## STATE OF NORTH CAROLINA

#### DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAYS
GEOTECHNICAL UNIT

#### **CONTENTS:**

| SHEET     | <b>DESCRIPTION</b>         |
|-----------|----------------------------|
| 1         | TITLE SHEET                |
| 2         | LEGEND                     |
| 3         | STRUCTURE INVENTORY REPORT |
| 4         | TEST SITE PLAN             |
| 5         | PROFILE                    |
| 6–7       | CROSS SECTIONS             |
| 8–11      | BORE LOGS & CORE REPORTS   |
| 12        | SOIL TEST RESULTS          |
| <i>13</i> | SCOUR REPORT               |
| 14        | CORE PHOTOGRAPHS           |

SITE PHOTOGRAPH

# STRUCTURE SUBSURFACE INVESTIGATION

STATE PROJECT 33000.1.1 I.D. NO. B-3337
F.A. PROJECT BRSTP-1001(18)

COUNTY GUILFORD

PROJECT DESCRIPTION BRIDGE NO. 527

ON -L- (SR 1001) OVER NORTH

BUFFALO CREEK AT STATION 21+01.5

| STATE | STATE PR  | OJECT REFERENCE NO. | SHEET<br>NO. | TOTAL<br>SHEETS |
|-------|-----------|---------------------|--------------|-----------------|
| N.C.  | 33000     | ).1.1 (B-3337)      | 1            | 15              |
| STATE | PROJ. NO. | F, A. PROJ. NO.     |              |                 |
|       |           | BRSTP-1001(18)      | P.E.         |                 |
|       |           |                     | CONIC        | 7               |

#### CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WAS MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARROUS FIELD BORNING LOGS, ROCK CORES, AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL UNIT @ (919) 250-4088. NEITHER THE SUBSURFACE PLANS AND REPORTS, NOR THE FIELD BORNING LOGS, ROCK CORES, OR SOIL TEST DATA IS PART OF THE CONTRACT.

GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARLY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORNINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE, THE LABORATORY SAMPLE DATA AND THE IN SITU (IN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELMMARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS INCESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THIS PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION,

INVESTIGATED BY T.P. MOOREFIELD PERSONNEL N.D. MOHS

CHECKED BY N.T. ROBERSON H.R. CONLEY

SUBMITTED BY N.T. ROBERSON W.N. CHERRY

DATE DECEMBER 2005 M.L. REEDER



NOTE - THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS BEING ACCURATE NOR IT IS CONSIDERED TO BE PART OF THE PLANS, SPECIFICATIONS, OR CONTRACT FOR THE PROJECT.

NOTE - BY HAVING REQUESTED THIS INFORMATION THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

#### NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

#### DIVISION OF HIGHWAYS

GEOTECHNICAL UNIT

### SUBSURFACE INVESTIGATION

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SOIL AND ROCK LEGEND, TERM                                                                                                                                                                                                                                                            | S, SYMBOLS, AND ABBREVIATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOIL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GRADATION                                                                                                                                                                                                                                                                             | ROCK DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TERMS AND DEFINITIONS                                                                                                                                                                                                                                                                                                                                |
| SOIL IS CONSIDERED TO BE THE UNCONSOLIDATED, SEMI-CONSOLIDATED OR WEATHERED EARTH MATERIALS WHICH CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER, AND WHICH YIELDS LESS THAN 100 BLOWS PER FOOT ACCORDING TO STANDARD PENETRATION TEST (AGSHTO 1206, ASTM D-1586). SOIL CLASSIFICATION IS BASED ON THE AGSHTO SYSTEM AND BASIC DESCRIPTIONS GENERALLY SHALL INCLUDE: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AGSHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WELL GRADED- INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE UNIFORM- INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. (ALSO POORLY GRADED)  GAP-GRADED- INDICATES A MIXTURE OF UNIFORM PARTICLES OF TWO OR MORE SIZES.  ANGULARITY OF GRAINS | HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WHEN TESTED, WOULD YIELD SPT REFUSAL, AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN Ø 1 FOOT PER 60 BLOWS. IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.  ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLOWS: | ALLUYUM (ALLUY.) - SOILS WHICH HAVE BEEN TRANSPORTED BY WATER.  AQUIFER - A WATER BEARING FORMATION OR STRATA.  ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND.  ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS,                                                                   |
| AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. EXAMPLE:  VERY STIFF, GRAY SETY CLAY, MOST WITH INTERBEDDED FINE SAND LAFER, HIGHLY PLASTIC, 4-7-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS ARE DESIGNATED BY THE TERMS; ANGULAR, SUBROUNDED, OR ROUNDED.                                                                                                                                                                              | WEATHERED ROCK (WR) NON-COASTAL PLAIN MATERIAL THAT YIELDS SPT N VALUES > 100 BLOWS PER FOOT.                                                                                                                                                                                                                                                                                                                                                                     | OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, AS SHALE, SLATE, ETC.  ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL                                                                                                                                                                                |
| SOIL LEGEND AND AASHTO CLASSIFICATION  GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (35% PASSING #200) ORGANIC MATERIALS (35% PASSING #200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MINERAL OGICAL COMPOSITION  MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHENEVER THEY ARE CONSIDERED OF SIGNIFICANCE.                                                                                                                   | CRYSTALLINE ROCK (CR)  FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED, ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.                                                                                                                                                                                                                                                                                         | AT WHICH IS IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE.  CALCAREOUS (CALC.) - SOILS WHICH CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE.                                                                                                                                                                  |
| GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-a A-1-b  A-2-4 A-2-5 A-2-6 A-2-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LIQUID LIMIT LESS THAN 30                                                                                                                                                                                                                       | NON-CRYSTALLINE ROCK (NCR)  FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELLD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.                                                                                                                                                                                                                                                                   | COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.                                                                                                                                                                                                                                                      |
| SYMBOL 6600000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MODERATELY COMPRESSIBLE LIQUID LIMIT 31-50 HIGHLY COMPRESSIBLE LIQUID LIMIT GREATER THAN 50  PERCENTAGE OF MATERIAL                                                                                                                                                                   | COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED CP) SHELL BEDS, ETC.                                                                                                                                                                                                                                                                                  | CORE RECOVERY GREC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE.  DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT                                                                                                                |
| * 10 50 MX GRANULAR CLAY MUCK, * 40 30 MX50 MX51 MN GRANULAR SOILS SOILS COILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORGANIC MATERIAL GRANULAR SILT- CLAY SOILS SOILS OTHER MATERIAL                                                                                                                                                                                                                       | WEATHERING  FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER                                                                                                                                                                                                                                                                                                                                                              | ROCKS OR CUTS MASSIVE ROCK.  DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE                                                                                                                                                                                                                                           |
| - 200 IS MX | TRACE OF ORGANIC MATTER   2 - 3½   3 - 5½   TRACE   1 - 10½                                                                                                                                                                                                                           | HAMMER IF CRYSTALLINE.  VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN,  (V, SLI,) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY, ROCK RINGS UNDER HAMMER BLOWS IF                                                                                                                                                                                                                                         | ODF DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.                                                                                                                                                                                                                    |
| GROUP INDEX 0 0 0 4 MX 8 MX 12 MX 16 MX No MX  MODERATE ORGANIC AMOUNTS OF SOILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HIGHLY ORGANIC >10% >20% HIGHLY 35% AND ABOVE  GROUND WATER  WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING.                                                                                                                                                                     | OF A CRYSTALLINE NATURE.  SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI,) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR                                                                                                                                                                                                                                                          | FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE.                                                                                                                                                                                                           |
| OF MAJOR GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS MATTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ▼ STATIC WATER LEVEL AFTER 24 HOURS.                                                                                                                                                                                                                                                  | CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS.  MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN                                                                                                                                                                                                                                                                                                 | FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES.  FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM                                                                                                                                                                                           |
| GEN. RATING AS A EXCELLENT TO GOOD FAIR TO POOR POOR POOR UNSUITABLE SUBGRADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PERCHED WATER, SATURATED ZONE OR WATER BEARING STRATA  SPRING OR SEEPAGE                                                                                                                                                                                                              | (MOD.) GRANITOID ROCKS MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK.                                                                                                                                                                                                                                                                         | PARENT MATERIAL.  FLOOD PLAIN (F.P.) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM.                                                                                                                                                                                                                                          |
| P.I. OF A-7-5 ≤ L.L 30 : P.I. OF A-7-6 > L.L 30  CONSISTENCY OR DENSENESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MISCELLANEOUS SYMBOLS                                                                                                                                                                                                                                                                 | MODERATELY SEVERE  ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH                                                                                                                                                                                                                                                                      | FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN                                                                                                                                                                                                                                                                      |
| PRIMARY SOIL TYPE COMPACTNESS OR CONSISTENCY RANGE OF STANDARD RANGE OF UNCONFINED PENETRATION RESISTENCE COMPRESSIVE STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ROADWAY EMBANKMENT SPT CPT TEST BORING SAMPLE WITH SOIL DESCRIPTION VST PHT DESCRIPTIONS                                                                                                                                                                                              | (MOD, SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK, ROCK GIVES 'CLUNK' SOUND WHEN STRUCK.  IF TESTED, WOULD YIELD SPT. REFUSAL                                                                                                                                                                                                                                                                                                                              | THE FIELD.  JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.                                                                                                                                                                                                                                                               |
| GENERALLY VERY LOOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SOIL SYMBOL DESIGNATIONS  AUGER BORING S- BULK SAMPLE                                                                                                                                                                                                                                 | SEVERE ALL ROCKS EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT REDUCE!  (SEV.) IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME  EXTENT. SOME FRAMENTS OF STRONG ROCK USUALLY REMAIN.                                                                                                                                                                                                                 | LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT.  LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS.                                                                                                                                                                   |
| MATERIAL MEDIUM DENSE 10 TO 30  DENSE 30 TO 50  VERY DENSE >50  VERY SOFT <2 (0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RATIFICIAL FILL OTHER THAN ROADWAY EMBANKMENTS  CORE BORING SS- SPLIT SPOON SAMPLE  ST- SHELBY TUBE SAMPLE  MONITORING WELL  SAMPLE                                                                                                                                                   | VERY SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT (V. SEV.)  THE MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH QNLY FRAGMENTS OF STRONG ROCK REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE SUCH THAT ONLY MINDR VESTIGES OF THE ORIGINAL ROCK FABRIC REMAIN. IF TESTED, YIELDS SPT N WALUES < 100 BPF                                                                                      | LENS - A BUDY UP SUIL OR NUCK HAIT HAIRS UIT IN DIE UN MORE DIRECTIONS.  MOTILED MOTIL- IRREGULARLY MARKED MITH SPOTS OF DIFFERENT COLORS, MOTILING IN  SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.  PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM. |
| SEREMALLY   SOFT   2 TO 4   0.25 TO 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIJE/JE   INFERRED ROCK LINE   PIEZOMETER   RS- ROCK SAMPLE                                                                                                                                                                                                                           | COMPLETE  ROCK REDUCED TO SOIL ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ALSO AN EXAMPLE.                                                                                                                                                                                                                                                                 | RESIDUAL SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK.  ROCK QUALITY DESIGNATION (R.Q.D.) - A MEASURE OF ROCK QUALITY DESCRIBED BY: TOTAL LENGTH OF ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND                                                                                             |
| TEXTURE OR GRAIN SIZE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25/025 DIP/DIP DIRECTION OF INSTALLATION CBR - CBR SAMPLE  ROCK STRUCTURES  SPT N-VALUE                                                                                                                                                                                               | ROCK HARDNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EXPRESSED AS A PERCENTAGE.  SAPROLITE (SAP.) - RESIDUAL SOIL WHICH RETAINS THE RELIC STRUCTURE OR FABRIC OF THE                                                                                                                                                                                                                                      |
| U.S. STD. SIEVE SIZE 4 10 40 60 200 270  OPENING (MM) 4.76 2.0 0.42 0.25 0.075 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SOUNDING ROD     REP SPT REFUSAL  ABBREVIATIONS                                                                                                                                                                                                                                       | VERY HARD  CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES  SEVERAL HARD BLOWS OF THE GEOLOGISTS PICK.  HARD  CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY, HARD HAMMER BLOWS REQUIRED                                                                                                                                                                                                                                  | PARENT ROCK.  SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT. WHICH HAS BEEN EMPLACED PARALLEL                                                                                                                                                                     |
| BOULDER<br>(BLDR.)         COBBLE<br>(COB.)         GRAVEL<br>(GR.)         CDARSE<br>SAND<br>(CSE. SD.)         FINE<br>SAND<br>(F. SD.)         SILT<br>(F. SD.)         CLAY<br>(SL.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AR - AUGER REFUSAL PMT - PRESSUREMETER TEST<br>BT - BORING TERMINATED SD SAND, SANDY                                                                                                                                                                                                  | TO DETACH HAND SPECIMEN.  MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE HARD  EXCAVATED BY HARD BLOW OF A GEOLOGISTS PICK, HAND SPECIMENS CAN BE DETACHED                                                                                                                                                                                                                                                            | TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS  SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT OR                                                                                                                                                                                                         |
| GRAIN MM 305 75 2.0 0.25 0.05 0.005<br>SIZE IN. 12' 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL CLAY SL SILT, SILTY CPT - CONE PENETRATION TEST SLI - SLIGHTLY CSE COARSE TCR - TRICONE REFUSAL                                                                                                                                                                                    | BY MODERATE BLOWS.  MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT.  HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE                                                                                                                                                                                                                                                            | SLIP PLANE.  STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR B.P.F.) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH                                                                                                                                               |
| SOIL MOISTURE - CORRELATION OF TERMS  SOIL MOISTURE SCALE FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DMT - DILATOMETER TEST  DPT - DYNAMIC PENETRATION TEST  e - VOID RATIO  F FINE  DMT - DILATOMETER TEST  y - UNIT WEIGHT  y - DRY UNIT WEIGHT  W - MOISTURE CONTENT                                                                                                                    | POINT OF A GEOLOGISTS PICK.  SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN                                                                                                                                                                                                                                                             | A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS LESS THAN 0.1 FOOT PENETRATION WITH 60 BLOWS.  STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH                                                                                                                                        |
| - SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE LL LIQUID LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FOSS. FOSSILIFEROUS V VERY FRAC FRACTURED VST - VANE SHEAR TEST FRAGS FRAGMENTS                                                                                                                                                                                                       | PIECES CAN BE BROKEN BY FINGER PRESSURE.  VERY  CAN BE CARVED WITH KNIFE, CAN BE EXCAVATED READILY WITH POINT OF PICK, PIECES I INCH SOFT  OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY                                                                                                                                                                                                                                     | OF STRATUM AND EXPRESSED AS A PERCENTAGE.  STRATA ROCK QUALITY DESIGNATION (S.R.Q.D.) - A MEASURE OF ROCK QUALITY DESCRIBED BY:  TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO DR GREATER THAN 10 CENTIMETERS DIVIDED                                                                                                                      |
| PLASTIC   SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MED MEDIUM  EQUIPMENT USED ON SUBJECT PROJECT                                                                                                                                                                                                                                         | FINGERNAIL. FRACTURE SPACING BEDDING                                                                                                                                                                                                                                                                                                                                                                                                                              | BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.  TOPSOIL (T.S.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER.                                                                                                                                                                                                                      |
| (P1) PL PLASTIC LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:                                                                                                                                                                                                                                            | TERM SPACING TERM THICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                       | BENCH MARK: BM #2 AT -BL- STA. 16+89, 60'LT                                                                                                                                                                                                                                                                                                          |
| OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLAY BITS  CLAY BITS  CORTINUOUS FLIGHT AUGER  CORE SIZE:                                                                                                                                                                                                                             | VERY MIDE         MORE THAN 10 FEET         VERY HILKLY BEDDED         7 FEET           MIDE         3 TO 10 FEET         THICKLY BEDDED         1.5 - 4 FEET           MODERATELY CLOSE         1 TO 3 FEET         THINLY BEDDED         0.63 - 0.16 FEET           CLOSE         0.16 TO 1 FEET         VERY THINLY BEDDED         0.03 - 0.16 FEET                                                                                                            | ELEVATION: 738.5'                                                                                                                                                                                                                                                                                                                                    |
| - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BK-51 X 8" HOLLOW AUGERS                                                                                                                                                                                                                                                              | VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED   INDURATION (0.008 FEET THINLY LAMINATED)                                                                                                                                                                                                                                                                                                                                    | NOTES:                                                                                                                                                                                                                                                                                                                                               |
| PLASTICITY  PLASTICITY INDEX (PI) DRY STRENGTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CME-45C X HARD FACED FINGER BITS X NXWL TUNG,-CARBIDE INSERTS                                                                                                                                                                                                                         | FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF THE MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                      |
| NONPLASTIC 8-5 VERY LOW LOW PLASTICITY 6-15 SLIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X CME-550 X CASING X W/ ADVANCER HAND TOOLS:                                                                                                                                                                                                                                          | FRIABLE RUBBING WITH FINGER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |
| MED. PLASTICITY         16-25         MEDIUM           HIGH PLASTICITY         26 OR MORE         HIGH    COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PORTABLE HOIST TRICONE STEEL TEETH POST HOLE DIGGER                                                                                                                                                                                                                                   | MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |
| DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YEL-BRN, BLUE-GRAY) MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OTHER SOUNDING ROD OTHER OTHER OTHER                                                                                                                                                                                                                                                  | INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER.  EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE;                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☐ DIHEK                                                                                                                                                                                                                                                                               | SAMPLE BREAKS ACROSS GRAINS.                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                      |

 ID
 STATE PROJECT NO.
 SHEET NO.
 TOTAL SHEETS

 B-3337
 33000.1.1
 2
 15



# STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

MICHAEL F. EASLEY
GOVERNOR

LYNDO TIPPETT SECRETARY

December 14, 2005

STATE PROJECT:

33000.1.1 (B-3337)

F.A. PROJECT:

BRSTP-1001(18)

COUNTY:

Guilford

DESCRIPTION:

Bridge No. 527 on -L- (SR 1001) over North Buffalo Creek at Station 21+01.5

SUBJECT:

Geotechnical Report – Structure Inventory

#### **Project Description**

A three-span bridge, 127-feet in length with a 70° skew, is proposed at the same location on -L- (SR 1001) over North Buffalo Creek to replace the existing structure. The new bridge is 78 feet and will be 14 feet longer than the existing structure. The project is located in Guilford County within the city limits of Greensboro. A USGS Stream Gauging Station is located on North Buffalo Creek near End Bent One. A bridge for the Norfolk-Southern Railroad is located approximately 1000 feet downstream.

The subsurface investigation was conducted during October of 2005 using an ATV-mounted CME-550 drill machine. Two Standard Penetration Test borings were performed at each of the three bent locations. Borings B1-A and B1-B were cored using NXWL core equipment. All borings were advanced until crystalline rock was encountered. Representative soil samples were obtained for visual classification in the field and selected samples were sent to the Materials and Tests Unit for laboratory analysis. Six rock core samples were submitted to the Materials and Tests Unit to determine Unit Weight and Compressive Strength.

#### Physiography and Geology

The project is located in rolling hill terrain of the Piedmont Physiographic province. The project area is urban, with businesses and a fire station nearby. The area along North Buffalo Creek is grassy. Geologically, the project is located within the Carolina Slate Belt, and is underlain by metamorphosed gabbro and diorite.

#### **Soil Properties**

Soils encountered at the project site include roadway embankment, alluvial and residual soils.

Roadway embankment was encountered at both end bent locations. Embankment soils are from 7.0 to 9.7 feet thick, and are composed of orange to red-brown, medium stiff, moist, sandy, silty clay (A-7-6).

SHEET 3 OF 15 33000.1.1 (B-3337) Guilford Co.

Alluvial soils were encountered at all boring locations. The alluvial soils range from 4.1 to 17.2 feet in thickness. These soils predominantly consist of gray, soft to medium stiff, moist to saturated, sandy silt (A-4) and orange to brown-gray, very loose to loose, dry to saturated, silty sand (A-2-4). Other alluvial soils present are gray-brown, soft, moist to wet, silty, sandy clay (A-6). The alluvial soils were deposited on residual soil and weathered rock

Residual soils were encountered at all boring locations except for EB1-A and range from 1.2 to 8.5 feet in thickness. The residual soils consist of gray to black, dense to very dense, moist to wet, silty sand (A-2-4), and orange-brown, very stiff, silty, sandy clay (A-7-6). The residual soils are underlain by weathered and/or crystalline rock.

#### **Rock Properties**

Weathered rock was derived from the underlying bedrock (metadiorite), and ranges in thickness from 0.4 to 2.7 feet. Weathered rock was encountered in borings EB1-A and EB2-A. The top of weathered rock ranges in elevation from 710.4 feet at EB1-A to 713.6 feet at EB2-B.

Crystalline rock was encountered at each boring location. The most abundant rock type is metadiorite, with 4.1 feet of metagabbro being recovered in boring B1-A. The top of crystalline rock ranges in elevation from 708.2 feet at EB1-B to 712.6 feet at EB2-A. Core recovery ranged from 56% to 100%, with an average of 95%. Rock Quality Designation (RQD) ranges from 56% to 98%, with an average of 80%. Ultimate compressive strength of the metadiorite ranged from 11.3 to 34.5 ksi. RS-4 did not break, and was retested to 20.9 ksi. More detailed rock descriptions can be found in the Core Boring Reports.

#### **Groundwater**

Groundwater was present in all of the borings. The groundwater elevations ranged from 718.7 feet at EB1-A to 723.4 feet at EB2-B. Surface water in North Buffalo Creek was measured at elevation 720.2 feet in August, 2004.

#### **Notice**

This Geotechnical foundation report is based on the Bridge Survey and Hydraulic Report for North Buffalo Creek dated March 30, 2005 and the Preliminary General Drawing dated August 2005. If significant changes are made in the design or location of the proposed structure, the subsurface information should be reviewed and modified as necessary.

Tatto

Nathan Mohs

Transportation Engineering Geologist

PROJECT REF. NO. SHEET NO. TOTAL SHEETS
33000.1.1 4 15

## TEST SITE PLAN









north carolina department of transportation | north carolina department of transportation | GEOTECHNICAL UNIT BORING LOG

GEOTECHNICAL UNIT BORING LOG SHEET 8 OF 15

| PROJECT NO. 33000.1.1 ID. B-3337 COUNTY                            | GUILFORD GEOLOGIST N. D.   | MOHS PROJECT NO.                       | 33000.l.l <b>ID</b> . B-3337                          | COUNTY GUILFORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GEOLOGIST N. D. MOHS                                       |
|--------------------------------------------------------------------|----------------------------|----------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| SITE DESCRIPTION BRIDGE NO. 527 ON SR 1001 OVE                     | ER NORTH BUFFALO CREEK     | GROUND WATER SITE DESCRIPTION          | ION BRIDGE NO. 527 ON SF                              | R 1001 OVER NORTH BUFFALO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |
| BORING NO. EBI-A BORING LOCATION 20+23                             | OFFSET 40'LT ALIGNMENT -L- | <b>0 HR</b> . 15.7' <b>BORING NO</b> . |                                                       | 0+49 <b>OFFSET</b> 41' RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALIGNMENT -L- 0 HR. II.9'                                  |
| COLLAR ELEVATION 733.4' NORTHING 855369                            | EASTING 1768815            |                                        | <del></del>                                           | 855367 <b>EASTING</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1768900 <b>24 HR.</b> 11.0′                                |
| TOTAL DEPTH 23.7' DRILL MACHINE CME-550                            |                            | ER TYPE AUTOMATIC TOTAL DEPTH          |                                                       | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
| START DATE 10/25/05 COMPLETION DATE 10/25/                         |                            | TH TO ROCK 23.7' START DATE            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 711                                                        |
| ELEV. DEPTH BLOW COUNT PEN. BLOWS PER F                            |                            |                                        | PTH BLOW COUNT PEN. BLO<br>T.) 0.510.510.5 (FT.) 0 25 | WS PER FOOT SAMPLE NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MOI. G SOIL AND ROCK DESCRIPTION                           |
| 733.4                                                              |                            | 732,2                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 730.0 = 3.0   3   3   1.0                                          | _ +                        | AY EMBANKMENT, 730.0 2.                | 2.5 2 3 4 1.0 7.7                                     | SS-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M ROADWAY EMBANKMENT,<br>ORANGE-BROWN, SANDY SILTY<br>CLAY |
| 725.0 + 8.0 2 2 2 1.0   *4                                         |                            | GRAY AND ORANGE, ANDY SILT 7.          | 7.5 2 1 2 1.0 *3                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M ALLUVIAL, GRAY, SANDY SILT                               |
| 720.0 = 13.0 WOH 2 1 1.0   \$3 = = = = = = = = = = = = = = = = = = | SS-5 W GRAY, SIL           | LTY SANDY CLAY 720.0 = 12.             | 2.5 1 1 2 1.0 1 3                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S BROWN TO GRAY, SILTY SAND                                |
| 715.0 = 18.0   4   3   3   1.0   -46                               |                            | GE, SILTY SAND    #                    | 7.5 2 3 3 1.0 2 6                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S SINGIN TO GRAT, SIETT SAND                               |
| 710.023.0 100                                                      |                            | THERED ROCK 710.0 22                   | 2.5 10 8 55 1.0<br>4.0 60 8 55                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M RESIDUAL, GRAY, SILTY SAND                               |
| 705.0 -                                                            | 7- FEET                    | 705.0                                  |                                                       | REFUSAL AT TO THE TOP |                                                            |
| 700.0                                                              | <br>                       | 700.0                                  | (N)                                                   | ETAĐIĐRITE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
| 695.0                                                              |                            | 695.0                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 690.0 =                                                            |                            | 690.0 =                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 685.0                                                              |                            | 685.0 ±                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 680.0                                                              |                            | 680.0                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 675.0                                                              |                            | 675.0                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 670.0                                                              |                            | 670.0                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 665.0                                                              |                            | 665.0                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 660.0                                                              |                            | 660.0                                  |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| 655.0                                                              |                            | 655.0 =                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |

# NORTH CAROLINA DEPARTMENT OF TRANSPORTATION GEOTECHNICAL UNIT BORING LOG

| PROJECT                          | <b>' NO</b> . 33         | 3000     | ). .        |    | ID.         | 3-3337                        | [0            | COUNTY                 | GUILFOF                      | RD .             | GE             | OLO   | GIST N. D. MOH                                         | 1S                             |
|----------------------------------|--------------------------|----------|-------------|----|-------------|-------------------------------|---------------|------------------------|------------------------------|------------------|----------------|-------|--------------------------------------------------------|--------------------------------|
|                                  | SCRIPTION                |          | <del></del> |    |             |                               |               |                        | R NORTH                      |                  | 0 CRI          | EEK   | <                                                      | GROUND WATER                   |
| BORING                           |                          |          |             |    | <del></del> | ATION                         | 20+6          |                        | OFFSET                       | 38' LT           |                |       | MENT -L-                                               | 0 HR. N/A                      |
|                                  | ELEVATION                |          | 725.        |    |             | ORTHING                       |               | 409                    | DDILL MORE                   | EASTIN           |                | 176   | 8831                                                   | 24 HR. 5.3′                    |
| <u> </u>                         | DEPTH 3                  |          |             |    |             | INE CME                       |               | 107/                   | DRILL METH                   |                  |                | VINII |                                                        | YPE AUTOMATIC                  |
| SIAKI                            | DEPTH                    |          |             |    | .,          | LETION D                      | OWS F         |                        |                              | FACE WAT         |                | 7H    | T                                                      | 0 ROCK 16.9'                   |
| ELEV.                            | i                        | 1        |             |    | (FT.)       |                               |               | 50                     |                              | SAMPLE<br>NUMBER | MOI.           | ŌG    | SOIL AND<br>DESCRIF                                    |                                |
| 725 <b>.</b> 7<br>725 <b>.</b> 0 | ‡                        |          |             |    |             |                               |               |                        | -                            |                  |                |       | ALLUVIAL, BROW                                         | N-GRAY SILTY                   |
|                                  | T                        |          | WOH<br>WOH  | l  | 1.0<br>1.0  | <u> </u>                      |               | <del></del>            |                              | SS-10<br>SS-11   | S<br>S 🔻       |       | SAN                                                    |                                |
| 720.0                            |                          | i        | WOH         | 1  | 1.0         | X2                            |               |                        |                              | SS-I2            | S <sub>.</sub> |       | BROWN-GRAY TO<br>SIL                                   |                                |
| 715.0                            | ‡ 11.9                   | 1        | 2           | 2  | 1.0         | X4                            | <br><br>      |                        |                              | SS-I3            | S              |       | TAN-BROV                                               |                                |
| 710.0                            | 14.4                     | 12<br>60 | 16          | 21 | 0.1         |                               | - <del></del> |                        | 60/0.1                       | SS-14            | S              |       | RESIDUAL, GRAY<br>SAI                                  | -BLACK, SILTY                  |
| 705 <b>.</b> 0                   | <u>‡</u>                 |          |             |    |             |                               |               |                        |                              |                  |                |       | CRYSTALLINE ROC<br>FRESH, HARD, CLOS<br>METAGABBRO REC | ELY FRACTURED.<br>=56% RQD=56% |
| 700.0                            | +<br>+<br>+<br>+         |          | ,           |    |             |                               |               |                        |                              |                  |                |       | CRYSTALLII<br>GREEN-GRA<br>HARD, CLOSELY 1             | Y, FRESH,<br>TO MODERATELY     |
| 695.0                            | <u>+</u><br>+            |          |             |    |             |                               |               |                        |                              | ·                |                |       | CLOSELY FRACTUR<br>REC=97%                             | RED, METADIORITE<br>ROD=76%    |
| 690.0                            | <u>+</u><br><u>+</u>     |          |             |    |             |                               |               |                        |                              |                  |                |       |                                                        |                                |
| 685.0                            | <del> </del><br>         |          |             |    |             | - CORIN<br>- ELEV<br>-IN - CF | Y51AI         | FILIMF.                | TED AT -<br>5 FEET -<br>ROCK |                  |                |       |                                                        |                                |
| 680.0 -                          | <del> </del><br> -<br> - |          |             |    |             |                               | (META         | <br>- <br>- <br>DIORI- |                              |                  |                |       |                                                        |                                |
| 675.0 -                          | <u>+</u><br>+<br>+       |          |             |    |             |                               |               |                        |                              |                  |                |       |                                                        |                                |
| 670.0 -                          | <u>+</u><br>+            |          |             |    |             |                               |               |                        |                              |                  |                |       |                                                        |                                |
| 665.0 -                          | <u>+</u><br><u>+</u>     |          |             |    |             |                               |               |                        |                              |                  |                |       |                                                        |                                |
| 660.0 -                          | <u>+</u><br>+            |          |             |    |             |                               |               |                        |                              |                  |                |       |                                                        |                                |
| 655.0 -                          | <del>-</del><br>-        |          |             |    |             |                               |               |                        |                              | ~                |                |       |                                                        |                                |
| 650.0 -                          | <del>I</del>             |          |             |    | lars,       |                               |               |                        |                              |                  |                |       |                                                        |                                |

|                |              |                  |          |         |                  |                | SHEET 9 OF 18                                                                                               |
|----------------|--------------|------------------|----------|---------|------------------|----------------|-------------------------------------------------------------------------------------------------------------|
|                |              |                  |          |         |                  | C              | ORE BORING REPORT                                                                                           |
| PRO            | JECT:        | 33000.           | 1.1      | ID:     | B-3              | 337            | COUNTY:                                                                                                     |
| DES            | CRIPTI       | ON: _ Brid       | dge No   | . 527 o | <u>n -L</u> - (S | SR 1001) c     | over North Buffalo Creek at Station 21+01.5                                                                 |
|                |              |                  |          |         |                  |                |                                                                                                             |
| LOC            | ATION        | OF BORII         | VG:      | -L- Sta | a. 20+6          | 66, 38' LT     | COMPLETION DATE: 10/27/05                                                                                   |
| COL            | LAR or       | GROUND           | ELEV     | 'ATION  | 725              | .7_ft          | CORE SIZE: NXWL GEOLOGIST: N. D. Mohs                                                                       |
| COF            | RE EQUI      | PMENT:           |          |         |                  | СМ             | E-550 DRILLER: H. R. Conley                                                                                 |
|                |              | DRILL            |          | REC     | RQD              |                |                                                                                                             |
| ELEV           | DEPTH        | i                | RUN      | (ft)    | (ft)             | SAMPLE         | ,                                                                                                           |
| (ft)<br>708.8  | (ft)<br>16.9 | (min/ft)<br>0:49 | (ft)     | (%)     | (%)              | NUMBER<br>RS-1 | Green-gray, metagabbro, fresh with slight weathering on joint surfaces, hard, closely fractured.            |
| 700.0          | 10.0         | 0:47/0.8         |          | 1.0     | 1.0              | •              | 1 joint @ 50 degrees, 1 joint @ 80 degrees.                                                                 |
|                |              |                  | 1.8      |         |                  |                |                                                                                                             |
| 707.0          | 18.7         | ,                |          | (56%)   | (56%)            |                |                                                                                                             |
| 707.0          | 18.7         | 1:13             |          |         |                  |                | 18.7'-21.0': Green-gray metagabbro, fresh, hard, closely fractured.                                         |
|                |              | 1:02             |          | 4.5     | 3.1              |                | 21.0'+: Green-gray metadiortie, fresh with slight weathering on joint surfaces, hard, closely to moderately |
|                |              | 1:03             | 5.0      |         |                  |                | closely fractured.                                                                                          |
| 700.0          | 22.7         | 0:58             |          | (90%)   | (62%)            |                | 1 cleavage plane @ 45-50 degrees.                                                                           |
| 702.0<br>702.0 | 23.7<br>23.7 | 1:00<br>1:23     |          |         |                  | <u> </u>       | Green-gray, metadiorite, fresh with slight weathering on joint surfaces, hard, closely to moderately        |
| , , , ,        |              | 1:14             |          | 5.0     | 4.9              |                | closely fractured.                                                                                          |
|                |              | 1:20             | 5.0      |         |                  |                | 2 joints @ 45-50 degrees.                                                                                   |
| 207.0          | 00.7         | 1:22             |          | (100%)  | (98%)            |                |                                                                                                             |
| 697.0<br>697.0 | 28.7<br>28.7 | 1:25<br>1:16     |          |         |                  | RS-2           | Green-gray, metadiorite, fresh with slight weathering on joint surfaces, hard, closely fractured.           |
|                |              | 1:30             |          | 4.5     | 2.5              | l .            | 3 joints @ 40-50 degrees.                                                                                   |
|                |              | 1:16             | 4.5      |         |                  |                | 2 cleavage planes @ 80 degrees.                                                                             |
|                |              | 1:27             |          | (100%)  | (56%)            |                | ·                                                                                                           |
| 692.5<br>692.5 | 33.2<br>33.2 | 1:19/0.5<br>0:57 | <u> </u> |         |                  | RS-3           | Green-gray, metadiorite, fresh with slight weathering on joint surfaces, hard, closely to moderately        |
|                | 00.2         | 1:26             |          | 4.8     | 4.3              | i              | closely fractured.                                                                                          |
|                |              | 1:28             | 5.0      |         |                  |                | 1 joint @ 40 degrees.                                                                                       |
| 687.5          | 38.2         | 1:37<br>1:32     |          | (96%)   | (86%)            |                | 1 joint @ 60 degrees.                                                                                       |
| 007.5          | 30.2         | 1.32             |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              | `                |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                | ·                                                                                                           |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                | -            |                  |          |         |                  |                |                                                                                                             |
|                | 1            |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                |                                                                                                             |
|                |              |                  |          |         |                  |                | BOREHOLE TERMINATED AT ELEVATION OF 687.5 FEET, IN METADIORITE.                                             |

### NORTH CAROLINA DEPARTMENT OF TRANSPORTATION GEOTECHNICAL UNIT BORING LOG

| PROJECT   | <b>NO</b> . 33         | 3000          | ).l.l       |              | ID.        | 3-3337                      | CC              | DUNTY                       | GUILFOF   | RD ,                 | GE                           | OLO        | GIST  | N. D. M                                | OHS                                 | <u> </u> |
|-----------|------------------------|---------------|-------------|--------------|------------|-----------------------------|-----------------|-----------------------------|-----------|----------------------|------------------------------|------------|-------|----------------------------------------|-------------------------------------|----------|
| SITE DESC |                        |               |             |              |            |                             |                 |                             |           | BUFFAL               |                              |            |       |                                        |                                     | ND WATER |
| BORING N  |                        |               |             |              |            | ATION                       | 20+94           |                             | OFFSET    |                      |                              |            | MENT  | <u>-L-</u>                             |                                     | N/A      |
| COLLAR    |                        |               | 727.        |              |            | ORTHING                     | 8554            | <del></del>                 | DILL METE | EASTIN               |                              | 176        | 8912  | HAMMER                                 |                                     | 7.0      |
| START D   |                        |               |             |              |            | INE CME<br>L <b>ètion</b> d |                 |                             |           | IOD N-CA<br>Face Wat |                              | ти         | N/A   |                                        | TYPE AU                             |          |
|           | DEPTH                  |               |             |              |            |                             |                 | ER F0                       |           | SAMPLE               | EK DEF                       | 111<br>1 L | IN/ A | ······································ | ND ROCK                             |          |
| ELEV.     | (FT.)                  | 1             |             |              | 1 1        |                             |                 |                             |           | NUMBER               | моі.                         | 0<br>G     |       |                                        | RIPTION                             |          |
| 727.7     | <u> </u>               |               |             |              |            |                             |                 |                             |           |                      |                              |            | A 1 1 | <br>_UVIAL, BRO                        | NWN CILTY                           | CAND     |
| 725.0 -   | 4.2                    | woh           | woh         | woh          | 1.0        | XO                          |                 |                             |           |                      | S                            |            | ALL   | UVIAL, DRU                             | /WIN, ŞILTT                         | JANU     |
| 720.0     | 4-                     | l             | Ø<br>woн    |              |            | ¥I                          |                 |                             |           | SS-I5                | S <sup>z</sup> <b>▼</b><br>S |            | BRO   | OWN TO GR                              | RAY, SANDY                          | SILT     |
| 715.0 -   | 14.2                   | WOH<br>1<br>3 | 2<br>1<br>3 | 3<br>Ø<br>12 | I.0<br>I.0 | X [ X [ 5 ]                 |                 |                             |           | SS-I6                | S<br>S<br>W                  |            |       |                                        | , SAND                              |          |
| 710.0 -   |                        |               | _           | -            |            |                             |                 |                             |           |                      |                              |            |       | RESIDUAL,<br>SILT)                     | GRAY-BLAC<br>'SAND                  | K,       |
| 705.0     | <del>-</del>           |               |             |              |            |                             |                 |                             |           |                      |                              |            | HΔRΓ  | CRYSTALI<br>GREEN-GF<br>, CLOSELY      | INE ROCK,<br>RAY, FRESH<br>TO MODER |          |
| 700.0     |                        |               |             |              |            |                             |                 |                             |           |                      |                              |            |       | LY FRACTI                              |                                     | DIORITE  |
| 695.0 -   |                        |               |             | _            |            |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |
| 690.0     |                        |               |             | -            |            | - ELEV                      | ATION<br>RYSIAI | MINATE<br>691.7-<br>LLINE - | FEET      |                      |                              |            |       |                                        |                                     |          |
| 685.0     | <del>-</del><br>-<br>- | ·             |             |              |            |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |
| 680.0     |                        |               |             | :            |            |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |
| 675.0     |                        |               |             |              |            |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |
| 670.0     | <u>-</u>               |               |             |              |            |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |
| 665.0     |                        |               |             |              |            |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |
| 660.0     |                        |               |             |              |            |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |
| 655.0     |                        | ·             |             |              |            |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |
| 650.0     |                        |               |             |              | يمد        |                             |                 |                             |           |                      |                              |            |       |                                        |                                     |          |

|                |                                                                                                                                                                               |                  |             |             | <del></del> | C                | ORE BORING REPORT                                                                                   |  |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|-------------|-------------|------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| PRC            | ) IFCT:                                                                                                                                                                       | 33000.           | 1 1         | ID.         | B-3         |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
| DES            | CRIPTIO                                                                                                                                                                       | ON: Brid         | dge No      | . 527 oi    | n -L- (S    | SR 1001) o       | over North Buffalo Creek at Station 21+01.5                                                         |  |  |  |  |  |  |  |
| LOC            | ATION (                                                                                                                                                                       | OF BORIN         | VG:         | -L- Sta     | 1. 20+9     | 94, 38' RT       | COMPLETION DATE: 10/31/05                                                                           |  |  |  |  |  |  |  |
| COL            | LAR or                                                                                                                                                                        | GROUND           | ELEV        | 'ATION:     | 727         | .7_ft            | CORE SIZE: NXWL GEOLOGIST: N. D. Mohs                                                               |  |  |  |  |  |  |  |
| COF            | RE EQUI                                                                                                                                                                       | PMENT:           |             |             |             | СМІ              | E-550 DRILLER: H. R. Conley                                                                         |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               | DRILL            |             | REC         | RQD         |                  |                                                                                                     |  |  |  |  |  |  |  |
| ELEV<br>(ft)   | DEPTH<br>(ft)                                                                                                                                                                 | RATE<br>(min/ft) | RUN<br>(ft) | (ft)<br>(%) | (ft)<br>(%) | SAMPLE<br>NUMBER |                                                                                                     |  |  |  |  |  |  |  |
| 709.0          | 18.7                                                                                                                                                                          | 1:26             | ` ` `       |             | <u> </u>    | RS-4             | Green-gray metadiortie, fresh, hard, closely fractured.                                             |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               | 1:30             | ,,          | 2.3         | 2.0         | 20.0'-20.6'      |                                                                                                     |  |  |  |  |  |  |  |
|                | 0:33/0.3   2.3   (100%) (87%)                                                                                                                                                 |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
| 706.7          |                                                                                                                                                                               |                  |             |             | <u> </u>    |                  |                                                                                                     |  |  |  |  |  |  |  |
| 706.7          | 21.0                                                                                                                                                                          |                  |             | 50          | 48          | 1                | 1                                                                                                   |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               | 1:43             | 5.0         | 5.5         | 1           | 67.1 to          | 1 joint @ 20 degrees.                                                                               |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               | 1:31             |             | (100%)      | (96%)       |                  | 1 joint @ 50 degrees.                                                                               |  |  |  |  |  |  |  |
| 701.7<br>701.7 | 26.0<br>26.0                                                                                                                                                                  | 1:21<br>1:31     |             |             |             |                  | Green-gray metadiorite, fresh with slight weathering on joint surfaces, hard, closely to moderately |  |  |  |  |  |  |  |
| 101.1          | 20.0                                                                                                                                                                          | 1:15             |             | 4.6         | 4.2         |                  | closely fractured.                                                                                  |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               | 1:10             | 5.0         |             |             |                  | 2 joints @ 35 degrees.                                                                              |  |  |  |  |  |  |  |
|                | 1:15                                                                                                                                                                          |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                | 1:10 5.0 (92%) (84%) 2 joints @ 35 degrees. 3 joints @ 45-50 degrees. 3 joints @ 45-50 degrees. 3 joints @ 45-50 degrees. 3 joints @ 45-60 degrees. 3 joints @ 45-60 degrees. |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
| 050.7          | 01.0                                                                                                                                                                          | 1:29             |             | 5.0         | 4.7         |                  | closely fractured.                                                                                  |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               | 1:30             | 5.0         |             |             | 1 1              | 1 joint @ 10, 1 joint @ 20, and 1 joint @ 30 degrees.                                               |  |  |  |  |  |  |  |
| 691.7          | 36.0                                                                                                                                                                          | 1:44<br>1:41     |             | (100%)      | (94%)       |                  | 2 joints @ 50 degrees.                                                                              |  |  |  |  |  |  |  |
| 691.7          | 30.0                                                                                                                                                                          | 1.41             |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  | ,                                                                                                   |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                | i                                                                                                                                                                             |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                | .                                                                                                                                                                             |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                | İ                                                                                                                                                                             |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                | , l                                                                                                                                                                           |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  |                                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                               |                  |             |             |             |                  | BOREHOLE TERMINATED AT ELEVATION OF 691.7 FEET, IN METADIORITE.                                     |  |  |  |  |  |  |  |

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

GEOTECHNICAL UNIT BORING LOG

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION
GEOTECHNICAL UNIT BORING LOG

SHEET II OF 15 COUNTY GUILFORD GEOLOGIST N. D. MOHS PROJECT NO. 33000.1.1 **ID.** B-3337 COUNTY GUILFORD PROJECT NO. 33000.I.I **ID.** B-3337 GEOLOGIST N. D. MOHS GROUND WATER SITE DESCRIPTION BRIDGE NO. 527 ON SR 1001 OVER NORTH BUFFALO CREEK BRIDGE NO. 527 ON SR 1001 OVER NORTH BUFFALO CREEK GROUND WATER SITE DESCRIPTION 21+52 OFFSET 39'LT ALIGNMENT -L-O HR. BORING NO. EB2-B BORING LOCATION 21+98 OFFSET 47' RT ALIGNMENT -L-BORING LOCATION O HR. 22.3' BORING NO. EB2-A 22.6 855508 collar elevation 735.3 NORTHING 855489 **EASTING** 1768856 24 HR. 14.5 COLLAR ELEVATION 734.4' NORTHING **EASTING** 1768952 24 HR. 11.0 DRILL METHOD H.S. AUGERS HAMMER TYPE AUTOMATIC DRILL MACHINE CME-550 DRILL METHOD H.S. AUGERS DRILL MACHINE CME-550 TOTAL DEPTH 23.7' HAMMER TYPE AUTOMATIC TOTAL DEPTH 22.7' SURFACE WATER DEPTH N/A DEPTH TO ROCK 23.3' SURFACE WATER DEPTH N/A DEPTH TO ROCK 22.7' START DATE 10/26/05 COMPLETION DATE 10/26/05 START DATE 10/26/05 COMPLETION DATE 10/26/05 DEPTH|BLOW COUNT|PEN. BLOWS PER FOOT |DEPTH|BLOW COUNT|PEN.| BLOWS PER FOOT SAMPLE SOIL AND ROCK SAMPLE SOIL AND ROCK 100 NUMBER MOI DESCRIPTION 0.510.510.5 (FT.) P 100 NUMBER DESCRIPTION |0.510.510.5(FT.)|0 ∕MOI.İĞ 734.4 2 4 6 11.0 3.3 ROADWAY EMBANKMENT. 735.3 730.0 1.2 4 3 | 4 1.0 М RED-BROWN, SANDY SILTY CLAY ROADWAY EMBANKMENT. 2 4 2 1.0 8.3 М 725.0 730.0 RED-BROWN, SANDY SILTY CLAY Y 6.2 5 5 8 1.0 - **X** I3 М ALLUVIAL, BROWN-GRAY, SILTY SANDY CLAY 13.3 | 31 | 54 | 45 | 1.0 | SS-8 М 720.0 725.0 BASAL QUARTZ GRAVEL 2 2 1.0 3 SS-6 ALLUVIAL, GRAY, SANDY SILT Y 18.3 | 10 | 21 | 19 | 1.0 SS-9 М 715.0 RESIDUAL. BROWN AND ORANGE. 720.0 16.2 | 6 8 12 1.0 SS-7 М SANDY SILT RESIDUAL, ORANGE-BROWN, SILTY SANDY CLAY 23.3 60 CRYSTALLINE ROCK (METADIORITE) 710.0 715.0 LAUGER REFUSAL AT 21.2 7 21 79 0.9 ELEVATION + 710.7 FEET WEATHERED ROCK ON CRYSTALLINE ROCK (METADIORITE) - AUGER-REFUSALIAT 705.0 ELEVATION 1712.6 FEET KMETADIORITE) 710.0 TON CRYSTALLINE ROCK (METADIORITE) 700.0 705.0 695.0 700.0 690.0 695.0 690.0 685.0 680.0 685.0 675.0 680.0 670.0 675.0 665.0 670.0 665.0 660.0 660.0 655.0

PROJ. NO. - 33000.1.1 ID NO. - B-3337 COUNTY - Guilford EB1-A SOIL TEST RESULTS SAMPLE AASHTO % BY WEIGHT % PASSING (SIEVES) DEPTH OFFSET STATION L.L. P.I. INTERVAL CLASS. C.SAND F.SAND SILT CLAY 10 40 200 SS-5 40 LT 20+23 13.0-14.5 A-6(7) 35 15 18.7 23.3 29.6 28.4 100 89 EB1-B SOIL TEST RESULTS SAMPLE DEPTH AASHTO % BY WEIGHT % PASSING (SIEVES) STATION **OFFSET** P.I. CLASS. C.SAND F.SAND **INTERVAL** SS-1 41 RT 20+49 2.5-4.0 A-7-6(17) 47 | 25 | 11.2 | 23.1 27.2 38.5 100 95 72 SS-2 41 RT 20+49 7.5-9.0 A-4(0) 28 7 33.2 29.3 21.3 16.2 100 86 42 SS-3 20+49 A-2-4(0) 24 NP 41 RT 12.5-14.0 10.8 70.7 14.5 4.1 100 99 SS-4 41 RT 20+49 22.5-24.0 A-2-4(0) 28 NP 30.8 45.5 19.6 4.1 96 80 31 B1-ASOIL TEST RESULTS SAMPLE DEPTH AASHTO % BY WEIGHT OFFSET STATION L.L. P.I. INTERVAL CLASS. C.SAND F.SAND CLAY 40 SS-10 38 LT 20+66 A-2-4(0) 29 NP 20.1 1.9-3.4 58.8 17.0 4.1 SS-11 38 LT 20+66 4.4-5.9 A-4(0) 36 NP 22.5 39.4 30.0 8.1 99 91 SS-12 38 LT 20+66 6.9-8.4 A-4(3) 29 8 3.4 49.9 28.4 18.3 100 100 SS-13 38 LT 20+66 11.9-13.4 A-2-4(0) 23 NP 54.4 30.2 11.4 4.1 92 69 SS-14 38 LT 20+66 A-2-4(0) 23 NP 28.6 44.6 14.4-15.9 22.7 4.1 91 78

% PASSING (SIEVES) % MOISTURE **ORGANIC** 100 95 27 17

**SHEET 12 OF 15** 

MOISTURE ORGANIC

%

MOISTURE

%

ORGANIC

*B1-B* SOIL TEST RESULTS SAMPLE DEPTH AASHTO % BY WEIGHT % PASSING (SIEVES) **OFFSET** STATION L.L. P.I. INTERVAL CLASS. C.SAND F.SAND SILT CLAY 10 40 200 MOISTURE ORGANIC SS-15 38 RT 20+94 9.2-10.7 A-4(1) 25 8 15.4 42.0 22.3 20.3 100 97 48 SS-16 38 RT 20+94 11.7-13.2 A-2-4(0) 21 NP 26.1 55.1 10.8 8.1 100 96

EB2-ASOIL TEST RESULTS SAMPLE AASHTO % BY WEIGHT DEPTH % PASSING (SIEVES) % **OFFSET** STATION P.I. CLASS. NO. INTERVAL C.SAND F.SAND SILT MOISTURE ORGANIC SS-6 39 LT 21+52 11.2-12.7 A-4(2) 26 8 11.8 37.7 28.2 22.3 100 96 58 SS-7 39 LT 21+52 16.2-17.7 A-7-6(13) 43 20 10.3 25.8 23.3 40.6 99 94

| EB2-B  |        |         |           |        |      |      |        |        |       |      |      |          |         |          |         |
|--------|--------|---------|-----------|--------|------|------|--------|--------|-------|------|------|----------|---------|----------|---------|
|        |        | ,       |           | SOL    | L T  | ES   | STR    | ESU    | LTS   | 1    |      |          |         |          |         |
| SAMPLE |        |         | DEPTH     | AASHTO |      |      |        | % BY W | EIGHT |      | % PA | SSING (S | SIEVES) | %        | %       |
| NO.    | OFFSET | STATION | INTERVAL  | CLASS. | L.L. | P.I. | C.SAND | F.SAND | SILT  | CLAY | 10   | 40       | 200     | MOISTURE | ORGANIC |
| SS-8   | 47 RT  | 21+98   | 13.3-13.8 | A-6(8) | 36   | 15   | 12.8   | 30.0   | 28.8  | 28.4 | 100  | 94       | 64      | •        | -       |
| SS-9   | 47 RT  | 21+98   | 18.3-19.8 | A-4(0) | 29   | 3    | 29.3   | 38.2   | 29.4  | 3.0  | 96   | 77       | 43      | -        | -       |



# FIELD SCOUR REPORT

| WBS:                                    | 33000.1.1 TIP:                          | B-3337             | COUNTY: Guilford                                 |                                |
|-----------------------------------------|-----------------------------------------|--------------------|--------------------------------------------------|--------------------------------|
| DESCRIPTION(1): Brid                    | dge No. 527 on -L- (SR                  | 1001) over North   | Buffalo Creek at Station 21+01.5                 |                                |
|                                         |                                         | EVICTING           | ADIDOE                                           |                                |
|                                         |                                         | EXISTING B         |                                                  |                                |
| Information from:                       | Field Inspection _<br>Other (explain) _ | X Micro            | film (reel pos:)                                 |                                |
|                                         |                                         | Total Bents: 3     | Bents in Channel: 1 Bents in Floodplain:         | 2                              |
| Foundation Type: Pile                   |                                         |                    |                                                  |                                |
| EVIDENCE OF SCO                         | ` '                                     |                    |                                                  |                                |
| Abutments or End                        | Bent Slopes: Minor pitt                 | ing at base of EB2 | 2.                                               |                                |
| *************************************** |                                         |                    |                                                  |                                |
| Interior Bents: So                      | me scour pitting at base                | of piers, approxim | nately 1.5' surrounding the piers and 0.5' deep. |                                |
| <u></u>                                 |                                         |                    |                                                  |                                |
| Channel Bed: No                         | ne.                                     |                    |                                                  |                                |
|                                         |                                         |                    |                                                  |                                |
| Channel Bank: So                        | me pitting as noted abov                | ve at EB2.         |                                                  |                                |
|                                         |                                         |                    |                                                  |                                |
| EXISTING SCOUR                          | PPOTECTION                              |                    |                                                  |                                |
| Type(3): Rip                            |                                         |                    |                                                  |                                |
| _ , ,,,                                 |                                         |                    |                                                  |                                |
| Extent(4): Up                           | per portion on EB2 slop                 | e.                 |                                                  |                                |
| Effectiveness(5): Eff                   | ective.                                 |                    |                                                  |                                |
| Obstructions(6): Evi                    | posed water-main appro                  |                    |                                                  |                                |
| Costituctions(0). EX                    | posed water-main appro                  | Annately 30 leet u | ipstream.                                        | uramarane nonennannananua nuem |

#### **INSTRUCTIONS**

- 1 Describe the specific site's location, including route number and body of water crossed.
- 2 Note scour evidence at existing end bents or abutments (e.g. undermining, sloughing, degradations).
- 3 Note existing scour protection (e.g. rip rap).
- 4 Describe extent of existing scour protection.
- **5** Describe whether or not the scour protection appears to be working.
- Note obstructions such as dams, fallen trees, debris at bents, etc.
- 7 Describe the channel bed material based on observation and/or samples. Include any lab results with report.
- 8 Describe the channel bank material based on observation and/or samples. Include any lab results with report.
- **9** Describe the material covering the banks (e.g. grass, trees, rip rap, none).
- 10 Determine the approximate floodplain width from field observation or a topographic map.
- 11 Describe the material covering the floodplain (e.g. grass, trees, crops).
- 12 Use professional judgement to specify if the stream is degrading, aggrading, or static.
- 13 Describe potential and direction of the stream to migrate laterally during the bridge's life (approx. 100 years).
- Give the geotechnically adjusted scour elevation (GASE) expected over the life of the bridge (approx. 100 years). This elevation can be given as a range across the site, or for each bent. Discuss the relationship between the Hydraulics Unit theoritical scour and the GASE. If the GASE is dependent on scour counter measures, explain (e.g. rip rap armoring on slopes). The GASE is based on the erodability of materials, giving consideration to the influence of joints, foliation, bedding characteristics, % core recovery, % RQD, differential weathering, shear strength, observations at existing structures, other tests deemed appropriate, and overall geologic conditions at the site.

|                |                   |                                         | DES                                     | <u>SIGN IN</u>                          | <b>IFORM</b> | <u>ATION</u> |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|----------------|-------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------|--------------|------------|----------------------------------------------|----------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Channel        | Bed Material(7)   | : Sand, g                               |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Channel I      | Bank Material(8)  | : Silty sar                             | ıd (A-2-4                               | 4)                                      |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Channe         | el Bank Cover(9)  | : Vegetati                              | Vegetation (kudzu).                     |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Flood          | dplain Width(10)  | Approximately 200 feet.                 |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Flood          | dplain Cover(11)  | Kudzu and grass.                        |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                | Stream is(12)     | : Aç                                    | ggrading                                |                                         | Degr         | ading        | X          | Sta                                          | ntic     | -                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| annel Migratio | n Tendency(13)    | : North to                              | ward EB                                 | 2.                                      |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Observations   | and Other Comr    | ments: US                               | GS Stre                                 | eam Gau                                 | ging Stat    | ion locat    | ed at stie | at FB1-                                      | Α        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |                   |                                         |                                         |                                         | <u> </u>     |              | ou at out  |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| GEOTECHNIC     | CALLY ADJUST      | TED SCOU                                | JR ELE\                                 | /ATIONS                                 | 6(14)        | Feet         | X          | Mete                                         | ers      | -                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ana.           | BENTS<br>B1       | <u> </u>                                |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                | 719.1             | 1                                       |                                         | Ī                                       | T T          |              | T          |                                              |          | I                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |                   |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |                   |                                         |                                         |                                         |              |              |            |                                              | ,        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |                   |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |                   |                                         | *************************************** |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                | L                 |                                         |                                         |                                         | <u> </u>     | L            | <u> </u>   | <u> </u>                                     | <u> </u> | L                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Comparison o   | f GASE to Hydra   | aulics Unit                             | theoreti                                | cal scoul                               | <b>:</b>     |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| The Geotechn   | ically adjusted s | cour eleva                              | ation is ι                              | ınchange                                | ed from th   | ne Hydra     | ulic Units | Theoret                                      | ical Sco | ur.                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |                   |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| COUL ANIAL V   | SIS RESULTS F     | EDOM CH                                 | ANNE                                    | DED AN                                  | D DANK       | BAATEE       |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Bed or Bank    |                   | KOW CIT                                 | ANIALL                                  | DED AN                                  | BANK         | WATER        | IAL .      | <u> </u>                                     |          | T                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Sample No.     | SS-10             |                                         | *************************************** |                                         |              |              |            | attende annual autorioris de comuna a contra |          | entropeta terratur nakamproprinsi konsulusione. | Ball of the said the Said Annual Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Conference of the Said Confere |  |  |
| Retained #4    |                   |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Passed #10     | 100               |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Passed #40     | 95                |                                         |                                         |                                         |              |              |            | -                                            |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Passed #200    | 27                |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Coarse Sand    | 20.1              |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Fine Sand      | 58.8              |                                         |                                         | *************************************** |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Silt           | 17                |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Clay           | 4.1               | •                                       |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| LL             | 29                |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| PΙ             | NP                |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| AASHTO         | A-2-4(0)          | *************************************** |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Station        | 20+66             |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Offset         | 38' LT            |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Depth          | 1.9'-3.4'         |                                         |                                         |                                         | <u></u>      |              |            |                                              |          | <u></u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                |                   |                                         |                                         |                                         |              |              |            |                                              |          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

Reported by:

Nathan Mohs

Date: 10/24/2005

## **CORE PHOTOGRAPHS**

**B1-A**BOXES 1 - 3: 16.9 - 38.2 FEET



**B1-B**BOXES 1 & 2: 18.7 - 36.0 FEET



SITE PHOTO

BRIDGE NO. 527 OVER NORTH BUFFALO CREEK ON SR 1001



LOOKING SOUTHWEST TOWARD END BENT 1