PRELIMINARY SITE ASSESSMENT PARCEL 48, ROY BARRY BOSTICK PROPERTY 3569 US HIGHWAY 1 RICHMOND COUNTY, NORTH CAROLINA WBS ELEMENT: 34438.1.1; NCDOT PROJECT: R-2502 A

Prepared for: NC Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Prepared by: Solutions-IES 1101 Nowell Road Raleigh, North Carolina 27607

Solutions-IES Project No. 3260.06A3.NDOT

September 28, 2006

Sheri L. Knox, Project Manager

Dotte Schnitt-

Dottie Schmitt Environmental Specialist

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	BACKGROUND AND SITE DESCRIPTION	1
3.0	FIELD ACTIVITIES	2
4.0	SAMPLING RESULTS	3
5.0	DISCUSSION AND CONCLUSIONS	3

TABLES

TABLE 1 – SUMMARY OF FIELD SCREENING RESULTS FOR SOILTABLE 2 – SUMMARY OF SOIL ANALYTICAL RESULTS

FIGURES

FIGURE 1 – SITE LOCATION MAP FIGURE 2 – SITE MAP FIGURE 3 – SOIL BORING LOCATIONS AND EXTENT OF SOIL IMPACTS

APPENDICES

APPENDIX A – PHOTOGRAPHS APPENDIX B – GEOPHYSICAL INVESTIGATION APPENDIX C – BORING LOGS APPENDIX D – GPS COORDINATES OF BORING LOCATIONS APPENDIX E – LABORATORY ANALYTICAL REPORTS

T:\Project Files\NCDOT\3260.06A3.NDOT-Richmond\REPORTS\NCDOT 2502-A\PARCEL 48\reports\3260 Parcel 48 PSA Report-hm.doc

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) is widening the existing alignment of US Highway 1 near the towns of Marston and Hoffman, located in Richmond County, North Carolina. Acquisition of properties within the right-of-way is necessary prior to road construction. On July 19, 2006, Solutions-IES submitted a proposal (NC06554P) to conduct Preliminary Site Assessments (PSAs) on ten parcels of land located within the proposed right-ofway that are of concern to the NCDOT. This report summarizes the results of field activities conducted during the PSA for a portion of the property identified by NCDOT as Parcel 48, Roy Barry Bostick Property (**Figure 1**). The right-of-way portion of this site (Study Area) is more clearly identified on **Figure 2**. The scope of work executed at the site was performed in general accordance with Solutions-IES proposal NC06554P and was initiated based on a Notice to Proceed issued by the NCDOT Geotechnical Engineering Unit on July 20, 2006 under contract 7000007053, dated June 5, 2006.

2.0 BACKGROUND AND SITE DESCRIPTION

The subject property is located at 3569 US Highway 1, on the north side of US Highway 1, approximately 300 feet west of Tilley Street in Richmond County, North Carolina (site). According to field observations, the site contains one building and a propane tank. The surface of the site is covered with a mixture of grass and brush. Photographs of the Study Area at the site are presented in **Appendix A**. According to information provided in a Phase I Site Assessment (S&ME, Inc. "Limited Phase I Environmental Site Assessment", February 5, 1999), the buildings on the property were used to house a towing company that performed intermittent vehicle maintenance and race car assembly. Reportedly, an aboveground storage tank was located north of the building and used to store waste oil. However, the facility was not listed in the North Carolina Department of Environment and Natural Resources (NCDENR) underground storage tank (UST) database as of 1999.

If vehicle assembly and maintenance were performed on the site in the past, petroleum fuels may have been used on the property. In addition, it is possible that waste oil was also stored on the property. Therefore, there is a possibility that these constituents may have been released to the subsurface in the vicinity of the proposed right-of-way.

3.0 FIELD ACTIVITIES

Prior to mobilizing to the site to conduct subsurface sampling, Solutions-IES contacted North Carolina One Call to locate underground utilities in the study area of the site. Pyramid Environmental & Engineering, P.C. (Pyramid) was contracted to perform an electromagnetic survey of the subsurface in the proposed right-of-way and easement area. The electromagnetic survey equipment (EM61) identified various magnetic anomalies within the Study Area, including the possible presence of a small underground storage tank (UST) along the southwest corner of the building. The EM61 images are included in **Appendix B**, Figure 10.

After reviewing the background information and geophysical data, Solutions-IES elected to analyze soil samples collected at designated locations within the Study Area for total petroleum hydrocarbons (TPH). Chromium and lead were also analyzed due to the possibility of a waste oil release. These activities were conducted on August 22, 2006. No evidence of a UST system (i.e., vent pipes and/or pump islands) was observed within the proposed right-of-way. A total of 10 soil borings (borings P48-B1 through P48-B10) were advanced at the site in the locations depicted on **Figure 3**. These borings were labeled with the prefix "P48" to identify their location on Parcel 48. The borings were advanced with a truck-mounted Geoprobe[®] to a total depth of between 8 and 12 feet below ground surface (ft bgs). Borings P48-B1 AND P48-B2 were located at the southwest corner of the building, in the vicinity of the suspected small buried, metallic tank. Borings P48-B3 through P48-B10 were located near the northern boundary of the proposed right-of-way, approximately 50 to 65 feet apart.

Soil samples were obtained from each boring using a MacroCore[®] sampler fitted with single-use, disposable polyvinyl chloride (PVC) liners. Each liner was 4 feet in length. Upon retrieval, a portion of each 2-foot interval was placed in a resealable plastic bag. The bag were sealed and placed at ambient temperature for field screening with a flame ionization detector (FID). The remaining portion of each 2-foot interval was left in the PVC liner, wrapped in plastic and placed on ice for possible laboratory analysis.

Volatile organic compounds (VOCs) were allowed to accumulate in the headspace of the bag for approximately 20 minutes, after which time the headspace was scanned with the FID. The FID readings were recorded in the field logbook along with the soil description and indications of staining or odors, if present. Logs for each boring are presented in **Appendix C.** Soils from the

2

borings within the right-of-way of Parcel 48 generally consisted of fine silty sand (SM) and clayey sand (SC). The GPS coordinates for the borings are provided in **Appendix D**.

Headspace screening of the soil samples with the FID revealed the presence of low levels of volatile vapors in several of the samples. Concentrations ranged from no detections to 4.7 parts per million (ppm) in sample P48-B1 (8-10 ft bgs). These measurements are presented in **Table 1**. No distinguishable odors were noted in these samples.

Soil samples for laboratory analysis were retained from each boring at the sample intervals identified in **Table 1**. These samples were selected for analysis as they presented the highest FID measurements within the borings, or, if no volatile vapors were present, were obtained from the deepest interval sampled. The samples were placed in laboratory-supplied containers and stored on ice pending shipment to Prism Laboratories, Inc. in Charlotte, NC. Sample information was recorded on the chain-of-custody and the samples were submitted for chemical analysis of TPH gasoline range organics (GRO) by Modified EPA Method 5035/8015, TPH diesel range organics (DRO) by Modified EPA Method 3550/8015, and chromium and lead by EPA Method 6010B.

4.0 SAMPLING RESULTS

TPH DRO was detected in six of the 10 samples at concentrations above the laboratory reporting limit. Chromium and lead were detected above the laboratory reporting limit in the 10 soil samples collected. These data are summarized in **Table 2**. Laboratory reports associated with these samples are presented in **Appendix E**.

5.0 DISCUSSION AND CONCLUSIONS

The geophysical survey at the site revealed the potential presence of one small, buried metallic UST in the southwestern corner of the garage. The survey also identified metallic anomalies consistent with the presence of buried conduits and/or utilities. Solutions-IES installed 10 soil borings (P48-B1 – P48-B10) to determine the presence or absence of petroleum, chromium, and lead contamination within the Study Area, as well as to document soil conditions.

According to the laboratory analytical results, TPH DRO was detected above laboratory reporting limits in six soil samples. Four of these six samples exceeded the action level of 10 milligrams per kilogram (mg/kg) described for tank closure (*Guidelines for Tank Closure, North Carolina*

Underground Storage Tank Section (Guidelines), North Carolina Underground Storage Tank Section, State of North Carolina Department of Environment and Natural Resources [NCDENR] Division of Waste Management, September 2003). The detected values of TPH DRO range from 7.6 mg/kg (P48-B8 6-8 ft bgs) to 24 mg/kg (P48-B9 6-8 ft bgs). The presence of TPH DRO in soil is typically associated with a release of petroleum hydrocarbons such as diesel fuel. TPH GRO was not detected above the laboratory reporting limit in the 10 soil samples collected from the Study Area. The detected concentrations of chromium and lead did not exceed their respective regulatory limits provided in *Guidelines for Assessment and Corrective Action,* (North Carolina Underground Storage Tank Sections, NCDENR Division of Waste Management, April 2001).

Because soil samples P48-B5, P48-B6, P48-B7 and P48-B9 contained concentrations of TPH DRO greater than the action level for tank closure provided in the Guidelines, an area of impacted soils was estimated along the northern boundary of the Study Area (**Figure 3**). The analytical data suggest that petroleum impacts may extend over an area of approximately 30 feet wide by 300 feet long. From information obtained on Parcel 61, which was also along this alignment and assessed separately but as part of this project, the depth to groundwater was assumed to be approximately 11 ft bgs. Using this depth in the calculations, an estimate of the volume of impacted soil is approximately 3,700 cubic yards of soil.

Soil samples P48-B8 and P48-B10 contained TPH DRO at concentrations greater than the laboratory reporting limit, but less than the action level of 10 mg/kg. Because of these detected concentrations, proper transportation and disposal practices should be used in handling soil that may be excavated in the vicinity of these borings. During roadway construction, the NCDOT transportation/disposal contractor may use different criteria for estimating the area of impacted soil.

TABLES

TABLE 1 SUMMARY OF FIELD SCREENING RESULTS FOR SOIL Parcel 48, Roy Barry Bostick Property Richmond County, North Carolina WBS Element: 34438.1.1; NCDOT Project: R-2502 A Sample Collection Date: August 22, 2006

		Soil Borings								
Sample Depth Below Ground Surface	P48-B1	P48-B2	P48-B3	P48-B4	P48-B5	P48-B6	P48-B7	P48-B8	P48-B9	P48-B10
Surface		FID Reading (ppm)								
0 - 2 feet	2.6	ND	ND	ND	0.1	ND	ND	ND	ND	0.2
2 - 4 feet	3.1	ND	0.4	0.2	0.2	0.2	ND	ND	ND	0.6
4 - 6 feet	3.6	ND	0.5	0.5	0.3	0.4	ND	ND	ND	0.6
6 - 8 feet	3.3	0.4	0.3	0.3	1.0	0.7	0.1	ND	0.5	1.0
8 - 10 feet	4.7	2.8	NS							
10 - 12 feet	4.5	1.2	NS							

Notes:

FID = Flame Ionization Detector

FID readings were obtained with a Photovac MicroFID Flame Ionization Detector

ND = Not detected

NS = No sample taken

ppm = parts per million

Samples denoted by shaded cells were submitted for laboratory analysis.

TABLE 2 SUMMARY OF SOIL ANALYTICAL RESULTS Parcel 48, Roy Barry Bostick Property Richmond County, North Carolina WBS Element: 34438.1.1; NCDOT Project: R-2502 A

Sample ID			P48-B1 8-10	P48-B2 8-10	P48-B3 4-6	P48-B4 4-6	P48-B5 6-8	P48-B6 6-8	P48-B7 6-8	P48-B8 6-8	P48-B9 6-8	P48-B10 6-8
Depth (ft bgs)			8-10	8-10	4-6	4-6	6-8	6-8	6-8	6-8	6-8	6-8
Date Collected			8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006	8/22/2006
	Regulatory											
Parameter	Limit	Units										
		TOTAL P	ETROLEUM H	HYDROCARBO	ONS (EPA Meth	od 5035/8015B	for TPH-GRO,	EPA Method 35	50B/8015B for	TPH-DRO)		
TPH-DRO ¹	10	mg/kg	<7.7	<7.6	<7.5	<7.2	13	17	12	7.6	24	8.8
TPH-GRO ¹	10	mg/kg	<7.7	<7.6	<7.5	<7.2	<7.9	<7.8	<7.7	<7.6	<7.7	<7.6
	INORGANIC COMPOUDS (EPA Method 6010B)											
Chromium ²	27	mg/kg	11	13	2.7	3.5	13	17	15	11	19	15
Lead ²	270	mg/kg	4.4	4.6	2.2	2.5	4.0	4.8	4.3	3.4	3.5	5.1

NOTES:

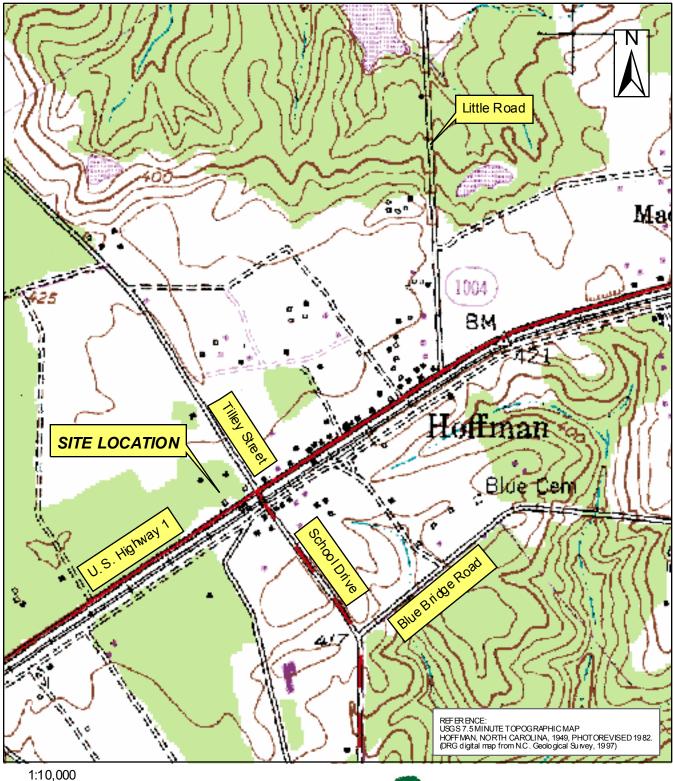
Bold values indicate detected concentrations

DRO = Diesel Range Organics

ft bgs = feet below ground surface

GRO = Gasoline Range Organics

mg/kg = milligrams per kilogram

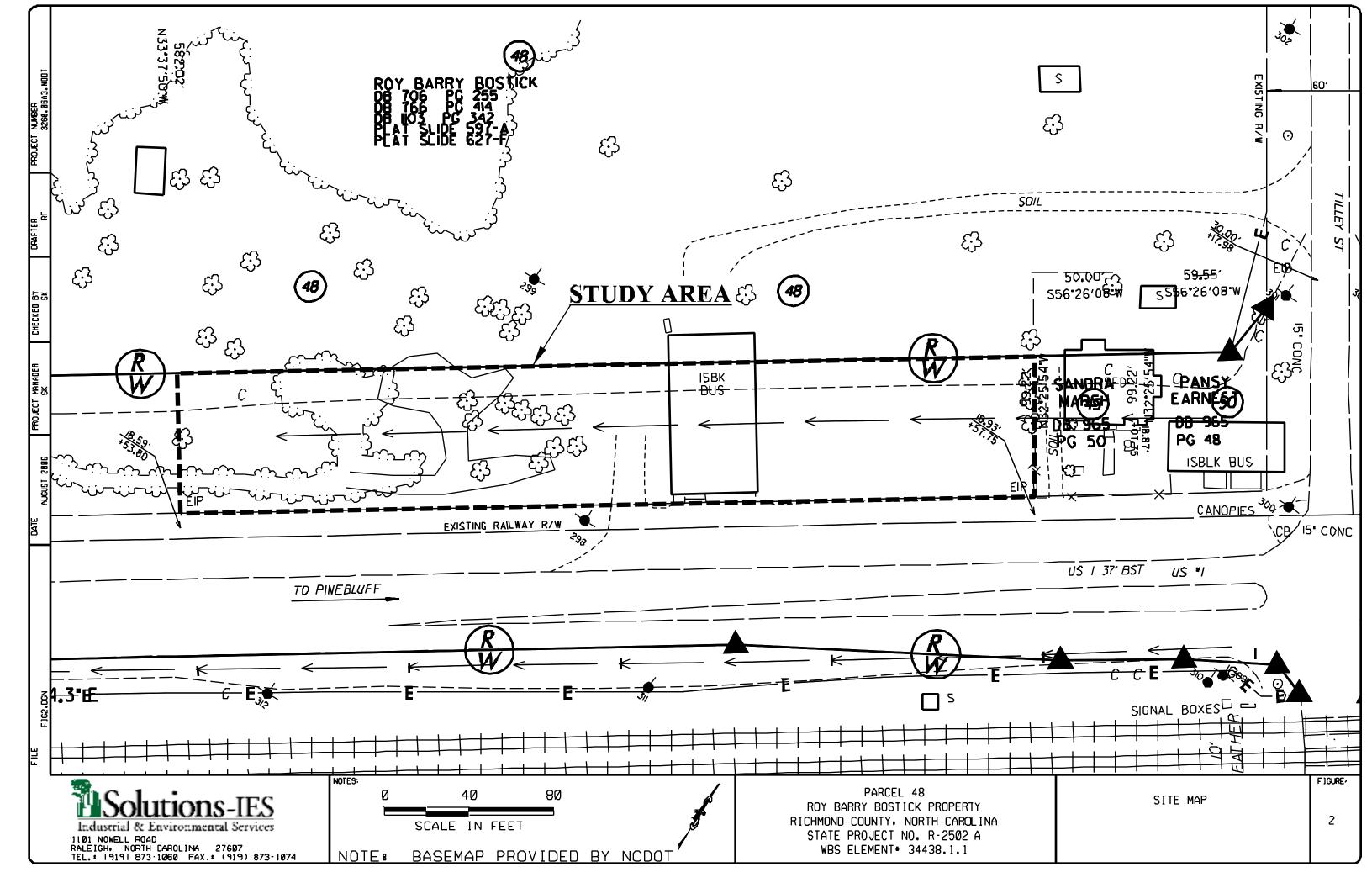

Shaded values exceed Regulatory Limits

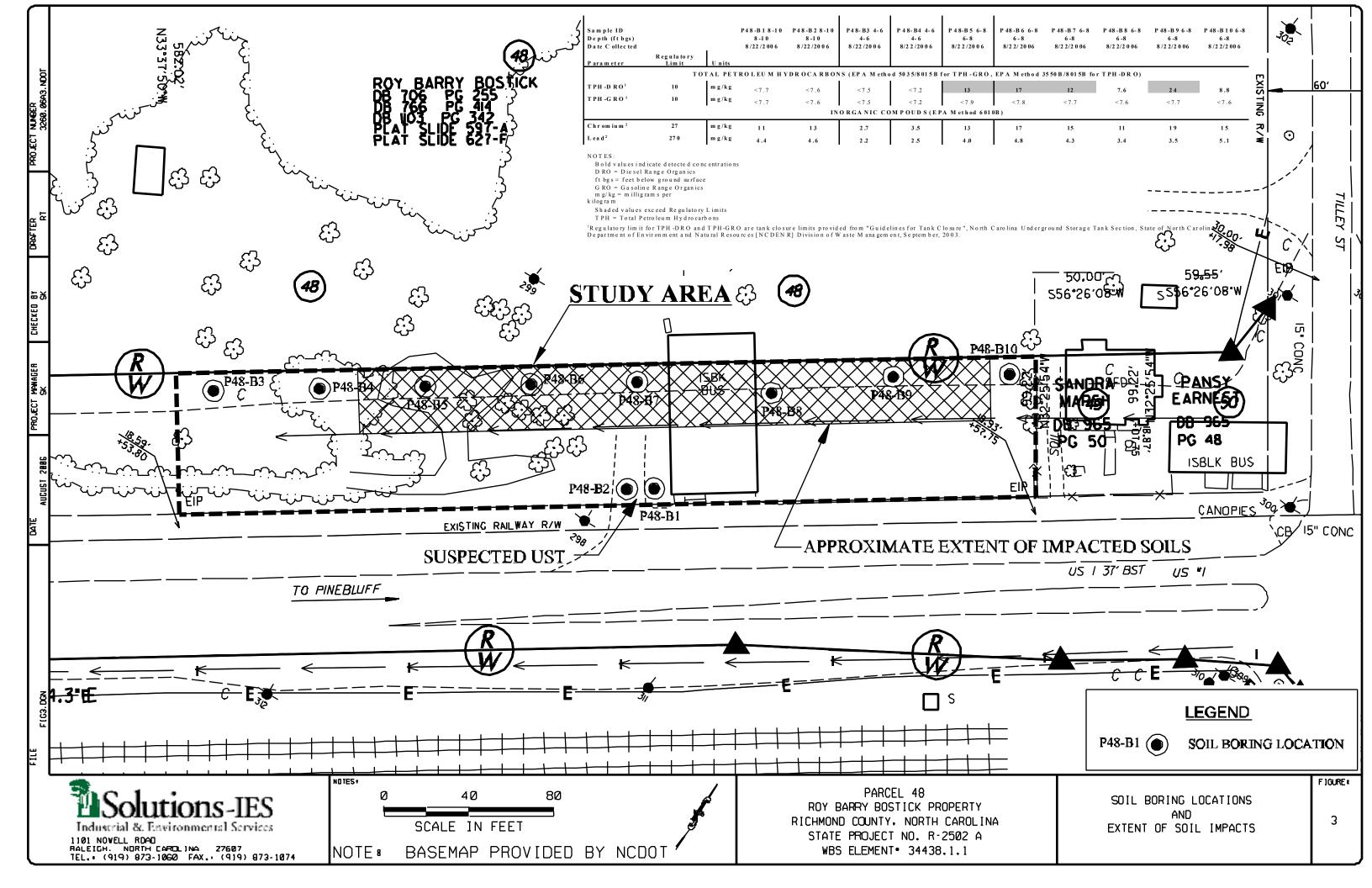
TPH = Total Petroleum Hydrocarbons

¹Regulatory limit for TPH-DRO and TPH-GRO are tank closure limits provided from "Guidelines for Tank Closure", North Carolina Underground Storage Tank Section, State of North Carolina Department of Environment and Natural Resources [NCDENR] Division of Waste Management, September, 2003.

²Regulatory limit for Chromium and Lead are MSCC values from "Guidelines for Assessment and Corrective Action", North Carolina Underground Storage Tank Section, NCDENR Division of Waste Management, April 2001. MSCCs are Soil-to-Groundwater Maximum Soil Contaminant Concentrations.

FIGURES




SITE LOCATION MAP PARCEL 48 ROY BARRY BOSTICK PROPERTY RICHMOND COUNTY, NORTH CAROLINA STATE PROJECT NO. R-2502 A, WBS ELEMENT# 34438.1.1

nuustriai & Environmental Services

1101 Nowell Road, Raleigh, NC 2 7609 Phone (919) 873-10 60, Fax (919) 873-1074					
Created by: Checked by:		Project: 3260.06A3.NDOT Date: SEPTEMBER 2006			
File: Software:	Figure 1.mxd ESRI ArcMap 9.1	FIGURE	1		

APPENDIX A

PHOTOGRAPHS

Photograph 1. Parcel 48 looking east to west along US Highway 1.

Photograph 2. Parcel 48 looking northwest along side of garage. Potential location of buried metallic UST identified by flags in foreground.

Photograph 3. Parcel 48 looking northeast toward garage (location of soil borings P48B3 through P48B7 identified with orange flags). US Highway 1 is located to the right of the photograph.

Photograph 4. Parcel 48 looking east behind garage. Propane tank located just behind building.

APPENDIX B

GEOPHYSICAL INVESTIGATION

Pyramid Project # 2006200

GEOPHYSICAL INVESTIGATION REPORT

GEOPHYSICAL SURVEYS FOR THE DETECTION OF METALLIC USTS

US 1 from SR 1001 to the Richmond County Line **Richmond**, North Carolina State Project Number U-3459

September 1, 2006

Report prepared for:

Sheri Knox, PE Solutions IES 1101 Nowell Rd. Raleigh, NC 27607

Prepared by:

Douglas Canavello, PG

Reviewed by:

Leatherman, PG Tim

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C. 700 NORTH EUGENE ST. GREENSBORO, NC 27401 (336) 335-3174

Solutions IES GEOPHYSICAL SURVEYS FOR THE DETECTION OF METALLIC USTS US 1 from SR 1001 to the Richmond County Line State Project Number U-3456

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 FIELD METHODOLOGY

3.0 DISCUSSION OF RESULTS

- 3.1 Parcel 6 Hillary McKay Property
- 3.2 Parcel 9 K.J. Lewis Property
- 3.3 Parcel 21 James Brigman Property
- 3.4 Parcel 48 Roy Barry Bostick Property
- 3.5 Parcel 50 Pansy Ernest Property
- 3.6 Parcel 51 Church of Deliverance Property
- 3.7 Parcel 61 Cooper & Brown Inc. Property
- 3.8 Parcel 70 Delia Lassiter Property
- 3.9 Parcel 22 Ivey Little Property
- 3.10 Parcel 68 James Pugh Property

4.0 SUMMARY & CONCLUSIONS

5.0 LIMITATIONS

FIGURES

- Figure 1 Site & Geophysical Equipment Photos
- Figure 2 Parcel 6 Hillary McKay Property EM61 Bottom Coil Results
- Figure 3 Parcel 6 Hillary McKay Property EM61 Differential Results
- Figure 4 Parcel 9 K.J. Lewis Property EM61 Bottom Coil Results
- Figure 5 Parcel 9 K.J. Lewis Property EM61 Differential Results
- Figure 6 Parcel 9 K.J. Lewis Property Photo & GPR Image of UST Locations
- Figure 7 Parcel 21 James Brigman Property EM 61 Bottom Coil Results
- Figure 8 Parcel 21 James Brigman Property EM 61 Differential Results

Figure 9	Parcel 21 – James Brigman Property – Photo & GPR Image of UST Locations
Figure 10	Parcel 48 – Roy Barry Bostick Property – EM61 Metal Detection Results
Figure 11	Parcels 50 & 51 – Earnest & Church Properties – EM 61 Bottom Coil Results

FIGURES (continued)

Figure 12	Parcels 50 & 51 – Earnest & Church Properties – EM 61 Bottom Coil Results
Figure 13	Parcels 50 & 51 - Earnest & Church Properties - Photo & GPR Image of UST
	Locations
Figure 14	Parcel 61 – Cooper & Brown Inc. Property – EM 61 Bottom Coil Results
Figure 15	Parcel 61 – Cooper & Brown Inc. Property – EM 61 Differential Results
Figure 16	Parcel 70 – Delia Lassiter Property – EM 61 Bottom Coil Results
Figure 17	Parcel 70 – Delia Lassiter Property – EM 61 Differential Results
Figure 18	Parcel 22 – Ivey Little Property – EM 61 Bottom Coil Results
Figure 19	Parcel 22 – Ivey Little Property – EM 61 Differential Results
Figure 20	Parcel 68 – James Pugh Property – EM 61 Metal Detection Results

1.0 INTRODUCTION

Pyramid Environmental & Engineering, PC conducted geophysical investigations for Solutions IES during the period of July 26 through August 28, 2006, within the proposed Right-of-Way (ROW) areas at 10 sites located in Richmond County, North Carolina. The work was done as part of the North Carolina Department of Transportation (NCDOT) road-widening project under StateProject number U-3459. The sites are located along the northern or western sides of US 1 from SR 1001 to the Richmond County Line. The geophysical surveys were conducted to determine if unknown metallic underground storage tanks (UST's) were present beneath the proposed ROW area of each site.

Solutions IES representative Ms. Sheri Knox, PE provided maps during the week of July 24, 2006 that outlined the geophysical survey area of each site. Ms. Knox also provided project management during the geophysical investigation of the sites. Geophysical surveys were conducted within the proposed ROW areas at the following 10 sites that are listed from the southern-most site to the northern-most site.

	Property Owner	Parcel	Present Use of Property
	Hillary McKay Property	(Parcel 6)	Grass-covered lot with garage
	K.J. Lewis Property	(Parcel 9)	Vacant, wooded lot
	James Brigman Property	(Parcel 21)	Vacant, grass-covered Lot
	Roy Barry Bostick Property	(Parcel 48)	Grass-covered lot and
garage			
	Pansy Ernest Property	(Parcel 50)	Grass-covered lot with vacant store
	Church of Deliverance Prop	. (Parcel 51)	Asphalt lot with active church
	Cooper & Brown Inc. Prop.	(Parcel 61)	Vacant lot and
commerci	al building		

Delia Lassiter Property	(Parcel 70)	Vacant lot and building
Ivey Little Property	(Parcel 22)	Vacant lot and building
James Pugh Property	(Parcel 68)	Vacant, wooded lot

Photographs of the above sites along with photographs of the geophysical equipment used for this project are presented in **Figure 1**.

2.0 FIELD METHODOLOGY

Prior to conducting the geophysical investigations, a 10-foot by 10-foot or 10-foot by 20-foot survey grid was established across the proposed ROW areas of the 10 sites using water-based marking paint or pin flags. These marks were used as X-Y coordinates for location control when collecting the geophysical data and establishing base maps for the geophysical results.

The geophysical investigations consisted of electromagnetic (EM) induction-metal detection surveys and ground penetrating radar (GPR) surveys. The EM surveys were performed using a Geonics EM61-MK1 metal detection instrument. According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. The EM61 data were digitally collected at each site along parallel northerly-southerly or easterly-westerly trending survey lines spaced five feet apart. The data were downloaded to a computer and reviewed in the filed and office using the Geonics DAT61W and Surfer for Windows Version 7.0 software programs.

Contour plots of the EM61 bottom coil results and the EM61 differential results for each site are included in this report. The bottom coil results represent the most sensitive component of the EM61 instrument and detect metal objects regardless of size. The bottom coil response can be used to

delineate metal conduits or utility lines, small, isolated metal objects, and areas containing insignificant metal debris.

The differential results are obtained from the difference between the top and bottom coils of the EM 61 instrument. The differential results focus on the larger metal objects such as drums and USTs and ignore the smaller insignificant metal objects.

GPR surveys were conducted across selected EM61 differential anomalies and steel-reinforced concrete using a GSSI SIR-2000 unit equipped with a 400 MHz antenna. Surveys were also performed across several areas where parked vehicles that obstructed the EM61 survey had since been removed. GPR data were digitally collected in a continuous mode along X and/or Y survey lines, spaced two to five feet apart using a vertical scan of 512 samples, at a rate of 48 scans per second. An 80 MHz high pass filter and an 800 MHz low pass filter were used during data acquisition with the 400 MHz antenna. GPR data were collected down to a maximum depth of approximately five feet, based on an estimated two-way travel time of 9 nanoseconds per foot.

The GPR data were downloaded to a field computer and later reviewed in the office using Radprint and Radan 5.0 software programs. The locations of GPR survey areas or individual GPR survey lines are shown as solid, purple polygons or solid purple lines, respectively, on the EM 61 differential contour plots. The approximate perimeters of probable or possible USTs, based on the geophysical results, were marked and labeled in the field using orange, water-based marking paint and pin flags (when possible). The approximate locations of probable or possible USTs are shown as magentacolored rectangles on the EM 61 bottom coil and differential contour plots. During the weeks of August 7, August 14, and August 28, preliminary contour plots of the EM61 bottom coil and the differential results were emailed to Ms. Knox.

3.0 DISCUSSION OF RESULTS

3.1 Parcel 6 – Hillary McKay Property

The Hillary McKay Property (Parcel 6) contains a former auto repair garage and a vacant wooden building. The ROW area consists of a flat-lying grass surface. The bottom coil results and the differential results are presented in **Figures 2 and 3**, respectively. GPR surveys conducted around the perimeter of the garage and wooden building, suggest that the EM 61 anomalies surrounding the two buildings are in response to the structures and perhaps buried miscellaneous metal debris. The remaining EM 61 anomalies are probably in response to buried miscellaneous metal debris. The geophysical results suggest that the proposed ROW area at Parcel 6 does not contain metallic UST's.

3.2 Parcel 9 – K.J. Lewis Property

The K.J. Lewis property (Parcel 9) is located immediately north of the Mercer Road and US 1 intersection, approximately 200 feet northeast of Parcel 6. The property consists of an abandoned building along the edge of US 1, which is surrounded by dense wooded terrain. A former pump island area is located in front of the building. The EM61 bottom coil results and the differential results are presented in **Figures 4 and 5**, respectively. Due to limited access to the site, the geophysical investigation was limited to the front portion of the property that is located along US 1.

Geophysical Investigation Report – Richmond County, NC Sites 09/01/06 Pyramid Environmental & Engineering, PC 4 The geophysical investigation detected the probable presence of two USTs located adjacent to the pump island area. The first UST is centered near grid coordinates X=84 Y=27, and buried approximately 1.5 feet below surface. The second UST is centered near grid coordinates X=103 Y=27, and is buried approximately 2.0 feet below surface. This latter UST appears to beliepartially beneath the former pump island area. The approximate locations of the USTs are shown as magntacolored rectangles in Figures 4 and 5. Based on the GPR results, the probable USTs are approximately 10 feet long and 4 feet wide. A photograph showing the approximate locations of the two probable USTs and the image of GPR survey lines Y=27.5, which intersects the probable USTs, are presented in **Figure 6**.

The EM61differential anomaly centered near grid coordinates X=118 Y=29, may possibly be in response to a UST or large metal object. However, GPR surveys could not be conducted across this EM anomaly due to the limited access caused by the dense wooded terrain. The approximate location of this possible UST is shown as a dashed, magenta-colored rectangle in Figures 4 and 5, and in the site photograph that is presented in Figure 6.

The remaining portion of the geophysical survey area does not appear to contain significant, buried, metal objects.

3.3 Parcel 21 – James Brigman Property

The James Brigman property (Parcel 21) consists of an open, grass and asphalt-covered lot located along the western side of US 1. The EM61 bottom coil results and the differential results are presented in **Figures 7 and 8**, respectively.

GPR surveys conducted across the linear, EM61 bottom coil anomalies that intersect grid coordinates X=62 Y=70, X=66 Y=94, X=84 Y=94, and X=87.5 Y=75, suggest the anomalies are probably in response to buried utility lines or conduits. GPR data also suggest that the high amplitude anomalies centered near grid coordinates X=77 Y=84, and X=93 Y=66, are probably in response to buried miscellaneous metal objects or junction areas for the conduits or utility lines.

GPR surveys conducted across the large, high amplitude anomaly centered near X=45 Y=75, detected the probable presence of four metallic USTs. The four probable USTs are centered near gid coordinates X=43 Y=80, X=50 Y=80, X=42 Y=73, and X=48 Y=73. Based on the GPR data, the USTs appear to be approximately 9 feet long and 3.5 to 4 feet wide and buried approximately 1.5 to 2.0 feet below surface. The approximate locations of the probable USTs are shown as magenta-colored rectangles in Figures 7 and 8. A photograph showing the approximate locations of the four probable USTs and the image of GPR survey lines Y=80, which intersects the two probable USTs centered near X=43 Y=80, and X=50 Y=80, are presented in Figure 9.

The remaining EM 61 anomalies recorded within the proposed ROW area are probably in response to miscellaneous metal debris.

3.4 Parcel 48 – Roy Barry Bostick Property

The Roy Barry Bostick property (Parcel 48) consists of a red, brick building surrounded by flatlying grass-covered terrain. The parcel is located along the northwestern side of US 1 approximately 300 feet southwest of the US 1 and Tilley Street intersection. The EM 61 bottom coil results and the differential results are presented in **Figure 10**.

GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=295 Y=60, suggest that the anomaly is probably in response to one or more large diameter (12 or more inches) conduits buried approximately 1.0 feet below surface. There is a possibility (although unlikely) that the anomaly may be in response to a very small UST centered near grid coordinates X=290 Y=59. The location of the possible, but unlikely UST is shown as a magenta-colored square in Figure 10.

GPR surveys conducted along the edge of the brick building suggest that the EM61 anomalies recorded in this area are probably in response to the building and/or buried miscellaneous debris. The remaining EM61 anomalies recorded within the proposed ROW area at Parcel 48 are probably in response to known cultural features and/or buried miscellaneous debris.

3.5 Parcel 50 – Pansy Ernest Property

The Pansy Ernest property (Parcel 50) is located on the western corner of the Tilley Street and US1 intersection. The parcel contains the former Little Grace's Variety store surrounded by a flay-lying grass-covered, terrain. An occupied house is located immediately west of the property. The EM61 bottom coil results and the differential results are presented in **Figures 11 and 12**, respectively. Please note that Figures 11 and 12 also contain the EM61 results for Church of Deliverance property (Parcel 51).

GPR surveys conducted across the backyard of Parcel 50 suggest the linear EM61 bottom coil anomalies intersecting grid coordinates X=570 Y=115, X=570 Y=126, X=580 Y=90, and X=586 Y=125, are probable in response to buried conduits or lines. Similarly, the locations of the linear EM61 anomalies intersecting grid coordinates X= 622 Y=80, X=622 Y=120, and X=640 Y=35, suggest these anomalies are probably in response to buried utility lines.

GPR surveys conduct across the high amplitude anomalies centered near grid coordinates X=575 Y=105, and X=590 Y=113, suggest the anomalies are probably in response to the "junction" of conduits and/or other miscellaneous objects. Although not confirmed by the GPR results, the EM61 anomaly located at X=575 Y=105, may be in response to a possible septic tank.

GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=567 Y=55, detected the probably presence of two USTs buried approximately 0.75 feet below surface. The approximate locations of the probably USTs are shown as magenta-colored rectangles in Figures 11 and 12 and each UST appears to be approximately eight feet long and three feet wide. A photograph showing the approximate locations of the two probable USTs and the image of GPR survey line Y=55, which intersects the probable USTs, are presented in Figure 13.

The remaining EM 61 anomalies recorded within the proposed ROW area at Parcel 50 are probably in response to known cultural features or buried miscellaneous metal debris.

3.6 Parcel 51 – Church of Deliverance Property

The Church of Deliverance property (Parcel 51) contains an active church building surrounded by a grass, gravel or asphalt-covered parking area. The property is located on the northern corner of the Tilley Street and US 1 intersection immediately across the street from the Pansy Ernest property (Parcel 50). The EM 61 bottom coil results and the differential results for Parcel 51 are presented in **Figures 11 and 12**, respectively along with the EM 61 results for Parcel 50.

The linear EM 61 bottom coil anomalies intersecting grid coordinates X=670 Y=50, X=700 Y=30, and X=700 Y=65, are probably in response to buried utility lines or conduits. GPR surveys conducted across the EM 61 differential anomaly centered near X=705 Y=105, and along the front edge of the church building suggest the anomalies are probably in response to miscellaneous debris and the building, respectively.

The remaining EM 61 anomalies recorded within the proposed ROW area at Parcel 51 are probably in response to know cultural features or miscellaneous buried debris. The geophysical results also suggest that the proposed ROW area does not contain metallic USTs.

3.7 Parcel 61 – Cooper & Brown Inc. Property

The Cooper & Brown Inc. property (Parcel 61) is located on the western side of the US 1 and Little Road intersection. The proposed ROW area of Parcel 61 contains a vacant business building surrounded by flat-lying, grass or asphalt surfaces. A concrete pad is located in front of thebuilding and probably identifies the former pump island area. An occupied house lies to the northwest of the proposed ROW area.

The EM61 bottom coil results and the differential results are presented in Figures 14 and 15, respectively. The linear EM61 bottom coil anomalies intersecting grid coordinates X=130 Y=34, X=142 Y=105, X=186 Y=100, X=210 Y=42, and X=213 Y=83, are probably in response to buried utility lines or conduits. The high amplitude anomalies centered near grid coordinates X=75 Y=67, and X=80 Y=50, are probably in response to steel reinforced concrete. GPR surveys conducted across these two areas did not detect the presence of USTs.

GPR surveys conducted across the high amplitude anomaly centered near X=226 Y=116, suggest the anomaly is probably in response to steel reinforced concrete and/or to the metal conduits that are visible at the surface. GPR surveys conducted along the perimeter of the building suggest that the EM61 anomalies are probably in response to the building and/or to miscellaneous debris. The remaining EM61 anomalies are probably in response to known cultural features and/or to buried miscellaneous metal debris.

The geophysical results suggest that the proposed ROW area at Parcel 61 does not contain metallic USTs.

3.8 Parcel 70 – Delia Lassiter Property

The Delia Lassiter Property (Parcel 70) contains a vacant building surrounded primarily by grass yard and an asphalt driveway. An occupied house lies immediately north of the proposed ROW area. The EM61 bottom coil results and the differential results are presented in **Figures 16 and 17**, respectively.

The linear EM61 anomaly intersecting grid coordinates X=90 Y=110, is probably in response to a buried utility line or conduit. The remaining EM anomalies are probably in response to known cultural features or to buried miscellaneous debris. The geophysical results suggest that the proposed ROW area at the Delia Lassiter property does not contain metallic USTs.

3.9 Parcel 22 – Ivey Little Property

The Ivey Little property (Parcel 22) is located along the northwest side of US 1 and consists of a vacant building surrounded by a gravel-covered driveway and grass-covered fields. The EM61 bottom coil results and the differential results are presented in **Figures 18 and 19**, respectively.

The linear EM61 anomaly intersecting grid coordinates X=354 Y=35, is probably in response to a buried utility line or conduit. The remaining EM anomalies are probably in response to known cultural features or to buried miscellaneous debris. The geophysical results suggest that the proposed ROW area at the Ivey Little property does not contain metallic USTs.

3.10 Parcel 68 – James Pugh Property

The James Pugh Property (Parcel 68) is a former gas station site located on the northern sideofUS 1, approximately 0.25 miles west of the US 1 and Special Forces Way intersection. The site consists primarily of grass, trees and brush with a former pump island pad located near the edgeofUS1. The EM61 bottom coil results and the differential results are presented in **Figure 20**.

GPR surveys conducted across the EM61 anomalies centered grid coordinates X=305 Y=35, and X=321 Y=37, suggest the anomalies are probably in response to the pump island pad and to the

buried pump island-related equipment. GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=534 Y=92, suggest the anomaly is probably in response to buried miscellaneous debris or object. The remaining EM61 anomalies are probably in response to known cultural features and miscellaneous metal debris.

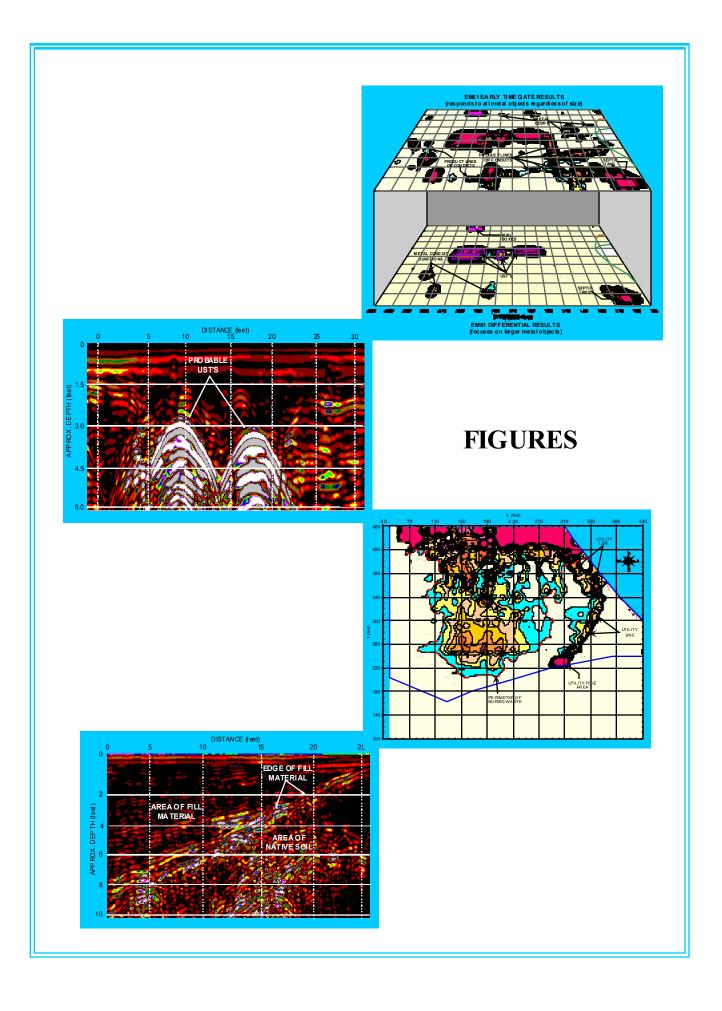
The geophysical investigation conducted at Parcel 68 suggests that the proposed ROW area does not contain metallic USTs.

4.0 <u>SUMMARY & CONCLUSIONS</u>

Our evaluation of the EM61 and GPR data collected across the proposed ROW areas at the 10 sites along US 1 in Richmond County, North Carolina provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the surveyed portions of the proposed ROW areas of each site.
- GPR surveys were conducted across selected EM 61 differential anomalies and across areas containing steel reinforced concrete.
- Linear EM 61 anomalies at the 10 sites are probably in response to buried utility lines and/or conduits. The majority of non-linear anomalies are probably in response to known cultural features or miscellaneous metal objects.

• The geophysical results suggest the proposed ROW areas at the following properties do not contain metallic USTs:


Hillary McKay Property	(Parcel 6)	
Church of Deliverance Property	(Parcel 51)	
Cooper & Brown Inc. Property	(Parcel 61)	
Delia Lassiter Property	(Parcel 70)	
Ivey Little Property		(Parcel 22)
James Pugh Property	(Parcel 68)	

- K.J. Lewis Property (Parcel 9): Geophysical results suggest the probable presence of two USTs located adjacent to the pump island area. The first UST is centered near grid coordinates X=84 Y=27, and buried approximately 1.5 feet below surface. The second UST is centered near grid coordinates X=103 Y=27, and is buried approximately 2.0 feet below surface. The EM 61 differential anomaly centered near grid coordinates X=118 Y=29, may possibly be in response to a UST or large metal object. However, GPR surveys could not be conducted across this EM anomaly due to the limited access caused by the dense wooded terrain.
- James Brigman Property (Parcel 21): Geophysical results detected the probable presence of four metallic USTs centered near grid coordinates X=43 Y=80, X=50 Y=80, X=42 Y=73, and X=48 Y=73. Based on the GPR data, the USTs appear to be approximately 9 feet longand 3.5 to 4 feet wide and buried approximately 1.5 to 2.0 feet below surface.

- Roy Barry Bostick Property (Parcel 48): GPR surveys conducted across the EM61 anomaly centered near grid coordinates X=295 Y=60, suggest that the anomaly is probably in response to one or more large diameter (12 or more inches) conduits buried approximately 1.0 feet below surface. There is a possibility (although unlikely) that the anomaly may be in response to a very small UST centered near grid coordinates X=290 Y=59.
- <u>Pansy Ernest Property (Parcel 50)</u>: Geophysical results suggest the probable presence of two USTs centered near grid coordinates X=567 Y=55, and buried approximately 0.75 feet below surface. The USTs appear to be approximately eight feet long and three feet wide.

5.0 LIMITATIONS

EM61 and GPR surveys have been performed and this report prepared for Solutions IES in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project do not conclusively define the locations of all metallic USTs but only suggest where some of the metallic USTs may be present. The EM61 and GPR anomalies, interpreted as probable or possible USTs or tanks, may be attributed to other surface or subsurface conditions or cultural interference.

Parcel 6 - Hillary McKay Property

Parcel 9 - K.J. Lewis Property

Parcel 21 - James Brigman Property

Parcel 48 - Roy Barry Bostick Property

Parcel 50 - Pansy Earnest Property

Parcel 51 - Church of Deliverance Property

Parcel 61 - Cooper & Brown Property

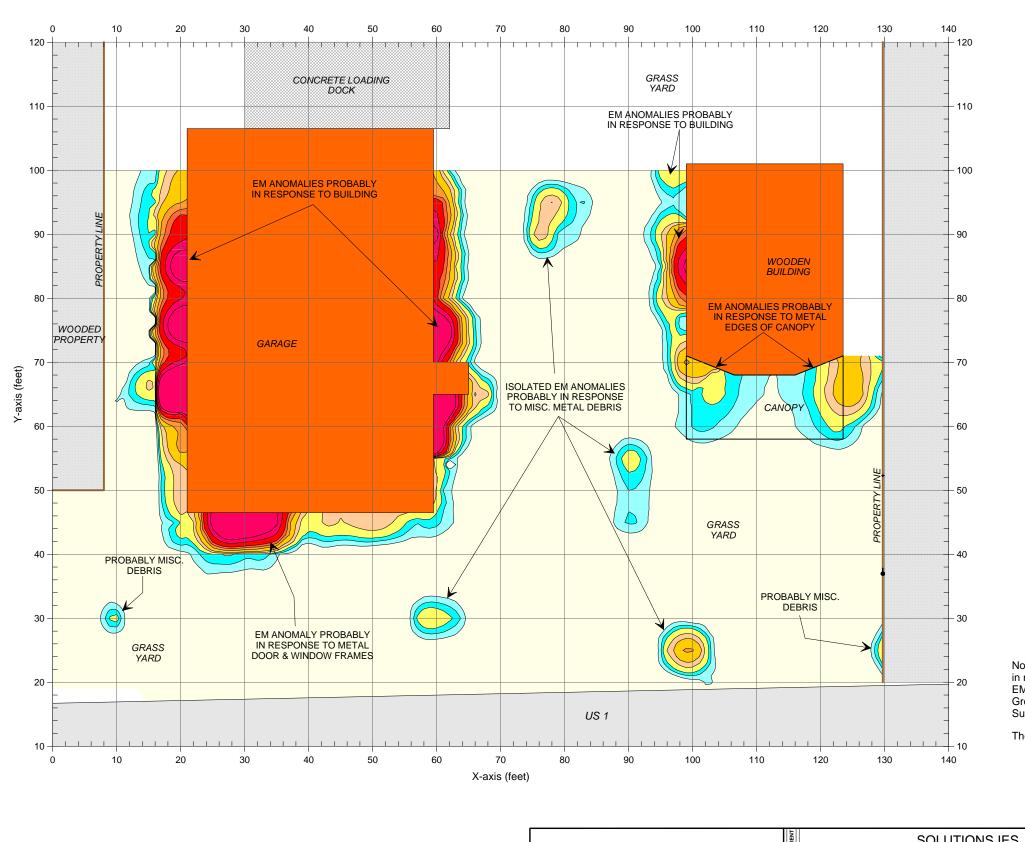
Parcel 70 - Delia Lassiter Property

Parcel 22 - Ivey Little Property

Parcel 68 - James Pugh Property

GEOPHYSICAL EQUIPMENT

The photo shows the Geonics EM61 metal detector that was used to conduct the metal detection survey at the sites in Richmond County, North Carolina.

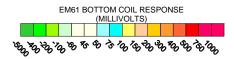


The photos show the SIR-2000 GPR system equipped with a 400 MHz antenna that was used to conduct the ground penetrating radar investigation at the sites in Richmond County, North Carolina.

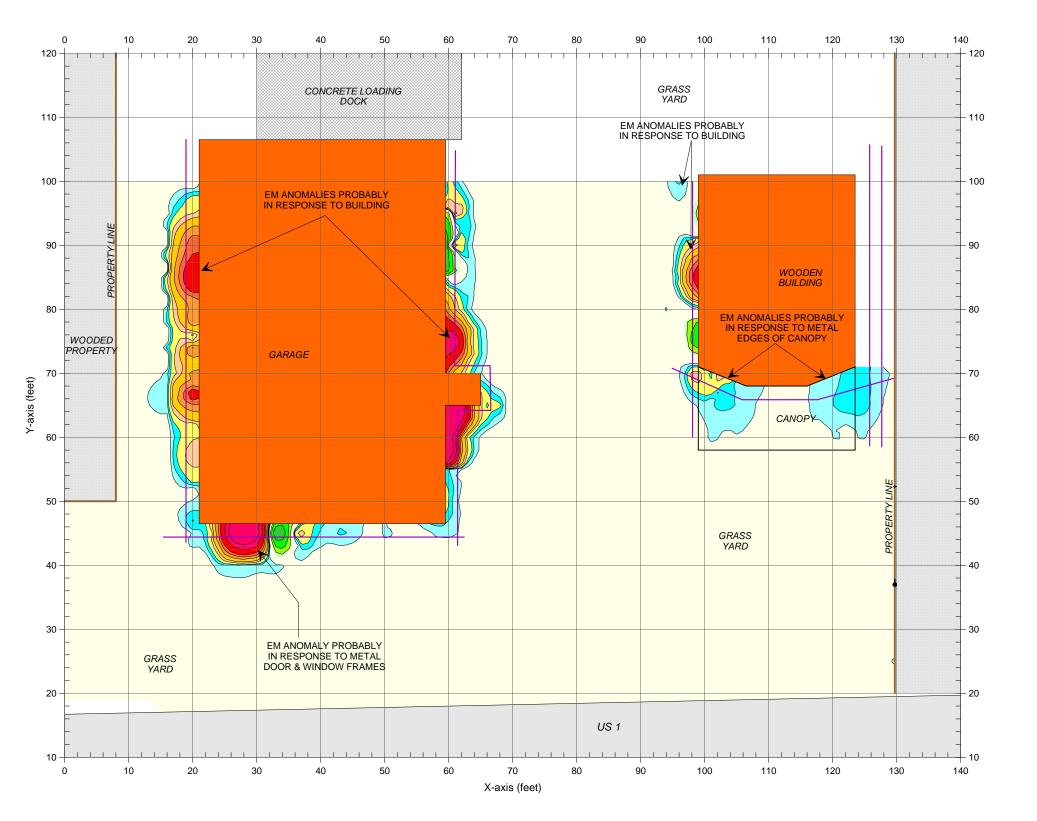
	SITE PHOTOS		FIGURE 1
	ירב וא בבנ	APHIC SCA	ek'
08/31/06	Сн.кр		2006-200 B
JTA D	YAJ	DMC	'ON-ſ
SOLUTIONS IES	US 1 - RICHMOND COUNTY SITES	B MARSTON & HOFFMAN B B NORTH CAROLINA	GEOPHYSICAL RESULTS
		PYRAMID	NVIRONMENTAL & ENGINEERING, P.C.

SITE PHOTOGRAPHS

This figure shows the photographs of the ten sites located near Marston and Hoffman, North Carolina where geophysical investigations were conducted within the ROW areas for the detection of metallic USTs.


Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

SOLUTIONS IES PARCEL 6 - HILLARY MCKAY PROPERTY MARSTON GEOPHYSICAL RESULTS


APPROXIMATE NORTH

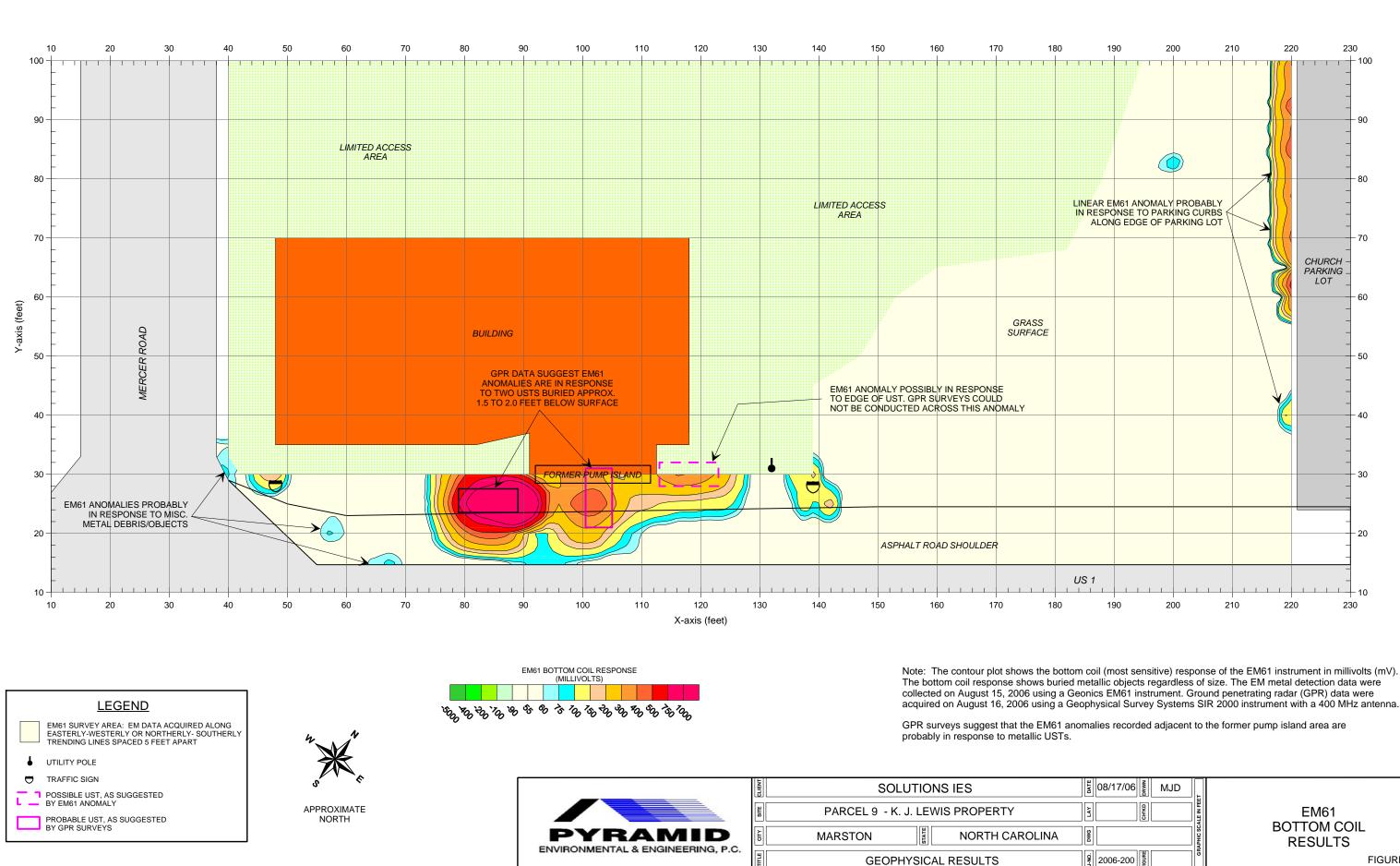
	<u>LEGEND</u>
	EM61 SURVEY AREA: EM DATA ACQUIRED ALONG NORTHEAST-SOUTHWEST TRENDING LINES SPACED 5 FEET APART
	PROPERTY LINE (APPROX.)
+	GUY WIRE
♦	UTILITY POLE

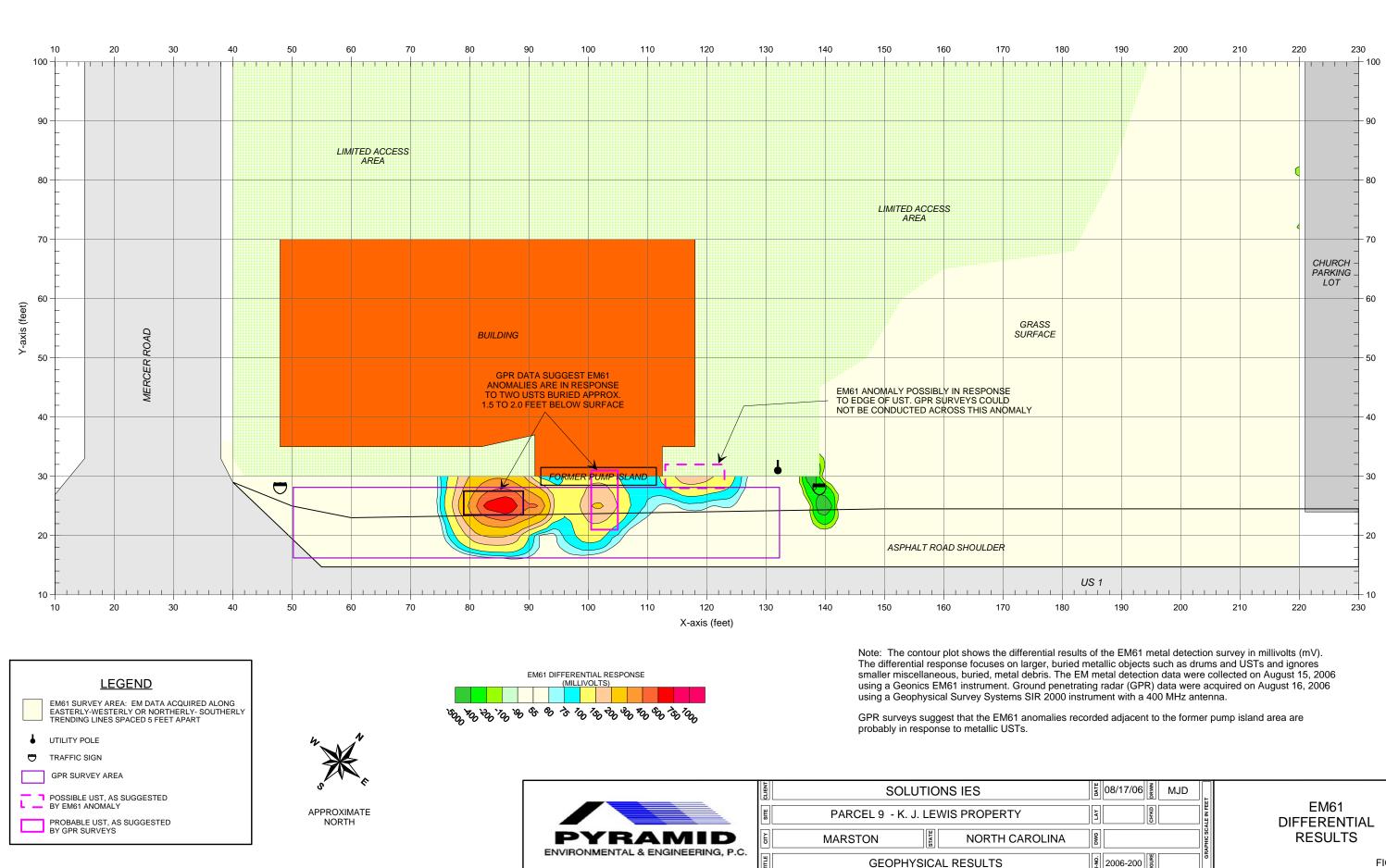
The geophysical investigation suggests that the survey area does not contain metallic USTs.

08/0 IVN BYE JA BYE	01/06 8 MJE	GRAPHIC SCALE IN FEET	EM61 BOTTOM COIL RESULTS
<u>9</u> 200	6-200	GR	FIGURE 2

Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 16, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

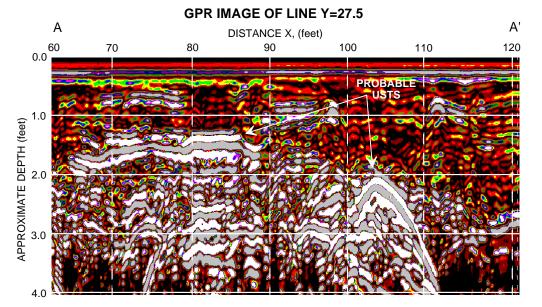
The geophys


	CLIENT	SOLUTIONS IES	U8/01/0	06 MJD	
	SITE	PARCEL 6 - HILLARY MCKAY PROPERTY			EM61 DIFFERENTIAL
PYRAMID	CIT√	MARSTON NORTH CAROLINA	DWG	APHIC SC	RESULTS
ENVIRONMENTAL & ENGINEERING, P.	ITLE	GEOPHYSICAL RESULTS	ਤ੍ <mark>ੇ</mark> 2006-20	00 B	FIGURE 3


APPROXIMATE NORTH

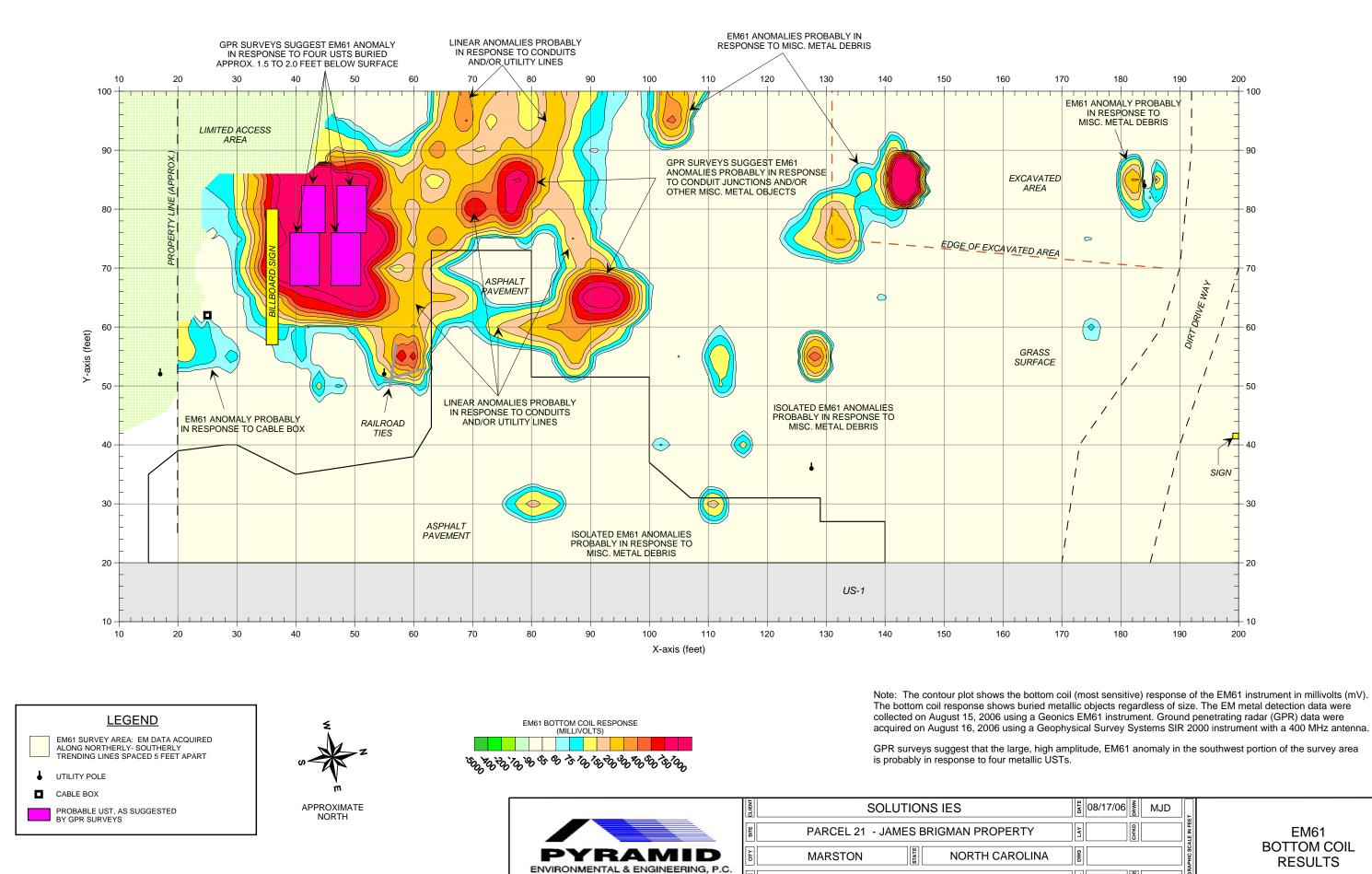
	LEGEND
	EM61 SURVEY AREA: EM DATA ACQUIRED ALONG NORTHEAST-SOUTHWEST TRENDING LINES SPACED 5 FEET APART
	PROPERTY LINE (APPROX.)
+	GUY WIRE
♦	UTILITY POLE
	APPROX. LOCATION OF GPR SURVEY LINE

The geophysical investigation suggests that the survey area does not contain metallic USTs.

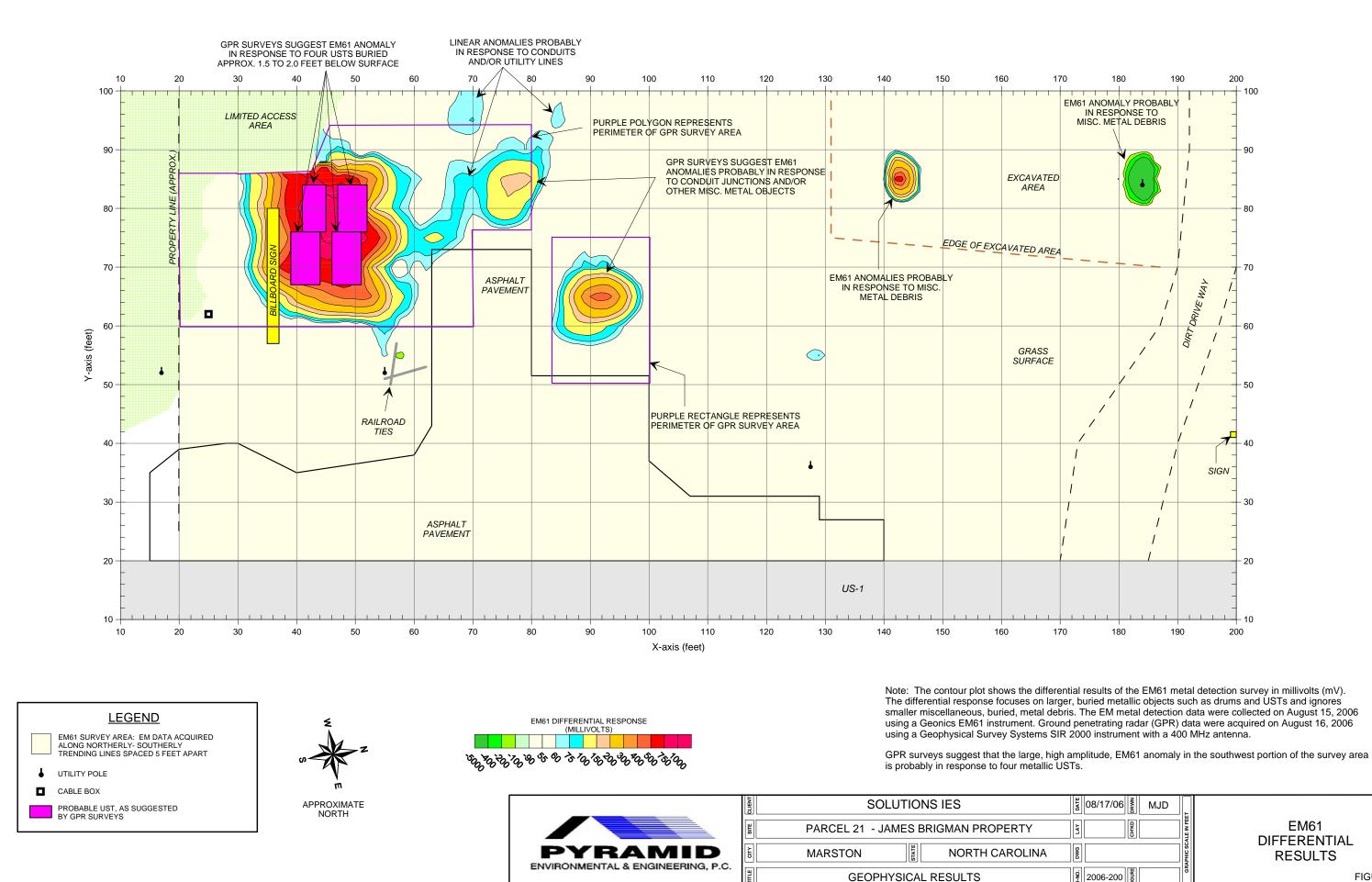

Image: State of the state o	
---	--

	₩ 08/17/06 MJD	L.	
	CHKD	ALE IN FEE	EM61 DIFFERENTIAL
١A	SWG	GRAPHIC SC	RESULTS
	9 2006-200	GR	FIGURE 5

The photograph shows the locations of two probable USTs and one possible UST buried 1.5 to 2.0 feet below surface, as suggested by the geophysical results at Parcel 9.

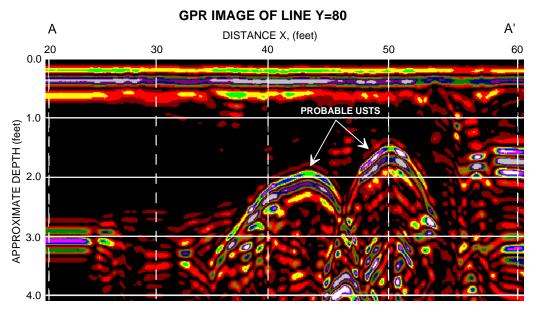


The GPR image obtained along a portion of survey line Y=27.5, shows the anomalies that are probably in response to USTs near X=84 and X=103, and buried approximately 1.5 and 2.0 feet below surface, respectively. The location of this GPR image is shown with a solid purple line in the above photograph.



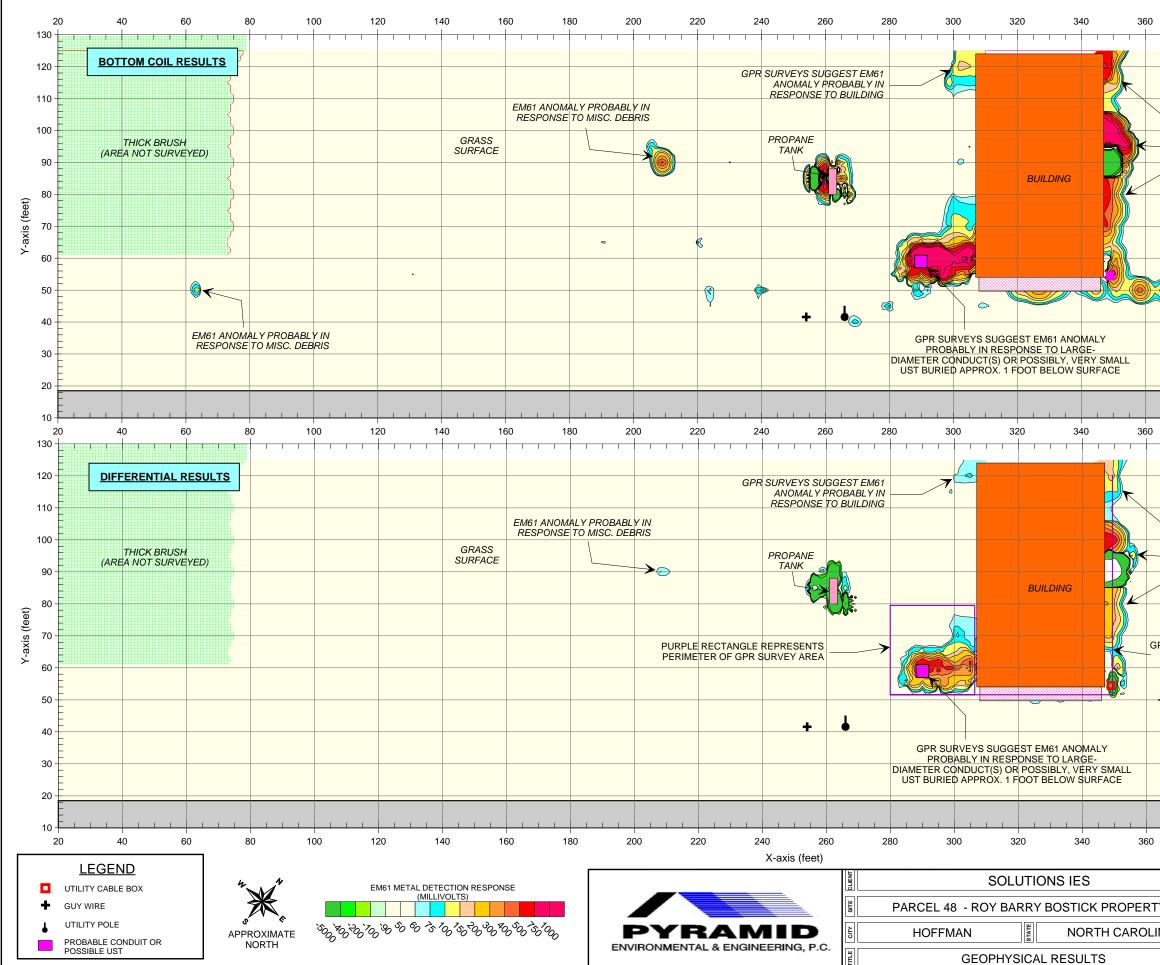
CLIENT	SOLUTIONS IES	DATE	08/26/05		
SITE	PARCEL 9 - K. J. LEWIS PROPERTY	ΓAY	CHKD	ALE IN FEET	PHOTO
сПV		DWG		GRAPHIC SCA	
TITLE	GEOPHYSICAL RESULTS	J-NO.	2006-200	GR	

HOTO & GPR IMAGE IF UST LOCATIONS (Parcel 9) FIGURE 6

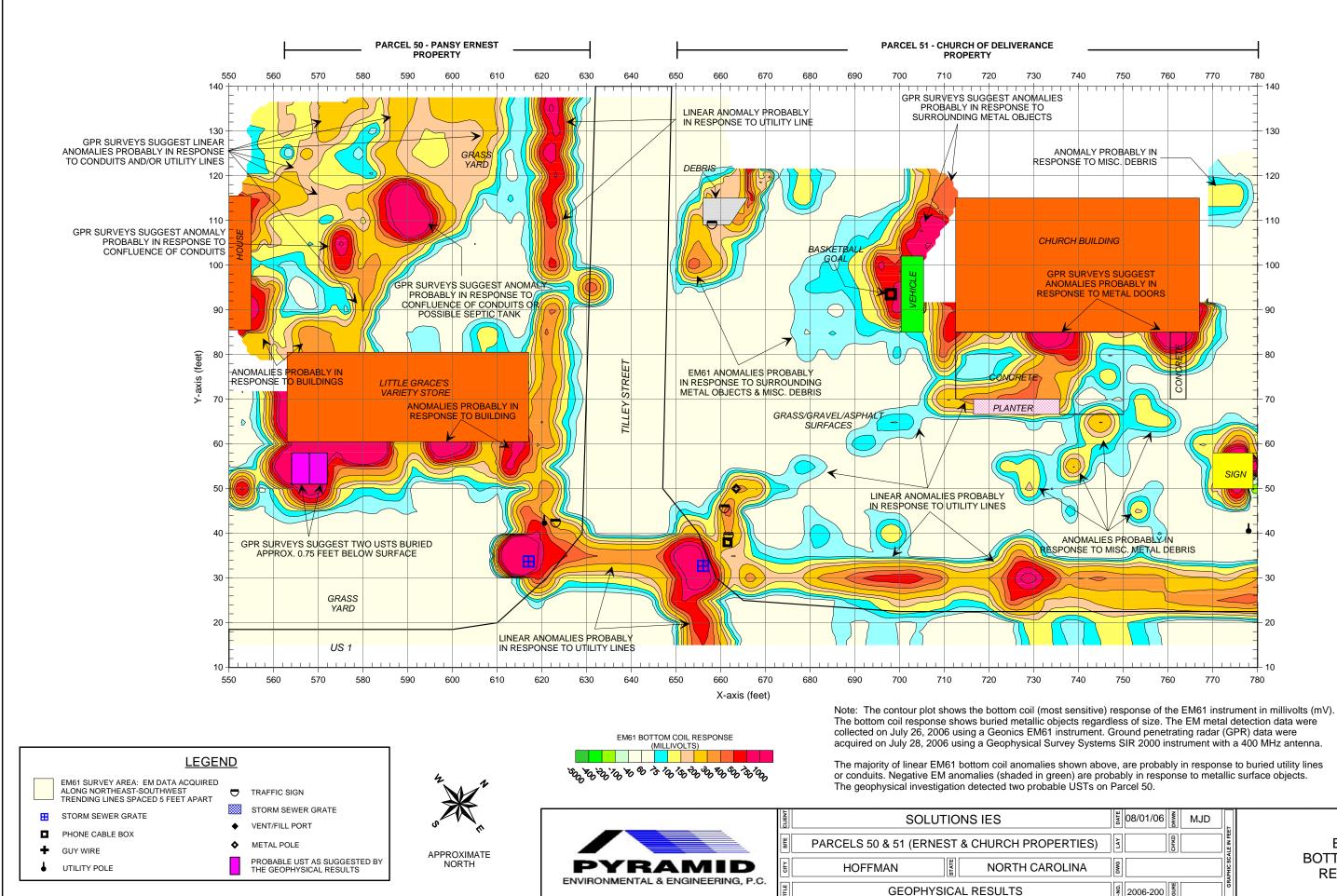

IA	DMG DMG		EM61 BOTTOM COIL RESULTS
	9- 2006-200	GR	FIGURE 7

	MJD BRAPHIC SCALE IN FEET	EM61 DIFFERENTIAL RESULTS
92 2006-200	Ğ	FIGURE 8

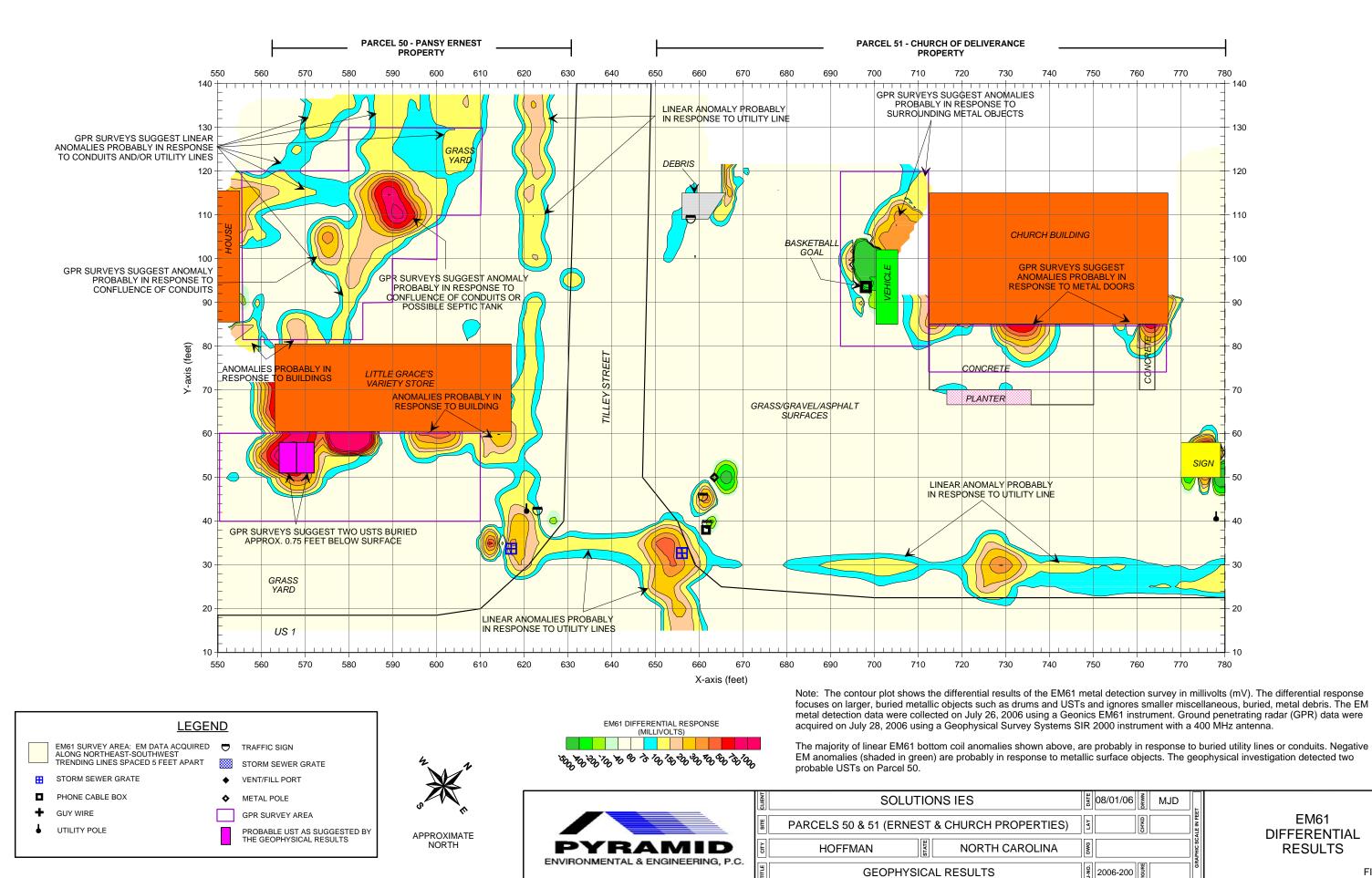
The photograph shows the location of four probable USTs buried 1.75 to 2.0 feet below surface, as suggested by the geophysical results at Parcel 21.



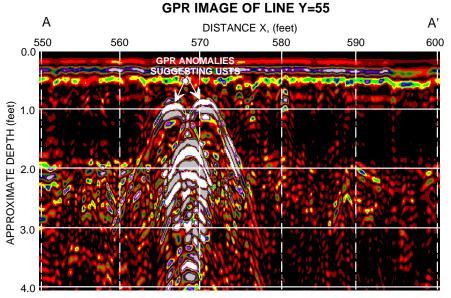
The GPR image obtained along a portion of survey line Y=80, shows the anomalies that are probably in response to USTs near X=43 and X=50, and buried approximately 2.0 and 1.5 feet below surface, respectively. The location of this GPR image is shown with a solid purple line in the above photograph.



CLIEN	SOLUTIONS IES	Б
SITE	PARCEL 21 - JAMES BRIGMAN PROPERTY	VLE IN FE
CITY	MARSTON	APHIC SC/
TTLLE	GEOPHYSICAL RESULTS	GRJ

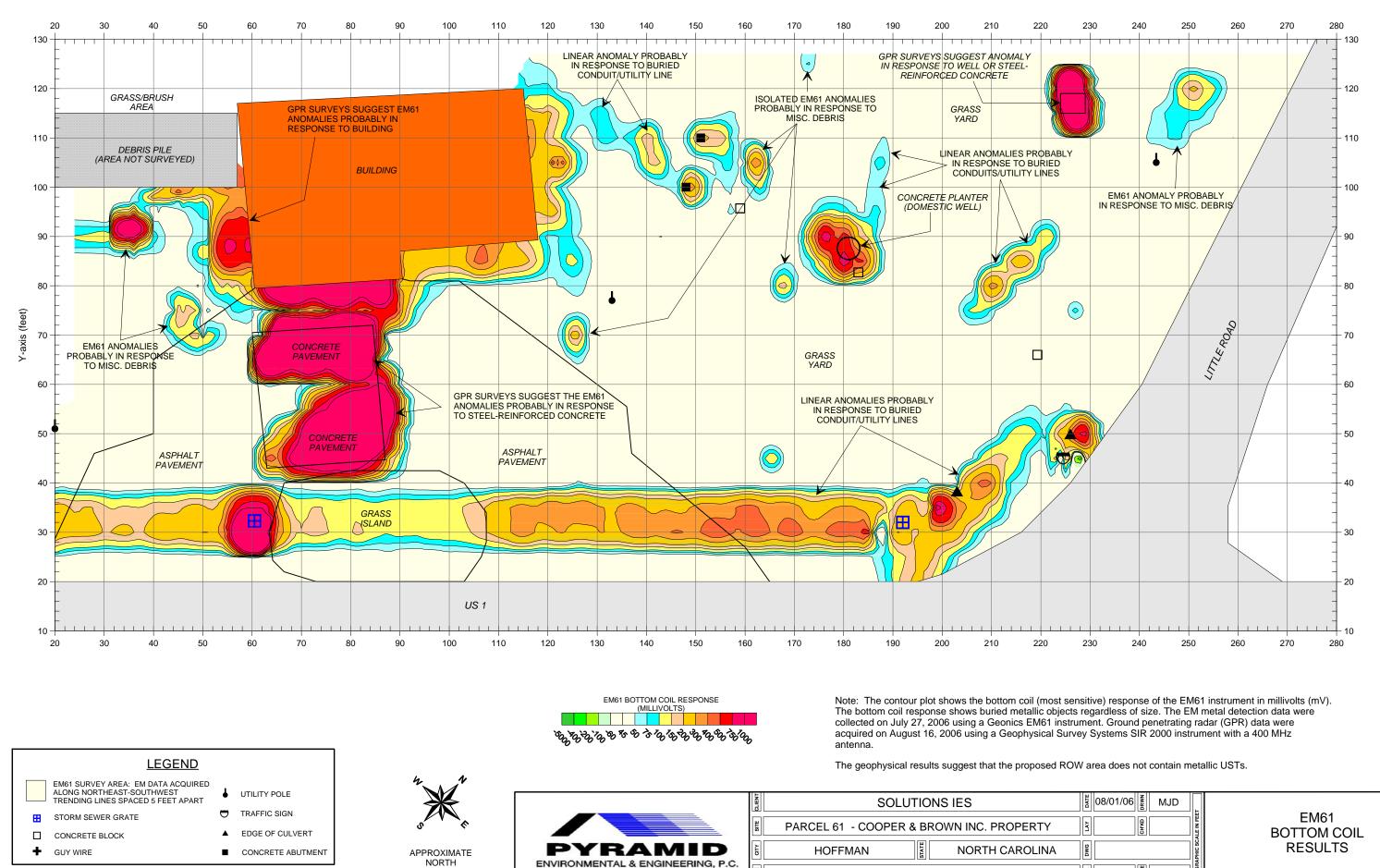

PHOTO & GPR IMAGE OF UST LOCATIONS

3	80 4	00	4	20 44	40 46	60 48	80
							- 130
							- 120
					ANOMALY PR PONSE TO MIS		- 110
\rightarrow	GPR SURVE ANOMALIES	PROBABLY	/ IN				- 100
	RESPONSE	TO BUILDIN	IG		GRASS		- 90
					SURFACE		- 80
		ONSE TO B	UR	Y PROBABLY ED CONDUIT			- 70
		OR UTILIT	ΥL	INE			- 60
							- 50
				PROBABLY IN			- 40
0	R	ESPONSE T	-0 N	MISC. OBJECT			- 30
					US-1		- 20
3	80 4	00	4:	20 44		60 48	- 10 30
			1				- 130
							- 120
							- 110
\searrow			<u></u>	Eliot			- 100
\rightarrow	GPR SURVE ANOMALIES RESPONSE	PROBABLY	Y IN				- 90
					GRASS SURFACE		
						-	- 80
PR SURVE				Y PROBABLY IED CONDUIT			- 70
		OR UTILIT					- 60
\sim						-	- 50
							- 40
	El R	161 ANOMA ESPONSE 1	LY TO I	PROBABLY IN MISC. OBJECT			- 30
							- 20
					US-1	-	
3	80 4	00	4	20 4	40 4	60 44	- 10 30
	08/17/06	MJD					
Y	S Office		GRAPHIC SCALE IN FEET	ΝΛ	EM6 ETAL DE		
NA			APHIC SCA	111	RESU	LTS	
	2006-200		ß			FIG	JRE 10


	08/01/06 MJD	
TES)		EM61
NA		BOTTOM COIL RESULTS
		FIGURE 11

	08/01/06 MJD	
IES)		EM61 DIFFERENTIAL
١A		RESULTS
	2006-200	FIGURE 12

The photograph shows the location of two probable USTs buried approx. 0.75 feet below surface, as suggested by the geophysical results at Parcel 50.


The GPR image obtained along survey line Y=55 shows the anomalies that are probably in response to USTs near X=566 and X=570, and buried approximately 0.75 feet below surface. The location of this GPR image is shown with a solid purple line in the above photograph.

PYRAMID ENVIRONMENTAL & ENGINEERING, P.C.

CLIEN'	SOLUTIONS IES	₩ 08/26/05
SITE	PARCEL 50 (PANSY ERNEST PROPERTY)	
сПV		DMG
III	GEOPHYSICAL RESULTS	2006-200 Big

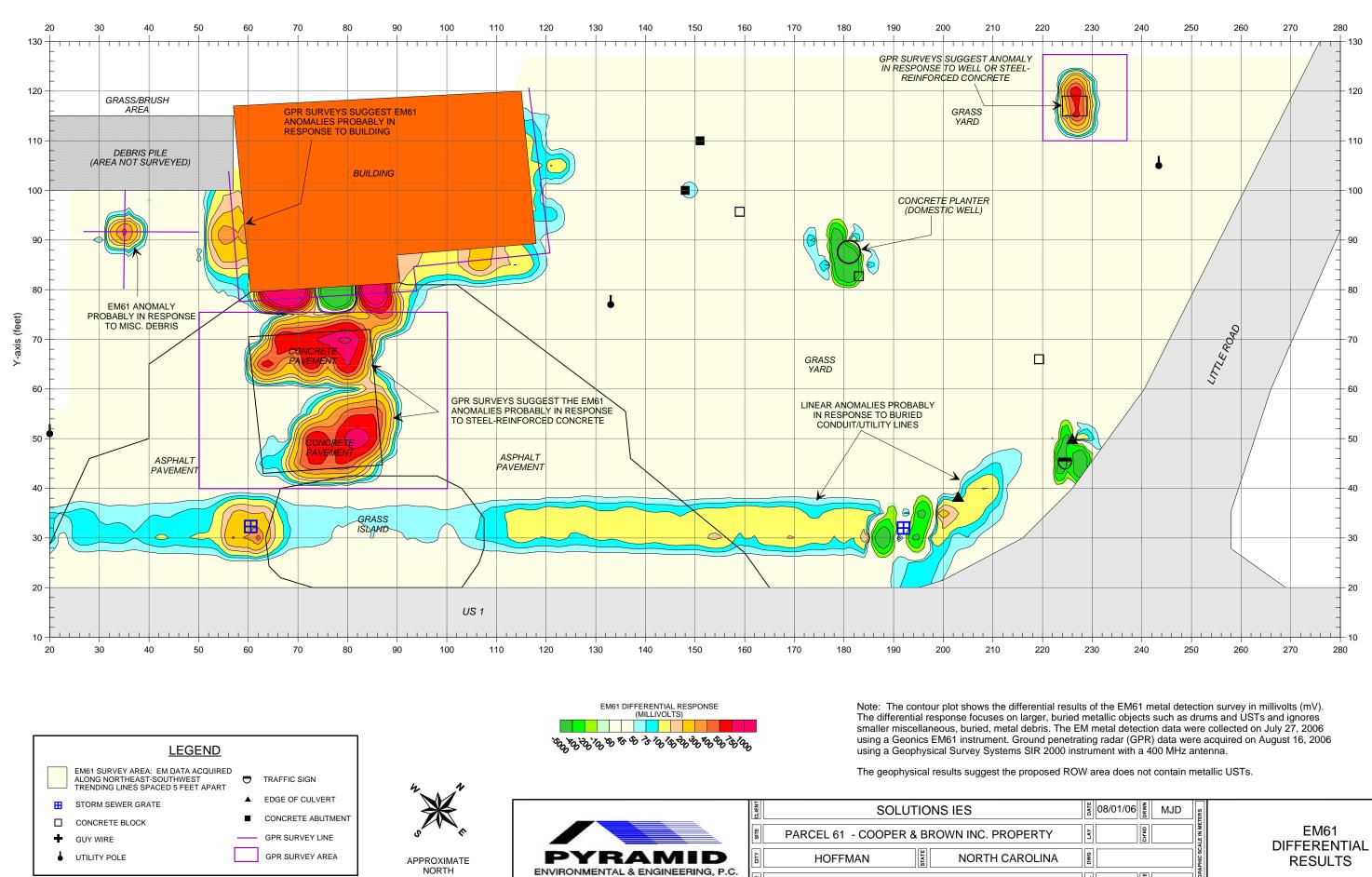
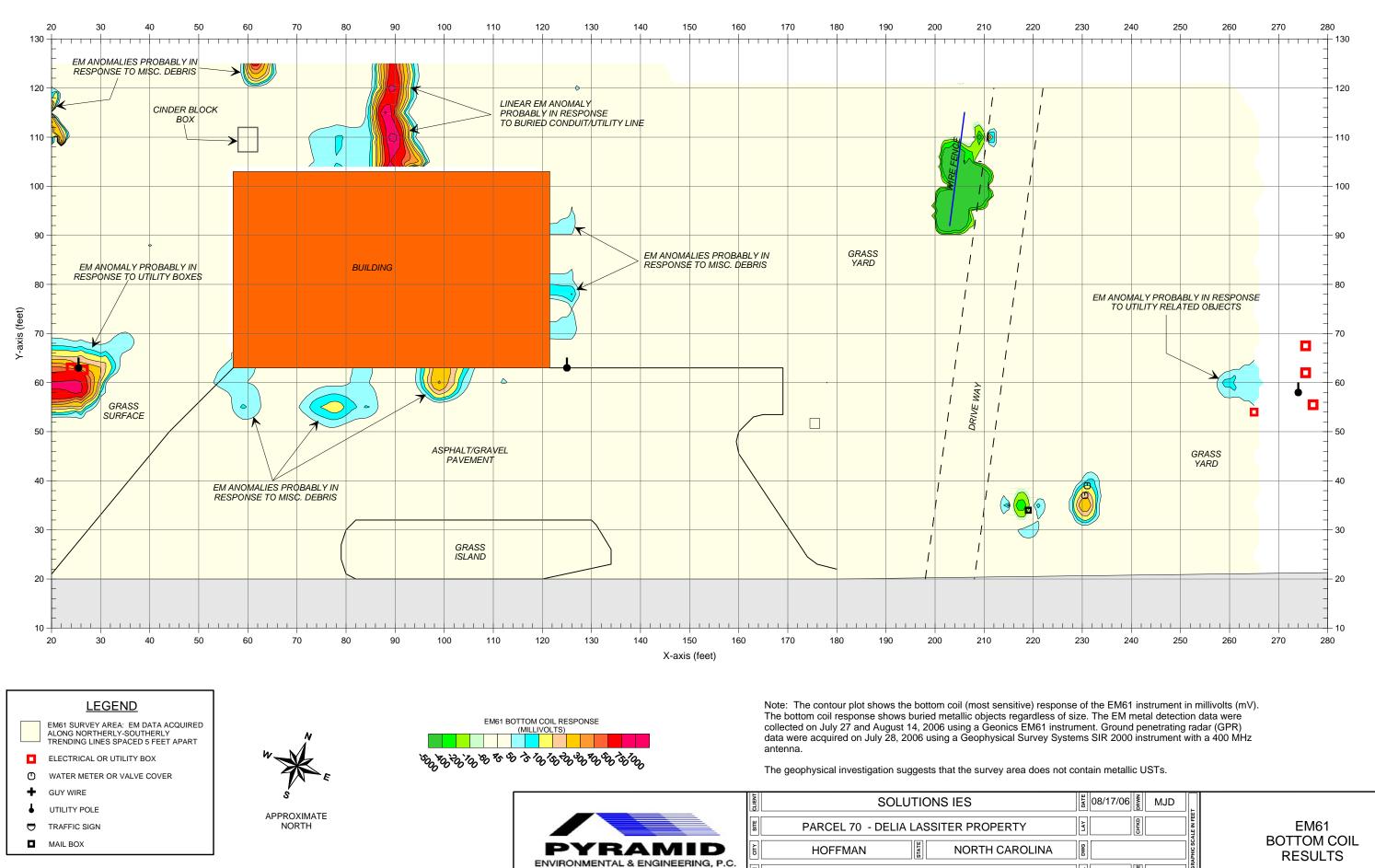
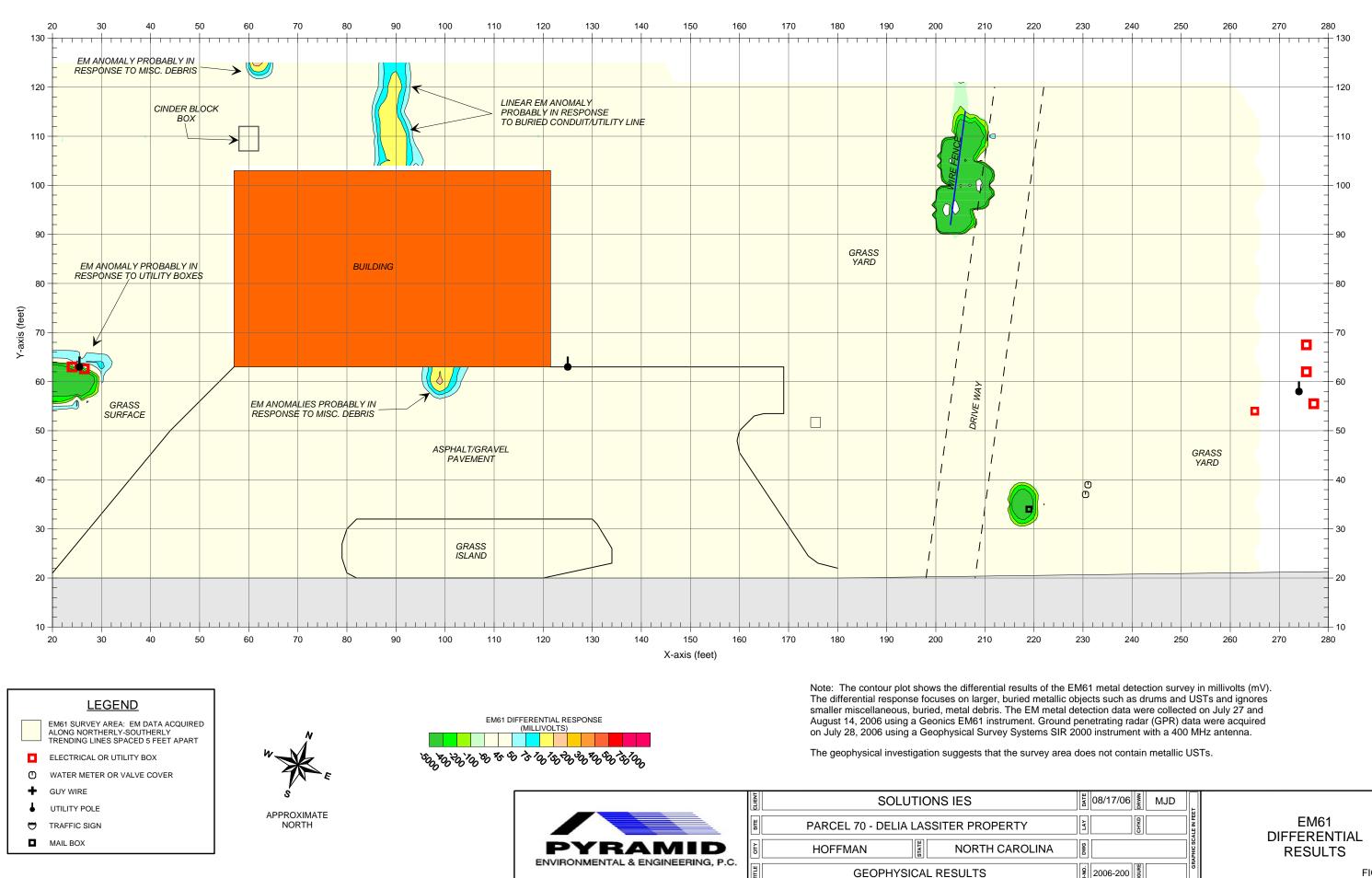
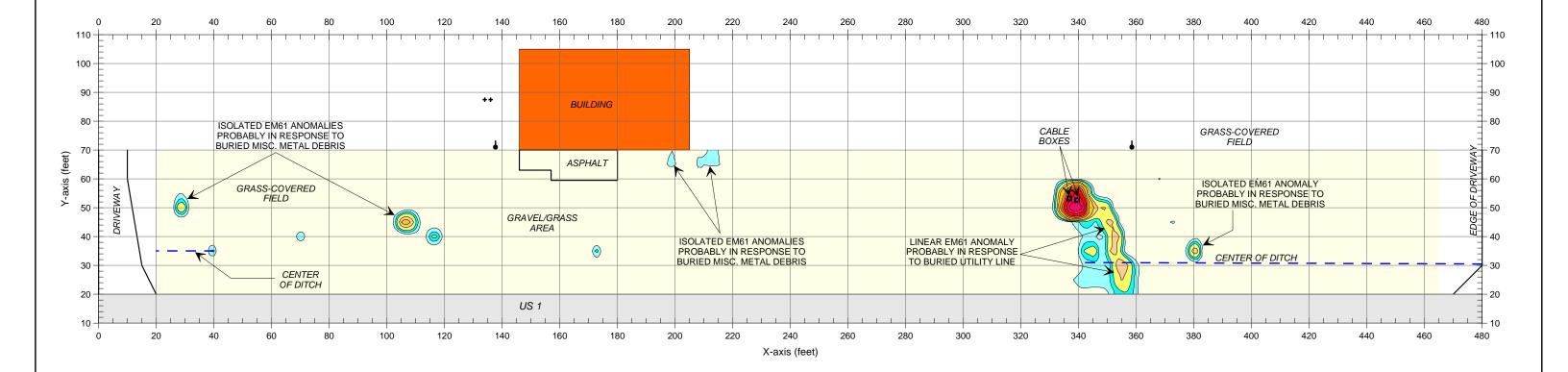

PHOTO & GPR IMAGE OF UST LOCATIONS

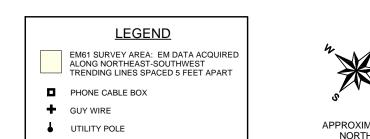
FIGURE 13



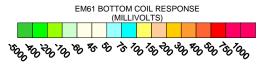
<u>ਵ</u>ੇ 2006-200

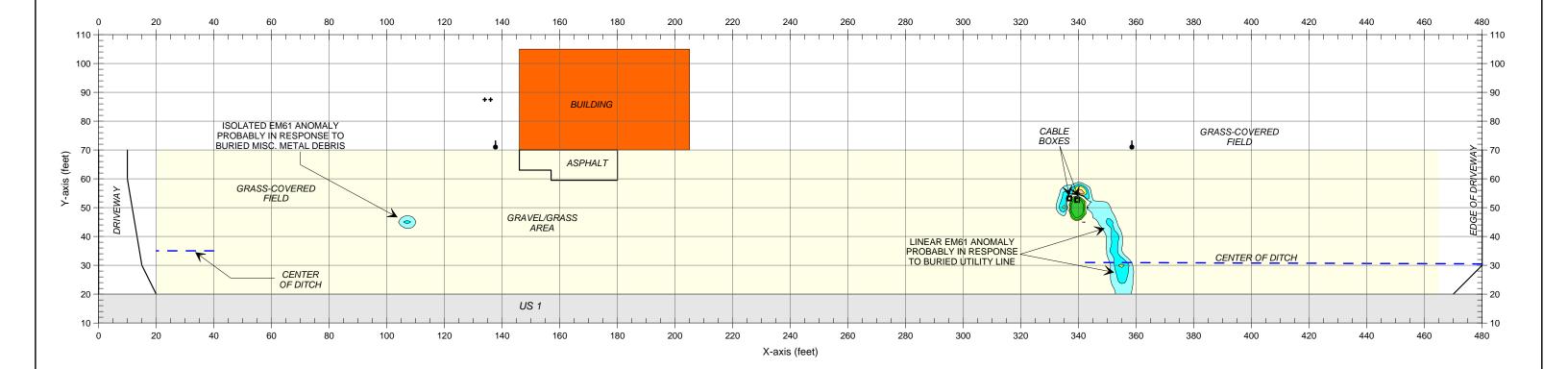

FIGURE 14

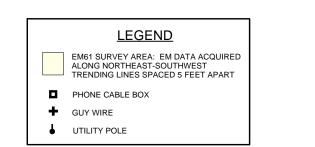

MJD SUBJECT NO CONTRACT NO CON	EM61 DIFFERENTIAL RESULTS
ହୁଁ 2006-200 କ୍ଲା	FIGURE 15



	# 08/17/06 MJD MJD MJD	SCALE IN FEET	EM61 BOTTOM COIL
	<u>8</u>	SCALE IN	
IA		GRAPHIC	RESULTS
	2006-200	ē	FIGURE 16


	B 08/17/06	MJD IFEET	EM61
١A	DWG	GRAPHIC SCA	DIFFERENTIAL RESULTS
	9 2006-200	GR	FIGURE 17

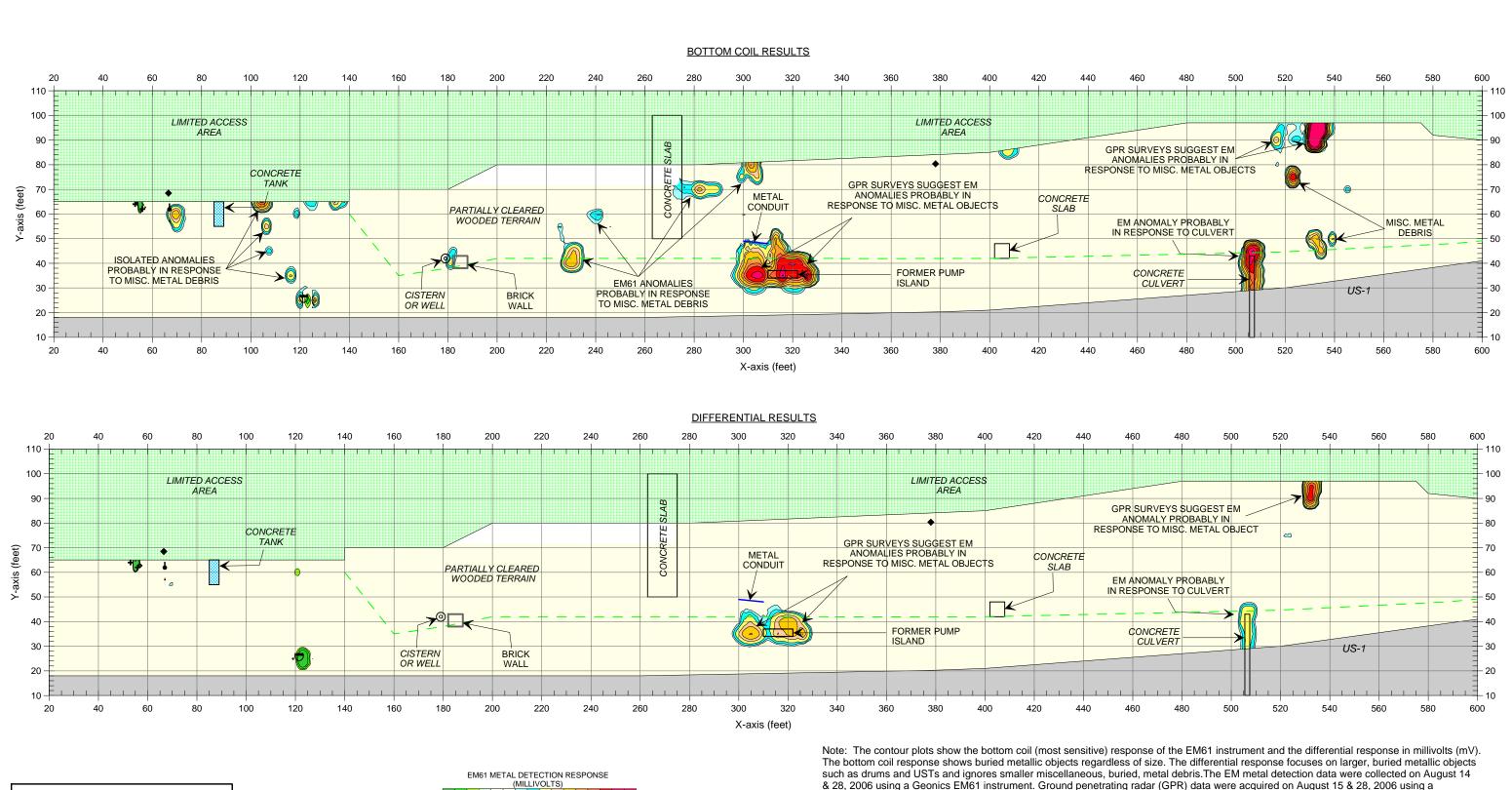

APPROXIMATE NORTH



Note: The contour plot shows the bottom coil (most sensitive) response of the EM61 instrument in millivolts (mV). The bottom coil response shows buried metallic objects regardless of size. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on July 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

The geophysical investigation suggests that the survey area does not contain metallic USTs.


	CLIENT	SOLUTIONS IES	A/80 BAE	01/06 📓 MJD	Ŀ	
	SITE	PARCEL 22 - IVEY LITTLE PROPERTY	LAY	СНКР	LE IN FEE	EM61 BOTTOM COIL
	СП		DWG		APHIC SCA	RESULTS
ENVIRONMENTAL & ENGINEERING, P.C.	ITLE	GEOPHYSICAL RESULTS	9 200	6-200	GR/	FIGURE 18


APPROXIMATE NORTH

Note: The contour plot shows the differential results of the EM61 metal detection survey in millivolts (mV). The differential response focuses on larger, buried metallic objects such as drums and USTs and ignores smaller miscellaneous, buried, metal debris. The EM metal detection data were collected on July 27, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on July 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

The geophysical investigation suggests that the survey area does not contain metallic USTs.

	CLIENT	SOLUTIONS IES	불 08/01/06	MJD	
	SITE	PARCEL 22 - IVEY LITTLE PROPERTY	Гау		EM61 DIFFERENTIAL
PYRAMID	СПУ		DWG		RESULTS
ENVIRONMENTAL & ENGINEERING, P.C.	TTLE	GEOPHYSICAL RESULTS	਼੍ਰੇ 2006-200		FIGURE 19

³% ঈ ঈ ở ở ^ŵ ^ŵ ^ŵ ^ŵ ở ở ở ở ở ở ở ở ở ở ở ở

ENVIRONMENTA

LEGEND

LINES SPACED 5 FEET APART

RIGHT-OF-WAY MARKER

GUY WIRE UTILITY POLE

TRAFFIC SIGN

•

+

•

EM61 SURVEY AREA: EM DATA ACQUIRED ALONG EASTERLY-WESTERLY TRENDING

APPROXIMATE NORTH

The geophysical investigation suggests that the survey area does not contain metallic USTs.

	CLIENT	SOLUTIONS IES	DATE	08/17/06 MJD	t.	
	SITE	PARCEL 68 - JAMES PUGH PROPERTY	LAY	CHKD	VLE IN FEE	EM61
	СП√	HOFFMAN	DWG		APHIC SCA	METAL DETECTION RESULTS
a Engineering, P.C.	TITLE	GEOPHYSICAL RESULTS	.on-с	2006-200	GR	FIGURE 20

& 28, 2006 using a Geonics EM61 instrument. Ground penetrating radar (GPR) data were acquired on August 15 & 28, 2006 using a Geophysical Survey Systems SIR 2000 instrument with a 400 MHz antenna.

APPENDIX C

BORING LOGS

Log of Soil Boring: P48-B1										
Projec	Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 1									
Client: NCDOT										
WBS #	\$ 344	138.1.1			Initial Water Lev	el: NA				
State I	Proje	ct # R-2502A County: Richm	Stabilized Water	r Level	: NA					
Drilling	Met	thod: Direct Push Boring Date: 0	8/22/06		Cave In Depth:	NA				
Sampl	er Ty	/pe: Macro Core Site: Parcel 48								
Logge	d By	: K.B Checked By:	a		Total Depth of B	oring:	12' bgs			
		SUBSURFACE PROFILE	SAM	IPLE		£				
	-				PID Field Screen	Depth				
	Symbol			2	• ppm • 250 500 750	e				
Depth ft. bgs	Syl	Description	m	ove	I	Sample	Well Data			
n. bys	S		rva	Recovery	FID Field Screen	Sa				
	USCS		Sample Interval	% E	250 500 750	Lab				
		Ground Surface		-		-				
0-	FH FH FH	SM	П							
1.3		Dry, light brown, fine silty sand		400	3					
É I	117			100	T					
2-		SM								
		Moist, tan, fine silty sand			3					
3-	-1-1.	SM		100	P					
	1-1-1-	Damp, tan and orange, fine silty sand								
4-	f t F									
5-				100	4					
5	<u>t</u> i i		ш	100	Ī					
6-		SC	11							
		Moist, tan, medium clayey sand			2					
7-		SC		100	•					
=	<i>##</i> }	Moist, orange and tan, medium clayey sand								
8-		sc								
9	111	Damp, brown and orange, medium clayey			5					
9-		SM		100	T					
10-		Damp, tan, medium silty sand								
-		CL			5					
11-		Moist, orange, sandy clay		100						
	11)	SC	ш							
12-	1110	Moist, tan and orange, clayey sand								
13-										
13										
14-										
=										
15-										
=										
16-										
Colu	tion			sitti	b.					
		s-IES, Inc. well Road		1	hc1.		TRO			
	1101 Nowell Road Raleigh, NC 27607									

Industrial & Environmental Services

(919) 873-1060

	Log of Soil Boring: P48-B2										
Project:	Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 2										
Client: NCDOT											
WBS #	34438.1.1			Initial Water Lev	el: NA						
State P	State Project # R-2502A County: Richmond Stabilized Water Le										
Drilling	Method: Direct Push Boring Date: 0	8/22/06		Cave In Depth: I	A						
Sample	r Type: Macro Core Site: Parcel 48	3									
Logged	By: K.B Checked By:	9		Total Depth of B	oring:	12' bgs					
	SUBSURFACE PROFILE	SAM	PLE	DID Field Correspond	oth						
	0			PID Field Screen ppm	Sample Depth						
Death	တြင်္သ ကြိုင်္သ တြင်္သ Description		2 S	250 500 750	e						
Depth ft. bgs	ගි Description	e –	No.	FID Field Screen	ame	Well Data					
11. 595	NSCS	Sample Interval	Recovery	■ ppm ■	ů.						
	SU I	Sa	%	250 500 750	Lab						
0	Ground Surface		-								
° T	SM SM				1						
1-1	Dry, brown, fine silty sand		100	•							
			100								
2-	SM SM										
	Moist, tan, fine silty sand			0							
3-3-3	sc		100	t							
43	moist, orange and tan, medium clayey sand										
-	SC Moist, red and orange, fine clayey sand										
5-2	Moist, red and orange, nne clayey sand		100	•							
6											
				0							
			100	†							
8]					
				2							
9-2	//		100	•							
	SC		0.000000								
10-3	Moist, tan and orange, fine clayey sand										
				1							
11-			100	T							
12											
12											
13-		5.83									
14-											
15											
15-											
16-											
	1			L	1						
	ons-IES, Inc.		10								
	Nowell Road		And And	Solutio	nc	IEC					
	gh, NC 27607			Joinno	112	-ILO					
(919)	873-1060		I	ndustrial & Environr	nental	Services					

Log of Soil Boring: P48-B3											
Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 3											
Client:	Client: NCDOT										
WBS # 34438.1.1 Initial Water Level: NA											
State F	Proje	ct # R-2502A County: Richm	ond		Stabilized Water	Level	NA				
		thod: Direct Push Boring Date: 0			Cave In Depth: N	A					
	-	vpe: Macro Core Site: Parcel 48									
Logged	d By	,	Q		Total Depth of B	oring:	B' bgs				
		SUBSURFACE PROFILE	SAM	PLE	PID Field Screen	pth					
	0				• ppm •	Depth					
Depth	Symbol			Recovery	250 500 750	Sample	Well Data				
ft. bgs	ŝ	Description	al le	S S	FID Field Screen	am	Weil Data				
	USCS		Sample Interval	Re	■ ppm ■ 250 500 750	Lab S					
	S		ŝË	%	250 500 750	La L					
0-		Ground Surface	_								
-		SM Dry tap and brown fine silty cond			0						
1-		Dry, tan and brown, fine silty sand		100	Ý						
	11.										
2-	1-1-1-				1						
3-	1-1-1-	SM		100	0						
Ĩ	-1-1-	Moist, tan, fine silty sand		100	T						
4-		SC									
	HILH	Moist, orange and tan, medium clayey sand			1						
5-		SM Maiat tan madium ailtu aand		100	ŧ	Sight					
		Moist, tan, medium silty sand									
6-	¥##	Damp, orange, medium clayey sand									
7	M	sc		100	0						
		Moist, red, orange, and tan, sandy clay		100							
8-	7//4										
-											
9-											
10-											
11-											
-											
12-											
10											
13-											
14-											
		96 S. 1									
15-			1.1.1								
16-					· · · · · · · · · · · · · · · · · · ·						
0.1				st	2						
		s-IES, Inc. well Road		2 8	h c 1.		TDO				
		NC 27607			Solutio	ns	-IFS				
	(919) 873-1060 Industrial & Environmental Services										

		Log of Soil	Borin	g: P	48-B4				
Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 4									
Client:	NC	тот							
WBS #	# 344	Initial Water Lev	el: NA						
State F	Proje	ct # R-2502A County: Richm	mond Stabilized Water Level: NA						
		thod: Direct Push Boring Date: 0	8/22/06		Cave In Depth: 1	A			
		vpe: Macro Core Site: Parcel 48	3						
Logge	d By		a		Total Depth of B	oring:	8' bgs		
		SUBSURFACE PROFILE	SAMPLE		PID Field Screen	oth			
	0				ppm pm	Depth			
Depth	Symbol			ery	250 500 750	ble	Well Data		
ft. bgs	S)	Description	<u>a</u> <u>a</u>	Recovery	FID Field Screen	Sample	vveli Data		
Ū	USCS		Sample Interval		■ ppm ■				
	ő		Int Sa	%	250 500 750	Lab			
0-		Ground Surface							
	1111	SM			0				
1-	111	Moist, brown, fine silty sand		100					
=							22		
2-									
3-	1.11	SM		100	0				
3	111	Moist, orange and tan, medium silty sand		100					
4-									
					1				
5-	-1-1			100					
=		SC							
6-	<i>U</i> A	Moist, orange and tan, medium clayey sand							
7		CL		100	0				
'=		Moist, tan and orange, sandy clay		100					
8-									
8									
9-									
10-						i i			
11-									
· · · =									
12-									
=									
13-									
14-									
14-									
15-									
1 3									
16-									
				-	h				
		s-IES, Inc.		5	hc 1 ·				
	1101 Nowell Road Raleigh, NC 27607								
		3-1060			dustrial & Environn				

	Log of Soil	Borin	g: P	48-B5							
Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 5											
	Client: NCDOT										
WBS # 344				Initial Water Lev	οl· ΝΔ						
	ct # R-2502A County: Richt	mond		Stabilized Water		Gentle in the					
	thod: Direct Push Boring Date:			Cave In Depth: I	1. T. T. D. S. D.	NA .					
	/pe: Macro Core Site: Parcel 4			Cave in Deptil. I							
Logged By				Total Depth of B	orina	8' hae					
	SUBSURFACE PROFILE	SAM			-	0 093					
		JAN		PID Field Screen	Sample Depth						
Depth S			-	• ppm •	ă						
Depth 5			Recovery	250 500 750	ple	Well Data					
ft. bgs 0	Description	ale	co	FID Field Screen	am	Troit Data					
n. bgs SOSN		Sample Interval		■ ppm ■							
) S		IT So	%	250 500 750	Lab						
0	Ground Surface										
° THIA	SM										
1-3116	Moist, brown, fine silty sand		100	0							
E			100								
2-11											
	SM			0							
3-1-1	Moist, tan, fine silty sand		100	i i							
31.11											
4-111	SM	 -									
_ 11-1	Moist, orange, fine silty sand			0							
5-1-1-1	SM		100								
6-111	Damp, orange and tan, medium silty sand										
	SC										
7 3///	Moist, tan and orange, medium clayey sand		100	1							
			100 1								
8-2///											
-											
9-											
-											
10-											
E											
11-			1 7								
12-											
12											
13-											
-											
14											
15-											
-											
16-											
	s-IES, Inc.		Serve .	601.							
	well Road		1	Solutio	nc	IEC					
(919) 873	NC 27607		L	moorano	112	-ILO					
(010)01.	-1000		Le	dustrial & Environm	anneal	Comunan					

Industrial & Environmental Services

Log of Soil Boring: P48-B6									
Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 6									
Client: NCDOT									
WBS #	# 344	138.1.1		Initial Water Level: NA					
State F	Proje	ct # R-2502A County: Richn	mond Stabilized Water Level: NA						
Drilling	Me	thod: Direct Push Boring Date: 0	8/22/06		Cave In Depth: N	A			
		/pe: Macro Core Site: Parcel 48							
Logged	d By	-	2		Total Depth of B	oring:	8' bgs		
	SUBSURFACE PROFILE			PLE	PID Field Screen	pth			
	0				• ppm •	Depth			
Depth	Symbol			Recovery	250 500 750	Sample	Well Data		
ft. bgs	S	Description	al	co	FID Field Screen	Sar			
	USCS		Sample Interval	Re	■ ppm ■ 250 500 750	Lab S			
	S		°, ⊂	%	230 300 730	Ľ.			
0-	नाम	Ground Surface							
-	1-1-1	SM Dry, brown, fine silty sand			0				
1-		Dry, brown, me sity saild		100					
	÷.								
2-						1			
3-		SM		100	0				
	111	Moist, tan, fine silty sand		100					
4-		SM							
=	HI	Moist, tan and brown, fine silty sand			0				
5-				100					
6-	ЦЦ Ц	SM Damp, tan, fine silty sand							
		CL			4				
7-		Moist, tan and orange, sandy clay		100					
8-									
9-									
5									
10-									
=									
11-									
10									
12-									
13-									
14-									
15-									
16-									
			L	I	1	L	L		
Solu	tion	s-IES, Inc.		-			a. 5		
	1101 Nowell Road								
		NC 27607		1	Joinno	112	-110		
(919)	01.	3-1060		I	ndustrial & Environr	nental	Services		

		Log of Soil	Borin	g: P	48-B7				
Projec	t: Ric	chmond County PSA's Solutions-IES Project I				mber:	7		
Client:	NCE	ООТ							
WBS #	# 344	38.1.1			Initial Water Leve	e <i>l:</i> NA			
State Project # R-2502A County: Richmond Stabilized Water Level: NA							NA		
Drilling	y Met	hod: Direct Push Boring Date: 0	8/22/06		Cave In Depth: N	A	1.2		
Sampl	er Ty	pe: Macro Core Site: Parcel 48	3						
Logge	Logged By: K.B Checked By: N Total Depth of Boring: 8' bgs								
		SUBSURFACE PROFILE	SAM	PLE	PID Field Screen	oth			
Depth	Symbol	Description		Recovery	• ppm • 250 500 750	Sample Depth	Well Data		
ft. bgs	USCS		Sample Interval	% Rec	FID Field Screen ppm 250 500 750	Lab Sa			
0-		Ground Surface							
1-		SM Dry, brown, fine silty sand		100	o				
2-		SM			0				
3-		Moist, tan, fine silty sand		100					
4		<i>SM</i> Moist, light brown, fine silty sand			0				
5-	HIHH	SM Damp, orange, medium silty sand		100					
6		CL Moist, grey and orange, sandy clay			0				
7-		SC Dome erange and tap, modium alougu cand		100					
8-		Damp, orange and tan, medium clayey sand							
9-									
10-									
11-									
12-									
13-									
14-									
15-									
16-									
		s-IES, Inc. well Road		19	Solutio	ne	IES		

Raleigh, NC 27607 (919) 873-1060

	Log of Soil I	Borin	g: P	48-B8					
Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 8									
Client: N	ICDOT								
WBS # 3	34438.1.1		Initial Water Level: NA						
State Pr	oject # R-2502A County: Richm	nond Stabilized Water Level: NA							
	Method: Direct Push Boring Date: 0			Cave In Depth: 1	A				
	r Type: Macro Core Site: Parcel 48	- Pr.							
Logged			-	Total Depth of B	oring:	8' bgs			
	SUBSURFACE PROFILE	SAM	PLE	PID Field Screen	pth				
				e ppm e	Sample Depth				
Depth	Description		ery	250 500 750	ple	Well Data			
ft. bgs	ගි Description	a e	Recovery	FID Field Screen	am	Wen Data			
		Sample Interval	Re	■ ppm ■	Lab S				
	۳ ۲	nt S	%	250 500 750	La L				
0-0	Ground Surface								
ĨE	SM			0					
1-1	Dry, brown, fine silty sand		100	•					
=									
2-									
3-	SM SM		400	0					
37	Moist, tan and brown, fine silty sand		100						
4-	SM								
王	Moist, tan and orange, fine silty sand			0					
5	sc		100	Ť					
	Moist, tan and orange, fine clayey sand								
6	CL Moist, red, orange and grey, sandy clay					1			
7	SC		100	0					
	Moist, orange and red, medium clayey sand		100						
8	///								
=									
9-									
10									
10-					1				
11-									
=									
12-									
13-									
14-									
14									
15-									
		L							
16-									
			-	2					
	ons-IES, Inc.		10	hc1 ·		THO			
	1101 Nowell Road Raleigh, NC 27607								
	873-1060		a a	ndustrial & Environi	nentel	Services			
			1	neustrial & Environi	nental	Services			

		Log of Soil I	Borin	g: P	48-B9				
Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 9									
Client:	NC	DOT							
WBS #	3.543				Initial Water Lev				
		ct # R-2502A County: Richm			Stabilized Water		NA		
		thod: Direct Push Boring Date: 0			Cave In Depth: 1	A			
1.0		rpe: Macro Core Site: Parcel 48 K.B Checked By: N	0		Total Dopth of P	oring	P' bac		
Logged By: K.B Checked By: SUBSURFACE PROFILE				PLE	Total Depth of B	-	o ugo		
		SUBSURFACE FROFILE	JAW	FLE	PID Field Screen	Sample Depth			
	Symbol			>	• ppm • 250 500 750	e			
Depth	Syn	Description		Recovery	I I I I I I I I I I I I I I I I I I I	du	Well Data		
ft. bgs	ŝ	Description	nple	eco	FID Field Screen	Sar			
	USCS		Sample Interval	% R	■ ppm 250 500 750	Lab			
	_	Ground Surface	0, -	0	IIII	-			
0-	HHH	SM	П						
1	-1-1	Dry, brown, fine silty sand		400	0				
1	-1-1-1-			100	T				
2-									
=					0				
3-				100	†				
	Ŀ H	SM Moist, orange, fine silty sand							
4-		SM							
5-	1-1-	Damp, tan and orange, fine silty sand		100	•				
=	1-1-1								
6-	;;;; ;	SM							
		Damp, orange, fine silty sand		100	[1				
/-	Ŵ	SC Moist, red and orange, medium clayey sand		100	T				
8-	Y,L,	worst, red and orange, medium dayey sand							
=									
9-									
10-									
11-									
=									
12-									
40									
13-									
14-									
=									
15-									
10									
16-	1					L			
Solu	tion	s-IES, Inc.		-					
1101	No	well Road		3	Solutio	no	IEC		
		NC 27607		1	Solutio	112	-IES		
(919)	87	3-1060		I	ndustrial & Environi	nenta	Services		

Log of Soil Boring: P48-B10									
Project: Richmond County PSA's Solutions-IES Project No.: 3260.06A3.NDOT Boring Number: 10									
Client: NCDOT									
WBS #	34438.1.1			Initial Water Lev	el: NA	8			
State P	Project # R-2502A County: Richr	nond Stabilized Water Level: NA				NA			
	Method: Direct Push Boring Date: (Cave In Depth: 1	A				
	er Type: Macro Core Site: Parcel 4	8							
Logged	By: K.B Checked By:	QL.		Total Depth of B	oring:	8' bgs			
	SUBSURFACE PROFILE	SAM	PLE	PID Field Screen	oth				
	DO DO			e ppm e	Depth				
Depth	Description		ery	250 500 750	ple	Well Data			
ft. bgs	0 Description	ale	Recovery	FID Field Screen	Sample	Wen Data			
	nscs	Sample Interval	Re	■ ppm ■	Lab S				
	5	ы S	%	250 500 750	2				
0-	Ground Surface								
	SM Dry, brown, fine silty sand			0					
1-	Li biy, brown, nne sitty sand		100	Ĭ					
2-									
3			100	1					
Ē	SM SM		100						
4	Moist, orange and brown, fine silty sand								
				1					
5-			100						
	SM								
6-	Damp, tan, fine silty sand								
7-	SC Moist, tan and orange, medium clayey sand		100	1					
	CL		100			-			
8	Moist, orange and tan, sandy clay	┟┛┛							
9-									
10-									
11-									
=									
12-									
13-									
13									
14									
=									
15-									
16-									
Solut	ions-IES, Inc.		-	•					
	Nowell Road		7	Calution	-	IFC			
	Raleigh, NC 27607								
(919)	873-1060		In	udustrial & Environn	nental	Services			

APPENDIX D

GPS COORDINATES OF BORING LOCATIONS

Appendix D GPS Coordinates of Boring Locations Parcel 48, Roy Berry Bostick Property 3569 US Highway 1 Richmond County, North Carolina WBS Element: 34438.1.1; NCDOT Project R-2502A

Boring Identification	Northing	Easting
P48-B1	35.03043696	-79.5515521
P48-B2	35.0304373	-79.5515407
P48-B3	35.03040595	-79.55157339
P48-B4	35.03027779	-79.55218032
P48-B5	35.03033739	-79.55211452
P48-B6	35.03042573	-79.55188645
P48-B7	35.03052581	-79.55169182
P48-B8	35.03056713	-79.55158277
P48-B9	35.03063109	-79.55151555
P48-B10	35.03069395	-79.55139862

Notes:

Coordinates referenced to North American Datum, 1983.

APPENDIX E

LABORATORY ANALYTICAL REPORTS

Case Narrative

Date:08/30/06Company:N. C. Department of TransportationContact:Sheri KnoxAddress:c/o Solution - IES1101 Nowell RoadRaleigh, NC 27607

Client Project ID: Prism COC Group No: Collection Date(s): Lab Submittal Date(s):

NCDOT Parcel 48 G0806706 08/22/06 08/23/06

Client Project Name Or No: Richmond Co. WBS# 34438.1.1

This data package contains the analytical results for the project identified above and includes a Case Narrative, Laboratory Report and Quality Control Data totaling 24 pages. A chain-of-custody is also attached for the samples submitted to Prism for this project.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative. Quality control statements and/or sample specific remarks are included in the sample comments section of the laboratory report for each sample affected.

Semi Volatile Analysis

No Anomalies Reported

Volatile Analysis

No Anomalies Reported

Metals Analysis

No Anomalies Reported

Wet Lab and Micro Analysis

N/A

Please call if you have any questions relating to this analytical report.

Date Reviewed by:	Paula A. Gilleland	Project Manager:	Angela D. Overcash
Signature:	Laule J. Tilleland	Signature:	Paula 1. Dillipard for Angela Overcash
Review Date:	08/30/06	Approval Date:	08/30/06

Data Qualifiers Key Reference:

B: Compound also detected in the method blank.

#: Result outside of the QC limits.

DO: Compound diluted out.

E: Estimated concentration, calibration range exceeded.

J: The analyte was positively identified but the value is estimated below the reporting limit.

H: Estimated concentration with a high bias.

L: Estimated concentration with a low bias.

M: A matrix effect is present.

Notes: This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. The results in this report relate only to the samples submitted for analysis.

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B1 8-1	10
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159238	
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706	
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	10:15
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	90.7	%			1	SM2540 G	08/28/06 16:30	Ithao	
Diesel Range Organics (DRO) by G Diesel Range Organics (DRO)	<u>C-FID</u> BRL	mg/kg	7.7	1.9	1	8015B	08/26/06 2:58	jvogel	Q17323
Sample Preparation:			50.95	g /	2 mL	3550B	08/25/06 10:00	Jvogel	P16206
					Surrogate	e	% Recovery	Cont	rol Limits
					o-Terpher	ıyl	106		48 - 130
Sample Weight Determination									
Weight 1	6.38	g			1	GRO	08/25/06 0:00	Ibrown	
Weight 2	6.34	g			1	GRO	08/25/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by Gasoline Range Organics (GR	<u>/ GC-FID</u> BRL	mg/kg	7.7	3.0	50	8015B	08/29/06 6:07	grappaccioli	Q17340

					Surrogate		% Recovery	Control Limits	
					aaa-TFT		115	55 - 129	
Metals by ICP									
Chromium	11	mg/kg	0.82	0.049	3	6010B	08/28/06 23:04	mcampbell Q17302	
Lead	4.4	mg/kg	0.82	0.069	3	6010B	08/28/06 23:04	mcampbell Q17302	
Sample Preparation:			2.02	g /	50 mL	3050B	08/25/06 7:20	jhoppel P16191	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

NC Certification No. 402 SC Certification No. 99012 NC Drinking Water Cert. No. 37735

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B1 8-	10	
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159238		
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706		
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	10:15	
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10	

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analyst	Batch
			Limit		Factor		Date/Time		ID

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B2 8-1	0
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159239	
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706	
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	10:40
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	92.0	%			1	SM2540 G	08/28/06 16:30	Ithao	
Diesel Range Organics (DRO) by G	<u>C-FID</u>								
Diesel Range Organics (DRO)	BRL	mg/kg	7.6	1.8	1	8015B	08/26/06 3:35	jvogel	Q17323
Sample Preparation:			49.96	g _/	2 mL	3550 B	08/25/06 10:00	Jvogel	P16206
					Surrogate	9	% Recovery	Cont	rol Limits
					o-Terphen	ıyl	108	4	18 - 130
Sample Weight Determination									
Weight 1	6.46	g			1	GRO	08/25/06 0:00	Ibrown	
Weight 2	5.94	g			1	GRO	08/25/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.6	3.0	50	8015B	08/29/06 6:47	grappaccioli	Q17340

						Surrogate aaa-TFT		% Recovery	Cont	rol Limits
								124	5	55 - 129
Metals by ICP										
Chromium		13	mg/kg	0.82	0.049	3	6010B	08/28/06 23:24	mcampbell	Q17302
Lead		4.6	mg/kg	0.82	0.068	3	6010B	08/28/06 23:24	mcampbell	Q17302
	Sample Preparation:			2	2g/	50 mL	3050B	08/25/06 7:20	jhoppel	P16191

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Date/Time

08/30/06

ID

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analys	t Batch
Raleigh, NC 27607						Т	ime Submitted:	08/23/06	15:10
1101 Nowell Road		Sampi	e Matrix:	Soil		Т	ime Collected:	08/22/06	10:40
c/o Solution - IES		Projec	t No.:	WBS#	34438.1.1	C	OC Group:	G0806706	
Attn: Sheri Knox		Projec	t ID:	NCDOT	Parcel 48	P	rism Sample ID	: 15 92 39	
N. C. Department of Transportation	ו	Projec	t Name:	Richmo	nd Co.	C	lient Sample ID	: P48.B2 8-1	0

Factor

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments.

Limit

All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B3 4-6	3
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159240	
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706	
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	10:50
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	93.3	%			1	SM2540 G	08/28/06 16:30	lthao	
<u>Diesel Range Organics (DRO) by G(</u> Diesel Range Organics (DRO)	<u>C-FID</u> BRL	mg/kg	7.5	1.8	1	8015B	08/26/06 4:12	jvogel	Q17323
Sample Preparation:			50.03	g /	2 mL	3550B	08/25/06 10:00	Jvogel	P16206
					Surrogate	9	% Recovery	Cont	rol Limits
					o-Terpher	ly!	102		48 - 130
Sample Weight Determination									
Weight 1	6.51	g			1	GRO	08/28/06 0:00	Ibrown	
Weight 2	6.27	g			1	GRO	08/28/06 0:00	lbrown	
<u>Gasoline Range Organics (GRO) by</u> Gasoline Range Organics (GR	<u>GC-FID</u> BRL	mg/kg	7.5	2.9	50	8015B	08/29/06 7:26	grappaccioli	Q17340

					Surrogate		% Recovery	Control Limits
					aaa-TFT		108	55 - 129
<u>Metals by ICP</u> Chromium	2.7	mg/kg	0.79	0.048	3	6010B	08/28/06 23:31	mcampbeli Q17302
Lead	2.2	mg/kg	0.79	0.067	3	6010B	08/28/06 23:31	mcampbell Q17302
Sample Preparation:			2.03	5 g /	50 mL	3050B	08/25/06 7:20	jhoppel P16191

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543

Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Date/Time

08/30/06

ID

Parameter	Result	Units	Report	MDL	Dilution	Method	Ar	nalysis	Analys	t Batch	1
Raleigh, NC 27607						Т	ime Subi	mitted:	08/23/06	15:10	
1101 Nowell Road		Sampl	e Matrix:	Soil		Т	ime Colle	ected:	08/22/06	10:50	
c/o Solution - IES		Projec	t No.:	WBS#:	34438.1.1	C	OC Grou	.qr	G0806706		
Attn: Sheri Knox		Projec	t ID:	NCDOT	Parcel 48	P	rism San	nple ID:	159240		
N. C. Department of Transportation	ר	Projec	t Name:	Richmo	nd Co.	C	lient San	nple ID:	P48.B3 4-6	6	

Factor

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Limit

Angela D. Overcash, V.P. Laboratory Services

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B4 4-6	3
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159241	
c/o Solution - IES	Project No .:	WBS# 34438.1.1	COC Group:	G0806706	
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	11:00
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination						01/05/0 0	00/00/00 40:00	lthao	
Percent Solids	96.9	%			1	SM2540 G	08/28/06 16:30	ilnao	
Diesel Range Organics (DRO) by G	<u>C-FID</u>								
Diesel Range Organics (DRO)	BRL	mg/kg	7.2	1.8	1	8015B	08/26/06 4:50	jvogel	Q17323
Sample Preparation:			49.7	g /	2 mL	3550B	08/25/06 10:00	Jvogel	P16206
					Surrogate	e	% Recovery	Cont	trol Limits
					o-Terpher	ıyl	105		48 - 130
On an allo Matché Daéanaire dia a									
Sample Weight Determination Weight 1	6.40	g			1	GRO	08/28/06 0:00	Ibrown	
Weight 2	6.22	g			1	GRO	08/28/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	/ GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.2	2.8	50	8015B	08/29/06 8:05	grappaccioli	Q17340
					Surrogate	•	% Recovery	Con	trol Limits

					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		103	{	55 - 129
Metals by ICP		-							
Chromium	3.5	mg/kg	0.76	0.045	3	6010B	08/28/06 23:37	mcampbell	Q17302
Lead	2.5	mg/kg	0.76	0.063	3	6010B	08/28/06 23:37	mcampbell	Q17302
Sample Preparation:			2.05	ig/	50 mL	3050B	08/25/06 7:20	jhoppel	P16191

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

08/30/06

N. C. Department of Transportation Attn: Sheri Knox c/o Solution - IES		Projec Projec	Project Name: Richmond Co. Project ID: NCDOT Parcel 48 Project No.: WBS# 34438.1.1 Sample Matrix: Soil			Pri CC	ient Sample ID: ism Sample ID: DC Group:	159241 G0806706	
1101 Nowell Road Raleigh, NC 27607		Sampl	e Matrix:	Soil			ne Collected: ne Submitted:	08/22/06 08/23/06	11:00 15:10
Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analys	t Batch ID

Factor

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

Project Name:	Richmond Co.	Client Sample ID:	P48.B5 6-8	3
Project ID:	NCDOT Parcel 48	Prism Sample ID:	159242	
Project No.:	WBS# 34438.1.1	COC Group:	G0806706	
Sample Matrix:	Soil	Time Collected:	08/22/06	11:10
		Time Submitted:	08/23/06	15:10
F	Project ID: Project No.:	. .	Project ID:NCDOT Parcel 48Prism Sample ID:Project No.:WBS# 34438.1.1COC Group:Sample Matrix:SoilTime Collected:	Project ID: NCDOT Parcel 48 Prism Sample ID: 159242 Project No.: WBS# 34438.1.1 COC Group: G0806706

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	88.4	%			1	SM2540 G	08/28/06 16:30	lthao	
T EICEN SONGS	80.4	70			•	0112040 0	00/20/00 10:00	10.00	
Diesel Range Organics (DRO) by G	<u>C-FID</u>								
Diesel Range Organics (DRO)	13	mg/kg	7.9	2.3	1	8015B	08/28/06 15:04	jvogel	Q17362
Sample Preparation:			25.29	g /	1 mL	3545	08/26/06 11:45	wconder	P16210
					Surrogate	9	% Recovery	Con	rol Limits
					o-Terpher	ıyl	68		49 - 124
Sample Weight Determination									
Weight 1	6.44	g			1	GRO	08/25/06 0:00	Ibrown	
Weight 2	6.52	g			1	GRO	08/25/06 0:00	lbrown	
Gasoline Range Organics (GRO) by	GC-FID								
Gasoline Range Organics (GR	BRL	mg/kg	7.9	3.1	50	8015B	08/29/06 8:44	grappaccioli	Q17340

					Surrogate		% Recovery	Cont	rol Limits
					aaa-TFT		117	ę	55 - 129
Metals by ICP									
Chromium	13	mg/kg	0.84	0.050	3	6010B	08/28/06 23:43	mcampbell	Q17302
Lead	4.0	mg/kg	0.84	0.071	3	6010B	08/28/06 23:43	mcampbell	Q17302
Sample Preparation:			2.02	g /	50 mL	3050B	08/25/06 7:20	jhoppel	P16191

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Date/Time

08/30/06

ID

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analys	t Batch
Raleigh, NC 27607						I	ime Submitted:	00/23/00	10:10
Boloich NC 27607		•				Ŧ	ime Submitted:	00/00/06	15:10
1101 Nowell Road		Sampl	e Matrix:	Soil		Т	ime Collected:	08/22/06	11:10
c/o Solution - IES		Projec	t No.:	WBS#3	34438.1.1	С	OC Group:	G0806706	
Attn: Sheri Knox		Projec	t ID:	NCDOT	Parcel 48	Р	rism Sample ID:	159242	
N. C. Department of Transportation	ו	Projec	t Name:	Richmo	nd Co.	C	lient Sample ID:	P48.B5 6-8	;

Factor

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Limit

Angela D. Overcash, V.P. Laboratory Services

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B6 6-8	
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159243	
c/o Solution - IES	Project No .:	WBS# 34438.1.1	COC Group:	G0806706	
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06 11:20	
Raleigh, NC 27607			Time Submitted:	08/23/06 15:10	

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	90.0	%			1	SM2540 G	08/28/06 16:30	lthao	
Diesel Range Organics (DRO) by G Diesel Range Organics (DRO)	<u>C-FID</u> 17	mg/kg	7.8	2.2	1	8015B	08/28/06 15:37	jvogel	Q17362
Sample Preparation:			25.11	g /	1 mL	3545	08/26/06 11:45	wconder	P16210
					Surrogate	8	% Recovery	Cont	rol Limits
					o-Terpher	nyl	71		19 - 124
Sample Weight Determination									
Weight 1	6.20	g			1	GRO	08/25/06 0:00	Ibrown	
Weight 2	6.76	g			1	GRO	08/25/06 0:00	Ibrown	
Gasoline Range Organics (GRO) by Gasoline Range Organics (GR	<u>/ GC-FID</u> BRL	mg/kg	7.8	3.0	50	8015B	08/29/06 9:23	grappaccioli	Q17340

					Surrogate		% Recovery		rol Limits
					aaa-TFT		115		55 - 129
Metals by ICP									
Chromium	17	mg/kg	0.81	0.049	3	6010B	08/28/06 23:49	mcampbell	Q17302
Lead	4.8	mg/kg	0.81	0.068	3	6010B	08/28/06 23:49	mcampbell	Q17302
Sample Preparation:			2.05	; g /	50 mL	3050B	08/25/06 7:20	jhoppel	P16191

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

08/30/06

Parameter	Result	Units	Report	MDL	Dilution	Lir Method	ne Submitted: Analysis	08/23/06 Analys	
1101 Nowell Road Raleigh, NC 27607		Sample	e Matrix:	Soil			ne Collected: ne Submitted:	• • • • • • •	11:20 15:10
c/o Solution - IES		Projec	t No.:	WBS# 34438.1.1		COC Group:		G0806706	
Attn: Sheri Knox		Projec	t ID:	NCDOT Parcel 48		Prism Sample ID:		159243	
N. C. Department of Transportation		Projec	t Name:	Richmo	nd Co.	Cli	ent Sample ID:	P48.B6 6-8	1

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B7 6-8	3
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159244	
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706	i
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	11:30
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	90.7	%			1	SM2540 G	08/28/06 16:30	lthao	
<u>Diesel Range Organics (DRO) by G</u> Diesel Range Organics (DRO)	<u>C-FID</u> 12	mg/kg	7.7	2.2	1	8015B	08/28/06 16:15	jvogel	Q17362
Sample Preparation:			25.02	g /	1 mL	3545	08/26/06 11:45	wconder	P16210
					Surrogate)	% Recovery	Cont	rol Limits
					o-Terphen	yl	77	4	19 - 124
Sample Weight Determination									
Weight 1	5.61	g			1	GRO	08/25/06 0:00	lbrown	
Weight 2	5.65	g			1	GRO	08/25/06 0:00	lbrown	
Gasoline Range Organics (GRO) by Gasoline Range Organics (GR	<u>y GC-FID</u> BRL	mg/kg	7.7	3.0	50	8015B	08/29/06 19:59	grappaccioli	Q17375

					Surrogate		% Recovery	r Contr	rol Limits
					aaa-TFT		122	5	5 - 129
Metals by ICP									
Chromium	15	mg/kg	0.82	0.049	3	6010B	08/29/06 0:06	mcampbell	Q17302
Lead	4.3	mg/kg	0.82	0.069	3	6010B	08/29/06 0:06	mcampbell	Q17302
Sample Preparation:			2.02	g /	50 mL	3050B	08/25/06 7:20	jhoppel	P16191

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Date/Time

08/30/06

ID

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analyst	Batch
Raleigh, NC 27607						Ti	me Submitted:	08/23/06	15:10
1101 Nowell Road		Sampl	e Matrix:	Soil			me Collected:		11:30
c/o Solution - IES		Projec			34438.1.1	С	OC Group:	G0806706	
Attn: Sheri Knox		Projec	t ID:	NCDOT	Parcel 48	P	rism Sample ID:	159244	
N. C. Department of Transportation	1 I	Projec	t Name:	Richmo	nd Co.	С	lient Sample ID:	P48.B7 6-8	i

Factor

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Limit

Angela D. Overcash, V.P. Laboratory Services

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B8 6-8	3
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159245	
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706	
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	11:40
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	91.8	%			1	SM2540 G	08/28/06 16:3) Ithao	
Diesel Range Organics (DRO) by G Diesel Range Organics (DRO)	<u>C-FID</u> 7.6	mg/kg	7.6	2.2	1	8015B	08/28/06 16:5	jvogel	Q17362
Sample Preparation:			25.2	g /	1 mL	3545	08/26/06 11:4	5 wconder	P16210
					Surrogate	9	% Recover	y Cont	rol Limits
					o-Terpher	nyl	66		19 - 124
Sample Weight Determination Weight 1	6.32	g			1	GRO	08/28/06 0:00	Ibrown	
Weight 2	6.12	g			1	GRO	08/28/06 0:00	Ibrown	

					Surrogate		% Recovery	Cont	Control Limits	
					aaa-TFT		113	5	55 - 129	
<u>Metals by ICP</u> Chromium	11	maka	0.81	0.049	3	6010B	08/29/06 0:12	mcampbell	Q17302	
Lead	3.4	mg/kg mg/kg	0.81	0.068	3	6010B	08/29/06 0:12	mcampbell	Q17302	
Sample Preparation:			2.02	9 /	50 mL	3050B	08/25/06 7:20	jhoppel	P16191	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Date/Time

08/30/06

ID

					11	me oublinited.	00/20/00	10.10
1101 Nowell Road Raleigh, NC 27607	Sample	e Matrix:	Soil			me Collected: me Submitted:		11:40 15:10
c/o Solution - IES	Project			34438.1.1		OC Group:	G0806706	
Attn: Sheri Knox	Project	t ID:	NCDOT	Parcel 48	Pr	ism Sample ID:	159245	
N. C. Department of Transportation	Project	t Name:	Richmo	nd Co.	CI	ient Sample ID:	P48.B8 6-8	;

Factor

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Limit

Angela D. Overcash, V.P. Laboratory Services

Laboratory Report

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B9 6-8	3
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159246	
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706	
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	11:50
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	91.1	%			1	SM2540 G	08/28/06 16:30	lthao	
Diesel Range Organics (DRO) by G Diesel Range Organics (DRO)	<u>C-FID</u> 24	mg/kg	7.7	2.2	1	8015B	08/28/06 17:31	jvogel	Q17362
Sample Preparation:			25.48	g /	1 mL	3545	08/26/06 11:45	wconder	P16210
					Surrogate	•	% Recovery	Cont	rol Limits
					o-Terphen	yl	72	4	19 - 124
Sample Weight Determination						·			
Weight 1	5.35	g			1	GRO	08/25/06 0:00	lbrown	
Weight 2	5.85	g			1	GRO	08/25/06 0:00	lbrown	
Gasoline Range Organics (GRO) by Gasoline Range Organics (GR	<u>y GC-FID</u> BRL	mg/kg	7.7	3.0	50	8015B	08/29/06 21:21	grappaccioli	Q17375

				Surrogate			% Recover	Cont	Control Limits	
			aaa-TFT		127	5	55 - 129			
Metals by ICP Chromium	19	mg/kg	0.81	0.048	3	6010B	08/29/06 0:19	mcampbell	Q17302	
Lead	3.5	mg/kg	0.81	0.068	3	6010B	08/29/06 0:19	mcampbell	Q17302	
Sample Preparation:			2.04	g /	50 mL	3050B	08/25/06 7:20	jhoppel	P16191	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B9 6-	8
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159246	
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706	5
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	11:50
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report	MDL	Dilution	Method	Analysis	Analyst	Batch
			Limit		Factor		Date/Time		ID
									· · · · ·

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL.

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

08/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	Client Sample ID:	P48.B10 6	-8
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Prism Sample ID:	159247	
c/o Solution - IES	Project No.:	WBS# 34438.1.1	COC Group:	G0806706	
1101 Nowell Road	Sample Matrix:	Soil	Time Collected:	08/22/06	12:05
Raleigh, NC 27607			Time Submitted:	08/23/06	15:10

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
Percent Solids Determination Percent Solids	91.7	%			1	SM2540 G	08/28/06 16:30	lthao	
Diesel Range Organics (DRO) by G Diesel Range Organics (DRO)	<u>C-FID</u> 8.8	mg/kg	7.6	2.2	1	8015B	08/28/06 18:09	jvogel	Q17362
Sample Preparation:			25.38	g /	1 mL	3545	08/26/06 11:45	wconder	P16210
					Surrogate	3	% Recovery	Cont	rol Limits
					o-Terpher	nyl	72		49 - 124
Sample Weight Determination									
Weight 1	5.26	g			1	GRO	08/25/06 0:00	lbrown	
Weight 2	5.31	g			1	GRO	08/25/06 0:00	lbrown	
Gasoline Range Organics (GRO) by Gasoline Range Organics (GR	<u>/ GC-FID</u> BRL	mg/kg	7.6	3.0	50	8015B	08/29/06 22:02	grappaccioli	Q17375

				Surrogate			% Recovery	/ Cont	Control Limits	
				aaa-TFT		114	5	5 - 129		
Metals by ICP										
Chromium	15	mg/kg	0.81	0.048	3	6010B	08/29/06 0:26	mcampbell	Q17302	
Lead	5.1	mg/kg	0.81	0.068	3	6010B	08/29/06 0:26	mcampbell	Q17302	
			0.00	1	F01	20500	00/05/00 7-00	ibaaat	Dictor	
Sample Preparation:			2.03	g/	50 mL	3050B	08/25/06 7:20	jhoppel	P16191	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

08/30/06

N. C. Department of Transportation Attn: Sheri Knox c/o Solution - IES		Projec Projec Projec		NCDOT	ond Co. F Parcel 48 34438.1.1	F	Client Sample ID: Prism Sample ID: COC Group:		
1101 Nowell Road Raleigh, NC 27607		-	e Matrix:	Soil			Time Collected:	08/22/06 08/23/06	12:05 15:10
Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	I Analysis Date/Time	Analys	t Batch ID

Sample Comment(s):

BRL = Below Reporting Limit

J = Estimated value between the Reporting Limit and the MDL

The results in this report relate only to the samples submitted for analysis and meet state certification requirements other than NELAC certification except for those instances indicated in the case narrative and/or test comments. All results are reported on a dry-weight basis

Angela D. Overcash, V.P. Laboratory Services

Level II QC Report

8/30/06

N. C. Department of Transportation	Project Name:	Richmond Co.	COC Group Number:	G080670	6
Attn: Sheri Knox	Project ID:	NCDOT Parcel 48	Date/Time Submitted:	8/23/06	15:10
c/o Solution - IES	Project No.:	WBS# 34438.1.1			
1101 Nowell Road					

Metals by ICP, method 6010B

Raleigh, NC 27607

Method Bla	ink			Control					QC Batch
		Result	RL	Limit	Units				ID
	Chromium	0.0704	0.25	<0.125	mg/kg				Q17302
	Lead	0.0198	0.25	<0.125	mg/kg				Q17302
Laboratory	Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	Chromium	26.0882	25	mg/kg	104	80 - 120			Q17302
	Lead	24.586	25	mg/kg	98	80 - 120			Q17302
Matrix Spik Sample ID:	e	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch
159238	Chromium	37.9074	24.752	mg/kg	111	75 - 125			Q17302
	Lead	30.7541	24.752	mg/kg	108	75 - 125			Q17302
Matrix Spik Sample ID:	e Duplicate	Result	Spike Amount	Units	Recovery %	Recovery Range %	RPD	RPD Range %	QC Batch
150000	Chromium	40.0038	25	mg/kg	119	75 - 125	5	0 - 20	Q17302
159238	Lead	32.8453	25	mg/kg	115	75 - 125	7	0 - 20	Q17302

Method Bla	ank			Control					QC Batch
		Result	RL	Limit	Units		.		D
	Diesel Range Organics (DRO)	ND	7	<3.5	mg/kg				Q17323
Laboratory	y Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	Diesel Range Organics (DRO)	40.41	40	mg/kg	101	53 - 118			Q17323
Matrix Spil	ke		Spike			Recovery Range			QC Batch
Sample ID:		Result	Amount	Units	Recovery %	%			ID
159234	Diesel Range Organics (DRO)	35.86	40	mg/kg	90	52 - 119			Q17323
Matrix Spil	ke Duplicate		Caika		_	Recovery		RPD	00 Batel
Sample ID:		Result	Spike Amount	Units	Recovery %	Range %	RPD %	Range %	QC Batch
159234	Diesel Range Organics (DRO)	31.83	40) mg/kg	80	52 - 119	12	0 - 25	Q17323

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc. 449 Springbrook Road - P.O. Box 240543 - Charlotte, NC 28224-0543 Phone: 704/529-6364 - Toll Free Number: 1-800/529-6364 - Fax: 704/525-0409

Level II QC Report

8/30/06

N. C. Department of Transportation Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co. Project ID: Project No.:

NCDOT Parcel 48 WBS# 34438.1.1

COC Group Number:	G080670	6
Date/Time Submitted:	8/23/06	15:10

Gasoline Range Organics (GRO) by GC-FID, method 8015B

Method Bl	ank	.		Control					QC Batch
	<u> </u>	Result	RL	Limit	Units				ID
	Gasoline Range Organics (GRO)	ND	7	<3.5	mg/kg				Q17340
Laboratory	y Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	Gasoline Range Organics (GRO)	48.4	50	mg/kg	97	67 - 116			Q17340
Matrix Spil	ke		Spike			Recovery			00 D-1-1
Sample ID:		Result	Amount	Units	Recovery %	Range %			QC Batch ID
159233	Gasoline Range Organics (GRO)	50.4	50	mg/kg	101	57 - 113			Q17340
Matrix Spil	ke Duplicate		Spike		Recovery	Recovery Range	RPD	RPD Range	QC Batch
Sample ID:		Result	Amount	Units	%	%	%	%	D
159233	Gasoline Range Organics (GRO)	50.65	50) mg/kg	101	57 - 113	0	0 - 23	Q17340

Diesel Range Organics (DRO) by GC-FID, method 8015B

Method Bla	ank			Control					QC Batch
		Result	RL.	Limit	Units				ID
	Diesel Range Organics (DRO)	ND	7	<3.5	mg/kg				Q17362
Laboratory	r Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	Diesel Range Organics (DRO)	57.55	80	mg/kg	72	55 - 109			Q17362
Matrix Spil	K0		Spike			Recovery Range		· · · · · · · · · · · · · · · · · · ·	QC Batch
Sample 1D:		Result	Amount	Units	Recovery %	%			ID
159242	Diesel Range Organics (DRO)	55.75	80	mg/kg	55	50 - 117			Q17362
Matrix Spil	ke Duplicate		Spike		Recovery	Recovery Range	RPD	RPD Range	QC Batch
Sample ID:		Result	Amount	Units	%%	%	%	%	ID
159242	Diesel Range Organics (DRO)	61.05	80	mg/kg	62	50 - 117	9	0 - 24	Q17362

Level II QC Report

8/30/06

N. C. Department of Transportation Attn: Sheri Knox c/o Solution - IES 1101 Nowell Road Raleigh, NC 27607

Project Name: Richmond Co. Project ID: Project No.:

NCDOT Parcel 48 WBS# 34438.1.1

COC Group Number:	G0806706	6
Date/Time Submitted:	8/23/06	15:10

Gasoline Range Organics (GRO) by GC-FID, method 8015B

Method Bla	ank			Control					QC Batch
		Result	RL	Limit	Units				ID
	Gasoline Range Organics (GRO)	ND	7	<3.5	mg/kg				Q17375
Laboratory	/ Control Sample	Result	Spike Amount	Units	Recovery %	Recovery Range %			QC Batch ID
	Gasoline Range Organics (GRO)	48.3	50	mg/kg	97	67 - 116			Q17375
Matrix Spil	kθ		Spike			Recovery Range			QC Batch
Sample ID:		Result	Amount	Units	Recovery %	%			iD
159245	Gasoline Range Organics (GRO)	53.45	50	mg/kg	107	57 - 113			Q17375
Matrix Spil	ke Duplicate		Spike			Recovery Range	RPD	RPD Range	QC Batch
Sample ID:		Result	Amount	Units	Recovery %	%	8PD %	%	JD
159245	Gasoline Range Organics (GRO)	53.65	50	mg/kg	107	57 - 113	0	0 - 23	Q17375

#-See Case Narrative

SEE REVERSE FOR TERMS & CONDITIONS ORIGINAL	OTHER:	FILL 0 DSC 0 Vsis (Zero 1	LANDFILL DNC DS CAnalysis	SC C	CERCLA LANDFILL OTHER: D SC D NC D SC D NC D SC D D NC D SC D NC D SC VOA = Volatile Organics Analysis (Zero Head Space)	5 11	SOLID WASTE: RCRA		DRINKING WATER: DNC DSC D C C SC D C S	ନ୍ <u>ଚ</u> ଞ		ĭ <u>⊼</u> o ÿ ×	
		1942)92895	۲ ۵			ATURY.	THE LABOR		D Other	ED AND VEHIMED Field Service [Silverad D Prism		D Fad Ex
Mileage	CXC		COC Group No.		SEALS FOR TRANSPORTATION TO THE LABORATORY.	DRTATION TO T	FOR TRANSPO		PED SHUT WITH	SHOULD BE TA	NOTE ALL SAMPLE COLLEGE SHUT WITH CUI	Billhoot of Shipment: NOTE: ALL	
							fratories By:	For Prism Lab	Received	2) 		Relingularied By: (Signeture)	Relinq
			Dail	0) . 	(anneutro)				Heinquished by: (oignature)	puller
Addullonal Comments: Site Arrival Time:		× ,				Ø	Ŋ	\mathbf{v}	80			n IZC	R
PRISM USE ONLY		es must	y chang	ialized.	analyses as requested above. Any changes must be 2 analyses have been initialized.	e analyses a tier analyse	ed with th changes a	Prism to proce larges for any rad By Kilonatura	horization for here will be ch	dy is your auti xt Manager. Th	Chain of Custo	Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with the submitted in writing to the Prism Project Manager. There will be charges for any changes also Federated By Kelenatural /	Subr
PRESS DOWN FIRMLY - 3 COPIES	NS-185	LUTIO	Affiliation Socursons -	Affiliati	Buchtan	11.	Kerix	Sampled By (Print Name)	Sampled By	$\left \right\rangle$	D D	Sampler's Signature	Sam
theksi			\times	\times	<u></u>	<	A	ي ا	4	1205	8/22/06	8-210-6-8	PAG.
3htbs/		\times	×	×			4	ري		1150	8/22/06	16.8	69.840
154245		\times	X	X		 	A	5		1140	8/22/04	8.9. 83 .81	610
159a44		X	×	×			4	s		1120	8/22/06	218, 57.6.8	240
54a43		\times	×	×			A	9		1120	8/22/06	3-9.98 86.6-8	840
Chebsi Ch		X	×	X			A	Q		1110	8/22/06	8.9.58.58	PHB
[5484]		×	×	X			4	رم		1100	8/22/06	048.84.46	840
C44543		×	×	×			4	9		1050	8/22/06	048, B3 · 4.6	P48
154334		X	×	ふ			4	4		1040	8/22/06	82.5.10	148.
863451		×		X	NOVE NOVE	408,302	4	J	5012	1015	8/22/06	01.31 18.10	P48.
REMARKS LAB		\sim	200	GRO	TIVES	m	NO	"TYPE SEE BELOW	WATER OR SLUDGE)	MILITARY	COLLECTED	SAMPLE DESCRIPTION	SAMP
PRISM	ANALYSES REQUESTED	NALYS		<	PRESERVA-	ER	SAMPLE CONTAINER	SAMPL	MATRIX	TIME	DATE	CLIENT	
TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NELACUSACEFLNC SCOTHERN/A Water Chlorinated: YESNO Sample Iced Upon Collection: YESNO	TO BE FILLED IN BY CLIENT/SAN Certification: NELACUSACE SCOTHER Water Chlorinated: YESNO Sample Iced Upon Collection: YES	11	(3. 110 + 7 (DC Days)) (Nork Must Be (pproved ay. ICES	Days Days Lusays Tre-Appro- s day. s day. ends and ends and	Purchase Order No./Billing Reference <u>326</u> (1) (1) (1) Requested Due Date D 1 Day D 2 Days D 3 Days D 4 Days "Working Days" D 6-9 Days D Standard 10 days D Pre-Ap Samples received after 15:00 will be processed next business day Tumaround time is based on business days, exclusions recomposed evenes (SEE NEVERSE FOR TERMS & CONDITIONS RECARDING SERVING RENDERED BY PRISM LABORATORIES, INC. TO CLIENT)	Ing Referen ay □ 2 Days Days □ Stand Will be proces business days business days ABORATORIES	er No./Billini Date D 1 Day Date D 6-9 Da d after 15:00 w is based on bu is based on bu is based on bu is based no bu	Purchase Order No./Billing Reference Requested Due Date D 1 Day D 2 Days D "Working Days" D 6-9 Days D Standard "Banples received after 15:00 will be processed Turnaround time is based on business days, eo (SEE REVERSE FOR TERMS & CONDITIONS RENDERED BY PRISM LABORATORIES, IN		(HADVA CT)) (NO): 11987 4 CC EZ - 4 B 4 R C EZ - 4 B	<u>UE e</u> Fax (Yes) (No): <u>119871</u> ail Address <u>SU2 k @ Squ turnes</u> Excel Other : <u>AICDUT PARCEL 48</u> :al Address: <u>& LHeneval Ce, (</u>	Phone: <u>717 77 106 e</u> Fax (Yes) (No): <u>519677 161</u> Email (Yes) (No) Email Address <u>540 x @ 540 trees 145</u> EDD Type: PDFExcelOther EDD Type: PDFExcelOther Site Location Name: <u>ACDUT_PHECEL_48</u> Site Location Physical Address: <u><i>Lutteneral Co</i>, NUC</u> Site Location Physical Address: <u><i>Lutteneral Co</i>, NUC</u>	Phone Email EDD 1 Site L Site L
VERSUBADO	TREROPER CONTAIN		488	K I		ensie	STATE	Address:		27607	101 NOWS	duess:	Repor
SINTACT?	CUSTODY SEALSIN	N)			57438,	aquirement	Un any proje d/or QC Requ んとひっアー	riease All Morf any project specim provisions and/or QC Requirements Invoice To://ビムのア・ // 広く弁		× S	DALUTION SHELL	Nan e:	Client Repor
	=3:0)	(No)	Yes)	oject:	UST Project:	(Yes) (No)	alysis:	Short Hold Analysis:		Charlotte, NC	.0. вох 240543 1x: 704/525-0409	449 Springbrook Hoad • P.O. Box 240543 • Charlotte, NC 23224-0543 Phone: 704/529-6364 • Fax: 704/525-0409	Phon
VET IGEP Temp 202	Received ON WET	2.	d co.	ICHMOND	145 - Pr	PARCEL	NEDOT	ይ .		umental Solution	Full Service Analytical & Environmental Solutions	Full Service A	
	100	Ê	EGORD				,				Tornoard T		
]									PRICM		