B1, P61-B3, P61-B7, P61-B8, P61-B9, P61-B10, P61-B11, P61-B12, and P61-B16 at concentrations greater than the action level of 10 milligrams per kilogram described for tank closure (*Guidelines for*

Tank Closure, North Carolina Underground Storage Tank Section (Guidelines), September 2003). Soil samples P61-B15 and P61-B2 contained TPH DRO at concentrations greater than the method detection limit and laboratory reporting limit, respectively. However, these two samples did not exceed the action level of 10 mg/kg. TPH GRO was detected in the soil samples from borings P61-B7, P61-B8, P61-B9, P61-10, and P61-B12 at concentrations exceeding the action level. The presence of TPH DRO or GRO in soil is typically associated with a release of petroleum hydrocarbons.

Two locations of soil impacts were identified within the Study Area: the first is likely near the former UST(s) location, and the second area is near the northern boundary of the Study Area (**Figure 3**). The source of impact for the second area is unknown at this time. Based on TPH concentrations detected at greater than the action level, Solutions-IES estimates the dimensions of the first area of impacted soil to measure approximately 85 feet by 90 feet, roughly centered on the location of boring P61-B7. The second area of impacted soil measures approximately 20 feet by 135 feet. Based on a depth to water of 11.6 feet, the volume of impacted soil is estimated at 3300 cubic yards (cy) for the first area, and 1,200 cy for the second area. Because some of the soil samples may have been collected at depths approaching the water table near the former UST(s) location, it is possible that the volume of impacted soil estimated for the first area is greater than that which will be encountered during excavation activities for road construction. Because elevated TPH has been detected in these soils, proper transportation and disposal practices should be used in handling soil that may be excavated in the vicinity of these borings. However, during roadway construction, the NCDOT transportation/disposal contractor may use different criteria for estimating impacted soil.

Groundwater sample P61-GW contained several VOCs, SVOCs, and MADEP EPH and VPH in concentrations above their respective North Carolina Administrative Code (NCAC) 15A 2L .0202 2L Standards (2L Standards). The constituents that were detected are typically associated with impacts caused by the use of petroleum hydrocarbons. No established regulatory standard is available for 2-methylphenol and 3&4-methylphenol, therefore, the presence of these compounds at any concentration represent a violation of the 2L Standards. Additional assessment would be necessary to determine the vertical and lateral extent of groundwater impacts, and therefore, the potential effects of groundwater impacts to the domestic well located on Parcel 62.

TABLE 1 SUMMARY OF FIELD SCREENING RESULTS FOR SOIL

Parcel 61, Richmond County, North Carolina WBS Element: 34438.1.1; State Project: R-2502A Sample Collection Dates: 08/21-22-2006

G 1 D 4 D 1		Soil Borings															
Sample Depth Below Ground Surface	P61-B1	P61-B2	P61-B3	P61-B4	P61-B5	P61-B6	P61-B7	P61-B8	P61-B9	P61-B10	P61-B11	P61-B12	P61-B13	P61-B14	P61-B15	P61-B16	P61-B17
Ground Surface									FID Read	ding (ppm)							
0 - 2 feet	ND	ND	ND	ND	ND	ND	10	8.9	ND	0.7	2.3	ND	ND	ND	ND	ND	ND
2 - 4 feet	ND	ND	ND	ND	ND	ND	110.3	31.5	ND	1.7	1.8	ND	ND	ND	ND	ND	ND
4 - 6 feet	ND	ND	ND	ND	ND	ND	2,161	429.8	9.6	18.1	1.2	0.9	ND	ND	ND	ND	ND
6 - 8 feet	ND	ND	0.1	ND	ND	0.8	NS	5,700	286.5	222.7	NS	47.3	4.3	19.8	4.5	ND	0.2
8 - 10 feet	NS	NS	NS	NS	NS	NS	1,297	9,640	5,612	3,879	3.4	1,427	6.5	ND	13.2	ND	1.4
10 - 12 feet	NS	NS	NS	NS	NS	NS	>5,730	>10,000	>10,000	>10,000	ND	>5,730	131	ND	64.2	ND	437.3

Notes:

Samples denoted by shaded cells were submitted for laboratory analysis.

NS - Denotes not sampled.

FID readings were obtained with a Photovac MicroFID Flame Ionization Detector.

ND - Not Detected

ppm = parts per million

TABLE 2

SUMMARY OF SOIL ANALYTICAL RESULTS

Parcel 61, Richmond County, North Carolina WBS Element: 34438.1.1; State Project: R-2502A

Sample I	nformation	Total Petroleun	n Hydrocarbons
Boring	Depth	Gasoline Range ¹	Diesel Range ²
Number	(ft bgs)	(mg/kg)	(mg/kg)
P61-B1	6 - 8	< 7.7	50
P61-B2	6 - 8	< 7.9	9
P61-B3	6 - 8	< 7.8	11
P61-B4	6 - 8	< 7.8	< 7.8
P61-B5	6 - 8	< 9.3	< 9.3
P61-B6	6 - 8	< 7.7	< 7.7
P61-B7	10 - 12	3,000 ³	63
P61-B8	10 - 12	1,300 ³	40
P61-B9	10 - 12	1,400 ³	$2,000^3$
P61-B10	10 - 12	2,800 ³	910 ³
P61-B11	8 - 10	< 7.6	33
P61-B12	10 - 12	3,300 ³	82
P61-B13	10 - 12	< 7.9	< 7.9
P61-B14	6 - 8	< 7.7	< 7.7
P61-B15	10 - 12	< 8.1	4.5 J
P61-B16	8 - 10	< 7.6	27
P61-B17	8 - 10	< 7.9	< 7.9 ³

Notes:

- 1. Total Petroleum Hydrocarbons (TPH) Method 5030/8015MOD Gasoline Range Hydrocarbons
- 2. Total Petroleum Hydrocarbons (TPH) Method 3545/8015MOD Diesel Range Hydrocarbons
- 3. Laboratory data qualifiers note that the quality control results were outside the QC limits, possibly due to compound being diluted out.

Bold values indicate detected concentrations

J = Estimated value between the laboratory reporting limit and the method detection limit

mg/kg = milligram per kilogram

ft bgs = feet below ground surface

TABLE 3

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Parcel 61, Richmond County, North Carolina WBS Element: 34438.1.1; State Project: R-2502A

Sample ID: P61-GW1

Sample Collection Date: August 22, 2006

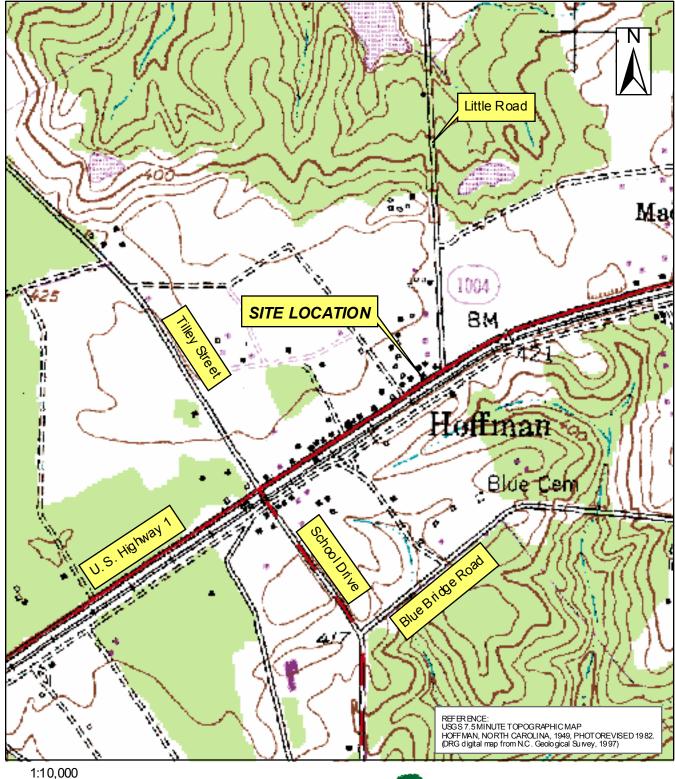
Water Sample ID	Concentration Detected (µg/L)	15A NCAC 02L .0202 Groundwater Quality Standards (µg/L)				
EPA Method 625/625SF - S	EPA Method 625/625SF - Semivolatile Organic Compounds					
Naphthalene	440	21				
2-Methylphenol	13	NS				
3&4-Methylphenol	12	NS				
EPA Method 601/602 -	Volatile Organic Compo	unds				
Benzene	1,100	1				
Ethylenebenzene	3,200	550				
Naphthalene	600	21				
Toluene	16,000	1000				
Xylenes (total)	15,000	530				
MADEP - VPH AND EPH						
C05 - C08 Aliphatics	6,900	420				
C09 - C18 Aliphatics	5,500	4200				
C09 - C22 Aromatics	5,690	210				

Notes

Constituents not shown were not detected above laboratory method detection limits.

Shaded cells denote constituents and concentrations that exceed the 15A NCAC 2L Groundwater Standards (2L Standards).

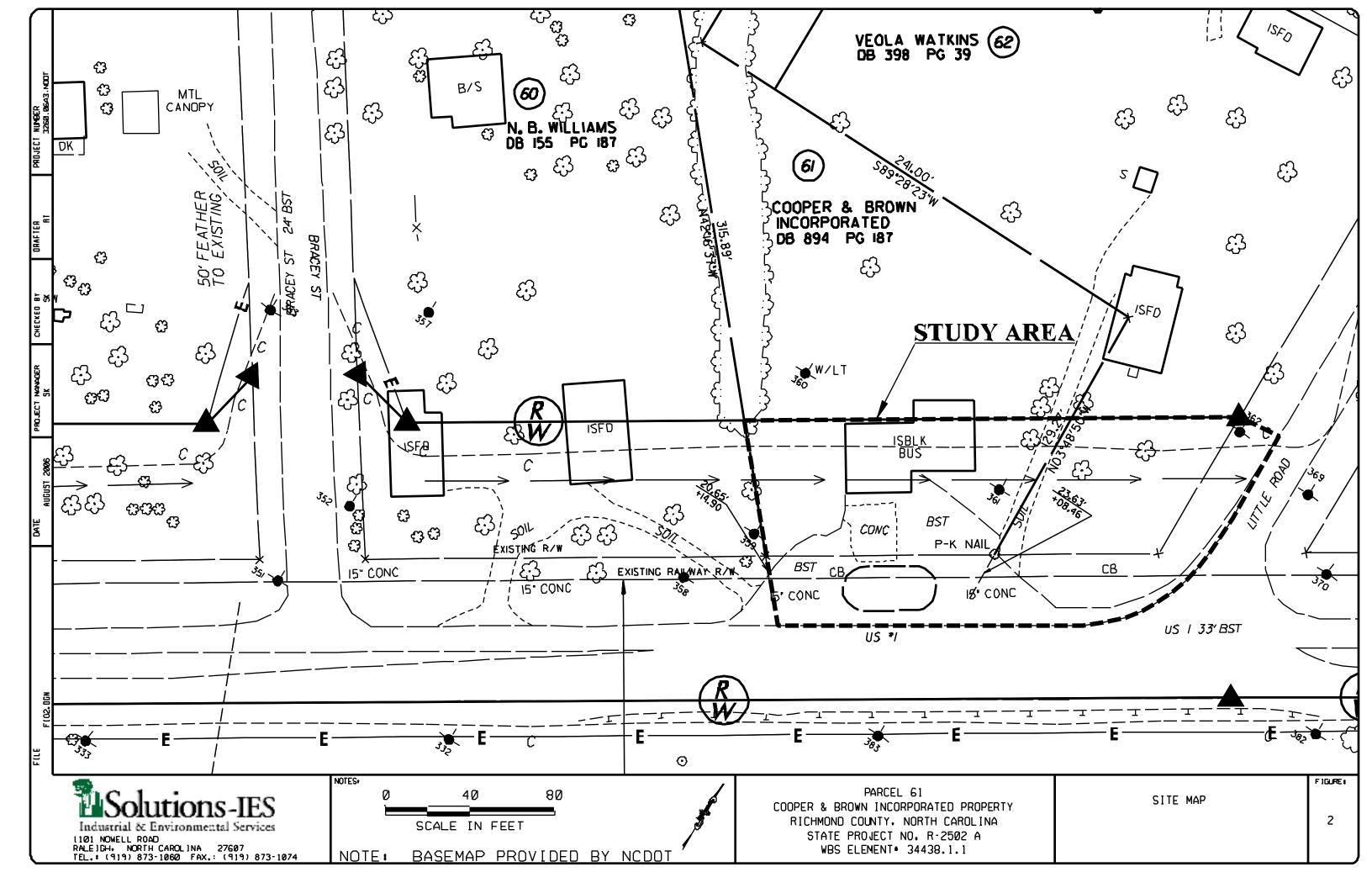
10 TICs (Semi-volatile organics) were also detected by Method 625 in the groundwater sample collected from the Study Area. These TICs are identified in the analytical report included as Appendix D.

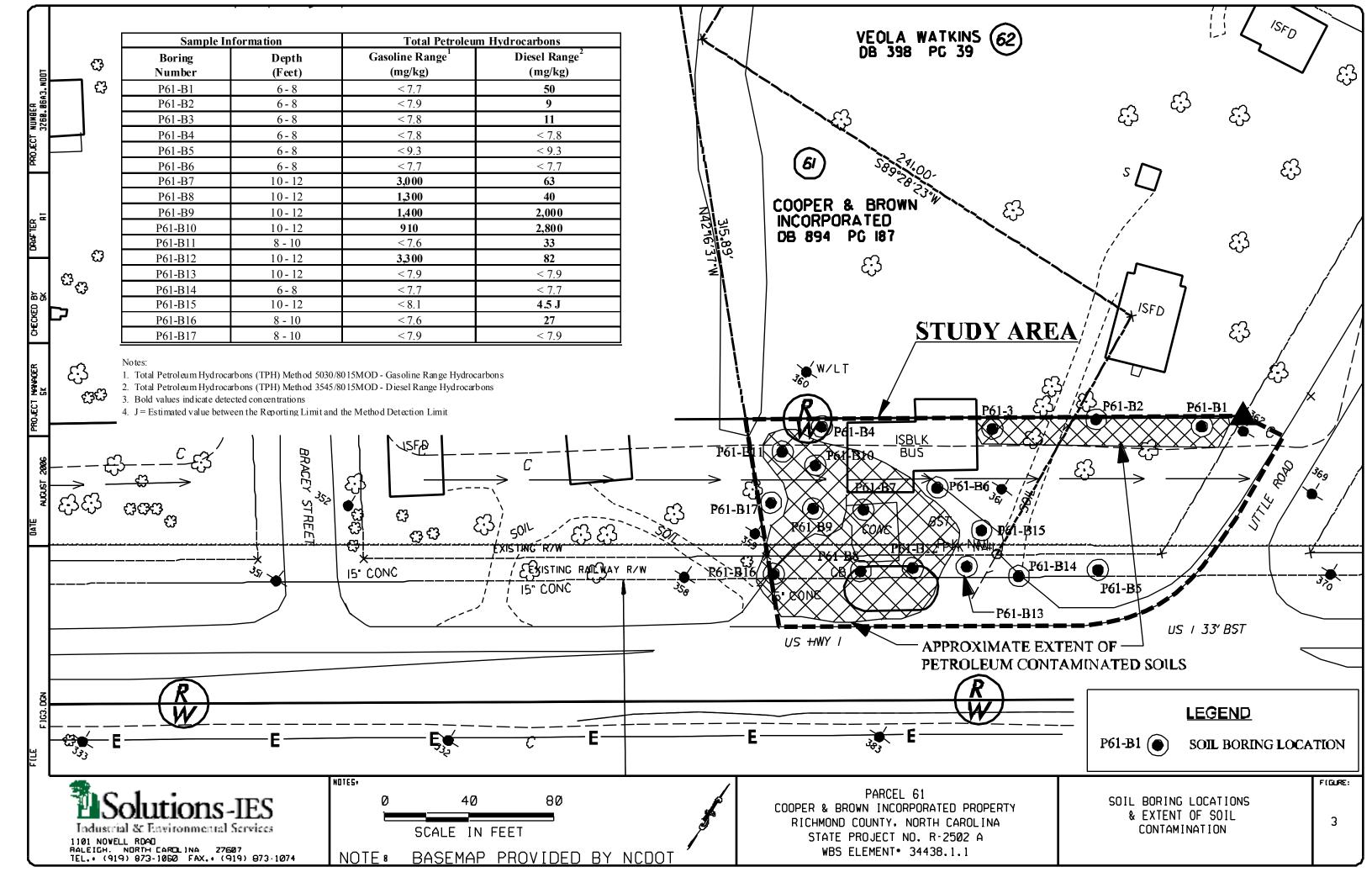

C09 - C18 Aliphatics represent the combined totals of C9-C12 Aliphatics (VPH) and C9-C18 Aliphatics (EPH).

C09 - C22 Aromatics represent the combined totals of C11-C22 Aromatics (VPH) and C9-C10 Aromatics (EPH).

NS denotes that no regulatory standard has been established for the compound under the 2L Standards. The presence at any concentration of a compound for which there is no regulatory standard construes a violation of the 2L Standards.

 $\mu g/L = micrograms per liter$




SITE LOCATION MAP PARCEL 61

COOPER & BROWN INCORPORATED PROPERTY RICHMOND COUNTY, NORTH CAROLINA STATE PROJECT NO. R-2502 A, WBS ELEMENT# 34438.1.1

1101 Nowell Road, Raleigh, NC 27609 Phone (919) 873-1060, Fax (919) 873-1074					
Cre ated by: RT Project: 3260.06A3.NDOT Date: SEPTEMBER 2006					
File : Software:	Figure 1.mxd ESRI ArcMap 9.1	FIGURE	1		

APPENDIX A PHOTOGRAPHS

Photograph 1 – View from southwest to northeast along US Highway 1. Former pump island situated between concrete pads in foreground.

Photograph 2 – View from north to south from US Highway 1.

APPENDIX B GEOPHYSICAL INVESTIGATION

GEOPHYSICAL INVESTIGATION REPORT

GEOPHYSICAL SURVEYS FOR THE DETECTION OF METALLIC USTS

US 1 from SR 1001 to the Richmond County Line Richmond, North Carolina State Project Number U-3459

September 1, 2006

Report prepared for:

Sheri Knox, PE Solutions IES

1101 Nowell Rd. Raleigh, NC 27607

Prepared by:

Douglas Canavello, PG

Reviewed by:

Tim Leatherman, PG

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. 700 NORTH EUGENE ST. GREENSBORO, NC 27401 (336) 335-3174

Solutions IES

GEOPHYSICAL SURVEYS FOR THE DETECTION OF METALLIC USTS US 1 from SR 1001 to the Richmond County Line State Project Number U-3456

TABLE OF CONTENTS

1	Λ	IN	r_D	ΔD	TT	OT:	\mathbf{r}	N 1
	()	IIN	ı Ku		, ,			IIN

2.0 FIELD METHODOLOGY

3.0 DISCUSSION OF RESULTS

- 3.1 Parcel 6 Hillary McKay Property
- 3.2 Parcel 9 K.J. Lewis Property
- 3.3 Parcel 21 James Brigman Property
- 3.4 Parcel 48 Roy Barry Bostick Property
- 3.5 Parcel 50 Pansy Ernest Property
- 3.6 Parcel 51 Church of Deliverance Property
- 3.7 Parcel 61 Cooper & Brown Inc. Property
- 3.8 Parcel 70 Delia Lassiter Property
- 3.9 Parcel 22 Ivey Little Property
- 3.10 Parcel 68 James Pugh Property

4.0 SUMMARY & CONCLUSIONS

5.0 LIMITATIONS

FIGURES

Figure 1	Site & Geophysical Equipment Photos
Figure 2	Parcel 6 – Hillary McKay Property – EM61 Bottom Coil Results
Figure 3	Parcel 6 – Hillary McKay Property – EM61 Differential Results
Figure 4	Parcel 9 – K.J. Lewis Property – EM61 Bottom Coil Results
Figure 5	Parcel 9 – K.J. Lewis Property – EM61 Differential Results
Figure 6	Parcel 9 – K.J. Lewis Property – Photo & GPR Image of UST Locations
Figure 7	Parcel 21 – James Brigman Property – EM 61 Bottom Coil Results
Figure 8	Parcel 21 – James Brigman Property – EM 61 Differential Results

Figure 9	Parcel 21 – James Brigman Property – Photo & GPR Image of UST Locations
Figure 10	Parcel 48 – Roy Barry Bostick Property – EM61 Metal Detection Results
Figure 11	Parcels 50 & 51 – Earnest & Church Properties – EM 61 Bottom Coil Results

FIGURES (continued)

Figure 12	Parcels 50 & 51 – Earnest & Church Properties – EM 61 Bottom Coil Results
Figure 13	Parcels 50 & 51 – Earnest & Church Properties – Photo & GPR Image of UST
	Locations
Figure 14	Parcel 61 – Cooper & Brown Inc. Property – EM 61 Bottom Coil Results
Figure 15	Parcel 61 – Cooper & Brown Inc. Property – EM 61 Differential Results
Figure 16	Parcel 70 – Delia Lassiter Property – EM 61 Bottom Coil Results
Figure 17	Parcel 70 – Delia Lassiter Property – EM 61 Differential Results
Figure 18	Parcel 22 – Ivey Little Property – EM 61 Bottom Coil Results
Figure 19	Parcel 22 – Ivey Little Property – EM 61 Differential Results
Figure 20	Parcel 68 – James Pugh Property – EM 61 Metal Detection Results

1.0 INTRODUCTION

Pyramid Environmental & Engineering, PC conducted geophysical investigations for Solutions IES during the period of July 26 through August 28, 2006, within the proposed Right-of-Way (ROW) areas at 10 sites located in Richmond County, North Carolina. The work was done as part of the North Carolina Department of Transportation (NCDOT) road-widening project under State Project number U-3459. The sites are located along the northern or western sides of US 1 from SR 1001 to the Richmond County Line. The geophysical surveys were conducted to determine if unknown metallic underground storage tanks (UST's) were present beneath the proposed ROW area of each site.

Solutions IES representative Ms. Sheri Knox, PE provided maps during the week of July 24, 2006 that outlined the geophysical survey area of each site. Ms. Knox also provided project management during the geophysical investigation of the sites. Geophysical surveys were conducted within the proposed ROW areas at the following 10 sites that are listed from the southern-most site to the northern-most site.

	Property Owner	<u>Parcel</u>	<u>Present Use of Property</u>
	Hillary McKay Property	(Parcel 6)	Grass-covered lot with garage
	K.J. Lewis Property	(Parcel 9)	Vacant, wooded lot
	James Brigman Property	(Parcel 21)	Vacant, grass-covered Lot
	Roy Barry Bostick Property	y (Parcel 48)	Grass-covered lot and
garage			
	Pansy Ernest Property	(Parcel 50)	Grass-covered lot with vacant store
	Church of Deliverance Prop	. (Parcel 51)	Asphalt lot with active church
	Cooper & Brown Inc. Prop.	(Parcel 61)	Vacant lot and
commerci	al building		

Delia Lassiter Property	(Parcel 70)	Vacant lot and building
Ivey Little Property	(Parcel 22)	Vacant lot and building
James Pugh Property	(Parcel 68)	Vacant, wooded lot

Photographs of the above sites along with photographs of the geophysical equipment used for this project are presented in **Figure 1**.

2.0 FIELD METHODOLOGY

Prior to conducting the geophysical investigations, a 10-foot by 10-foot or 10-foot by 20-foot survey grid was established across the proposed ROW areas of the 10 sites using water-based marking paint or pin flags. These marks were used as X-Y coordinates for location control when collecting the geophysical data and establishing base maps for the geophysical results.

The geophysical investigations consisted of electromagnetic (EM) induction-metal detection surveys and ground penetrating radar (GPR) surveys. The EM surveys were performed using a Geonics EM61-MK1 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. The EM61 data were digitally collected at each site along parallel northerly-southerly or easterly-westerly trending survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the filed and office using the Geonics DAT61W and Surfer for Windows Version 7.0 software programs.

Contour plots of the EM61 bottom coil results and the EM61 differential results for each site are included in this report. The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

During the weeks of August 7, August 14, and August 28, preliminary contour plots of the EM61 bottom coil and the differential results were emailed to Ms. Knox.

3.0 <u>DISCUSSION OF RESULTS</u>

3.1 Parcel 6 – Hillary McKay Property

The Hillary McKay Property (Parcel 6) contains a former auto repair garage and a vacant wooden building. The ROW area consists of a flat-lying grass surface. The bottom coil results and the differential results are presented in **Figures 2 and 3**, respectively. GPR surveys conducted around the perimeter of the garage and wooden building, suggest that the EM 61 anomalies surrounding the two buildings are in response to the structures and perhaps buried miscellaneous metal debris. The remaining EM 61 anomalies are probably in response to buried miscellaneous metal debris. The geophysical results suggest that the proposed ROW area at Parcel 6 does not contain metallic UST's.

3.2 Parcel 9 – K.J. Lewis Property

The K.J. Lewis property (Parcel 9) is located immediately north of the Mercer Road and US 1 intersection, approximately 200 feet northeast of Parcel 6. The property consists of an abandoned building along the edge of US 1, which is surrounded by dense wooded terrain. A former pump island area is located in front of the building. The EM61 bottom coil results and the differential results are presented in **Figures 4 and 5**, respectively. Due to limited access to the site, the geophysical investigation was limited to the front portion of the property that is located along US 1.

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

The geophysical investigation detected the probable presence of two USTs located adjacent to the pump island area. The first UST is centered near grid coordinates X=84 Y=27, and buried approximately 1.5 feet below surface. The second UST is centered near grid coordinates X=103 Y=27, and is buried approximately 2.0 feet below surface. This latter UST appears to be lie partially beneath the former pump island area. The approximate locations of the USTs are shown as magentacolored rectangles in Figures 4 and 5. Based on the GPR results, the probable USTs are approximately 10 feet long and 4 feet wide. A photograph showing the approximate locations of the two probable USTs and the image of GPR survey lines Y=27.5, which intersects the probable USTs, are presented in **Figure 6**.

The EM61differential anomaly centered near grid coordinates X=118 Y=29, may possibly be in response to a UST or large metal object. However, GPR surveys could not be conducted across this EM anomaly due to the limited access caused by the dense wooded terrain. The approximate location of this possible UST is shown as a dashed, magenta-colored rectangle in Figures 4 and 5, and in the site photograph that is presented in Figure 6.

The remaining portion of the geophysical survey area does not appear to contain significant, buried, metal objects.

3.3 Parcel 21 – James Brigman Property

The James Brigman property (Parcel 21) consists of an open, grass and asphalt-covered lot located along the western side of US 1. The EM61 bottom coil results and the differential results are presented in **Figures 7 and 8**, respectively.

GPR surveys conducted across the linear, EM61 bottom coil anomalies that intersect grid coordinates X=62 Y=70, X=66 Y=94, X=84 Y=94, and X=87.5 Y=75, suggest the anomalies are probably in response to buried utility lines or conduits. GPR data also suggest that the high amplitude anomalies centered near grid coordinates X=77 Y=84, and X=93 Y=66, are probably in response to buried miscellaneous metal objects or junction areas for the conduits or utility lines.

GPR surveys conducted across the large, high amplitude anomaly centered near X=45 Y=75, detected the probable presence of four metallic USTs. The four probable USTs are centered near grid coordinates X=43 Y=80, X=50 Y=80, X=42 Y=73, and X=48 Y=73. Based on the GPR data, the USTs appear to be approximately 9 feet long and 3.5 to 4 feet wide and buried approximately 1.5 to 2.0 feet below surface. The approximate locations of the probable USTs are shown as magenta-colored rectangles in Figures 7 and 8. A photograph showing the approximate locations of the four probable USTs and the image of GPR survey lines Y=80, which intersects the two probable USTs centered near X=43 Y=80, and X=50 Y=80, are presented in **Figure 9**.

The remaining EM 61 anomalies recorded within the proposed ROW area are probably in response to miscellaneous metal debris.

3.4 Parcel 48 – Roy Barry Bostick Property

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

The Roy Barry Bostick property (Parcel 48) consists of a red, brick building surrounded by flat-lying grass-covered terrain. The parcel is located along the northwestern side of US 1 approximately 300 feet southwest of the US 1 and Tilley Street intersection. The EM 61 bottom coil results and the differential results are presented in **Figure 10**.

GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=295 Y=60, suggest that the anomaly is probably in response to one or more large diameter (12 or more inches) conduits buried approximately 1.0 feet below surface. There is a possibility (although unlikely) that the anomaly may be in response to a very small UST centered near grid coordinates X=290 Y=59. The location of the possible, but unlikely UST is shown as a magenta-colored square in Figure 10.

GPR surveys conducted along the edge of the brick building suggest that the EM61 anomalies recorded in this area are probably in response to the building and/or buried miscellaneous debris. The remaining EM61 anomalies recorded within the proposed ROW area at Parcel 48 are probably in response to known cultural features and/or buried miscellaneous debris.

3.5 Parcel 50 – Pansy Ernest Property

The Pansy Ernest property (Parcel 50) is located on the western corner of the Tilley Street and US1 intersection. The parcel contains the former Little Grace's Variety store surrounded by a flay-lying grass-covered, terrain. An occupied house is located immediately west of the property. The EM61 bottom coil results and the differential results are presented in **Figures 11 and 12**, respectively. Please note that Figures 11 and 12 also contain the EM61 results for Church of Deliverance property (Parcel 51).

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06

Pyramid Environmental & Engineering, PC

GPR surveys conducted across the backyard of Parcel 50 suggest the linear EM61 bottom coil anomalies intersecting grid coordinates X=570 Y=115, X=570 Y=126, X=580 Y=90, and X=586 Y=125, are probable in response to buried conduits or lines. Similarly, the locations of the linear EM61 anomalies intersecting grid coordinates X= 622 Y=80, X=622 Y=120, and X=640 Y=35, suggest these anomalies are probably in response to buried utility lines.

GPR surveys conduct across the high amplitude anomalies centered near grid coordinates X=575 Y=105, and X=590 Y=113, suggest the anomalies are probably in response to the "junction" of conduits and/or other miscellaneous objects. Although not confirmed by the GPR results, the EM61 anomaly located at X=575 Y=105, may be in response to a possible septic tank.

GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=567 Y=55, detected the probably presence of two USTs buried approximately 0.75 feet below surface. The approximate locations of the probably USTs are shown as magenta-colored rectangles in Figures 11 and 12 and each UST appears to be approximately eight feet long and three feet wide. A photograph showing the approximate locations of the two probable USTs and the image of GPR survey line Y=55, which intersects the probable USTs, are presented in **Figure 13**.

The remaining EM 61 anomalies recorded within the proposed ROW area at Parcel 50 are probably in response to known cultural features or buried miscellaneous metal debris.

3.6 Parcel 51 – Church of Deliverance Property

The Church of Deliverance property (Parcel 51) contains an active church building surrounded by a grass, gravel or asphalt-covered parking area. The property is located on the northern corner of the Tilley Street and US 1 intersection immediately across the street from the Pansy Ernest property (Parcel 50). The EM 61 bottom coil results and the differential results for Parcel 51 are presented in **Figures 11 and 12**, respectively along with the EM 61 results for Parcel 50.

The linear EM 61 bottom coil anomalies intersecting grid coordinates X=670 Y=50, X=700 Y=30, and X=700 Y=65, are probably in response to buried utility lines or conduits. GPR surveys conducted across the EM 61 differential anomaly centered near X=705 Y=105, and along the front edge of the church building suggest the anomalies are probably in response to miscellaneous debris and the building respectively.

The remaining EM 61 anomalies recorded within the proposed ROW area at Parcel 51 are probably in response to know cultural features or miscellaneous buried debris. The geophysical results also suggest that the proposed ROW area does not contain metallic USTs.

3.7 Parcel 61 – Cooper & Brown Inc. Property

The Cooper & Brown Inc. property (Parcel 61) is located on the western side of the US 1 and Little Road intersection. The proposed ROW area of Parcel 61 contains a vacant business building surrounded by flat-lying, grass or asphalt surfaces. A concrete pad is located in front of the building and probably identifies the former pump island area. An occupied house lies to the northwest of the proposed ROW area.

Geophysical Investigation Report – Richmond County, NC Sites

09/01/06

The EM61 bottom coil results and the differential results are presented in **Figures 14 and 15**, respectively. The linear EM61 bottom coil anomalies intersecting grid coordinates X=130 Y=34, X=142 Y=105, X=186 Y=100, X=210 Y=42, and X=213 Y=83, are probably in response to buried utility lines or conduits. The high amplitude anomalies centered near grid coordinates X=75 Y=67, and X=80 Y=50, are probably in response to steel reinforced concrete. GPR surveys conducted across these two areas did not detect the presence of USTs.

GPR surveys conducted across the high amplitude anomaly centered near X=226 Y=116, suggest the anomaly is probably in response to steel reinforced concrete and/or to the metal conduits that are visible at the surface. GPR surveys conducted along the perimeter of the building suggest that the EM61 anomalies are probably in response to the building and/or to miscellaneous debris. The remaining EM61 anomalies are probably in response to known cultural features and/or to buried miscellaneous metal debris.

The geophysical results suggest that the proposed ROW area at Parcel 61 does not contain metallic USTs.

3.8 Parcel 70 – Delia Lassiter Property

The Delia Lassiter Property (Parcel 70) contains a vacant building surrounded primarily by grass yard and an asphalt driveway. An occupied house lies immediately north of the proposed ROW area. The EM61 bottom coil results and the differential results are presented in **Figures 16 and 17**, respectively.

The linear EM61 anomaly intersecting grid coordinates X=90 Y=110, is probably in response to a buried utility line or conduit. The remaining EM anomalies are probably in response to known cultural features or to buried miscellaneous debris. The geophysical results suggest that the proposed ROW area at the Delia Lassiter property does not contain metallic USTs.

3.9 Parcel 22 – Ivey Little Property

The Ivey Little property (Parcel 22) is located along the northwest side of US 1 and consists of a vacant building surrounded by a gravel-covered driveway and grass-covered fields. The EM61 bottom coil results and the differential results are presented in **Figures 18 and 19**, respectively.

The linear EM61 anomaly intersecting grid coordinates X=354 Y=35, is probably in response to a buried utility line or conduit. The remaining EM anomalies are probably in response to known cultural features or to buried miscellaneous debris. The geophysical results suggest that the proposed ROW area at the Ivey Little property does not contain metallic USTs.

3.10 Parcel 68 – James Pugh Property

The James Pugh Property (Parcel 68) is a former gas station site located on the northern side of US 1, approximately 0.25 miles west of the US 1 and Special Forces Way intersection. The site consists primarily of grass, trees and brush with a former pump island pad located near the edge of US 1. The EM 61 bottom coil results and the differential results are presented in **Figure 20**.

GPR surveys conducted across the EM61 anomalies centered grid coordinates X=305 Y=35, and X=321 Y=37, suggest the anomalies are probably in response to the pump island pad and to the

buried pump island-related equipment. GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=534 Y=92, suggest the anomaly is probably in response to buried miscellaneous debris or object. The remaining EM61 anomalies are probably in response to known cultural features and miscellaneous metal debris.

The geophysical investigation conducted at Parcel 68 suggests that the proposed ROW areadoes not contain metallic USTs.

4.0 <u>SUMMARY & CONCLUSIONS</u>

Our evaluation of the EM61 and GPR data collected across the proposed ROW areas at the 10 sites along US1 in Richmond County, North Carolina provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the surveyed portions of the proposed ROW areas of each site.
- GPR surveys were conducted across selected EM61 differential anomalies and across areas containing steel reinforced concrete.
- Linear EM 61 anomalies at the 10 sites are probably in response to buried utility lines and/or conduits. The majority of non-linear anomalies are probably in response to known cultural features or miscellaneous metal objects.

• The geophysical results suggest the proposed ROW areas at the following properties do not contain metallic USTs:

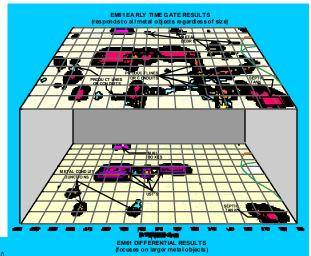
Hillary McKay Property	(Parcel 6)
Church of Deliverance Property	(Parcel 51)
Cooper & Brown Inc. Property	(Parcel 61)
Delia Lassiter Property	(Parcel 70)
Ivey Little Property	(Parcel 22)
James Pugh Property	(Parcel 68)

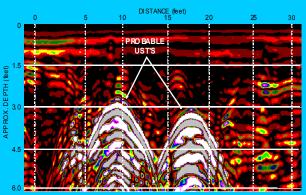
- W.J. Lewis Property (Parcel 9): Geophysical results suggest the probable presence of two USTs located adjacent to the pump island area. The first UST is centered near grid coordinates X=84 Y=27, and buried approximately 1.5 feet below surface. The second UST is centered near grid coordinates X=103 Y=27, and is buried approximately 2.0 feet below surface. The EM61 differential anomaly centered near grid coordinates X=118 Y=29, may possibly be in response to a UST or large metal object. However, GPR surveys could not be conducted across this EM anomaly due to the limited access caused by the dense wooded terrain.
- James Brigman Property (Parcel 21): Geophysical results detected the probable presence of four metallic USTs centered near grid coordinates X=43 Y=80, X=50 Y=80, X=42 Y=73, and X=48 Y=73. Based on the GPR data, the USTs appear to be approximately 9 feet longand 3.5 to 4 feet wide and buried approximately 1.5 to 2.0 feet below surface.

delineate metal conduits or utility lines, small, isolated metal objects, and areas containing insignificant metal debris.

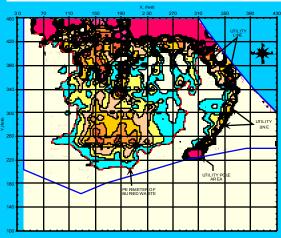
The differential results are obtained from the difference between the top and bottom coils of the EM61 instrument. The differential results focus on the larger metal objects such as drums and USTs and ignore the smaller insignificant metal objects.

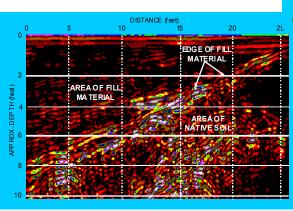
GPR surveys were conducted across selected EM61 differential anomalies and steel-reinforced concrete using a GSSI SIR-2000 unit equipped with a 400 MHz antenna. Surveys were also performed across several areas where parked vehicles that obstructed the EM61 survey had since been removed. GPR data were digitally collected in a continuous mode along X and/or Y survey lines, spaced two to five feet apart using a vertical scan of 512 samples, at a rate of 48 scans per second. An 80 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were collected down to a maximum depth of approximately five feet, based on an estimated two-way travel time of 9 nanoseconds per foot.


The GPR data were downloaded to a field computer and later reviewed in the office using Radprint and Radan 5.0 software programs. The locations of GPR survey areas or individual GPR survey lines are shown as solid, purple polygons or solid purple lines, respectively, on the EM 61 differential contour plots. The approximate perimeters of probable or possible USTs, based on the geophysical results, were marked and labeled in the field using orange, water-based marking paint and pin flags (when possible). The approximate locations of probable or possible USTs are shown as magentacolored rectangles on the EM 61 bottom coil and differential contour plots.


- Roy Barry Bostick Property (Parcel 48): GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=295 Y=60, suggest that the anomaly is probably in response to one or more large diameter (12 or more inches) conduits buried approximately 1.0 feet below surface. There is a possibility (although unlikely) that the anomaly may be in response to a very small UST centered near grid coordinates X=290 Y=59.
- Pansy Ernest Property (Parcel 50): Geophysical results suggest the probable presence of two USTs centered near grid coordinates X=567 Y=55, and buried approximately 0.75 feet below surface. The USTs appear to be approximately eight feet long and three feet wide.

5.0 <u>LIMITATIONS</u>


EM61 and GPR surveys have been performed and this report prepared for Solutions IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project do not conclusively define the locations of all metallic USTs but only suggest where some of the metallic USTs may be present. The EM61 and GPR anomalies, interpreted as probable or possible USTs or tanks, may be attributed to other surface or subsurface conditions or cultural interference.


09/01/06

FIGURES

Parcel 6 - Hillary McKay Property

Parcel 9 - K.J. Lewis Property

Parcel 21 - James Brigman Property

Parcel 48 - Roy Barry Bostick Property

Parcel 50 - Pansy Earnest Property

Parcel 51 - Church of Deliverance Property

Parcel 61 - Cooper & Brown Property

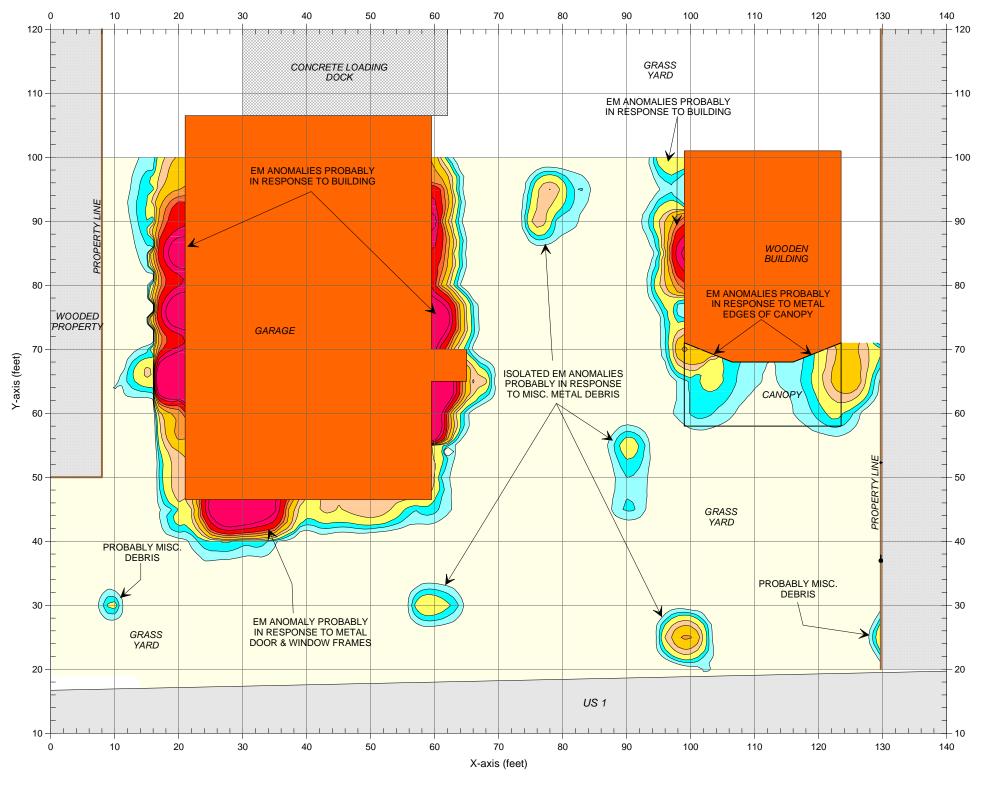
Parcel 70 - Delia Lassiter Property

Parcel 22 - Ivey Little Property

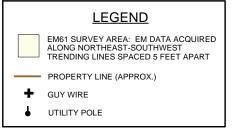
Parcel 68 - James Pugh Property

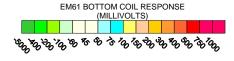
GEOPHYSICAL EQUIPMENT

The photo shows the Geonics EM61 metal detector that was used to conduct the metal detection survey at the sites in Richmond County, North Carolina.



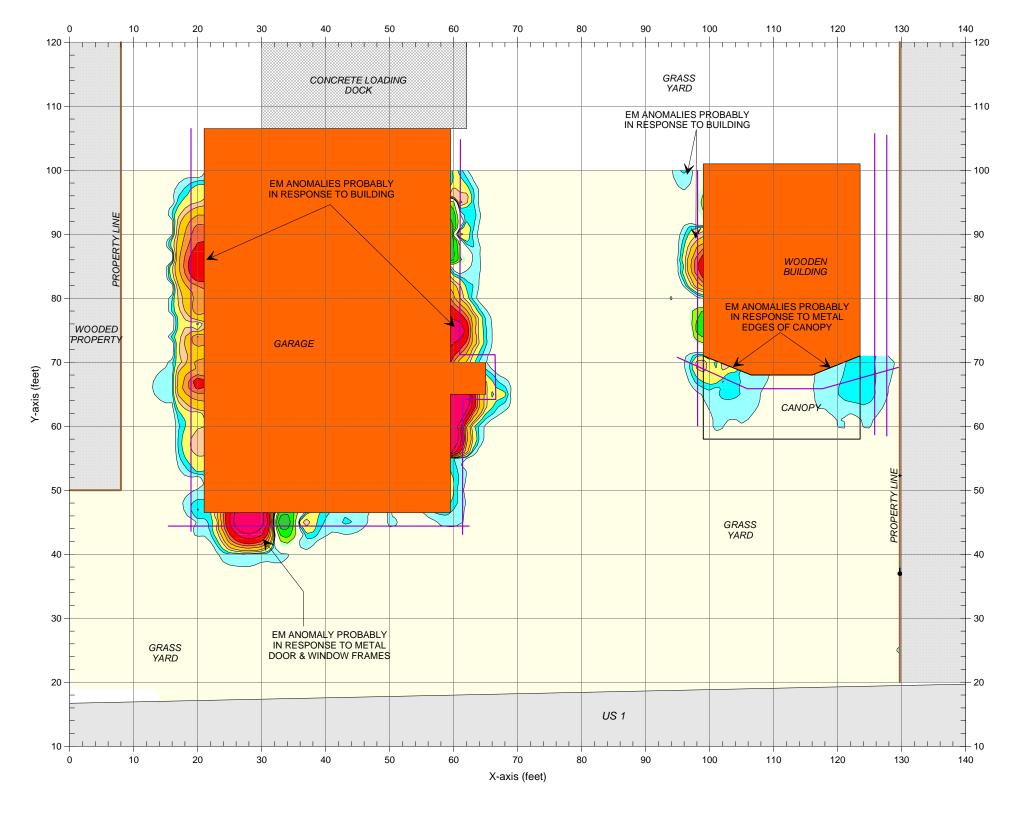
The photos show the SIR-2000 GPR system equipped with a 400 MHz antenna that was used to conduct the ground penetrating radar investigation at the sites in Richmond County, North Carolina.



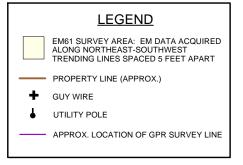

SITE PHOTOGRAPHS

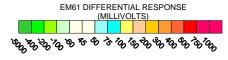
This figure shows the photographs of the ten sites located near Marston and Hoffman, North Carolina where geophysical investigations were conducted within the ROW areas for the detection of metallic USTs.



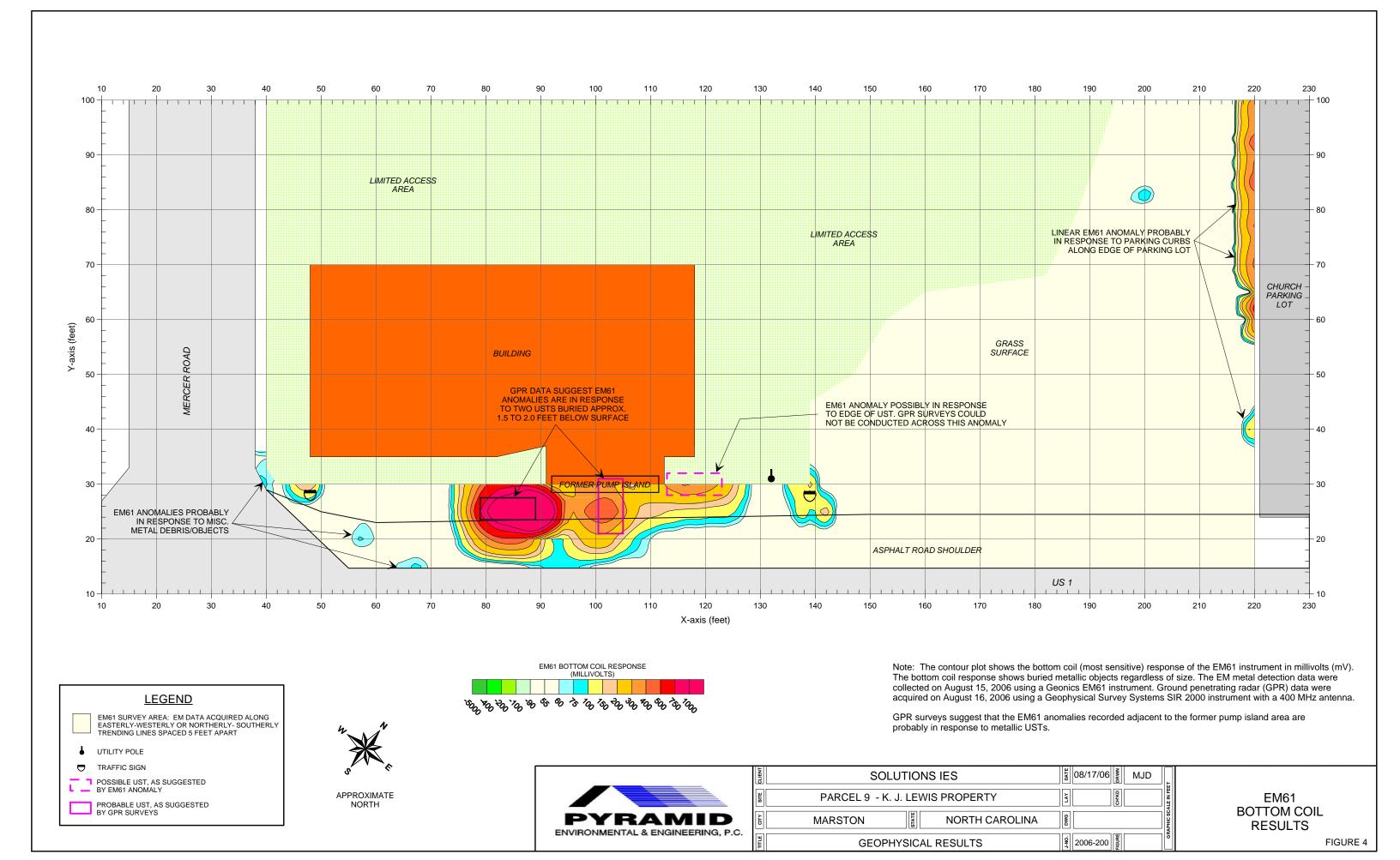

Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

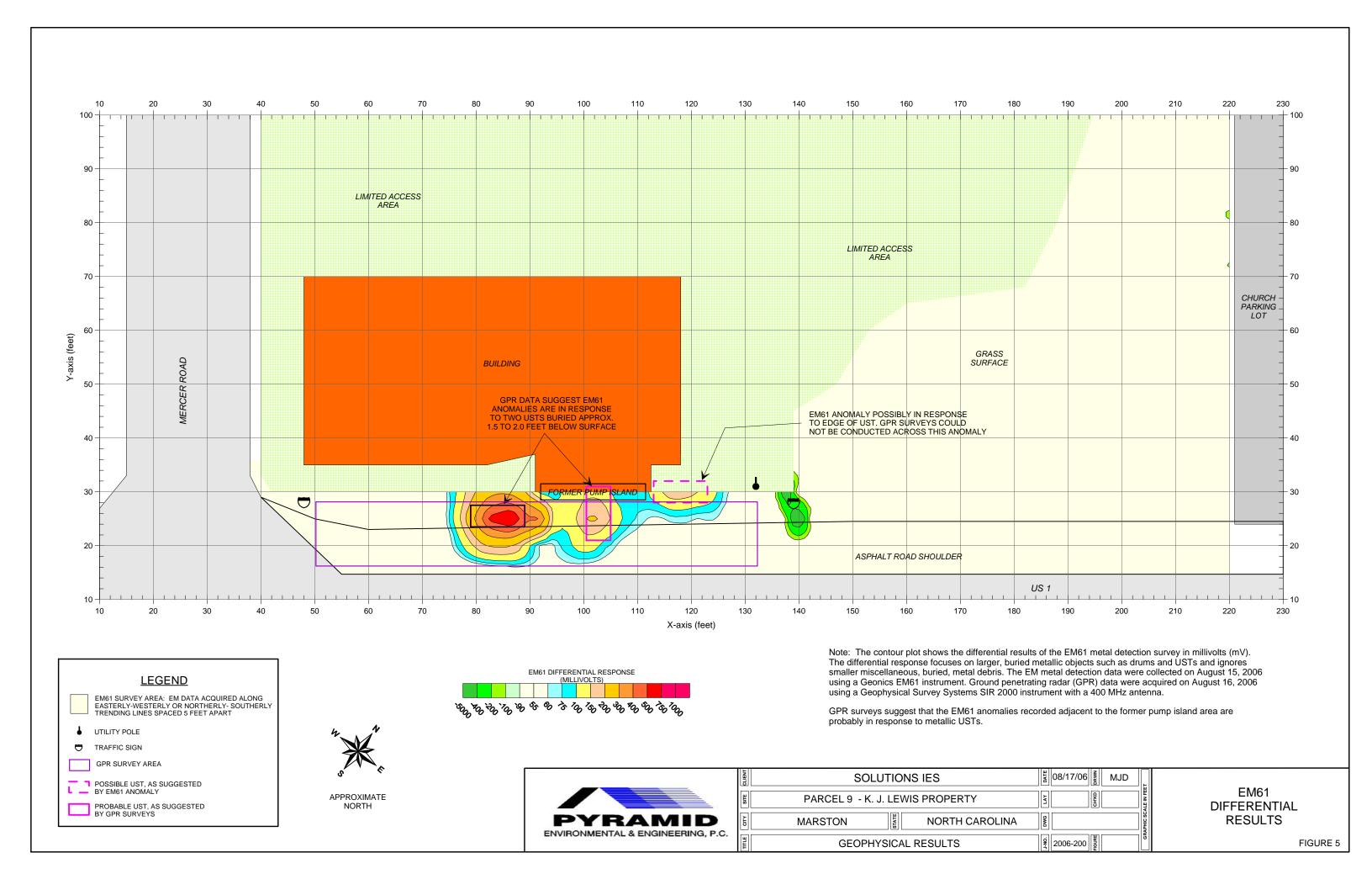
The geophysical investigation suggests that the survey area does not contain metallic USTs.


[양] 2006-200 [)

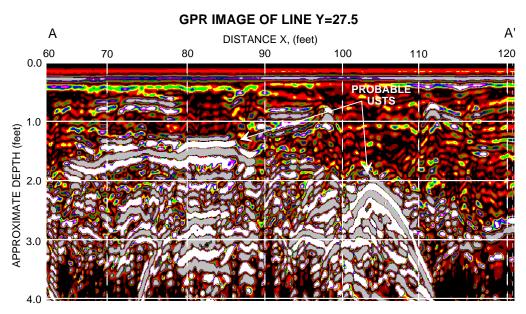


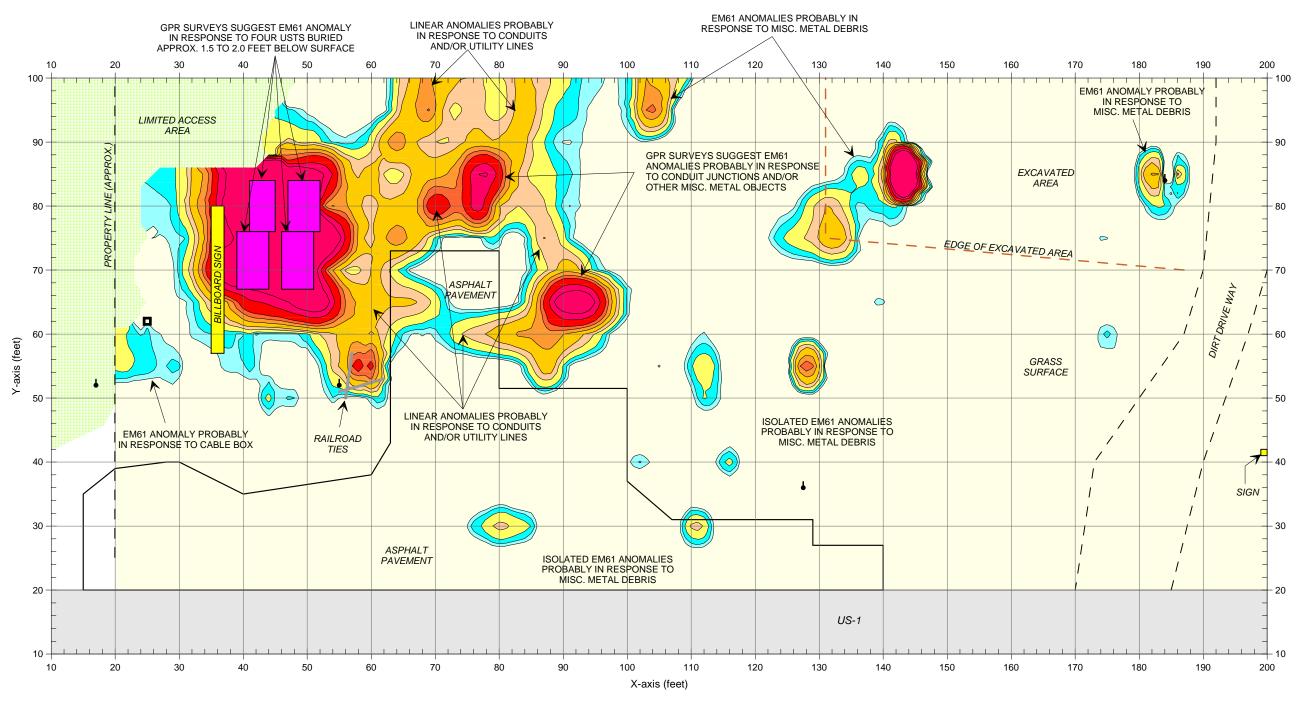
EM61 BOTTOM COIL RESULTS

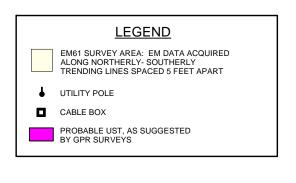

Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.


The geophysical investigation suggests that the survey area does not contain metallic USTs.

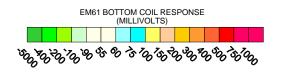
	CLIENT	SOLUTIONS IES	08/01/06 MJD		
	SITE	PARCEL 6 - HILLARY MCKAY PROPERTY	CHKD	ALE IN FEE	
	QŢŢ	MARSTON	DWG	VPHIC SC	
Э.	ПТСЕ	GEOPHYSICAL RESULTS	(S) 2006-200 WH 100	GR/	


EM61 DIFFERENTIAL RESULTS

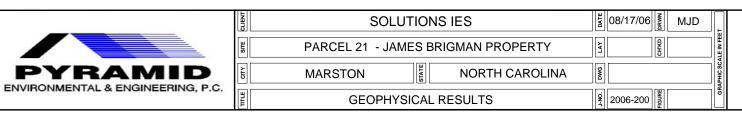

The photograph shows the locations of two probable USTs and one possible UST buried 1.5 to 2.0 feet below surface, as suggested by the geophysical results at Parcel 9.

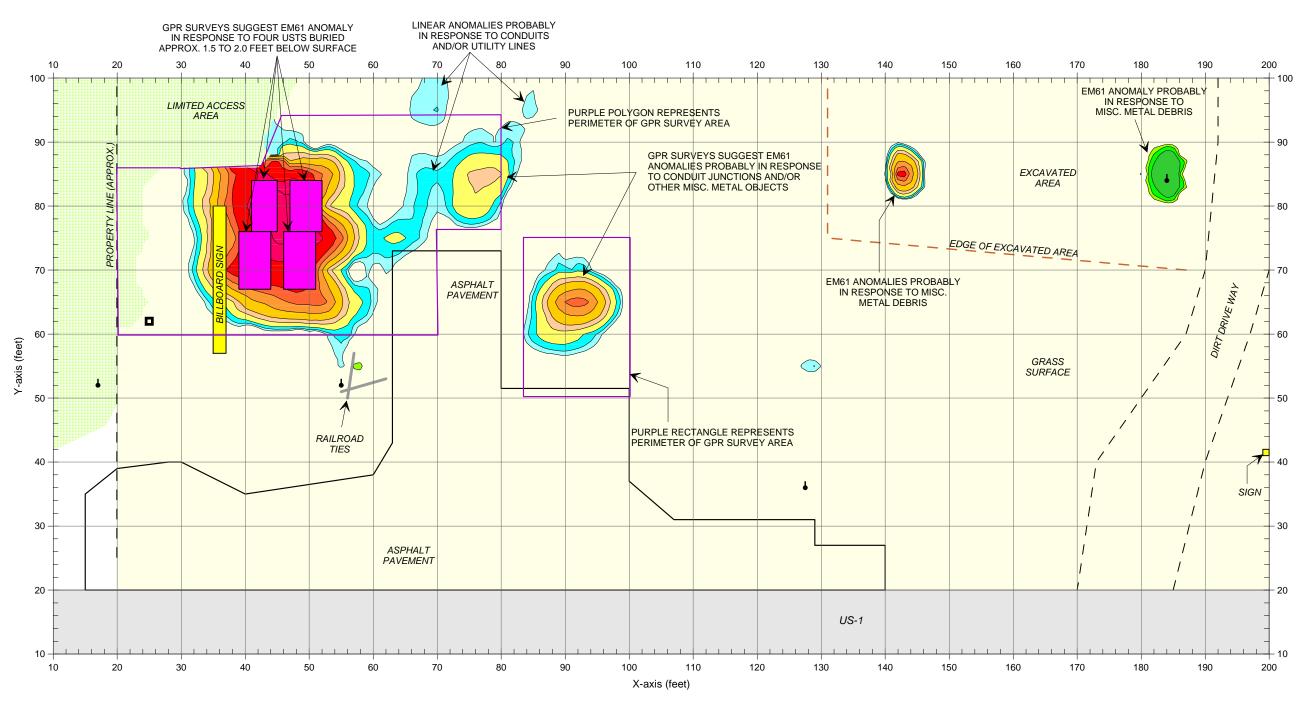


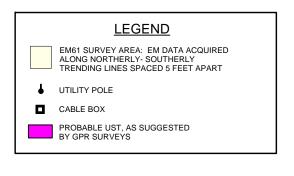
The GPR image obtained along a portion of survey line Y=27.5, shows the anomalies that are probably in response to USTs near X=84 and X=103, and buried approximately 1.5 and 2.0 feet below surface, respectively. The location of this GPR image is shown with a solid purple line in the above photograph.



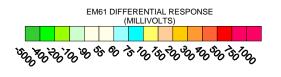
CLE	SOLUTIONS IES	08/26/05	l
SITE	PARCEL 9 - K. J. LEWIS PROPERTY	CHKO CHKO CHKO	l
CITY	MARSTON	DWG APHC SC	l
TITLE	GEOPHYSICAL RESULTS	2006-200	






Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on August 15, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

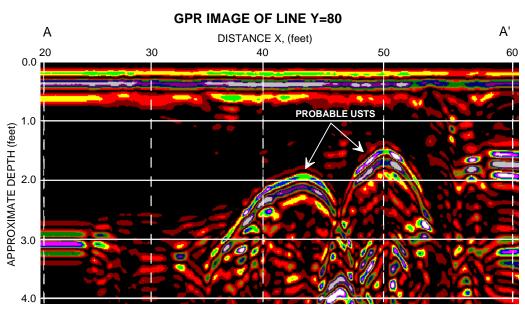
GPR surveys suggest that the large, high amplitude, EM61 anomaly in the southwest portion of the survey area is probably in response to four metallic USTs.



EM61 BOTTOM COIL RESULTS

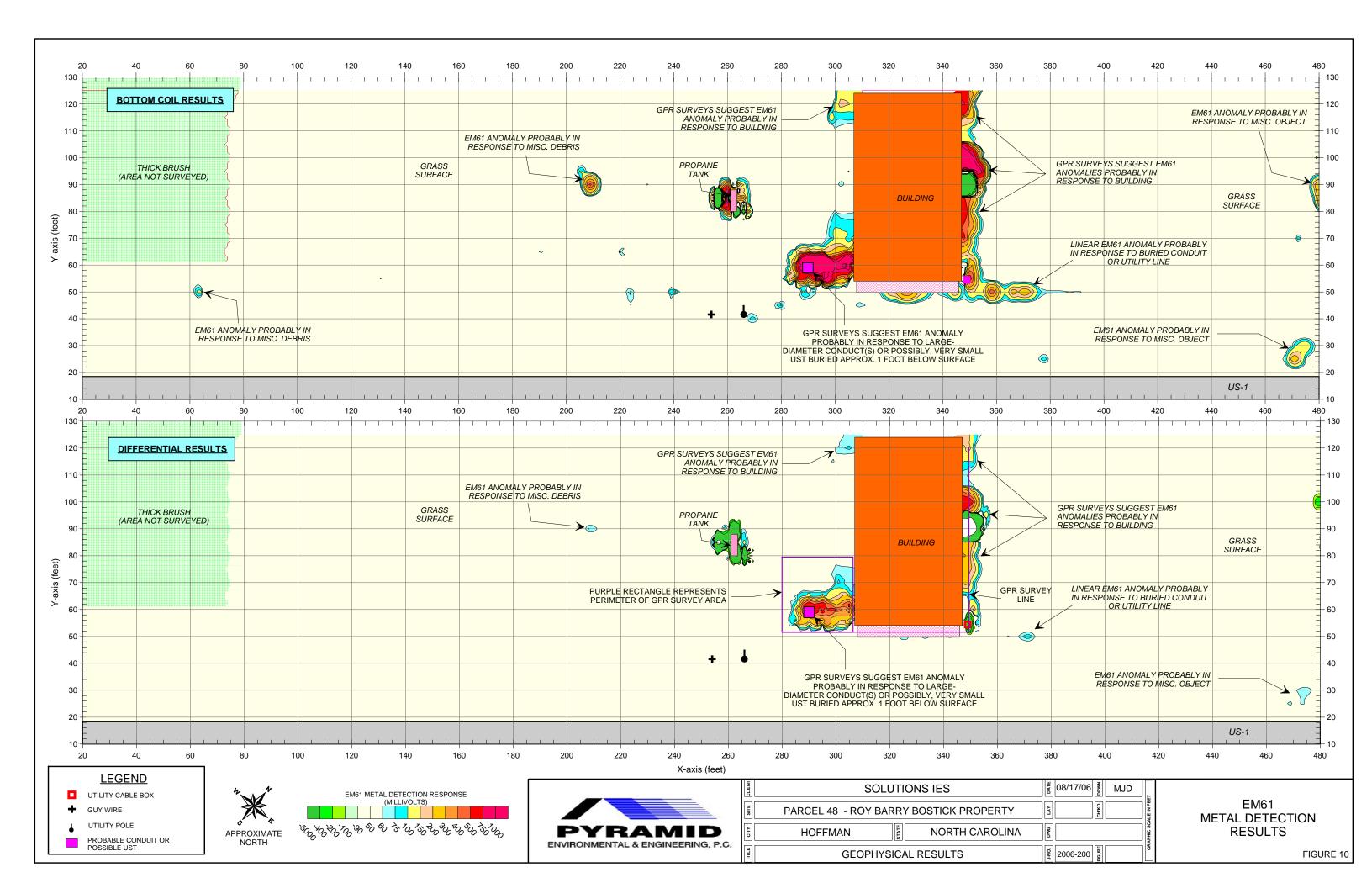
Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on August 15, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

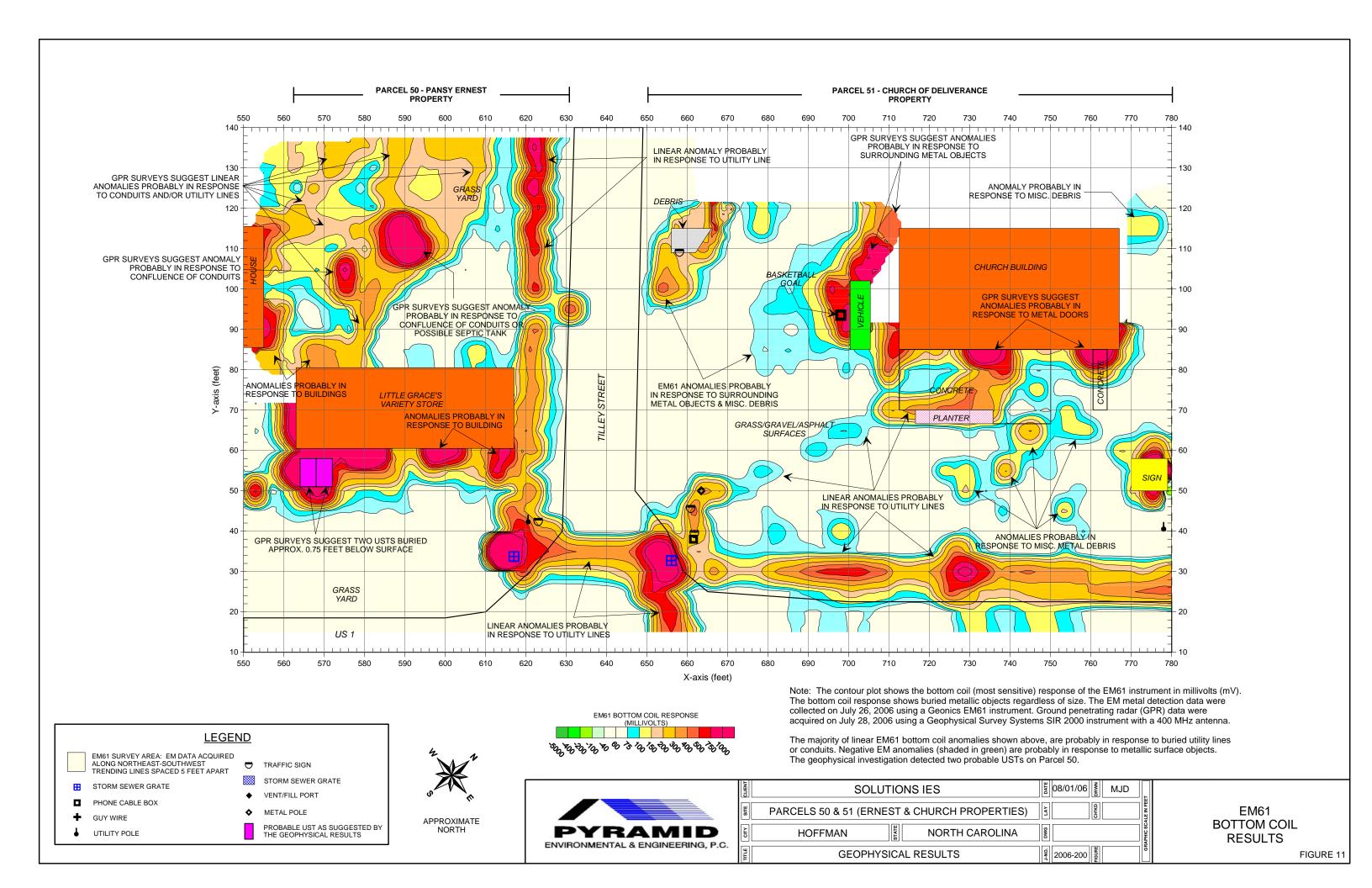
GPR surveys suggest that the large, high amplitude, EM61 anomaly in the southwest portion of the survey area is probably in response to four metallic USTs.



	CLIENT	SOLUTIONS IES	08/17/06 MJD	
	SITE	PARCEL 21 - JAMES BRIGMAN PROPERTY	CHKD CHKD	
	VII	MARSTON	DWG	
C.	TITLE	GEOPHYSICAL RESULTS	<u>S</u> 2006-200	

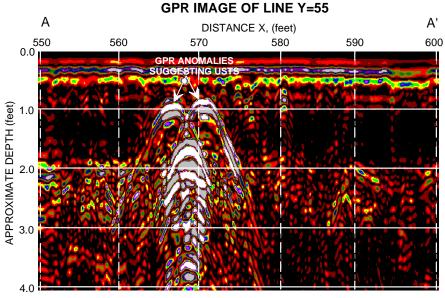
EM61 DIFFERENTIAL RESULTS

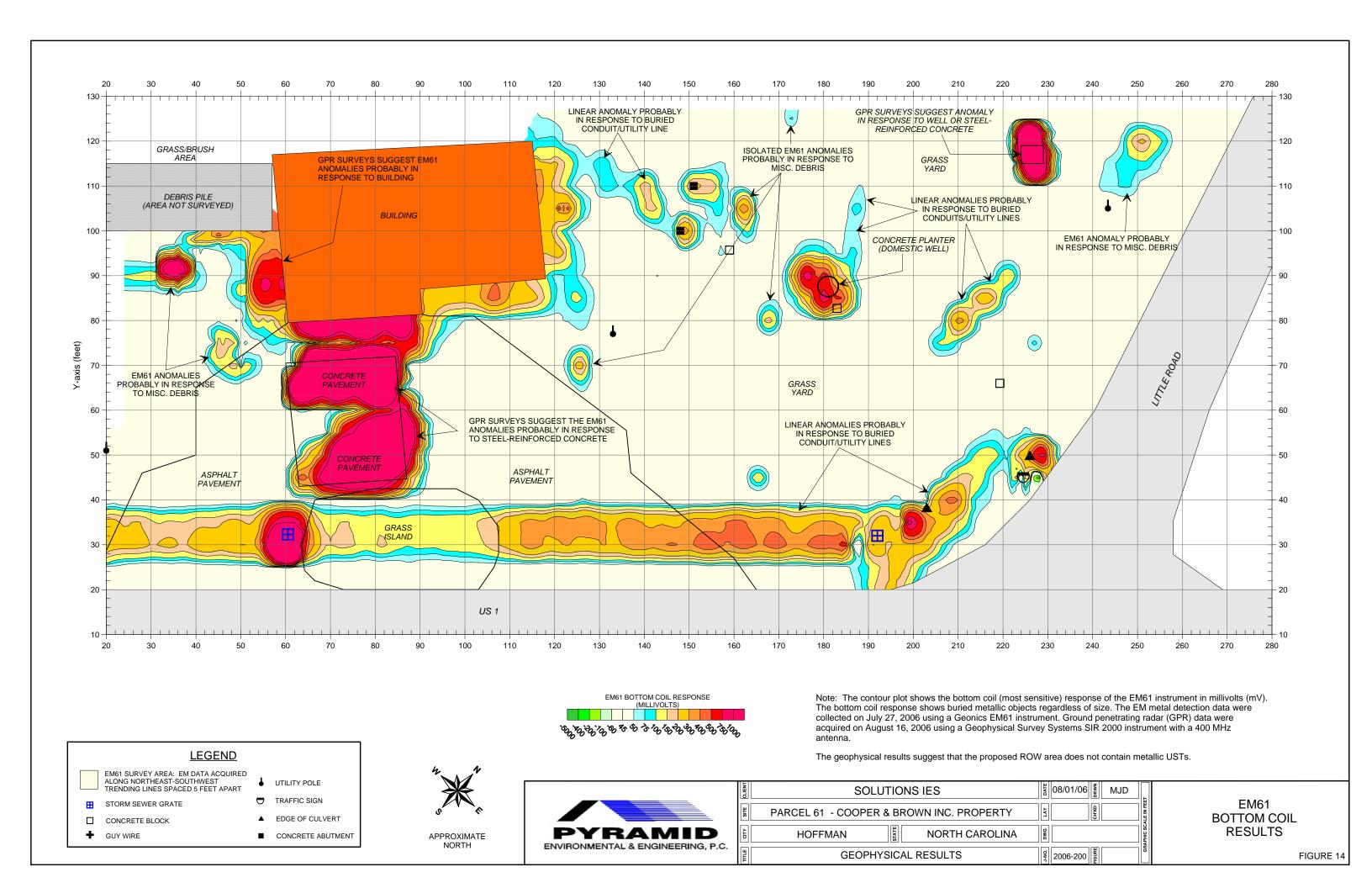

The photograph shows the location of four probable USTs buried 1.75 to 2.0 feet below surface, as suggested by the geophysical results at Parcel 21.

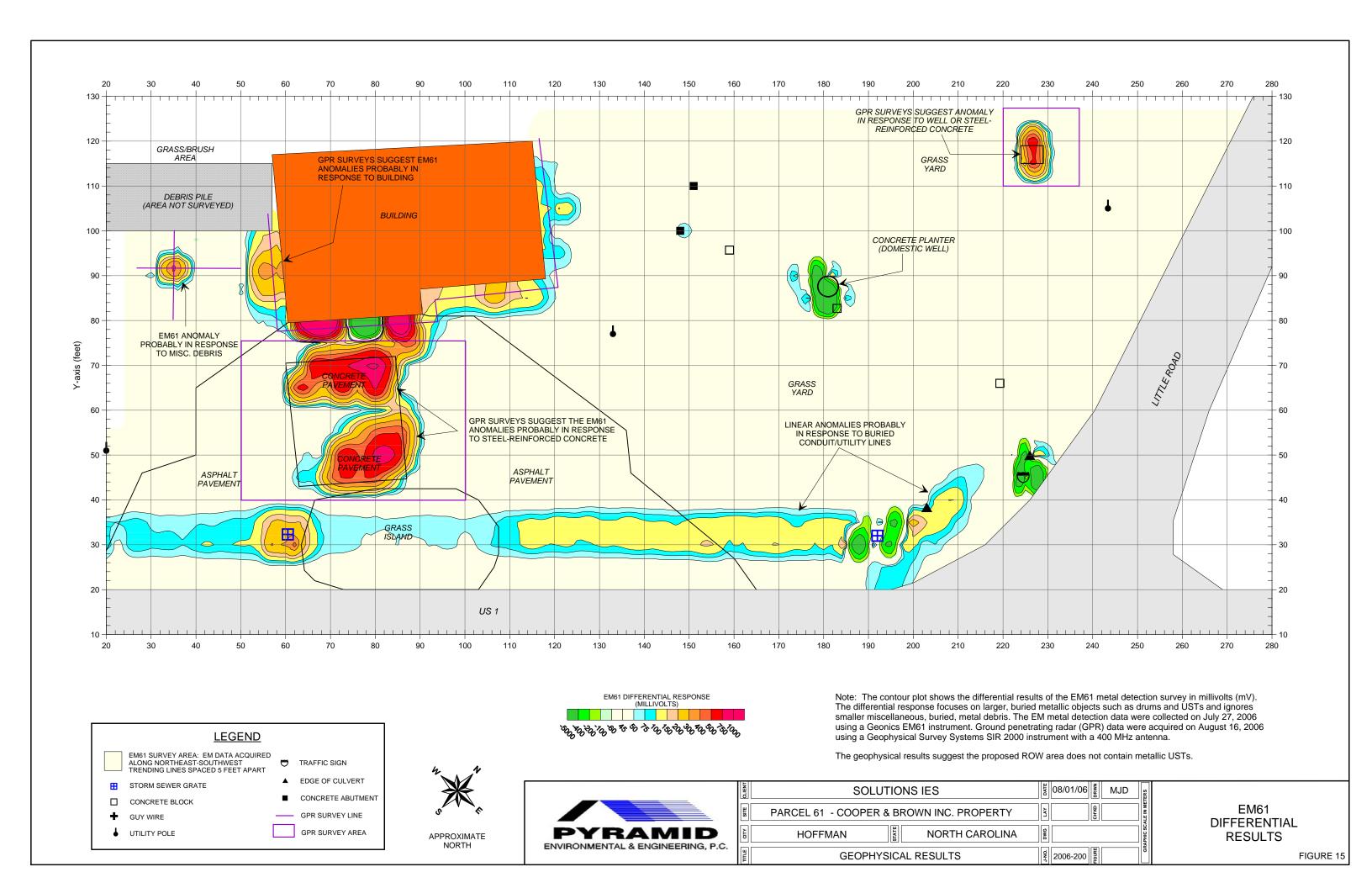


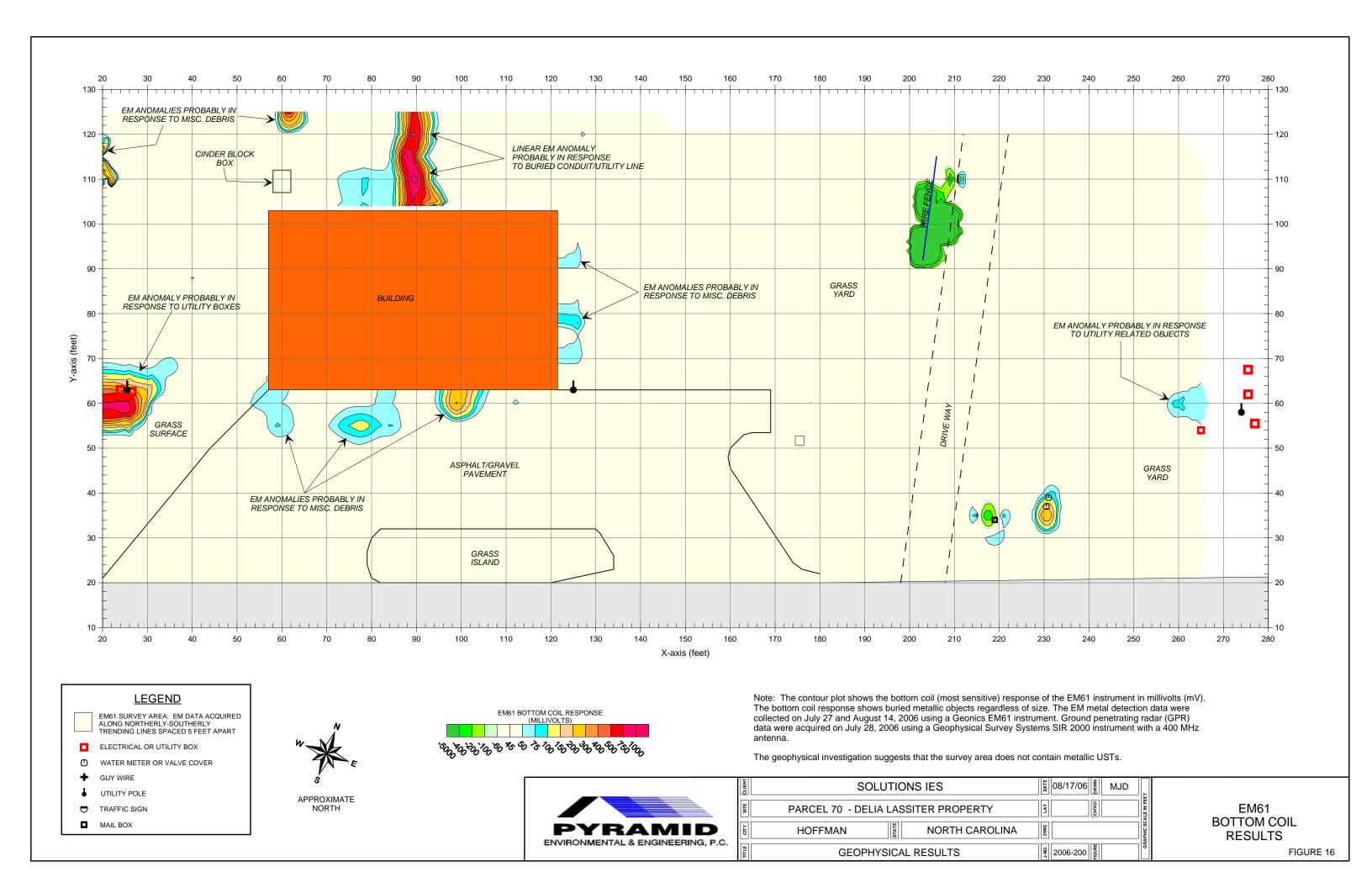
The GPR image obtained along a portion of survey line Y=80, shows the anomalies that are probably in response to USTs near X=43 and X=50, and buried approximately 2.0 and 1.5 feet below surface, respectively. The location of this GPR image is shown with a solid purple line in the above photograph.

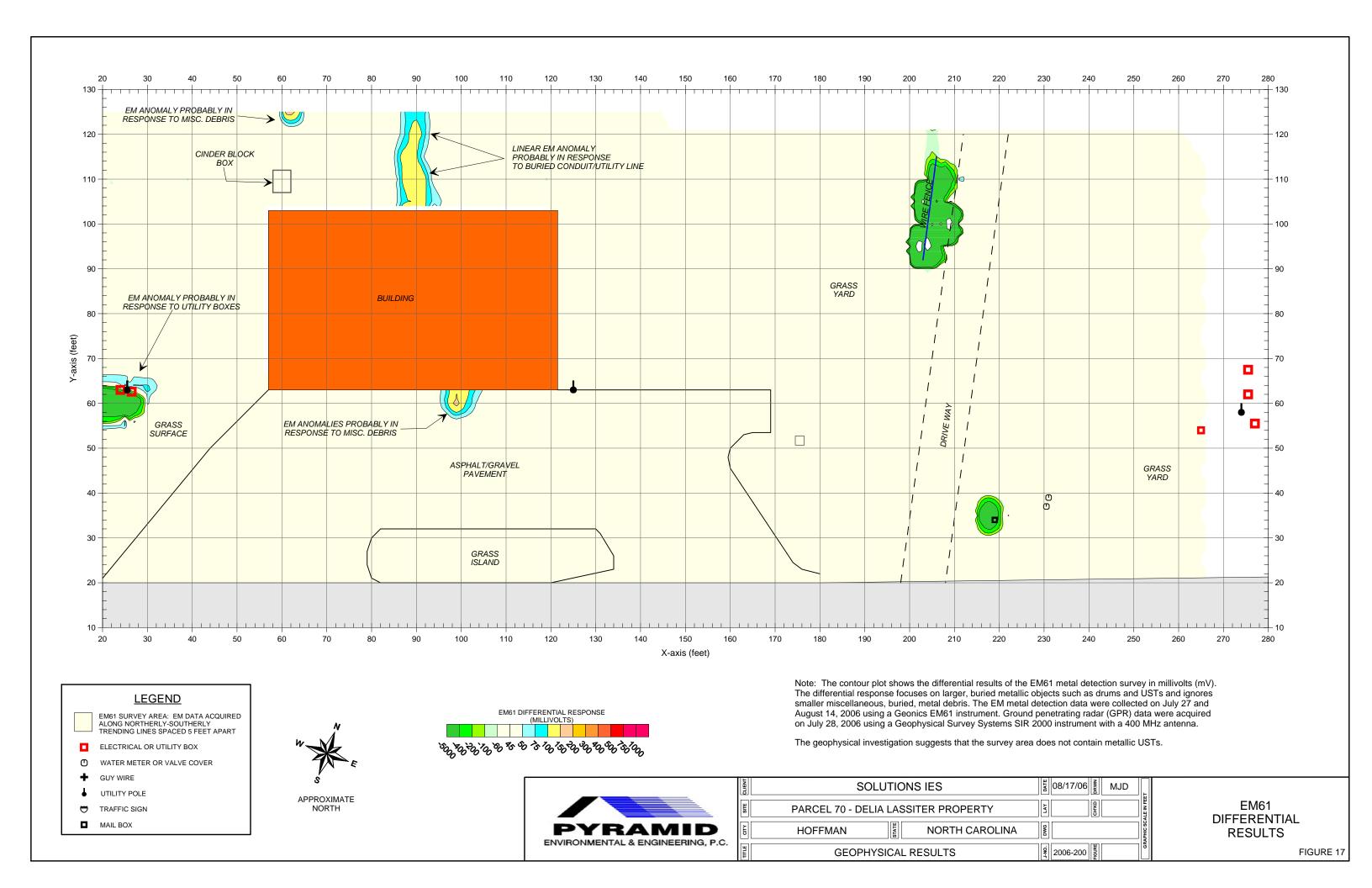
CLIENT	SOLUTIONS IES	E
SITE	PARCEL 21 - JAMES BRIGMAN PROPERTY	LE IN FEE
CITY	1	PHIC SCA
THE	GEOPHYSICAL RESULTS	GRA

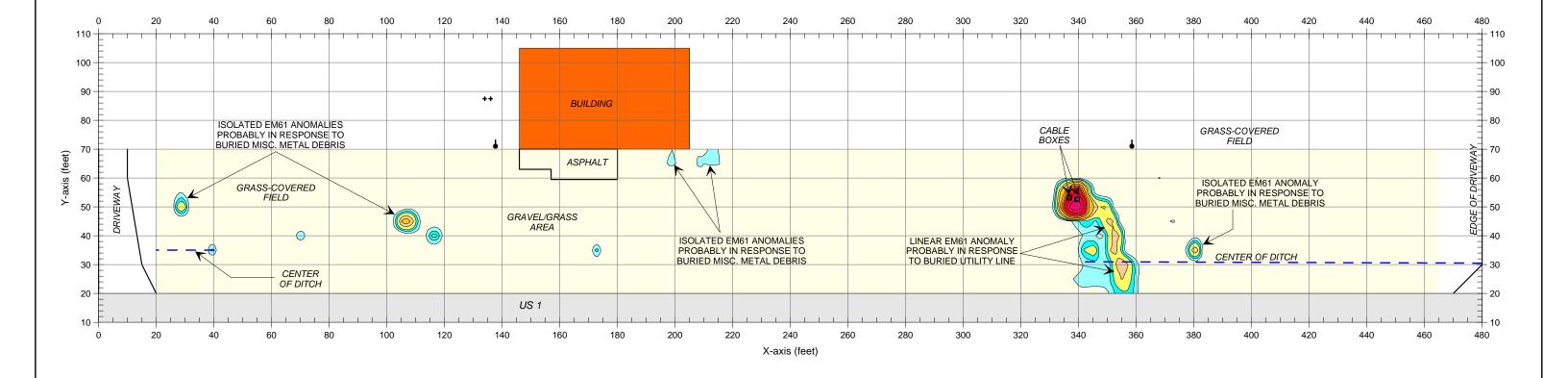


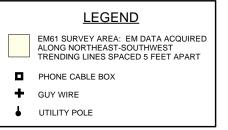

The photograph shows the location of two probable USTs buried approx. 0.75 feet below surface, as suggested by the geophysical results at Parcel 50.

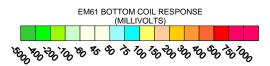


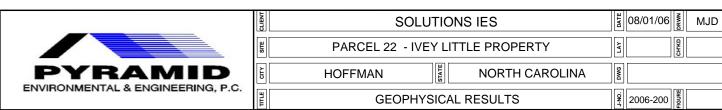

The GPR image obtained along survey line Y=55 shows the anomalies that are probably in response to USTs near X=566 and X=570, and buried approximately 0.75 feet below surface. The location of this GPR image is shown with a solid purple line in the above photograph.

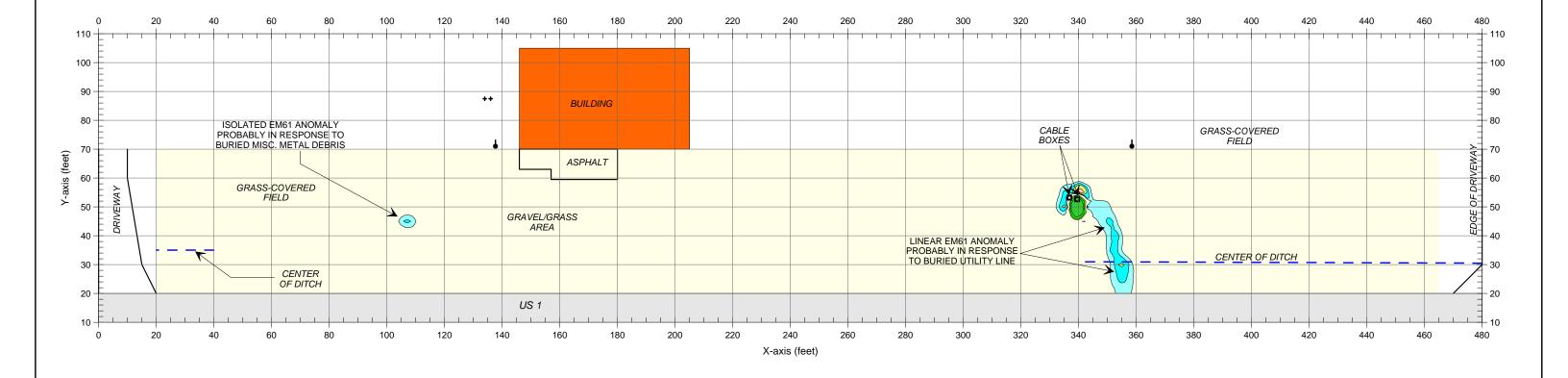


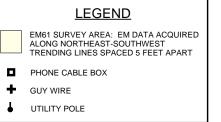

CLIENT	SOLUTIONS IES	08/26/05	
SITE	PARCEL 50 (PANSY ERNEST PROPERTY)	OH'KD CH'KD	ALE IN PE
СПТ	MARSTON NORTH CAROLINA	DMG	APHIC SC
тте	GEOPHYSICAL RESULTS	2006-200	g



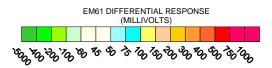




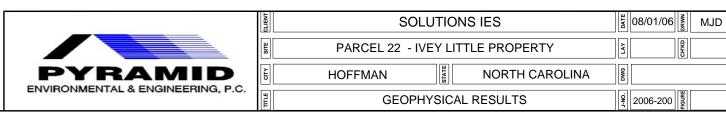


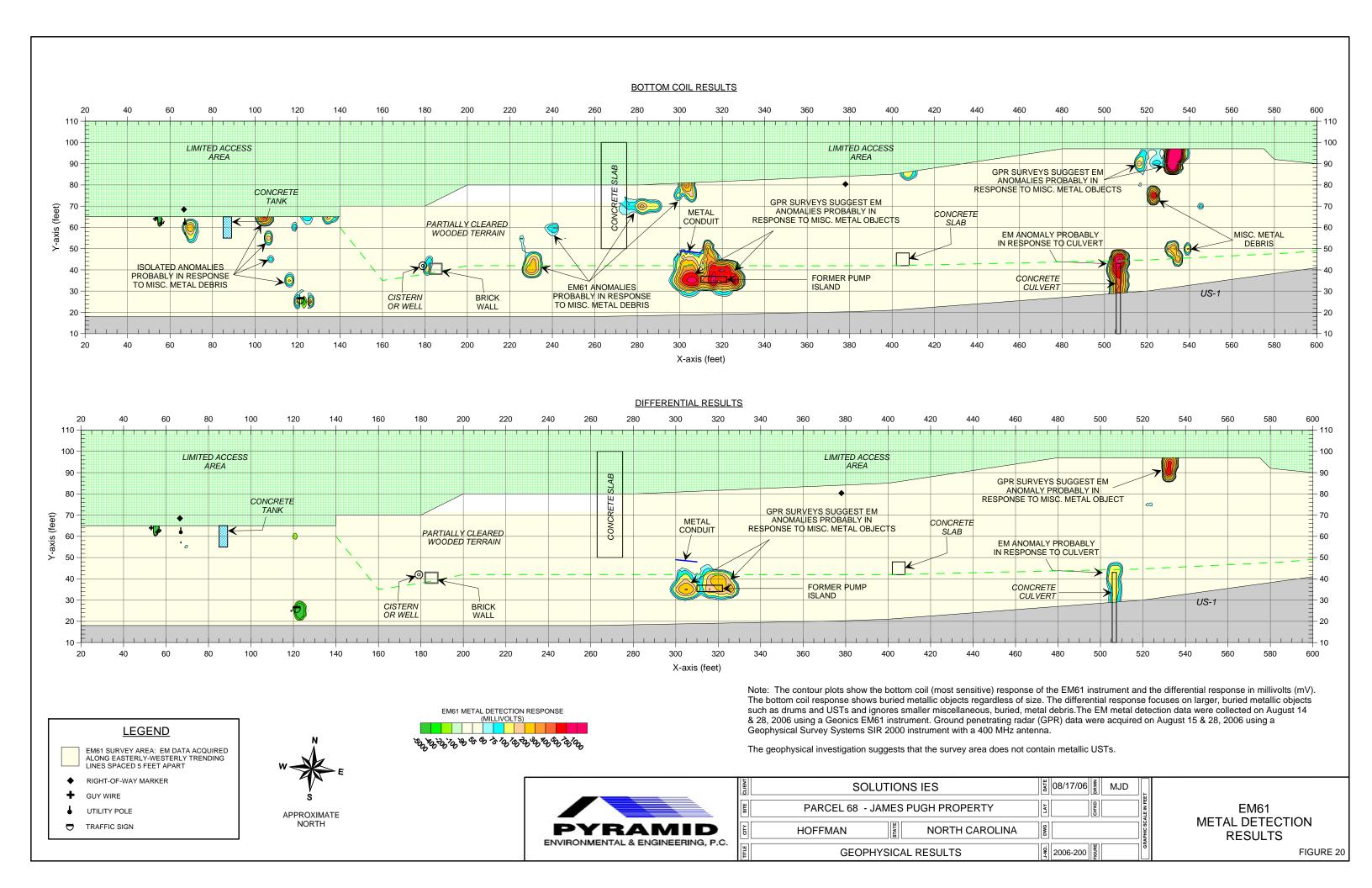

Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on July 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

The geophysical investigation suggests that the survey area does not contain metallic USTs.



EM61 BOTTOM COIL RESULTS





Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on July 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

The geophysical investigation suggests that the survey area does not contain metallic USTs.

EM61 DIFFERENTIAL RESULTS

APPENDIX C
BORING LOGS

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 1

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push

Logged By: K.B

Sampler Type: Macro Core

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61

Checked By: JP

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

Logged	Dy.				Total Depth of B	r	1
Depth ft. bgs	USCS Symbol	Description	Sample Interval	Recovery %	PID Field Screen	Lab Sample Depth	Well Data
	\dashv	Ground Surface				_	
0-H 1-1		SM Dry, dark brown, fine silty sand (Loam)			0		
2-1		SM Dry, tan and brown, fine silty sand			0		
4-		SM Dry, tan and orange, fine silty sand					
5-1		SM Moist, tan and orange, fine to medium silty sand			0		
7-		SM Moist, tan and orange, medium silty sand			0		-
10-11-11-11-11-11-11-11-11-11-11-11-11-1							
14 - 15 - 16 - 16 -							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 2

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push

Sampler Type: Macro Core Logged By: K.B

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Logge			ju)		Total Depth of B	oring:	8' bgs
		SUBSURFACE PROFILE	SAM	PLE	DID Field Coreer	th.	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Dry, dark brown, fine silty sand (Loam)		100	О		
2-		SM Moist, light brown, fine silty sand	\blacksquare	400	0		
3- 4-		SM - SC Moist, tan and orange, medium clayey, silty sand	Ш	100			
5-		No Recovery SM - SC Dry, tan and orange, medium clayey, silty sand		75	0		
7-		SM - SC Moist, orange and tan, fine clayey, silty sand SM		100	0		
8- 9- 10- 11- 12- 13- 14- 15-		Moist, orange and white, medium silty sand					

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 3

Client: NCDOT

WBS # 34438.1.1 State Project # R-2502A

Drilling Method: Direct Push

Sampler Type: Macro Core Logged By: K.B

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61 Checked By: U)

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

Logge	и Бу.	The state of the s			тотаг Бертіг от Б	oring.	o bys
		SUBSURFACE PROFILE	SAM	PLE	PID Field Screen	epth	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	• ppm • 250 500 750 FID Field Screen • ppm • 250 500 750	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, dark brown, fine silty sand (Loam)		100	О		
2-		SM Major light brown fine eilth annd	\mathbf{H}				
3-		Moist, light brown, fine silty sand SM Moist, orange, fine silty sand		100	o		= 7
5-		SM Moist, orange and white, medium silty sand		100	o		78
6- 7-		SC Moist, orange and white, medium clayey sand		100	0		
8- 9- 10- 11- 12- 13- 14- 15-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 4

Client: NCDOT

WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Logge			200		Total Depth of B	oring:	8' bgs
		SUBSURFACE PROFILE	SAM	PLE	PID Field Screen	th.	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	* ppm * 250 500 750 FID Field Screen ppm * 250 500 750	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, tan, fine silty sand SM		100	0		
2-		Moist, black, fine silty sand	#		0		
3-		Moist, tan, fine silty sand	Ш	100			
5-		SM	\mathbf{H}	100	0		
6- 7-		Moist, orange, fine to medium silty sand SM - SC Moist, orange and tan, fine to medium clayey, silty sand SC		100	0		
10 11 12 13		Moist, tan and orange, medium clayey sand					
15 16							

Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 5

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61
Checked By:

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 8' bgs

Logge	d By.	K.B Checked By:	JU)		Total Depth of B	oring:	B' bgs
		SUBSURFACE PROFILE	SAM	PLE		ŧ	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		No Recovery SM		25	0		
3-		Dry, dark brown, fine silty sand SM Moist, tan and orange, fine silty sand		100	0		
5-		SC Moist, tan, orange and brown, medium clayey sand		100	0		
7-				100	0		
8- 9- 10- 11- 12- 13- 14- 15- 16-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 6

Client: NCDOT

Logged By: K.B

WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push

Sampler Type: Macro Core

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61

Checked By: JUD

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: 8.07

Total Depth of Boring: 8' bgs

Logge	u Dy.			DIE	Total Deptil of B	_	l
Depth ft. bgs	USCS Symbol	SUBSURFACE PROFILE Description	Sample Interval	% Recovery	PID Field Screen ppm 250 500 750 FID Field Screen ppm 250 500 750	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Moist, dark brown and tan, fine silty sand		100	0		
3-		SM Moist, orange and tan, fine silty sand		100	0		
5-		SC Moist, tan and orange, medium clayey sand		100	o		
7-		SC Moist, tan, orange and red, medium clayey sand		100	1		
8- 9- 10- 11- 12- 13- 14- 15-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 7

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61

Checked By: JUD

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Logge		SUBSURFACE PROFILE	SAM	PLE	BID 5: 110	T #	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
=	**	Asphalt	-111		0		
1=		No Recovery	111	25	Ť	1	
=							
2-							
3-		SM Moist, tan, fine silty sand	111	75	10		
Ξ		Wolst, terr, fine sity sand	111			1	
4-	HH		\mathbf{H}			1	
5-			111	100	110	1	
3-	;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	sc	-III	100	17	1	
6-		Moist, tan and orange, medium clayey sand	\mathbf{H}				
Ξ			ш	105:000	>1	1000	
7-		SC	111	100		†	
8-		Moist, tan and brown, medium clayey sand	ш				
=			ш		>1	1000	
9-		00	-11	100		†	
40		SC Moist to damp, tan and grey, fine to medium	111				
10-		clayey sand			>		
11-				100			
=			111				
12-	78684	D	1				
13-	1	Petroleum odor at base of boring.					
	1						
14-	1						
	1						
15-							
16-	1						
10-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 8

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push

Sampler Type: Macro Core Logged By: K.B.

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61 Checked By: \1\(\O) Initial Water Level: NA

Stabilized Water Level: 11.6' bgs

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Logge	и Бу.	- 1			Total Depth of B	oring.	12 bys
		SUBSURFACE PROFILE	SAM	PLE	DID 5: 110	ŧ	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
_ =	3.4	Asphalt					
1-		No Recovery	Ш	25	9		
3-		SM Moist, tan and brown, fine silty sand		100	32		W
5-		SC Moist, orange and brown, medium clayey sand		100	430		
6-		SC Moist, orange, tan and grey, fine to medium clayey sand		100	>1	000	W
8-		SC Damp, red and orange, medium clayey sand	Ш	100			
9-		SM Damp, red and tan, medium silty sand		100	>1	000	
11-		SM Damp, orange and tan, medium to coarse silty sand		100	>4		•
13- 14- 15-		Pushed Screen Point Sampler to obtain water sample. Extended screen from 11.5' bgs to 15' bgs. Current water level approximately 11.60' bgs.					

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 9

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push

Sampler Type: Macro Core Logged Ry: K B

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61 Checked By: 110

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' has

Logge	d By:	: K.B Checked By:	JU		Total Depth o	of Boring:	12' bgs
		SUBSURFACE PROFILE	SAM	PLE	DID ELLIS	ŧ	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screer	Sample De	Well Data
0-		Ground Surface					
=		Asphalt			0		
1-	ншн	No Recovery		75	•		
2-		SM Moist, tan and orange, medium silty sand	Ш				
3-		SM	Ш	100	0		
5		Moist, tan, orange and brown, medium silty sand	\parallel	100	10		
6 7		SC Moist, orange, and tan, medium clayey sand SC	\parallel	100	287		
_		Moist, tan, orange and grey, fine clayey sand	ш				
9-		SC Moist, grey and brown, medium clayey sand (petroleum odor)		100		>1000	
10-		SC Damp, grey, medium clayey sand	Ш	100		>10	
12-		SC Damp, orange and grey, medium to coarse clayey sand	Щ	100			•
13-							
14-							
16-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 10

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61

Checked By: JU)

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

		SUBSURFACE PROFILE	SAM	PLE	DID Field Corres	듇	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Dry, brown and tan, medium silty sand SM Moist, brown and tan, medium silty sand		100	1		
3-		SC Moist, brown and orange, medium clayey sand		100	2		
5		SC Moist, orange and tan, medium clayey sand		100	18		
7-				100	223		
9-		SC Moist, tan, orange and grey, medium clayey sand		100	>1	000	
11-		SC Moist, grey, medium to coarse clayey sand (stained)		100	>1		
12-		Petroleum odor from 4.0' bgs to 12.0' bgs					
14- 15-							
16-							

Project: Richmond County PSA's Solution

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 11

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61

Checked By: JUD

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Logge	<i>a Dy</i> .			DIE	Total Deptil of B		TZ bgo
Depth ft. bgs	USCS Symbol	SUBSURFACE PROFILE Description	Sample Sample Interval	% Recovery	PID Field Screen ppm 250 500 750 FID Field Screen ppm 250 500 750	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		SM Dry, light brown, fine silty sand SM Dry, tan and orange, fine silty sand		100	2		
3-		SM Dry, dark brown, fine silty sand SM Dry, tan, fine silty sand		100	2		
5-		SM Moist, orange and brown, medium silty sand SM Moist brown and top medium silty sand		100	0		
7-		Moist, brown and tan, medium silty sand SM Dry, orange and tan, medium silty sand		100	1		
9-				100	3		
11-				100	0		
13- 14- 15-							
16-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 12

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/21/06

Site: Parcel 61

Checked By: JUD

Initial Water Level: NA

Stabilized Water Level: 11.44' bgs

Cave In Depth: NA

Total Depth of Boring: 12' bgs

		SUBSURFACE PROFILE	SAM	PLE		£	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
=	**	Asphalt No Recovery	Ш		0		
1-		No Recovery	Ш	25	•		
2-		SC Moist, orange, fine clayey sand	††		0		
3-		SM Moist, dark brown, medium silty sand	Ш	100	†		
4		SC Moist, tan and brown, medium clayey sand	\mathbf{H}		1		
5-		SC Moist, tan and orange, medium clayey sand	Ш	100	†		
6-			Π	100	47		
8-			Ш	100			
9			Ш	100	>1	000	
10-		SC Moist, tan, white and orange, medium clayey	Ш				
11-		sand	Ш	100	>1		•
12-			Ш			13000	
13-							
14-							
15-							
16-							
10-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 13

Client: NCDOT

WBS # 34438.1.1

State Project # R-2502A Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Checked By: 110

Boring Date: 08/21/06

Site: Parcel 61

Initial Water Level: NA

Stabilized Water Level: 11.11' bgs

Cave In Depth: NA

Total Depth of Boring: 12' bgs

		SUBSURFACE PROFILE	SAM	PLE	DID 5:110		
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-	**	Asphalt No Recovery		25	0		
3-		SM Moist, brown and black, fine silty sand SM Moist, light brown, fine silty sand		100	0		
4-		SC Moist, brown and orange, medium clayey sand		100	0		
6- 7-		SC Moist, tan, orange and white, medium clayey sand		100	4		
9-				100	7		
11-		SC Moist, tan, white and grey, medium clayey sand		100	131		•
12- 13- 14- 15-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 14

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Checked By: Jul)

Boring Date: 08/21/06

Site: Parcel 61

Initial Water Level: NA

Stabilized Water Level: 10.87' bgs

Cave In Depth: NA

Total Depth of Boring: 12' bgs

		SUBSURFACE PROFILE	SAM	PIF			TZ Ugs
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		No Recovery		10	0		
3		SM Dry, grey, fine silty sand SM Moist, black, fine silty sand		100	0		
5		SM Moist, tan, fine silty sand SC Moist, tan and orange, medium clayey sand		100	0		
6- 7-		SC Moist, tan and white, medium clayey sand		100	20		=
9-		Moist, tan, orange and grey, medium clayey sand SC		100	0		
10-		Moist, grey and tan, medium clayey sand	\parallel	100	0		•
12- 13- 14- 15-							

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 15

Client: NCDOT WBS # 34438.1.1

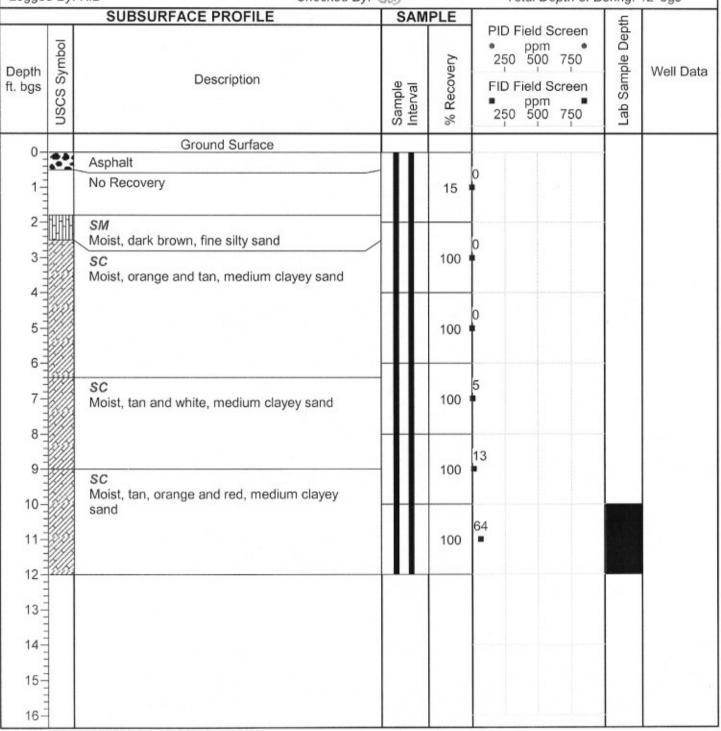
State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B.

County: Richmond

Boring Date: 08/21/06


Site: Parcel 61

Checked By: JU)

Initial Water Level: NA Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Log of Soil Boring: P61-B16

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 16

Client: NCDOT WBS # 34438.1.1

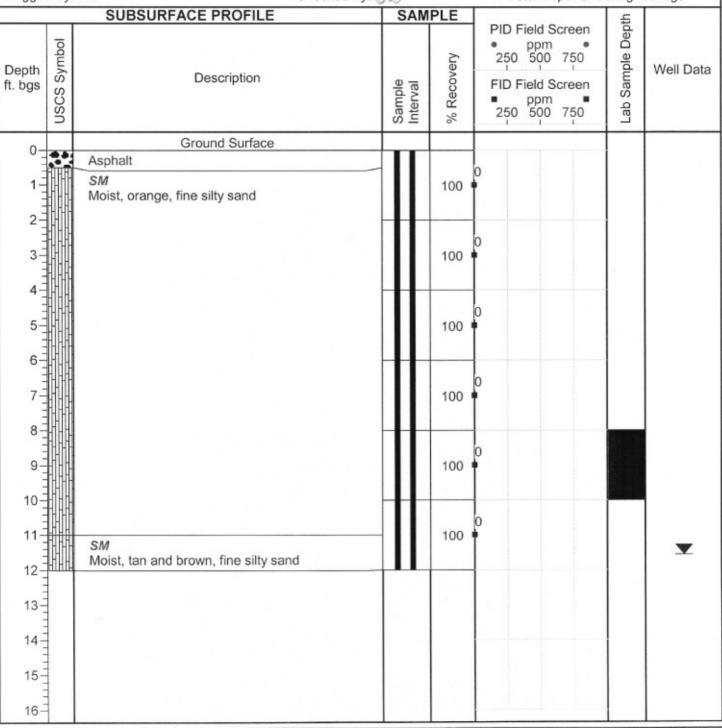
State Project # R-2502A

Drilling Method: Direct Push Sampler Type: Macro Core

Logged By: K.B.

County: Richmond

Boring Date: 08/21/06


Site: Parcel 61 Checked By: UD

Initial Water Level: NA

Stabilized Water Level: 11.58

Cave In Depth: NA

Total Depth of Boring: 12' bgs

Solutions-IES, Inc. 1101 Nowell Road Raleigh, NC 27607 (919) 873-1060

Log of Soil Boring: P61-B17

Project: Richmond County PSA's

Solutions-IES Project No.: 3260.06A3.NDOT

Boring Number: 17

Client: NCDOT WBS # 34438.1.1

State Project # R-2502A

Drilling Method: Direct Push

Sampler Type: Macro Core

Logged By: K.B

County: Richmond

Boring Date: 08/22/06

Site: Parcel 61

Checked By: Jul)

Initial Water Level: NA

Stabilized Water Level: NA

Cave In Depth: NA

Total Depth of Boring: 12' bgs

		SUBSURFACE PROFILE	SAM	PLE		£	
Depth ft. bgs	USCS Symbol	Description	Sample Interval	% Recovery	PID Field Screen	Lab Sample Depth	Well Data
0-		Ground Surface					
1-		Fill Dry, tan, fine silty sand Asphalt SM		100	0		
3-		Dry, tan and orange, medium silty sand		100	0		
4	НІНН	Dry, tan and orange, medium clayey sand No Recovery	\parallel		0		
5-		SM Dry, brown, fine silty sand	Ш	100			
7-		Moist, orange and tan, medium clayey sand SC Moist to damp, orange and tan, medium clayey sand		100	О		
9-		SC Damp, orange and tan, medium clayey sand		100	1		
10-		SC Damp, orange and grey, medium clayey sand		100	437		
12-	25.65						
14-							
15- 16-							

Solutions-IES, Inc. 1101 Nowell Road Raleigh, NC 27607 (919) 873-1060

APPENDIX D GPS COORDINATES OF BORING LOCATIONS

Appendix D

GPS Coordinates of Boring Locations Parcel 61, Cooper Brown, Inc. Property 3701 U.S. Highway 1

Richmond County, North Carolina WBS Element: 34438.1.1; NCDOT Project R-2502A

Boring Identification	Northing	Easting
P61-B1	35.03374044	-79.54568460
P61-B10	35.03360482	-79.54585601
P61-B11	35.03372560	-79.54586305
P61-B12	35.03374304	-79.54593731
P61-B13	35.03369350	-79.54558544
P61-B14	35.03372108	-79.54554261
P61-B15	35.03376517	-79.54547547
P61-B16	35.03378101	-79.54552324
P61-B17	35.03359518	-79.54578258
P61-B2	35.03405007	-79.54544563
P61-B3	35.03403020	-79.54547019
P61-B4	35.03397555	-79.54554965
P61-B5	35.03377925	-79.54582675
P61-B6	35.03386089	-79.54538310
P61-B7	35.03383867	-79.54565878
P61-B8	35.03373675	-79.54572793
P61-B9	35.03366685	-79.54570765

Notes:

APPENDIX E LABORATORY ANALYTICAL REPORTS – SOIL SAMPLES

Case Narrative

Date:

08/30/06

Company: N. C. Department of Transportation

Contact:

Sheri Knox

Address: c/o Solution - IES

1101 Nowell Road

Raleigh, NC 27607

Client Project ID:

NCDOT Parcel 61

Prism COC Group No:

G0806703

Collection Date(s):

08/21/06 thru 08/22/06

Lab Submittal Date(s):

08/23/06

Client Project Name Or No: Richmond Co. WBS# 34438.1.1

This data package contains the analytical results for the project identified above and includes a Case Narrative, Laboratory Report and Quality Control Data totaling 20 pages. A chain-of-custody is also attached for the samples submitted to Prism for this project.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative. Quality control statements and/or sample specific remarks are included in the sample comments section of the laboratory report for each sample affected.

Semi Volatile Analysis

Analysis Note for Q17317 MS Diesel Range Organics (DRO): Recovery was outside of the control limits. Analysis Note for Q17317 MSD Diesel Range Organics (DRO): Recovery was outside of the control limits.

Volatile Analysis

No Anomalies Reported

Metals Analysis

N/A

Wet Lab and Micro Analysis

N/A

Please call if you have any questions relating to this analytical report.

Date Reviewed by:

Robbi A. Jones

Project Manager:

Signature:

Review Date:

Signature:

Approval Date:

08/30/06

Data Qualifiers Key Reference:

- B: Compound also detected in the method blank.
- #: Result outside of the QC limits.
- DO: Compound diluted out.
- E: Estimated concentration, calibration range exceeded.
- J: The analyte was positively identified but the value is estimated below the reporting limit.
- H: Estimated concentration with a high bias.
- L: Estimated concentration with a low bias.
- M: A matrix effect is present.

Notes: This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. The results in this report relate only to the samples submitted for analysis.

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 61 Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B1 6-8

Prism Sample ID: 159204

COC Group:

G0806703

Time Collected: 08/21/06

11:40 Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	90.5	%			1	SM2540 G	08/24/06 14:10	lbrown	
T GIOGIA GONAG	30.5	70			ı	0.0.2040 0	00/24/00 14:10		
Diesel Range Organics (DRO) by GO	:-FID								
Diesel Range Organics (DRO)	50	mg/kg	7.7	2.2	1	8015B	08/27/06 8:58	jvogel	Q17317
Sample Preparation:			25	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	ıyl	72	2	19 - 124
Sample Weight Determination									
Weight 1	6.82	g			1	GRO	08/25/06 0:00	lbrown	
Weight 2	6.53	g			1	GRO	08/25/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.7	3.0	50	8015B	08/25/06 14:22	grappaccioli	Q17278
					Surrogate)	% Recovery	Cont	rol Limits
					aaa-TFT		124		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project No.:

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61 WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B2 6-8 Prism Sample ID: 159205

COC Group:

G0806703

Time Collected:

08/21/06 11:50

Time Submitted: 08/23/06

15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	89.1	%			1	SM2540 G	08/24/06 14:10	İbrown	
Diesel Range Organics (DRO) by G	C-FID							٠	
Diesel Range Organics (DRO)	9.0	mg/kg	7.9	2.2	1	8015B	08/26/06 13:53	jvogel	Q17317
Sample Preparation:			25.08	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	<u>:</u>	% Recovery	Cont	rol Limits
					o-Terphen	yl	77	4	9 - 124
Sample Weight Determination									
Weight 1	4.93	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	4.08	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	/ GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.9	3.1	50	8015B	08/25/06 15:26	grappaccioli	Q17278
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		111	5	5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B3 6-8

Prism Sample ID: 159206

COC Group:

G0806703

Time Collected: 08/21/06

12:00 Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	89.6	%			1	SM2540 G	08/24/06 14:10	lbrown	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	11	mg/kg	7.8	2.2	1	8015B	08/26/06 14:31	jvogel	Q17317
Sample Preparation:			25.26	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	.	% Recovery	Cont	rol Limits
					o-Terphen	yl	86		19 - 124
Sample Weight Determination									
Weight 1	5.88	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	4.95	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.8	3.0	50	8015B	08/25/06 16:08	grappaccioli	Q17278
					Surrogate	ı	% Recovery	Cont	rol Limits
					aaa-TFT		129		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project ID:

Project No.:

Project Name: Richmond Co.

NCDOT Parcel 61 WBS# 34438.1.1

Sample Matrix: Soil

COC Group:

Prism Sample ID: 159207

G0806703

Time Collected:

Client Sample ID: P61.B4 6-8

08/21/06 14:05

Time Subm

nitted:	08/23/06	15:10
mu c a.	00/23/00	15.10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	89.5	%			1	SM2540 G	08/24/06 14:10	lbrown	
Diesel Range Organics (DRO) by GC	-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.8	2.2	1	8015B	08/26/06 15:09	jvogel	Q17317
Sample Preparation:			25.18	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	1	% Recovery	Cont	rol Limits
					o-Terphen	yl	83		9 - 124
Sample Weight Determination Weight 1	6.03	a			1	GRO	08/25/06 0:00	lbrown	
-	0.03	g			'		08/25/00 0.00	DIOWII	
Weight 2	6.68	g			1	GRO	08/25/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.8	3.0	50	8015B	08/25/06 16:51	grappaccioli	Q17278
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		127		5 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project ID:

Project Name: Richmond Co.

NCDOT Parcel 61

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B5 6-8

Prism Sample ID: 159208

COC Group:

G0806703

Time Collected:

08/21/06 14:40

Time Submitted: 08/23/06

15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	77.0	04			×	0140540.0	00/04/00 44.40		
Percent Solids	75.3	%			1	SM2540 G	08/24/06 14:10	ibrown	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	9.3	2.7	1	8015B	08/26/06 15:47	jvogel	Q17317
Sample Preparation:			25.15	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate		% Recovery	Cont	rol Limits
:					o-Terphen	yl	89		19 - 124
Sample Weight Determination									
Weight 1	6.33	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	6.36	g			1	GRO	08/28/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	9.3	3.6	50	8015B	08/25/06 17:35	grappaccioli	Q17278
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		125		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project ID:

Project Name: Richmond Co.

NCDOT Parcel 61 WBS# 34438,1,1

Project No.:

Sample Matrix: Soil

Client Sample ID: P61.B6 6-8

Prism Sample ID: 159209

127

COC Group:

G0806703

Time Collected:

08/21/06 14:50

15:10

Time Submitted:

08/23/06

Parameter	Result	Units	Report Limit	MDL.	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	90.6	%			1	SM2540 G	08/24/06 14:10	lbrown	
Diesel Range Organics (DRO) by GO	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.7	2.2	1	8015B	08/26/06 16:26	jvogel	Q17317
Sample Preparation:			25.1	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	1	% Recovery	Cont	rol Limits
					o-Terphen	yl	76		19 - 124
Sample Weight Determination									
Weight 1	6.32	g			1	GRO	08/25/06 0:00	Ibrown	
Weight 2	6.32	g			1	GRO	08/25/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.7	3.0	50	8015B	08/25/06 18:21	grappaccioli	Q17278
					Surrogate		% Recovery	O and	rol Limits

aaa-TFT

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

55 - 129

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B7 10-12

Prism Sample ID: 159210

COC Group:

G0806703

Time Collected:

08/21/06 15:20

Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	89.9	%			1	SM2540 G	08/24/06 14:10	Ibrown	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	63	mg/kg	7.8	2.2	1	8015B	08/26/06 17:05	jvogel	Q17317
Sample Preparation:			25.19	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
Sample Weight Determination									
Weight 1	6.86	g			1	GRO	08/28/06 0:00	ibrown	
Weight 2	6.34	g			1	GRO	08/28/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	3000	mg/kg	160	61	1000	8015B	08/26/06 18:37	grappaccioli	Q17278
					Surrogate		% Recovery	Conf	rol Limits
					aaa-TFT		DO #		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61 WBS# 34438.1.1

Project No.:

Sample Matrix: Soil

Client Sample ID: P61.B8 10-12

Prism Sample ID: 159211

109211

COC Group:

G0806703

Time Collected:

08/21/06

Time Submitted: 08/23/06 15:10

15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	88.9	%			1	SM2540 G	08/24/06 14:10	Ibrown	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	40	mg/kg	7.9	2.2	1	8015B	08/26/06 17:43	jvogel	Q17317
Sample Preparation:			25.11	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	1	% Recovery	Cont	rol Limits
					o-Terphen	yl	72	2	19 - 124
Sample Weight Determination									
Weight 1	4.46	g			1	GRO	08/25/06 0:00	lbrown	
Weight 2	5.07	g			1	GRO	08/25/06 0:00	ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	1300	mg/kg	79	31	500	8015B	08/26/06 16:37	grappaccioli	Q17278
					Surrogate	ı	% Recovery	Cont	rol Limits
					aaa-TFT		DO #		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.: Sample Matrix: Soil

WBS# 34438.1.1

COC Group:

Prism Sample ID: 159212

G0806703

Client Sample ID: P61.B9 10-12

Time Collected:

08/21/06 15:55

Time Submitted: 08/23/06

15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	90.8	%			1	SM2540 G	08/24/06 14:10	Ibrown	
<u>Diesel Range Organics (DRO) by GC</u> Diesel Range Organics (DRO)	: <u>-FID</u> 2000	mg/kg	150	44	20	8015B	08/27/06 10:09	jvogel	Q17317
Sample Preparation:			25.19	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	•	% Recovery	Cont	trol Limits
					o-Terphen	yl	DO #	1	49 - 124
Sample Weight Determination									
Weight 1	6.38	g			1	GRO	08/25/06 0:00	lbrown	
Weight 2	6.01	g			1	GRO	08/25/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	1400	mg/kg	77	30	500	8015B	08/26/06 17:16	grappaccioli	Q17278
					Surrogate	1	% Recovery	Cont	rol Limits
					aaa-TFT		DO #		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project ID:

Project Name: Richmond Co.

NCDOT Parcel 61

Project No.:

WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B10 10-12

Prism Sample ID: 159213 COC Group:

G0806703

Time Collected:

08/21/06 16:25

Time Submitted: 08/23/06

15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Tim		Analyst	Batch ID
Percent Solids Determination										
Percent Solids	91.4	%			1	SM2540 G	08/24/06 1	14:10	lbrown	
Diesel Range Organics (DRO) by G	C-FID									
Diesel Range Organics (DRO)	2800	mg/kg	380	110	50	8015B	08/27/06 1	10:47	jvogel	Q17317
Sample Preparation:			25.38	g /	1 mL	3545	08/25/06	13:00	wconder	P16198
					Surrogate	•	% Reco	overy	Cont	rol Limits
					o-Terphen	ıyl		DO #		19 - 124
Sample Weight Determination										
Weight 1	6.46	g			1	GRO	08/28/06 0	0:00	lbrown	
Weight 2	5.28	g			1	GRO	08/28/06 0	0:00	lbrown	
Gasoline Range Organics (GRO) by	/ GC-FID									
Gasoline Range Organics (GR	910	mg/kg	77	30	500	8015B	08/26/06 1	17:56	grappaccioli	Q17278
					Surrogate	.	% Reco	overy	Cont	rol Limits
					aaa-TFT			DO #		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments,

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 61
Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B11 8-10

Prism Sample ID: 159214 COC Group: G0806703

Time Collected: 08/21/06 17:10 Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	92.6	%			1	SM2540 G	08/24/06 14:10	Ibrown	
1 Grount Condo	92.0	70			•	31V12340 G	00/24/00 14.10	IDIOWII	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	33	mg/kg	7.6	2.2	1	8015B	08/26/06 19:39	jvogel	Q17317
Sample Preparation:			25.11	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	;	% Recovery	Cont	rol Limits
					o-Terphen	yl	88	4	9 - 124
Sample Weight Determination									
Weight 1	6.07	g			1	GRO	08/25/06 0:00	Ibrown	
Weight 2	5.52	g			1	GRO	08/25/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.6	2.9	50	8015B	08/25/06 21:58	grappaccioli	Q17278
					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		129	5	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 61
Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B12 10-12

Prism Sample ID: 159215

COC Group:

G0806703

Time Collected: 08/21/06 17:40 Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	87.3	%			1	SM2540 G	08/24/06 14:10	lbrown	
Diesel Range Organics (DRO) by G	C-FID		·						
Diesel Range Organics (DRO)	82	mg/kg	8.0	2.3	1	8015B	08/26/06 20:17	jvogel	Q17317
Sample Preparation:			25.11	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	•	% Recovery	Cont	rol Limits
	÷				o-Terphen	yl	91		19 - 124
Sample Weight Determination Weight 1	3,75	•			1	GRO	08/25/06 0:00	lbrown	
,		g							
Weight 2	6.63	g			1	GRO	08/25/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	3300	mg/kg	80	3.1	500	8015B	08/26/06 15:57	grappaccioli	Q17278
		-			Surrogate		% Recovery	Conf	rol Limits
					aaa-TFT		DO #		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 61
Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B13 10-12

Prism Sample ID: 159216 COC Group: G0806703

Time Collected: 08/21/06 18:00

Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	88.5	%			1	SM2540 G	08/24/06 14:10	lbrown	
<u>Diesel Range Organics (DRO) by GO</u> Diesel Range Organics (DRO)	<u>:-FID</u> BRL	mg/kg	7.9	2.3	1	8015B	08/26/06 20:55	ivogel	Q17317
Sample Preparation:			25.3	g /	1 mL	3545	08/25/06 13:00		P16198
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	yl	81	4	19 - 124
Sample Weight Determination					·				
Weight 1	5.90	g			1	GRO	08/28/06 0:00	Ibrown	
Weight 2	6.08	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.9	3.1	50	8015B	08/25/06 22:41	grappaccioli	Q17278
					Surrogate	ı	% Recovery	Cont	rol Limits
					aaa-TFT		111	5	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 61
Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B14 6-8

Prism Sample ID: 159217

COC Group: G0806703

Time Collected: 08/21/06 18:30 Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	91.5	%			1	SM2540 G	08/24/06 1 4:10	lbrown	
Diesel Range Organics (DRO) by G									
Diesel Range Organics (DRO)	BRL	mg/kg	7.7	2.2	1	8015B	08/27/06 9:36	jvogel	Q17317
Sample Preparation:			25.37	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	ı	% Recovery	Cont	rol Limits
					o-Terphen	yl	82		19 - 124
Sample Weight Determination									
Weight 1	6.36	g			1	GRO	08/25/06 0:00	lbrown	
Weight 2	6.46	g			1	GRO	08/25/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.7	3.0	50	8015B	08/25/06 23:24	grappaccioli	Q17278
•					Surrogate	ı	% Recovery	Cont	rol Limits
			•		aaa-TFT		117	<u>-</u>	55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 61
Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B15 10-12

Prism Sample ID: 159218

COC Group:

G0806703

Time Collected: 08/21/06 18:45 Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	86.5	%			1	SM2540 G	08/24/06 14:10	lbrown	
Fercent Solids	60.5	%			Ī	SIVI2540 G	08/24/06 14:10	IDIOWII	
Diesel Range Organics (DRO) by G	C-FID								
Diesel Range Organics (DRO)	4.5 J	mg/kg	8.1	2.3	1	8015B	08/26/06 22:02	jvogel	Q17317
Sample Preparation:			25.04	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	yl	61	4	49 - 124
Sample Weight Determination									
Weight 1	6.21	g			1	GRO	08/28/06 0:00	Ibrown	
Weight 2	5.65	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	8.1	3.1	50	8015B	08/26/06 14:39	grappaccioli	Q17278
					Surrogate	ı	% Recovery	Cont	rol Limits
					aaa-TFT		94		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: NCDOT Parcel 61
Project No.: WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B16 8-10

Prism Sample ID: 159219 COC Group: G080676

COC Group: G0806703 Time Collected: 08/21/06 19:00

Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination									
Percent Solids	92.3	%			1	SM2540 G	08/24/06 14:10	lbrown	
Diesel Range Organics (DRO) by GO	:-FID								
Diesel Range Organics (DRO)	27	mg/kg	7.6	2.2	1	8015B	08/27/06 0:46	jvogel	Q17317
Sample Preparation:			25.3	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate	•	% Recovery	Conf	trol Limits
					o-Terphen	yl	85	4	49 - 124
Sample Weight Determination Weight 1	5.80	g			1	GRO	08/25/06 0:00	Ibrown	
Weight 2	5.22	g			1	GRO	08/25/06 0:00	ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.6	2.9	50	8015B	08/26/06 0:45	grappaccioli	Q17278
					Surrogate	:	% Recovery	Cont	trol Limits
					aaa-TFT		112		55 - 129

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.: NCDOT Parcel 61 WBS# 34438.1.1

Sample Matrix: Soil

Client Sample ID: P61.B17 8-10

Prism Sample ID: 159220

COC Group:

G0806703

Time Collected: 08/22/06 9:00 Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination	88.0	0/			1	SM2540 G	08/24/06 14:10	lbrown	
Percent Solids	88.9	%			ţ	SIVI2540 G	08/24/06 14:10	IDIOWII	
Diesel Range Organics (DRO) by Go	C-FID								
Diesel Range Organics (DRO)	BRL	mg/kg	7.9	2.2	1	8015B	. 08/27/06 2:02	jvogel	Q17317
Sample Preparation:			25.13	g /	1 mL	3545	08/25/06 13:00	wconder	P16198
					Surrogate)	% Recovery	Cont	rol Limits
					o-Terphen	yl	50		19 - 124
Sample Weight Determination									
Weight 1	5.28	g			1	GRO	08/28/06 0:00	lbrown	
Weight 2	6.28	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.9	3.1	50	8015B	08/26/06 15:18	grappaccioli	Q17278

One surrogate recovery was outside the control limits. Sample analysis was repeated with no improvement in recovery. No target compounds were detected in this sample. No further action was taken.

Surrogate	% Recovery	Control Limits
aaa-TFT	155 #	55 - 129

Laboratory Report

08/30/06

Batch

ID

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.: Sample Matrix: Soil

WBS# 34438.1.1

Client Sample ID: P61.B17 8-10

Prism Sample ID: 159220

COC Group:

G0806703

Time Collected:

08/22/06

Time Submitted: 08/23/06

15:10

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analyst
			Limit		Factor		Date/Time	

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Level II QC Report

8/30/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project ID:

Project Name: Richmond Co.

COC Group Number: G0806703

Project No.:

NCDOT Parcel 61 WBS# 34438.1.1

Date/Time Submitted: 8/23/06

Gasoline Range Organics (GRO) by GC-FID, method 8015B

Method Bla	ank 	Result	RL	Control Limit	Units				QC Batch ID
	Gasoline Range Organics (GRO)	ND	7	<3.5	mg/kg				Q17278
Laboratory	Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %		· ·	QC Batch ID
	Gasoline Range Organics (GRO)	45.85	50	mg/kg	92	67 - 116			Q17278
Matrix Spil- Sample ID:	ce	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
159204	Gasoline Range Organics (GRO)	55.65	50	mg/kg	111	57 - 113			Q17278
Matrix Spik	e Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch ID
159204	Gasoline Range Organics (GRO)	56.1	50	mg/kg	112	57 - 113	1	0 - 23	Q17278
Method Bla	ank	Result	RL	Control Limit	Units				QC Batch ID
	Diesel Range Organics (DRO)	ND	7	<3.5	mg/kg				Q17317
Laboratory	Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	Diesel Range Organics (DRO)	54.73	80	mg/kg	68	55 - 109			Q17317
Matrix Spik	xe .	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
159204	Diesel Range Organics (DRO)	66.96	80	mg/kg	27 #	50 - 117			Q17317
	ro Duplicato				.	Recovery		RPD	
Matrix Spik	re publicate		0-11					n	
Matrix Spik Sample ID:	re publicate	Result	Spike Amount	Units	Recovery %	Range %	RPD %	Range %	QC Batch ID

#-See Case Narrative

Full Service Analytical & Environmental Solutions

449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409

Client Company Name: Socurrous-1€5 Report To/Contact Name: SHEPL

1107 Nowell RALEIGH, NC Reporting Address:

Email (Yes) (No) Email Address SKNOK @Sourious-1E1, Can CONC Fax (Yes) (No): 9/4873/074 Site Location Physical Address: <u>Rich Mond</u> Site Location Name: MCDOT PARLEZ _ Excel ___Other_ Phone: 9198731060 EDD Type: PDF_

CHAIN OF CUSTODY RECORD

PAGE / OF 2 QUOTE # TO ENSURE PROPER BILLING:

61-RICHMON *Please ATTACH any project specific reporting (QC LEVEL I 4-2502A **UST Project:** W35#3498,1, STATE PORIZET provisions and/or QC Requirements (Yes) (No) VCOOL Short Hold Analysis: Project Name: __ Invoice To: _ Address: __

Š	(9)	es) (No) es	(O)	×	e l
amples INT	leceived ON	PROPER PRESERVATIVES INC. Reproved WITHIN HOLDING TIME	USTODY SI	OLATILES	ROPER CO
ACT upon	WÉT ICE	ESERVAT THIN HOL	EALS INT	ATILES recid W/OUT HEADSP.	NTAINERS
arrival?	7 Temp 🕏	IVES indic	VCT?	IT HEADS	Sused?
•	٧	ated?	i i	PACE?	
3,5	\	داد	330		7
)	10				

□ 6-9 Days □ Standard 10 days □ Pre-Approved Turnaround time is based on business days, excluding weekends and holiday. Purchase Order No./Billing Reference 3260, O6A3. (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRISM LABORATORIES, INC. TO CLIENT) Samples received after 15:00 will be processed next business day "Working Days"

	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL	IN BY CLI	IENT/SAMPLI	ING PERSON	NE.	\
24 C	Certification: NELAC_	NELAC_	USACE_ FL_	1	NC /	
D		SC_OTHER	THER	N/A	ı	
ń	Water Chlorinated: YES	ated: YES_	80 			
	Sample Iced Upon Collection: YES NO	pon Collec	tion: YES	ON.		

PRISM USE ONLY	1		s must be	ny change	above. A	as requested	the analyses	sed with t	Prism to proce	orization for l	dy is your auth	Chain of Custone Project	pon relinduishing, this Chain of Custody is your authorization for Prism to proceed with the angleses as requested above. Any changes must be ubmitted in writing to the Prism Project Manager. There will be charges for shanes of the Angleses have been initialized.
PRESS DOWN FIRMLY - 3 COPIES	PRESS	SOLUTIONS. 185	16 W 770 W		Affiliation	hquem	In Bac	ter	Sampled By (Print Name) Kelin Buchfulm	Sampled By		Z. O	ampler's Signature
159a13			· ·	X	X	→	\	3	3	⇒	16.25		61.810.10-12 8/21/06
CIRP?				×	X		-	M	ره		1555	8/21/06	161.89.10-12
1891				×	X			W	ره		1535	-	261.88.10-12 8/21/06
[54ald				X	X			V	لى		1520	8/21/06	161.87-10-12 8/21/06
1 <u>7</u> 2005	-			×	X			W	8		1450	8/21/06	161.36.6-8
Stans				×	Х			.W	8		1440	8/21/06	61.85.6-3
154302				X	×			W	8		1405	8/21/00	261.84-6-8 8/21/oc
WE83				X	X			8	5	-	1200	8/21/00	261-83-6-8
34695				×	ス	*****		8	8		1150	8/21/06	8-9-28-12
horeby)				X	X	METHANET NONE	40 M1 802.	3	2	30 K	1140	8/21/06	201.81.6-8 8/21/06
REMARKS LAB ID NO.				020	20	THESENVA-	SIZE	Ŏ.	*TYPE SEE BELOW	WATER OR SLUDGE)	MILITARY	COLLECTED	SAMPLE DESCRIPTION
BRSM		ANALYSES REQUESTED	NALYSES	¥ /			INER	SAMPLE CONTAINER	SAMPL	MATRIX	TIME	DATE	CLIENT

analyses have been initialized. britted in writing to the Prism Project Manager. There will be cha

TO SEALS FOR TRANSPORTATION TO THE LABORATORY. RECEIVED AT THE LABORATORY.

CAC) ERS SHOULD BE TAPED SHUT WITH C

te Departure Time Site Arrival Time:

Additional Comments:

Field Tech Fee.

OTHER:

LANDFILL

ONC OSC CERCLA

RCRA:

SOLID WASTE:

DRINKING WATER:

Oother

□ Prísm Field Service GROUNDWATER:

☐ Hand-delivered

☐ Fed Ex ☐ UPS NPDES:

quished By: (Signature

G4846743

IN INCIDIO

ONC OSC ONC OSC

Full Service Analytical & Environmental Solutions

449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409

Client Company Name: SOCUTIONS-/ES Report To/Contact Name: SHER, KNOX Reporting Address: 1/01 NOW ell Ru

Fax (Yes) (No): 9/8673/074 Site Location Physical Address: *Kichmano Ca. NC* Opples ALE 191 NC 27607 NEDOT EDD Type: PDF____Excel__ Phone: 918873 1060 Site Location Name:

CHAIN OF CUSTODY RECORD

PAGE ZOFZ QUOTE # TO ENSURE PROPER BILLING:

UST Project: (Yes) (No) *Please ATTACH any project specific reporting (QC LEVEL I II III IV) Co' ARB Project Name: NCDOT - PARCET 61 - RICHMOND Address: STATE PROJECT # 11-8502 WCDOT - WRS# 34438. provisions and/or QC Requirements Short Hold Analysis: (Yes) (No) Invoice To: __

VOLATILES recidIW/OUT HEADSPAC sceived WITHIN HOLDING TIMES seived ON WET ICE? Temp PROPER CONTAINERS used? CUSTODY SEALS INTACTS

> ☐ 6-9 Days ☐ Standard 10 days ☐ Rush Werk Must Be Turnaround time is based on business days, excluding weekends and holidays. Purchase Order No./Billing Reference 3240. 06/3./VDo Email (Yes) (No) Email Address SKNOK @ BENTONENGE (On The Die Date 11 Day 12 Days 13 Days 14 Days (M5 Days) (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRISM LABORATORIES, INC. TO CLIENT) Samples received after 15:00 will be processed next business day "Working Days"

TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL

2 Sample Iced Upon Collection: YES Water Chlorinated: YES NO Certification: NELAC_

CLIENT	DATE	COLLECTED	(SOIL,	SAMPLE	E CONTAINER	INER	PRESERVA-		TANK (ANALTSES REGUESTED	MOES I EU			PRISM
SAMPLE DESCRIPTION	COLLECTED	MILITARY HOURS	WATER OR SLUDGE)	*TYPE SEE BELOW	NO.	SIZE	TIVES	3	2002				REMARKS	LAB ID NO.
261.811-8-10 8/21/06	8/21/06	1710	3016	9	W	40m1	METHANO! NOUE	X	×					159314
261. 1312-10-12 8/21/06	8/21/06	1740	_	9	. Ci		-	X	X					1553.
261-813-10-12 8/21/06	8/21/00	1800	-	9	W			X	X					159314
261.814-6-8	8/21/06	1830		5	W			X	X					159217
261.815-10-12 B/E1/06	8/21/06	1845	÷	ع	~		-	X	×			,		159918
361.816.8-10 3/21/06	3/21/00	1400		g)	N			X	V					54310
261. Brt.8-10 8/22/06	8/22/06	0400	~	9	N	\rightarrow	>	X	X		`			154230
	-		7											
								•						
Sampler's Signature	X.K		Sampled By	Sampled By (Print Name) .	Ker	Kevin Buchanor	house	Affiliation	in Soll	SOLUTIONS-165	163	G. C.	PRESS DOWN FIRMLY - 3 COPIES	3 COPIES
Joon relinguishing this Chain of Custody is your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	s Chain of Custo the Prism Proje	ody is your auth ct Manager. Th	orization for ere will be ch	Prism to proce larges for any o	sed with 1	the analyses after analyse	as requested ab	ove. Any ialized.	/ changes m	ust be			PRISM USE ONLY	SE ONLY
Signature By: (Signature)			# N	Received By: (Signature)	W.			1X	82 × 8	Military/Hours	è_	ditional C	Additional Comments: Site Arrival Time.	.ei

Site Departure Time:

Field Tech Fee

ONC OSC OTHER

ONC OSC

၁

S

ONC OSC

LANDFILL

CERCLA

RCRA:

SOLID WASTE: SC

DRINKING WATER:

ONC OSC

CORPTED AND VERIFIED AGAINST COC UNTIL JLD BE TAPED SHUT WITH CO

Other

Prism Field Service

☐ Hand-delivered

□ Fed Ex □ UPS NPDES:

Relinquished By: (Signature)

GROUNDWATER:

၁

ONC

ON COSCIONO

OV SEALS FOR TRANSPORTATION TO THE LABORATORY. (CEIVED AT THE LABORATORY.

JANJOIDO

#ONITAINER TVDE CONEC. A - Amhar C - Clase D - Dlactin TI - Toffan I inad Can VOA - Valatila Ovannian Anakwin 172-11

APPENDIX F LABORATORY ANALYTICAL REPORT – GROUNDWATER SAMPLE

Case Narrative

Date:

09/01/06

Company: N. C. Department of Transportation

Contact:

Sheri Knox

Address: c/o Solution - IES

1101 Nowell Road

Raleigh, NC 27607

Client Project ID:

NCDOT Parcel 61

Prism COC Group No:

G0806710

Collection Date(s):

08/22/06

Lab Submittal Date(s):

08/23/06

Client Project Name Or No: Richmond Co. WBS# 34438.1.1

This data package contains the analytical results for the project identified above and includes a Case Narrative, Laboratory Report and Quality Control Data totaling 18 pages. A chain-of-custody is also attached for the samples submitted to Prism for this project.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative. Quality control statements and/or sample specific remarks are included in the sample comments section of the laboratory report for each sample affected.

Semi Volatile Analysis

Analysis Note for Q17381 MSD Benzo(k)fluoranthene: Recovery and RPD was outside the control limits. This compound was not detected in samples associated with this batch. No further action was taken.

Volatile Analysis

Analysis Note for Q17267 MSD C5-C8 Aliphatics: Matrix interference is suspected.

Metals Analysis

N/A

Wet Lab and Micro Analysis

N/A

Please call if you have any questions relating to this analytical report. Date Reviewed by: Robbi A. Jones Angela D. Overcash Project Manager: Signature: Signature:

Review Date:

Approval Date: 09/01/06

Data Qualifiers Key Reference:

- B: Compound also detected in the method blank.
- #: Result outside of the QC limits.
- DO: Compound diluted out.
 - E: Estimated concentration, calibration range exceeded.
 - J: The analyte was positively identified but the value is estimated below the reporting limit.
- H: Estimated concentration with a high bias.
- L: Estimated concentration with a low bias.
- M: A matrix effect is present.

Notes: This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. The results in this report relate only to the samples submitted for analysis.

Laboratory Report

08/31/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.:

NCDOT Parcel 61 WBS# 34438.1.1

Sample Matrix: Water

Client Sample ID: P61.GW-1

Prism Sample ID: 159264

COC Group:

G0806710

Time Collected:

08/22/06 8:45

Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Purgeable Halocarbons and Aro	matics by GC-P	ID/ELCD							
1,1,1-Trichloroethane	BRL	μg/L	40	4.0	40	601/602	08/26/06 10:58	erussell	Q17284
1,1,2,2-Tetrachioroethane	BRL	μg/L	40	3.2	40	601/602	08/26/06 10:58	елиssell	Q17284
1,1,2-Trichloroethane	BRL	μg/L	40	2.0	40	601/602	08/26/06 10:58	erussell	Q17284
1,1-Dichloroethane	BRL	μg/L	40	2.0	40	601/602	08/26/06 10:58	erussell	Q17284
1,1-Dichloroethene	BRL.	μg/L	40	6.4	40	601/602	08/26/06 10:58	erussell	Q17284
1,2-Dibromoethane (EDB)	BRL	μg/L	40	2.4	40	601/602	08/26/06 10:58	erussell	Q17284
1,2-Dichlorobenzene	BRL	μg/L	40	6.8	40	601/602	08/26/06 10:58	erusseli	Q17284
1,2-Dichloroethane	BRL	μg/L	40	3.6	40	601/602	08/26/06 10:58	erussell	Q17284
1,2-Dichloropropane	BRL	µg/L	40	2.4	40	601/602	08/26/06 10:58	елиssell	Q17284
1,3-Dichlorobenzene	BRL	μg/L	40	6.8	40	601/602	08/26/06 10:58	erussell	Q17284
1,4-Dichlorobenzene	BRL	μg/L	40	6.8	40	601/602	08/26/06 10:58	erussell	Q17284
Benzene	1100	μg/L	20	3.6	40	601/602	08/26/06 10:58	erussell	Q17284
Bromodichloromethane	BRL	μg/L	40	2.8	40	601/602	08/26/06 10:58	erussell	Q17284
Bromoform	BRL	μg/L	40	1.6	40	601/602	08/26/06 10:58	erussell	Q17284
Bromomethane	BRL	μg/L	200	4.8	40	601/602	08/26/06 10:58	erussell	Q17284
Carbon tetrachloride	BRL	μg/L	40	6.0	40	601/602	08/26/06 10:58	erussell	Q17284
Chlorobenzene	BRL	μg/L	40	4.0	40	601/602	08/26/06 10:58	erussell	Q17284
Chloroethane	BRL	μg/L	200	4.4	40	601/602	08/26/06 10:58	erussell	Q17284
Chloroform	BRL	μg/L	40	2.4	40	601/602	08/26/06 10:58	erussell	Q17284
Chloromethane	BRL	μg/L	200	4.4	40	601/602	08/26/06 10:58	erussell	Q17284
cis-1,2-Dichloroethene	BRL	μg/L	40	10	40	601/602	08/26/06 10:58	erussell	Q17284
cis-1,3-Dichloropropene	BRL -	μg/L	40	3.6	40	601/602	08/26/06 10:58	erussell	Q17284
Dibromochloromethane	BRL	μg/L	40	2.0	40	601/602	08/26/06 10:58	erussell	Q17284
Dichlorodifluoromethane	BRL	μg/L	200	9.2	40	601/602	08/26/06 10:58	erusseli	Q17284
Ethylbenzene	3200	μg/L	40	5.2	40	601/602	08/26/06 10:58	erussell	Q17284
Isopropyl ether (IPE)	BRL	μg/L	200	1.6	40	601/602	08/26/06 10:58	erussell	Q17284
m,p-Xylenes	8100	μg/L	80	17	40	601/602	08/26/06 10:58	erussell	Q17284

Laboratory Report

08/31/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.:

WBS# 34438.1.1

Sample Matrix: Water

Client Sample ID: P61.GW-1

Prism Sample ID: 159264

COC Group:

G0806710

Time Collected:

08/22/06 8:45

Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Methyl t-butyl ether (MTBE)	BRL	μg/L	200	11	40	601/602	08/26/06 10:58	erussell	Q17284
Methylene Chloride	BRL	μg/L	200	7.6	40	601/602	08/26/06 10:58	erussell	Q17284
Naphthalene	600	μg/L	40	11	40	601/602	08/26/06 10:58	erusseli	Q17284
o-Xylene	6900	μg/L	400	120	400	601/602	08/26/06 11:42	erussell	Q17284
Tetrachloroethene	BRL	μg/L	40	5.6	40	601/602	08/26/06 10:58	erussell	Q17284
Toluene	16000	μg/L	400	52	400	601/602	08/26/06 11:42	erussell	Q17284
trans-1,2-Dichloroethene	BRL	μg/L	40	4.0	40 .	601/602	08/26/06 10:58	erussell	Q17284
trans-1,3-Dichloropropene	BRL	μg/L	40	3.6	40	601/602	08/26/06 10:58	erussell	Q17284
Trichloroethene	BRL	μg/L	40	3.6	40	601/602	08/26/06 10:58	erussell	Q17284
Trichlorofluoromethane	BRL	μg/L	200	12	40	601/602	08/26/06 10:58	erussell	Q17284
Vinyl chloride	BRL	µg/L	40	6.4	40	601/602	08/26/06 10:58	erussell	Q17284

					Surrogat	e	% Re	covery	,	Control Limits
					Bromochl	lorobenzene-ELC	D	118		56 - 148
					1,4-Difluo	robenzene-PID		108		69 - 140
Semivolatile Organic Compound	s by GC/MS									
1,2,4-Trichlorobenzene	BRL	μg/L	9.8	2.5	1	625	08/30/06	4:20	kelliot	Q17381
1,2-Dichlorobenzene	BRL	μg/L	9.8	2.6	1	625	08/30/06	4:20	kelliot	Q17381
1,3-Dichlorobenzene	BRL	μg/L	9.8	1.9	1	625	08/30/06	4:20	kelliot	Q17381
1,4-Dichlorobenzene	BRL	μg/L	9.8	2.4	1	625	08/30/06	4:20	kelliot	Q17381
2,4,5-Trichlorophenol	BRL	μg/L	9.8	2.5	1	625	08/30/06	4:20	kelliot	Q17381
2,4,6-Trichlorophenol	BRL	μg/L	9.8	1.8	1	625	08/30/06	4:20	kelliot	Q17381
2,4-Dichlorophenol	BRL	μg/L	9.8	1.9	1	625	08/30/06	4:20	kelliot	Q17381
2,4-Dimethylphenol	BRL	μg/L	9.8	0.66	1	625	08/30/06	4:20	kelliot	Q17381
2,4-Dinitrophenol	BRL	μg/L	49	0.66	1	625	08/30/06	4:20	kelliot	Q17381
2,4-Dinitrotoluene	BRL	μg/L	9.8	0.82	1	625	08/30/06	4:20	kelliot	Q17381
2,6-Dinitrotoluene	BRL	µg/L	9.8	1.6	1	625	08/30/06	4:20	kelliot	Q17381

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Laboratory Report

08/31/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID: Project No.: NCDOT Parcel 61

WBS# 34438.1.1

Sample Matrix: Water

Client Sample ID: P61.GW-1 Prism Sample ID: 159264 COC Group: G0806710

Time Collected:

08/22/06 8:45

Time Submitted: 08/23/06 15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
2-Chloronaphthalene	BRL	μg/L	9.8	2.2	1	625	08/30/06 4:20	kelliot	Q17381
2-Chlorophenol	BRL	μg/L	9.8	2.2	1	625	08/30/06 4:20	kelliot	Q17381
2-Methylphenol	13	μg/L	9.8	2.7	1	625	08/30/06 4:20	kelliot	Q17381
2-Nitrophenol	BRL	μg/L	9.8	2.3	1	625	08/30/06 4:20	kelliot	Q17381
3&4-Methylphenol	12	μg/L	9.8	3.6	1	625	08/30/06 4:20	kelliot	Q17381
3,3'-Dichlorobenzidine	BRL	μg/L	49	9.2	1	625	08/30/06 4:20	kelliot	Q17381
4,6-Dinitro-2-methylphenol	BRL	μg/L	49	0.86	1	625	08/30/06 4:20	kelliot	Q17381
4-Bromophenylphenylether	BRL	μg/L	9.8	2.0	1	625	08/30/06 4:20	kelliot	Q17381
4-Chloro-3-methylphenol	BRL	μg/L	9.8	1.7	1	625	08/30/06 4:20	kelliot	Q17381
4-Chlorophenylphenylether	BRL	μg/L	9.8	1.6	1	625	08/30/06 4:20	kelliot	Q17381
4-Nitrophenol	BRL	μg/L	49	0.59	1	625	08/30/06 4:20	kelliot	Q17381
Acenaphthene	BRL	μg/L	9.8	1.9	1	625	08/30/06 4:20	kelliot	Q17381
Acenaphthylene	BRL	μg/L	9.8	2.1	1	625	08/30/06 4:20	kelliot	Q17381
Anthracene	BRL	μg/L	9.8	0.96	1	625	08/30/06 4:20	kelliot	Q17381
Benzo(a)anthracene	BRL	μg/L	9.8	0.92	1	625	08/30/06 4:20	kelliot	Q17381
Benzo(a)pyrene	BRL.	μg/L	9.8	0.98	1	625	08/30/06 4:20	kelliot	Q17381
Benzo(b)fluoranthene	BRL	μg/L	9.8	1.7	1	625	08/30/06 4:20	kelliot	Q17381
Benzo(g,h,i)perylene	BRL	μg/L	9.8	2.1	1	625	08/30/06 4:20	kelliot	Q17381
Benzo(k)fluoranthene	BRL	μg/L	9.8	1.9	1	625	08/30/06 4:20	kelliot	Q17381
Bis(2-chloroethoxy)methane	BRL	μg/L	9.8	2.2	1	625	08/30/06 4:20	kelliot	Q17381
Bis(2-chloroethyl)ether	BRL	μg/L	9.8	2.1	1	625	08/30/06 4:20	kelliot	Q17381
Bis(2-chloroisopropyl)ether	BRL	μg/Ł	9.8	2.4	1	625	08/30/06 4:20	kelliot	Q17381
Bis(2-ethylhexyl)phthalate	BRL	μg/L	9.8	0.70	1	625	08/30/06 4:20	kelliot	Q17381
Butylbenzylphthalate	BRL	μg/L	9.8	0.69	1	625	08/30/06 4:20	kelliot	Q17381
Chrysene	BRL	µg/L	9.8	0.56	1	625	08/30/06 4:20	kelliot	Q17381
Di-n-butylphthalate	BRL	µg/L	9.8	1.4	1	625	08/30/06 4:20	kelliot	Q17381
Di-n-octylphthalate	BRL	μg/L	9.8	2.2	1	625	08/30/06 4:20	kelliot	Q17381
Dibenzo(a,h)anthracene	BRL	μg/L	9.8	1.1	1	625	08/30/06 4:20	kelliot	Q17381

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Laboratory Report

08/31/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.: WBS# 34438.1.1 Sample Matrix: Water

Client Sample ID: P61.GW-1 Prism Sample ID: 159264

COC Group:

G0806710

Time Collected:

08/22/06 8:45

Time Submitted:

08/23/06

15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Dibenzofuran	BRL	μg/L	9.8	2.2	1	625	08/30/06 4:20	kelliot	Q17381
Diethylphthalate	BRL	μg/L	9.8	1.1	1	625	08/30/06 4:20	kelliot	Q17381
Dimethylphthalate	BRL	μg/L	9.8	1.4	1	625	08/30/06 4:20	kelliot	Q17381
Fluoranthene	BRL	μg/L	9.8	0.92	1	625	08/30/06 4:20	kelliot	Q17381
Fluorene	BRL	μg/L	9.8	1.4	1	625	08/30/06 4:20	kelliot	Q17381
Hexachlorobenzene	BRL	μg/L	9.8	1.3	1	625	08/30/06 4:20	kelliot	Q17381
Hexachlorobutadiene	BRL	μg/L	9.8	2.2	1	625	08/30/06 4:20	kelliot	Q17381
Hexachlorocyclopentadiene	BRL	μg/L	9.8	2.4	1	625	08/30/06 4:20	kelliot	Q17381
Hexachloroethane	BRL	μg/L	9.8	1.8	1	625	08/30/06 4:20	kelliot	Q17381
Indeno(1,2,3-cd)pyrene	BRL	μg/L	9.8	1.7	. 1	625	08/30/06 4:20	kelliot	Q17381
Isophorone	BRL	μg/L	9.8	1.6	1	625	08/30/06 4:20	kelliot	Q17381
N-Nitrosodi-n-propylamine	BRL	μg/L	9.8	2.2	1	625	08/30/06 4:20	kelliot	Q17381
Naphthalene	440	μg/L	49	11	5	625	08/30/06 5:10	kelliot	Q17381
Nitrobenzene	BRL	µg/L	9.8	1.9	1	625	08/30/06 4:20	kelliot	Q17381
Pentachlorophenol	BRL	μg/L	9.8	1.7	1	625	08/30/06 4:20	kelliot	Q17381
Phenanthrene	BRL	μg/L	9.8	0.88	1	625	08/30/06 4:20	kelliot	Q17381
Phenol	BRL	μg/L	9.8	0.88	1	625	08/30/06 4:20	kelliot	Q17381
Pyrene	BRL	μg/L	9.8	0.89	1	625	08/30/06 4:20	kelliot	Q17381

Laboratory Report

08/31/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.:

WBS# 34438.1.1

Sample Matrix: Water

Client Sample ID: P61.GW-1

Prism Sample ID: 159264

COC Group:

G0806710

Time Collected:

08/22/06

Time Submitted:

08/23/06 15:10

8:45

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analyst	Batch
			Limit		Factor		Date/Time		ID

Surrogate recovery was outside of the control limits. Matrix interference is suspected. Severe emulsions were noted during sample extraction.

Sample Preparation:

1020 mL / 1 mL

625

08/28/06 10:00 smanivanh

P16220

Surrogate	% Recovery	Control Limits
Terphenyl-d14	103	10 - 154
Phenol-d5	. 11	10 - 48
Nitrobenzene-d5	5 #	22 - 103
2-Fluorophenoi	39	10 - 59
2-Fluorobiphenyl	98	29 - 112
2,4,6-Tribromophenol	100	27 - 125

TIC's By 625				Est.Conc	Units	S				
Unknown			****	460	μg/L	A STATE OF THE STA				
Unknown				2900	μg/L					
p-Xylene				2300	μg/L					
Ethylbenzene				1700	μg/L					
Benzene, Trimethyl				460	μg/L					
Benzene, Trimethyl				440	μg/L					
Benzene, Trimethyl				1200	μg/L					
Benzene, propyl-				290	μg/L					
Benzene, 1-ethyl-2-methyl				500	μg/L					
Benzene, 1,3-dimethyl				3800	μg/L					
Extractable Petroleum Hydrocarbo	ns by GC-FID									
C11-C22 Aromatics	290	μg/L	100	71	1	MADEP EPH	08/30/06	10:44	grappaccioli	Q17398
C19-C36 Aliphatics	BRL	μg/L	100	31	1	MADEP EPH	08/30/06	9:52	grappaccioli	Q17398
C9-C18 Aliphatics	3900	μg/L	200	150	2	MADEP EPH	08/30/06	9:52	grappaccioli	Q17398

Laboratory Report

08/31/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.: WBS# 34438.1.1

Sample Matrix: Water

Client Sample ID: P61.GW-1

Prism Sample ID: 159264

COC Group:

G0806710

Time Collected:

08/22/06

Time Submitted: 08/23/06

8:45

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analyst	Batch
•			Limit		Factor		Date/Time		ID

Analysis Note for C11-C22 Aromatics: Adjusted value.

Sample Preparation:

1000 mL / 2 mL

EPH

08/28/06 7:00

smanivanh P16211

Surrogate	% Recovery	Control Limits
o-Terphenyl	118	40 - 140
2-Fluorobiphenyl	103	40 - 140
2-Bromonaphthalene	62	40 - 140
1-Chloro-octadecane	118	40 - 140

Volatile Petroleum Hydrocarbons by GC-PID/FID

C5-C8 Aliphatics	6900	- μg/L	4000	2000	40	MADEP VPH	08/25/06 7:28	erussell	Q17267
C9-C10 Aromatics	5400	μg/L	4000	1400	40	MADEP VPH	08/25/06 7:28	erussell	Q17267
C9-C12 Aliphatics	1600 J	μg/L	4000	1400	40	MADEP VPH	08/25/06 7:28	erussell	Q17267

- Analysis Note for C5-C8 Aliphatics: Adjusted value.
- Analysis Note for C9-C12 Aliphatics: Adjusted value.

Surrogate	% Recovery	Control Limits
2,5-Dibromotoluene-PID	89	70 - 130
2,5-Dibromotoluene-FID	94	70 - 130

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

Angela D. Overcash, V.P. Laboratory Services

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co. Project ID:

NCDOT Parcel 61

Project No.: WBS# 34438.1.1 COC Group Number: G0806710

Date/Time Submitted: 8/23/06

Volatile Petroleum Hydrocarbons by GC-PID/FID, method MADEP VPH

Method Bla	ank			Control					QC Batch
		Result	RL	Limit	Units				ID
	C5-C8 Aliphatics	ND	100	<50	μg/L				Q17267
	C9-C10 Aromatics	ND	100	<50	μg/ L				Q17267
	C9-C12 Aliphatics	ND	100	<50	µg/L				Q17267
Laboratory	Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %		, , , , , , , , , , , , , , , , , , , ,	QC Batch ID
	C5-C8 Aliphatics	164.24	150	µg/L	109	70 - 130			Q17267
	C9-C10 Aromatics	48.93	50	μg/L	98	70 - 130			Q17267
	C9-C12 Aliphatics	97.92	100	µg/L	98	70 - 130			Q17267
Matrix Spil	(e	Result	Spike Amount	Units	Recovery	Recovery Range %			QC Batch
158646	C5-C8 Aliphatics	6847	6000	µg/L	70	70 - 130			Q17267
	C9-C10 Aromatics	1880	2000	μg/L	91	70 - 130			Q17267
	C9-C12 Aliphatics	4096	4000	μg/L	100	70 - 130			Q17267
Matrix Spil	re Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch ID
158646	C5-C8 Aliphatics	6502	6000	μg/L	65 #	70 - 130	5	0 - 25	Q17267
	C9-C10 Aromatics	1913	2000	μg/L	93	70 - 130	2	0 - 25	Q17267
	C9-C12 Aliphatics	4163	4000	µg/L	102	70 - 130	2	0 - 25	Q17267

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road

Raleigh, NC 27607

Project Name: Richmond Co.

Project ID:

Project No.:

WBS# 34438.1.1

NCDOT Parcel 61

COC Group Number: G0806710

Date/Time Submitted: 8/23/06

Purgeable Halocarbons and Aromatics by GC-PID/ELCD, method 601/602

thod Blank	Result	RL -	Control Limit	Units	QC Batch ID
1,1,1-Trichloroethane	ND	1	<0.5	μg/L	Q17284
1,1,2,2-Tetrachloroethane	ND	1	<0.5	µg/L	Q17284
1,1,2-Trichloroethane	ND	1	<0.5	µg/L	Q17284
1,1-Dichloroethane	ND	1	<0.5	µg/L	Q17284
1,1-Dichloroethene	ND	1	<0.5	μg/L	Q17284
1,2-Dibromoethane (EDB)	ND	1	<0.5	μg/L	Q17284
1,2-Dichlorobenzene	ND	1	<0.5	µg/L	Q17284
1,2-Dichloroethane	ND	1	<0.5	µg/L	Q17284
1,2-Dichloropropane	ND	1	<0.5	ha/r ha/r	Q17284
1,3-Dichlorobenzene	ND	1	<0.5	μg/L.	Q17284
1,4-Dichlorobenzene	ND	1	<0.5	μg/L	Q17284
Benzene	ND	0.5	<0.25	µg/L`	Q17284
Bromodichloromethane	ND	1	<0.5	μg/L	Q17284
Bromoform	ND	1	<0.5	μg/L	Q17284
Bromomethane	ND	5	<2.5	μg/L	Q17284
Carbon tetrachloride	ND	1	<0.5	µg/L	Q17284
Chlorobenzene	ND	1	<0.5	μg/L	Q17284
Chloroethane	ND	5	<2.5	µg/L.	Q17284
Chloroform	ND	1	<0.5	µg/L	Q17284
Chloromethane	ND	5	<2.5	μg/L	Q17284
cis-1,2-Dichloroethene	ND	1	<0.5	μg/L	Q17284
cis-1,3-Dichloropropene	ND	1	<0.5	µg/L	Q17284
Dibromochloromethane	ND	1	<0.5	µg/L	Q17284
Dichlorodifluoromethane	ND	5	<2.5	μg/L	Q17284
Ethylbenzene	ND	1	<0.5	μg/L	Q17284
isopropyl ether (IPE)	ND	5	<2.5	μg/L	Q17284
m,p-Xylenes	ND	2	<1	μg/L	Q17284
Methyl t-butyl ether (MTBE)	ND	5	<2.5	μg/L	Q17284
Methylene Chloride	ND	5	<2.5	μg/L	Q17284
Naphthalene	ND	1	<0.5	µg/L	Q17284
o-Xylene	ND	1	<0.5	μg/L	Q17284
Tetrachloroethene	ND	1	<0.5	µg/L	Q17284
Toluene	ND	1	<0.5	μg/L	Q17284
trans-1,2-Dichloroethene	ND	1	<0.5	μg/L	Q17284
trans-1,3-Dichloropropene	ND	1	<0.5	μg/L	Q17284
Trichloroethene	ND	1	<0.5	µg/L	Q17284
Trichlorofluoromethane	ND	5	<2.5	µg/L	Q17284
Vinyl chloride	ND	1	<0.5	μg/L	Q17284

Laboratory Control Sample					Recovery	
	Result	Spike Amount	Units	Recovery %	Range	QC Batch ID
1,1,1-Trichloroethane	21.368	20	µg/L	107	41 - 138	Q17284

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co. Project ID:

NCDOT Parcel 61

Project No.: WBS# 34438.1.1 COC Group Number: G0806710

Date/Time Submitted: 8/23/06

atory Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch ID
1,1,2,2-Tetrachloroethane	19.029	20	µg/L	95	10 - 184	Q17284
1,1,2-Trichloroethane	20.728	20	μg/L	104	39 - 136	Q17284
1,1-Dichloroethane	20.407	20	μ g /L	102	47 - 132	Q17284
1,1-Dichloroethene	19.802	20	μg/L	99	28 - 167	Q17284
1,2-Dibromoethane (EDB)	16.787	20	μg/L	84	78 - 131	Q17284
1,2-Dichlorobenzene	20.957	20	µg/L	105	37 - 154	Q17284
1,2-Dichloroethane	22.61	20	μg/L	113	51 - 147	Q17284
1,2-Dichloropropane	21.946	20	µg/L	110	44 - 156	Q17284
1,3-Dichlorobenzene	20.579	20	µg/L	103	50 - 141	Q17284
1,4-Dichlorobenzene	22.418	20	μg/L	112	42 - 143	Q17284
Benzene	19.956	20	µg/L	100	39 - 150	Q17284
Bromodichloromethane	20.11	20	μg/L	101	42 - 172	Q17284
Bromoform	14.534	20	μg/L	73	13 - 159	Q17284
Bromomethane	12.315	20	μg/L	62	10 - 144	Q17284
Carbon tetrachloride	21.418	20	μg/L	107	43 - 143	Q17284
Chlorobenzene	19.643	20	μg/L	98	38 - 150	Q17284
Chloroethane	14.886	20	μg/L	74	46 - 137	Q17284
Chloroform	22.336	20	μg/L	112	49 - 133	Q17284
Chloromethane	16.949	20	μg/L	85	10 - 193	Q17284
cis-1,2-Dichloroethene	20.739	20	μg/L	104	62 - 145	Q17284
cis-1,3-Dichloropropene	20.749	20	μg/L	104	22 - 178	Q17284
Dibromochloromethane	18.794	20	μg/L	94	24 - 191	Q1 7 284
Dichlorodifluoromethane	13.856	20	μg/L	69	48 - 148	Q17284
Ethylbenzene	20.591	20	μg/L	103	32 - 160	Q17284
Isopropyl ether (IPE)	19.935	20	μg/L	100	61 - 134	Q17284
m,p-Xylenes	39.481	40	μg/L	99	69 - 130	Q17284
Methyl t-butyl ether (MTBE)	20.428	20	μg/L	102	74 - 130	Q17284
Methylene Chloride	25.827	20	μ g/ L	129	25 - 162	Q17284
Naphthalene	21.253	20	µg/L	106	60 - 136	Q17284
o-Xylene	22.037	20	μg/L	110	66 - 129	Q17284
Tetrachloroethene	19.336	20	µg/L	97	26 - 162	Q17284
Toluene	20.427	20	μg/L	102	46 - 148	Q17284
trans-1,2-Dichloroethene	23.641	20	μg/L	118	38 - 155	Q17284
trans-1,3-Dichloropropene	19.904	20	μg/L	100	22 - 178	Q17284
Trichloroethene	19.284	20	µg/L	96	35 - 146	Q17284
Trichlorofluoromethane	15.012	20	μg/L	75	21 - 156	Q17284
Vinyl chloride	11.667	20	μg/L	58	28 - 163	Q17284

Matrix Spike Recovery Spike Amount QC Batch ID Recovery % Sample ID: Result Units 158647 1,1,1-Trichloroethane 878.16 800 μg/L 110 41 - 138 Q17284 1,1,2,2-Tetrachloroethane 786.44 800 μg/L 98 10 - 184 Q17284 1,1,2-Trichloroethane 821.6 μg/L 800 103 39 - 136 Q17284 1,1-Dichloroethane 903.84 800 μg/L 113 47 - 132 Q17284

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co. Project ID:

NCDOT Parcel 61

Project No.: WBS# 34438.1.1 COC Group Number: G0806710

Date/Time Submitted: 8/23/06 15:10

Matrix Spike Sample ID:		Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch
	1-Dichloroethene	806.04	800	μg/L	101	28 - 167	Q17284
	2-Dibromoethane (EDB)	727.8	800	µg/L	91	78 - 131	Q17284 Q17284
	2-Dichlorobenzene	853	800	μg/L	107	37 - 154	Q17284 Q17284
•	2-Dichloroethane	939.4	800	μg/L	117	51 - 147	Q17284
	2-Dichloropropane	872.12	800	μg/L	109	44 - 156	Q17284
	3-Dichlorobenzene	854.36	800	µg/L	107	50 - 141	Q17284
	4-Dichlorobenzene	876.36	800	μg/L	110	42 - 143	Q17284
	enzene	801.16	800	μg/L	100	39 - 150	Q17284
Br	omodichloromethane	806.8	800	µg/L	101	42 - 172	Q17284
Br	omoform	593	800	μg/L	74	13 - 159	Q17284
Br	omomethane	532	800	μg/L	67	10 - 144	Q17284
Cá	arbon tetrachloride	883.44	800	µg/L	110	43 - 143	Q17284
CI	nlorobenzene	792.12	800	μg/L	99	38 - 150	Q17284
CI	nloroethane	662.96	800	μg/L	83	46 - 137	Q17284
Ci	nloroform	890.04	800	μg/ L	111	49 - 133	Q17284
Cł	nloromethane	641.2	800	μg/L	80	10 - 193	Q17284
cis	s-1,2-Dichloroethene	893	800	μg/L	112	57 - 137	Q17284
cis	s-1,3-Dichloropropene	859.88	800	µg/L	107	22 - 178	Q17284
Di	bromochloromethane	830.96	800	μg/L	104	24 - 191	Q17284
Di	chlorodifluoromethane	560.12	800	μg/L	70	47 - 143	Q17284
Et	hylbenzene	827.52	800	μ g/L	103	32 - 160	Q17284
iso	propyl ether (IPE)	838.44	800	µg/L	105	60 - 132	Q17284
m,	p-Xylenes	1584.88	1600	μg/L	99	59 - 126	Q17284
Me	ethyl t-butyl ether (MTBE)	819.32	800	μg/L	102	73 - 130	Q17284
· Mo	ethylene Chloride	1046.64	800	μg/L	131	25 - 162	Q17284
Na	phthalene	857.52	800	μg/L	107	58 - 132	Q17284
0-2	Xylene	817.96	800	μg/L	102	62 - 125	Q17284
Τe	trachloroethene	2963.16	800	μg/L	48	26 - 162	Q17284
To	luene	817.08	800	μg/L	102	46 - 148	Q17284
tra	ns-1,2-Dichloroethene	1041.72	800	μg/L	130	38 - 155	Q17284
tra	ns-1,3-Dichloropropene	819.56	800	µg/L	102	22 - 178	Q17284
Tri	chloroethene	858.16	800	μg/L	107	35 - 146	Q17284
Tri	chlorofluoromethane	647.36	800	μ g/L	81	21 - 156	Q17284
Vîı	nyl chloride	528.16	800	μg/L	66	28 - 163	Q17284

Matrix Spike Duplicate Recovery RPD Spike Amount Range Range QC Batch Recovery RPD Sample ID: Result Units % 158647 1,1,1-Trichloroethane 873.2 800 μg/L 109 41 - 138 0 - 16Q17284 1,1,2,2-Tetrachloroethane 804.08 800 μg/L 101 10 - 184 2 0 - 14Q17284 1,1,2-Trichloroethane 861.64 800 μg/L 108 39 - 136 5 0 - 13Q17284 1,1-Dichloroethane 890 800 μg/L 111 47 - 132 2 0 - 14 Q17284 1,1-Dichloroethene 758.32 800 µg/L 95 28 - 167 0 - 17 Q17284 1,2-Dibromoethane (EDB) 750.56 800 μg/L 0 - 13 94 78 - 131 3 Q17284 1,2-Dichlorobenzene 871.64 800 μg/L 109 37 - 154 0 - 15 Q17284

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Project ID:

Project Name: Richmond Co.

NCDOT Parcel 61

Project No.: WBS# 34438.1.1

COC Group Number: G0806710

Date/Time Submitted: 8/23/06 15:10

Matrix Spil Sample ID:	ke Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch
•	1,2-Dichloroethane	946	800	µg/L	118	51 - 147	1	0 - 15	Q17284
	1,2-Dichloropropane	890.96	800	μg/L	111	44 - 156	2	0 - 12	Q17284
	1,3-Dichlorobenzene	856.56	800	μg/L	107	50 - 141	0	0 - 13	Q17284
	1,4-Dichlorobenzene	926.48	800	µg/L	116	42 - 143	6	0 - 14	Q17284
	Benzene	768.76	800	µg/L	96	39 - 150	4	0 - 12	Q17284
	Bromodichloromethane	802.12	800	μg/L	100	42 - 172	1	0 - 11	Q17284
	Bromoform	603.12	800	µg/L	75	13 - 159	2	0 - 10	Q17284
	Bromomethane	514.76	800	μg/L	64	10 - 144	3	0 - 21	Q17284
	Carbon tetrachloride	894.44	800	μg/L	112	43 - 143	1	0 - 14	Q17284
	Chlorobenzene	758.24	800	μg/L	95	38 - 150	4	0 - 12	Q17284
	Chloroethane	687.96	800	μg/L	86	46 - 137	4	0 - 18	Q17284
	Chloroform	945.44	800	μg/L	118	49 - 133	6	0 - 13	Q17284
	Chloromethane	697.12	800	µg/L	87	10 - 193	8	0 - 21	Q17284
	cis-1,2-Dichloroethene	837.96	800	µg/L	105	57 - 137	6	0 - 15	Q17284
	cis-1,3-Dichloropropene	885.52	800	μg/L	111	22 - 178	3	0 - 13	Q17284
	Dibromochloromethane	797.56	800	μg/L	100	24 - 191	4	0 - 10	Q17284
	Dichlorodifluoromethane	555.16	800	μg/L	69	47 - 143	1	0 - 21	Q17284
	Ethylbenzene	794.56	800	μg/L	99	32 - 160	4	0 - 10	Q17284
	Isopropyl ether (IPE)	814.72	800	µg/L	102	60 - 132	3	0 - 15	Q17284
	m,p-Xylenes	1511.1	1600	µg/L	94	59 - 126	5	0 - 11	Q17284
	Methyl t-butyl ether (MTBE)	805.16	800	μg/L	101	73 - 130	2	0 - 16	Q17284
	Methylene Chloride	1111.6	800	μg/L	139	25 - 162	6	0 - 16	Q17284
	Naphthalene	868.56	800	μg/L	109	58 - 132	1	0 - 17	Q17284
	o-Xylene	781.2	800	μg/L	98	62 - 125	5	0 - 13	Q17284
	Tetrachloroethene	2812.4	800	μg/L	29	26 - 162	5	0 - 14	Q17284
	Toluene	781.12	800	μg/L	98	46 - 148	5	0 - 11	Q17284
	trans-1,2-Dichloroethene	993.28	800	μg/L	124	38 - 155	5	0 - 17	Q17284
	trans-1,3-Dichloropropene	844.92	800	μg/L	106	22 - 178	3	0 - 10	Q17284
	Trichloroethene	817	800	µg/L	102	35 - 146	5	0 - 14	Q17284
	Trichlorofluoromethane	639.36	800	μg/L	80	21 - 156	1	0 - 19	Q17284
	Vinyl chloride	479.88	800	µg/L	60	28 - 163	10	0 - 20	Q17284

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co. Project ID:

Project No.:

NCDOT Parcel 61 WBS# 34438.1.1

COC Group Number: G0806710

Date/Time Submitted: 8/23/06

Semivolatile Organic Compounds by GC/MS, method 625

netho	d Blank	Result	RL	Control Limit	Units	QC Batch ID
	1,2,4-Trichlorobenzene	ND	10	<5	µg/L	Q17381
	1,2-Dichlorobenzene	ND	10	<5	μg/L	Q17381
	1,3-Dichlorobenzene	ND	10	<5	μg/L	Q17381
	1,4-Dichlorobenzene	ND	10	<5	µg/L	Q17381
	2,4,5-Trichlorophenol	ND	10	<5	µg/L	Q17381
	2,4,6-Trichlorophenol	ND	10	<5	μg/L	Q17381
	2,4-Dichlorophenol	ND	10	<5	µg/L	Q17381
	2,4-Dimethylphenol	ND	10	<5	μg/L	Q17381
	2,4-Dinitrophenol	ND	50	<25	µg/L	Q17381
	2,4-Dinitrotoluene	ND	10	<5	µg/L	Q17381
	2,6-Dinitrotoluene	ND	10	<5	μg/L	Q17381
	2-Chloronaphthalene	ND	10	<5	μg/L	Q17381
	2-Chlorophenol	ND	10	<5	μg/L	Q17381
	2-Methylphenol	ND	10	<5	µg/L	Q17381
	2-Nitrophenol	ND	10	<5	μg/L	Q17381
•	3&4-Methylphenol	ND	10	<5	μg/L	Q17381
	3,3'-Dichlorobenzidine	ND	50	<25	μg/L	Q17381
	4,6-Dinitro-2-methylphenol	ND	50	<25	µg/L	Q17381
	4-Bromophenylphenylether	ND	10	<5	μg/L	Q17381
	4-Chloro-3-methylphenol	ND	10	<5	μg/L	Q17381
	4-Chlorophenylphenylether	ND	10	<5	μg/L	Q17381
	4-Nitrophenol	ND	50	<25	μg/L	Q17381
	Acenaphthene	ND	10	<5	µg/L	Q17381
	Acenaphthylene	ND	10	<5	μ g/L	Q17381
	Anthracene	ND	10	<5	μg/L	Q17381
	Benzo(a)anthracene	ND	10	<5	μg/L	Q17381
	Benzo(a)pyrene	ND	10	<5	µg/∟	Q17381
	Benzo(b)fluoranthene	ND	10	<5	µg/L	Q17381
	Benzo(g,h,i)perylene	ND	10	<5	µg/L	Q17381
	Benzo(k)fluoranthene	ND	10	<5	μg/L	Q17381
	Bis(2-chloroethoxy)methane	ND	10	<5	µg/L	Q17381
	Bis(2-chloroethyl)ether	ND	10	<5	µg/L	Q17381
	Bis(2-chloroisopropyl)ether	ND	10	<5	μg/L	Q17381
	Bis(2-ethylhexyl)phthalate	ND	10	<5	μg/L	Q17381
	Butylbenzylphthalate	ND	10	<5	µg/L	Q17381
	Chrysene	ND	10	<5	μg/L	Q17381
	Di-n-butylphthalate	ND	10	<5	μg/L	Q17381
	Di-n-octylphthalate	ND	10	<5	μg/L	Q17381
	Dibenzo(a,h)anthracene	ND	10	<5	µg/L	Q17381
	Dibenzofuran	ND	10	<5	μg/L	Q17381
	Diethylphthalate	ND	10	<5	μg/L	Q17381
	Dimethylphthalate	ND	10	<5	h@/L	Q17381

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project ID:

Project Name: Richmond Co.

NCDOT Parcel 61

Project No.:

WBS# 34438.1.1

COC Group Number: G0806710

Date/Time Submitted: 8/23/06

15:10

od Blank	Result	RL	Control Limit	Units	QC Batch ID
Fluoranthene	ND	10	<5	µg/L	Q17381
Fluorene	ND	10	<5	µg/L	Q17381
Hexachlorobenzene	ND	10	<5	μg/L	Q17381
Hexachlorobutadiene	ND	10	<5	μg/L	Q17381
Hexachlorocyclopentadiene	ND	10	<5	μg/L	Q17381
Hexachloroethane	ND	10	<5	μg/L	Q17381
Indeno(1,2,3-cd)pyrene	ND	10	<5	µg/L	Q17381
Isophorone	ND	10	<5	μg/L	Q17381
N-Nitrosodi-n-propylamine	ND	10	<5	μg/L	Q17381
Naphthalene	ND	10	<5	μg/L	Q17381
Nitrobenzene	ND	10	<5	μg/L	Q17381
Pentachlorophenol	ND	10	<5	μg/L	Q17381
Phenanthrene	ND	10	<5	μg/L	Q17381
Phenol	ND	10	<5	μg/L	Q17381
Pyrene	ND	10	<5	µg/L	Q17381

1,2,4-Trichlorobenzene 73.81 100 µg/L 74 44 - 142 1,2-Dichlorobenzene 72.78 100 µg/L 73 32 - 129 1,3-Dichlorobenzene 72.32 100 µg/L 72 20 - 124 1,4-Dichlorobenzene 71.26 100 µg/L 71 20 - 124 2,4,6-Trichlorophenol 76.67 100 µg/L 77 37 - 144 2,4-Dichlorophenol 73.13 100 µg/L 73 39 - 135 2,4-Dimethylphenol 72.73 100 µg/L 73 32 - 119 2,4-Dinitrophenol 88.49 100 µg/L 88 10 - 191 2,4-Dinitrotoluene 98.57 100 µg/L 99 39 - 139 2,6-Dinitrotoluene 109.6 100 µg/L 110 50 - 158 2-Chlorophenol 66.36 100 µg/L 81 60 - 118 2-Chlorophenol 66.36 100 µg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 µg/L 93 10 - 181 4-Bromophenylphenylether 87.94 100 µg/L 93 10 - 181 4-Bromophenylphenylether 87.94 100 µg/L 88 53 - 127	Q17381
1,3-Dichlorobenzene 72.32 100 µg/L 72 20 - 124 1,4-Dichlorobenzene 71.26 100 µg/L 71 20 - 124 2,4,6-Trichlorophenol 76.67 100 µg/L 77 37 - 144 2,4-Dichlorophenol 73.13 100 µg/L 73 39 - 135 2,4-Dimethylphenol 72.73 100 µg/L 73 32 - 119 2,4-Dinitrophenol 88.49 100 µg/L 88 10 - 191 2,4-Dinitrotoluene 98.57 100 µg/L 99 39 - 139 2,6-Dinitrotoluene 109.6 100 µg/L 110 50 - 158 2-Chloronaphthalene 81.43 100 µg/L 81 60 - 118 2-Chlorophenol 66.36 100 µg/L 66 23 - 134 2-Nitrophenol 78.21 100 µg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 µg/L 93 10 - 181	Q(1) Q(1)
1,4-Dichlorobenzene 71.26 100 µg/L 71 20 - 124 2,4,6-Trichlorophenol 76.67 100 µg/L 77 37 - 144 2,4-Dichlorophenol 73.13 100 µg/L 73 39 - 135 2,4-Dimethylphenol 72.73 100 µg/L 73 32 - 119 2,4-Dinitrophenol 88.49 100 µg/L 88 10 - 191 2,4-Dinitrotoluene 98.57 100 µg/L 99 39 - 139 2,6-Dinitrotoluene 109.6 100 µg/L 110 50 - 158 2-Chloronaphthalene 81.43 100 µg/L 81 60 - 118 2-Chlorophenol 66.36 100 µg/L 66 23 - 134 2-Nitrophenol 78.21 100 µg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 µg/L 93 10 - 181	Q17381
2,4,6-Trichlorophenol 76.67 100 µg/L 77 37 - 144 2,4-Dichlorophenol 73.13 100 µg/L 73 39 - 135 2,4-Dimethylphenol 72.73 100 µg/L 73 32 - 119 2,4-Dinitrophenol 88.49 100 µg/L 88 10 - 191 2,4-Dinitrotoluene 98.57 100 µg/L 99 39 - 139 2,6-Dinitrotoluene 109.6 100 µg/L 110 50 - 158 2-Chloronaphthalene 81.43 100 µg/L 81 60 - 118 2-Chlorophenol 66.36 100 µg/L 66 23 - 134 2-Nitrophenol 78.21 100 µg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 µg/L 93 10 - 181	Q17381
2,4-Dichlorophenol 73.13 100 µg/L 73 39 - 135 2,4-Dimethylphenol 72.73 100 µg/L 73 32 - 119 2,4-Dinitrophenol 88.49 100 µg/L 88 10 - 191 2,4-Dinitrotoluene 98.57 100 µg/L 99 39 - 139 2,6-Dinitrotoluene 109.6 100 µg/L 110 50 - 158 2-Chloronaphthalene 81.43 100 µg/L 81 60 - 118 2-Chlorophenol 66.36 100 µg/L 81 60 - 118 2-Chlorophenol 78.21 100 µg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 µg/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 µg/L 93 10 - 181	Q17381
2,4-Dimethylphenol 72.73 100 µg/L 73 32 - 119 2,4-Dinitrophenol 88.49 100 µg/L 88 10 - 191 2,4-Dinitrotoluene 98.57 100 µg/L 99 39 - 139 2,6-Dinitrotoluene 109.6 100 µg/L 110 50 - 158 2-Chloronaphthalene 81.43 100 µg/L 81 60 - 118 2-Chlorophenol 66.36 100 µg/L 66 23 - 134 2-Nitrophenol 78.21 100 µg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 µg/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 µg/L 93 10 - 181	Q17381
2,4-Dinitrophenol 88.49 100 µg/L 88 10 - 191 2,4-Dinitrotoluene 98.57 100 µg/L 99 39 - 139 2,6-Dinitrotoluene 109.6 100 µg/L 110 50 - 158 2-Chloronaphthalene 81.43 100 µg/L 81 60 - 118 2-Chlorophenol 66.36 100 µg/L 66 23 - 134 2-Nitrophenol 78.21 100 µg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 µg/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 µg/L 93 10 - 181	Q17381
2,4-Dinitrotoluene 98.57 100 μg/L 99 39 - 139 2,6-Dinitrotoluene 109.6 100 μg/L 110 50 - 158 2-Chloronaphthalene 81.43 100 μg/L 81 60 - 118 2-Chlorophenol 66.36 100 μg/L 66 23 - 134 2-Nitrophenol 78.21 100 μg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 μg/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 μg/L 93 10 - 181	Q17381
2,6-Dinitrotoluene 109.6 100 μg/L 110 50 - 158 2-Chloronaphthalene 81.43 100 μg/L 81 60 - 118 2-Chlorophenol 66.36 100 μg/L 66 23 - 134 2-Nitrophenol 78.21 100 μg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 μg/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 μg/L 93 10 - 181	Q17381
2-Chloronaphthalene 81.43 100 µg/L 81 60 - 118 2-Chlorophenol 66.36 100 µg/L 66 23 - 134 2-Nitrophenol 78.21 100 µg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 µg/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 µg/L 93 10 - 181	Q17381
2-Chlorophenol 66.36 100 μg/L 66 23 - 134 2-Nitrophenol 78.21 100 μg/L 78 29 - 182 3,3'-Dichlorobenzidine 142.75 100 μg/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 μg/L 93 10 - 181	Q17381
2-Nitrophenol 78.21 100 μ g/L 78 29 - 182 3,3´-Dichlorobenzidine 142.75 100 μ g/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 μ g/L 93 10 - 181	Q17381
3,3´-Dichlorobenzidine 142.75 100 µg/L 143 10 - 262 4,6-Dinitro-2-methylphenol 93.14 100 µg/L 93 10 - 181	Q17381
4,6-Dinitro-2-methylphenol 93.14 100 µg/L 93 10 - 181	Q17381
	Q17381
4-Bromophenylphenylether 87.94 100 µg/L 88 53 - 127	Q17381
	Q17381
4-Chloro-3-methylphenol 74.76 100 μg/L 75 22 - 147	Q17381
4-Chlorophenylphenylether 87 100 µg/L 87 25 - 158	Q17381
4-Nitrophenol 25.3 100 μg/L 25 10 - 132	Q17381
Acenaphthene 84.06 100 μg/L 84 47 - 145	Q17381
Acenaphthylene 91.88 100 μg/L 92 33 - 145	Q17381
Anthracene 76.23 100 μg/L 76 27 - 133	Q17381
Benzo(a)anthracene 98.89 100 µg/L 99 33 - 143	Q17381
Benzo(a)pyrene 98.65 100 µg/L 99 17 - 163	Q17381
Benzo(b)fluoranthene 106.46 100 µg/L 106 24 - 159	Q17381
Benzo(g,h,i)perylene 100.66 100 µg/L 101 10 - 219	Q17381

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Richmond Co.

Project ID:

NCDOT Parcel 61

Project No.: WBS# 34438.1.1

COC Group Number: G0806710

Date/Time Submitted: 8/23/06 15:10

ratory Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %	QC Batch ID
Benzo(k)fluoranthene	74.35	100	μg/L	74	11 - 162	Q17381
Bis(2-chloroethoxy)methane	79.94	100	μg/L	80	33 - 184	Q17381
Bis(2-chloroethyl)ether	80.96	100	μg/L	81	12 - 158	Q17381
Bis(2-chloroisopropyl)ether	80.79	100	μg/L	81	36 - 166	Q17381
Bis(2-ethylhexyl)phthalate	95.82	100	μg/L	96	10 - 158	Q17381
Butylbenzylphthalate	95.47	100	μg/L	95	10 - 152	Q17381
Chrysene	91.25	100	μg/L	91	17 - 168	Q17381
Di-n-butylphthalate	86.41	100	μg/L	86	10 - 118	Q17381
Di-n-octylphthalate	96.32	100	μg/L	96	10 - 146	Q17381
Dibenzo(a,h)anthracene	102.13	100	μg/L	102	10 - 227	Q17381
Diethylphthalate	92.56	100	μg/L	93	10 - 114	Q17381
Dimethylphthalate	78.07	100	µg/L	78	10 - 112	Q17381
Fluoranthene	93.81	100	µg/L	94	26 - 137	Q17381
Fluorene	89.65	100	μg/L	90	59 - 121	Q17381
Hexachlorobenzene	90.08	100	μg/L	90	10 - 152	Q17381
Hexachlorobutadiene	77.63	100	μg/L	78	24 - 116	Q17381
Hexachlorocyclopentadiene	83.87	100	μg/L	84	32 - 103	Q17381
Hexachloroethane	68.25	100	µg/L	68	40 - 113	Q17381
Indeno(1,2,3-cd)pyrene	111.79	100	μg/L	112	10 - 171	Q17381
Isophorone	90.3	100	μg/L	90	21 - 196	Q17381
N-Nitrosodi-n-propylamine	93.5	100	μg/L	94	10 - 230	Q17381
Naphthalene	81.47	100	μg/L	81	21 - 133	Q17381
Nitrobenzene	68.94	100	μg/L	69	35 - 180	Q17381
Pentachlorophenol	122.16	100	μg/L	122	14 - 176	Q17381
Phenanthrene	89.77	100	μg/L	90	54 - 120	Q17381
Phenol	23.54	100	μg/L	24	10 - 112	Q17381
Pyrene	98.84	100	μg/L	99	52 - 115	Q17381

/latrix Spi	ke		Spike			Recovery Range	QC Batch
Sample ID: 1,2,4-Trichlorobenzene		Result	Amount	Units	Recovery %	%	ID ID
159411	1,2,4-Trichlorobenzene	154.7058	196.08	μg/L	79	44 - 142	Q17381
	1,2-Dichlorobenzene	147.5294	196.08	μg/L	75	32 - 129	Q17381
	1,3-Dichlorobenzene	151.8235	196.08	µg/L	77	20 - 124	Q17381
	1,4-Dichlorobenzene	144.7254	196.08	μg/L	74	20 - 124	Q17381
	2,4,6-Trichlorophenol	150.3137	196.08	µg/L	77	37 - 144	Q17381
	2,4-Dichlorophenol	153.3529	196.08	μg/L	78	39 - 135	Q17381
	2,4-Dimethylphenol	148.9019	196.08	μg/L	76	32 - 119	Q17381
	2,4-Dinitrophenol	147.4509	196.08	µg/L	75	10 - 191	Q17381
	2,4-Dinitrotoluene	189.5294	196.08	μg/L	97	39 - 139	Q17381
	2,6-Dinitrotoluene	229.6666	196.08	μg/L	117	50 - 158	Q17381
	2-Chloronaphthalene	165.5098	196.08	μg/L	84	60 - 118	Q17381
	2-Chiorophenol	140.0196	196.08	μg/L	71	23 - 134	Q17381
	2-Nitrophenol	161.5490	196.08	μg/L	82	29 - 182	Q17381
	3,3'-Dichlorobenzidine	280.2156	196.08	μg/L	143	10 - 262	Q17381

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

NCDOT Parcel 61

Project ID: Project No.:

WBS# 34438.1.1

COC Group Number: G0806710

Date/Time Submitted: 8/23/06

15:10

atrix Spike		Spike		Recovery	Recovery Range	QC Batch
Sample ID:	Result	Amount	Units	Recovery %	%	ID ID
4,6-Dinitro-2-methylphenol	178.3725	196.08	μg/L	91	10 - 181	Q17381
4-Bromophenylphenylether	181.7843	196.08	μg/L	93	53 - 127	Q17381
4-Chloro-3-methylphenol	159.4313	196.08	µg/L	81	22 - 147	Q17381
4-Chlorophenylphenylether	173.3921	196.08	µg/L	88	25 - 158	Q17381
4-Nitrophenol	78.1960 7	196.08	µg/L	40	10 - 132	Q17381
Acenaphthene	168.8823	196.08	μg/L	86	47 - 145	Q17381
Acenaphthylene	185.3921	196.08	µg/L	95	33 - 145	Q17381
Anthracene	155.0980	196.08	µg/L	79	27 - 133	Q17381
Benzo(a)anthracene	202.5490	196.08	μg/L	103	33 - 143	Q17381
Benzo(a)pyrene	197.9607	196.08	µg/L	101	17 - 163	Q17381
Benzo(b)fluoranthene	195.6666	196.08	μg/L	100	24 - 159	Q17381
Benzo(g,h,i)perylene	201.6078	196.08	μg/L	103	10 - 219	Q17381
Benzo(k)fluoranthene	178.1568	196.08	μg/L	91	11 - 162	Q17381
Bis(2-chloroethoxy)methan	e 160.0196	196.08	μg/L	82	33 - 184	Q17381
Bis(2-chloroethyl)ether	154.9803	196.08	μg/L	79	12 - 158	Q17381
Bis(2-chloroisopropyl)ether	159.2941	196.08	μg/L	81	36 - 166	Q17381
Bis(2-ethylhexyl)phthalate	196.5098	196.08	μg/L	100	10 - 158	Q17381
Butylbenzylphthalate	197.1568	196.08	μg/L	101	10 - 152	Q17381
Chrysene	188.6470	196.08	µg/L	96	17 - 168	Q17381
Di-n-butylphthalate	179.7058	196.08	μg/L	92	10 - 118	Q17381
Di-n-octylphthalate	199.0392	196.08	μg/L	102	10 - 146	Q17381
Dibenzo(a,h)anthracene	209.5490	196.08	μg/L	107	10 - 227	Q17381
Diethylphthalate	186.0784	196.08	μg/L	95	10 - 114	Q17381
Dimethylphthalate	165.0588	196.08	µg/L	84	10 - 112	Q17381
Fluoranthene	192.1176	196.08	μg/L	98	26 - 137	Q17381
Fluorene	183.2745	196.08	µg/L	93	59 - 121	Q17381
Hexachlorobenzene	182.6862	196.08	μg/L	93	10 - 152	Q17381
Hexachlorobutadiene	162.3921	196.08	μg/L	83	24 - 116	Q17381
Hexachlorocyclopentadiene	163.4509	196.08	µg/L	83	48 - 94	Q17381
Hexachloroethane	133.5882	196.08	μg/L	68	40 - 113	Q17381
Indeno(1,2,3-cd)pyrene	229.9411	196.08	µg/L	117	10 - 171	Q17381
Isophorone	183.3137	196.08	μg/L	93	21 - 196	Q17381
N-Nitrosodi-n-propylamine	189.8627	196.08	μg/L	97	10 - 230	Q17381
Naphthalene	170.8039	196.08	μg/L	87	21 - 133	Q17381
Nitrobenzene	148.4509	196.08	μg/L	76	35 - 180	Q17381
Pentachlorophenol	235.3333	196.08	μg/L	120	14 - 176	Q17381
Phenanthrene	182.9215	196.08	μg/L	93	54 - 120	Q17381
Phenol	73.17647	196.08	μg/L	37	10 - 112	Q17381
Pyrene	200.2941	196.08	μg/L	102	52 - 115	Q17381

Matrix Spi	ke Duplicate					Recovery		RPD	
Sample ID:	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	Result	Spike Amount	Units	Recovery %	Range %	RPD %	Range %	QC Batch ID
159411	1,2,4-Trichlorobenzene	147.82	196.08	μg/L	75	44 - 142	5	0 - 36	Q17381
	1,2-Dichlorobenzene	141.25	196.08	μg/L	72	32 - 129	4	0 - 38	Q17381

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co.

NCDOT Parcel 61

Project ID: Project No.: WBS# 34438.1.1 COC Group Number: G0806710

Date/Time Submitted: 8/23/06 15:10

Viatrix Spi Sample ID:	ke Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch ID
	1,3-Dichlorobenzene	145.17	196.08	µg/L	74	20 - 124	4	0 - 41	Q17381
	1,4-Dichlorobenzene	140.41	196.08	μg/L	72	20 - 124	3	0 - 36	Q17381
	2,4,6-Trichlorophenol	149.64	196.08	μg/L	76	37 - 144	0	0 - 30	Q17381
	2,4-Dichlorophenol	147.05	196.08	μg/L	75	39 - 135	4	0 - 31	Q17381
	2,4-Dimethylphenol	150.76	196.08	μg/L	77	32 - 119	1	0 - 26	Q17381
	2,4-Dinitrophenol	164.92	196.08	μg/L	84	10 - 191	11	0 - 30	Q17381
	2,4-Dinitrotoluene	184.43	196.08	μg/L	94	39 - 139	3	0 - 29	Q17381
	2,6-Dinitrotoluene	220.07	196.08	μg/L	112	50 - 158	4	0 - 15	Q17381
	2-Chloronaphthalene	155.68	196.08	µg/L	79	60 - 118	6	0 - 21	Q17381
	2-Chlorophenol	138.50	196.08	μg/L	71	23 - 134	1	0 - 35	Q17381
	2-Nitrophenol	164.58	196.08	μg/L	84	29 - 182	2	0 - 34	Q17381
	3,3'-Dichlorobenzidine	281.23	196.08	μg/L	143	10 - 262	0	0 - 50	Q17381
	4,6-Dinitro-2-methylphenol	185.01	196.08	μg/L	94	10 - 181	4	0 - 19	Q17381
	4-Bromophenylphenylether	179.76	196.08	µg/L	92	53 - 127	1	0 - 18	Q17381
	4-Chloro-3-methylphenol	154.05	196.08	µg/L	79	22 - 147	3	0 - 33	Q17381
	4-Chlorophenylphenylether	161.64	196.08	μg/L	82	25 - 158	7	0 - 19	Q17381
	4-Nitrophenol	72.333	196.08	µg/L	37	10 - 132	8	0 - 50	Q17381
	Acenaphthene	165.41	196.08	μg/L	84	47 - 145	2	0 - 20	Q17381
	Acenaphthylene	180.96	196.08	μg/L	92	33 - 145	2	0 - 24	Q17381
	Anthracene	149.72	196.08	μg/L	76	27 - 133	4	0 - 30	Q17381
	Benzo(a)anthracene	195.82	196.08	µg/L	100	33 - 143	3	0 - 26	Q17381
	Benzo(a)pyrene	194.82	196.08	μg/L	99	17 - 163	2	0 - 25	Q17381
	Benzo(b)fluoranthene	200.80	196.08	µg/L	102	24 - 159	3	0 - 29	Q17381
	Benzo(g,h,i)perylene	194.74	196.08	μg/L	99	10 - 219	3	0 - 27	Q17381
	Benzo(k)fluoranthene	146.33	196.08	μg/L	75	11 - 162	20 #	0 - 11	Q17381
	Bis(2-chloroethoxy)methane	166.19	196.08	μg/L	85	33 - 184	4	0 - 31	Q17381
	Bis(2-chloroethyl)ether	156.33	196.08	µg/L	80	12 - 158	1	0 - 36	Q17381
	Bis(2-chloroisopropyl)ether	148.54	196.08	μg/L	76	36 - 166	7	0 - 40	Q17381
	Bis(2-ethylhexyl)phthalate	183.70	196.08	μg/L	94	10 - 158	7	0 - 17	Q17381
	Butylbenzylphthalate	185.94	196.08	μg/L	95	10 - 152	6	0 - 15	Q17381
	Chrysene	182.15	196.08	μg/L	93	17 - 168	4	0 - 25	Q17381
	Di-n-butylphthalate	170.98	196.08	μg/L	87	10 - 118	5	0 - 27	Q17381
	Di-n-octylphthalate	186.54	196.08	μg/L	95	10 - 146	6	0 - 17	Q17381
	Dibenzo(a,h)anthracene	191.78	196.08	µg/L	98	10 - 227	9	0 - 28	Q17381
	Diethylphthalate	176.90	196.08	μg/L	90	10 - 114	5	0 - 16	Q17381
	Dimethylphthalate	164.29	196.08	μg/L	84	10 - 112	0	0 - 15	Q17381
-	Fluoranthene	185.98	196.08	μg/L	95	26 - 137	3	0 - 24	Q17381
	Fluorene	166.74	196.08	µg/L	85	59 - 121	9	0 - 15	Q17381
	Hexachlorobenzene	172.50	196.08	μg/L	88	10 - 152	6	0 - 18	Q17381
	Hexachlorobutadiene	156.37	196.08	μg/L	80	24 - 116	4	0 - 34	Q17381
	Hexachlorocyclopentadiene	161.72	196.08	µg/L	82	48 - 94	1	0 - 30	Q17381
	Hexachloroethane	131.13	196.08	µg/L	67	40 - 113	2	0 - 38	Q17381
	Indeno(1,2,3-cd)pyrene	223.23	196.08	μg/L	114	10 - 171	3	0 - 29	Q17381
	Isophorone	179.76	196.08	µg/L	92	21 - 196	2	0 - 32	Q17381

Level II QC Report

9/1/06

N. C. Department of Transportation

Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607 Project Name: Project ID:

Project Name: Richmond Co.

NCDOT Parcel 61

Project No.: WBS# 34438.1.1

COC Group Number: G0806710

Date/Time Submitted: 8/23/06 15:10

Matrix Spil	e Duplicate					Recovery		RPD	
Sample ID:		Result	Spike Amount	Units	Recovery %	Range %	RPD %	Range %	QC Batch ID
	N-Nitrosodi-n-propylamine	173.90	196.08	µg/L	89	10 - 230	9	0 - 36	Q17381
	Naphthalene	165.47	196.08	μg/L	84	21 - 133	3	0 - 42	Q17381
	Nitrobenzene	140.90	196.08	μg/L	72	35 - 180	5	0 - 25	Q17381
	Pentachlorophenol	243.58	196.08	μg/L	124	14 - 176	3	0 - 21	Q17381
	Phenanthrene	182.84	196.08	μg/L	93	54 - 120	0	0 - 29	Q17381
	Phenol	68.196	196.08	μ g/ L	35	10 - 112	7	0 - 39	Q17381
	Pyrene	183.64	196.08	μg/L	94	52 - 115	9	0 - 15	Q17381

Extractable Petroleum Hydrocarbons by GC-FID, method MADEP EPH

Method Bl	ank								
metriou Di		Result	RL	Control Limit	Units				QC Batch ID
	C11-C22 Aromatics	ND	100	<50	µg/L				Q17398
	C19-C36 Aliphatics	ND	100	<50	μg/L				Q17398
	C9-C18 Aliphatics	ND	100	<50	μg/L				Q17398
Laboratory	Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	C11-C22 Aromatics	1422	1700	µg/L	84	40 - 140			Q17398
	C19-C36 Aliphatics	705.8	800	μg/L	88	40 - 140			Q17398
	C9-C18 Aliphatics	380	600	µg/L	63	40 - 140			Q17398
Matrix Spike Sample ID:		Result	Spike Amount	Units	Recovery %	Recovery Range			QC Batch
158646	C11-C22 Aromatics	2181.4	1700	μg/L	128	40 - 140			Q17398
	C19-C36 Aliphatics	933	800	μg/L	117	40 - 140			Q17398
	C9-C18 Aliphatics	641.8	600	µg/L	107	40 - 140			Q17398
Matrix Spil Sample ID:	ke Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD %	RPD Range %	QC Batch
-	C11-C22 Aromatics	2076.2	1700	μg/L	122	40 - 140	5	0 - 50	Q17398
	C19-C36 Aliphatics	824.6	800	μg/L	103	40 - 140	12	0 - 50	Q17398
	C9-C18 Aliphatics	496	600	μg/L	83	40 - 140	26	0 - 50	Q17398

#-See Case Narrative

Full Service Analytical & Environmental Solutions

449 Springbrook Road • P.O. Box 240543 • Charlotte, NC 28224-0543 Phone: 704/529-6364 • Fax: 704/525-0409

Client Company Name: Socurrous-165

Report To/Contact Name: Shere Kwo x 101 Nowell Reporting Address:

Email (Yes) (No) Email Address SKNO× 足らしいかついていば Site Location Physical Address: Richardwa Co. NC Phone: 9/9873 1060 Fax (Yes) (No): 9/9873 ALE 9160 PALLER EDD Type: PDF ___ Excel ___Other. Site Location Name: MCDaT

CHAIN OF CUSTODY RECORD

Project Name: MCDOT - PARCE 61 - PICHMANS QUOTE # TO ENSURE PROPER BILLING: _ PAGE COF

UST Project: (Yes) (No) *Please ATTACH any project specific reporting (QC LEVEL I II III IV) WBS#3438,1, provisions and/or QC Requirements Short Hold Analysis: (Yes) (No) Address: STATE PRITECT nvoice To:_

	**										*	
D.O.	155000	地区的	9356	1 vor di	51.36	900	3.6	600	87	1026	Unit	žť
3	200	8 S M	3	3.31	ŝX	ε.,	ķ	1	Ø			Š.
, ji.	6.0		1	沙奥	25.	1	Ŷ	ĸ.	5		ă,	ŝ
35			1		24		ž.		ã	2.5	18	3
*		Traces	189	劉俊	30-	gyr.	V	×.	Υ.	1800	樑	Ģ.
26.	3728 E		18		20	£366	ź	No.	ŝ.	1922	3.2	ď.
891	30 A		8	4	83	¥-	×	Q.	Ŭ,	7		F
	Mark.		滋	2.3		åes	á	28	S.	N. C		ă
Δ.,	0			都 國	87		Ņ.	1	Ŷ.		W	ű
4.1		100	12	201	37			1.8	Å	C	12	ŧ.
П.		紅光等	13		1	37	Ц	82	×		120	Я
12	93640	Contract of	-3	Sales S	1.14	3	ü		ď,	DIM:	1	8
	200		ž			£ 1	Š	ķķ	3	330	18	a.
7	80	NEW Y	- 2	N.	£.	75.7	T	80	ğΙ	N/A	磷	ĕ
33.	111		N	8 S	8.1	Š.	ď	653		X	3	
		Albeir.	10	31.00	N	230	1	50	31		×	ā.
			1	6.AB	elisi e	344	á	-6	à	4	ΑŘ	A.
ď	1		3			544X	ť	33	,		Μě	Н
4	4			3.00	ğ, el	e a	ä	86	Š.	33	N.	Ġ
ķ	3519		23			N.	Ø	3	X			į.
40	200	200	100	10	16.38		άŘ	١Ŀ	ď,		鳢	å
			8	Q_{j}^{m}	1	4	3	U	Ţ,		1	Ē
13			Νŧ	⊆ %			'n,	25	S	1		à
л		N 5	1	O 🍇	ES	35	Ø	1	i k	350	12	á
13		建	海	=₩	5/2		¥	DOM:	18	- 15		ĕ
3			繎	200	- 8	機斗	ie	āΞ	ş,	. A	S.	á
A	763)-	-		78	5.4	388	쫛	ÞΑ	uş.	10	Ų.	ä
Y			4	$\rho_{\rm eff}$	Cs.	ğ.,	ă.	H	ŝ	- 9	X	3
п			M	H.	Z	2	S		Ð	N. S		4
9	MARK.		P.	士物	=8	웹 ::	2	3.7	Ŧ,	97	-0	3
и		21 11	1		5 8	317	X		E	22	ш	á
di	1	39 W		100	1	<u>.</u>	3	10	3)	8		j
	334	D	100	200	1.6	2.	2	j .	35	. =	a A	
	数斜耳	19 E	×ſ	D S		200	ű	8	*	=	15	2
		38 LU	Ø)	U.S	۷,	6	ă	14	被		100	ă
	350 C		7, (σ_{x}	4	37.1	Ŷ	44	Y)			1
	SVE Y	N VET ICE	ΩL	1.8	200	ĮL.	봙	X	숋		ωŘ	1
	2 H		χſ	1562	- 1	er.	盥	gran	ere Se	. 0	4	1
	**** ********************************	\sim \odot	Ņ.	400	58	8)	Q.	λ,	ã	<u>.</u>	œί	ä
3		S. O.	ıï.	L. U	Ö.	MT.	8	44	B	03		
	180	σ . Φ.	91	山溪	Φ,	OD	维	Ð	ŧ.	Y TI	300	å
Ы	1000	400.0	× E	No.			Ŧ,	3	斜	100		
	Ě	Receiv	· c	YX	e de Ce	b	N	160	ď	ത	W.	ı
.2	Mary 1	(%) of	Ø.	D. ST	ďΖ			4	ú	m	2	1
¥÷	300	o Œ	"i	E 6	1		¥	1	eş.	'n.	20	Ī
4	的解放	62.75	20	8 8	261	2015	Ś	370	á		À	1
ø				B	1	37	3	33	ď.		Œ	1
_		1									- 100	•
			Ŧ			-				I.	ŀ	

P	HENDERED BY PRISM LABORATORIES, INC. TO CLIENT)
Č	SERVICES
ĕ	holidays.
	<u> </u>
	"Working Days" Ge-9 Days G Standard 10 days G Pre-Approved
ပ္ပ	
2	Turchase Order No./Billing Reference 3600, Clark 3,//201

	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL	IN BY CL	IENT/SAMPL	ING PERS	SONNEI
^	Certification:	NELAC	USACE	H.	NC /
		သင	OTHER	N/A	 - -
٠.	Water Chlorinated: YES	sted: YES	NO		
	Sample Iced Upon Collection: YESNO	pon Collec	tion: YES 🗠	 }	٠.
툏.	ANALYSES REQUESTED				ppicss

•												· processings a	O-Lond
PRISM	LAB ID NO.	159a64								3 COPIES	X-INO ES	le:	E HO
	REMARKS					The Parties of the Pa				PRESS DOWN FIRMLY - 3 COPIES	(INO ESO WSIE	Additional Comments: Stie Avvall Time	Site Denamina
NESTED	1.00 May	X	-							183			1
ANALYSES REQUESTED	1000 A	X			ļ		-			Sroum	must be	Military/Hours	7
10/10/00	ACT TO THE PARTY OF THE PARTY O	X								Affiliation Securious - 1 En	Any changes	Stock Stock	
DDECEDYA	.,	Nowe, Hel									sted abo		
TAINER	SIZE	1,704'5 /								J Buckanan	he analyses a	Je Co	
	ON ON	0/		,						Kenin	sed with t	M	
SAMPLECON	*TYPE SEE BELOW	9								Sampled By (Print Name)	Prism to proce	Received Sy: (Shapature)	
MATRIX (SOIL.	WATER OR SLUDGE)	1420								Sampled By	orization for l	Receiv	100
TIME	MILITARY HOURS	0845	-						,		ly is your auth t Manager. Th	1	
DATE	COLLECTED	8/22/06								X	Chain of Custor		
CLIENT	SAMPLE DESCRIPTION	P61.6w-1	-							Sampler's Signature	Upon relitibushing, this Chain of Custody is your authorization for Prism to proceed wi subthitted in writing to the Prism Project Manager. There will be charges for any chang	remoduled By: (Signodore)	Relinguished By: (Signature)

OTHER G886714

LANDFILL

CERCLA

RCRA:

OBIGINIAL

SOLID WASTE:

DRINKING WATER:

GROUNDWATER:

Prism Field Service

C Fed Ex C UPS C Hand-delivered

BE SHOULD BE TAPED SHUT WITED AND VERIFIED AGAINST CO