Project Special Provisions (Version 06.4) Signals and Intelligent Transportation Systems Prepared By: KWB 13-May-08 #### **Contents** | 1. | 2006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES | | 3 | |----|---|---|-----| | | 1.1. | GENERAL REQUIREMENTS (1098-1) | : | | | 1.2. | WOOD POLES (1098-6) | | | | 1.3. | Underground Conduit-Construction Methods (1715-3) | | | _ | | ` ' | | | 2. | EL | LECTRICAL REQUIREMENTS | | | 3. | VI | IDEO IMAGING LOOP EMULATOR DETECTOR SYSTEMS | | | | 3.1. | DESCRIPTION | | | | 3.2. | MATERIALS | | | | J.Z.
A. | | | | | В. | | | | | Д.
С. | | | | | 3.3. | CONSTRUCTION METHODS. | | | | 3.4. | MEASUREMENT AND PAYMENT | | | | 18.40 | ETAL TRAFFIC SIGNAL SUPPORTS | | | 4. | | | | | | 4.1. | METAL TRAFFIC SIGNAL SUPPORTS – ALL POLES | | | | A. | | | | | В. | | | | | <i>C</i> . | | | | | 4.2. | METAL STRAIN POLE | | | | A.
B. | | | | | 4.3. | DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES | | | | 4.3.
A. | | | | | л.
В. | • | | | | Д.
С. | | | | | 4.4. | CUSTOM DESIGN OF TRAFFIC SIGNAL SUPPORTS | | | | A. | | | | | В. | Metal Poles: | I & | | | 4.5. | METAL CCTV POLE RELOCATIONS | 19 | | | A. | Description: | | | | В. | | | | | 4.6. | MEASUREMENT AND PAYMENT | 20 | | 5. | RF | EMOVAL OF EXISTING TRAFFIC SIGNAL INSTALLATIONS | 20 | | ٠. | 5.1. | DESCRIPTION | | | | 5.1.
5.2. | CONSTRUCTION METHODS | | | | 3.2.
A. | • | | | | л.
В. | | | | | υ. | 750116 - Mr | | | C. Disposal: | | |---|----------| | 5.3. MEASUREMENT AND PAYMENT | 21 | | 6. RELOCATE EXISTING SIGNAL CABINET AND CONTROLLER AS | SEMBLY22 | | 6.1. DESCRIPTION | 22 | | 6.2. CONSTRUCTION METHODS | 22 | | 6.3. MEASUREMENT AND PAYMENT | 22 | | 7. RELOCATE EXISTING CCTV CABINET ASSEMBLY | 22 | | 7.1. DESCRIPTION | 22 | | 7.2. CONSTRUCTION METHODS | | | A. General | 22 | | B. Electrical and Mechanical Requirements | | | C. Base Mounted CCTV Cabinet | 22 | | 7.3. MEASUREMENT AND PAYMENT | 23 | #### 1. 2006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES The 2006 Standard Specifications are revised as follows: #### 1.1. General Requirements (1098-1) Page 10-268, Subarticle 1098-1(H) In the second paragraph, add "Use 200 amp meter base for underground electrical service". #### 1.2. Wood Poles (1098-6) Page 10-272, Delete article. Refer to Subarticles 1082 –3(F) and 1082-4(G). #### 1.3. Underground Conduit-Construction Methods (1715-3) Page 17-10, Subarticle 1715-3(B) Section (1), Revise 1st paragraph, 2nd sentence to: Install rigid metallic conduit for all underground runs located inside railroad right-of-way. #### 2. ELECTRICAL REQUIREMENTS Ensure that an IMSA certified, or equivalent, Level II traffic qualified signal technician is standing by to provide emergency maintenance services whenever work is being performed on traffic signal controller cabinets and traffic signal controller cabinet foundations. Stand by status is defined as being able to arrive, fully equipped, at the work site within 30 minutes ready to provide maintenance services. #### 3. VIDEO IMAGING LOOP EMULATOR DETECTOR SYSTEMS #### 3.1. DESCRIPTION Design, furnish, provide training, and install video imaging loop emulator detection systems with all necessary hardware in accordance with the plans and specifications. Unless otherwise specified in the contract, all loop emulator detection equipment will remain the property of the contractor. #### 3.2. MATERIALS #### A. General: Material and equipment furnished under this section must be pre-approved on the Department's QPL by the date of installation except miscellaneous hardware such as cables and mounting hardware do not need to be pre-approved. Used equipment will be acceptable provided the following conditions have been met: - Equipment is listed on the current QPL. - Equipment is in good working condition. - Equipment is to remain the property of the contractor. Ensure that software is licensed for use by the Department and by any other agency responsible for maintaining or operating the loop emulation system. Provide the Department with a license to duplicate and distribute the software as necessary for design and maintenance support. Design and furnish video imaging loop emulator detection systems that detect vehicles at signalized intersections by processing video images and providing detection outputs to the signal controller in real time (within 112 milliseconds of vehicle arrival). Furnish all required camera sensor units, loop emulator processor units, hardware and software packages, cabling, poles, mast arms, harnesses, camera mounting assemblies, surge protection panels, grounding systems, messenger cable and all necessary hardware. Furnish systems that allow the display of detection zones superimposed on an image of the roadway on a Department-furnished monitor or laptop computer screen. Ensure detection zones can be defined and data entered using a simple keyboard or mouse and monitor, or using a laptop PC with software. Provide design drawings showing design details and camera sensor unit locations for review and acceptance before installation. Provide mounting height and location requirements for camera sensor units on the design based on site survey. Design video imaging loop emulator detection systems with all necessary hardware. Indicate all necessary poles, spans, mast arms, luminaire arms, cables, camera mounting assemblies and hardware to achieve the required detection zones where Department owned poles are not adequate to locate the camera sensor units. Do not design for the installation of poles in medians. Obtain the Engineer's approval before furnishing video imaging loop emulator detection systems. The contractor is responsible for the final design of video imaging loop emulator detection systems. Review and acceptance of the designs by the Department does not relieve the contractor from the responsibility to provide fully functional systems and to ensure that the required detection zones can be provided. Provide the ability to program each detection call (input to the controller) with the following functions: - Full Time Delay Delay timer is active continuously, - Normal Delay Delay timer is inhibited when assigned phase is green (except when used with TS 2 and 170/2070L controllers), - Extend Call is extended for this amount of time after vehicle leaves detection area, - Delay Call/Extend Call This feature uses a combination of full time delay and extend time on the same detection call. Ensure operation is as follows: Vehicle calls are received after the delay timer times out. When a call is detected, it is held until the detection area is empty and the programmed extend time expires. If another vehicle enters the detection area before the extend timer times out, the call is held and the extend time is reset. When the extend timer times out, the delay timer has to expire before another vehicle call can be received. Provide the ability to program each detection zone as one of the following functions: - Presence detector, - Directional presence detector, - Pulse detector, - Directional pulse detector. Ensure previously defined detector zones and configurations can be edited. Provide each individual system with all the necessary equipment to focus and zoom the camera lenses without the need to enter the camera enclosure. Provide systems that allow for the placement of at least 8 detection zones within the combined field of view of a single camera sensor unit. Provide a minimum of 8 detection outputs per camera. Provide detection zones that can be overlapped. Ensure systems reliably detect vehicles when the horizontal distance from the camera sensor unit to the detection zone area is less than ten times the mounting height of the sensor. Ensure systems detect vehicles in multiple travel lanes. Ensure systems can detect vehicle presence within a 98 to 102 percent accuracy (up to 2 percent of the vehicles missed and up to 2 percent of false detection) for clear, dry, daylight conditions, a 96 to 105 percent accuracy (up to 4 percent of the vehicles missed and up to 5 percent false detection) for dawn and dusk conditions, and a 96 percent accuracy (up to 4 percent of the vehicles missed) for night and adverse conditions (fog, snow, rain, etc.) using standard sensor optics and in the absence of occlusion. Repair and replace all failed components within 72 hours. The Department may conduct field-testing to ensure the accuracy of completed video imaging loop emulator detection systems. #### **B.** Loop Emulator System: Furnish loop emulator systems that receive and simultaneously process information from camera sensor units, and provides detector outputs to signal controllers. Ensure systems provide the following: - Operate in a typical roadside environment and meet the environmental specifications and are fully compatible with NEMA TS 1, NEMA TS 2, or Type 170/2070L controllers and cabinets, - provide a "fail-safe" mode whereby failure of one or more of the camera sensor units or power failure of the loop emulator system will cause constant calls to be placed on the affected vehicle detection outputs to the signal controller, - provide compensation for minor camera movement of up to 2 percent of the field of view at 400 feet without falsely detecting vehicles, - process the video at a minimum rate of 30 times per second, - provide separate wired connectors inside the controller cabinet for video recording each camera, - provide remote video monitoring with a minimum refresh rate at 1 frame per second over a standard dial-up telephone line, - provide remote video detection monitoring. Furnish camera sensor units that comply with the following: - have an output signal conforming to EIA RS-170 standard, - have a nominal output impedance of 75 ohms, - be immune to bright light sources, or have built in
circuitry or protective devices to prevent damage to the sensor when pointed directly at strong light sources, - be housed in a light colored environmental enclosure that is water proof and dust tight, and that conforms to NEMA-4 specifications or better, - simultaneously monitor at least five travel lanes when placed at the proper mounting location with a zoom lens, - have a sunshield attached to the environmental enclosure to minimize solar heating, - meet FCC class B requirements for electromagnetic interference emissions, - have a heater attached to the viewing window of the environmental enclosure to prevent ice and condensation in cold weather. Where coaxial video cables and other cables are required between the camera sensor and other components located in the controller cabinet, furnish surge protection in the controller cabinet. If furnishing coaxial communications cable comply with the following, as recommended by the approved loop emulator manufacturer: Belden 8281 or approved equivalent Number 20 AWG, solid bare copper conductor terminated with crimped-on BNC connectors (do not use BNC adapters) from the camera sensor to the signal controller cabinet. ., i Signals & Intelligent Transportation Systems • Belden 9259 or approved equivalent Number 22 AWG, stranded bare copper conductor terminated with crimped-on BNC connectors (do not use BNC adapters) from the camera sensor unit to the junction box, and within the signal controller cabinet. Furnish power cable appropriately sized to meet the power requirements of the sensors. At a minimum, provide three conductor 120 VAC field power cable. As determined during the site survey, furnish sensor junction boxes with nominal 6 x 10 x 6 inches dimensions at each sensor location. Provide terminal blocks and tie points for coaxial cable. #### C. Video Imaging Loop Emulator System Support: Furnish video imaging loop emulator systems with either a simple keyboard or a mouse with monitor and appropriate software, or with system software for use on department-owned laptop PCs. Ensure the system is Windows 2000 compatible. Provide Windows 2000 compatible personal computer software, if needed, to provide remote video and video detection monitoring. Ensure systems allow the user to edit previously defined detector configurations. When a vehicle is within a detection zone, provide for a change in color or intensity of the detection zone perimeter or other appropriate display changes on the Department-furnished monitor or laptop computer screen. Provide cabling and interconnection hardware with 6-foot minimum length interconnection cable to interface with the system. Provide all associated equipment manuals and documentation. #### 3.3. CONSTRUCTION METHODS Arrange and conduct site surveys with the system manufacturer's representative and Department personnel to determine proper camera sensor unit selection and placement. Provide the Department at least 3 working days notice before conducting site surveys. Upon completion of the site surveys the Department will provide revised plans reflecting the findings of the site survey. Before beginning work at locations requiring video imaging loop emulator detection systems, furnish system software. Upon activation of detection zones, provide detector configuration files. Ensure that up-to-date detection configuration files are furnished for various detection zone configurations that may be required for construction phasing. Place into operation loop emulator detection systems. Configure loop emulator detection systems to achieve required detection in designated zones. Have a certified manufacturer's representative on site to supervise and assist with installation, set up, and testing of the system. Install the necessary processing and communications equipment in the signal controller cabinet. Make all necessary modifications to install equipment, cabling harnesses, and camera sensor interface panels with surge suppression. Perform modifications to camera sensor unit gain, sensitivity, and iris limits necessary to complete the installation. Do not install camera sensor units on signal poles unless approved by the Engineer. Install the necessary cables from each sensor to the signal controller cabinet along signal cabling routes. Install surge protection and terminate all cable conductors. Relocate camera sensor units and reconfigure detection zones as necessary according to the plans for construction phases. Provide at least 8 hours of training on the set up, operation, troubleshooting, and maintenance of the loop emulator detection system to a maximum of ten Department personnel. Arrange for training to be conducted by the manufacturer's representative at an approved site within the Division responsible for administration of the project. Thirty days before conducting training submit a detailed course curriculum, draft manuals and materials, and resumes. Obtain approval of the submittal before conducting the training. At least one week before beginning training, provide three sets of complete documentation necessary to maintain and operate the system. Do not perform training until installation of loop emulator detection systems is complete. #### 3.4. MEASUREMENT AND PAYMENT Actual number of site surveys, arranged, conducted, and accepted. Actual number of luminaire arms for video imaging loop emulator detection systems furnished, installed, and accepted. Actual number of cameras without internal loop emulator processing units furnished, installed, and accepted. Actual number of external loop emulator processing units furnished, installed, and accepted. No measurement will be made of video imaging loop emulator system support or training, power and video cables, and trenching as these items will be considered incidental to furnishing and installing video imaging loop emulator detection systems. Payment will be made under: | Site Survey | Each | |---|------| | Luminaire Arm for Video System | Each | | Camera without Internal Loop Emulator Processing Unit | | | External Loop Emulator Processing Unit | Each | #### 4. METAL TRAFFIC SIGNAL SUPPORTS #### 4.1. METAL TRAFFIC SIGNAL SUPPORTS – ALL POLES #### A. General: Furnish and install metal strain poles and metal poles with mast arms, grounding systems, and all necessary hardware. The work covered by this special provision includes requirements for the design, fabrication, and installation of both standard and custom/site specifically designed metal traffic signal supports and associated foundations. Provide metal traffic signal support systems that contain no guy assemblies, struts, or stay braces. Provide designs of completed assemblies with hardware that equals or exceeds AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals 4th Edition, 2001 (hereafter called 4th Edition AASHTO), including the latest interim specifications. Provide assemblies with a round or near-round cross-sectional design consisting of no less than six sides. The sides may be straight, convex, or concave. Standard Drawings for Metal Poles are available that supplement these project special provisions. These drawings are located on the Department's website: http://www.ncdot.org/doh/preconstruct/traffic/ITSS/ws/mpoles/poles.html The required drawings are M 1, M 2, M 3 (strain poles), M 6 (strain poles), M 7, and M 8 (standard strain poles). Comply with Subarticle 1098-1B "General Requirements" of the *Standard Specifications* for submittal requirements. Furnish shop drawings for approval. Provide triplicate copies of detailed ¥ #### Signals & Intelligent Transportation Systems shop drawings for each type of structure. Ensure that shop drawings show materials specifications for each component and identifies welds by type and size. Do not release structures for fabrication until structural drawings have been approved. Provide an itemized bill of materials for all structural components and associated connecting hardware on the drawings. If plans call for Standard Metal Signal Supports, comply with Subarticle 1098-1A "General Requirements" for QPL submittals. In addition to these requirements, provide a sealed copy of the pre-approved shop drawings that includes a signal inventory number and project number or work order number on the drawings. Provide design calculations with these submittals. Summary of information needed for metal pole review submittals: - Shop drawings & supporting calculations - Foundation design (custom designed poles only) - Standard Metal Pole Foundation Selection Form (standard poles only) - Soil boring logs - Soil boring location map or other means to correlate borings and the corresponding poles - Geotechnical report #### B. Materials: Fabricate monotube shafts with a uniform linear taper of 0.14 in/ft with steel that conforms to ASTM A-595 minimum Grade A or an approved equivalent. Galvanize in accordance with AASHTO M111. Use the submerged arc process to continuously weld shafts for the entire length. Ground or roll smooth exposed welds until flush with the base metal. Ensure shafts have no circumferential welds except at the lower end joining the shaft to the base. Provide welding that conforms to Article 1072-20 of the *Standard Specifications*, except that no field welding on any part of the pole will be permitted. Refer to Standard Drawings for Metal Poles M2 for fabrication details. Fabricate anchor bases from plate steel meeting the requirements of ASTM A 36M or cast steel meeting the requirements of ASTM A 27M Grade 485-250, AASHTO M270 grade 36 or an approved equivalent. Conform to the applicable bolt pattern and orientation specified by the design as shown on drawing M2. Ensure hardware is galvanized steel or stainless steel. Ensure material used in steel anchor bolts conforms to AASHTO M 314, and yield strength does not exceed 55,000 psi. Unless otherwise required by the
design, ensure each anchor bolt is 2" in diameter and 60" in length. Provide 10" minimum thread projection at the top of the bolt, and 8" minimum at the bottom of the bolt. Galvanize each anchor bolt in accordance with AASHTO M232 or M298 from the top of the bolt to a minimum of 2" below the threads. Provide a circular anchor bolt lock plate that will be secured to the anchor bolts at the embedded end with 2 washers and nuts. Provide a base plate template that matches the bolt circle diameter of the anchor bolt lock plate. Construct plates and templates from ½" minimum thick steel with a minimum width of 4". Galvanizing is not required. Provide 4 heavy hex nuts and 4 flat washers for each anchor bolt. For nuts, use AASHTO M291 grade 2H, DH, or DH3 or equivalent material. For flat washers, use AASHTO M293 or equivalent material. Ensure end caps for poles or mast arms are constructed of cast aluminum conforming to Aluminum Association Alloy 356.0F. #### C. Construction Methods: Erect signal supports poles only after concrete has attained a minimum allowable compressive strength of 3000 psi. Follow anchor nut-tightening procedures below to complete the installation of the upright. For further construction methods, see construction methods for Metal Strain Poles, or Metal Pole with Mast Arm. Connect poles to grounding electrodes and the intersection grounding systems. For holes in the poles used to accommodate cables, install grommets before wiring pole or arm. Do not cut or split grommets. Attach the terminal compartment cover to the pole by a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cover to hang clear of the compartment opening when the cover is removed, and is strong enough to prevent vandals from being able to disconnect the cover from the pole. Ensure the chain or cable will not interfere with service to the cables in the pole base. Attach cap to pole with a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cap to hang clear of the opening when the cap is removed. Perform repair of damaged galvanizing that complies with the *Standard Specifications*, Article 1076-6 "Repair of Galvanizing." #### **Anchor Nut Tightening Procedure** Compute the required projection of the anchor bolt above the foundation top. Compute the total projection based on the following: - Provide between 3 and 5 threads of anchor bolt projection above the top nut after tightening is complete. Avoid any additional projection, or a normal depth socket torque wrench can not be used on top nuts. - Include the sum of the thickness of top nut, top nut flat washer or top nut beveled washer, base plate, leveling nut flat washer or leveling nut beveled washer, and leveling nut. - Set the maximum distance between the bottom of the leveling nut and the foundation top to one nut height to avoid excessive bending stresses in the anchor bolt under service conditions. - Do not use lock washers. #### Installation Procedure: - 1. Place a leveling nut and washer on each anchor bolt and install a template on top of the leveling nuts to verify that the nuts are level and uniformly contact the template. Use beveled washers if the leveling nuts cannot be brought into firm contact with the template. Verify that the distance between the bottom of the leveling nuts and the top of the concrete is no more than one nut height. Consider how attachments and applied loads may affect the vertical nature of the metal pole after erected and fully loaded. If necessary, induce a rake to the upright in the opposite direction of the anticipated loads during the initial erection by adjusting the leveling nuts accordingly. Failure to consider this could result in the upright being out of the allowable vertical tolerance as specified in the Metal Strain Pole Construction Methods of this special provision. - 2. Install the vertical upright on the anchor bolts, and tighten nuts in compliance with steps 3, 4, and 5 below. Do not attach cantilever arms or messenger cable to the vertical post until all of the top nuts and leveling nuts have been properly tightened on the anchor bolts. - 3. Install top nuts and washers. Install flat washers under the top and leveling nuts. Use beveled washers if the nuts cannot be brought into firm contact with the base plate. Lubricate threads of the anchor bolts, nuts, and bearing surface of the nuts and tighten to a snug-tight condition with a spud wrench following a star pattern (using at least two increments). Snug-tight condition is defined as 20% to 30% of the verification torque (600 ft-lbs.). Ensure lubricant is beeswax, stick paraffin, or other approved lubricant. - 4. After the top nuts have been snug tightened, snug tighten the bottom nuts up to the base plate using the same procedure as described above. The base-plate must be in firm contact with both the top and bottom nuts to achieve the proper pretension in the anchor bolts. - 5. Before further turning of the nuts, mark the reference position of the top nut in the snug-tight condition by match marking each nut, bolt shank, and base plate. Use ink or paint that is not water-soluble. - 6. Turn the top nuts in increments using the star pattern (using at least two full tightening cycles) to 1/6 of a turn. Use a torque wrench to verify that at least 600 ft-lbs. is required to further tighten the top nuts. At least 48 hours after the entire structure and any attachments are erected, use a torque wrench again to verify that at least 600 ft-lbs. is still required to tighten the top nuts. Verify that the leveling nuts remain in firm contact with the base plate. - 7. Do not place non-shrink grout between the base plate and foundation. This will allow for future inspection of leveling nuts and for adequate drainage of moisture. #### 4.2. METAL STRAIN POLE #### A. Materials: Provide ground lug at 0° on the pole's radial index for grounding spanwire. Ensure #4 or #6 AWG wire will pass through opening. #### **B.** Construction Methods: Install metal poles, hardware, and fittings as shown on the manufacturer's installation drawings. Install metal poles so that when the pole is fully loaded it is within 2 degrees of vertical. Install poles with the manufacturer's recommended "rake." Use threaded leveling nuts to establish rake. ### 4.3. DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES #### A. Description: Perform a soil test at each proposed metal pole location. Furnish and install foundations for NCDOT metal poles with all necessary hardware in accordance with the plans and specifications. Metal Pole Standards have been developed and implemented by NCDOT for use at signalized intersections in North Carolina. If the plans call for a standard pole, then a standard foundation may be selected from the plans. However, the Contractor is not required to use a standard foundation. If the Contractor chooses to design a non-standard site-specific foundation for a standard pole or if the plans call for a non-standard site-specific pole, design the foundation to conform to the applicable provisions in the NCDOT Metal Pole Standards and Section B4 (Non-Standard Foundation Design) below. If non-standard site specific foundations are designed for standard QPL approved strain poles, the foundation designer must use the design moment specified by load case on drawing M8 of the Standard Drawings for Metal Poles. Failure to conform to this requirement will be grounds for rejection of the design. If the Contractor chooses to design a non-standard foundation for a standard pole and the soil test results indicate a standard foundation is feasible for the site, the Contractor will be paid the cost of the standard foundation (drilled pier and wing wall, if applicable). Any additional costs associated with a non-standard site-specific foundation including additional materials, labor and equipment will Version 06.4 10 print date: 05/13/08 be considered incidental to the cost of the standard foundation. All costs for the non-standard foundation design will also be considered incidental to the cost of the standard foundation. #### B. Soil Test and Foundation Determination: #### 1. General: Drilled piers are reinforced concrete sections, cast-in-place against in situ, undisturbed material. Drilled piers are of straight shaft type and vertical. Some standard drilled piers for supporting poles with mast arms may require wing walls to resist torsional rotation. Based upon this provision and the results of the required soil test, a drilled pier length and wing wall requirement may be determined and constructed in accordance with the plans. For non-standard site-specific poles, the contractor-selected pole fabricator will determine if the addition of wing walls is necessary for the supporting foundations. #### 2. Soil Test: Perform a soil test at each signal location. Complete all required fill placement and excavation at each signal pole location to finished grade before drilling each boring. Drill one boring to a depth of 26 feet. Perform standard penetration tests (SPT) in accordance with ASTM D 1586 at depths of 1, 2.5, 5, 7.5, 10, 15, 20 and 26 feet. Discontinue the boring if one of the following occurs: - A total of 100 blows have been applied in any 2 consecutive 6-in. intervals. - A total of 50 blows have been applied with < 3-in. penetration. Describe each intersection as the "Intersection of (Route or SR #), (Street Name) and (Route or SR #), (Street Name), ______ County, Signal Inventory No. ______. Label borings with "B- N, S, E, W, NE, NW, SE or SW" corresponding to the quadrant location within the intersection. Pole numbers should be made available to the drill contractor. Include pole numbers in the boring label if they are available. If they are not available, ensure the boring labels can be cross-referenced to corresponding pole numbers. For each boring, submit a legible (hand written or typed) boring log signed and sealed by a
licensed geologist or professional engineer registered in North Carolina. Include on each boring the SPT blow counts and N-values at each depth, depth of the boring, and a general description of the soil types encountered. #### 3. Standard Foundation Determination: Use the following method for determining the Design N-value: $$N_{AVG} = \underbrace{(N@1' + N@2.5' + N@Deepest Boring Depth)}_{Total Number of N-values}$$ $$Y = (N@1')^2 + (N@2.5')^2 + (N@Deepest Boring Depth)^2$$ $$Z = (N@1' + N@2.5' + N@Deepest Boring Depth)$$ $$N_{STD DEV} = \underbrace{\left(\underbrace{Total \ Number \ of \ N-values \ x \ Y) - Z^2}_{(Total \ Number \ of \ N-values) \ x \ (Total \ Number \ of \ N-values - 1)}^{0.5}$$ **Design N-value** equals lesser of the following two conditions: $$N_{AVG} - (N_{STD \ DEV} \times 0.45)$$ Or Average of First Four N-Values = $(N@1' + N@2.5' + N@5' + N@7.5')$ Version 06.4 11 print date: 05/13/08 Note: If less than 4 N-values are obtained because of criteria listed in Section 2 above, use average of N-values collected for second condition. Do not include the N-value at the deepest boring depth for above calculations if the boring is discontinued at or before the required boring depth because of criteria listed in Section 2 above. Use N-value of zero for weight of hammer or weight of rod. If N-value is greater than 50, reduce N-value to 50 for calculations. If standard NCDOT strain poles are shown on the plans and the Contractor chooses to use standard foundations, determine a drilled pier length, "L," for each signal pole from the Standard Foundations Chart (sheet M 8) based on the Design N-value and the predominant soil type. For each standard pole location, submit a completed "Metal Pole Standard Foundation Selection Form" signed by the contractor's representative. Include the Design N-value calculation and resulting drilled pier length, "L," on each form. If non-standard site-specific poles are shown on the plans, submit completed boring logs collected in accordance with Section 2 (Soil Test) above along with pole loading diagrams from the plans to the contractor-selected pole fabricator to assist in the pole and foundation design. If one of the following occurs, the Standard Foundations Chart shown on the plans may not be used and a non-standard foundation may be required. In such case, contact the Engineer. - The Design N-value is less than 4. - The drilled pier length, "L", determined from the Standard Foundations Chart, is greater than the depth of the corresponding boring. In the case where a standard foundation cannot be used, the Department will be responsible for the additional cost of the non-standard foundation. The Standard Foundations Chart is based on level ground around the traffic signal pole. If the distance between the edge of the drilled pier and the top of a slope steeper than 2:1 (H:V) is less than 10 feet or the grade within 10 feet is steeper than 2:1 (H:V), contact the Engineer. The "Metal Pole Standard Foundation Selection Form" may be found at: http://www.ncdot.org/doh/preconstruct/highway/geotech/formdet/mpsfsf.pdf If assistance is needed with the required calculations, contact the Signals and Geometrics Structural Engineer at (919) 733-3915. However, in no case will the failure or inability to contact the Signals and Geometrics Structural Engineer be cause for any claims or requests for additional compensation. #### 4. Non-Standard Foundation Design: Design non-standard foundations based upon site-specific soil test information collected in accordance with Section 2 (Soil Test) above. Provide a drilled pier foundation for each pole with a length and diameter that results in a horizontal lateral movement of less than 1 inch at the top of the pier and a horizontal rotational movement of less than 1 inch at the edge of the pier. Contact the Engineer for pole loading diagrams for standard poles to be used for non-standard foundation designs. Submit any non-standard foundation designs including plans, calculations, and soil boring logs to the Engineer for review and approval before construction. A professional engineer registered in the state of North Carolina must seal all plans and calculations. #### C. Drilled Pier Construction: #### 1. Excavation: Perform excavations for drilled piers to the required dimensions and lengths including all miscellaneous grading and excavation necessary to install the drilled pier. Depending on the subsurface conditions encountered, excavation in weathered rock or removal of boulders may be required. Dispose of drilling spoils as directed and in accordance with Section 802 of the *Standard Specifications*. Drilling spoils consist of all material excavated including water or slurry removed from the excavation either by pumping or with augers. Construct all drilled piers such that the piers are cast against undisturbed soil. If a larger casing and drilled pier are required as a result of unstable or caving material during drilling, backfill the excavation before removing the casing to be replaced. No additional payment will be made for substituting a larger diameter drilled pier in order to construct a drilled pier cast against undisturbed soil. Construct drilled piers within the tolerances specified herein. If tolerances are exceeded, provide additional construction as approved by the Engineer to bring the piers within the tolerances specified. Construct drilled piers such that the axis at the top of the piers is no more than 3 inches in any direction from the specified position. Build drilled piers within 1% of the plumb deviation for the total length of the piers. Construct the finished top of pier elevation between 5 inches above and 2 inches above the finished grade elevation. Form the top of the pier such that the concrete is smooth and level. If unstable, caving, or sloughing soils are anticipated or encountered, stabilize drilled pier excavations with either steel casing or polymer slurry. Steel casing may be either the sectional type or one continuous corrugated or non-corrugated piece. Ensure all steel casings consist of clean watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the specified pier size and a minimum wall thickness of 1/4 inches. Extract all temporary casings during concrete placement in accordance with this special provision unless the Contractor chooses to leave the casing in place in accordance with the requirements below. Any temporary steel casing that becomes bound or fouled during pier construction and cannot be practically removed may constitute a defect in the drilled pier. Improve such defective piers to the satisfaction of the Engineer by removing the concrete and enlarging the drilled pier, providing a replacement pier or other approved means. All corrective measures including redesign as a result of defective piers will not be cause for any claims or requests for additional compensation. Any steel casing left in place will be considered permanent casing. Permanent steel casings are only allowed for strain poles. When installing permanent casing, do not drill or excavate below the tip of the permanent casing at any time such that the permanent casing is against undisturbed soil. The Contractor may excavate a hole smaller than the specified pier size to facilitate permanent casing installation. Ensure the sides of the excavation do not slough during drilling. Ensure the hole diameter does not become larger than the inside diameter of the casing. No additional compensation will be paid for permanent casing. If polymer slurry is chosen to stabilize the excavation, use one of the following polymers listed in the table below: Version 06.4 13 print date: 05/13/08 | PRODUCT | MANUFACTURER | |-----------------|---------------------------------| | SlurryPro CDP | KB Technologies Ltd | | - | 3648 FM 1960 West, Suite 107 | | | Houston, TX 77068 | | | (800) 525-5237 | | Super Mud | PDS Company | | · | 105 West Sharp Street | | | El Dorado, AR 71730 | | | (800) 243-7455 | | Shore Pac GCV | CETCO Drilling Products Group | | | 1500 West Shure Drive | | | Arlington Heights, IL 60004 | | | (800) 527-9948 | | Novagel Polymer | Geo-Tech Drilling Fluids | | | 220 North Zapata Hwy, Suite 11A | | | Laredo, TX 78043 | | | (210) 587-4758 | Use slurry in accordance with the manufacturer's guidelines and recommendations unless approved otherwise by the Engineer. The Contractor should be aware that polymer slurry may not be appropriate for a given site. Polymer slurry should not be used for excavations in soft or loose soils as determined by the Engineer. In wet pour conditions, advise and gain approval from the Engineer as to the planned construction method intended for the complete installation of the drilled pier before excavating. #### 2. Reinforcing Steel: Completely assemble a cage of reinforcing steel consisting of longitudinal and spiral bars and place cage in the drilled pier excavation as a unit immediately upon completion of drilling unless the excavation is entirely cased. If the drilled pier excavation is entirely cased down to the tip, immediate placement of the reinforcing steel is not required. Lift the cage so racking and cage distortion does not occur. Keep the cage plumb during concrete operations and casing extraction. Check the position of the cage before and after placing the concrete. Securely cross-tie the vertical and spiral reinforcement at each intersection with double wire. Support or hold down the cage so that the vertical displacement during concrete placement and casing extraction does not exceed 2 inches. Do not set the cage on the bottom of the drilled pier excavation. Place plastic bolsters under each vertical reinforcing bar that are tall enough to raise the rebar cage off the bottom of the drilled pier excavation a minimum of 3
inches. In order to ensure a minimum of 3 inches of concrete cover and achieve concentric spacing of the cage within the pier, tie plastic spacer wheels at five points around the cage perimeter. Use spacer wheels that provide a minimum of 3 inches "blocking" from the outside face of the spiral bars to the outermost surface of the drilled pier. Tie spacer wheels that snap together with wire and allow them to rotate. Use spacer wheels that span at least two adjacent vertical bars. Start placing spacer wheels at the bottom of the cage and continue up along its length at maximum 10-foot intervals. Supply additional peripheral spacer wheels at closer intervals as necessary or as directed by the Engineer. #### 3. Concrete: Begin concrete placement immediately after inserting reinforcing steel into the drilled pier excavation. If the drilled pier excavation is entirely cased down to the tip, immediately placement of the concrete is not required. #### a) Concrete Mix Provide the mix design for drilled pier concrete for approval and, except as modified herein, meeting the requirements of Section 1000 of the *Standard Specifications*. Designate the concrete as Drilled Pier Concrete with a minimum compressive strength of 4500 psi at 28 days. The Contractor may use a high early strength mix. Make certain the cementitious material content complies with one of the following options: - Provide a minimum cement content of 640 lbs/yd³ and a maximum cement content of 800 lbs/yd³; however, if the alkali content of the cement exceeds 0.4%, reduce the cement content by 20% and replace it with fly ash at the rate of 1.2 lb of fly ash per lb of cement removed. - If Type IP blended cement is used, use a minimum of 665 lbs/yd³ Type IP blended cement and a maximum of 833 lbs/yd³ Type IP blended cement in the mix. Limit the water-cementitious material ratio to a maximum of 0.45. Do not air-entrain drilled pier concrete. Produce a workable mix so that vibrating or prodding is not required to consolidate the concrete. When placing the concrete, make certain the slump is between 5 and 7 inches for dry placement of concrete or 7 and 9 inches for wet placement of concrete. Use Type I or Type II cement or Type IP blended cement and either No. 67 or No. 78M coarse aggregate in the mix. Use an approved water-reducer, water-reducing retarder, high-range water-reducer or high-range water-reducing retarder to facilitate placement of the concrete if necessary. Do not use a stabilizing admixture as a retarder in Drilled Pier Concrete without approval of the Engineer. Use admixtures that satisfy AASHTO M194 and add admixtures at the concrete plant when the mixing water is introduced into the concrete. Redosing of admixtures is not permitted. Place the concrete within 2 hours after introducing the mixing water. Ensure that the concrete temperature at the time of placement is 90°F or less. #### b) Concrete Placement Place concrete such that the drilled pier is a monolithic structure. Temporary casing may be completely removed and concrete placement may be temporarily stopped when the concrete level is within 42 to 48 inches of the ground elevation to allow for placement of anchor bolts and conduit. Do not pause concrete placement if unstable caving soils are present at the ground surface. Remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete before inserting the anchor bolts and conduit. Resume concrete pouring within 2 hours. Do not dewater any drilled pier excavations unless the excavation is entirely cased down to tip. Do not begin to remove the temporary casing until the level of concrete within the casing is in excess of 10 feet above the bottom of the casing being removed. Maintain the concrete level at least 10 feet above the bottom of casing throughout the entire casing extraction operation except when concrete is near the top of the drilled pier elevation. Maintain a sufficient head of concrete above the bottom of casing to overcome outside soil and water pressure. As the temporary casing is withdrawn, exercise care in maintaining an adequate level of concrete within the casing so that fluid trapped behind the Version 06.4 15 print date: 05/13/08 1 ,4 4 casing is displaced upward and discharged at the ground surface without contaminating or displacing the drilled pier concrete. Exerting downward pressure, hammering, or vibrating the temporary casing is permitted to facilitate extraction. Keep a record of the volume of concrete placed in each drilled pier excavation and make it available to the Engineer. After all the pumps have been removed from the excavation, the water inflow rate determines the concrete placement procedure. If the inflow rate is less than 6 inches per half hour, the concrete placement is considered dry. If the water inflow rate is greater than 6 inches per half hour, the concrete placement is considered wet. - **Dry Placement:** Before placing concrete, make certain the drilled pier excavation is dry so the flow of concrete completely around the reinforcing steel can be certified by visual inspection. Place the concrete by free fall with a central drop method where the concrete is chuted directly down the center of the excavation. - Wet Placement: Maintain a static water or slurry level in the excavation before placing concrete. Place concrete with a tremie or a pump in accordance with the applicable parts of Sections 420-6 and 420-8 of the Standard Specifications. Use a tremie tube or pump pipe made of steel with watertight joints. Passing concrete through a hopper at the tube end or through side openings as the tremie is retrieved during concrete placement is permitted. Use a discharge control to prevent concrete contamination when the tremie tube or pump pipe is initially placed in the excavation. Extend the tremie tube or pump pipe into the concrete a minimum of 5 feet at all times except when the concrete is initially introduced into the pier excavation. If the tremie tube or pump pipe pulls out of the concrete for any reason after the initial concrete is placed, restart concrete placement with a steel capped tremie tube or pump pipe. Once the concrete in the excavation reaches the same elevation as the static water level, placing concrete with the dry method is permitted. Before changing to the dry method of concrete placement, remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete. Vibration is only permitted, if needed, in the top 10 feet of the drilled pier or as approved by the Engineer. Remove any contaminated concrete from the top of the drilled pier and wasted concrete from the area surrounding the drilled pier upon completion. Permanently mark the top of each foundation with a stamp or embedded plate to identify the depth of the foundation. #### 4. Concrete Placement Time: Place concrete within the time frames specified in Table 1000-2 of the *Standard Specifications* for Class AA concrete except as noted herein. Do not place concrete so fast as to trap air, water, fluids, soil or any other deleterious materials in the vicinity of the reinforcing steel and the annular zone between the rebar cage and the excavation walls. Should a delay occur because of concrete delivery or other factors, reduce the placement rate to maintain some movement of the concrete. No more than 45 minutes is allowed between placements. #### 5. Scheduling and Restrictions: During the first 16 hours after a drilled pier has achieved its initial concrete set as determined by the Engineer, do not drill adjacent piers, install adjacent piles, or allow any heavy construction equipment loads or "excessive" vibrations to occur at any point within a 20 foot radius of the drilled pier. The foundation will be considered acceptable for loading when the concrete reaches a minimum compressive strength of 3000 psi. This provision is intended to allow the structure to be installed on the foundation in a shorter time frame, and does not constitute full acceptance of the drilled pier. Full acceptance will be determined when the concrete meets its full strength at 28 days. In the event that the procedures described herein are performed unsatisfactorily, the Engineer reserves the right to shut down the construction operations or reject the drilled piers. If the integrity of a drilled pier is in question, use core drilling, sonic or other approved methods at no additional cost to the Department and under the direction of the Engineer. Dewater and backfill core drill holes with an approved high strength grout with a minimum compressive strength of 4500 psi. Propose remedial measures for any defective drilled piers and obtain approval of all proposals from the Engineer before implementation. No additional compensation will be paid for losses or damage due to remedial work or any investigation of drilled piers found defective or not in accordance with these special provision or the plans. #### 4.4. CUSTOM DESIGN OF TRAFFIC SIGNAL SUPPORTS #### A. General: راح معو Design traffic signal supports with foundations consisting of metal strain poles. The lengths of the metal signal poles shown on the plans are estimated from available data for bid purposes. Determine the actual length of each pole from field measurements and adjusted cross-sections. Furnish the revised pole heights to the Engineer. Use all other dimensional requirements shown on the plans. Design all traffic signal support structures using the following 4th Edition AASHTO specifications: - Design for a 50 year service life as recommended by Table 3-3 (Recommended Minimum Design Life) in the 2003 Interim to the 4th Edition AASHTO. - Use the wind pressure map developed from 3-second gust speeds, as provided in Article 3.8. - Ensure signal support structures include natural wind gust loading and truck-induced gust loading in
the fatigue design, as provided for in Articles 11.7.3 and 11.7.4, respectively. Designs need not consider periodic galloping forces. - Assume the natural wind gust speed in North Carolina is 11.2 mph. - Design for Category II fatigue, as provided for in Article 11.6, unless otherwise specified. - Calculate all stresses using applicable equations from Section 5. Maximum allowable stress ratios for all signal support designs is 0.9. - Conform to article 10.4.2 and 11.8 for all deflection requirements. Ensure that the design permits cables to be installed inside poles and mast arms. Unless otherwise specified by special loading criteria, the computed surface area for ice load on signal heads is: - 3-section, 12-inch, Surface area: 26.0 ft² - 4-section, 12-inch, Surface area: 32.0 ft² - 5-section, 12-inch, Surface area: 42.0 ft² The ice loading for signal heads defined above includes the additional surface area that back plates will induce. Special loading criteria may be specified in instances where back plates will not be installed on signal heads. Refer to the Loading Schedule on each Metal Pole Loading Diagram for revised signal head surface areas. The pole designer should revise ice loads accordingly in this instance. Careful examination of the plans when this is specified is important as this may impact Version 06.4 17 print date: 05/13/08 sizing of the metal support structure and foundation design which could affect proposed bid quotes. All maximum stress ratios of 0.9 still apply. Assume the combined minimum weight of a messenger cable bundle (including messenger cable, signal cable and detector lead-in cables) is 1.3 lbs/ft. Assume the combined minimum diameter of this cable bundle is 1.3 inches. Ensure that designs provide a removable pole cap with stainless steel attachment screws for each pole top and mast arm end. #### **B.** Metal Poles: Submit design drawings for approval including pre-approved QPL poles. Show all the necessary details and calculations for the metal poles including the foundation and connections. Include signal inventory number on design drawings. Include as part of the design calculations the ASTM specification numbers for the materials to be used. Provide the types and sizes of welds on the design drawings. Include a Bill of Materials on design drawings. Ensure design drawings and calculations are signed, dated, and sealed by the responsible Professional Engineer licensed in the State of North Carolina. Immediately bring to the attention of the Engineer any structural deficiency that becomes apparent in any assembly or member of any assembly as a result of the design requirements imposed by these Specifications, the plans, or the typical drawings. Said Professional Engineer is wholly responsible for the design of all poles and arms and review and acceptance of these designs by the Department does not relieve said Professional Engineer of this responsibility. Do not fabricate the assemblies until receipt of the Department's approval of the design drawings. For mast arm poles, provide designs with provisions for pole plates and associated gussets and fittings for mast arm attachment. As part of each mast arm attachment, provide a grommeted cable passage hole in the pole to allow passage of the signal cables from the pole to the arm. For strain poles, where ice is present, assume wind loads as shown in Figure 3-5 of the 4th Edition AASHTO Specification for Group III loading. For each strain pole, provide designs with provisions for two span wire clamps and associated hardware to attach the span wire support cable. Ensure that the diameter of the clamp is appropriately designed to be adjustable from 18 inches below the top, down to 10 feet below the top of the pole. Design tapers for all pole shafts that begin at the base with diameters that decrease uniformly at the rate of 0.14 inch per foot of length. Design a base plate on each pole. The minimum base plate thickness for all poles is determined by the following criteria: <u>Case 1</u> Circular or rectangular solid base plate with the upright pole welded to the top surface of base plate with full penetration butt weld, and where no stiffeners are provided. A base plate with a small center hole, which is less than 1/3 of the upright diameter, and located concentrically with the upright pole, may be considered as a solid base plate. The magnitude of bending moment in the base plate, induced by the anchoring force of each anchor bolt is $M = (P \times D_1) / 2$, where M = bending moment at the critical section of the base plate induced by one anchor bolt P = anchoring force of each anchor bolt D_1 = horizontal distance between the anchor bolt center and the outer face of the upright, or the difference between the bolt circle radius and the outside radius of the upright Locate the critical section at the face of the anchor bolt and perpendicular to the bolt circle radius. The overlapped part of two adjacent critical sections is considered ineffective. <u>Case 2</u> Circular or rectangular base plate with the upright pole socketed into and attached to the base plate with two lines of fillet weld, and where no stiffeners are provided, or any base plate with a center hole that is larger in diameter than 1/3 of the upright diameter. The magnitude of bending moment induced by the anchoring force of each anchor bolt is $M = P \times D_2$, where P = anchoring force of each anchor bolt D_2 = horizontal distance between the face of the upright and the face of the anchor bolt nut Locate the critical section at the face of the anchor bolt top nut and perpendicular to the radius of the bolt circle. The overlapped part of two adjacent critical sections is considered ineffective. If the base plate thickness calculated for Case 2 is less than Case 1, use the thickness calculated for Case 1. The following additional owner requirements apply concerning pole base plates. • Ensure that whichever case governs as defined above, the anchor bolt diameter is set to match the base plate thickness. If the minimum diameter required for the anchor bolt exceeds the thickness required for the base plate, set the base plate thickness equal to the required bolt diameter. Ensure that designs have anchor bolt holes with a diameter 1/4 inch larger than the anchor bolt diameters in the base plate. Ensure that the anchor bolts have the required diameters, lengths, and positions, and will develop strengths comparable to their respective poles. Provide designs with a 6 x 12-inch hand hole with a reinforcing frame for each pole. Provide designs with a terminal compartment with cover and screws in each pole that encompasses the hand hole and contains provisions for a 12-terminal barrier type terminal block. For each pole, provide designs with provisions for a 1/2 inch minimum thread diameter, coarse thread stud and nut for grounding which will accommodate a Number 6 AWG ground wire. Ensure the lug is electrically bonded to the pole and is conveniently located inside the pole at the hand hole. Where required, design couplings on the pole for mounting pedestrian pushbuttons at a height of 42 inches above the bottom of the base. Provide mounting points consisting of 1-1/2 inch internally threaded half-couplings that comply with the NEC that are mounted within the poles. Ensure the couplings are essentially flush with the outside surfaces of the poles and are installed before any required galvanizing. Provide a threaded plug for each half coupling. Ensure that the surface of the plug is essentially flush with the outer end of the mounting point when installed and has a recessed hole to accommodate a standard wrench. #### 4.5.METAL CCTV POLE RELOCATIONS #### A. Description: Remove and stockpile existing metal CCTV poles, and remove and dispose of existing foundations, associated anchor bolts, electrical wires and connections. Version 06.4 19 print date: 05/13/08 £ 50 } #### **B.** Construction Methods: #### 1. Foundations: Remove and promptly dispose of the metal CCTV pole foundations include reinforcing steel, electrical wires, and anchor bolts to a minimum depth of two feet below the finished ground elevation. At the Contractor's option, remove the complete foundation. Backfill and compact disturbed areas to match the finished ground elevation. Seed unpaved areas. Use methods to remove the foundations that will not result in damage to other portions of the project or facility. Repair damages that are a result of the Contractor's actions at no cost to the Department. #### 2. Metal Poles: Remove the metal CCTV poles, and promptly transport the metal CCTV poles from the project to a stockpile location. Use methods to remove the metal CCTV poles and attached CCTV equipment that will not result in damage to other portions of the project or facility. Repair damages that are a result of the Contractor's actions at no additional cost to the Department. When required, transport the metal CCTV poles from stockpile to the final location and erect the pole on a new foundation. #### 4.6. MEASUREMENT AND PAYMENT Actual number of metal strain signal poles without regard to height or load capacity furnished, installed and accepted. Actual number of soil tests with SPT borings drilled furnished and accepted. Actual volume of concrete poured in cubic yards of drilled pier foundation furnished, installed and accepted. Actual number of designs for metal strain poles furnished and accepted. No measurement will be made of foundation designs prepared with metal pole designs, as these will be considered incidental to designing signal support structures. Actual number of metal CCTV pole foundations removed and disposed. Actual number of metal CCTV poles relocated. Payment will be made under: | Metal Strain Signal Pole | Each | |-------------------------------|------------| | Soil Test | | | Drilled Pier Foundation. | Cubic Yard | | Metal Strain Pole Design | Each | | Metal Pole Foundation
Removal | | | Metal Pole Relocation | Each | #### 5. REMOVAL OF EXISTING TRAFFIC SIGNAL INSTALLATIONS #### 5.1. DESCRIPTION Remove existing traffic signal installations. #### 5.2. CONSTRUCTION METHODS #### A. General: Remove existing traffic signal installations at the following locations: SR 1404 (Morganton Road) and All American Freeway SB Ramps (06-0322) SR 1404 (Morganton Road) and All American Freeway NB Ramps (06-0319) Maintain and repair traffic signal equipment within the limits of the project until the traffic signal equipment is disconnected and stockpiled. #### B. Removal: A BA Dismantle and remove existing traffic signal equipment and material, excluding joint use poles. Disconnect and remove all Department equipment from joint use poles in a manner that will not damage the poles or existing utilities. Cut electrical conduit and remove to at least 18 inches below finished ground elevation unless otherwise directed by the Engineer. Install the required regulatory signs in accordance with Sections 900, 901, and 903 of the *Standard Specifications* before deactivating the traffic signal installation. Cover the signs with burlap bags until the traffic signal is put into flashing operation. Place the traffic signal installation into flashing operation and immediately uncover the signs. Operate in flash mode for a minimum of one week. Deactivate, dismantle, and remove the traffic signal installation after the one-week period unless otherwise directed by the Engineer. Use methods to remove the traffic signal installation that will not result in damage to other portions of the project or facility. Repair damage that results from the Contractor's actions at no additional cost to the Department. Final acceptance of the project is contingent upon the removal of the existing traffic signal installation. Removal of the existing traffic signal is part of the work required by the final completion date. #### C. Disposal: Remove all Department traffic signal equipment, span poles, messenger cable, interconnect cable, and supporting hardware that will not be reused. Assume ownership and promptly transport the removed poles, messenger cable, interconnect cable, and supporting hardware. Return all other traffic signal equipment and material to the Traffic Services Office within the Division responsible for the administration of the project. Return the removed equipment and material between the hours of 8:00 a.m. and 12:00 p.m. Monday through Thursday, or at a time mutually agreed upon by the Contractor and the Engineer. Replace or repair all material lost or damaged during its removal and transit. Label all returned equipment and material to indicate its original location. #### 5.3. MEASUREMENT AND PAYMENT Actual number of intersections that were completely cleared of all traffic signal equipment. The traffic signal equipment shall have existed along the roadway before the start of construction on the project, shall have had no changes made to the phasing or timing by the Contractor, shall have had no additional equipment installed by the Contractor during the life of the project (excluding equipment for maintenance), and shall have been removed as a part of the project. Payment will be made under: * ... * Signals & Intelligent Transportation Systems #### 6. RELOCATE EXISTING SIGNAL CABINET AND CONTROLLER ASSEMBLY #### 6.1. DESCRIPTION Remove, stockpile, and relocate existing signal cabinet and controller assembly. #### 6.2. CONSTRUCTION METHODS As directed by the plans, remove, stockpile, and relocate existing signal cabinet and controller assembly. Comply with Section 1751 (Controllers with Cabinets) of the <u>NCDOT Standard Specifications for Roads and Structures</u> dated July 2006. #### 6.3. MEASUREMENT AND PAYMENT Actual number of existing signal cabinets and controller assemblies relocated and accepted. Payment will be made under: #### 7. RELOCATE EXISTING CCTV CABINET ASSEMBLY #### 7.1. DESCRIPTION Remove, stockpile, and relocate existing CCTV cabinet assembly. #### 7.2. CONSTRUCTION METHODS #### A. General As directed by the plans, remove, stockpile, and relocate existing CCTV cabinet assembly. Mount CCTV camera units at a height sufficient to adequately see traffic in all direction or as approved by the Engineer. The minimum height shall be 20 feet above ground level and the maximum height shall be 45 feet above ground level. Relocate CCTV assemblies at the locations shown on the Plans. Mount CCTV camera on side of pole nearest intended field of view and avoids occluding the view with the pole. Electrically bond each camera and pan/tilt/zoom mechanism and its housing to the CCTV camera attachment assembly using a number 6 AWG braided copper conductor. Integrate CCTV camera unit with fiber optic transmission equipment, equipment cabinet, and equipment cabinet power supply. #### **B.** Electrical and Mechanical Requirements Ground all equipment as called for in the NCDOT Standard Specifications, these Technical Specifications, and the Plans. Install surge protectors on all ungrounded conductors entering the CCTV enclosure. House the protectors in a small, ventilated weatherproof cabinet attached near the CCTV attachment point in a manner approved by the Engineer. The air terminal ground wire shall not pass through this cabinet. Install coaxial cable as required to interconnect fiber optic video transceivers with the CCTV units. Insure that all connections are tight and fully secure. #### C. Base Mounted CCTV Cabinet Install all conduit, condulets, and attachments to equipment cabinets in a manner that preserves the minimum bending radius of the fiber optic cable and creates water proof connections and seals. Version 06.4 22 print date: 05/13/08 87 At each CCTV cabinet where fiber optic cable is routed, coil a minimum of 20 feet of fiber optic cable in the cable as shown in the Plans. Comply with Section 1750 (Signal Cabinet Foundations) for the foundation for the cabinet. #### 7.3. MEASUREMENT AND PAYMENT Actual number of existing CCTV cabinet assemblies relocated and accepted. Payment will be made under: Version 06.4 23 print date: 05/13/08