Project B-4037 # **Buncombe County** # **Project Special Provisions Structures** ## **Table of Contents** | | | rag | |--|-----------------|------| | | | # | | Evazote Joint Seals (8-13-04) | | 1 | | Elastomeric Concrete (10-12-01) | | . 5 | | MSE Retaining Walls (4-15-08) | | 7 | | Falsework and Formwork (7-18 | 8-06) | 15 | | Submittal of Working Drawings | (7-12-07) | 21 | | Crane Safety (8-15-05) | | 28 | | Pile Excavation (7-18-06) | | 28 | | Shipping Steel Structural Members | (7-18-06) | 30 | | Grout for Structures (7-12-07) | | 32 | | High Strength Bolts (11-17-06) | | . 34 | | Adhesively Anchored Anchor Bolts or De | owels (6-11-07) | 34 | # PROJECT SPECIAL PROVISIONS STRUCTURES ## PROJECT B-4037 ## **BUNCOMBE COUNTY** ## **EVAZOTE JOINT SEALS** (8-13-04) #### 1.0 SEALS Use preformed seals compatible with concrete and resistant to abrasion, oxidation, oils, gasoline, salt and other materials that are spilled on or applied to the surface. Use a low-density closed cell, cross-linked ethylene vinyl acetate polyethylene copolymer nitrogen blown material for the seal. Use seals manufactured with grooves 1/8" (3 mm) ± wide by 1/8" (3 mm) ± deep and spaced between 1/4 (6 mm) and 1/2 inch (13 mm) apart along the bond surface running the length of the joint. Use seals sized so that the depth of the seal meets the manufacturer's recommendation, but is not less than 70% of the uncompressed width. Provide a seal designed so that, when compressed, the center portion of the top does not extend upward above the original height of the seal by more than 1/4 inch (6 mm). Splice the seal using the heat welding method by placing the joint material ends against a teflon heating iron of 350°F (177°C) for 7 - 10 seconds, then pressing the ends together tightly. Do not test the welding until the material has completely cooled. Use material that resists weathering and ultraviolet rays. Provide a seal that has a working range of 30% tension and 60% compression and is watertight along its entire length including the ends. Provide seals that meet the requirements given below. | TEST | TEST METHOD | REQUIREMENT | |--|--|------------------------------------| | Elongation at break | ASTM D3575 | 210 ± 15% | | Tensile strength, psi (kPa) | ASTM D3575 | $110 \pm 15 \ (755 \pm 100)$ | | Compression Recovery (% of original width) | AASHTO T42
50% compr. for 22 hr.
@ 73°F (23°C) 1/2 hr.
recovery | 87 ± 3 | | Weather/Deterioration | AASHTO T42 Accelerated Weathering | No deterioration for 10 years min. | | Compression/Deflection | @ 50% deflection of original width | 10 psi (69 kPa) min. | | | @ 50% deflection of original width | 60 psi (414 kPa) max. | 88 | TEST | TEST METHOD | REQUIREMENT | |------------------------------|---|---------------------------| | Tear Strength, psi (kPa) | ASTM D624 | $16 \pm 3 \ (110 \pm 20)$ | | Density | ASTM D545 | 2.8 to 3.4 | | Water Absorption (% vol/vol) | ASTM D3575 Total immersion for 3 months | 3 | Have the top of the evazote seal clearly shop marked. Inspect the evazote seals upon receipt to ensure that the marks are clearly visible upon installation. #### 2.0 ADHESIVES Use a two component, 100% solid, modified epoxy adhesive with the seal that meets the requirements of ASTM C881, Type 1, Grade 3, Class B & C and has the following physical properties: | Tensile strength | 3500 psi (24.1 MPa) min. | |----------------------|--------------------------| | Compressive strength | - ` , | | Shore D Hardness | | | Water Absorption | | Use an adhesive that is workable to 40°F (4°C). When installing in temperatures below 40°F (4°C) or for application on moist, difficult to dry concrete surfaces, use an adhesive specified by the manufacturer of the joint material. #### 3.0 SAWING THE JOINTS When the plans call for sawing the joints, the joints shall be initially formed to a width as shown on the plans including the blockout for the elastomeric concrete. Complete placement of the elastomeric concrete after the reinforced concrete deck slab has cured for seven full days and reached a minimum strength of 3000 psi (20.7 Mpa). Cure the elastomeric concrete for a minimum of 2 days prior to sawing the elastomeric concrete to the final width and depth as specified in the plans. When sawing the joint to receive the evazote seal, always use a rigid guide to control the saw in the desired direction. To control the saw and to produce a straight line as indicated on the plans, anchor and positively connect a template or a track to the bridge deck. Do not saw the joint by visual means such as a chalk line. Fill the holes used for holding the template or track to the deck with an approved, flowable non-shrink, non-metallic grout. Saw cut to the desired width and depth in one or two passes of the saw by placing and spacing two metal blades on the saw shaft to the desired width for compression seals. The desired depth is the depth of the seal plus 1/4 inch (6 mm) above the top of the seal plus approximately 1 inch (25 mm) below the bottom of the seal. An irregular bottom of sawed joint is permitted as indicated on the plans. Grind exposed corners on saw cut edges to a 1/4" (6 mm) chamfer. Remove any staining or deposited material resulting from sawing with a wet blade to the satisfaction of the Engineer. Use extreme care to saw the joint straight to the desired width and to prevent any chipping or damage to sawed edges of the joint. #### 4.0 PREPARATIONS FOR SAWED JOINTS When the plans call for sawing the joint, the Engineer thoroughly inspects the sawed joint opening for spalls, popouts, cracks, etc. Make all necessary repairs prior to blast cleaning and installing the seal. Immediately before sealing, clean the joints by sandblasting with clean dry sand. Sandblast to provide a firm, clean joint surface free of curing compound, loose material and any foreign matter. Sandblast without causing pitting or uneven surfaces. The aggregate in the elastomeric concrete may be exposed after sandblasting. After blasting, either brush the surface with clean brushes made of hair, bristle or fiber, blow the surface with compressed air, or vacuum the surface until all traces of blast products and abrasives are removed from the surface, pockets, and corners. If nozzle blasting, use compressed air that does not contain detrimental amounts of water or oil. Examine the blast cleaned surface and remove any traces of oil, grease or smudge deposited in the cleaning operations. Bond the seal to the blast cleaned surface on the same day the surface is blast cleaned. #### 5.0 Preparations for Armored Joints When the plans call for armored joints, form the joint and blockout openings in accordance with the plans. If preferred, wrap the temporary form with polyethylene sheets to allow for easier removal. Do not use form release agents. ## A. Submittals Submitting detailed working drawings is not required; however, submitting catalog cuts of the proposed material is required. In addition, direct the joint supplier to provide an angle segment placing plan. ## B. Surface Preparation Prepare the surface within the 48 hours prior to placing the elastomeric concrete. Do not place the elastomeric concrete until the surface preparation is completed and approved. ## 1. Angle Assembly Clean and free metallized steel of all foreign contaminants and blast the non-metallized steel surfaces to SSPC SP-10. Blast-cleaning anchor studs is not required. #### 2. Concrete Prior to placing the elastomeric concrete, thoroughly clean and dry all concrete surfaces. Sandblast the concrete surface in the blockout and clear the surface of all loose debris. ## C. Elastomeric Concrete Placement Make sure that a manufacturer's representative is present when placing elastomeric concrete. Do not place elastomeric concrete if the ambient air temperature is below 45°F (7°C). Prepare and apply a primer, as per manufacturer's recommendations, to all vertical concrete faces, all steel components to be in contact with elastomeric concrete, and to areas specified by the manufacturer. Align the angles with the joint opening. Prepare, batch, and place the elastomeric concrete in accordance with the manufacturer's instructions. Place the elastomeric concrete in the areas specified on the plans while the primer is still tacky and within 2 hours after applying the primer. Pay careful attention to properly consolidate the concrete around the steel and anchors. Trowel the elastomeric concrete to a smooth finish. ## D. Joint Preparation Prior to installing the seal, the Engineer thoroughly inspects the armored joint opening for proper alignment and full consolidation of elastomeric concrete under the angle assemblies. Make all necessary repairs prior to cleaning the joint opening and installing the seal. Clean the armored joint opening with a pressure washer rated at 3000 psi (20.7 MPa) minimum at least 24 hours after placing the elastomeric concrete. Dry the cleaned surface prior to installing the seal. Examine the cleaned surface and remove traces of oil, grease or smudge deposited during the cleaning operations. Bond the seal to the cleaned surface on the same day the surface is cleaned. #### 6.0 SEAL INSTALLATION Install the joint seal according to the manufacturer's procedures and recommendations and as recommended below. Do not install the joint seal if the ambient air temperature is below 45°F (7°C). Have a manufacturer's representative present during the installation of the first seal of the project. Begin installation at the low end of the joint after applying the mixed epoxy to the sides of both the joint material and both sides of the joint, making certain to completely fill the grooves with epoxy. With gloved hands, compress the material and with the help of a blunt probe, push it down
into the joint until it is recessed approximately 1/4 inch (6 mm) below the surface. Do not push the seal at an angle that would stretch the material. Once work on a joint begins, do not stop until it is completed. Clean the excess epoxy off the surface of the joint material *quickly* and *thoroughly*. Do not use solvents to remove excess epoxy. Remove excess epoxy in accordance with the joint manufacturer's recommendations. Install the seal so that it is watertight. Testing of the joint seal is not required, but it is observed until final inspection. #### 7.0 BASIS OF PAYMENT Payment for all evazote joint seals will be at the lump sum contract price bid for "Evazote Joint Seals" which prices and payment will be full compensation for furnishing all material, including elastomeric concrete when required, labor, tools and equipment necessary for installing these units in place and accepted. ## **ELASTOMERIC CONCRETE** (10-12-01) ## 1.0 DESCRIPTION Elastomeric concrete is a mixture of a two-part polymer consisting of polyurethane and/or epoxy, and kiln-dried aggregate. Have the manufacturer supply it as a unit. Use the concrete in the blocked out areas on both sides of the bridge deck joints as indicated on the plans. ## 2.0 MATERIALS Provide materials that comply with the following minimum requirements at 14 days. | CONCRETE PROPERTIES | TEST METHOD | MINIMUM
REQUIREMENT | |--------------------------------------|-------------------|------------------------| | Bond Strength to Concrete, psi (MPa) | ASTM D638 (D638M) | 450 (3.1) | | Brittleness by Impact, ft-lb (kg-m) | Ball Drop | 7 (0.97) | | Compressive Strength, psi (MPa) | ASTM D695 (D695M) | 2800 (19.3) | | BINDER PROPERTIES (without aggregate) | TEST METHOD | MINIMUM
REQUIREMENT | |---------------------------------------|-------------------|------------------------| | Tensile Strength, psi (MPa) | ASTM D638 (D638M) | 800 (5.5) | | Ultimate Elongation | ASTM D638 (D638M) | 150% | | Tear Resistance, lb/in (kN/m) | ASTM D624 | 90 (15.7) | In addition to the requirements above, use elastomeric concrete that also resists water, chemical, UV, and ozone exposure and withstands extreme temperature (freeze-thaw) changes. Furnish a manufacturer's certification verifying that the materials satisfy the above requirements. Provide samples of elastomeric concrete to the Engineer, if requested, to independently verify conformance with the above requirements. Require a manufacturer's representative to be present on site during the installation of the elastomeric concrete. #### 3.0 Basis of Payment No separate payment will be made for elastomeric concrete. The lump sum contract price bid for "Evazote Joint Seals" will be full compensation for furnishing and placing the Elastomeric Concrete. ## MECHANICALLY STABILIZED EARTH RETAINING WALLS (4-15-08) #### 1.0 GENERAL ## A. Description A mechanically stabilized earth (MSE) retaining wall is defined as a soil-retaining system with steel or geogrid tensile reinforcements in the reinforced zone and vertical or nearly vertical facing elements. The facing elements may be precast concrete panels or segmental retaining wall (SRW) units unless noted otherwise on the plans or the NCDOT Policy for Mechanically Stabilized Earth Retaining Walls prohibits the use of SRW units. Design and construct MSE retaining walls based on actual elevations and dimensions in accordance with this provision, the accepted submittals and the plans. For this provision, "MSE wall" refers to a mechanically stabilized earth retaining wall and "MSE Wall Vendor" refers to the vendor supplying the chosen MSE wall system. Also, "blocks" and "SRW blocks" refer to SRW units. ## B. MSE Wall System Use an MSE wall system approved by the Department in accordance with any restrictions for the chosen system, the plans and the *NCDOT Policy for Mechanically Stabilized Earth Retaining Walls*. Value engineering proposals for other MSE wall systems will not be considered. Obtain the NCDOT MSE wall policy and the list of approved MSE wall systems from: http://www.ncdot.org/doh/preconstruct/highway/geotech/msewalls/ MSE wall systems with conditional approval are restricted to a design height of 20 ft (6.1 m) and an exposed face area of 5,000 ft² (465 m²) per MSE wall. The design height is defined as the difference between where the finished grade elevation intersects the top and bottom of the MSE wall. The conditional status of an MSE wall system will be reevaluated after satisfactorily completing a representative MSE wall that meets the following requirements. - Design height exceeds 15 ft (4.6 m) for a horizontal distance of at least 150 ft (46 m) along the wall face - Designed and constructed in accordance with this provision - Movement monitored during construction to 3 months after wall is subject to surcharge loads or movement stops, whichever is longer, in accordance with the NCDOT MSE wall policy - MSE wall system evaluation report submitted in accordance with the NCDOT MSE wall policy When designing an MSE wall with a conditionally approved system, notify the Engineer if the MSE wall will meet the above requirements. ## C. Temporary Shoring for Wall Construction This provision is not applicable to "Temporary Shoring". If required, temporary shoring is addressed elsewhere in the Contract. "Temporary Shoring for Wall Construction" may be shown on the Retaining Wall Plans or proposed for MSE wall construction. When this occurs, submit temporary shoring for wall construction working drawings and design calculations with the MSE wall design submittal described below and design and construct the shoring in accordance with the requirements for temporary shoring. #### 2.0 SUBMITTALS Two submittals are required which include the MSE wall design and installation submittals. Provide 11 hard copies of working drawings and 3 hard copies of design calculations for the MSE wall design submittal and 4 hard copies of the MSE wall installation submittal. Also, submit an electronic copy (pdf or jpeg format on CD or DVD) of each submittal. Provide the MSE wall installation submittal at least 30 calendar days before conducting the MSE wall preconstruction meeting. Do not begin MSE wall construction until both submittals are accepted. ## A. MSE Wall Design Submittal The Retaining Wall Plans show plan views, typical sections, details, notes and elevation or profile views (wall envelope) for each MSE wall. When noted on plans and before beginning MSE wall design, survey all existing ground elevations shown on the plans and submit a revised wall envelope for review and acceptance. Use the accepted revised wall envelope for design. Design MSE walls in accordance with any restrictions for the chosen MSE wall system, the plans and the AASHTO Standard Specifications for Highway Bridges unless otherwise required. Either the simplified or Meyerhof coherent gravity approach is acceptable for determining maximum reinforcement loads. Design steel components including reinforcement and connection hardware for non-aggressive backfill with corrosion losses in accordance with AASHTO Standard Specifications for Highway Bridges. Also, design MSE walls with a minimum reinforcement length of 6 ft (1.8 m) unless shown otherwise on the plans and the reinforcement coefficients and geogrid reduction factors submitted to the Department for the approval of the chosen MSE wall system. Cast-in-place concrete coping is required when noted on the plans and for all MSE walls with SRW blocks. Regardless of wall backfill type, fill between and behind blocks for a horizontal distance of 18" (450 mm) and, unless otherwise approved, any block core spaces with stone meeting the requirements of standard size nos. 57, 67 or 78M in accordance with Sections 1005 and 1014 of the *Standard Specifications*. An unreinforced cast-in-place concrete leveling pad that is continuous at steps is required for all MSE walls. If existing or future obstructions such as foundations, guardrail posts, pavements, pipes, inlets or utilities will interfere with reinforcement, maintain a minimum clearance of 3" (75 mm) between the obstruction and reinforcement unless otherwise approved. Place reinforcement at or within 3" (75 mm) above the corresponding connection elevation. Separation fabric is required between the wall backfill and the overlying fill or aggregate with the exception of when concrete pavement is placed immediately over the backfill. Submit working drawings and design calculations for review and acceptance in accordance with Article 105-2 of the Standard Specifications. Include items in the MSE wall design submittal listed in Section 7.2 of the AASHTO LRFD Bridge Construction Specifications. Submit working drawings showing plan views, wall profiles with maximum applied bearing pressures, typical sections with reinforcement connection details, wall backfill type and separation fabric locations and details for a leveling pad, precast elements, SRW blocks, coping, bin walls, slip joints, etc. If necessary, include details on working drawings for end bent caps connected to reinforcement and obstructions interfering with reinforcement or extending through walls. Submit design calculations for each wall section with different surcharge loads, wall geometry or material parameters. A minimum of one analysis is required for each wall section with different reinforcement lengths. When using a software program other than MSEW by ADAMA Engineering, Inc. for design, provide a hand calculation verifying the analysis of the section with the longest reinforcement length. Have MSE walls designed, detailed and sealed by a Professional Engineer registered in North Carolina. #### B. MSE Wall Installation Submittal The MSE wall installation submittal includes a construction sequence and manual and the MSE Wall Installer personnel and experience. Submit a detailed project specific construction sequence and a field construction manual describing with
illustrations the step-by-step wall construction process for the chosen MSE wall system. Use an MSE Wall Installer prequalified by the NCDOT Construction Unit for MSE retaining walls work (work code 3015). Submit documentation of experience with the chosen MSE wall system that includes 5 MSE wall projects in the last 3 years with wall heights similar to those for this project and an exposed face area for all 5 walls of at least 10,000 ft² (930 m²). Documentation should include the General Contractor and Owner's name and current contact information with descriptions of each past project. Submit documentation for the Superintendent assigned to this project verifying employment with the MSE Wall Installer and a minimum of 5 years experience with the chosen MSE wall system including past projects of scope and complexity similar to that anticipated for this project. Documentation should include resumes, references, certifications, project lists, experience descriptions and details, etc. Perform work with the Superintendent submitted and accepted. If a different Superintendent is required during construction, suspend MSE wall construction until the replacement Superintendent is submitted and accepted. 96 If the MSE Wall Installer or Superintendent does not have 5 years experience with the chosen MSE wall system, experience with another approved MSE wall system with the same type of facing element (precast concrete panels or SRW blocks) as that for the chosen MSE wall system may be used for the requirements above. #### 3.0 MATERIALS ## A. Certifications, Storage and Handling Provide certifications in accordance with Section 106-3 of the *Standard Specifications*. Provide Type 3 Manufacturer's Certifications for all MSE wall materials. For each geogrid product, provide Type 2 Typical Certified Mill Test Reports for tensile strength. For SRW blocks, provide Type 4 Certified Test Reports for all block properties with the exception of durability. When a note on plans requires freeze-thaw durable blocks, provide Type 5 Typical Certified Test Reports for durability. Load, transport, unload and store MSE wall materials such that they are kept clean and free of damage. Damaged panels or blocks with excessive discoloration, chips or cracks as determined by the Engineer will be rejected. Do not damage reinforcement connection hardware or mechanisms in handling and storing panels or blocks. Label each pallet of blocks with the information listed in Article 1077-13 of the *Standard Specifications*. Do not transport SRW blocks away from the casting yard until the concrete strength reaches 4000 psi (27.6 MPa) and a period of at least 5 days elapses after casting unless otherwise approved. Identify, store and handle all geogrids in accordance with ASTM D4873. Geogrids with defects, flaws, deterioration or damage will be rejected. Do not leave geogrids uncovered for more than 7 days. ## B. Facing Elements Provide facing elements produced by a manufacturer approved or licensed by the MSE Wall Vendor. #### 1. Precast Concrete Panels Provide precast concrete panels meeting the requirements of Sections 1000 and 1077 of the *Standard Specifications* and reinforcing steel meeting the requirements of Section 1070 of the *Standard Specifications*. Accurately locate and secure reinforcement connection hardware and maintain a minimum 2" (50 mm) clearance to the reinforcing steel. Produce panels within ¼ inch (6 mm) of the panel dimensions shown in the accepted submittals. A minimum compressive strength of 4000 psi (27.6 MPa) at 28 days is required. For testing panels for compressive strength, 4 cylinders are required per 2000 ft² (186 m²) of panel face area or a single day's production, whichever is less. Unless required otherwise on the plans, provide a final finish in accordance with Article 1077-11 of the *Standard Specifications*. 97 ## 2. Segmental Retaining Wall (SRW) Blocks Use blocks meeting the requirements of ASTM C1372 with the exception of absorption, compressive strength and durability requirements. Test blocks in accordance with ASTM C140 with the exception of the number of units in a lot. For testing blocks, a lot is defined as 5000 units or a single day's production, whichever is less, and 6 blocks are required per lot. Provide blocks with a maximum absorption of 5%. A minimum compressive strength of 4000 psi (27.6 MPa) at 28 days is required for blocks with the exception of freeze-thaw durable blocks. When a note on plans requires freeze-thaw durable blocks, a minimum compressive strength of 5500 psi (37.9 MPa) at 28 days is required. Test freeze-thaw durable blocks in accordance with ASTM C1262. Test specimens in water. Freeze-thaw durable blocks are acceptable if the weight loss of each of 4 of the 5 specimens after 150 cycles does not exceed 1% of its initial weight. Unless required otherwise on the plans, provide blocks with a split face finish and a concrete gray color with no tints, dyes or pigments. #### C. Reinforcement Provide reinforcement supplied by the MSE Wall Vendor or a manufacturer approved or licensed by the vendor. ## 1. Steel (Inextensible) Reinforcement Use welded wire reinforcement mesh and mats meeting the requirements of AASHTO M55 or M221 and steel strips or straps meeting the requirements of ASTM A572 or A1011 with a grade as specified in the accepted submittals. Galvanize steel reinforcement in accordance with Section 1076 of the *Standard Specifications*. ## 2. Geogrid (Extensible) Reinforcement Use geogrids approved by the Department for the chosen MSE wall system. Obtain the list of approved geogrids for each MSE wall system from the website shown elsewhere in this provision. Test geogrids in accordance with ASTM D6637. Provide tensile strength values as minimum average roll values (MARV) in accordance with ASTM D4759. For testing geogrids, a lot is defined as a single day's production. #### D. Wall Backfill Use wall backfill in the reinforced zone for MSE walls. Provide wall backfill meeting the requirements of standard size nos. 2S, 2MS, 57, 67 or 78M in accordance with Sections 1005 and 1014 of the *Standard Specifications* with the following exception. Do not use 2S or 2MS when prohibited by a note on plans or when SRW blocks are not allowed. When using steel reinforcement, provide wall backfill meeting the electrochemical requirements of Section 7.3.6.3 of the AASHTO LRFD Bridge Construction Specifications tested in accordance with the following methods: | Property | AASHTO Test Method | |-------------|--------------------| | pH | T289 | | Resistivity | T288 | | Chlorides | T291 | | Sulfates | T290 | Use wall backfill free of deleterious materials with a maximum organic content of 1% tested in accordance with AASHTO T267. ## E. Concrete Leveling Pads, Coping and Moment Slabs Provide leveling pads, coping and moment slabs meeting the requirements of Section 1000 of the *Standard Specifications* and reinforcing steel meeting the requirements of Section 1070 of the *Standard Specifications*. Provide precast coping meeting the requirements of Section 1077 of the *Standard Specifications*. Use Class A Concrete for leveling pads, coping and moment slabs in accordance with Article 1000-4 of the *Standard Specifications*. For testing precast coping for compressive strength, 4 cylinders are required per 40 yd³ (31 m³) of concrete or a single day's production, whichever is less. ## F. Separation Fabric Use separation fabric meeting the requirements of Type 2 Engineering Fabric in accordance with Section 1056 of the *Standard Specifications*. ## G. Joint Materials Use joint materials in accordance with Section 1028 of the Standard Specifications. ## H. Miscellaneous Components Miscellaneous components may include attachment devices, connectors (e.g., pins, bars, plates, etc.), bearing pads, dowels, fasteners (e.g., bolts, nuts, etc.), filter fabric or any other wall components not included above. Galvanize steel components in accordance with Section 1076 of the *Standard Specifications*. Provide miscellaneous components approved by the Department for the chosen MSE wall system. Obtain the list of approved miscellaneous components for each MSE wall system from the website shown elsewhere in this provision. ## 4.0 CORROSION MONITORING Corrosion monitoring is required for MSE walls with steel reinforcement. The Engineer will determine the number of monitoring locations and where to install the instrumentation. Contact the NCDOT Materials & Tests (M&T) Unit before beginning wall construction. M&T will provide the corrosion monitoring instrumentation kits and assistance with installation, if necessary. #### 5.0 MSE WALL PRECONSTRUCTION MEETING Before starting MSE wall construction, conduct a preconstruction meeting to discuss the construction and inspection of the MSE walls. Schedule this meeting after all MSE wall submittals have been accepted. The Resident or Bridge Maintenance Engineer, Bridge Construction Engineer, Geotechnical Operations Engineer, Contractor and MSE Wall Installer Superintendent will attend this preconstruction meeting. #### 6.0 MSE WALL VENDOR SITE ASSISTANCE Provide a representative employed by the MSE Wall Vendor to assist and guide the MSE Wall Installer on-site for at least 8 hours when the first panels or blocks are set and the first reinforcement layer is placed unless otherwise approved. If problems are encountered during construction, the Engineer may require the vendor representative to return to the site for a time period determined by the Engineer at no additional cost to the Department. ## 7.0 CONSTRUCTION METHODS Control drainage during construction in the vicinity of MSE walls. Collect and direct run off away from MSE walls and wall backfill. Contain and maintain wall backfill and protect material from erosion. Perform all necessary clearing and grubbing in accordance with Section 200 of the *Standard Specifications*. Excavate as necessary for MSE walls in reasonably
close conformity to the accepted submittals. Unless prohibited by a note on plans, install foundations located within the reinforced zone before placing wall backfill or the first reinforcement layer. Notify the Engineer when foundation excavation is complete. Do not place leveling pad concrete, wall backfill or first reinforcement layer until obtaining approval of the excavation depth and foundation material. Construct cast-in-place concrete leveling pads at elevations and with dimensions shown in the accepted submittals and in accordance with Section 420 of the *Standard Specifications*. Cure leveling pads a minimum of 24 hours before placing panels or blocks. B-4037 100 Erect and support panels or blocks with no negative batter (wall face leaning forward) such that the final position is as shown in the accepted submittals. Stagger vertical joints of blocks to create a running bond when possible unless shown otherwise in the accepted submittals. Place blocks with a maximum joint width of ½ inch (13 mm) and set panels with a joint width of ½ to 1 inch (13 to 25 mm). Construct MSE walls with a vertical and horizontal tolerance of ¾ inch (19 mm) when measured with a 10 ft (3 m) straight edge and a final overall vertical plumbness (batter) of less than ½ inch per 10 ft (13 mm per 3 m) of wall height. Place reinforcement at the locations and elevations shown in the accepted submittals. Do not splice reinforcement. Replace any damaged reinforcement to the satisfaction of the Engineer. Contact the Engineer when unanticipated existing or future obstructions such as foundations, guardrail posts, pavements, pipes, inlets or utilities will interfere with reinforcement. To avoid obstructions, deflect, skew and modify reinforcement as shown in the accepted submittals. Place reinforcement in slight tension free of kinks, folds, wrinkles or creases. Place wall backfill in the reinforced zone in 8 to 10 inch (200 to 250 mm) thick lifts. Compact standard size nos. 2S and 2MS wall backfill in accordance with Subarticle 235-4(C) of the *Standard Specifications*. Use only hand operated compaction equipment within 3 ft (1 m) of the wall face. At a distance greater than 3 ft (1 m), compact wall backfill with at least 4 passes of an 8 – 10 ton (7.3 - 9.1 metric ton) vibratory roller. Smooth wheeled or rubber tired rollers are also acceptable for compacting wall backfill. Do not use sheepsfoot, grid rollers or other types of compaction equipment with feet. Compact wall backfill in a direction parallel to the wall face. Do not damage reinforcement when placing and compacting wall backfill. End dumping directly on the reinforcement is not permitted. Do not operate heavy equipment on the reinforcement until it is covered with at least 10" (250 mm) of wall backfill. Backfill for wall construction outside the reinforced zone in accordance with Article 410-8 of the *Standard Specifications*. Place and construct coping as shown in the accepted submittals. Construct cast-in-place concrete coping and moment slabs in accordance with Section 420 of the *Standard Specifications*. Do not remove forms until concrete achieves a minimum compressive strength of 2400 psi (16.5 MPa). Provide a Class 2 Surface Finish for cast-in-place coping in accordance with Article 420-17 of the *Standard Specifications*. Construct concrete barrier rail coping with moment slabs in accordance with the plans and barrier rail coping in accordance with Subarticle 460-3(C) of the *Standard Specifications*. Construct cast-in-place coping joints at a maximum spacing of 10 ft (3 m) to coincide with vertical joints between the panels or blocks. Half-inch (13 mm) thick expansion joints in accordance with Article 420-10 of the *Standard Specifications* are required every third joint. Half-inch (13 mm) deep grooved contraction joints in accordance with Subarticle 825-10(B) of the *Standard Specifications* are required for the remaining joints. Stop coping reinforcement 2" (50 mm) from either side of expansion joints. When fabric is required to separate the wall backfill from the overlying fill or aggregate, overlap fabric a minimum of 18" (450 mm) with seams oriented parallel to the wall face. Seal joints above and behind MSE walls between coping and pavements with joint sealer. ## 8.0 MEASUREMENT AND PAYMENT MSE Retaining Walls will be measured and paid for at the contract unit price per square foot (square meter) of exposed face area incorporated into the completed and accepted wall. The wall height will be measured as the difference between the top and bottom of wall elevation. The top of wall elevation is defined as the top of coping or concrete barrier rail coping. The bottom of wall elevation is defined as where the finished grade intersects the front face of the MSE wall. No payment will be made for portions of MSE walls below bottom of wall elevations. Include in the unit bid price for MSE Retaining Walls all costs for design, submittals, furnishing labor, tools, equipment and materials, performing any excavation, providing site assistance, leveling pads, facing elements, reinforcement, backfill, fabric, coping and miscellaneous components and any incidentals necessary to design and construct MSE walls in accordance with this provision. If necessary, also include in this unit bid price all costs for concrete barrier rail coping, moment slabs and "Temporary Shoring for Wall Construction" as shown elsewhere in this provision. Pay Item MSE Retaining Walls Pay Unit Square Foot (Square Meter) ## FALSEWORK AND FORMWORK (7-18-06) #### 1.0 DESCRIPTION Use this Special Provision as a guide to develop temporary works submittals required by the Standard Specifications or other provisions; no additional submittals are required herein. Such temporary works include, but are not limited to, falsework and formwork. Falsework is any temporary construction used to support the permanent structure until it becomes self-supporting. Formwork is the temporary structure or mold used to retain plastic or fluid concrete in its designated shape until it hardens. Access scaffolding is a temporary structure that functions as a work platform that supports construction personnel, materials, and tools, but is not intended to support the structure. Scaffolding systems that are used to temporarily support permanent structures (as opposed to functioning as work platforms) are considered to be falsework under the definitions given. Shoring is a component of falsework such as horizontal, vertical, or inclined support members. Where the term "temporary works" is used, it includes all of the temporary facilities used in bridge construction that do not become part of the permanent structure. Design and construct safe and adequate temporary works that will support all loads imposed and provide the necessary rigidity to achieve the lines and grades shown on the plans in the final structure. 102 #### 2.0 MATERIALS Select materials suitable for temporary works; however, select materials that also ensure the safety and quality required by the design assumptions. The Engineer has authority to reject material on the basis of its condition, inappropriate use, safety, or nonconformance with the plans. Clearly identify allowable loads or stresses for all materials or manufactured devices on the plans. Revise the plan and notify the Engineer if any change to materials or material strengths is required. ## 3.0 DESIGN REQUIREMENTS ## A. Working Drawings Provide working drawings for items as specified in the contract, or as required by the Engineer, with design calculations and supporting data in sufficient detail to permit a structural and safety review of the proposed design of the temporary work. When concrete placement is involved, include data such as the drawings of proposed sequence, rate of placement, direction of placement, and location of all construction joints. Submit the number of copies as called for by the contract. When required, have the drawings and calculations prepared under the guidance of, and sealed by, a North Carolina Registered Professional Engineer who is knowledgeable in temporary works design. 16 Design falsework and formwork requiring submittals in accordance with the 1995 AASHTO Guide Design Specifications for Bridge Temporary Works except as noted herein. ## 1. Wind Loads Table 2.2 of Article 2.2.5.1 is modified to include wind velocities up to 110 mph (177 km/hr). In addition, Table 2.2A is included to provide the maximum wind speeds by county in North Carolina. Pressure, lb/ft² (kPa) for Indicated Wind Velocity, Height Zone mph (km/hr) 70 80 90 feet (m) above ground 100 110 (112.7)(128.7)(144.8)(160.9)(177.0)0 to 30 (0 to 9.1) 20 30 15 25 35 (0.72)(0.96)(1.20)(1.44)(1.68)30 to 50 (9.1 to 15.2) 20 25 30 35 40 (0.96)(1.20)(1.44)(1.68)(1.92)50 to 100 (15.2 to 30.5) 25 30 35 40 45 (1.20)(1.92)(1.44)(1.68)(2.15)over 100 (30.5) 30 35 40 45 50 **Table 2.2 - Wind Pressure Values** #### 2. Time of Removal The following requirements replace those of Article 3.4.8.2. (1.44) Do not remove forms until the concrete has attained strengths required in Article 420-16 of the Standard Specifications and these Special Provisions. (1.68) (1.92) (2.15) (2.39) Do not remove forms until the concrete has sufficient strength to prevent damage to the surface. B-4037 104 Table 2.2A - Steady State Maximum Wind Speeds by Counties in North Carolina | COUNTY | 25 YR
(mph)
(km/hr) | COUNTY | 25 YR
(mph)
(km/hr) | COUNTY | 25 YR
(mph)
(km/hr) | |------------|---------------------------|-------------|---------------------------|--------------|---------------------------| | Alamance | 70 (112.7) | Franklin | 70 (112.7) | Pamlico | 100 (160.9) | | Alexander | 70 (112.7) | Gaston | 70 (112.7) | Pasquotank | 100 (160.9) | | Alleghany | 70 (112.7) | Gates | 90 (144.8) | Pender | 100 (160.9) | | Anson | 70 (112.7) | Graham | 80 (128.7) | Perquimans | 100 (160.9) | | Ashe | 70 (112.7) | Granville | 70 (112.7)
 Person | 70 (112.7) | | Avery | 70 (112.7) | Greene | 80 (128.7) | Pitt | 90 (144.8) | | Beaufort | 100 (160.9) | Guilford | 70 (112.7) | Polk | 80 (128.7) | | Bertie | 90 (144.8) | Halifax | 80 (128.7) | Randolph | 70 (112.7) | | Bladen | 90 (144.8) | Harnett | 70 (112.7) | Richmond | 70 (112.7) | | Brunswick | 100 (160.9) | Haywood | 80 (128.7) | Robeson | 80 (128.7) | | Buncombe | 80 (128.7) | Henderson | 80 (128.7) | Rockingham | 70 (112.7) | | Burke | 70 (112.7) | Hertford | 90 (144.8) | Rowan | 70 (112.7) | | Cabarrus | 70 (112.7) | Hoke | 70 (112.7) | Rutherford | 70 (112.7) | | Caldwell | 70 (112.7) | Hyde | 110 (177.0) | Sampson | 90 (144.8) | | Camden | 100 (160.9) | Iredell | 70 (112.7) | Scotland | 70 (112.7) | | Carteret | 110 (177.0) | Jackson | 80 (128.7) | Stanley | 70 (112.7) | | Caswell | 70 (112.7) | Johnston | 80 (128.7) | Stokes | 70 (112.7) | | Catawba | 70 (112.7) | Jones | 100 (160.9) | Surry | 70 (112.7) | | Cherokee | 80 (128.7) | Lee | 70 (112.7) | Swain | 80 (128.7) | | Chatham | 70 (112.7) | Lenoir | 90 (144.8) | Transylvania | 80 (128.7) | | Chowan | 90 (144.8) | Lincoln | 70 (112.7) | Tyrell | 100 (160.9) | | Clay | 80 (128.7) | Macon | 80 (128.7) | Union | 70 (112.7) | | Cleveland | 70 (112.7) | Madison | 80 (128.7) | Vance | 70 (112.7) | | Columbus | 90 (144.8) | Martin | 90 (144.8) | Wake | 70 (112.7) | | Craven | 100 (160.9) | McDowell | 70 (112.7) | Warren | 70 (112.7) | | Cumberland | 80 (128.7) | Mecklenburg | 70 (112.7) | Washington | 100 (160.9) | | Currituck | 100 (160.9) | Mitchell | 70 (112.7) | Watauga | 70 (112.7) | | Dare | 110 (177.0) | Montgomery | 70(112.7) | Wayne | 80 (128.7) | | Davidson | 70 (112.7) | Moore | 70 (112.7) | Wilkes | 70 (112.7) | | Davie | 70 (112.7) | Nash | 80 (128.7) | Wilson | 80 (128.7) | | Duplin | 90 (144.8) | New Hanover | 100 (160.9) | Yadkin | 70 (112.7) | | Durham | 70 (112.7) | Northampton | 80 (128.7) | Yancey | 70 (112.7) | | Edgecombe | 80 (128.7) | Onslow | 100 (160.9) | | | | Forsyth | 70 (112.7) | Orange | 70 (112.7) | | | Note on the working drawings any anchorages, connectors, inserts, steel sleeves or other such devices used as part of the falsework or formwork that remains in the permanent structure. If the plan notes indicate that the structure contains the necessary corrosion protection required for a Corrosive Site, epoxy coat, galvanize, metallize or otherwise protect these devices as directed by the Engineer. Any coating required by the Engineer will be considered incidental to the various pay items requiring temporary works. ## B. Review and Approval The Engineer is responsible for the review and approval of temporary works' drawings. Submit the working drawings sufficiently in advance of proposed use to allow for their review, revision (if needed), and approval without delay to the work. Do not start construction of any temporary work for which working drawings are required until the drawings have been approved. Such approval does not relieve the Contractor of the responsibility for the accuracy and adequacy of the working drawings. The time period for review of the working drawings does not begin until complete drawings and design calculations, when required, are received by the Engineer. On the drawings, show all information necessary to allow the design of any component to be checked independently as determined by the Engineer. If requested by the Engineer, submit with the working drawings manufacturer's catalog data listing the weight of all construction equipment that will be supported on the temporary work. Show anticipated total settlements and/or deflections of falsework and forms on the working drawings. Include falsework footing settlements, joint take-up, and deflection of beams or girders. Falsework hangers that support concentrated loads and are installed at the edge of thin top flange concrete girders (such as bulb tee girders) shall be spaced so as not to exceed 75% of the manufacturer's stated safe working load. Use of dual leg hangers (such as Meadow Burke HF-42 and HF-43) are not allowed. Design the falsework and forms supporting deck slabs and overhangs on girder bridges so that there will be no differential settlement between the girders and the deck forms during placement of deck concrete. ## 4.0 CONSTRUCTION REQUIREMENTS All requirements of Section 420 of the Standard Specifications apply. Construct temporary works in conformance with the approved working drawings. Ensure that the quality of materials and workmanship employed is consistent with that assumed in the design of the temporary works. Do not weld falsework members to any portion of the permanent structure unless approved. Show any welding to the permanent structure on the approved construction drawings. Provide tell-tales attached to the forms and extending to the ground, or other means, for accurate measurement of falsework settlement. Make sure that the anticipated compressive settlement and/or deflection of falsework does not exceed 1 inch (25 mm). For cast-in-place concrete structures, make sure that the calculated deflection of falsework flexural members does not exceed 1/240 of their span regardless of whether or not the deflection is compensated by camber strips. ## A. Maintenance and Inspection Inspect and maintain the temporary work in an acceptable condition throughout the period of its use. Certify that the manufactured devices have been maintained in a condition to allow them to safely carry their rated loads. Clearly mark each piece so that its capacity can be readily determined at the job site. Perform an in-depth inspection of an applicable portion(s) of the temporary works, in the presence of the Engineer, not more than 24 hours prior to the beginning of each concrete placement. Inspect other temporary works at least once a month to ensure that they are functioning properly. Have a North Carolina Registered Professional Engineer inspect the cofferdams, shoring, sheathing, support of excavation structures, and support systems for load tests prior to loading. #### B. Foundations Determine the safe bearing capacity of the foundation material on which the supports for temporary works rest. If required by the Engineer, conduct load tests to verify proposed bearing capacity values that are marginal or in other high-risk situations. The use of the foundation support values shown on the contract plans of the permanent structure is permitted if the foundations are on the same level and on the same soil as those of the permanent structure. Allow for adequate site drainage or soil protection to prevent soil saturation and washout of the soil supporting the temporary works supports. If piles are used, the estimation of capacities and later confirmation during construction using standard procedures based on the driving characteristics of the pile is permitted. If preferred, use load tests to confirm the estimated capacities; or, if required by the Engineer conduct load tests to verify bearing capacity values that are marginal or in other high risk situations. The Engineer reviews and approves the proposed pile and soil bearing capacities. ## 5.0 REMOVAL Unless otherwise permitted, remove and keep all temporary works upon completion of the work. Do not disturb or otherwise damage the finished work. B-4037 Remove temporary works in conformance with the contract documents. Remove them in such a manner as to permit the structure to uniformly and gradually take the stresses due to its own weight. ## 6.0 METHOD OF MEASUREMENT Unless otherwise specified, temporary works will not be directly measured. #### 7.0 BASIS OF PAYMENT Payment at the contract unit prices for the various pay items requiring temporary works will be full compensation for the above falsework and formwork. ## SUBMITTAL OF WORKING DRAWINGS (7-12-07) #### 1.0 GENERAL Submit working drawings in accordance with Article 105-2 of the Standard Specifications and the requirements of this special provision. For the purposes of this provision, "submittals" refers to only those listed in this provision. The list of submittals contained herein does not represent a list of required submittals for this project. Submittals are only necessary for those items as required by the Standard Specifications, other Special Provisions or contract plans. Make submittals that are not specifically noted in this Special Provision directly to the Resident Engineer. Either the Structure Design Unit or the Geotechnical Engineering Unit or both units will jointly review submittals. If a submittal contains variations from plan details or specifications or significantly affects project cost, field construction or operations, discuss the submittal with and submit all copies to the Resident Engineer. State the reason for the proposed variation in the submittal. To minimize review time, make sure all submittals are complete when initially submitted. Provide a contact name and information with each submittal. Direct any questions regarding submittal requirements to the Resident Engineer, Structure Design Unit contacts or the Geotechnical Engineering Unit contacts noted below. In order to facilitate in-plant inspection by NCDOT and approval of working drawings, provide the name, address and telephone number of the facility where fabrication will actually be done if different than shown on the title block of the submitted working drawings. This includes, but is not limited to, precast concrete items, prestressed concrete items and fabricated steel or aluminum items. ## 2.0 ADDRESSES AND CONTACTS For submittals to the Structure Design Unit, use the following addresses: Via US mail: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation Structure Design Unit 1581 Mail Service Center Raleigh, NC 27699-1581 Attention: Mr. P. D. Lambert, P. E. Via other delivery service: Mr. G. R. Perfetti, P. E. State Bridge Design Engineer North Carolina Department of Transportation
Structure Design Unit 1000 Birch Ridge Drive Raleigh, NC 27610 Attention: Mr. P. D. Lambert, P. E. For submittals to the Geotechnical Engineering Unit, use the following addresses: For projects in Divisions 1-7, use the following Eastern Regional Office address: Via US mail: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 1570 Mail Service Center Raleigh, NC 27699-1570 Via other delivery service: Mr. K. J. Kim, Ph. D., P. E. Eastern Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Eastern Regional Office 3301 Jones Sausage Road, Suite 100 Garner, NC 27529 For projects in Divisions 8-14, use the following Western Regional Office address: Via US mail: Mr. John Pilipchuk, L. G., P. E. Western Regional Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 Via other delivery service: Mr. John Pilipchuk, L. G., P. E. Western Region Geotechnical Manager North Carolina Department of Transportation Geotechnical Engineering Unit Western Regional Office 5253 Z Max Boulevard Harrisburg, NC 28075 B-4037 109 Direct any questions concerning submittal review status, review comments or drawing markups to the following contacts: **Primary Structures Contact:** Paul Lambert (919) 250 - 4041 (919) 250 – 4082 facsimile plambert@dot.state.nc.us **Secondary Structures Contacts:** James Gaither (919) 250 - 4042 **David Stark** (919) 250 - 4044 Eastern Regional Geotechnical Contact (Divisions 1-7): K. J. Kim (919)662 - 4710 (919) 662 – 3095 facsimile kkim@dot.state.nc.us Western Regional Geotechnical Contact (Divisions 8-14): John Pilipchuk (704) 455 - 8902 (704) 455 – 8912 facsimile ipilipchuk@dot.state.nc.us #### 3.0 SUBMITTAL COPIES Furnish one complete copy of each submittal, including all attachments, to the Resident Engineer. At the same time, submit the number of hard copies shown below of the same complete submittal directly to the Structure Design Unit and/or the Geotechnical Engineering Unit. The first table below covers "Structure Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Structure Design Unit. The second table in this section covers "Geotechnical Submittals". The Resident Engineer will receive review comments and drawing markups for these submittals from the Geotechnical Engineering Unit. Unless otherwise required, submit one set of supporting calculations to either the Structure Design Unit or the Geotechnical Engineering Unit unless both units require submittal copies in which case submit a set of supporting calculations to each unit. Provide additional copies of any submittal as directed by the Engineer. ## **STRUCTURE SUBMITTALS** | Submittal | Copies
Required by
Structure
Design Unit | Copies Required by Geotechnical Engineering Unit | Contract Reference
Requiring Submittal ¹ | |--|---|--|--| | Arch Culvert Falsework | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Box Culvert Falsework ⁷ | 5 | 0 | Plan Note, SN Sheet & "Falsework and Formwork" | | Cofferdams | 6 | 2 | Article 410-4 | | Evazote Joint Seals ⁶ | 9 | 0 | "Evazote Joint Seals" | | Expansion Joint Seals (hold down plate type with base angle) | 9 | 0 | "Expansion Joint Seals" | | Expansion Joint Seals (modular) | 2, then 9 | 0 | "Modular Expansion Joint Seals" | | Expansion Joint Seals (strip seals) | 9 | 0 | "Strip Seals" | | Falsework & Forms ² (substructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Falsework & Forms (superstructure) | 8 | 0 | Article 420-3 & "Falsework and Formwork" | | Girder Erection over Railroad | 5 | 0 | Railroad Special Provisions | | Maintenance and Protection of
Traffic Beneath Proposed
Structure | 8 | 0 | "Maintenance and
Protection of Traffic
Beneath Proposed Structure
at Station" | | Metal Bridge Railing | 8 | 0 | Plan Note | | Metal Stay-in-Place Forms | 8 | 0 | Article 420-3 | | Metalwork for Elastomeric
Bearings ^{4,5} | 7 | 0 | Article 1072-10 | B-4037 | Miscellaneous Metalwork ^{4,5} | 7 | 0 | Article 1072-10 | |---|---------------------------|---|---| | Optional Disc Bearings 4 | . 8 | 0 | "Optional Disc Bearings" | | Overhead Signs | 13 | 0 | Article 903-3(C) & Applicable Project Special Provisions | | Pile Splicer | 7 | 2 | Subarticle 450-7(C) | | Placement of Equipment on Structures (cranes, etc.) | 7 | 0 | Article 420-20 | | Pot Bearings ⁴ | 8 | 0 | "Pot Bearings" | | Precast Concrete Box Culverts | 2, then
1 reproducible | 0 | "Optional Precast Reinforced Concrete Box Culvert at Station" | | Precast Retaining Wall Panels | 10 | 1 | Article 1077-2 | | Prestressed Concrete Cored Slab (detensioning sequences) ³ | 6 | 0 | Article 1078-11 | | Prestressed Concrete Deck Panels | 6 and
1 reproducible | 0 | Article 420-3 | | Prestressed Concrete Girder (strand elongation and detensioning sequences) | 6 | 0 | Articles 1078-8 and 1078-
11 | | Removal of Existing Structure over Railroad | 5 | 0 | Railroad Special Provisions | | Revised Bridge Deck Plans (adaptation to prestressed deck panels) | 2, then
1 reproducible | 0 | Article 420-3 | | Revised Bridge Deck Plans
(adaptation to modular
expansion joint seals) | 2, then
1 reproducible | 0 | "Modular Expansion Joint Seals" | | Sound Barrier Wall Casting Plans | 10 | 0 | Article 1077-2 & "Sound Barrier Wall" | | Sound Barrier Wall Steel
Fabrication Plans ⁵ | 7 | 0 | Article 1072-10 & "Sound Barrier Wall" | | Structural Steel ⁴ | 2, then 7 | 0 | Article 1072-10 | | Temporary Detour Structures | 10 | 2 | Article 400-3 & "Construction, Maintenance and Removal | |-------------------------------------|----|---|--| | | | | of Temporary Structure at Station" | | Temporary Shoring ⁸ | 7 | 2 | "Temporary Shoring" | | TFE Expansion Bearings ⁴ | 8 | 0 | Article 1072-10 | #### **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the submittals are required. References in quotes refer to the Project Special Provision by that name. Articles or subarticles refer to the Standard Specifications. - 2. Submittals for these items are necessary only when required by a note on plans. - 3. Submittals for these items may not be required. A list of pre-approved sequences is available from the producer or the Materials and Tests Unit. - 4. The fabricator may submit these items directly to the Structure Design Unit. - 5. The two sets of preliminary submittals required by Article 1072-10 of the Standard Specifications are not required for these items. - 6. Submittals for Fabrication Drawings are not required. Submittals for Catalogue Cuts of Proposed Material are required. See Section 5.A of the referenced Project Special Provision. - 7. Submittals are necessary only when the top slab thickness is 18 inches or greater. - 8. Electronic copies of submittals are required. See referenced Project Special Provision. ## **GEOTECHNICAL SUBMITTALS** | Submittal | Copies Required by Geotechnical Engineering Unit | Copies
Required by
Structure
Design Unit | Contract Reference
Requiring Submittal ¹ | |---|--|---|--| | Crosshole Sonic Logging (CSL) Reports 2 | 1 | 0 | "Crosshole Sonic Logging" | | Drilled Pier Construction Sequence Plans 2 | 1 | 0 | "Drilled Piers" | | Mechanically Stabilized Earth (MSE) Retaining Walls | 8 | 2 | "MSE Retaining Walls" | | Pile Driving Analyzer (PDA) Reports ² | 2 | 0 | "Pile Driving Analyzer" | | Pile Driving Equipment Data ³ | 1 | 0 | Article 450-5 | | Proprietary Retaining Walls | 8 | 2 | Applicable Project Special Provision | | Anchored Retaining Walls | 8 | 2 | Applicable Project Special Provision | | Soil Nail Retaining Walls | 8 | 2 | Applicable Project Special Provision | | Temporary Mechanically Stabilized (MSE) Earth Wall ² | 9 | 0 | "Temporary Shoring" | ## **FOOTNOTES** - 1. References are provided to help locate the part of the contract where the working drawing submittals are required. References in quotes refer to the Project Special Provision by that name. Articles refer to the Standard Specifications. - 2. Electronic copies of submittals are required. See referenced Project Special Provision. - 3. Download Pile Driving Equipment Data Form from following link: http://www.ncdot.org/doh/preconstruct/highway/geotech/formdet/ Submit one hard copy of the completed form to the Resident Engineer. Submit a second copy of the completed form electronically, by facsimile or via US Mail or other delivery service to the Geotechnical Engineering Unit. Electronic submission is preferred. See second page of form for submittal instructions. B-4037 114 CRANE SAFETY (8-15-05) Comply with the manufacturer specifications and limitations applicable to the operation of any and all cranes and derricks. Prime contractors, sub-contractors, and fully operated rental companies shall comply with the current Occupational Safety and Health Administration regulations (OSHA). Submit all items listed below to the Engineer prior to beginning crane operations involving critical lifts. A critical lift is defined as any
lift that exceeds 75 percent of the manufacturer's crane chart capacity for the radius at which the load will be lifted or requires the use of more than one crane. Changes in personnel or equipment must be reported to the Engineer and all applicable items listed below must be updated and submitted prior to continuing with crane operations. ## **CRANE SAFETY SUBMITTAL LIST** - A. <u>Competent Person:</u> Provide the name and qualifications of the "Competent Person" responsible for crane safety and lifting operations. The named competent person will have the responsibility and authority to stop any work activity due to safety concerns. - B. <u>Riggers:</u> Provide the qualifications and experience of the persons responsible for rigging operations. Qualifications and experience should include, but not be limited to, weight calculations, center of gravity determinations, selection and inspection of sling and rigging equipment, and safe rigging practices. - C. <u>Crane Inspections:</u> Inspection records for all cranes shall be current and readily accessible for review upon request. - D. <u>Certifications:</u> By July 1, 2006, crane operators performing critical lifts shall be certified by NC CCO (National Commission for the Certification of Crane Operators), or satisfactorily complete the Carolinas AGC's Professional Crane Operator's Proficiency Program. Other approved nationally accredited programs will be considered upon request. All crane operators shall also have a current CDL medical card. Submit a list of anticipated critical lifts and corresponding crane operator(s). Include current certification for the type of crane operated (small hydraulic, large hydraulic, small lattice, large lattice) and medical evaluations for each operator. ## **PILE EXCAVATION** (7-18-06) ## 1.0 GENERAL This special provision governs installing piles using pile excavation in accordance with the plans and as directed by the Engineer. Pile excavation is necessary when piles can not be installed to the required bearing capacity and tip elevation with conventional driving equipment due to vibration concerns or the presence of rock, boulders, debris or very dense soils. Install piles in accordance with Section 450 of the Standard Specifications and this provision. #### 2.0 PILE EXCAVATION Perform pile excavation to the required elevation shown on the plans or otherwise required by the Engineer. Excavate a hole with a diameter that will result in at least 3 in (75 mm) of clearance around the entire pile. Use equipment of adequate capacity and capable of drilling through soil and non-soil including rock, boulders, debris, man-made objects and any other materials encountered. Blasting is not permitted to advance the excavation. Blasting for core removal is only permitted when approved by the Engineer. Dispose of drilling spoils in accordance with Section 802 of the Standard Specifications and as directed by the Engineer. Drilling spoils consist of all excavated material including water removed from the excavation either by pumping or drilling tools. If unstable, caving or sloughing soils are anticipated or encountered, the Engineer may require the Contractor to stabilize the excavation with steel casing. Steel casing may be either the sectional type or one continuous corrugated or non-corrugated piece. Steel casings should consist of clean watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the hole size and a minimum wall thickness of 1/4 in (7 mm). ## 3.0 CONCRETE PLACEMENT Before placing concrete, center the pile in the excavation and drive to the required bearing capacity and specified tip elevation, if applicable, as shown on the plans or as directed by the Engineer. Check the water inflow rate in the excavation after any pumps have been removed. If the inflow rate is less than 6 in (150 mm) per half hour, remove any water and free fall the concrete into the excavation. Ensure that concrete flows completely around the pile. If the water inflow rate is greater than 6 in (150 mm) per half hour, propose a concrete placement procedure to the Engineer. The Engineer shall approve the concrete placement procedure before placing concrete. Fill the excavation with Class A concrete in accordance with Section 1000 of the Standard Specifications except as modified herein. Provide concrete with a slump of 6 to 8 in (150 to 200 mm). Use an approved high-range water reducer to achieve this slump. Place concrete in a continuous manner and remove all casings. #### 4.0 MEASUREMENT AND PAYMENT #### A. Method of Measurement ## 1. Pile Excavation in Soil The quantity of "Pile Excavation in Soil" to be paid for will be the linear feet (meters) of pile excavation exclusive of the linear feet (meters) of "Pile Excavation" Not in Soil" computed from elevations and dimensions as shown on the plans or from revised dimensions authorized by the Engineer. #### 2. Pile Excavation Not in Soil The quantity of "Pile Excavation Not in Soil" to be paid for will be the linear feet (meters) of pile excavation in non-soil as determined by the Engineer. Non-soil is defined as material that can not be cut with a rock auger and requires excavation by coring, air tools, hand removal or other acceptable methods. Top of non-soil elevation is that elevation where the rock auger penetration rate is less than 2 in (50 mm) per 5 minutes of drilling at full crowd force and coring, air tools, etc. are used to advance the excavation. For pay purposes, after non-soil is encountered, earth seams, rock fragments and voids in the excavation less than 3 ft (0.9 m) in total length will be considered "Pile Excavation Not in Soil". If the non-soil is discontinuous, payment will revert to "Pile Excavation in Soil" at the elevation where non-soil is no longer encountered. ## B. Basis of Payment #### 1. Pile Excavation in Soil Payment will be made at the contract unit price per linear foot (meter) for "Pile Excavation in Soil". Such payment will include, but is not limited to, furnishing all labor, tools, equipment, materials including concrete complete and in place and all incidentals necessary to excavate and complete the work as described in this provision. The cost for the pile will be paid for separately in accordance with the Standard Specifications and will not be part of the unit bid price for "Pile Excavation in Soil". ## 2. Pile Excavation Not in Soil Payment will be made at the contract unit price per linear foot (meter) for "Pile Excavation Not in Soil". Such payment will include, but is not limited to, furnishing all labor, tools, equipment, materials including concrete complete and in place and all incidentals necessary to excavate and complete the work as described in this provision. The cost for the pile will be paid for separately in accordance with the Standard Specifications and will not be part of the unit bid price for "Pile Excavation Not in Soil". ## SHIPPING STEEL STRUCTURAL MEMBERS (7-18-06) ## Section 1072-23 Marking and Shipping Add the following paragraphs after the third paragraph of the Section. Load and ship steel beams and girders in accordance with the Figure below for all types of transportation. B-4037 117 Below is the sketches provided to Materials and Tests Unit on May 8, 1991. When the contractor wishes to place members on trucks not in accordance with these limits, to ship by rail, to attach shipping restraints to the members, to ship horizontally curved steel members, or to invert members, he shall submit a shipping plan prior to shipping. See also Article 1072-11. #### LIMITS FOR PLACEMENT OF BEAMS AND GIRDERS DURING SHIPMENT WHEN 'C' = 15' (4.6m) OR LESS WHEN C' = OVER 15' (4.6m) THRU 30' (9.1m) | | L | MIN. 'C' | MAX 'C' | |-----|---------------|----------------|-------------------------------| | 75 | (22.9m) | (15 (4.6m) | $(22\frac{1}{2}(6.9\text{m})$ | | 80 | (24.4m) | 16 (4.9m) | 24 (7.3m) | | | (25.9m) | 17 (5.2m) 0.3L | < 25½(7.8m) | | | (27.4m) | 18 (5.5m) | 27 (8.2m) | | | (29.0m) 0.2L< | (19 (5.8m) | 28½(8.7m) | | | (30.5m) | 20 (6.1m) | (9.1m) | | 105 | (32.Om) | 21 (6.4m) | 30 (9.1m) | | | (33.5m) | 22 (6.7m) | 30 (9.1m) | | 115 | (35.1m) | 23 (7.Om) | 30 (9.1m) | | 120 | (36.6m) | 24 (7.3m) | 30 (9.1m) | NOTES: ALL DIMENSIONS ARE IN FEET (METERS). TRUCK LOADING SHOWN FOR SIMPLICITY DIMENSIONS APPLY TO ALL TYPES OF SHIPMENTS. ## **GROUT FOR STRUCTURES** (7-12-07) ## 1.0 DESCRIPTION This special provision addresses grout for use in structures, including continuous flight auger (CFA) piles, micropiles, soil nail and anchored retaining walls and backfilling crosshole sonic logging (CSL) tubes or grout pockets, shear keys, dowel holes and recesses for cored slabs and box beams. This provision does not apply to grout placed in post-tensioning ducts for bridge beams, girders, or decks. Provide grout composed of portland cement, water and at the Contractor's option, fine aggregate and/or pozzolan. If necessary, use set controlling admixtures. Proportion, mix and place grout in accordance with the plans, the applicable section of the *Standard Specifications* or special provision for the application and this provision. ## 2.0 MATERIALS Refer to Division 10 of the Standard Specifications: | Item | Article | |--------------------------------------|---------| | Portland Cement | 1024-1 | | Water | 1024-4 | | Fine Aggregate | 1014-1 | | Fly Ash | 1024-5 | | Ground Granulated Blast Furnace Slag | 1024-6 | | Admixtures | 1024-3 | At the Contractor's option, use an approved packaged grout in lieu of the materials above with the exception of the water. Contact the Materials and Tests (M&T) Unit for a list of approved packaged grouts. Consult the manufacturer to determine if the packaged grout selected is suitable for the application and meets the compressive strength and shrinkage requirements. ## 3.0 REQUIREMENTS Unless
required elsewhere in the Contract, provide non-metallic grout with minimum compressive strengths as follows: | Property | Requirement | | |--------------------------------|---------------------|--| | Compressive Strength @ 3 days | 2500 psi (17.2 MPa) | | | Compressive Strength @ 28 days | 4500 psi (31.0 MPa) | | For applications other than micropiles, soil nails and ground anchors, use non-shrink grout with shrinkage of less than 0.15%. When using approved packaged grout, a grout mix design submittal is not required. Submit grout mix designs in terms of saturated surface dry weights on M&T Form 312U in B-4037 1.19 accordance with the applicable section of the *Standard Specifications* or special provision for the structure. Use an approved testing laboratory to determine the grout mix proportions. Adjust proportions to compensate for surface moisture contained in the aggregates at the time of mixing. Changes in the saturated surface dry mix proportions will not be permitted unless a revised grout mix design submittal is accepted. For each grout mix design, provide laboratory test results for compressive strength, density, flow and if applicable, aggregate gradation and shrinkage. Submit compressive strength for at least 3 cube and 2 cylinder specimens at the age of 3, 7, 14 and 28 days for a total of at least 20 specimens tested. Perform laboratory tests in accordance with the following: | Property | Test Method | | |---|-------------------------------|--| | Compressive Strength | AASHTO T106 and T22 | | | Density | AASHTO T133 | | | Flow for Sand Cement Grout | ASTM C939 (as modified below) | | | Flow for Neat Cement Grout | Marsh Funnel and Cup | | | (no fine aggregate) | API RP 13B-1, Section 2.2 | | | Aggregate Gradation for Sand Cement Grout | AASHTO T27 | | | Shrinkage for Non-shrink Grout | ASTM C1090 | | When testing grout for flow in accordance with ASTM C939, modify the flow cone outlet diameter from ½ to ¾ inch (13 to 19 mm). When grout mix designs are submitted, the Engineer will review the mix designs and notify the Contractor as to their acceptability. Do not use grout mix designs until written acceptance has been received. Acceptance of grout mix designs or use of approved packaged grouts does not relieve the Contractor of responsibility to furnish a product that meets the Contract requirements. Upon written request from the Contractor, a grout mix design accepted and used satisfactorily on a Department project may be accepted for use on other projects. ## 4.0 SAMPLING AND PLACEMENT The Engineer will determine the locations to sample grout and the number and type of samples collected for field and laboratory testing. Use API RP 13B-1 for field testing grout flow and density of neat cement grout. The compressive strength of the grout will be considered the average compressive strength test results of 3 cube or 2 cylinder specimens at 28 days. Do not place grout if the grout temperature is less than 50°F (10°C) or more than 90°F (32°C) or if the air temperature measured at the location of the grouting operation in the shade away from artificial heat is below 40°F (4°C). 33 Provide grout at a rate that permits proper handling, placing and finishing in accordance with the manufacturer's recommendations unless directed otherwise by the Engineer. Use grout free of any lumps and undispersed cement. Agitate grout continuously before placement. Control grout delivery so the interval between placing batches in the same component does not exceed 20 minutes. Place grout before the time between adding the mixing water and placing the grout exceeds that in the table below. | ELAPSED TIME FOR PLACING GROUT (with continuous agitation) | | | | | | |--|---------------------------------------|------------------------------------|--|--|--| | | Maximum Elapsed Time | | | | | | Air or Grout Temperature
Whichever is Higher | No Set Retarding
Admixture
Used | Set Retarding
Admixture
Used | | | | | 90°F (32°C) or above | 30 min. | 1 hr. 15 min. | | | | | 80°F (27°C) through 89°F (31°C) | 45 min. | 1 hr. 30 min. | | | | | 79°F (26°C) or below | 60 min. | 1 hr. 45 min. | | | | #### 5.0 MISCELLANEOUS Comply with Articles 1000-9 through 1000-12 of the *Standard Specifications* to the extent applicable for grout in lieu of concrete. ## **HIGH STRENGTH BOLTS** (11-17-06) In Section 440-8(A) of the Standard Specifications, revise the third paragraph and insert a new paragraph four, respectively, as follows: "Make sure that plain bolts and washers have a thin coat of lubricant at the time of installation." "Use nuts that are pre-waxed by the producer/supplier prior to shipping to the project." ## **ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS** (6-11-07) ## 1.0 GENERAL Installation and Testing of Adhesively anchored anchor bolts and dowels shall be in accordance with Section 420-13, 420-21 and 1081-1 of the Standard Specifications except as modified in this provision. #### 2.0 INSTALLATION Installation of the adhesive anchors shall be in accordance with manufacturer's recommendations and shall occur when the concrete is above 40 degrees Fahrenheit and has reached its 28 day strength. The anchors shall be installed before the adhesive's initial set ('gel time'). ## 3.0 FIELD TESTING Replace the third paragraph of Section 420-13 (C) with the following: "In the presence of the Engineer, field test the anchor bolt or dowel in accordance with the test level shown on the plans and the following:. Level One Field testing: Test a minimum of 1 anchor but not less than 10% of all anchors to 50% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors. Level Two Field testing: Test a minimum of 2 anchors but not less than 10% of the all anchors to 80% of the yield load shown on the plans. If less than 60 anchors are to be installed, install and test the required number of anchors prior to installing the remaining anchors. If more than 60 anchors are to be installed, test the first 6 anchors prior to installing the remaining anchors, then test 10% of the number in excess of 60 anchors. Testing should begin only after the Manufacturer's recommended cure time has been reached. For testing, apply and hold the test load for three minutes. If the jack experiences any drop in gage reading, the test must be restarted. For the anchor to be deemed satisfactory, the test load must be held for three minutes with no movement or drop in gage reading." #### 4.0 REMOVAL AND REPLACEMENT OF FAILED TEST SPECIMENS: Remove all anchors and dowels that fail the field test without damage to the surrounding concrete. Redrill holes to remove adhesive bonding material residue and clean the hole in accordance with specifications. For reinstalling replacement anchors or dowels, follow the same procedures as new installations. Do not reuse failed anchors or dowels unless approved by the Engineer. #### 5.0 USAGE The use of adhesive anchors for overhead installments is not permitted without written permission from the Engineer. ## 6.0 BASIS OF PAYMENT No separate measurement or payment will be made for furnishing, installing, and testing anchor bolts/dowels. Payment at the contract unit prices for the various pay items will be full compensation for all materials, equipment, tools, labor, and incidentals necessary to complete the work.