Project Special Provisions (Version 06.2) # **Signals and Intelligent Transportation Systems** # **Contents** | 1. 2 | 006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES – SECTION 1098 REVISIONS | 3 | |------|---|----| | 1.1. | GENERAL REQUIREMENTS (1098-1) | 3 | | 1.2. | | | | 2. E | ELECTRICAL REQUIREMENTS | 3 | | 3. S | SIGNAL HEADS | 3 | | 3.1. | MATERIALS | 3 | | | General: | | | В | 3. Vehicle Signal Heads: | 4 | | C | C. Pedestrian Signal Heads: | 9 | | L | D. Signal Cable: | 11 | | 4. V | VIDEO IMAGING LOOP EMULATOR DETECTOR SYSTEMS | 11 | | 4.1. | DESCRIPTION | 11 | | 4.2. | | | | Α | A. General: | 12 | | В | 3. Loop Emulator System: | 13 | | C | C. Video Imaging Loop Emulator System Support: | | | 4.3. | | | | 4.4. | MEASUREMENT AND PAYMENT | 15 | | 5. N | MICROWAVE VEHICLE DETECTOR | 16 | | 5.1. | DESCRIPTION | 16 | | 5.2. | | | | | A. Pulse Detection: | | | | 3. Presence Detection: | | | 5.3. | CONSTRUCTION METHODS | | | 5.4. | MEASUREMENT AND PAYMENT | 16 | | 6. N | METAL TRAFFIC SIGNAL SUPPORTS | | | 6.1. | | | | | A. General: | | | | 3. Materials: | | | - | C. Construction Methods: | | | 6.2. | | | | | A. Materials: | | | | 3. Construction Methods: | | | 6.3. | | | | | A. Materials: | | | E | B. Construction Methods: | 20 | | 6.4. | DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES | | |------------------|--|----| | \boldsymbol{A} | Description: | | | B. | - | | | C | Drilled Pier Construction: | | | 6.5. | CUSTOM DESIGN OF TRAFFIC SIGNAL SUPPORTS | | | \boldsymbol{A} | General: | | | B | | | | _ | . Mast Arms: | | | 6.1. | METAL SIGNAL POLE REMOVALS | | | | Description: | | | | Construction Methods: | 29 | | 6.2. | | | | | ONTROLLERS WITH CABINETS | | | 7.1. | MATERIALS – TYPE 170E CONTROLLERS | | | 7.2. | MATERIALS – TYPE 2070L CONTROLLERS | | | 7.3. | MATERIALS – GENERAL CABINETS | | | 7.4. | MATERIALS – TYPE 170E CABINETS | | | A. | | | | В. | The state of s | | | C | | | | υ
7.5. | . Type 170 E Model 2010 Enhanced Conflict Monitor: | | | | | | | | ARY COMPATIBLE CABINETS AND CONTROLLERS | | | 8.1. | DESCRIPTION | | | 8.2. | MATERIALS | | | | TYPE 2070 LN2 CONTROLLERS: | | | | NEMA TS-2 DETECTOR CARDS AND RACKS | | | | MATERIALS - GENERAL CABINETS | | | | . MATERIALS – NEMA TS-2 TYPE 1 CABINETS: | | | 8.3. | CONSTRUCTION METHODS | | | | General: Local Controller and Cabinet Testing: | | | 8.4. | MEASUREMENT AND PAYMENT | | | | | | | | ESEARCH TRIANGLE PARK MAST ARM WITH METAL POLE AND LUMINAIRE | | | 9.1. | DESCRIPTION | | | 9.2. | MATERIALS | | | 9.3. | CONSTRUCTION METHODS | | | 9.4. | BASIS OF PAYMENT | | | 9.5. | | | | | UMINAIRE MAST ARMS | | | | DESCRIPTION | | | 10.2. | MATERIALS | 53 | # 1. 2006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES – SECTION 1098 REVISIONS The 2006 Standard Specifications are revised as follows: # 1.1. General Requirements (1098-1) Page 10-268, Subarticle 1098-1(H) In the second paragraph, add "Use 200 amp meter base for underground electrical service". # 1.2. Wood Poles (1098-6) Page 10-272, Delete article. Refer to Subarticles 1082 –3(F) and 1082-4(G). # 2. ELECTRICAL REQUIREMENTS Ensure that an IMSA certified, or equivalent, Level II traffic qualified signal technician is standing by to provide emergency maintenance services whenever work is being performed on traffic signal controller cabinets and traffic signal controller cabinet foundations. Stand by status is defined as being able to arrive, fully equipped, at the work site within 30 minutes ready to provide maintenance services. #### 3. SIGNAL HEADS #### 3.1. MATERIALS #### A. General: Fabricate vehicle signal head housings and end caps from die-cast aluminum. Fabricate 12-inch and 16-inch pedestrian signal head housings and end caps from die-cast aluminum. Fabricate 9-inch pedestrian signal head housings, end caps, and visors from virgin polycarbonate material. Provide visor mounting screws, door latches, and hinge pins fabricated from stainless steel. Provide interior screws, fasteners, and metal parts fabricated from stainless steel or corrosion resistant material. Fabricate tunnel and traditional visors from sheet aluminum. Paint all surfaces inside and outside of signal housings and doors. Paint outside surfaces of tunnel and traditional visors, messenger cable mounting assemblies, pole and pedestal mounting assemblies, and pedestrian pushbutton housings. Have electrostatically-applied, fused-polyester paint in highway yellow (Federal Standard 595A, Color Chip Number 13538) a minimum of 2.5 to 3.5 mils thick. Do not apply paint to the latching hardware or rigid vehicle signal head mounting brackets. Have the interior surfaces of tunnel and traditional visors painted an alkyd urea black synthetic baking enamel with a minimum gloss reflectance and meeting the requirements of MIL-E-10169, "Enamel Heat Resisting, Instrument Black." For pole mounting, provide side of pole mounting assemblies with framework and all other hardware necessary to make complete, watertight connections of the signal heads to the poles and pedestals. Fabricate the mounting assemblies and frames from aluminum with all necessary hardware, screws, washers, etc. to be stainless steel. Provide mounting fittings that match the positive locking device on the signal head with the serrations integrally cast into the brackets. Provide upper and lower pole plates that have a 1 ¼-inch vertical conduit entrance hubs with the hubs capped on the lower plate and 1 ½-inch horizontal hubs. Ensure that the assemblies provide rigid attachments to poles and pedestals so as to allow no twisting or swaying of the signal heads. Ensure that all raceways are free of sharp edges and protrusions, and can accommodate a minimum of ten Number 14 AWG conductors. Version 06.2 grint date: 06/16/06 For pedestal mounting, provide a post-top slipfitter mounting assembly that matches the positive locking device on the signal head with serrations integrally cast into the slipfitter. Provide stainless steel hardware, screws, washers, etc. Provide a minimum of six 3/8 X 3/4-inch long square head bolts for attachment to pedestal. Provide a center post for multi-way slipfitters. # **B.** Vehicle Signal Heads: Comply with the ITE standard "Vehicle Traffic Control Signal Heads". Provide housings with provisions for attaching backplates. Provide visors that are 8 inches in length for 8-inch vehicle signal head sections. Provide visors that are 10 inches in length for 12-inch vehicle signal heads. Provide a termination block with one empty terminal for field wiring for each indication plus one empty terminal for the neutral conductor. Have all signal sections wired to the termination block. Provide barriers between the terminals that have terminal screws with a minimum Number 8 thread size and that will accommodate and secure spade lugs sized for a Number 10 terminal screw. Mount termination blocks in the yellow signal head sections on all in-line vehicle signal heads. Mount the termination block in the red section on five-section vehicle signal heads. Furnish vehicle signal head interconnecting brackets. Provide one-piece aluminum brackets less than 4.5 inches in height and with no threaded pipe connections. Provide hand holes on the bottom of the brackets to aid in installing wires to the signal heads. Lower brackets that carry no wires and are used only for connecting the bottom signal sections together may be flat in construction. For messenger cable mounting, provide messenger cable hangers, wire outlet bodies, balance adjusters, bottom caps, wire entrance fitting brackets, and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the messenger cable. Fabricate mounting assemblies from malleable iron and provide serrated rings made of aluminum. Provide messenger cable hangers and balance adjusters that are
galvanized before being painted. Fabricate balance adjuster eyebolt and eyebolt nut from stainless steel or galvanized malleable iron. Provide messenger cable hangers with U-bolt clamps. Fabricate washers, screws, bolts, clevis pins, cotter pins, nuts, and U-bolt clamps from stainless steel. For mast-arm mounting, provide rigid vehicle signal head mounting brackets and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the mast arms and to provide a means for vertically adjusting the vehicle signal heads to proper alignment. Fabricate the mounting assemblies from malleable iron or aluminum, and provide serrated rings made of aluminum. Provide light emitting diode (LED) vehicular traffic signal modules (hereafter referred to as modules) that consist of an assembly that uses LEDs as the light source in lieu of an incandescent lamp for use in traffic signal sections. Use LEDs that are aluminum indium gallium phosphorus (AlInGaP) technology for red and yellow indications and indium gallium nitride (InGaN) for green indications. Install the ultra bright type LEDs that are rated for 100,000 hours of continuous operation from -40°F to +165°F. Design modules to have a minimum useful life of 60 months and to meet all parameters of this specification during this period of useful life. # 1. LED Circular Signal Modules: Provide modules in the following configurations: 12-inch circular sections, and 8-inch circular sections. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL). Ensure, unless otherwise state in these specifications, that each module meets or exceeds the ITE "Vehicle Traffic Control Signal Heads – Light Emitting Diode (LED) Circular Signal Supplement" dated June 27, 2005 (hereafter referred to as VTCSH Circular Supplement). Certify compliance with paragraphs 3.3.2, 3.3.3, 3.4.2, 4.1.1, 4.1.2, 4.1.3, 4.2.1, 4.2.2, 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.3, 5.4, 5.5.1, 5.5.2, 5.6.2, 5.7 of the VTCSH Circular Supplement. Provide quick connect Molex terminals (part # 19092026 female housing, part # 02091615 female pin, part # 19092027 male housing, and 02092101 male pin) or equivalent, and spade terminals appropriate to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard signal head. Ensure the replacement module provided has the Molex male connector 6 inches from the module. Ensure the power supply is integral to the module assembly. On the back of the module, permanently mark the date of manufacture (month & year) or some other method of identifying date of manufacture. Tint the red, yellow and green lenses to correspond with the wavelength (chromaticity) of the LED. Transparent tinting films are unacceptable. Provide modules that meet the requirements of Tables 1098-1 and 1098-2. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). Table 1098-1 Maximum Power Consumption (in Watts) at 77°F | | - | | | |------------------|-----|--------|-------| | | Red | Yellow | Green | | 12-inch circular | 12 | 22 | 15 | | 8-inch circular | 8 | 13 | 12 | Version 06.2 5 print date: 06/16/06 Table 1098-2 Minimum Maintained Luminous Intensity/Minimum Initial Luminous Intensity (in cd) at 77°F | Angle Angle Main, Initial Init | Vertical | Horizontal | Red | 8" | Yello | w 8" | Gree | n 8" | Red1 | 2" | Yello | w 12" | Green | า 12" | |--|---------------------------------------|------------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------|-------|---------| | 7.5 13 16 33 41 17 21 29 36 73 91 38 48 +7.5 2.5 31 39 78 98 41 51 69 86 173 216 90 113 12.5 18 23 45 56 24 30 40 50 100 125 52 65 2.5 68 88 51 168 210 88 110 150 188 373 466 195 248 7.5 56 70 139 174 73 91 124 155 309 366 162 203 17.5 21 26 53 66 28 35 47 59 118 148 62 78 22.5 162 203 402 503 211 264 358 448 892 1116 468 583 | | Angle | Main. | Initial | | +7.5 | +12.5 | 2.5 | 17 | 21 | 41 | 51 | 22 | 28 | 37 | 46 | 91 | 114 | 48 | 60 | | +7.5 | | 7.5 | 13 | 16 | 33 | 41 | 17 | 21 | 29 | 36 | | 91 | 38 | 48 | | 12.5 | | 2.5 | 31 | 39 | 78 | 98 | 41 | 51 | 69 | 86 | 173 | 216 | 90 | 113 | | +2.5 | +7.5 | 7.5 | 25 | | | | | 40 | | 69 | 137 | 171 | 71 | | | +2.5 | | 12.5 | 18 | | 45 | | | 30 | 40 | 50 | 100 | 125 | 52 | | | +2.5 | | | | | | | | | 1 | | | | | | | 17.5 | _ | | | | | | | | | | | | | | | 22.5 | +2.5 | | | | | | | | | | | | | | | -2.5 | | | | | | | | | | | | | | | | .2.5 | | | | | | | | | | | | | | | | -2.5 | | | | | | | | | | | | | 2 | | | 17.5 | | | 132 | | | | | 1 | | | | B. | | | | 17.5 | -2.5 | | | | | | 1 | | | | 1 | | | | | 27.5 15 19 37 46 19 24 33 41 82 103 43 54 2.5 127 159 316 395 166 208 281 351 701 876 366 458 7.5 106 133 262 328 138 173 234 293 582 728 304 380 12.5 71 89 176 220 92 115 157 196 391 489 204 255 117.5 41 51 103 129 54 68 91 114 228 285 119 149 26 33 64 80 33 41 148 62 78 148 62 78 149 28 285 119 149 28 285 119 149 28 285 119 149 28 285 119 149 28 2 | l | | | | | | | | | | | | | | | -7.5 | | | | | | | | | | | | | | | | -7.5 | | | | | | | | | | | | | | | | .7.5 12.5 71 89 176 220 92 115 157 196 391 489 204 255 17.5 41 51 .103 129 54 68 91 114 228 285 119 149 22.5 21 26 53 66 28 35 47 59 118 148 62 78 27.5 12 15 29 36 15 19 26 33 64 80 33 41 2.5 50 63 123 154 65 81 110 138 273 341 143 179 7.5 40 50 98 123 52 65 88 110 218 273 114 143 179 -12.5 12.5 28 35 70 88 37 46 62 78 155 194 81 101 17.5 17 21 41 51 22 28 37 | | | | | | | | | | | | | | | | 17.5 | | | | | | | | | | | | | | | | 22.5 21 26 53 66 28 35 47 59 118 148 62 78 27.5 12 15 29 36 15 19 26 33 64 80 33 41 2.5 50 63 123 154 65 81 110 138 273 341 143 179 7.5 40 50 98 123 52 65 88 110 218 273 114 143 179 12.5 28 35 70 88 37 46 62 78 155 194 81 101 17.5 17 21 41 51 22 28 37 46 91 114 48 60 22.5 8 10 21 26 11 14 18 23 46 58 24 30 27.5 | -7.5 | | | | | | | | | | | | E . | | | 27.5 12 15 29 36 15 19 26 33 64 80 33 41 2.5 50 63 123 154 65 81 110 138 273 341 143 179 7.5 40 50 98 123 52 65 88 110 218 273 114 143 179 12.5 28 35 70 88 37 46 62 78 155 194 81 101 17.5 17 21 41 51 22 28 37 46 91 114 48 60 22.5 8 10 21 26 11 14 18 23 46 58 24 30 22.5 8 10 21 26 11 14 18 23 46 58 24 30 2.5 | | | | | | | | | | ł | | | | | | -12.5 | | | | | | | | | | | | | | | | -12.5 7.5 40 50 98 123 52 65 88 110 218 273 114 143 -12.5 12.5 28 35 70 88 37 46 62 78 155 194 81 101 17.5 17 21 41 51 22 28 37 46 91 114 48 60 22.5 8 10 21 26 11 14 18 23 46 58 24 30 27.5 5 6 12 15 6 8 11 14 27 34 14 18 2.5 23 29 57 71 30 38 51 64 127 159 67 84 -17.5 18 23 45 56 24 30 40 50 100 125 52 65 -17.5 13 16 33 41 17 21 29 36 73 < | | | | | | | | | | | | | | | | -12.5 | Ì | | | | | | | | | | | | | | | 17.5 | | | | | | | | | | | | | | | | 22.5 8 10 21 26 11 14 18 23 46 58 24 30 27.5 5 6 12 15 6 8 11 14 27 34 14 18 2.5 23 29 57 71 30 38 51 64 127 159 67 84 7.5 18 23 45 56 24 30 40 50 100 125 52 65 12.5 13 16 33 41 17 21 29 36 73 91 38 48 17.5 7 9 16 20 9 11 15 19 36 45 19 24 22.5 3 4 8 10 4 5 7 9 18 23 10 13 -22.5 7.5 13 16 33 41 17 21 29 36 73 91 38 48 -22.5 7.5 13 16 33 41 17 21 29 36 73 91 38 48 </td <td>-12.5</td> <td></td> | -12.5 | | | | | | | | | | | | | | | 27.5 5 6 12 15 6 8 11 14 27 34 14 18 2.5 23 29 57 71 30 38 51 64 127 159 67 84 7.5 18 23 45 56 24 30 40 50 100 125 52 65 12.5 13 16 33 41 17 21 29 36 73 91 38 48 17.5 7 9 16 20 9 11 15 19 36 45 19 24 22.5 3 4 8 10 4 5 7 9 18 23 10 13 -22.5 7.5 13 16 33 41 17
21 29 36 73 91 38 48 -22.5 7.5 13 | J | | | | | | | | | 1 | | | | | | -17.5 | | | | | | | | | | | | | | | | -17.5 | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | -17.5 | | | | | | | | | | | | | | | | 17.5 7 9 16 20 9 11 15 19 36 45 19 24 22.5 3 4 8 10 4 5 7 9 18 23 10 13 22.5 7.5 13 16 33 41 17 21 29 36 73 91 38 48 12.5 17.5 5 6 12 15 6 8 11 14 27 34 14 18 18 27.5 27.5 2.5 12 15 29 36 15 19 26 33 64 80 33 41 | -175 | | | | | | | | | | | | | | | 22.5 3 4 8 10 4 5 7 9 18 23 10 13 -22.5 17 21 41 51 22 28 37 46 91 114 48 60 -22.5 7.5 13 16 33 41 17 21 29 36 73 91 38 48 12.5 10 13 25 31 13 16 22 28 55 69 29 36 17.5 5 6 12 15 6 8 11 14 27 34 14 18 -27.5 2.5 12 15 29 36 15 19 26 33 64 80 33 41 | 17.5 | | • | | | | | | | | 1 : | | | | | -22.5 | | | | | | | _ | | | B . | | | | 8 | | -22.5 | | | | | | | | | | | | | | | | 12.5 10 13 25 31 13 16 22 28 55 69 29 36 17.5 5 6 12 15 6 8 11 14 27 34 14 18 -27.5 2.5 12 15 29 36 15 19 26 33 64 80 33 41 | | | | | | | | | | | | | | | | 17.5 5 6 12 15 6 8 11 14 27 34 14 18
-27.5 2.5 12 15 29 36 15 19 26 33 64 80 33 41 | -22.5 | | | | | | | | | | | | | | | -27.5 2.5 12 15 29 36 15 19 26 33 64 80 33 41 | -27.5 | 7.5 | 8 | 10 | 21 | 26 | 11 | 14 | 18 | 23 | 46 | 58 | 24 | 30 | Note 1: Luminous intensity values for equivalent left and right horizontal angles are the same. Note 2: Tabulated values of luminous intensity are rounded to the nearest whole value. # 2. LED Arrow Signal Modules Ensure arrow modules meet or exceed the electrical and environmental operating requirements of sections 3 and 5 of the Interim Purchase Specification of the ITE VTCSH part 2 Light Emitting Diode (LED) Vehicular Traffic Signal Modules (hereafter referred to as VTCSH-2), the chromaticity requirements of Section 4.2, and the requirements of Sections 6.3 (except 6.3.2) and 6.4 (except 6.4.2). Provide modules that meet the requirements of Table 1098-3. Ensure that fluctuations of line voltage have no visible effect on the luminous intensity of the indications. Design the module to have a normal operating voltage of 120 VAC rms, and measure all parameters at this voltage. Table 1098-3 Maximum Power Consumption (in Watts) at 77°F | | Red | Yellow | Green | |---------------|-----|--------|-------| | 12-inch arrow | 9 | 10 | 11 | Certify that the module meets the requirements of VTCSH-2, Section 5.7. Ensure all wiring meets the requirements of Section 5.1 of the VTCSH-2. In addition, provide quick connect Molex terminals (part # 19092026 female housing, part # 02091615 female pin, part # 19092027 male housing, and 02092101 male pin) or equivalent, and spade terminals appropriate to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard signal head. Ensure the replacement module provided has the Molex male connector 6 inches from the module. Ensure that the module is compatible with signal load switches and conflict monitors. Design the module to provide sufficient current draw to ensure proper load switch operation while the voltage is varied from a regulated 80 Vrms to 135 Vrms. Design off-state for green and yellow modules to be 30Vrms or less, and on-state to be 40 Vrms or greater. Design the voltage to decay to 10 Vrms or less in 100 milliseconds. Ensure that the control circuitry prevents current flow through the LEDs in the off state to avoid a false indication. Design all modules to meet existing NCDOT monitor specifications for each of the following types of signal monitors: NEMA TS-1 conflict monitors (including so-called NEMA plus features such as dual indication detection and short yellow time detection); NEMA TS-2 Malfunction Management Units (MMU); and 170 cabinet Type 210ECL and 2010ECL conflict monitors (including red monitoring and so-called plus features such as dual indication detection and short yellow time detection). Ensure that the modules and associated onboard circuitry meet Class A emission limits referred to in Federal Communications Commission (FCC) Title 47, Subpart B, Section 15 regulations concerning the emission of electronic noise. Provide modules that meet the requirements of Table 1098-4. Design and certify the modules to meet or exceed the maintained minimum luminous intensity values throughout the warranty period based on normal use in a traffic signal operation over the operating temperature range. Test the Red and Green arrow modules for maintained luminous intensity at 165°F (ITE 6.4.2.2). Use LEDs that conform to the chromaticity requirements of VTCSH-2, Section 2 throughout the warranty period over the operating temperature range. Make chromaticity coordinate compliance measurements at 77°F. $Table\ 1098-4$ Minimum Initial and Maintained Luminance for Arrow Indications (in cd/ft²) | | Red | Yellow | Green | |------------------|-----|--------|-------| | Arrow Indication | 511 | 1022 | 1022 | Design the modules as retrofit replacements for installation into standard incandescent traffic sections that do not contain the incandescent lens, reflector assembly, lamp socket and lens gasket. Ensure that installation does not require special tools or physical modification for the existing fixture other than the removal of the incandescent lens, reflector assembly, lamp socket, and lens gasket. Provide modules that are rated for use in the operating temperature range of -40°F to +165°F. Ensure that the modules (except yellow) meet all specifications throughout this range. Fabricate the module to protect the onboard circuitry against dust and moisture intrusion per the requirements of NEMA Standard 250-1991 for Type 4 enclosures to protect all internal components. Design the module to be a single, self-contained device with the circuit board and power supply for the module inside and integral to the unit. Design the assembly and manufacturing process for the module to ensure all internal components are adequately supported to withstand mechanical shock and vibration from high winds and other sources. Group the individual LEDs such that a catastrophic loss or the failure of one LED will result in the loss of not more than 20 percent of the signal module light output. Solder the LEDs to the circuit board. Fabricate the lens and signal module from material that conforms to ASTM specifications. Ensure enclosures containing either the power supply or electronic components of the module are made of UL94VO flame retardant materials. The lens of the signal module is excluded from this requirement. Permanently mark the manufacturer's name, trademark, model number, serial number, date of manufacture (month & year), and lot number as identification on the back of the module. Permanently mark the following operating characteristics on the back of the module: rated voltage and rated power in watts and volt-amperes. If a specific mounting orientation is required, provide permanent markings consisting of an up arrow, or the word "UP" or "TOP" for correct indexing and orientation within the signal housing. Provide a lens that is integral to the unit with a smooth outer surface and UV stabilized to withstand ultraviolet exposure for a minimum period of 60 months without exhibiting evidence of deterioration. Coat the front of a polycarbonate lens to make it more abrasion resistant. Seal the lens to the module to prevent moisture and dust from entering the module. Tint the red, yellow, and green lens to match the wavelength (chromaticity) of the LED. Ensure that the module meets specifications stated in Chapter 2, Section 9.01 of the ITE Equipment and Materials Standards for arrow indications. Design arrow displays to be solid LEDs (spread evenly across the illuminated portion of the arrow or other designs), not outlines. **Determine the luminous intensity using the CALTRANS 606 method or similar procedure.** - **Burn In** Energize the sample module(s) for a minimum of 24 hours, at 100 percent on-time duty cycle, at a temperature of +165°F before performing any qualification testing. Any failure of the module, which renders the unit non-compliant with the specification after burn-in, is cause for rejection. All specifications will be measured including, but not limited to: - (a) Photometric (Rated Initial Luminous Intensity) Measure at +77°F. Measure luminous intensity for red and green modules upon the completion of a 30 minute 100 percent on-time duty cycle at the rated voltage. Measure luminous intensity for yellow modules immediately upon energizing at the rated voltage. - (b) Chromaticity (Color) Measure at +77°F. Measure chromaticity for red and green modules upon the completion of a 30 minute 100 percent on-time duty cycle at the rated voltage. Measure chromaticity for yellow modules immediately upon energizing at the rated voltage. - (c) Electrical Measure all specified parameters for quality comparison of production quality assurance on production modules. (rated power, etc) NCDOT evaluates and approves all LED Traffic Signal modules for the QPL by a standard visual inspection and blind operational survey, a compatibility test, current flow, and other random tests, in addition to reviewing the lab reports and documentation from the manufacturer. The tests are conducted at the Traffic Electronics Center in Raleigh. Ensure each 12-inch arrow Version 06.2 8 print date: 06/16/06 module is visible at 300 feet during sway conditions (extended view) until obscured by the visor. Sufficient luminance during the extended views will be determined during this blind survey evaluation. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide replacement modules within 45 days of receipt of modules that have failed at no cost to the State.
Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). # C. Pedestrian Signal Heads: Provide pedestrian signal heads with international symbols that meet the MUTCD. Do not provide letter indications. Comply with the ITE standard for "Pedestrian Traffic Control Signal Indications" and the following sections of the ITE standard for "Vehicle Traffic Control Signal Heads" in effect on the date of advertisement: - Section 3.00 "Physical and Mechanical Requirements" - Section 4.01 "Housing, Door, and Visor: General" - Section 4.04 "Housing, Door, and Visor: Materials and Fabrication" - Section 7.00 "Exterior Finish" Provide a double-row termination block with three empty terminals and number 10 screws for field wiring. Provide barriers between the terminals that accommodate a spade lug sized for number 10 terminal screws. Mount the termination block in the hand section. Wire all signal sections to the terminal block. Where required by the plans, provide 16-inch pedestrian signal heads with traditional three-sided, rectangular visors, 6 inches long. Where required by the plans, provide 12-inch pedestrian signal heads with traditional three-sided, rectangular visors, 8 inches long. Design the LED pedestrian traffic signal modules for installation into standard pedestrian traffic signal sections that do not contain the incandescent signal section reflector, lens, eggcrate visor, gasket, or socket. Provide a clear 0.25-inch, non-glare, mat finish lens with a smooth outer surface and UV stabilized to withstand ultraviolet exposure for a minimum period of 60 months without exhibiting evidence of deterioration. Coat the front surface of a polycarbonate lens to make it more abrasion resistant. Ensure that the lens has light transmission properties equal to or greater than 80%. Ensure installation of all modules requires no physical modification of the existing fixture other than the removal of the incandescent signal section reflector, lens, eggcrate visor and socket where applicable. Design the man and hand to be a solid display, which meets the minimum requirements of "The Equipment and Materials Standards" of the Institute of Transportation Engineers (ITE) Chapter 3, Table 1 *Symbol Message*. Group the LEDs such that a catastrophic loss or failure of one or more LEDs will result in the loss of not more than five percent of the signal module light output. Solder the LEDs to the circuit board. Ensure that the power consumption for the modules is equal to or less than the following in watts, and that the modules have EPA Energy Star compliance ratings, if applicable to that shape, size and color: Version 06.2 9 print date: 06/16/06 | Temperature | 77°F | 165°F | |-------------|------|-------| | Hand | 10 | 12 | | Man | 9 | 12 | | Countdown | 9 | 12 | Provide 16-inch displays, where required by the plans, which have the hand/man overlay on the left and the countdown on the right. Ensure the hand/man symbols meet the dimension requirements cited in Chapter 3, Table 1 *Symbol Message* for Class 3 or Class 4 displays. Ensure that the countdown number display is at least 9 inches high by 6 inches wide. Configure the signal head with a sufficient number of LEDs to provide an average luminance of at least 342 candela per square foot of lighting surface for the "RAISED HAND" and "COUNTDOWN", and 483 candela per square foot of lighting surface for the "WALKING PERSON". Ensure modules meet this average luminous intensity throughout the warranty period over the operating temperature range. Design the countdown display as a double row of LEDs, and ensure the countdown display blanks-out during the initial cycle while it records the countdown time. Ensure that the countdown display is operational only during the flashing don't walk, clearance interval. Blank-out the countdown indication after it reaches zero until the beginning of the next don't walk indication, and design the controlling circuitry to prevent the timer from being triggered during the solid hand indication. Provide 12 inch displays, where required by the plans, that meet the dimension requirements cited in Chapter 3, Table 1 *Symbol Message* for Class 2 displays. Furnish the solid hand/man module as an overlay, the solid hand module, and the solid man module as required by the plans. Configure the signal head with a sufficient number of LEDs to provide an average luminance of at least 342 candela per square foot of lighting surface for the "RAISED HAND" and "COUNTDOWN", and 483 candela per square foot of lighting surface for the "WALKING PERSON". Ensure modules meet this average luminance throughout the warranty period over the operating temperature range. Design all modules to operate using a standard 3 - wire field installation. Provide lead wires that are eighteen gauge (18AWG) minimum copper conductors with 221 degree F insulation. Ensure that lead wires are a minimum of 30 inches long with NEMA "spade" terminals that are appropriate to the lead wires and sized for a #10 screw connection to the existing terminal block in the signal head. Ensure that modules are compatible with signal load switches and conflict monitors. Design the module to provide sufficient current draw to ensure proper load switch operation while the voltage is varied from a regulated 80Vrms to 135Vrms. Provide control circuitry to prevent current flow through the LEDs in the off state to avoid a false indication. Design all modules to meet existing NCDOT monitor specifications for each of the following types of signal monitors: NEMA TS-1 conflict monitors (including so-called NEMA plus features such as dual indication detection and short yellow time detection); NEMA TS-2 Malfunction Management Units; and 170 cabinet 210ECL and 2010ECL conflict monitors (including red monitoring and so-called plus features such as dual indication detection and short yellow time detection). Comply with the following sections: 3.3, 3.5, 3.6.1, 3.6.2, 5.2, 5.3, 5.7, 6.1, 6.3.1, 6.3.3, 6.3.4, 6.3.5, 6.4.4, 6.4.5, and 6.4.6 of VTCSH-2. Furnish Portland Orange LEDs for the hand and countdown displays that are the latest AlInGaP technology or higher, and Lunar White LEDs for the man display that are the latest InGaN technology or higher. Provide manufacturer's certification of compliance with the sections of the ITE specification identified above and this specification when product is submitted for evaluation. Provide test results showing that the signal modules meet or exceed the luminous intensity requirements. Version 06.2 10 print date: 06/16/06 Provide modules that include, but are not limited to the following items: lens, LED display mounted on a circuit board, wire leads with strain relief, rigid housing, electronics including a power supply integral to the LED module which is protected by the housing, and a neoprene one piece gasket. Ensure that the module is compatible with standard, existing, pedestrian head mounting hardware. Warrant performance for a period of 60 months from the date of installation and include repair or replacement of an LED signal module that exhibits light output degradation, which in the judgment of the Department, cannot be easily seen at 150 feet in bright sunlight with a visor on the housing or which drops below the luminous intensity output requirements. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). Provide 2-inch diameter pedestrian push-buttons with weather-tight housings fabricated from die-cast aluminum and threading in compliance with the NEC for rigid metal conduit. Provide a weep hole in the housing bottom and ensure that the unit is vandal resistant. Provide push-button housings that are suitable for mounting on flat or curved surfaces and that will accept 1/2-inch conduit installed in the top. Provide units that have a heavy duty push-button assembly with a sturdy, momentary, normally-open switch. Have contacts that are electrically insulated from the housing and push-button. Ensure that the push-buttons are rated for a minimum of 5 mA at 24 volts DC and 250 mA at 12 volts AC. Provide standard R10-3 signs with mounting hardware that comply with the MUTCD in effect on the date of advertisement. Provide R10-3E signs for countdown pedestrian heads and R10-3B for non-countdown pedestrian heads. #### D. Signal Cable: Furnish 16-4 and 16-7 signal cable that complies with IMSA specification 20-1 except provide the following conductor insulation colors: - For 16-4 cable: white, yellow, red, and green - For 16-7 cable: white, yellow, red, green, yellow with black stripe tracer, red with black stripe tracer, and green with black stripe tracer. Apply continuous stripe tracer on conductor insulation with a longitudinal or spiral pattern. Provide a ripcord to allow the cable jacket to be opened without using a cutter. IMSA specification 19-1 will not be acceptable. Provide a cable jacket labeled with the IMSA specification number and provide conductors constructed of stranded copper. #### VIDEO IMAGING LOOP EMULATOR DETECTOR SYSTEMS #### 4.1. DESCRIPTION Design, furnish, provide training, and install video imaging loop emulator detection systems with all necessary hardware in accordance with the plans and specifications. Unless otherwise specified in the contract, all loop emulator detection equipment will remain the property of the contractor. print date: 06/16/06 Version 06.2 · 11 #### 4.2. MATERIALS ## A. General:
Material and equipment furnished under this section must be pre-approved on the Department's QPL by the date of installation except miscellaneous hardware such as cables and mounting hardware do not need to be pre-approved. Used equipment will be acceptable provided the following conditions have been met: - Equipment is listed on the current QPL. - Equipment is in good working condition. - Equipment is to remain the property of the contractor. Ensure that software is licensed for use by the Department and by any other agency responsible for maintaining or operating the loop emulation system. Provide the Department with a license to duplicate and distribute the software as necessary for design and maintenance support. Design and furnish video imaging loop emulator detection systems that detect vehicles at signalized intersections by processing video images and providing detection outputs to the signal controller in real time (within 112 milliseconds of vehicle arrival). Furnish all required camera sensor units, loop emulator processor units, hardware and software packages, cabling, poles, mast arms, harnesses, camera mounting assemblies, surge protection panels, grounding systems, messenger cable and all necessary hardware. Furnish systems that allow the display of detection zones superimposed on an image of the roadway on a Department-furnished monitor or laptop computer screen. Ensure detection zones can be defined and data entered using a simple keyboard or mouse and monitor, or using a laptop PC with software. Provide design drawings showing design details and camera sensor unit locations for review and acceptance before installation. Provide mounting height and location requirements for camera sensor units on the design based on site survey. Design video imaging loop emulator detection systems with all necessary hardware. Indicate all necessary poles, spans, mast arms, luminaire arms, cables, camera mounting assemblies and hardware to achieve the required detection zones where Department owned poles are not adequate to locate the camera sensor units. Do not design for the installation of poles in medians. Obtain the Engineer's approval before furnishing video imaging loop emulator detection systems. The contractor is responsible for the final design of video imaging loop emulator detection systems. Review and acceptance of the designs by the Department does not relieve the contractor from the responsibility to provide fully functional systems and to ensure that the required detection zones can be provided. Provide the ability to program each detection call (input to the controller) with the following functions: - Full Time Delay Delay timer is active continuously, - Normal Delay Delay timer is inhibited when assigned phase is green (except when used with TS 2 and 170/2070L controllers), - Extend Call is extended for this amount of time after vehicle leaves detection area, - Delay Call/Extend Call This feature uses a combination of full time delay and extend time on the same detection call. Ensure operation is as follows: Vehicle calls are received after the delay timer times out. When a call is detected, it is held until the detection area is empty and the programmed extend time expires. If another vehicle enters the detection area before the Version 06.2 12 print date: 06/16/06 extend timer times out, the call is held and the extend time is reset. When the extend timer times out, the delay timer has to expire before another vehicle call can be received. Provide the ability to program each detection zone as one of the following functions: - Presence detector, - Directional presence detector, - Pulse detector, - Directional pulse detector. Ensure previously defined detector zones and configurations can be edited. Provide each individual system with all the necessary equipment to focus and zoom the camera lenses without the need to enter the camera enclosure. Provide systems that allow for the placement of at least 8 detection zones within the combined field of view of a single camera sensor unit. Provide a minimum of 8 detection outputs per camera. Provide detection zones that can be overlapped. Ensure systems reliably detect vehicles when the horizontal distance from the camera sensor unit to the detection zone area is less than ten times the mounting height of the sensor. Ensure systems detect vehicles in multiple travel lanes. Ensure systems can detect vehicle presence within a 98 to 102 percent accuracy (up to 2 percent of the vehicles missed and up to 2 percent of false detection) for clear, dry, daylight conditions, a 96 to 105 percent accuracy (up to 4 percent of the vehicles missed and up to 5 percent false detection) for dawn and dusk conditions, and a 96 percent accuracy (up to 4 percent of the vehicles missed) for night and adverse conditions (fog, snow, rain, etc.) using standard sensor optics and in the absence of occlusion. Repair and replace all failed components within 72 hours. The Department may conduct field-testing to ensure the accuracy of completed video imaging loop emulator detection systems. #### **B.** Loop Emulator System: Furnish loop emulator systems that receive and simultaneously process information from camera sensor units, and provides detector outputs to signal controllers. Ensure systems provide the following: - Operate in a typical roadside environment and meet the environmental specifications and are fully compatible with NEMA TS 1, NEMA TS 2, or Type 170/2070L controllers and cabinets, - provide a "fail-safe" mode whereby failure of one or more of the camera sensor units or power failure of the loop emulator system will cause constant calls to be placed on the affected vehicle detection outputs to the signal controller, - provide compensation for minor camera movement of up to 2 percent of the field of view at 400 feet without falsely detecting vehicles, - process the video at a minimum rate of 30 times per second, - provide separate wired connectors inside the controller cabinet for video recording each camera, - provide remote video monitoring with a minimum refresh rate at 1 frame per second over a standard dial-up telephone line, - provide remote video detection monitoring. Furnish camera sensor units that comply with the following: Version 06.2 13 print date: 06/16/06 117 - have an output signal conforming to EIA RS-170 standard, - have a nominal output impedance of 75 ohms, - be immune to bright light sources, or have built in circuitry or protective devices to prevent damage to the sensor when pointed directly at strong light sources, - be housed in a light colored environmental enclosure that is water proof and dust tight, and that conforms to NEMA-4 specifications or better, - simultaneously monitor at least five travel lanes when placed at the proper mounting location with a zoom lens, - have a sunshield attached to the environmental enclosure to minimize solar heating, - meet FCC class B requirements for electromagnetic interference emissions, - have a heater attached to the viewing window of the environmental enclosure to prevent ice and condensation in cold weather. Where coaxial video cables and other cables are required between the camera sensor and other components located in the controller cabinet, furnish surge protection in the controller cabinet. If furnishing coaxial communications cable comply with the following, as recommended by the approved loop emulator manufacturer: - Belden 8281 or approved equivalent Number 20 AWG, solid bare copper conductor terminated with crimped-on BNC connectors (do not use BNC adapters) from the camera sensor to the signal controller cabinet. - Belden 9259 or approved equivalent Number 22 AWG, stranded bare copper conductor terminated with crimped-on BNC connectors (do not use BNC adapters) from the camera sensor unit to the junction box, and within the signal controller cabinet. Furnish power cable appropriately sized to meet the power requirements of the sensors. At a minimum, provide three conductor 120 VAC field power cable. As determined during the site survey, furnish sensor junction boxes with nominal 6 x 10 x 6 inches dimensions at each sensor location. Provide terminal blocks and tie points for coaxial cable. # C. Video Imaging Loop Emulator System Support: Furnish video imaging loop emulator systems with either a simple keyboard or a mouse with monitor and appropriate software, or with system software for use on department-owned laptop PCs. Ensure the system is Windows 2000 compatible. Provide Windows 2000 compatible personal computer software, if needed, to provide remote video and video detection monitoring. Ensure systems allow the user to edit previously defined detector configurations. When a vehicle is within a detection zone, provide for a change in color or intensity of the detection zone perimeter or other appropriate display changes on the Department-furnished monitor or laptop computer screen. Provide cabling and interconnection hardware with 6-foot minimum length interconnection cable to interface with the system. Provide all associated equipment manuals and documentation. #### 4.3. CONSTRUCTION METHODS Arrange and conduct site surveys with the system manufacturer's representative and Department personnel to determine proper camera sensor unit selection and placement. Provide the Department Version 06.2 14 print date: 06/16/06 U-4026 at least 3 working days notice before conducting site surveys. Upon completion of the site surveys the Department will provide revised plans reflecting the findings of the site survey. Before beginning work at locations requiring video imaging loop emulator detection systems, furnish system software. Upon activation of detection zones, provide detector configuration files. Ensure that up-to-date detection configuration files are furnished for various detection zone configurations that may be required for construction phasing. Place into operation loop emulator
detection systems. Configure loop emulator detection systems to achieve required detection in designated zones. Have a certified manufacturer's representative on site to supervise and assist with installation, set up, and testing of the system. Install the necessary processing and communications equipment in the signal controller cabinet. Make all necessary modifications to install equipment, cabling harnesses, and camera sensor interface panels with surge suppression. Perform modifications to camera sensor unit gain, sensitivity, and iris limits necessary to complete the installation. Do not install camera sensor units on signal poles unless approved by the Engineer. Install the necessary cables from each sensor to the signal controller cabinet along signal cabling routes. Install surge protection and terminate all cable conductors. Relocate camera sensor units and reconfigure detection zones as necessary according to the plans for construction phases. Provide at least 8 hours of training on the set up, operation, troubleshooting, and maintenance of the loop emulator detection system to a maximum of ten Department personnel. Arrange for training to be conducted by the manufacturer's representative at an approved site within the Division responsible for administration of the project. Thirty days before conducting training submit a detailed course curriculum, draft manuals and materials, and resumes. Obtain approval of the submittal before conducting the training. At least one week before beginning training, provide three sets of complete documentation necessary to maintain and operate the system. Do not perform training until installation of loop emulator detection systems is complete. # 4.4. MEASUREMENT AND PAYMENT Actual number of site surveys, arranged, conducted, and accepted. Actual number of luminaire arms for video imaging loop emulator detection systems furnished, installed, and accepted. Actual number of cameras with internal loop emulator processing units furnished, installed, and accepted. Actual number of cameras without internal loop emulator processing units furnished, installed, and accepted. Actual number of external loop emulator processing units furnished, installed, and accepted. Actual number of camera sensor units relocated with detection zones reconfigured installed, and accepted. No measurement will be made of video imaging loop emulator system support or training, power and video cables, and trenching as these items will be considered incidental to furnishing and installing video imaging loop emulator detection systems. | Payment will be made under: | | |-----------------------------|------| | Site Survey | Each | Version 06.2 15 print date: 06/16/06 # 119 | | Section 1727 | |---|--------------| | Luminaire Arm for Video System | Each | | Camera with Internal Loop Emulator Processing Unit | | | Camera without Internal Loop Emulator Processing Unit | Each | | External Loop Emulator Processing Unit | Each | | Relocate Camera Sensor Unit | Each | #### 5. MICROWAVE VEHICLE DETECTOR #### 5.1. DESCRIPTION Furnish and install a microwave vehicle detection unit and manufacturer recommended cables and hardware in accordance with the plans and specifications. ## 5.2. MATERIALS #### A. Pulse Detection: Furnish Microwave Sensors, Model TC-26B Vehicle Detector Unit, or approved equivalent, providing the following features: - Senses vehicles in motion at a range of at least 200 feet for cars and 350 feet for semi-trucks or other large vehicles. - Provides an operating frequency of 10.525 GHz +/- 25MHz. ## **B.** Presence Detection: Furnish Naztec Accuwave Model 150LX Microwave Detector, or approved equivalent, providing the following features: - True vehicle presence detection with a minimum detection zone of 6 x 12 feet at a 20 foot mounting height and an effective range of at least 75 feet from the detector unit to the aim point on the road surface. - Programmable delay time of up to 25 seconds. - Self tuning capability to auto-adjust to changing environmental conditions. - Monitoring circuit for the unit that will put out a constant call in the event of a component failure or loss of power - 120 (95 to 135) VAC input power, or power supply or step down transformer, if other than 120 VAC. - Operating temperature from -20 to 150 degrees F. - Water resistant housing. If a laptop is used to adjust detector settings, ensure that software is licensed for use by the Department and by any other agency responsible for maintaining or operating the microwave detection system. Provide the Department with a license to duplicate and distribute the software as necessary for design and maintenance support. #### 5.3. CONSTRUCTION METHODS Install the microwave vehicle detector in accordance with the manufacturer's recommendations. Monitor and maintain the detector unit during construction to ensure microwave vehicle detector is functioning properly and aimed for the detection zone shown in the plans. Refer to Subarticle 1700-3 (D) Maintenance and Repair of Materials of the *Standard Specifications* for failure to maintain the microwave detection system. #### 5.4. MEASUREMENT AND PAYMENT Actual number of microwave vehicle detector units furnished, installed, and accepted. Version 06.2 16 print date: 06/16/06 # TIP Number _____ 120 Signals & Intelligent Transportation Systems No measurement will be made of cables or hardware, as these will be considered incidental to furnishing and installing microwave vehicle detectors. Payment will be made under: Microwave Vehicle Detector Each #### 6. METAL TRAFFIC SIGNAL SUPPORTS ## 6.1. METAL TRAFFIC SIGNAL SUPPORTS – ALL POLES #### A. General: Furnish and install metal strain poles and metal poles with mast arms, grounding systems, and all necessary hardware. The work covered by this special provision includes requirements for the design, fabrication, and installation of both standard and custom/site specifically designed metal traffic signal supports and associated foundations. Provide metal traffic signal support systems that contain no guy assemblies, struts, or stay braces. Provide designs of completed assemblies with hardware that equals or exceeds AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals 4th Edition, 2001 (hereafter called 4th Edition AASHTO), including the latest interim specifications. Provide assemblies with a round or near-round cross-sectional design consisting of no less than six sides. The sides may be straight, convex, or concave. Comply with Subarticle 1098-1B "General Requirements" of the *Standard Specifications* for submittal requirements. Furnish shop drawings for approval. Provide triplicate copies of detailed shop drawings for each type of structure. Ensure that shop drawings show materials specifications for each component and identifies welds by type and size. Do not release structures for fabrication until structural drawings have been approved. Provide an itemized bill of materials for all structural components and associated connecting hardware on the drawings. If plans call for Standard Metal Signal Supports, comply with Subarticle 1098-1A "General Requirements" for QPL submittals. ## **B.** Materials: Fabricate monotube shafts with a uniform linear taper of 0.14 in/ft with steel that conforms to ASTM A-595 minimum Grade A or an approved equivalent. Galvanize in accordance with AASHTO M111. Use the submerged arc process to continuously weld shafts for the entire length. Ground or roll smooth exposed welds until flush with the base metal. Ensure shafts have no circumferential welds except at the lower end joining the shaft to the base. Provide welding that conforms to Article 1072-20 of the *Standard Specifications*, except that no field welding on any part of the pole will be permitted. Refer to Standard Drawings for Metal Poles M2 for fabrication details. Fabricate anchor bases from plate steel meeting the requirements of ASTM A 36M or cast steel meeting the requirements of ASTM A 27M Grade 485-250, AASHTO M270 grade 36 or an approved equivalent. Conform to the applicable bolt pattern and orientation specified by the design as shown on drawing M2. Ensure hardware is galvanized steel or stainless steel. Ensure material used in steel anchor bolts conforms to AASHTO M 314, and yield strength does not exceed 55,000 psi. Unless otherwise required by the design, ensure each anchor bolt is 2" in diameter and 60" in length. Provide 10" minimum thread projection at the top of the bolt, and 8" Version 06.2 17 print date: 06/16/06 minimum at the bottom of the bolt. Galvanize each anchor bolt in accordance with AASHTO M232 or M298 from the top of the bolt to a minimum of 2" below the threads. Provide a circular anchor bolt lock plate that will be secured to the anchor bolts at the embedded end with 2 washers and nuts. Provide a base plate template that matches the bolt circle diameter of the anchor bolt lock plate. Construct plates and templates from ¼" minimum thick steel with a minimum width of 4". Galvanizing is not required. Provide 4 heavy hex nuts and 4 flat washers for each anchor bolt. For nuts, use AASHTO M291 grade 2H, DH, or DH3 or equivalent material. For flat washers, use AASHTO M293 or equivalent material. Ensure end caps for poles or mast arms are constructed of cast aluminum conforming to Aluminum Association Alloy 356.0F. #### C. Construction Methods: Erect signal supports poles only after concrete has attained a minimum allowable compressive strength of 3000 psi. Follow anchor nut-tightening procedures below to complete the installation of the upright. For further construction methods, see construction methods for Metal Strain Poles, or Metal Pole with Mast Arm. Connect poles to grounding electrodes and the intersection grounding systems. For holes in the poles used to accommodate cables, install grommets before wiring
pole or arm. Do not cut or split grommets. Attach the terminal compartment cover to the pole by a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cover to hang clear of the compartment opening when the cover is removed, and is strong enough to prevent vandals from being able to disconnect the cover from the pole. Ensure the chain or cable will not interfere with service to the cables in the pole base. Attach cap to pole with a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cap to hang clear of the opening when the cap is removed. Perform repair of damaged galvanizing that complies with the *Standard Specifications*, Article 1076-6 "Repair of Galvanizing." # **Anchor Nut Tightening Procedure** Compute the required projection of the anchor bolt above the foundation top. Compute the total projection based on the following: - Provide between 3 and 5 threads of anchor bolt projection above the top nut after tightening is complete. Avoid any additional projection, or a normal depth socket torque wrench can not be used on top nuts. - Include the sum of the thickness of top nut, top nut flat washer or top nut beveled washer, base plate, leveling nut flat washer or leveling nut beveled washer, and leveling nut. - Set the maximum distance between the bottom of the leveling nut and the foundation top to one nut height to avoid excessive bending stresses in the anchor bolt under service conditions. - Do not use lock washers. #### Installation Procedure: 1. Place a leveling nut and washer on each anchor bolt and install a template on top of the leveling nuts to verify that the nuts are level and uniformly contact the template. Use beveled washers if the leveling nuts cannot be brought into firm contact with the template. Verify that the distance Version 06.2 18 print date: 06/16/06 between the bottom of the leveling nuts and the top of the concrete is no more than one nut height. Consider how attachments and applied loads may affect the vertical nature of the metal pole after erected and fully loaded. If necessary, induce a rake to the upright in the opposite direction of the anticipated loads during the initial erection by adjusting the leveling nuts accordingly. Failure to consider this could result in the upright being out of the allowable vertical tolerance as specified in the Metal Strain Pole Construction Methods of this special provision. - 2. Install the vertical upright on the anchor bolts, and tighten nuts in compliance with steps 3, 4, and 5 below. Do not attach cantilever arms or messenger cable to the vertical post until all of the top nuts and leveling nuts have been properly tightened on the anchor bolts. - 3. Install top nuts and washers. Install flat washers under the top and leveling nuts. Use beveled washers if the nuts cannot be brought into firm contact with the base plate. Lubricate threads of the anchor bolts, nuts, and bearing surface of the nuts and tighten to a snug-tight condition with a spud wrench following a star pattern (using at least two increments). Snug-tight condition is defined as 20% to 30% of the verification torque (600 ft-lbs.). Ensure lubricant is beeswax, stick paraffin, or other approved lubricant. - 4. After the top nuts have been snug tightened, snug tighten the bottom nuts up to the base plate using the same procedure as described above. The base-plate must be in firm contact with both the top and bottom nuts to achieve the proper pretension in the anchor bolts. - 5. Before further turning of the nuts, mark the reference position of the top nut in the snug-tight condition by match marking each nut, bolt shank, and base plate. Use ink or paint that is not water-soluble. - 6. Turn the top nuts in increments using the star pattern (using at least two full tightening cycles) to 1/6 of a turn. Use a torque wrench to verify that at least 600 ft-lbs. is required to further tighten the top nuts. At least 48 hours after the entire structure and any attachments are erected, use a torque wrench again to verify that at least 600 ft-lbs. is still required to tighten the top nuts. Verify that the leveling nuts remain in firm contact with the base plate. - 7. Do not place non-shrink grout between the base plate and foundation. This will allow for future inspection of leveling nuts and for adequate drainage of moisture. #### 6.2. METAL STRAIN POLE #### A. Materials: Provide ground lug at 0° on the pole's radial index for grounding spanwire. Ensure #4 or #6 AWG wire will pass through opening. # **B.** Construction Methods: Install metal poles, hardware, and fittings as shown on the manufacturer's installation drawings. Install metal poles so that when the pole is fully loaded it is within 2 degrees of vertical. Install poles with the manufacturer's recommended "rake." Use threaded leveling nuts to establish rake. #### 6.3. METAL POLE WITH MAST ARM #### A. Materials: Fabricate arms from standard weight black steel pipe conforming to ASTM A 53-90a, Type E or Type S, Grade B or an approved equivalent. After all fabricating, cutting, punching, and welding is completed, hot-dip galvanize the structure in accordance with the 4th Edition AASHTO M111. Version 06.2 19 print date: 06/16/06 #### **B.** Construction Methods: Install horizontal-type arms within 2 degrees of horizontal when loaded with signal heads and signs. Attach cap to the mast arm with a sturdy chain or cable. Ensure that the chain or cable is long enough to permit the cap to hang clear of the arm opening when the cap is removed. #### 6.4. DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES ## A. Description: Perform a soil test at each proposed metal pole location. Furnish and install foundations for NCDOT metal poles with all necessary hardware in accordance with the plans and specifications. Metal Pole Standards have been developed and implemented by NCDOT for use at signalized intersections in North Carolina. If the plans call for a standard pole, then a standard foundation may be selected from the plans. However, the Contractor is not required to use a standard foundation. If the Contractor chooses to design a non-standard site-specific foundation for a standard pole or if the plans call for a non-standard site-specific pole, design the foundation to conform to the applicable provisions in the NCDOT Metal Pole Standards and Section B4 (Non-Standard Foundation Design) below. If the Contractor chooses to design a non-standard foundation for a standard pole and the soil test results indicate a standard foundation is feasible for the site, the Contractor will be paid the cost of the standard foundation (drilled pier and wing wall, if applicable). Any additional costs associated with a non-standard site-specific foundation including additional materials, labor and equipment will be considered incidental to the cost of the standard foundation. All costs for the non-standard foundation design will also be considered incidental to the cost of the standard foundation. #### **B.** Soil Test and Foundation Determination: #### 1. General: Drilled piers are reinforced concrete sections, cast-in-place against in situ, undisturbed material. Drilled piers are of straight shaft type and vertical. Some standard drilled piers for supporting poles with mast arms may require wing walls to resist torsional rotation. Based upon this provision and the results of the required soil test, a drilled pier length and wing wall requirement may be determined and constructed in accordance with the plans. For non-standard site-specific poles, the contractor-selected pole fabricator will determine if the addition of wing walls is necessary for the supporting foundations. # 2. Soil Test: Perform a soil test at each signal location. Complete all required fill placement and excavation at each signal pole location to finished grade before drilling each boring. Drill one boring to a depth of 26 feet. Perform standard penetration tests (SPT) in accordance with ASTM D 1586 at depths of 1, 2.5, 5, 7.5, 10, 15, 20 and 26 feet. Discontinue the boring if one of the following occurs: - A total of 100 blows have been applied in any 2 consecutive 6-in. intervals. - A total of 50 blows have been applied with < 3-in. penetration. Describe each intersection as the "Intersection of <u>(Route or SR #)</u>, <u>(Street Name)</u> and <u>(Route or SR #)</u>, <u>(Street Name)</u>, _____ County, Signal Inventory No. _____". Label borings with "B- <u>N, S, E, W, NE, NW, SE or SW</u>" corresponding to the quadrant location within the intersection. For each boring, submit a legible (hand written or typed) boring log signed and sealed by a licensed geologist Version 06.2 20 print date: 06/16/06 or professional engineer registered in North Carolina. Include on each boring the SPT blow counts and N-values at each depth, depth of the boring, and a general description of the soil types encountered. #### 3. Standard Foundation Determination: Use the following method for determining the Design N-value: $$N_{AVG} = \underbrace{(N@1' + N@2.5' + \dots N@Deepest Boring Depth)}_{Total Number of N-values}$$ $$Y = (N@1')^2 + (N@2.5')^2 + \dots (N@Deepest Boring Depth)^2$$ $$Z = (N@1' + N@2.5' + \dots N@Deepest Boring Depth)$$ $$N_{STD DEV} = \underbrace{\begin{pmatrix} (Total Number of N-values x Y) - Z^2 \\ (Total Number of N-values) x (Total Number of N-values - 1) \end{pmatrix}^{0.5}}_{0.5}$$ **Design N-value** equals lesser of the following two conditions: $$N_{AVG}$$ – ($N_{STD DEV} \times 0.45$) Or Average of First Four N-Values = $(N@1' + N@2.5' + N@5' + N@7.5')$ Note: If less than 4 N-values are obtained because of criteria listed in Section 2 above, use average of N-values collected for second condition. Do not include the N-value at the deepest boring depth for above calculations if the boring is discontinued at or before the required boring depth because of criteria listed in Section 2 above. Use N-value of zero for weight of
hammer or weight of rod. If N-value is greater than 50, reduce Nvalue to 50 for calculations. If standard NCDOT poles are shown on the plans and the Contractor chooses to use standard foundations, determine a drilled pier length, "L," for each signal pole from the Standard Foundations Chart (sheet M 8) based on the Design N-value and the predominant soil type. For each standard pole location, submit a completed "Metal Pole Standard Foundation Selection Form" signed by the contractor's representative. Include the Design N-value calculation and resulting drilled pier length, "L," on each form. If non-standard site-specific poles are shown on the plans, submit completed boring logs collected in accordance with Section 2 (Soil Test) above along with pole loading diagrams from the plans to the contractor-selected pole fabricator to assist in the pole and foundation design. If one of the following occurs, the Standard Foundations Chart shown on the plans may not be used and a non-standard foundation may be required. In such case, contact the Engineer. - The Design N-value is less than 4. - The drilled pier length, "L", determined from the Standard Foundations Chart, is greater than the depth of the corresponding boring. In the case where a standard foundation cannot be used, the Department will be responsible for the additional cost of the non-standard foundation. The Standard Foundations Chart is based on level ground around the traffic signal pole. If the distance between the edge of the drilled pier and the top of a slope steeper than 2:1 (H:V) is less than 10 feet or the grade within 10 feet is steeper than 2:1 (H:V), contact the Engineer. #### **TIP Number** Signals & Intelligent Transportation Systems 125 The "Metal Pole Standard Foundation Selection Form" may be found as follows: - 1) Go to www.NCDOT.org/business/. - 2) Click on "Geotechnical Engineering Unit Forms." - 3) Click on "Metal Pole Standard Foundation Selection Form." If assistance is needed with the required calculations, contact the Signals and Geometrics Structural Engineer at (919) 733-3915. However, in no case will the failure or inability to contact the Signals and Geometrics Structural Engineer be cause for any claims or requests for additional compensation. # 4. Non-Standard Foundation Design: Design non-standard foundations based upon site-specific soil test information collected in accordance with Section 2 (Soil Test) above. Provide a drilled pier foundation for each pole with a length and diameter that results in a horizontal lateral movement of less than 1 inch at the top of the pier and a horizontal rotational movement of less than 1 inch at the edge of the pier. Contact the Engineer for pole loading diagrams for standard poles to be used for non-standard foundation designs. Submit any non-standard foundation designs including plans, calculations, and soil boring logs to the Engineer for review and approval before construction. A professional engineer registered in the state of North Carolina must seal all plans and calculations. #### C. Drilled Pier Construction: #### 1. Excavation: Perform excavations for drilled piers to the required dimensions and lengths including all miscellaneous grading and excavation necessary to install the drilled pier. Depending on the subsurface conditions encountered, excavation in weathered rock or removal of boulders may be required. Dispose of drilling spoils as directed and in accordance with Section 802 of the *Standard Specifications*. Drilling spoils consist of all material excavated including water or slurry removed from the excavation either by pumping or with augers. Construct all drilled piers such that the piers are cast against undisturbed soil. If a larger casing and drilled pier are required as a result of unstable or caving material during drilling, backfill the excavation before removing the casing to be replaced. No additional payment will be made for substituting a larger diameter drilled pier in order to construct a drilled pier cast against undisturbed soil. Construct drilled piers within the tolerances specified herein. If tolerances are exceeded, provide additional construction as approved by the Engineer to bring the piers within the tolerances specified. Construct drilled piers such that the axis at the top of the piers is no more than 3 inches in any direction from the specified position. Build drilled piers within 1% of the plumb deviation for the total length of the piers. Construct the finished top of pier elevation between 5 inches above and 2 inches above the finished grade elevation. Form the top of the pier such that the concrete is smooth and level. If unstable, caving, or sloughing soils are anticipated or encountered, stabilize drilled pier excavations with either steel casing or polymer slurry. Steel casing may be either the sectional type or one continuous corrugated or non-corrugated piece. Ensure all steel casings consist of clean watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the specified pier size and a minimum wall thickness of 1/4 inches. Extract all temporary casings during Version 06.2 22 print date: 06/16/06 concrete placement in accordance with this special provision unless the Contractor chooses to leave the casing in place in accordance with the requirements below. Any temporary steel casing that becomes bound or fouled during pier construction and cannot be practically removed may constitute a defect in the drilled pier. Improve such defective piers to the satisfaction of the Engineer by removing the concrete and enlarging the drilled pier, providing a replacement pier or other approved means. All corrective measures including redesign as a result of defective piers will not be cause for any claims or requests for additional compensation. Any steel casing left in place will be considered permanent casing. Permanent steel casings are only allowed for strain poles. When installing permanent casing, do not drill or excavate below the tip of the permanent casing at any time such that the permanent casing is against undisturbed soil. The Contractor may excavate a hole smaller than the specified pier size to facilitate permanent casing installation. Ensure the sides of the excavation do not slough during drilling. Ensure the hole diameter does not become larger than the inside diameter of the casing. No additional compensation will be paid for permanent casing. If polymer slurry is chosen to stabilize the excavation, use one of the following polymers listed in the table below: | PRODUCT | MANUFACTURER | |---------------|---| | SlurryPro EXL | KB Technologies Ltd
3648 FM 1960 West, Suite 107
Houston, TX 77068
(800) 525-5237 | | Super Mud | PDS Company
105 West Sharp Street
El Dorado, AR 71730
(800) 243-7455 | | Shore Pac GCV | CETCO Drilling Products Group
1500 West Shure Drive
Arlington Heights, IL 60004
(800) 527-9948 | Use slurry in accordance with the manufacturer's guidelines and recommendations unless approved otherwise by the Engineer. The Contractor should be aware that polymer slurry may not be appropriate for a given site. Polymer slurry should not be used for excavations in soft or loose soils as determined by the Engineer. In wet pour conditions, advise and gain approval from the Engineer as to the planned construction method intended for the complete installation of the drilled pier before excavating. # 2. Reinforcing Steel: Completely assemble a cage of reinforcing steel consisting of longitudinal and spiral bars and place cage in the drilled pier excavation as a unit immediately upon completion of drilling unless the excavation is entirely cased. If the drilled pier excavation is entirely cased down to the tip, immediate placement of the reinforcing steel is not required. Lift the cage so racking and cage distortion does not occur. Keep the cage plumb during concrete operations and casing extraction. Check the position of the cage before and after placing the concrete. #### **TIP Number** Signals & Intelligent Transportation Systems Securely cross-tie the vertical and spiral reinforcement at each intersection with double wire. Support or hold down the cage so that the vertical displacement during concrete placement and casing extraction does not exceed 2 inches. Do not set the cage on the bottom of the drilled pier excavation. Place plastic bolsters under each vertical reinforcing bar that are tall enough to raise the rebar cage off the bottom of the drilled pier excavation a minimum of 3 inches. In order to ensure a minimum of 3 inches of concrete cover and achieve concentric spacing of the cage within the pier, tie plastic spacer wheels at five points around the cage perimeter. Use spacer wheels that provide a minimum of 3 inches "blocking" from the outside face of the spiral bars to the outermost surface of the drilled pier. Tie spacer wheels that snap together with wire and allow them to rotate. Use spacer wheels that span at least two adjacent vertical bars. Start placing spacer wheels at the bottom of the cage and continue up along its length at maximum 10-foot intervals. Supply additional peripheral spacer wheels at closer intervals as necessary or as directed by the Engineer. #### 3. Concrete: Begin concrete placement immediately after inserting reinforcing steel into the drilled pier excavation. If the drilled pier excavation is entirely cased down to the tip, immediately placement of the concrete is not required. ## a) Concrete Mix Provide the mix design for drilled pier concrete for approval and, except as modified herein, meeting the requirements of Section 1000 of the *Standard Specifications*. Designate the concrete as Drilled Pier Concrete with a minimum
compressive strength of 4500 psi at 28 days. The Contractor may use a high early strength mix. Make certain the cementitious material content complies with one of the following options: - Provide a minimum cement content of 640 lbs/yd³ and a maximum cement content of 800 lbs/yd³; however, if the alkali content of the cement exceeds 0.4%, reduce the cement content by 20% and replace it with fly ash at the rate of 1.2 lb of fly ash per lb of cement removed. - If Type IP blended cement is used, use a minimum of 665 lbs/yd³ Type IP blended cement and a maximum of 833 lbs/yd³ Type IP blended cement in the mix. Limit the water-cementitious material ratio to a maximum of 0.45. Do not air-entrain drilled pier concrete. Produce a workable mix so that vibrating or prodding is not required to consolidate the concrete. When placing the concrete, make certain the slump is between 5 and 7 inches for dry placement of concrete or 7 and 9 inches for wet placement of concrete. Use Type I or Type II cement or Type IP blended cement and either No. 67 or No. 78M coarse aggregate in the mix. Use an approved water-reducer, water-reducing retarder, high-range water-reducer or high-range water-reducing retarder to facilitate placement of the concrete if necessary. Do not use a stabilizing admixture as a retarder in Drilled Pier Concrete without approval of the Engineer. Use admixtures that satisfy AASHTO M194 and add admixtures at the concrete plant when the mixing water is introduced into the concrete. Redosing of admixtures is not permitted. Place the concrete within 2 hours after introducing the mixing water. Ensure that the concrete temperature at the time of placement is 90°F or less. Version 06.2 24 print date: 06/16/06 ## b) Concrete Placement Place concrete such that the drilled pier is a monolithic structure. Temporary casing may be completely removed and concrete placement may be temporarily stopped when the concrete level is within 42 to 48 inches of the ground elevation to allow for placement of anchor bolts and conduit. Do not pause concrete placement if unstable caving soils are present at the ground surface. Remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete before inserting the anchor bolts and conduit. Resume concrete pouring within 2 hours. Do not dewater any drilled pier excavations unless the excavation is entirely cased down to tip. Do not begin to remove the temporary casing until the level of concrete within the casing is in excess of 10 feet above the bottom of the casing being removed. Maintain the concrete level at least 10 feet above the bottom of casing throughout the entire casing extraction operation except when concrete is near the top of the drilled pier elevation. Maintain a sufficient head of concrete above the bottom of casing to overcome outside soil and water pressure. As the temporary casing is withdrawn, exercise care in maintaining an adequate level of concrete within the casing so that fluid trapped behind the casing is displaced upward and discharged at the ground surface without contaminating or displacing the drilled pier concrete. Exerting downward pressure, hammering, or vibrating the temporary casing is permitted to facilitate extraction. Keep a record of the volume of concrete placed in each drilled pier excavation and make it available to the Engineer. After all the pumps have been removed from the excavation, the water inflow rate determines the concrete placement procedure. If the inflow rate is less than 6 inches per half hour, the concrete placement is considered dry. If the water inflow rate is greater than 6 inches per half hour, the concrete placement is considered wet. - **Dry Placement:** Before placing concrete, make certain the drilled pier excavation is dry so the flow of concrete completely around the reinforcing steel can be certified by visual inspection. Place the concrete by free fall with a central drop method where the concrete is chuted directly down the center of the excavation. - Wet Placement: Maintain a static water or slurry level in the excavation before placing concrete. Place concrete with a tremie or a pump in accordance with the applicable parts of Sections 420-6 and 420-8 of the Standard Specifications. Use a tremie tube or pump pipe made of steel with watertight joints. Passing concrete through a hopper at the tube end or through side openings as the tremie is retrieved during concrete placement is permitted. Use a discharge control to prevent concrete contamination when the tremie tube or pump pipe is initially placed in the excavation. Extend the tremie tube or pump pipe into the concrete a minimum of 5 feet at all times except when the concrete is initially introduced into the pier excavation. If the tremie tube or pump pipe pulls out of the concrete for any reason after the initial concrete is placed, restart concrete placement with a steel capped tremie tube or pump pipe. Once the concrete in the excavation reaches the same elevation as the static water level, placing concrete with the dry method is permitted. Before changing to the dry method of concrete placement, remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete. Vibration is only permitted, if needed, in the top 10 feet of the drilled pier or as approved by the Engineer. Remove any contaminated concrete from the top of the drilled pier and wasted concrete from the area surrounding the drilled pier upon completion. Permanently mark the top of each foundation with a stamp or embedded plate to identify the depth of the foundation. 129 #### 4. Concrete Placement Time: Place concrete within the time frames specified in Table 1000-2 of the *Standard Specifications* for Class AA concrete except as noted herein. Do not place concrete so fast as to trap air, water, fluids, soil or any other deleterious materials in the vicinity of the reinforcing steel and the annular zone between the rebar cage and the excavation walls. Should a delay occur because of concrete delivery or other factors, reduce the placement rate to maintain some movement of the concrete. No more than 45 minutes is allowed between placements. # 5. Scheduling and Restrictions: During the first 16 hours after a drilled pier has achieved its initial concrete set as determined by the Engineer, do not drill adjacent piers, install adjacent piles, or allow any heavy construction equipment loads or "excessive" vibrations to occur at any point within a 20 foot radius of the drilled pier. The foundation will be considered acceptable for loading when the concrete reaches a minimum compressive strength of 3000 psi. This provision is intended to allow the structure to be installed on the foundation in a shorter time frame, and does not constitute full acceptance of the drilled pier. Full acceptance will be determined when the concrete meets its full strength at 28 days. In the event that the procedures described herein are performed unsatisfactorily, the Engineer reserves the right to shut down the construction operations or reject the drilled piers. If the integrity of a drilled pier is in question, use core drilling, sonic or other approved methods at no additional cost to the Department and under the direction of the Engineer. Dewater and backfill core drill holes with an approved high strength grout with a minimum compressive strength of 4500 psi. Propose remedial measures for any defective drilled piers and obtain approval of all proposals from the Engineer before implementation. No additional compensation will be paid for losses or damage due to remedial work or any investigation of drilled piers found defective or not in accordance with these special provision or the plans. #### 6.5. CUSTOM DESIGN OF TRAFFIC SIGNAL SUPPORTS #### A. General: Design traffic signal supports with foundations consisting of metal strain poles or metal poles with mast arms. The lengths of the metal signal poles shown on the plans are estimated from available data for bid purposes. Determine the actual length of each pole from field measurements and adjusted cross-sections. Furnish the revised pole heights to the Engineer. Use all other dimensional requirements shown on the plans. Design all traffic signal support structures using the following 4th Edition AASHTO specifications: - Design for a 50 year service life as recommended by Table 3-3 (Recommended Minimum Design Life) in the 2003 Interim to the 4th Edition AASHTO. - Use the wind pressure map developed from 3-second gust speeds, as provided in Article 3.8. - Ensure signal support structures include natural wind gust loading and truck-induced gust loading in the fatigue design, as provided for in Articles 11.7.3 and 11.7.4, respectively. Designs need not consider periodic galloping forces. - Assume the natural wind gust speed in North Carolina is 11.2 mph. - Design for Category II fatigue, as provided for in Article 11.6, unless otherwise specified. - Calculate combined stresses to determine combined stress ratio (CSR) using applicable equations from Section 5. Maximum allowable CSR for all signal supports is 0.9. - Conform to article 10.4.2 and 11.8 for all deflection requirements. Ensure that the design permits cables to be installed inside poles and mast arms. Unless otherwise specified by special loading criteria, the computed surface area for ice load on signal heads is: - 3-section, 12-inch, Surface area: 26.0 ft² - 4-section, 12-inch, Surface area: 32.0 ft² - 5-section, 12-inch, Surface area: 42.0 ft² The ice loading for signal heads defined above includes the additional surface area that back plates will induce. Special loading criteria may be specified in instances where back plates will not be installed on signal heads. Refer to the Loading Schedule on each Metal Pole Loading Diagram for revised signal head surface
areas. The pole designer should revise ice loads accordingly in this instance. Careful examination of the plans when this is specified is important as this may impact sizing of the metal support structure and foundation design which could affect proposed bid quotes. Maximum allowable CSR of 0.9 still applies. Assume the combined minimum weight of a messenger cable bundle (including messenger cable, signal cable and detector lead-in cables) is 1.3 lbs/ft. Assume the combined minimum diameter of this cable bundle is 1.3 inches. Ensure that designs provide a removable pole cap with stainless steel attachment screws for each pole top and mast arm end. #### **B.** Metal Poles: Submit design drawings for approval showing all the necessary details and calculations for the metal poles including the foundation and connections. Include signal inventory number on design drawings. Include as part of the design calculations the ASTM specification numbers for the materials to be used. Provide the types and sizes of welds on the design drawings. Include a Bill of Materials on design drawings. Ensure design drawings and calculations are signed, dated, and sealed by the responsible Professional Engineer licensed in the State of North Carolina. Immediately bring to the attention of the Engineer any structural deficiency that becomes apparent in any assembly or member of any assembly as a result of the design requirements imposed by these Specifications, the plans, or the typical drawings. Said Professional Engineer is wholly responsible for the design of all poles and arms and review and acceptance of these designs by the Department does not relieve said Professional Engineer of this responsibility. Do not fabricate the assemblies until receipt of the Department's approval of the design drawings. For mast arm poles, provide designs with provisions for pole plates and associated gussets and fittings for mast arm attachment. As part of each mast arm attachment, provide a grommeted cable passage hole in the pole to allow passage of the signal cables from the pole to the arm. For strain poles, where ice is present, assume wind loads as shown in Figure 3-5 of the 4th Edition AASHTO Specification for Group III loading. For each strain pole, provide designs with provisions for two span wire clamps and associated hardware for the attachment of the support cable of the span wire suspension. Ensure that the diameter of the clamp is appropriately designed to be adjustable from 18 inches below the top, down to 10 feet below the top of the pole. Version 06.2 27 print date: 06/16/06 #### **TIP Number** Signals & Intelligent Transportation Systems Design tapers for all pole shafts that begin at the base with diameters that decrease uniformly at the rate of 0.14 inch per foot of length. Design a base plate on each pole. The minimum base plate thickness for all poles is determined by the following criteria: Case 1 Circular or rectangular solid base plate with the upright pole welded to the top surface of base plate with full penetration butt weld, and where no stiffeners are provided. A base plate with a small center hole, which is less than 1/3 of the upright diameter, and located concentrically with the upright pole, may be considered as a solid base plate. The magnitude of bending moment in the base plate, induced by the anchoring force of each anchor bolt is $M = (P \times D_1) / 2$, where M =bending moment at the critical section of the base plate induced by one anchor bolt P =anchoring force of each anchor bolt D_1 = horizontal distance between the anchor bolt center and the outer face of the upright, or the difference between the bolt circle radius and the outside radius of the upright Locate the critical section at the face of the anchor bolt and perpendicular to the bolt circle radius. The overlapped part of two adjacent critical sections is considered ineffective. <u>Case 2</u> Circular or rectangular base plate with the upright pole socketed into and attached to the base plate with two lines of fillet weld, and where no stiffeners are provided, or any base plate with a center hole that is larger in diameter than 1/3 of the upright diameter. The magnitude of bending moment induced by the anchoring force of each anchor bolt is $M = P \times D_2$, where P = anchoring force of each anchor bolt D_2 = horizontal distance between the face of the upright and the face of the anchor bolt nut Locate the critical section at the face of the anchor bolt top nut and perpendicular to the radius of the bolt circle. The overlapped part of two adjacent critical sections is considered ineffective. If the base plate thickness calculated for Case 2 is less than Case 1, use the thickness calculated for Case 1. The following additional owner requirements apply concerning pole base plates. - Ensure that whichever case governs as defined above, the anchor bolt diameter is set to match the base plate thickness. If the minimum diameter required for the anchor bolt exceeds the thickness required for the base plate, set the base plate thickness equal to the required bolt diameter. - For dual mast arm supports, or for single mast arm supports 50' or greater, use a minimum 8 bolt orientation with 2" diameter anchor bolts, and a 2" thick base plate. - For all metal poles with mast arms, use a full penetration groove weld with a backing ring to connect the pole upright component to the base. Refer to Standard Drawings for Metal Poles M4. Ensure that designs have anchor bolt holes with a diameter 1/4 inch larger than the anchor bolt diameters in the base plate. Ensure that the anchor bolts have the required diameters, lengths, and positions, and will develop strengths comparable to their respective poles. Provide designs with a 6 x 12-inch hand hole with a reinforcing frame for each pole. Provide designs with a terminal compartment with cover and screws in each pole that encompasses the hand hole and contains provisions for a 12-terminal barrier type terminal block. For each pole, provide designs with provisions for a 1/2 inch minimum thread diameter, coarse thread stud and nut for grounding which will accommodate a Number 6 AWG ground wire. Ensure the lug is electrically bonded to the pole and is conveniently located inside the pole at the hand hole. Where required, design couplings on the pole for mounting pedestrian pushbuttons at a height of 42 inches above the bottom of the base. Provide mounting points consisting of 1-1/2 inch internally threaded half-couplings that comply with the NEC that are mounted within the poles. Ensure the couplings are essentially flush with the outside surfaces of the poles and are installed before any required galvanizing. Provide a threaded plug in each mounting point. Ensure that the surface of the plug is essentially flush with the outer end of the mounting point when installed and has a recessed hole to accommodate a standard wrench. #### C. Mast Arms: Design all arm plates and necessary attachment hardware, including bolts and brackets. Design for grommeted holes on the arms to accommodate the cables for the signals. Design arms with weatherproof connections for attaching to the shaft of the pole. Use a full penetration groove weld with a backing ring to connect the mast arm to the pole. Refer to Standard Drawings for Metal Poles M5. #### 6.1. METAL SIGNAL POLE REMOVALS # A. Description: Remove and dispose of existing metal signal poles including mastarms, and remove and dispose of existing foundations, associated anchor bolts, electrical wires and connections. #### **B.** Construction Methods: #### 1. Foundations: Remove and promptly dispose of the metal signal pole foundations include reinforcing steel, electrical wires, and anchor bolts to a minimum depth of two feet below the finished ground elevation. At the Contractor's option, remove the complete foundation. #### 2. Metal Poles: Assume ownership of the metal signal poles, remove the metal signal poles, and promptly transport the metal signal poles from the project. Use methods to remove the metal signal poles and attached traffic signal equipment that will not result in damage to other portions of the project or facility. Repair damages that are a result of the Contractor's actions at no additional cost to the Department. Transport and properly dispose of the materials. Backfill and compact disturbed areas to match the finished ground elevation. Seed unpaved areas. Use methods to remove the foundations that will not result in damage to other portions of the project or facility. Repair damages that are a result of the Contractor's actions at no cost to the Department. #### 6.2. MEASUREMENT AND PAYMENT Actual number of metal strain signal poles without regard to height or load capacity furnished, installed and accepted. Version 06.2 29 print date: 06/16/06 Actual number of metal poles with single mast arms furnished, installed, and accepted. Actual number of soil tests with SPT borings drilled furnished and accepted. Actual volume of concrete poured in cubic yards of drilled pier foundation furnished, installed and accepted. Actual number of foundations with wing walls furnished, installed and accepted, excluding foundation length. Refer to method of measurement above for drilled pier foundation. Actual number of designs for mast arms with metal poles furnished and accepted. No measurement will be made of foundation designs prepared with metal pole designs, as these will be considered incidental to designing signal support structures. Actual number of metal signal pole foundations removed and disposed. Actual number of metal signal poles removed and disposed. Payment will be made under: | Metal Strain Signal Pole | Each | |---------------------------------|------------| | Metal Pole with Single Mast Arm | | | Soil Test | Each | | Drilled Pier Foundation | Cubic Yard | | Mast Arm with Metal Pole Design | Each | | Metal Pole Foundation Removal | | | Metal Pole Removal
 Each | # 7. CONTROLLERS WITH CABINETS # 7.1. MATERIALS – TYPE 170E CONTROLLERS Conform to the CALTRANS Traffic Signal Control Equipment Specifications and addendum 8, Specifications for Model 170E Enhanced Controller Unit and Associated Model 412C and Model 172 Modules except as required herein. Provide model 412C Program Modules as defined in CALTRANS Addendum 8 except as specified otherwise herein. Provide program module delivery with Memory Select #4 Configuration except that all RAM must be DALLAS Non-volatile RAM or an approved equal. Ensure that the removal of the program module from the controller will place the intersection into flash. Provide diagnostic software or removable diagnostic PROM modules that will test and diagnose the following: - systems of the controller, including the internal memory, Program Module, Real Time Clock, I/O circuitry, display, and keyboard; - systems of the cabinet, including the output file, input file, police panel, flashing operation, and cabinet switches; and - systems of the conflict monitor by checking all possible conflicts in a logical sequence and resetting the conflict monitor each time, and by testing red failure function and red detect cable disconnects. Ensure that the automatic reset function can be enabled by inserting a diagnostic plug in the jack labeled "Conflict Monitor Test" in the "TEST" position. In addition to CALTRANS system communications capability between a central computer and master controller and master to local controller communications, provide communications capability with the intersection conflict monitor via an RS-232C/D port on the monitor. Ensure controller Version 06.2 30 print date: 06/16/06 receives data from the conflict monitor through a controller Asynchronous Communications Interface Adapter (ACIA) determined by the controller software manufacturer. Ensure that with the appropriate software, the controller is capable of communicating directly through a laptop nine pin serial port to the same monitor RS-232C/D to retrieve all event log information. Furnish a communications connecting cable with the following pin connections. | 170 | | Conflict Monitor DB-9 | |-----------|------------|-----------------------| | RX pin L | Connect to | TX pin 2 | | TX pin K | Connect to | RX pin 3 | | +5 pin D | Connect to | DTR pin 4 | | GND pin N | Connect to | GND pin 5 | Provide a male DB-9 connector on the cable for connection to the monitor. Provide socket mounting for through-hole mount devices with 14 or more pins. Ensure that all sockets are AUGAT-500 series machined sockets, or equal. Provide a moisture resistant coating on all circuit boards. Mount circuit boards vertically. ## 7.2. MATERIALS – TYPE 2070L CONTROLLERS Conform to CALTRANS *Transportation Electrical Equipment Specifications* (TEES) (11-19-99) except as required herein. Furnish Model 2070L controllers. Ensure that removal of the CPU module from the controller will place the intersection into flash. The Department will provide software at the beginning of the burning-in period. Contractor shall give 5 working days notice before needing software. Program software provided by the Department. Provide model 2070L controllers with the latest version of OS9 operating software and device drivers, composed of the unit chassis and at a minimum the following modules and assemblies: - MODEL 2070 1B, CPU Module, Single Board - MODEL 2070-2A, Field I/O Module (FI/O) - MODEL 2070-3B, Front Panel Module (FP), Display B (8x40) - MODEL 2070-4A, Power Supply Module, 10 AMP - MODEL 2070-7A, Async Serial Com Module (9-pin RS-232) Furnish one additional MODEL 2070-7A, Async Serial Com Module (9-pin RS-232) for all master controller locations. For each master location and central control center, furnish a U.S. Robotics V.92 or approved equivalent auto-dial/auto-answer external modem to accomplish the interface to the Department-furnished microcomputers. Include all necessary hardware to ensure telecommunications. #### 7.3. MATERIALS – GENERAL CABINETS Provide a moisture resistant coating on all circuit boards. Provide one V150LA20 MOV or equal protection on each load switch field terminal. Provide a power line surge protector that is a two-stage device that will allow connection of the radio frequency interference filter between the stages of the device. Ensure that a maximum continuous current is at least 10A at 120V. Ensure that the device can withstand a minimum of 20 peak surge current occurrences at 20,000A for an 8x20 microsecond waveform. Provide a maximum clamp voltage of 280V at 20,000A with a nominal series inductance of 200µh. Ensure that the voltage does not exceed 280V. Provide devices that comply with the following: Version 06.2 31 print date: 06/16/06 | Frequency (Hz) | Minimum Insertion Loss (dB) | | |----------------|-----------------------------|--| | 60 | 0 | | | 10,000 | 30 | | | 50,000 | 55 | | | 100,000 | 50 | | | 500,000 | 50 | | | 2,000,000 | 60 | | | 5,000,000 | 40 | | | 10,000,000 | 20 | | | 20,000,000 | 25 | | #### 7.4. MATERIALS – TYPE 170E CABINETS # A. Type 170 E Cabinets General: Conform to CALTRANS Traffic Signal Control Equipment Specifications except as required herein. Furnish CALTRANS Model 336S pole mounted cabinets configured for 8 vehicle phases with power distribution assemblies (PDAs) number 2, and 4 pedestrian phases or overlaps. Furnish CALTRANS Model 332A base mounted cabinets with PDAs #2 and configured for 8 vehicle phases, 4 pedestrian phases, and 4 overlaps. When overlaps are required, provide auxiliary output files for the overlaps. Do not reassign load switches to accommodate overlaps unless shown on electrical details. # B. Type 170 E Cabinet Electrical Requirements: Provide a cabinet assembly designed to ensure that upon leaving any cabinet switch or conflict monitor initiated flashing operation, the controller starts up in the programmed start up phases and start up interval. Furnish two sets of non-fading cabinet wiring diagrams and schematics in a paper envelope or container and placed in the cabinet drawer. Provide surge suppression in the cabinet for each type of cabinet device. Provide surge protection for the full capacity of the cabinet input file. All AC+ power is subject to radio frequency signal suppression. If additional surge protected power outlets are needed to accommodate fiber transceivers, modems, etc.; install a UL listed, industrial, heavy-duty type power outlet strip with a maximum rating of 15 A / 125 VAC, 60 Hz. Provide a strip that has a minimum of 3 grounded outlets. Ensure the power outlet strip plugs into one of the controller unit receptacles located on the rear of the PDA. Ensure power outlet strip is mounted securely; provide strain relief if necessary. Connect detector test switches for cabinets as follows: | 336S Cabinet | | 332A Cabinet | | | |------------------------|-----------|------------------------|-----------|--| | Detector Call Switches | Terminals | Detector Call Switches | Terminals | | | Phase 1 | II-F | Phase 1 | I1-W | | | Phase 2 | I2-F | Phase 2 | I4-W | | | Phase 3 | I3-F | Phase 3 | I5-W | | | Phase 4 | I4-F | Phase 4 | I8-W | | | Phase 5 | I5-F | Phase 5 | J1-W | | | Phase 6 | I6-F | Phase 6 | J4-W | | | Phase 7 | I7-F | Phase 7 | J5-W | | | Phase 8 | I8-F | Phase 8 J8-W | | | Provide a terminal mounted loop surge suppresser device for each set of loop terminals in the cabinet. For a 10x700 microsecond waveform, ensure that the device can withstand a minimum of 25 peak surge current occurrences at 100A, in both differential and common modes. Ensure that the maximum breakover voltage is 170V and the maximum on-state clamping voltage is 30V. Provide a maximum response time less than 5 nanoseconds. Ensure that off-state leakage current is less than $10 \,\mu A$. Provide a nominal capacitance less than 220pf for both differential and common modes. Provide surge suppression on each communications line entering or leaving a cabinet. Ensure that the communications surge suppresser can withstand at least 80 occurrences of an 8x20 microsecond wave form at 2000A and a 10x700 microsecond waveform at 400A. Ensure that the maximum clamping voltage is suited to the protected equipment. Provide a maximum response time less than 1 nanosecond. Provide a nominal capacitance less than 1500pf and a series resistance less than 15 Ω . Provide surge suppression on each DC input channel in the cabinet. Ensure that the DC input channel surge suppresser can withstand a peak surge current of at least 10,000 amperes in the form of an 8x20 microsecond waveform and at least 100 occurrences of an 8x20 microsecond wave form at 2000 A. Ensure that the maximum clamping voltage is 30V. Provide a maximum response time less than 1 nanosecond and a series resistance less than 15Ω per line. Provide protection for each preemption or 120 Vrms single phase signal input by an external stud mounted surge protector. Ensure that a minimum stud size of 1/3 inch, and Number 14 AWG minimum sized wire leads with 1 foot minimum lengths. Ensure that a peak surge trip point less than 890 volts nominal for a 600 volt rise per microsecond impulse, and 950 volts nominal for a 3000 volt per microsecond rise impulse. Provide a maximum surge response time less than 200 nanoseconds at 10 kV per microsecond. Ensure that the AC isolation channel surge suppresser can withstand at least 25 occurrences of a 8x20 waveform of 10,000 amperes and a peak single pulse 8x20 microsecond wave form of 20,000 amperes. Provide a maximum clamping voltage of 30V. Provide a maximum response time less than 1 nanosecond. Ensure that the discharge voltage is under 200 volts at 1000 amperes and the insulation resistance is 100 megaohms. Provide an absolute maximum operating line current of one ampere at 120 Vrms. Provide conductors for surge protection wiring that are of sufficient size (ampacity) to withstand maximum overcurrents which could occur before
protective device thresholds are attained and current flow is interrupted. Furnish a fluorescent fixture in the rear across the top of the cabinet and another fluorescent fixture in the front across the top of the cabinet at a minimum. Ensure that the fixtures provide sufficient light to illuminate all terminals, labels, switches, and devices in the cabinet. Conveniently locate the fixtures so as not to interfere with a technician's ability to perform work on any devices or terminals in the cabinet. Provide a protective diffuser to cover exposed bulbs. Furnish all bulbs with the cabinet. Provide door switch actuation for the fixtures. Furnish a police panel with a police panel door. Ensure that the police panel door permits access to the police panel when the main door is closed. Ensure that no rainwater can enter the cabinet even with the police panel door open. Provide a police panel door hinged on the right side as viewed from the front. Provide a police panel door lock that is keyed to a standard police/fire call box key. In addition to CALTRANS Specifications, provide the police panel with a toggle switch connected to switch the intersection operation between normal stop-and-go operation (AUTO) and manual operation (MANUAL). Ensure that manual control can be implemented using inputs and software such that the controller provides full programmed clearance times for the yellow clearance and red clearance for each phase while under manual control. Provide a 1/4-inch locking phone jack in the police panel for a hand control to manually control the intersection. Provide sufficient room in the police panel for storage of a hand control and cord. Provide detector test switches inside the cabinet on the door or other convenient location which may be used to place a call on each of eight phases based on standard CALTRANS input file designation for detector racks. Provide three positions for each switch: On (place call), Off (normal detector operation), and Momentary On (place momentary call and return to normal detector operation after switch is released). Ensure that the switches are located such that the technician can read the controller display and observe the intersection. Provide a shorting jack inside cabinet that functions exclusively to call the controller and cabinet assembly into the automatic diagnostics functions. Ensure shorting jack will mate with a Switchcraft Model 190 plug or equivalent. Place jack in a convenient, unobstructed location inside cabinet. When the mating plug is inserted into the jack, ensure controller enters the diagnostic test mode and a controller generated monitor reset signal is placed on Pin C1-102 (monitor external reset) of the model 210 conflict monitor which causes the monitor to automatically reset. Equip cabinet with a connector and terminal assembly designated as P20 (Magnum P/N 722120 or equivalent) for monitoring the absence of any valid AC+ signal display (defined here as red, yellow, or green) input on any channel of the conflict monitor. Connect the terminal through a 3 1/2 feet 20 wire ribbon cable which mates on the other end to a connector (3M-3428-5302 or equivalent) installed in the front of the Type 210 enhanced conflict monitor. Ensure that the female connector which mates with the connector on the conflict monitor has keys to ensure that proper connection. Ensure that the cabinet enters the flash mode if the ribbon cable is not properly connected. Provide a P20 connector and terminal assembly that conforms to Los Angeles City DOT "Traffic Signal Specification DOT 170 ATSAC Universal and Related Equipment #54-053-02". Terminate ribbon cable at the P20 connector and terminal assembly. Ensure the P20 connector and mating ribbon cable connector is keyed to prevent cable from being improperly installed. Wire the P20 connector to the traffic signal red displays to provide inputs to conflict monitor as shown: Version 06.2 734 print date: 06/16/06 | Pin# | Function | Pin # | Function | | |------|--------------------|-------|---------------|--| | 1 | Channel 15 Red | 11 | Channel 9 Red | | | 2 | Channel 16 Red | 12 | Channel 8 Red | | | 3 | Channel 14 Red | 13 | Channel 7 Red | | | 4 | GND | 14 | Channel 6 Red | | | 5 | Channel 13 Red | 15 | Channel 5 Red | | | 6 | Special Function 2 | 16 | Channel 4 Red | | | 7 | Channel 12 Red | 17 | Channel 3 Red | | | 8 | Special Function 1 | 18 | Channel 2 Red | | | 9 | Channel 10 Red | 19 | Channel 1 Red | | | 10 | Channel 11 Red | 20 | Red Enable | | Provide a convenient means to jumper 120 VAC from the signal load switch AC+ supply bus to any channel Red input to the P20 connector in order to tie unused red inputs high. Ensure that easy access is provided to the jumper connecting terminals on the back side of cabinet. Locate the jumper terminals connecting to all 16 channel Red inputs in the same terminal block. For each channel Red input terminal, provide a companion terminal supplying AC+ from the signal bus. Provide one of the following two methods for providing Signal AC+ to the channel red input: - Place a commercially available jumper plug between the channel Red input and its companion Signal Bus AC+ terminal. - Place a jumper wire between a channel red input screw terminal and its companion Signal Bus AC+ screw terminal. Connection between channel Red input terminal and its companion Signal Bus AC+ terminal must not require a wire greater than 1/2 inch in length. Conform to the following Department wiring requirements: - Wire the Red Enable monitor input to the Signal Bus AC+ terminal TB01-1. - Do not connect either the special function 1 or the special function 2 monitor input to the red monitor card. - Ensure that removal of the P-20 ribbon cable will cause the monitor to recognize a latching fault condition and place the cabinet into flashing operation and that this is implemented in the conflict monitor software. Ensure that removal of the conflict monitor from the cabinet will cause the cabinet to revert to flashing operation. Provide Model 200 load switches and Model 204 flashers. # C. Type 170 E Cabinet Physical Requirements: Provide a surge protection panel with 16 loop protection devices and designed to allow sufficient free space for wire connection/disconnection and surge protection device replacement. Provide an additional three slots protected with six AC+ interconnect surge devices and two protected by four DC surge protection devices. Provide no protection devices on slot 14. Attach flash sense and stop time to the upper and lower slot as required. i) For pole mounted cabinets, mount surge protection devices for the AC+ interconnect cable inputs, inductive loop detector inputs, and low voltage DC inputs on a fold down panel assembly on the rear side of the input files. Fabricate the surge protection devices from sturdy aluminum and incorporate a swing down back panel to which the surge protection devices are attached. Attach the swing down panel to the assembly using thumb screws. Have the surge Version 06.2 35 print date: 06/16/06 - protection devices mounted horizontally on the panel and soldered to the feed through terminals of four 14 position terminal blocks with #8 screws mounted on the other side. - ii) For base mounted cabinets, attach separate surge protection termination panels to each side of the cabinet rack assembly. Mount the surge protection termination panel for AC isolation devices on the same side of the cabinet as the AC service inputs. Install the surge protection termination panel for DC terminals and loop detector terminals on the opposite side of the cabinet from the AC service inputs. Attach each panel to the rack assembly using bolts and make it easily removable. Mount the surge protection devices in horizontal rows on each panel and solder to the feed through terminals of 14 position terminal blocks with #8 screws mounted on the other side. Wire the terminals to the rear of a standard input file using spade lugs for input file protection. Provide permanent labels that indicate the slot and the pins connected to each terminal that may be viewed from the rear cabinet door. Label and orient terminals so that each pair of inputs is next to each other. Ensure the top row of terminals is connected to the upper slots and the bottom row of terminals is connected to the bottom slots. Indicate on the labeling the slot number (1-14) and the terminal pins of the input slots (either D & E for upper or J & K for lower). Terminate all grounds from the surge protection on a 15 position copper equipment ground bus attached to the rear swing down panel. Ensure that a Number 4 AWG green wire connects the surge protection panel assembly ground bus to the main cabinet equipment ground. Provide a standard input file and surge protection panel assembly that fits outside and behind the input file. Ensure the fold down panel allows for easy removal of the input file without removing the surge protection panel assembly or its parts. Provide a minimum 14 x 16 inch pull out, hinged top shelf located immediately below controller mounting section of the cabinet. Ensure the shelf is designed to fully expose the table surface outside the controller at a height approximately even with the bottom of the controller. Ensure the shelf has a storage bin interior which is a minimum of 1 inch deep and approximately the same dimensions as the shelf. Provide an access to the storage area by lifting the hinged top of the shelf. Fabricate the shelf and slide from aluminum or stainless steel and ensure the assembly can support the 170E controller plus 15 pounds of additional weight. Ensure shelf has a locking mechanism to secure it in the fully extended position and does not inhibit the removal of the 170E controller or removal of cards inside the controller when fully extended. Provide a locking mechanism that is easily released when the shelf is to be returned to its non-use position directly under the controller. #
D. Type 170 E Model 2010 Enhanced Conflict Monitor: Furnish Model 2010 Enhanced Conflict Monitors with 16 channels. In addition to CALTRANS requirements, ensure the conflict monitor monitors for the absence of a valid voltage level on at least one channel output of each load switch. Ensure that the absence of the programming card will cause the conflict monitor to trigger, and remain in the triggered state until reset. Provide a conflict monitor that recognizes the faults specified by CALTRANS and the following additional per channel faults that apply for monitor inputs to each channel: - consider a Red input greater than 70 Vrms as an "on" condition; - consider a Red input less than 50 Vrms as an "off" condition (no valid signal); - consider a Red input between 50 Vrms and 70 Vrms to be undefined by these specifications; - consider a Yellow or Green input greater than 25 Vrms as an "on" condition; - consider a Green or Yellow input less than 15 Vrms as an "off" condition; and - consider a Green or Yellow input between 15 Vrms and 25 Vrms to be undefined by these specifications. Version 06.2 36 print date: 06/16/06 Ensure monitor will trigger upon detection of a fault and will remain in the triggered (failure detected) state until unit is reset at the front panel or through the remote reset input for the following failures: - 1. Red Monitoring or Absence of Any Indication (Red Failure): A condition in which no "on" voltage signal is detected on any of the green, yellow, or red inputs to a given monitor channel. If a signal is not detected on at least one input (R, Y, or G) of a conflict monitor channel for a period greater than 1000 ms when used with a 170 controller and 1500 ms when used with a 2070L controller, ensure monitor will trigger and put the intersection into flash. If the absence of any indication condition lasts less that 750 ms when used with a 170 controller and 1200 ms when used with a 2070L controller, ensure conflict monitor will not trigger. Have red monitoring occur when the P20 Connector is installed and both the following input conditions are in effect: a) Red Enable input to monitor is active (Red Enable voltages are "on" at greater than 70 Vrms, off at less than 50 Vrms, undefined between 50 and 70 Vrms), and b) neither Special Function 1 nor Special Function 2 inputs are active. - 2. Yellow Indication Sequence Error: Yellow indication following a green is missing or shorter than 2.7 seconds (with \pm 0.1-second accuracy). If a channel fails to detect an "on" signal at the Yellow input following the detection of an "on" signal at a Green input for that channel, ensure that the monitor triggers and generates a sequence error fault indication. - 3. **Dual Indications on the Same Channel:** In this condition, more than one indication (R,Y,G) is detected as "on" at the same time on the same channel. If dual indications are detected for a period greater than 500 ms, ensure that the conflict monitor triggers and displays the proper failure indication (Dual Ind fault). If this condition is detected for less than 250 ms, ensure that the monitor does not trigger. Enable the monitor function for short/missing yellows and for dual indications on a per channel basis. Provide Special Function 1 and Special Function 2 that comply with the Los Angeles City DOT *Traffic Signal Specification DOT 170 ATSAC Universal and Related Equipment #54-053-02* to eliminate red failure monitoring while allowing other additional enhanced fault monitoring functions to continue. Ensure that the removal of the P-20 ribbon cable will cause the monitor to recognize a latching fault condition and place the cabinet into flashing operation. Ensure that when the Conflict Monitor is triggered due to a fault, it provides an LED indication identifying the type of failure detected by the monitor except for the P20 ribbon cable removal fault. Ensure that the monitor indicates which channels were active during a conflict condition and which channels experienced a failure for all other per channel fault conditions detected, and that these indications and the status of each channel are retained until the Conflict Monitor is reset. Ensure that the conflict monitor will store at least nine of the most recent malfunctions detected by the monitor in EEPROM memory. For each malfunction, record at a minimum the time, date, type of malfunction, relevant field signal indications, and specific channels involved with the malfunction. Provide communications from the monitor to the 170/2070L controller via an RS-232C/D port on the monitor in order to upload all event log information from the monitor to the controller or to a Department-furnished system computer via the controller. Ensure that the controller can receive the data through a controller Asynchronous Communications Interface Adapter (Type 170E) or Async Serial Comm Module (2070L) determined by the controller software. Provide software capable of communicating directly through the same monitor RS-232C/D to retrieve all event log information to a Department-furnished laptop computer. In addition to the connectors required by the CALTRANS Specifications, provide the conflict monitor with a connector mounted on the front of the monitor (3M-3428-5302 with two polarizing keys or equal) which mates with a 20 pin ribbon cable connector that conducts the signals from the P20 connector on the cabinet assembly. Provide a P20 connector and terminal assembly that complies with the Los Angeles City DOT "Traffic Signal Specification DOT 170 ATSAC Universal and Related Equipment #54-053-02". Provide connector pins on the monitor with the following functions: | Pin # | Function | Pin # | Function | |-------|--------------------|-------|---------------| | 1 | Channel 15 Red | 11 | Channel 9 Red | | 2 | Channel 16 Red | 12 | Channel 8 Red | | 3 | Channel 14 Red | 13 | Channel 7 Red | | 4 | Chassis Ground | 14 | Channel 6 Red | | 5 | Channel 13 Red | 15 | Channel 5 Red | | 6 | Special Function 2 | 16 | Channel 4 Red | | 7 | Channel 12 Red | 17 | Channel 3 Red | | 8 | Special Function 1 | 18 | Channel 2 Red | | 9 | Channel 10 Red | 19 | Channel 1 Red | | 10 | Channel 11 Red | 20 | Red Enable | Provide a DB-9 female connector for the purpose of data communication with the controller. Electrically isolate the port interface electronics from all monitor electronics, excluding Chassis Ground. Furnish a communications connecting cable with pin connections as follows: | 170 | | Conflict Monitor DB-9 | |-----------|------------|-----------------------| | RX pin L | Connect to | TX pin 2 | | TX pin K | Connect to | RX pin 3 | | +5 pin D | Connect to | DTR pin 4 | | GND pin N | Connect to | GND pin 5 | | 2070L | | Conflict Monitor DB-9 | |-----------|------------|-----------------------| | DCD pin 1 | Connect to | DCD pin 1 | | RX pin 2 | Connect to | TX pin 2 | | TX pin 3 | Connect to | RX pin 3 | | GND pin 5 | Connect to | GND pin 5 | | RTS pin 7 | Connect to | CTS pin 7 | | CTS pin 8 | Connect to | RTS pin 8 | #### 7.5. MATERIALS – TYPE 170 DETECTOR SENSOR UNITS Furnish detector sensor units that comply with Chapter 5, "General Requirements for Detector Sensor Units," of the CALTRANS Specifications, and the requirements for Model 222 and Model 224 loop detector sensor units. Version 06.2 38 print date: 06/16/06 #### 8. CARY COMPATIBLE CABINETS AND CONTROLLERS #### 8.1.DESCRIPTION The intersection(s) on this project will be part of the Town of Cary Traffic Signal System. The TS-2 signal cabinet(s), 2070LN2 controller(s), and all hardware, cabling, adapters, and other components in this project shall be compatible with the Cary Signal System. This section describes the cabinet(s), controller(s), and local controller software required for this project. Furnish and install controller from the California Department of Transportation (CALTRANS) family of Model 2070 advanced traffic controllers. Furnish and install new controller cabinets that meet or exceed the requirements of the NEMA TS-2 specification and the NCDOT standard specifications. Modify existing Model 2070 controllers to be: fully compatible and interoperable with new 2070 controller furnished under the Cary Signal System project; fully compatible and interoperable with the communications systems furnished and installed under the Cary Signal System project, and fully compatible and interoperable with the central distributed processing system software furnished and installed under the Cary Signal System project. This may require upgrade of local 2070 controller operating system software, upgrade of 2070 controller modules, and/or update or addition of 2070 controller device drivers. Furnish 2070 controller equipment that is listed on the CALTRANS qualified product list (QPL) unless otherwise approved by the engineer. The local software (firmware) for this project will be supplied by the Town of Cary Traffic Engineer. Comply with the provisions of Section 1700 of the 2006 <u>Standard Specifications for Roads and Structures</u>. #### 8.2.MATERIALS # A. TYPE 2070 LN2 CONTROLLERS: Furnish and install new model 2070 LN2 controllers in new NEMA TS-2 Type 1 traffic signal controller cabinet at the location(s) shown on the plan. For the traffic signal controller unit power supply, clearly identify the amperage level of the unit using a permanent marking. Furnish and install 2070 Lite controller into new NEMA TS-2 Type 1 traffic signal controller cabinet. Referred to in the CALTRANS TEES (California Department of Transportation *Transportation Electrical Equipment Specifications*) as a 2070 LN2, the furnished unit shall meet all requirements of CALTRANS TEES (8-16-2002 with errantums 1&2) except as noted in these Project Special Provisions. Furnish units configured as follows: - Unit CHASSIS - 2070 1B CPU Module - 2070-2N Field I/O Module - 2070-3B Front Panel Module - 2070-4N (A) Power Supply Module - 2070-7A, Asynchronous Serial Communication Module (9-pin,
RS-232) Furnish all accessories necessary to connect the controller to the system hardware components, including the communications cable and necessary pin adapters needed to connect the 9 pin RS-232 communications port to the fiber optic transceiver. Ensure that removal of the CPU module from the controller will place the intersection into flash. For each master location and central control center, furnish a U.S. Robotics V.92 or approved equivalent auto-dial/auto-answer external modem to accomplish the interface to the Department-furnished microcomputers. Include all necessary hardware to ensure telecommunications. # **B. NEMA TS-2 DETECTOR CARDS AND RACKS** Furnish NEMA TS-2 multi-channel detector cards and racks. Provide cards that sequentially scan each of its channels. Provide channels with a minimum of eight sensitivity levels. On a multi-channel detector, ensure that it is possible to turn a channel off and disable its operation from the front panel. Ensure that detector units meet the requirements of NEMA TS-2 Specifications except as follows: - Class 2 vehicle output is maintained for a minimum of 4 minutes, and - Class 3 vehicle output is maintained for a minimum of 30 minutes, maximum 120 minutes. Where required, furnish detector cards equipped with required timing features. Provide a delay that is settable in one second increments (maximum) over the range of zero to thirty seconds. Provide an extend that is settable in 1/4 second increments (maximum) over the range of 0 to 15 seconds. Provide cards that can set both delay and extend timing for the same channel. If both timings are set, ensure that the delay operates first. After the delay condition has been satisfied, ensure that the extend timer operates normally and that it is not necessary to satisfy the delay timing for an actuation arriving during the extend portion. Ensure that two-channel detector cards operate normally with the same loop connected to both channels. Provide lightning and surge protection that is incorporated into the design of the detector. Ensure that each channel operates properly when used with the loop detector surge protector. In addition to NEMA TS-2 Specifications, ensure that each channel is capable of tuning to and operating on any loop system inductance within the range of 50 to 2,000 μ h. Ensure that the channel will operate properly even on a loop system that has a single-point short to earth ground. #### C. MATERIALS - GENERAL CABINETS Provide a moisture resistant coating on all circuit boards. Provide one V150LA20 MOV or equal protection on each load switch field terminal. Provide a power line surge protector that is a two-stage device that will allow connection of the radio frequency interference filter between the stages of the device. Ensure that a maximum Version 06.2 40 print date: 06/16/06 continuous current is at least 10A at 120V. Ensure that the device can withstand a minimum of 20 peak surge current occurrences at 20,000A for an 8x20 microsecond waveform. Provide a maximum clamp voltage of 280V at 20,000A with a nominal series inductance of 200µh. Ensure that the voltage does not exceed 280V. Provide devices that comply with the following: | Frequency (Hz) | Minimum Insertion Loss (dB) | |----------------|-----------------------------| | 60 | 0 | | 10,000 | 30 | | 50,000 | 55 | | 100,000 | 50 | | 500,000 | 50 | | 2,000,000 | 60 | | 5,000,000 | 40 | | 10,000,000 | 20 | | 20,000,000 | 25 | # D. MATERIALS - NEMA TS-2 TYPE 1 CABINETS: # 3. NEMA TS-2 Type 1 Cabinets General: Comply with the NEMA Standards Publication TS-2 (NEMA TS-2) except as otherwise stated herein. Furnish unpainted, natural, aluminum cabinet shells that comply with Section 7 of NEMA TS-2. Ensure all non-aluminum hardware on the cabinet is stainless steel or a Department approved non-corrosive alternate. Provide a roof with a slope from front to back at a minimum ratio of 1 inch drop per 2 feet. Ensure that each exterior cabinet plane surface is constructed of a single sheet of aluminum and is seamless. Ensure all components are arranged for easy access during servicing. When modular in construction, provide guides and positive connection devices to insure proper pin alignment and connection. Provide a moisture resistant coating on all circuit boards. Furnish all accessories required to accomplish base mounting and cabinet grounding. Assign cabinet phases to components as indicated on the table entitled "16-Position Cabinet Phase Assignments". # 4. NEMA TS-2 Type 1 Cabinet Physical Requirements: Provide a handle and three point latching mechanism designed to be disassembled using hand tools. Provide a shaft connecting the latching plate to the door handle by passing through the door within a bushing, bearing, or equivalent device. Provide a latching plate at least 3/16 inch thick and that mates securely with the lock bolt. Provide a lock bolt with a flat end (no bevel) and that has at least 1/4 inch of length in contact with the latching plate. Ensure that the handle and lock are positioned so that the lock does not lie in the path of the rotating handle as the door is unlatched and that the handle points down in the latched position. Provide continuous welds made from the inside wherever possible. On the exterior, provide smooth and flush joints. Ensure that no screws, bolts, or rivets protrude to outside of cabinet shell. Provide a main door opening that encompasses the full frontal area of the cabinet shell exclusive of the area reserved for plenums and flanges. Provide a rear door in base-mounted cabinets, unless otherwise specified. Ensure that the rear door complies with all requirements for the front door, except as follows: - Hinge the rear door on the left side as viewed from the rear of the cabinet shell facing the door. - •No police compartment is required on a rear door. Ensure that the cabinet shell is sturdy and does not exhibit noticeable flexing, bending or distortion under normal conditions except that a minor amount of flexing is permitted in the main door and rear door only when the cabinet is open. In such case, the flexing must not result in permanent deformation of the door or damage to components mounted on the door. Ensure that pedestal-mounted cabinets have sufficient framing around the slipfitter attachment so that no noticeable flexing will occur at or about this point. Provide NEMA TS-2, Type 1 cabinets with 2 shelves. Ensure top shelf has an unobstructed depth of at least 12 inches for base-mounted cabinets. Ensure top shelf has an unobstructed shelf depth of at least 13 inches for pole-mounted cabinets. Locate the top shelf at least 12 inches below the top of the door opening. Provide a lower shelf for mounting detector racks, its associated BIU, and other auxiliary equipment. Locate the lower shelf at least 10 inches below the top shelf, and provide at least 13 inches of unobstructed shelf depth. Secure card racks and associated BIU connector housings to the shelf by a removable means. Place the rack so that the front of the rack is not obscured by any object and so that backpanel terminals are not obscured even when the rack is fully utilized. Provide a back panel hinged at the bottom for access during service. Provide a minimum 12 x 14 inch plastic envelope or container located in the cabinet so that it is convenient for service personnel. Furnish two sets of non-fading cabinet wiring diagrams and schematics in a paper envelope or container and placed in the plastic envelope or container. Do not locate permanently mounted equipment in such a way that will restrict access to terminals. #### 5. NEMA TS-2 Type 1 Cabinet Electrical Requirements: Provide a neutral that is not connected to the earth ground or the logic ground anywhere within the cabinet. Ensure the earth ground bus and the neutral ground bus each have ten compression type terminals each of which can accommodate wires ranging from number 14 through number 4. Provide surge suppression in the cabinet and ensure that all devices operate over the temperature range of -40 to 185 degrees F. Provide a loop surge suppresser for each set of loop terminals in the cabinet. Use terminal mount or stud mount devices for terminating the loop surge suppresser. Ensure that the device can withstand a minimum of 25 peak surge current occurrences at 100A in differential and common modes for a 10x700 microsecond waveform. Ensure that the maximum breakover voltage is 170V and the maximum on-state clamping voltage is 30V. Provide a maximum response time less than 5 nanoseconds and an off-state leakage current less than 10 μ A. Ensure that a nominal capacitance less than 220pf for both differential and common modes. Provide surge suppression on each communications line entering or leaving a cabinet. Ensure that the communications surge suppresser can withstand at least 80 occurrences of an 8x20 microsecond waveform at 2000A, or a 10x700 microsecond waveform at 400A. Provide a maximum 42 print date: 06/16/06 Version 06.2 #### **TIP Number** Signals & Intelligent Transportation Systems 146 clamping voltage suited to the equipment protected. Provide a maximum response time less than 1 nanosecond with a nominal capacitance less than 1500pf and a series resistance less than 15 Ω . Furnish a fluorescent fixture as required by NEMA TS-2 Specifications with a second lighting fixture mounted under the bottom shelf to light the terminals. Ensure that the second fixture is a fluorescent lighting fixture that complies with NEMA TS-2 Specifications or is a flexible gooseneck fixture containing a protected incandescent reflector bulb of at least 25 Watts. Furnish all bulbs. Ensure that the lamps are door switch actuated. Provide connector type harnesses for all equipment installed in the cabinet, including detector racks. Furnish a harness with connectors to adapt the NEMA TS-2, Type 2 controller "A" connector to the NEMA TS-2, Type 1 "A" connector furnished with
the cabinet assembly. Tag all conductors that are likely to be disconnected from time to time with non-fading, permanent sleeve labels at the ends of the conductors. In cabinets that are not base mounted, have no terminals closer than 4 inches to the bottom of the cabinet. Fasten all wiring and harness supports to the cabinet with screws or other removable mechanical means. Do not use adhesives. Provide harnesses in the cabinet for non-permanently mounted equipment that are long enough to allow the equipment to be relocated in an upright position to the roof of the cabinet or to be located to the ground 1 foot below cabinet level. Do not locate terminals on the underside of shelves or at other places where they are not readily visible and accessible, or where they may be a hazard to personnel. Provide a clear plastic guard for exposed 120 volt AC terminals on the power panel and the rear of terminal facilities accessible from the rear door. Provide compression type earth grounds with 10 position terminal buses sized for four Number 14 AWG wires. Provide screw-type terminals for signal feed, detector lead-in, NEMA I/Os, backpanels, and interconnect terminals. Provide screw terminals for all other devices not defined by NEMA TS-2 Specifications. Ensure that wiring by the manufacturer is terminated either on double terminal strips with crimped-on lugs or soldered to rear terminals. Ensure that upon leaving any cabinet or malfunction management unit (MMU) initiated flashing operation, the controller reverts to its programmed start-up operation through the use of the START UP FLASH CALL feature. Do not require special controller software to implement the return from flash in the start up mode of operation. Wire one of the output relays of the MMU to apply a logic ground to the STOP TIME input for rings 1 and 2 when the MMU initiates flashing operation because of a sensed failure. Ensure that the MMU is interlocked within the cabinet control circuitry as to prevent normal signal operation with the MMU disconnected. Ensure that the 24Vdc supply to the load switches is disconnected when cabinet flashing operation is initialized. Provide a momentary pushbutton, or equivalent method, to apply 24Vdc to the load switches during cabinet flash for troubleshooting purposes. Unless otherwise required, provide switches that are heavy-duty toggle switches. Provide a technician panel mounted on the inside of the door with an EQUIPMENT POWER (ON/OFF) switch and an AUTO/FLASH switch. Ensure switches are protected against accidental activation by a flip-up switch guard that does not affect switch position when closed. Provide an EQUIPMENT POWER (ON/OFF) toggle switch that connects or disconnects protected equipment power to all devices in the cabinet and does not affect AC power to the flasher. Provide an AUTO/FLASH toggle switch which immediately places the intersection into flashing operation, disconnects the Version 06.2 43 print date: 06/16/06 STOP TIME input generated by the MMU, and applies a logic ground to the LOCAL FLASH STATUS input of the MMU. When placed in the AUTO position, ensure that this switch causes the return of the intersection to normal operation at the programmed start up phases and intervals via the START-UP FLASH CALL feature of the controller unit. Provide a DETECTOR CHANNEL CALL three position detector test switch (on, normal, momentary on) installed for every detector channel in the detector racks. Provide four pedestrian detector test switches (on normal, momentary on) to the 4 pedestrian detector inputs of BIU no. 1. The switches may be installed on the door or on the non-door hinge side of the cabinet at the front of the cabinet. Provide a police compartment constructed such that neither water nor dust will enter the interior of the cabinet through the police compartment, even when the police compartment door is open. Provide a rigid enclosure over the terminals of its components. Do not use flexible guards. Provide a SIGNAL POWER (ON/OFF) switch, an AUTO/FLASH switch, and an AUTO/MANUAL switch. Provide a locking jack for an optional manual push-button. Provide a SIGNAL POWER (ON/OFF) toggle switch which, when in the "OFF" position, disconnects AC power to the field terminals, applies logic ground to the LOCAL FLASH STATUS input of the MMU, and disconnects the STOP TIME input generated by the MMU. Ensure that a means to prevent recognition of red failure by the malfunction management unit is used and the switch does not affect power to equipment in the cabinet. When the SIGNAL POWER switch is switched to the "ON" position, ensure controller reverts to the programmed start-up phases and intervals via the START-UP FLASH CALL feature of the controller unit. Provide an AUTO/FLASH toggle switch that immediately places the intersection into flashing operation, and applies logic ground to the MMU LOCAL FLASH STATUS input. When placed in the AUTO position, ensure this switch allows the return of the intersection to normal operation at the programmed startup phases and intervals via THE START-UP FLASH CALL feature of the controller unit. Provide an AUTO/MANUAL toggle switch that selects between normal operation (in the AUTO position) and manually controlled operation (in the MANUAL position). When in the MANUAL position, ensure that a logic ground is applied to the Manual Control Enable input of the controller. Ensure that only when a logic ground signal is applied to Manual Control Enable, the optional manual push-button can be used to advance the phases by applying and removing a logic ground signal to the Interval Advance input. Provide one flash transfer relay and flasher for each corresponding socket. Provide 2 spare terminals for each flasher circuit output. Provide 1 MMU and 1 cabinet DC power supply (shelf mounted) with all necessary harnesses wired to the appropriate cabinet/back panel termination points. Terminate unused MMU inputs. Provide BIUs with sockets and terminal facilities. BIUs 3 and 4 may be mounted in a rack separate from the back panel. Provide a minimum of 2 sets of loop terminals and a single earth ground terminal between the 2 sets of loop wire terminals for each slot in each detector rack provided. In cabinets with less than 16 loadbay positions, provide flash transfer relay circuits for load switches used to implement pedestrian signals that are brought out to separate terminals but not connected for flashing operation when pedestrian signals are assigned to the load switch channel. Ensure that the flash circuit inputs and outputs are available for easy connection to allow conversion of a pedestrian movement load switch for use as an overlap (vehicle phase) movement load switch. Provide a reserved flash transfer relay circuit for four vehicle movements and all necessary flash transfer relay input and output wiring and flash circuit wiring that can be made available at each pedestrian load switch position. Comply with the applicable tables for the type of cabinet furnished: Version 06.2 44 print date: 06/16/06 **TS-2 Type 1 Cabinet Configurations** | | | | F | | | | |---------------|---------|---------|---------|----------------|------------|---------| | CABINET | LOAD | Flash | FLASHER | BIU'S REQUIRED | DETECTOR | TS-2 | | CONFIGURATION | Switch | RELAY | SOCKETS | (BACK PANEL/ | RACK TYPE/ | CABINET | | | SOCKETS | SOCKETS | | DETECTOR) | QUANTITY | Type* | | NC-1 | 4 | 2 | 1 | 1/1 | 1/1 | 4** | | NC-2 | 8 | 4 | 1 | 1/1 | 2/1 | 5 | | NC-3 | 12 | 6 | 1 | 2/1 | 2/1 | 6 | | NC-3A | 12 | 6 | 1 | 2/2 | 2/2 | 6 | | NC-3B | 12 | 6 | 1 | 2/2 | 2/1 1/1 | 6 | | NC-4 | 12 | 6 | 1 | †3/1 | 2/1 | 6 | | NC-4A | 12 | 6 | 1 | †3/2 | 2/2 | 6 | | NC-4B | 12 | 6 | 1 | †3/2 | 2/1 1/1 | 6 | | NC-5 | 12 | 6 | 1 | ‡ 4/1 | 2/1 | 6 | | NC-5A | 12 | 6 | 1 | ‡ 4/2 | 2/2 | 6 | | NC-5B | 12 | 6 | 1 | ‡ 4/2 | 2/1 1/1 | 6 | | NC-6 | 16 | 6 | 1 | 2/2 | 2/2 | 6 | | NC-6A | 16 | 6 | 1 | 2/2 | 2/1 1/1 | 6 | | NC-7 | 16 | 6 | 1 | †3/2 | 2/2 | 6 | | NC-7A | 16 | 6 | 1 | †3/2 | 2/1 1/1 | 6 | | NC-8 | 16 | 6 | 1 | ‡ 4/2 | 2/2 | 6 | | NC-8A | 16 | . 6 | 1 | ‡ 4/2 | 2/1 1/1 | 6 | ^{*}See NEMA TS-2-1998, Table 7-1 for actual dimensions. Version 06.2 45 print date: 06/16/06 ^{**}Type 5 cabinet may be substituted for four position base mount cabinet. [†] BIU 3 required along with BIU 1, BIU 2, and detector BIU(s). [‡] BIU 3 and BIU 4 required along with BIU 1, BIU 2, and detector BIU(s). 8-Position Loadbay Cabinet Phase Assignments | Phase /OL
Number | MALFUNCTION MANAGEMENT UNIT CHANNEL ASSIGNMENT | ASSIGNED TO LOAD SWITCH POSITION NUMBER | Assigned To
Flash Relay
number | Assigned to
Flasher
Circuit/ | Program
Flash
Color | |---------------------|--|---|--------------------------------------|------------------------------------|---------------------------| | 1 | 1 | 1 | 1 | 1 | R | | 2 | 2 | 2 | 1 | 2 | Y | | 3 | 3 | 3 | 2 | 1 | R | | 4 | 4 | 4 | 2 | 2 | R | | 2 PED-O/LA † | 5 | 5 | †3 | †1 | D | | 4 PED O/L .B† | 6 | 6 | †3 | †2 | D | | O/L C | 7 | 7 | 4 | 1 | R | | O/L D | 8 | 8 | 4 | 2 | R | [†] Prepare this load switch position for the pedestrian movement indicated. Wire pedestrian signals to flash dark. Make flash circuitry for this load switch position available and accessible at a separate terminal to allow connection to the load switch and field terminal circuit for a vehicle movement at a later date if desired. 12-Position Loadbay Cabinet Phase Assignments | Phase/OL
Number | MALFUNCTION MANAGEMENT UNIT CHANNEL ASSIGNMENT | ASSIGNED TO
LOAD SWITCH
POSITION NUMBER | ASSIGNED TO
FLASH RELAY
NUMBER | Assigned to
Flasher
Circuit/ | Program
Flash
Color | |--------------------|--|---|--------------------------------------|------------------------------------
---------------------------| | 1 | 1 | 1 | 1 | 1 | R | | 2 | 2 | 2 | 1 | 2 | Y | | 3 | 3 | 3 | 2 | 1 | R | | 4 | 4 | 4 | 2 | 2 | R | | 5 | 5 | 5 | 3 | 2 | R | | 6 | 6 | 6 | 3 | 1 | Y | | 7 | 7 | 7 | 4 | 2 | R | | 8 | 8 | 8 | 4 | 1 | R | | 2 PED or O/L A† | 9 | 9 | †5 | †1 | D | | 4 PED or O/L B† | 10 | 10 | †5 | †2 | D | | 6 PED or O/C† | 11 | 11 | †6 | †1 | D | | 8 PED or O/L D† | 12 | 12 | †6 | †2 | D | [†] Prepare this load switch position for the pedestrian movement indicated. Wire pedestrian signals to flash dark. Make flash circuitry for this load switch position available and accessible at a separate terminal to allow connection to the load switch and field terminal circuit for a vehicle movement at a later date. Version 06.2 746 print date: 06/16/06 # 16 Position Loadbay Cabinet Phase Assignments | Phase/OL
Number | MALFUNCTION MANAGEMENT UNIT CHANNEL ASSIGNMENT | ASSIGNED TO LOAD SWITCH POSITION NUMBER | ASSIGNED TO
FLASH RELAY
NUMBER | Assigned to
Flasher
Circuit/ | Program
Flash
Color | |--------------------|--|---|--------------------------------------|------------------------------------|---------------------------| | 1 | 1 | 1 | 1 | 1 | R | | 2 | 2 | 2 | 1 | 2 | Y | | 3 | 3 | 3 | 2 | 1 | R | | 4 | 4 | 4 | 2 | 2 | R | | 5 | 5 | 5 | 3 | 2 | R | | 6 | 6 | 6 | 3 | 1 | Y | | 7 | 7 | 7 | 4 | 2 | R | | 8 | 8 | 8 | 4 | 1 | R | | 2 PED | 9 | 9 | - | - | D | | 4 PED | 10 | 10 | - | - | · D | | 6 PED | 11 | 11 | - | - | D | | 8 PED | 12 | 12 | - | - | D | | O/L A | - 13 | 13 | 5 | 1 | R | | O/L B | 14 | 14 | 5 | 2 | R | | O/L C | 15 | 15 | 6 | 1 | R | | O/L D | 16 | 16 | 6 | 2 | R | Provide flasher circuits and flash transfer relay outputs and inputs that are brought out to terminals which provide a convenient means of changing flash color and flash circuit at each load switch position. Ensure that changing flash color of a given phase or overlap involves no more than moving three wires. Ensure that the selected phase or overlap flash color load switch output is easily movable to connect to the normally open flash transfer relay input assigned to the phase or overlap. Ensure that the common output of the flash transfer relay circuit assigned to the phase or overlap is easily movable to the selected field terminal (input) of the phase or overlap flash color. Ensure that the non-flashed load switch output is easily moved to provide power directly to the phase or overlap field terminal for that color. In cabinets requiring a Type 1 detector rack, route to and terminate on a conveniently located terminal block on the back panel or elsewhere in the cabinet, the eight unused detector BIU Vehicle Call inputs. Tie the 8 unused detector BIU Detector Status inputs to the logic ground. Provide detector racks and associated detector rack BIUs that are removable and replaceable from the cabinet either as a complete assembly or separately. Ensure that disconnection and reconnection of these units is through quick disconnect type connectors. #### 8.3.CONSTRUCTION METHODS #### A. General: Locate cabinet so as not to obstruct sight distance of vehicles turning on red. At the controller cabinet where fiber optic cable is routed, coil a minimum of 20 feet of fiber optic cable in the cabinet as shown in the Plan. Provide the Engineer with the serial number and cabinet identification number for each new controller and cabinet installed. Furnish a cabinet wiring diagram on 22" by 34", non-fading sheet, for each cabinet (new and or reused). Wiring diagram shall meet or exceed the requirements of the Standard Specifications and #### **TIP Number** Signals & Intelligent Transportation Systems 151 include complete diagrammatic representation of each field input and output and it's cabinet terminal connections. Provide to the Engineer digital files of the cabinet wiring diagram in MicroStation format for each intersection on a single CD. Provide a similar single CD with cabinet wiring diagrams in AutoCAD formats. File compression using the latest version of the PKZIP compression software is permitted. Program local controller. Perform all data entry necessary to input timing parameters into the controllers. Install controller and perform wiring required to provide proper phasing and color sequence. Furnish new fully tested and operational equipment. Provide complete equipment documentation and warranties, to assure full and complete utilization of all equipment furnished. Provide a certification that all controller hardware required for this project, which is unmodified from the CALTRANS TEES, or CALTRANS TSCES, and is included on the most current version of the CALTRANS Qualified Products List (QPL). Provide a contact name, address, and telephone number of a person who shall be available for software support and technical questions. Response time for technical questions shall be 24 hours or less. Provide telephone technical support for a period of one year after final acceptance of the project. Deliver a copy of the software/firmware in machine readable object code form, installed and tested as provided for in these Technical Specifications. Provide a copy of all source code on suitable magnetic or optical media and the corresponding source listings for the firmware to the Engineer prior to the system operational tests. Furnish documentation for the communication protocol to the Engineer. Provide two (2) copies of notebook computer software (either on CD or 1.44 megabyte, 3.5 inch diskettes). # **B.** Local Controller and Cabinet Testing: Perform shop and field testing (both pre- and post-installation) on the 2070L controllers, cabinets, and related hardware. <u>Pre-Installation Tests</u> The Contractor shall supply new controllers and cabinets to the Town of Cary Public Works Department, 400 James Jackson Avenue in Cary, a minimum or one (1) week prior to installation of the controller in the new cabinet. The Town of Cary will load the new software and observe the controller operating in the new cabinet in the traffic signal shop for a period no less than 72 hours prior to installation in the field. Demonstrate to the Engineer that all of the equipment furnished and/or installed by the Contractor operates in full compliance with the Plans and these Technical Specifications. Version 06.2 48 print date: 06/16/06 Conduct a diagnostic test for each and every new controller unit provided under this contract. The diagnostic test program shall test the operation of the Model 2070 controller unit, including but not limited to: - Internal memory - Real-time clock - Input-output circuitry - Operating system - The display - The keyboard The program shall be capable of operating with an external notebook computer as well as with controller keypad entries and displays. The diagnostic test shall include the OS/9 validation suite diagnostic application described in the CALTRANS TEES. Full documentation of the program is required. Diagnostic Test Program features like those of the City of Los Angeles Department of Transportation are desired. Alternatives will be considered, but must be noted in the submittals. The cost of the diagnostic testing programs shall be incidental to the controller assembly. Following installation, a controller operation check-out shall be conducted for each new controller that has been furnished by the Contractor as part of this project. The Engineer reserves the right to direct the Contractor to make any and all adjustments to the controller timing to fully verify the functional operation of the equipment installed and to provide the required operation. These timing adjustments shall not relieve the Contractor of any responsibility otherwise set forth in the Plans, these Technical Specifications or the NCDOT Standard Specifications. Install new fiber optic interconnect centers in accordance with the 2006 NCDOT Standard Specifications, article 1098-11. # 8.4.MEASUREMENT AND PAYMENT 2070L Controller, Cary Compatible will be measured and paid as the actual number of traffic signal controller units furnished, installed, and accepted. No payment will be made for wiring, testing, modules, coprocessor boards, and controller operating system, as this work is considered incidental to furnishing and installing traffic signal controllers. Detector Cards will be measured and paid as the actual number furnished, installed, and accepted. NEMA TS-2 Cabinet (Base Mount), Cary Compatible will be measured and paid as the actual number of traffic signal cabinets furnished, installed, integrated, and accepted. No direct payment will be made for the signal conflict monitor, malfunction management units, external electrical service disconnect, grounding systems, modems, meter bases, workshops, connectors, load switch packs, flashers, relays or other isolation devices, and other cabinet plug-in and harness-connected components. No direct payment will be made for radio interference suppressers and cabinet surge protection equipment. No direct payment will be made for painting Version 06.2 49 print date: 06/16/06 # TIP Number 153 Signals & Intelligent Transportation Systems inventory numbers on the cabinet as described in the NCDOT Standard Specifications, as these will be considered incidental to furnishing and installing traffic signal cabinets. The local controller software/firmware will be measured on a lump sum basis and shall include the license, source code, and documentation. No direct payment will be made since the Town of Cary is supplying the software and installation is incidental to installation of cabinet and controller. Payment will be made under: | 2070L Controller, Cary Compatible | Each | |---|------| | NEMA TS-2 Detector Card, Cary Compatible | Each | | NEMA TS-2 Cabinet (Base Mount), Cary Compatible | Each | # 9. RESEARCH TRIANGLE PARK MAST ARM WITH METAL POLE AND LUMINAIRE
9.1.DESCRIPTION Furnish and install signal support mast arms with metal poles and all necessary hardware in accordance with the plans and specifications. Comply with the provisions of Section 6 of these Project Special Provsions.. Furnish signal support mast arms with metal poles, grounding systems, and all necessary hardware. Provide either steel or aluminum arms as indicated on the plans. Metal poles and arms at intersections 05-1911 (Davis Drive at Kit Creek Road), 05-1910 (Davis Drive at Development Drive), 05-1858 (Davis Drive at Hopson Road), 05-0927 (Davis Drive at NC 54), and 05-1477 (Davis Drive at I-40 Eastbound Ramps) shall be consistent with other monocurve supports with luminaries in use in the Research Triangle Park, and with the arms and poles currently in use at this location. Luminaires shall be on two diagonal corners, and non-luminaire poles shall be used on the two remaining corners. Luminaires shall be rotated with respect to the pole and arm to provide the optimum intersection illumination. Luminaires need not align with the signal mastarm. These custom-designed mast arms and poles shall be similar in appearance to the following photo examples: Version 06.2 50 print date: 06/16/06 154 TIP Number Signals & Intelligent Transportation Systems #### 9.2.MATERIALS Comply with the provisions of section 6 of these Project Special Provisions. #### 9.3. CONSTRUCTION METHODS Comply with the provisions of section 6 of these Project Special Provisions. ## 9.4.METHOD OF MEASUREMENT Actual number of mast arms with metal poles furnished, installed, and accepted. Actual number of mast arms with metal poles and luminaires furnished, installed, and accepted. #### 9.5.BASIS OF PAYMENT The quantity of Research Triangle Park mast arms with metal poles, measured as provided above, will be paid for at the contract unit price each for "Mast Arm with Metal Pole: Research Triangle Park Specific." The quantity of Research Triangle Park mast arms with metal poles and luminaires, measured as provided above, will be paid for at the contract unit price each for "Mast Arm with Metal Pole: Research Triangle Park Specific." Payment will be made under: | Mast Arm with Metal Po | ole: Research Triangle Park | Specific | E | Each | |------------------------|-----------------------------|-------------------|----------|------| | Mast Arm with Metal Po | ole and Luminaire: Researc | h Triangle Park S | pecificE | Each | #### 10. LUMINAIRE MAST ARMS #### 10.1. DESCRIPTION Furnish and install luminaire mast arms (excluding lighting assemblies) and all necessary hardware in accordance with the plans and specifications. Comply with the provisions of Section 1700. Design the luminaire support arm together with the signal support structure to achieve a light assembly mounting height of 30 feet above the roadway. Conform to design dimensions and light assembly loading shown on the structure loading diagrams. Refer to the Radial Orientation Detail on loading diagrams for proper orientation of arm attachment to the signal pole. Design free end of support arm for a 2-inch slip fit socket connection for attaching light assembly. Lighting assembly to be provided and installed by: Research Triangle Foundation of NC 2 Hanes Drive RTP, NC 27709 P.O. Box 12255, RTP, NC 27709 (919)-549-8181 Fax: (919)-549-8246 Liz Rooks Verify lighting assembly manufacturer and specifications prior to submittal of shop drawings. Version 06.2 52 print date: 06/16/06 # Project Special Provisions (Version 06.2) als and Intelligent Transportat # Signals and Intelligent Transportation Systems Prepared By: <u>zml</u> 30-Aug-06 # **Contents** | 1. | 20 | 006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES – SECTION 1098 REVISIONS | 3 | |----|---------------|---|----| | | 1.1. | GENERAL REQUIREMENTS (1098-1) | | | | 1.2. | Wood Poles (1098-6) | | | _ | | LECTRICAL REQUIREMENTS | | | 2. | | - | | | 3. | SI | IGNAL HEADS | 3 | | | 3.1. | MATERIALS | 3 | | | | . General: | | | | B. | Vehicle Signal Heads: | 4 | | | | Pedestrian Signal Heads: | | | | D. | Signal Cable: | 11 | | 4. | M | IETAL TRAFFIC SIGNAL SUPPORTS | 1 | | | 4.1. | METAL TRAFFIC SIGNAL SUPPORTS ALL POLES | | | | | General: | | | | | . Materials: | | | | | Construction Methods: | | | | 4.2. | METAL STRAIN POLE | | | | | Materials: | | | | | Construction Methods: | | | | 4.3. | METAL POLE WITH MAST ARM | | | | | . Construction Methods: | | | | 4.4. | DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES | | | | | . Description: | | | | | Soil Test and Foundation Determination: | | | | | Drilled Pier Construction: | | | | | Drilled Pier Foundations with Wing Walls: | | | | 4.5. | | 2 | | | Α. | . Metal Poles: | | | | | . Mast Arms: | | | | 4.6. | METAL SIGNAL POLE REMOVALS | 2 | | | A. | Description: | | | | В. | Construction Methods: | 2. | | | 4.7. | MEASUREMENT AND PAYMENT | 22 | | 5. | \mathbf{C}' | ONTROLLERS WITH CABINETS | 2 | | | 5.1. | MATERIALS – TYPE 170E CONTROLLERS | 2 | | | 5.2. | MATERIALS – GENERAL CABINETS | | | | 5.3. | MATERIALS – TYPE 170E CABINETS | | | | | Type 170 E Cabinets General: | | # R-2904 # Signals & Intelligent Transportation Systems | B. Type 170 E Cabinet Electrical Requirements: | | |---|----| | C. Type 170 E Cabinet Physical Requirements: | | | D. Type 170 E Model 2010 Enhanced Conflict Monitor: | | | 5.4. MATERIALS – TYPE 170 DETECTOR SENSOR UNITS | | | 6. LUMINAIRE MAST ARMS | 31 | | 6.1. DESCRIPTION | 31 | | 6.2. MATERIALS | 31 | | 6.3. CONSTRUCTION METHODS | 31 | # 1. 2006 STANDARD SPECIFICATIONS FOR ROADS & STRUCTURES – SECTION 1098 REVISIONS The 2006 Standard Specifications are revised as follows: # 1.1. General Requirements (1098-1) Page 10-268, Subarticle 1098-1(H) In the second paragraph, add "Use 200 amp meter base for underground electrical service". # 1.2. Wood Poles (1098-6) Page 10-272, Delete article. Refer to Subarticles 1082 –3(F) and 1082-4(G). # 2. ELECTRICAL REQUIREMENTS Ensure that an IMSA certified, or equivalent, Level II traffic qualified signal technician is standing by to provide emergency maintenance services whenever work is being performed on traffic signal controller cabinets and traffic signal controller cabinet foundations. Stand by status is defined as being able to arrive, fully equipped, at the work site within 30 minutes ready to provide maintenance services. #### 3. SIGNAL HEADS ## 3.1. MATERIALS #### A. General: Fabricate vehicle signal head housings and end caps from die-cast aluminum. Fabricate 12-inch and 16-inch pedestrian signal head housings and end caps from die-cast aluminum. Fabricate 9-inch pedestrian signal head housings, end caps, and visors from virgin polycarbonate material. Provide visor mounting screws, door latches, and hinge pins fabricated from stainless steel. Provide interior screws, fasteners, and metal parts fabricated from stainless steel or corrosion resistant material. Fabricate tunnel and traditional visors from sheet aluminum. Paint all surfaces inside and outside of signal housings and doors. Paint outside surfaces of tunnel and traditional visors, messenger cable mounting assemblies, pole and pedestal mounting assemblies, and pedestrian pushbutton housings. Have electrostatically-applied, fused-polyester paint in highway yellow (Federal Standard 595A, Color Chip Number 13538) a minimum of 2.5 to 3.5 mils thick. Do not apply paint to the latching hardware or rigid vehicle signal head mounting brackets. Have the interior surfaces of tunnel and traditional visors painted an alkyd urea black synthetic baking enamel with a minimum gloss reflectance and meeting the requirements of MIL-E-10169, "Enamel Heat Resisting, Instrument Black." For pole mounting, provide side of pole mounting assemblies with framework and all other hardware necessary to make complete, watertight connections of the signal heads to the poles and pedestals. Fabricate the mounting assemblies and frames from aluminum with all necessary hardware, screws, washers, etc. to be stainless steel. Provide mounting fittings that match the positive locking device on the signal head with the serrations integrally cast into the brackets. Provide upper and lower pole plates that have a 1 ¼-inch vertical conduit entrance hubs with the hubs capped on the lower plate and 1 ½-inch horizontal hubs. Ensure that the assemblies provide rigid attachments to poles and pedestals so as to allow no twisting or swaying of the signal heads. Ensure that all raceways are free of sharp edges and protrusions, and can accommodate a minimum of ten Number 14 AWG conductors. Version 06.2 3 print date: 08/30/06 For pedestal mounting, provide a post-top slipfitter mounting assembly that matches the positive locking device on the signal head with serrations integrally cast into the slipfitter. Provide stainless steel hardware, screws, washers, etc. Provide a minimum of six 3/8 X 3/4-inch long square head bolts for attachment to pedestal. Provide a center post for multi-way slipfitters. # B. Vehicle Signal Heads: Comply with the ITE standard "Vehicle Traffic Control Signal Heads". Provide housings with provisions for attaching backplates. Provide visors that are 8 inches in length for 8-inch vehicle signal head sections. Provide visors that are 10 inches in length for 12-inch vehicle signal heads. Provide a termination block with one empty terminal for field wiring for each indication plus one empty terminal for the neutral conductor. Have all signal sections wired to the termination block. Provide barriers between the terminals that have terminal screws with a minimum Number 8 thread size and that will accommodate and secure spade lugs sized for a Number 10 terminal screw. Mount termination blocks in the yellow signal head sections on all in-line vehicle signal heads. Mount the termination block in the red section on five-section vehicle signal heads.
Furnish vehicle signal head interconnecting brackets. Provide one-piece aluminum brackets less than 4.5 inches in height and with no threaded pipe connections. Provide hand holes on the bottom of the brackets to aid in installing wires to the signal heads. Lower brackets that carry no wires and are used only for connecting the bottom signal sections together may be flat in construction. For messenger cable mounting, provide messenger cable hangers, wire outlet bodies, balance adjusters, bottom caps, wire entrance fitting brackets, and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the messenger cable. Fabricate mounting assemblies from malleable iron and provide serrated rings made of aluminum. Provide messenger cable hangers and balance adjusters that are galvanized before being painted. Fabricate balance adjuster eyebolt and eyebolt nut from stainless steel or galvanized malleable iron. Provide messenger cable hangers with U-bolt clamps. Fabricate washers, screws, bolts, clevis pins, cotter pins, nuts, and U-bolt clamps from stainless steel. For mast-arm mounting, provide rigid vehicle signal head mounting brackets and all other hardware necessary to make complete, watertight connections of the vehicle signal heads to the mast arms and to provide a means for vertically adjusting the vehicle signal heads to proper alignment. Fabricate the mounting assemblies from malleable iron or aluminum, and provide serrated rings made of aluminum. Provide light emitting diode (LED) vehicular traffic signal modules (hereafter referred to as modules) that consist of an assembly that uses LEDs as the light source in lieu of an incandescent lamp for use in traffic signal sections. Use LEDs that are aluminum indium gallium phosphorus (AlInGaP) technology for red and yellow indications and indium gallium nitride (InGaN) for green indications. Install the ultra bright type LEDs that are rated for 100,000 hours of continuous operation from -40°F to +165°F. Design modules to have a minimum useful life of 60 months and to meet all parameters of this specification during this period of useful life. # 1. LED Circular Signal Modules: Provide modules in the following configurations: 12-inch circular sections, and 8-inch circular sections. All makes and models of LED modules purchased for use on the State Highway System shall appear on the current NCDOT Traffic Signal Qualified Products List (QPL). #### R-2904 Signals & Intelligent Transportation Systems Ensure, unless otherwise state in these specifications, that each module meets or exceeds the ITE "Vehicle Traffic Control Signal Heads – Light Emitting Diode (LED) Circular Signal Supplement" dated June 27, 2005 (hereafter referred to as VTCSH Circular Supplement). Certify compliance with paragraphs 3.3.2, 3.3.3, 3.4.2, 4.1.1, 4.1.2, 4.1.3, 4.2.1, 4.2.2, 5.2.1, 5.2.2, 5.2.3, 5.2.4, 5.2.5, 5.3, 5.4, 5.5.1, 5.5.2, 5.6.2, 5.7 of the VTCSH Circular Supplement. Provide quick connect Molex terminals (part # 19092026 female housing, part # 02091615 female pin, part # 19092027 male housing, and 02092101 male pin) or equivalent, and spade terminals appropriate to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard signal head. Ensure the replacement module provided has the Molex male connector 6 inches from the module. Ensure the power supply is integral to the module assembly. On the back of the module, permanently mark the date of manufacture (month & year) or some other method of identifying date of manufacture. Tint the red, yellow and green lenses to correspond with the wavelength (chromaticity) of the LED. Transparent tinting films are unacceptable. Provide modules that meet the requirements of Tables 1098-1 and 1098-2. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). $\label{eq:Table 1098-1} \mbox{Maximum Power Consumption (in Watts) at } 77^{\circ}\mbox{F}$ | | Red | Yellow | Green | |------------------|-----|--------|-------| | 12-inch circular | 12 | 22 | 15 | | 8-inch circular | 8 | 13 | 12 | Version 06.2 5 print date: 08/30/06 Table 1098-2 Minimum Maintained Luminous Intensity/Minimum Initial Luminous Intensity (in cd) at 77°F | Vertical | Horizontal | Red | 8" | Yello | w 8" | Gree | n 8" | Red1 | | Yello | w 12" | Greer | า 12" | |----------|-------------|--------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|----------|----------| | Angle | Angle | Main. | Initial | | +12.5 | 2.5 | 17 | 21 | 41 | 51 | 22 | 28 | 37 | 46 | 91 | 114 | 48 | 60 | | | 7.5 | 13 | 16 | 33 | 41 | 17 | 21 | 29 | 36 | 73 | 91 | 38 | 48 | | | 2.5 | 31 | 39 | 78 | 98 | 41 | 51 | 69 | 86 | 173 | 216 | 90 | 113 | | +7.5 | 7.5 | 25 | 31 | 62 | 78 | 32 | 40 | 55 | 69 | 137 | 171 | 71 | 89 | | | 12.5 | 18 | 23 | 45 | 56 | 24 | 30 | 40 | 50 | 100 | 125 | 52 | 65 | | | 2.5 | 68 | 85 | 168 | 210 | 88 | 110 | 150 | 188 | 373 | 466 | 195 | 244 | | 1 | 7.5 | 56 | 70 | 139 | 174 | 73 | 91 | 124 | 155 | 309 | 386 | 162 | 203 | | +2.5 | 12.5 | 38 | 48 | 94 | 118 | 49 | 61 | 84 | 105 | 209 | 261 | 109 | 136 | | | 17.5 | 21 | 26 | 53 | 66 | 28 | 35 | 47 | 59 | 118 | 148 | 62 | 78 | | | 22.5 | 12 | 15 | 29 | 36 | 15 | 19 | 26 | 33 | 64 | 80 | 33 | 41 | | | 2.5 | 162 | 203 | 402 | 503 | 211 | 264 | 358 | 448 | 892 | 1115 | 466 | 583 | | l | 7.5 | 132 | 165 | 328 | 410 | 172 | 215 | 292 | 365 | 728 | 910 | 380 | 475 | | -2.5 | 12.5 | 91 | 114 | 226 | 283 | 118 | 148 | 201 | 251 | 501 | 626 | 261 | 326 | | | 17.5 | 53 | 66 | 131 | 164 | 69 | 86 | 117 | 146 | 291 | 364 | 152 | 190 | | | 22.5 | 28 | 35 | 70 | - 88 | 37 | 46 | 62 | 78 | 155 | 194 | 81 | 101 | | | 27.5 | 15 | 19 | 37 | 46 | 19 | 24 | 33 | 41 | 82 | 103 | 43 | 54 | | | 2.5 | 127 | 159 | 316 | 395 | 166 | 208 | 281 | 351 | 701 | 876 | 366 | 458 | | | 7.5 | 106 | 133 | 262 | 328 | 138 | 173 | 234 | 293 | 582 | 728 | 304 | 380 | | -7.5 | 12.5 | 71 | 89 | 176 | 220 | 92 | 115 | 157 | 196 | 391 | 489 | 204 | 255 | | 1 | 17.5 | 41 | 51 | 103 | 129 | 54 | 68 | 91 | 114 | 228 | 285 | 119 | 149 | | ł | 22.5 | 21 | 26 | 53 | 66 | 28 | 35 | 47 | 59 | 118 | 148 | 62 | 78 | | | 27.5 | 12 | 15 | 29 | 36 | 15 | 19 | 26 | 33 | 64 | 80 | 33 | 41 | | | 2.5 | 50 | 63 | 123 | 154 | 65 | 81 | 110 | 138 | 273 | 341 | 143 | 179 | | | 7.5 | 40 | 50 | 98 | 123 | 52 | 65 | 88 | 110 | 218 | 273 | 114 | 143 | | -12.5 | 12.5 | 28 | 35 | 70 | 88 | 37 | 46 | 62 | 78 | 155 | 194 | 81 | 101 | |] | 17.5 | 17 | 21 | 41 | 51 | 22 | 28 | 37 | 46 | 91 | 114 | 48 | 60 | | 1 | 22.5 | 8 | 10 | 21 | 26 | 11 | 14 | 18 | 23 | 46 | 58 | 24 | 30 | | | 27.5 | 5 | 6 | 12 | 15 | 6 | 8 | 11 | 14 | 27 | 34 | 14 | 18 | | | 2.5 | 23 | 29
23 | 57
45 | 71
56 | 30
24 | 38 | 51
40 | 64
50 | 127 | 159 | 67
50 | 84
65 | | -17.5 | 7.5 | 18 | 23
16 | 33 | 56
41 | 17 | 30
21 | 29 | 36 | 100
73 | 125
91 | 52 | 65 | | 17.0 | 12.5 | 13 | 9 | 16 | | 9 | | 29
15 | 36
19 | 73
36 | 45 | 38 | 48 | | | 17.5 | 7
3 | 4 | 8 | 20
10 | 4 | 11
5 | 7 | 9 | 18 | 23 | 19
10 | 24
13 | | | 22.5
2.5 | 17 | 21 | 41 | 51 | 22 | 28 | 37 | 46 | 91 | 114 | | 60 | | | 7.5 | 17 | 16 | 33 | 41 | 17 | 26
21 | 29 | 36 | 73 | 91 | 48
38 | 48 | | -22.5 | 7.5
12.5 | 10 | · 13 | 25 | 31 | 13 | 16 | 29 | 28 | 73
55 | 69 | 29 | 48
36 | | | 17.5 | 5 | 6 | 12 | 15 | 6 | 8 | 11 | 14 | 27 | 34 | 14 | 18 | | <u> </u> | 2.5 | 12 | 15 | 29 | 36 | 15 | 19 | 26 | 33 | 64 | 80 | 33 | 41 | | -27.5 | 7.5 | 8 | 10 | 21 | 26 | 11 | 14 | 18 | 23 | 46 | 58 | 24 | 30 | | L | 7.5 | | 10 | | 20 | | 17 | 10 | 20 | 70 | | | - 00 | Note 1: Luminous intensity values for equivalent left and right horizontal angles are the same. Note 2: Tabulated values of luminous intensity are rounded to the nearest whole value. #### 2. LED Arrow Signal Modules Ensure arrow modules meet or exceed the electrical and environmental operating requirements of sections 3 and 5 of the Interim Purchase Specification of the ITE VTCSH part 2 Light Emitting Diode (LED) Vehicular Traffic Signal Modules (hereafter referred to as VTCSH-2), the chromaticity requirements of Section 4.2, and the requirements of Sections 6.3 (except 6.3.2) and 6.4 (except 6.4.2). Provide modules that meet the requirements of Table 1098-3. Ensure that fluctuations of line voltage have no visible effect on the luminous intensity of the indications. Design the module to have a normal operating voltage of 120 VAC rms, and measure all parameters at this voltage. Table 1098-3 Maximum Power Consumption (in Watts) at 77°F | | Red | Yellow | Green | |---------------|-----|--------|-------| | 12-inch arrow | 9 | 10 | 11 | Certify that the module meets the requirements of VTCSH-2, Section 5.7. Ensure all wiring meets the requirements of Section 5.1 of the VTCSH-2. In addition, provide quick connect Molex terminals (part # 19092026 female housing, part # 02091615 female pin, part # 19092027 male housing, and 02092101 male pin) or equivalent, and spade terminals appropriate to the lead wires and sized for a #10 screw connection to the existing terminal block in a standard signal head. Ensure the replacement module provided has the Molex male connector 6 inches from the module. Ensure that the module is compatible with signal load switches and conflict monitors. Design the module to provide sufficient current draw to ensure proper load switch operation while the voltage is varied from a regulated 80 Vrms to 135 Vrms. Design
off-state for green and yellow modules to be 30Vrms or less, and on-state to be 40 Vrms or greater. Design the voltage to decay to 10 Vrms or less in 100 milliseconds. Ensure that the control circuitry prevents current flow through the LEDs in the off state to avoid a false indication. Design all modules to meet existing NCDOT monitor specifications for each of the following types of signal monitors: NEMA TS-1 conflict monitors (including so-called NEMA plus features such as dual indication detection and short yellow time detection); NEMA TS-2 Malfunction Management Units (MMU); and 170 cabinet Type 210ECL and 2010ECL conflict monitors (including red monitoring and so-called plus features such as dual indication detection and short yellow time detection). Ensure that the modules and associated onboard circuitry meet Class A emission limits referred to in Federal Communications Commission (FCC) Title 47, Subpart B, Section 15 regulations concerning the emission of electronic noise. Provide modules that meet the requirements of Table 1098-4. Design and certify the modules to meet or exceed the maintained minimum luminous intensity values throughout the warranty period based on normal use in a traffic signal operation over the operating temperature range. Test the Red and Green arrow modules for maintained luminous intensity at 165°F (ITE 6.4.2.2). Use LEDs that conform to the chromaticity requirements of VTCSH-2, Section 2 throughout the warranty period over the operating temperature range. Make chromaticity coordinate compliance measurements at 77°F. | | Red | Yellow | Green | |------------------|-----|--------|-------| | Arrow Indication | 511 | 1022 | 1022 | Design the modules as retrofit replacements for installation into standard incandescent traffic sections that do not contain the incandescent lens, reflector assembly, lamp socket and lens gasket. Ensure that installation does not require special tools or physical modification for the existing fixture other than the removal of the incandescent lens, reflector assembly, lamp socket, and lens gasket. Provide modules that are rated for use in the operating temperature range of -40°F to +165°F. Ensure that the modules (except yellow) meet all specifications throughout this range. Fabricate the module to protect the onboard circuitry against dust and moisture intrusion per the requirements of NEMA Standard 250-1991 for Type 4 enclosures to protect all internal components. #### R-2904 Signals & Intelligent Transportation Systems Design the module to be a single, self-contained device with the circuit board and power supply for the module inside and integral to the unit. Design the assembly and manufacturing process for the module to ensure all internal components are adequately supported to withstand mechanical shock and vibration from high winds and other sources. Group the individual LEDs such that a catastrophic loss or the failure of one LED will result in the loss of not more than 20 percent of the signal module light output. Solder the LEDs to the circuit board. Fabricate the lens and signal module from material that conforms to ASTM specifications. Ensure enclosures containing either the power supply or electronic components of the module are made of UL94VO flame retardant materials. The lens of the signal module is excluded from this requirement. Permanently mark the manufacturer's name, trademark, model number, serial number, date of manufacture (month & year), and lot number as identification on the back of the module. Permanently mark the following operating characteristics on the back of the module: rated voltage and rated power in watts and volt-amperes. If a specific mounting orientation is required, provide permanent markings consisting of an up arrow, or the word "UP" or "TOP" for correct indexing and orientation within the signal housing. Provide a lens that is integral to the unit with a smooth outer surface and UV stabilized to withstand ultraviolet exposure for a minimum period of 60 months without exhibiting evidence of deterioration. Coat the front of a polycarbonate lens to make it more abrasion resistant. Seal the lens to the module to prevent moisture and dust from entering the module. Tint the red, yellow, and green lens to match the wavelength (chromaticity) of the LED. Ensure that the module meets specifications stated in Chapter 2, Section 9.01 of the ITE Equipment and Materials Standards for arrow indications. Design arrow displays to be solid LEDs (spread evenly across the illuminated portion of the arrow or other designs), not outlines. **Determine the luminous intensity using the CALTRANS 606 method or similar procedure.** **Burn In** - Energize the sample module(s) for a minimum of 24 hours, at 100 percent on-time duty cycle, at a temperature of +165°F before performing any qualification testing. Any failure of the module, which renders the unit non-compliant with the specification after burn-in, is cause for rejection. All specifications will be measured including, but not limited to: - (a) Photometric (Rated Initial Luminous Intensity) Measure at +77°F. Measure luminous intensity for red and green modules upon the completion of a 30 minute 100 percent on-time duty cycle at the rated voltage. Measure luminous intensity for yellow modules immediately upon energizing at the rated voltage. - (b) Chromaticity (Color) Measure at +77°F. Measure chromaticity for red and green modules upon the completion of a 30 minute 100 percent on-time duty cycle at the rated voltage. Measure chromaticity for yellow modules immediately upon energizing at the rated voltage. - (c) Electrical Measure all specified parameters for quality comparison of production quality assurance on production modules. (rated power, etc) NCDOT evaluates and approves all LED Traffic Signal modules for the QPL by a standard visual inspection and blind operational survey, a compatibility test, current flow, and other random tests, in addition to reviewing the lab reports and documentation from the manufacturer. The tests are conducted at the Traffic Electronics Center in Raleigh. Ensure each 12-inch arrow module is visible at 300 feet during sway conditions (extended view) until obscured by the visor. Sufficient luminance during the extended views will be determined during this blind survey evaluation. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). # C. Pedestrian Signal Heads: Provide pedestrian signal heads with international symbols that meet the MUTCD. Do not provide letter indications. Comply with the ITE standard for "Pedestrian Traffic Control Signal Indications" and the following sections of the ITE standard for "Vehicle Traffic Control Signal Heads" in effect on the date of advertisement: - Section 3.00 "Physical and Mechanical Requirements" - Section 4.01 "Housing, Door, and Visor: General" - Section 4.04 "Housing, Door, and Visor: Materials and Fabrication" - Section 7.00 "Exterior Finish" Provide a double-row termination block with three empty terminals and number 10 screws for field wiring. Provide barriers between the terminals that accommodate a spade lug sized for number 10 terminal screws. Mount the termination block in the hand section. Wire all signal sections to the terminal block. Where required by the plans, provide 16-inch pedestrian signal heads with traditional three-sided, rectangular visors, 6 inches long. Where required by the plans, provide 12-inch pedestrian signal heads with traditional three-sided, rectangular visors, 8 inches long. Design the LED pedestrian traffic signal modules for installation into standard pedestrian traffic signal sections that do not contain the incandescent signal section reflector, lens, eggcrate visor, gasket, or socket. Provide a clear 0.25-inch, non-glare, mat finish lens with a smooth outer surface and UV stabilized to withstand ultraviolet exposure for a minimum period of 60 months without exhibiting evidence of deterioration. Coat the front surface of a polycarbonate lens to make it more abrasion resistant. Ensure that the lens has light transmission properties equal to or greater than 80%. Ensure installation of all modules requires no physical modification of the existing fixture other than the removal of the incandescent signal section reflector, lens, eggcrate visor and socket where applicable. Design the man and hand to be a solid display, which meets the minimum requirements of "The Equipment and Materials Standards" of the Institute of Transportation Engineers (ITE) Chapter 3, Table 1 *Symbol Message*. Group the LEDs such that a catastrophic loss or failure of one or more LEDs will result in the loss of not more than five percent of the signal module light output. Solder the LEDs to the circuit board. Ensure that the power consumption for the modules is equal to or less than the following in watts, and that the modules have EPA Energy Star compliance ratings, if applicable to that shape, size and color: Version 06.2 9 print date: 08/30/06 | Temperature | 77°F | 165°F | |-------------|------|-------| | Hand | 10 | 12 | | Man | 9 | 12 | | Countdown | 9 | 12 | Provide 16-inch displays, where required by the plans, which have the hand/man overlay on the left and the countdown on the right. Ensure the hand/man symbols meet the dimension requirements cited in Chapter 3, Table 1 *Symbol Message* for Class 3 or Class 4 displays. Ensure that the countdown number display is at least 9 inches high by 6 inches wide. Configure the
signal head with a sufficient number of LEDs to provide an average luminance of at least 342 candela per square foot of lighting surface for the "RAISED HAND" and "COUNTDOWN", and 483 candela per square foot of lighting surface for the "WALKING PERSON". Ensure modules meet this average luminous intensity throughout the warranty period over the operating temperature range. Design the countdown display as a double row of LEDs, and ensure the countdown display blanks-out during the initial cycle while it records the countdown time. Ensure that the countdown display is operational only during the flashing don't walk, clearance interval. Blank-out the countdown indication after it reaches zero until the beginning of the next don't walk indication, and design the controlling circuitry to prevent the timer from being triggered during the solid hand indication. Provide 12 inch displays, where required by the plans, that meet the dimension requirements cited in Chapter 3, Table 1 *Symbol Message* for Class 2 displays. Furnish the solid hand/man module as an overlay, the solid hand module, and the solid man module as required by the plans. Configure the signal head with a sufficient number of LEDs to provide an average luminance of at least 342 candela per square foot of lighting surface for the "RAISED HAND" and "COUNTDOWN", and 483 candela per square foot of lighting surface for the "WALKING PERSON". Ensure modules meet this average luminance throughout the warranty period over the operating temperature range. Design all modules to operate using a standard 3 - wire field installation. Provide lead wires that are eighteen gauge (18AWG) minimum copper conductors with 221 degree F insulation. Ensure that lead wires are a minimum of 30 inches long with NEMA "spade" terminals that are appropriate to the lead wires and sized for a #10 screw connection to the existing terminal block in the signal head. Ensure that modules are compatible with signal load switches and conflict monitors. Design the module to provide sufficient current draw to ensure proper load switch operation while the voltage is varied from a regulated 80Vrms to 135Vrms. Provide control circuitry to prevent current flow through the LEDs in the off state to avoid a false indication. Design all modules to meet existing NCDOT monitor specifications for each of the following types of signal monitors: NEMA TS-1 conflict monitors (including so-called NEMA plus features such as dual indication detection and short yellow time detection); NEMA TS-2 Malfunction Management Units; and 170 cabinet 210ECL and 2010ECL conflict monitors (including red monitoring and so-called plus features such as dual indication detection and short yellow time detection). Comply with the following sections: 3.3, 3.5, 3.6.1, 3.6.2, 5.2, 5.3, 5.7, 6.1, 6.3.1, 6.3.3, 6.3.4, 6.3.5, 6.4.4, 6.4.5, and 6.4.6 of VTCSH-2. Furnish Portland Orange LEDs for the hand and countdown displays that are the latest AlInGaP technology or higher, and Lunar White LEDs for the man display that are the latest InGaN technology or higher. Provide manufacturer's certification of compliance with the sections of the ITE specification identified above and this specification when product is submitted for evaluation. Provide test results showing that the signal modules meet or exceed the luminous intensity requirements. Version 06.2 10 print date: 08/30/06 Provide modules that include, but are not limited to the following items: lens, LED display mounted on a circuit board, wire leads with strain relief, rigid housing, electronics including a power supply integral to the LED module which is protected by the housing, and a neoprene one piece gasket. Ensure that the module is compatible with standard, existing, pedestrian head mounting hardware. Warrant performance for a period of 60 months from the date of installation and include repair or replacement of an LED signal module that exhibits light output degradation, which in the judgment of the Department, cannot be easily seen at 150 feet in bright sunlight with a visor on the housing or which drops below the luminous intensity output requirements. In addition to meeting the performance requirements for the minimum period of 60 months, provide a written warranty against defects in materials and workmanship for the modules for a period of 60 months after installation of the modules. During the warranty period, the manufacturer must provide replacement modules within 45 days of receipt of modules that have failed at no cost to the State. Provide manufacturer's warranty documentation to the Department during evaluation of product for inclusion on Qualified Products List (QPL). Provide 2-inch diameter pedestrian push-buttons with weather-tight housings fabricated from die-cast aluminum and threading in compliance with the NEC for rigid metal conduit. Provide a weep hole in the housing bottom and ensure that the unit is vandal resistant. Provide push-button housings that are suitable for mounting on flat or curved surfaces and that will accept 1/2-inch conduit installed in the top. Provide units that have a heavy duty push-button assembly with a sturdy, momentary, normally-open switch. Have contacts that are electrically insulated from the housing and push-button. Ensure that the push-buttons are rated for a minimum of 5 mA at 24 volts DC and 250 mA at 12 volts AC. Provide standard R10-3 signs with mounting hardware that comply with the MUTCD in effect on the date of advertisement. Provide R10-3E signs for countdown pedestrian heads and R10-3B for non-countdown pedestrian heads. #### D. Signal Cable: Furnish 16-4 and 16-7 signal cable that complies with IMSA specification 20-1 except provide the following conductor insulation colors: - For 16-4 cable: white, yellow, red, and green - For 16-7 cable: white, yellow, red, green, yellow with black stripe tracer, red with black stripe tracer, and green with black stripe tracer. Apply continuous stripe tracer on conductor insulation with a longitudinal or spiral pattern. Provide a ripcord to allow the cable jacket to be opened without using a cutter. IMSA specification 19-1 will not be acceptable. Provide a cable jacket labeled with the IMSA specification number and provide conductors constructed of stranded copper. #### 4. METAL TRAFFIC SIGNAL SUPPORTS #### 4.1. METAL TRAFFIC SIGNAL SUPPORTS – ALL POLES #### A. General: Install State-furnished metal strain poles and metal poles with mast arms, grounding systems, and all necessary hardware. The work covered by this special provision includes requirements for the installation of State-furnished metal traffic signal supports and associated foundations. #### R-2904 Signals & Intelligent Transportation Systems Install State-furnished metal traffic signal support systems that contain no guy assemblies, struts, or stay braces. #### **B.** Materials: No field welding on any part of the pole will be permitted. Ensure hardware is galvanized steel or stainless steel. Ensure material used in steel anchor bolts conforms to AASHTO M 314, and yield strength does not exceed 55,000 psi. Unless otherwise required by the design, ensure each anchor bolt is 2" in diameter and 60" in length. Provide 10" minimum thread projection at the top of the bolt, and 8" minimum at the bottom of the bolt. Galvanize each anchor bolt in accordance with AASHTO M232 or M298 from the top of the bolt to a minimum of 2" below the threads. Provide a circular anchor bolt lock plate that will be secured to the anchor bolts at the embedded end with 2 washers and nuts. Provide a base plate template that matches the bolt circle diameter of the anchor bolt lock plate. Construct plates and templates from ¼" minimum thick steel with a minimum width of 4". Galvanizing is not required. Provide 4 heavy hex nuts and 4 flat washers for each anchor bolt. For nuts, use AASHTO M291 grade 2H, DH, or DH3 or equivalent material. For flat washers, use AASHTO M293 or equivalent material. #### C. Construction Methods: Erect signal supports poles only after concrete has attained a minimum allowable compressive strength of 3000 psi. Follow anchor nut-tightening procedures below to complete the installation of the upright. For further construction methods, see construction methods for Metal Strain Poles, or Metal Pole with Mast Arm. Connect poles to grounding electrodes and the intersection grounding systems. For holes in the poles used to accommodate cables, install grommets before wiring pole or arm. Do not cut or split grommets. Attach the terminal compartment cover to the pole by a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cover to hang clear of the compartment opening when the cover is removed, and is strong enough to prevent vandals from being able to disconnect the cover from the pole. Ensure the chain or cable will not interfere with service to the cables in the pole base. Attach cap to pole with a sturdy chain or cable. Ensure the chain or cable is long enough to permit the cap to hang clear of the opening when the cap is removed. Perform repair of damaged galvanizing that complies with the *Standard Specifications*, Article 1076-6 "Repair of Galvanizing." # **Anchor Nut Tightening Procedure** Compute the required projection of the anchor bolt above the foundation top. Compute the total projection based on the following: - Provide between 3 and 5 threads of anchor bolt projection above the top nut after tightening is complete. Avoid any additional projection, or a normal depth socket torque wrench can not be used on top nuts. - Include the sum of the thickness of top nut, top nut flat washer or top nut beveled washer, base plate, leveling nut flat washer or leveling nut beveled washer, and leveling nut. - Set the maximum distance between the bottom of the leveling nut and the foundation top to one nut height to avoid excessive bending stresses in the anchor bolt under service conditions. - Do not use
lock washers. #### Installation Procedure: - 1. Place a leveling nut and washer on each anchor bolt and install a template on top of the leveling nuts to verify that the nuts are level and uniformly contact the template. Use beveled washers if the leveling nuts cannot be brought into firm contact with the template. Verify that the distance between the bottom of the leveling nuts and the top of the concrete is no more than one nut height. Consider how attachments and applied loads may affect the vertical nature of the metal pole after erected and fully loaded. If necessary, induce a rake to the upright in the opposite direction of the anticipated loads during the initial erection by adjusting the leveling nuts accordingly. Failure to consider this could result in the upright being out of the allowable vertical tolerance as specified in the Metal Strain Pole Construction Methods of this special provision. - 2. Install the vertical upright on the anchor bolts, and tighten nuts in compliance with steps 3, 4, and 5 below. Do not attach cantilever arms or messenger cable to the vertical post until all of the top nuts and leveling nuts have been properly tightened on the anchor bolts. - 3. Install top nuts and washers. Install flat washers under the top and leveling nuts. Use beveled washers if the nuts cannot be brought into firm contact with the base plate. Lubricate threads of the anchor bolts, nuts, and bearing surface of the nuts and tighten to a snug-tight condition with a spud wrench following a star pattern (using at least two increments). Snug-tight condition is defined as 20% to 30% of the verification torque (600 ft-lbs.). Ensure lubricant is beeswax, stick paraffin, or other approved lubricant. - 4. After the top nuts have been snug tightened, snug tighten the bottom nuts up to the base plate using the same procedure as described above. The base-plate must be in firm contact with both the top and bottom nuts to achieve the proper pretension in the anchor bolts. - 5. Before further turning of the nuts, mark the reference position of the top nut in the snug-tight condition by match marking each nut, bolt shank, and base plate. Use ink or paint that is not water-soluble. - 6. Turn the top nuts in increments using the star pattern (using at least two full tightening cycles) to 1/6 of a turn. Use a torque wrench to verify that at least 600 ft-lbs. is required to further tighten the top nuts. At least 48 hours after the entire structure and any attachments are erected, use a torque wrench again to verify that at least 600 ft-lbs. is still required to tighten the top nuts. Verify that the leveling nuts remain in firm contact with the base plate. - 7. Do not place non-shrink grout between the base plate and foundation. This will allow for future inspection of leveling nuts and for adequate drainage of moisture. #### 4.2. METAL STRAIN POLE #### A. Materials: Provide ground lug at 0° on the pole's radial index for grounding spanwire. Ensure #4 or #6 AWG wire will pass through opening. #### **B.** Construction Methods: Install metal poles, hardware, and fittings as shown on the manufacturer's installation drawings. Install metal poles so that when the pole is fully loaded it is within 2 degrees of vertical. Install poles with the manufacturer's recommended "rake." Use threaded leveling nuts to establish rake. Version 06.2 13 print date: 08/30/06 #### 4.3. METAL POLE WITH MAST ARM #### A. Construction Methods: Install horizontal-type arms within 2 degrees of horizontal when loaded with signal heads and signs. Attach cap to the mast arm with a sturdy chain or cable. Ensure that the chain or cable is long enough to permit the cap to hang clear of the arm opening when the cap is removed. # 4.4. DRILLED PIER FOUNDATIONS FOR METAL TRAFFIC SIGNAL POLES ## A. Description: Perform a soil test at each proposed metal pole location. Furnish and install foundations for NCDOT metal poles with all necessary hardware in accordance with the plans and specifications. Metal Pole Standards have been developed and implemented by NCDOT for use at signalized intersections in North Carolina. If the plans call for a standard pole, then a standard foundation may be selected from the plans. However, the Contractor is not required to use a standard foundation. If the Contractor chooses to design a non-standard site-specific foundation for a standard pole or if the plans call for a non-standard site-specific pole, design the foundation to conform to the applicable provisions in the NCDOT Metal Pole Standards and Section B4 (Non-Standard Foundation Design) If the Contractor chooses to design a non-standard foundation for a standard pole and the soil test results indicate a standard foundation is feasible for the site, the Contractor will be paid the cost of the standard foundation (drilled pier and wing wall, if applicable). Any additional costs associated with a non-standard site-specific foundation including additional materials, labor and equipment will be considered incidental to the cost of the standard foundation. All costs for the non-standard foundation design will also be considered incidental to the cost of the standard foundation. # **B.** Soil Test and Foundation Determination: #### 1. General: Drilled piers are reinforced concrete sections, cast-in-place against in situ, undisturbed material. Drilled piers are of straight shaft type and vertical. Some standard drilled piers for supporting poles with mast arms may require wing walls to resist torsional rotation. Based upon this provision and the results of the required soil test, a drilled pier length and wing wall requirement may be determined and constructed in accordance with the plans. For non-standard site-specific poles, the contractor-selected pole fabricator will determine if the addition of wing walls is necessary for the supporting foundations. # 2. Soil Test: Perform a soil test at each signal location. Complete all required fill placement and excavation at each signal pole location to finished grade before drilling each boring. Drill one boring to a depth of 26 feet. Perform standard penetration tests (SPT) in accordance with ASTM D 1586 at depths of 1, 2.5, 5, 7.5, 10, 15, 20 and 26 feet. Discontinue the boring if one of the following occurs: - A total of 100 blows have been applied in any 2 consecutive 6-in. intervals. - A total of 50 blows have been applied with < 3-in. penetration. Describe each intersection as the "Intersection of (*Route or SR #*), (*Street Name*) and (*Route or SR #*), (*Street Name*), ______ County, Signal Inventory No. ______". Label borings with "B- <u>N, S, E, W, NE, NW, SE or SW</u>" corresponding to the quadrant location within the intersection. For each Version 06.2 14 print date: 08/30/06 boring, submit a legible (hand written or typed) boring log signed and sealed by a licensed geologist or professional engineer registered in North Carolina. Include on each boring the SPT blow counts and N-values at each depth, depth of the boring, and a general description of the soil types encountered. #### 3. Standard Foundation Determination: Use the following method for determining the Design N-value: $$N_{AVG} = \underbrace{(N@1' + N@2.5' + \dots N@Deepest \ Boring \ Depth)}_{Total \ Number \ of \ N-values}$$ $$Y = (N@1')^2 + (N@2.5')^2 + \dots (N@Deepest \ Boring \ Depth)^2$$ $$Z = (N@1' + N@2.5' + \dots N@Deepest \ Boring \ Depth)$$ $$N_{STD \ DEV} = \underbrace{\left(\underbrace{Total \ Number \ of \ N-values \ x \ Y) - Z^2}_{\left(Total \ Number \ of \ N-values) \ x \ \left(Total \ Number \ of \ N-values - 1\right)}^{0.5}$$ **Design N-value** equals lesser of the following two conditions: $$N_{AVG}$$ – ($N_{STD \, DEV} \times 0.45$) Or Average of First Four N-Values = $(N@1' + N@2.5' + N@5' + N@7.5')$ Note: If less than 4 N-values are obtained because of criteria listed in Section 2 above, use average of N-values collected for second condition. Do not include the N-value at the deepest boring depth for above calculations if the boring is discontinued at or before the required boring depth because of criteria listed in Section 2 above. Use N-value of zero for weight of hammer or weight of rod. If N-value is greater than 50, reduce Nvalue to 50 for calculations. If standard NCDOT poles are shown on the plans and the Contractor chooses to use standard foundations, determine a drilled pier length, "L," for each signal pole from the Standard Foundations Chart (sheet M 8) based on the Design N-value and the predominant soil type. For each standard pole location, submit a completed "Metal Pole Standard Foundation Selection Form" signed by the contractor's representative. Include the Design N-value calculation and resulting drilled pier length, "L," on each form. If non-standard site-specific poles are shown on the plans, submit completed boring logs collected in accordance with Section 2 (Soil Test) above along with pole loading diagrams from the plans to the contractor-selected pole fabricator to assist in the pole and foundation design. If one of the following occurs, the Standard Foundations Chart shown on the plans may not be used and a non-standard foundation may be required. In such case, contact the Engineer. - The Design N-value is less than 4. - The drilled pier length, "L", determined from the Standard Foundations Chart, is greater than the depth of the corresponding boring. In the case where a standard foundation cannot be used, the Department will be responsible for the additional cost of the non-standard foundation. print date: 08/30/06 Version 06.2 15 The Standard Foundations Chart is based on level ground around the traffic signal pole. If the distance between the edge of the drilled pier and the top of a slope steeper than 2:1 (H:V) is less than 10 feet or the grade within 10 feet is steeper than 2:1 (H:V), contact the Engineer. The "Metal Pole Standard Foundation Selection Form" may be found as follows: - 1) Go to
www.NCDOT.org/business/. - 2) Click on "Geotechnical Engineering Unit Forms." - 3) Click on "Metal Pole Standard Foundation Selection Form." If assistance is needed with the required calculations, contact the Signals and Geometrics Structural Engineer at (919) 733-3915. However, in no case will the failure or inability to contact the Signals and Geometrics Structural Engineer be cause for any claims or requests for additional compensation. # 4. Non-Standard Foundation Design: Design non-standard foundations based upon site-specific soil test information collected in accordance with Section 2 (Soil Test) above. Provide a drilled pier foundation for each pole with a length and diameter that results in a horizontal lateral movement of less than 1 inch at the top of the pier and a horizontal rotational movement of less than 1 inch at the edge of the pier. Contact the Engineer for pole loading diagrams for standard poles to be used for non-standard foundation designs. Submit any non-standard foundation designs including plans, calculations, and soil boring logs to the Engineer for review and approval before construction. A professional engineer registered in the state of North Carolina must seal all plans and calculations. #### C. Drilled Pier Construction: #### 1. Excavation: Perform excavations for drilled piers to the required dimensions and lengths including all miscellaneous grading and excavation necessary to install the drilled pier. Depending on the subsurface conditions encountered, excavation in weathered rock or removal of boulders may be required. Dispose of drilling spoils as directed and in accordance with Section 802 of the *Standard Specifications*. Drilling spoils consist of all material excavated including water or slurry removed from the excavation either by pumping or with augers. Construct all drilled piers such that the piers are cast against undisturbed soil. If a larger casing and drilled pier are required as a result of unstable or caving material during drilling, backfill the excavation before removing the casing to be replaced. No additional payment will be made for substituting a larger diameter drilled pier in order to construct a drilled pier cast against undisturbed soil. Construct drilled piers within the tolerances specified herein. If tolerances are exceeded, provide additional construction as approved by the Engineer to bring the piers within the tolerances specified. Construct drilled piers such that the axis at the top of the piers is no more than 3 inches in any direction from the specified position. Build drilled piers within 1% of the plumb deviation for the total length of the piers. Construct the finished top of pier elevation between 5 inches above and 2 inches above the finished grade elevation. Form the top of the pier such that the concrete is smooth and level. If unstable, caving, or sloughing soils are anticipated or encountered, stabilize drilled pier excavations with either steel casing or polymer slurry. Steel casing may be either the sectional type or one continuous corrugated or non-corrugated piece. Ensure all steel casings consist of clean Version 06.2 16 print date: 08/30/06 watertight steel of ample strength to withstand handling and driving stresses and the pressures imposed by concrete, earth or backfill. Use steel casings with an outside diameter equal to the specified pier size and a minimum wall thickness of 1/4 inches. Extract all temporary casings during concrete placement in accordance with this special provision unless the Contractor chooses to leave the casing in place in accordance with the requirements below. Any temporary steel casing that becomes bound or fouled during pier construction and cannot be practically removed may constitute a defect in the drilled pier. Improve such defective piers to the satisfaction of the Engineer by removing the concrete and enlarging the drilled pier, providing a replacement pier or other approved means. All corrective measures including redesign as a result of defective piers will not be cause for any claims or requests for additional compensation. Any steel casing left in place will be considered permanent casing. Permanent steel casings are only allowed for strain poles. When installing permanent casing, do not drill or excavate below the tip of the permanent casing at any time such that the permanent casing is against undisturbed soil. The Contractor may excavate a hole smaller than the specified pier size to facilitate permanent casing installation. Ensure the sides of the excavation do not slough during drilling. Ensure the hole diameter does not become larger than the inside diameter of the casing. No additional compensation will be paid for permanent casing. If polymer slurry is chosen to stabilize the excavation, use one of the following polymers listed in the table below: | PRODUCT | MANUFACTURER | |---------------|---| | SlurryPro EXL | KB Technologies Ltd
3648 FM 1960 West, Suite 107
Houston, TX 77068
(800) 525-5237 | | Super Mud | PDS Company
105 West Sharp Street
El Dorado, AR 71730
(800) 243-7455 | | Shore Pac GCV | CETCO Drilling Products Group
1500 West Shure Drive
Arlington Heights, IL 60004
(800) 527-9948 | Use slurry in accordance with the manufacturer's guidelines and recommendations unless approved otherwise by the Engineer. The Contractor should be aware that polymer slurry may not be appropriate for a given site. Polymer slurry should not be used for excavations in soft or loose soils as determined by the Engineer. In wet pour conditions, advise and gain approval from the Engineer as to the planned construction method intended for the complete installation of the drilled pier before excavating. ## 2. Reinforcing Steel: Completely assemble a cage of reinforcing steel consisting of longitudinal and spiral bars and place cage in the drilled pier excavation as a unit immediately upon completion of drilling unless the excavation is entirely cased. If the drilled pier excavation is entirely cased down to the tip, immediate placement of the reinforcing steel is not required. Version 06.2 17 print date: 08/30/06 Lift the cage so racking and cage distortion does not occur. Keep the cage plumb during concrete operations and casing extraction. Check the position of the cage before and after placing the concrete. Securely cross-tie the vertical and spiral reinforcement at each intersection with double wire. Support or hold down the cage so that the vertical displacement during concrete placement and casing extraction does not exceed 2 inches. Do not set the cage on the bottom of the drilled pier excavation. Place plastic bolsters under each vertical reinforcing bar that are tall enough to raise the rebar cage off the bottom of the drilled pier excavation a minimum of 3 inches. In order to ensure a minimum of 3 inches of concrete cover and achieve concentric spacing of the cage within the pier, tie plastic spacer wheels at five points around the cage perimeter. Use spacer wheels that provide a minimum of 3 inches "blocking" from the outside face of the spiral bars to the outermost surface of the drilled pier. Tie spacer wheels that snap together with wire and allow them to rotate. Use spacer wheels that span at least two adjacent vertical bars. Start placing spacer wheels at the bottom of the cage and continue up along its length at maximum 10-foot intervals. Supply additional peripheral spacer wheels at closer intervals as necessary or as directed by the Engineer. #### 3. Concrete: Begin concrete placement immediately after inserting reinforcing steel into the drilled pier excavation. If the drilled pier excavation is entirely cased down to the tip, immediately placement of the concrete is not required. # a) Concrete Mix Provide the mix design for drilled pier concrete for approval and, except as modified herein, meeting the requirements of Section 1000 of the *Standard Specifications*. Designate the concrete as Drilled Pier Concrete with a minimum compressive strength of 4500 psi at 28 days. The Contractor may use a high early strength mix. Make certain the cementitious material content complies with one of the following options: - Provide a minimum cement content of 640 lbs/yd³ and a maximum cement content of 800 lbs/yd³; however, if the alkali content of the cement exceeds 0.4%, reduce the cement content by 20% and replace it with fly ash at the rate of 1.2 lb of fly ash per lb of cement removed. - If Type IP blended cement is used, use a minimum of 665 lbs/yd³ Type IP blended cement and a maximum of 833 lbs/yd³ Type IP blended cement in the mix. Limit the water-cementitious material ratio to a maximum of 0.45. Do not air-entrain drilled pier concrete. Produce a workable mix so that vibrating or prodding is not required to consolidate the concrete. When placing the concrete, make certain the slump is between 5 and 7 inches for dry placement of concrete or 7 and 9 inches for wet placement of concrete. Use Type I or Type II cement or Type IP blended cement and either No. 67 or No. 78M coarse aggregate in the mix. Use an approved water-reducer, water-reducing retarder, high-range water-reducer or high-range water-reducing retarder to facilitate placement of the concrete if necessary. Do not use a stabilizing admixture as a retarder in Drilled Pier Concrete without approval of the Engineer. Use admixtures that satisfy AASHTO M194 and add admixtures at the concrete plant when the mixing water is introduced into the concrete. Redosing of admixtures is not permitted. Version 06.2 18 print date: 08/30/06 Place the concrete within 2 hours after introducing the mixing water. Ensure that the concrete temperature at the time of placement is 90°F or less. ### b) Concrete Placement Place concrete such that the drilled pier is a monolithic structure. Temporary casing may be completely
removed and concrete placement may be temporarily stopped when the concrete level is within 42 to 48 inches of the ground elevation to allow for placement of anchor bolts and conduit. Do not pause concrete placement if unstable caving soils are present at the ground surface. Remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete before inserting the anchor bolts and conduit. Resume concrete pouring within 2 hours. Do not dewater any drilled pier excavations unless the excavation is entirely cased down to tip. Do not begin to remove the temporary casing until the level of concrete within the casing is in excess of 10 feet above the bottom of the casing being removed. Maintain the concrete level at least 10 feet above the bottom of casing throughout the entire casing extraction operation except when concrete is near the top of the drilled pier elevation. Maintain a sufficient head of concrete above the bottom of casing to overcome outside soil and water pressure. As the temporary casing is withdrawn, exercise care in maintaining an adequate level of concrete within the casing so that fluid trapped behind the casing is displaced upward and discharged at the ground surface without contaminating or displacing the drilled pier concrete. Exerting downward pressure, hammering, or vibrating the temporary casing is permitted to facilitate extraction. Keep a record of the volume of concrete placed in each drilled pier excavation and make it available to the Engineer. After all the pumps have been removed from the excavation, the water inflow rate determines the concrete placement procedure. If the inflow rate is less than 6 inches per half hour, the concrete placement is considered dry. If the water inflow rate is greater than 6 inches per half hour, the concrete placement is considered wet. - **Dry Placement:** Before placing concrete, make certain the drilled pier excavation is dry so the flow of concrete completely around the reinforcing steel can be certified by visual inspection. Place the concrete by free fall with a central drop method where the concrete is chuted directly down the center of the excavation. - Wet Placement: Maintain a static water or slurry level in the excavation before placing concrete. Place concrete with a tremie or a pump in accordance with the applicable parts of Sections 420-6 and 420-8 of the *Standard Specifications*. Use a tremie tube or pump pipe made of steel with watertight joints. Passing concrete through a hopper at the tube end or through side openings as the tremie is retrieved during concrete placement is permitted. Use a discharge control to prevent concrete contamination when the tremie tube or pump pipe is initially placed in the excavation. Extend the tremie tube or pump pipe into the concrete a minimum of 5 feet at all times except when the concrete is initially introduced into the pier excavation. If the tremie tube or pump pipe pulls out of the concrete for any reason after the initial concrete is placed, restart concrete placement with a steel capped tremie tube or pump pipe. Once the concrete in the excavation reaches the same elevation as the static water level, placing concrete with the dry method is permitted. Before changing to the dry method of concrete placement, remove any water or slurry above the concrete and clean the concrete surface of all scum and sediment to expose clean, uncontaminated concrete. Version 06.2 19 print date: 08/30/06 Vibration is only permitted, if needed, in the top 10 feet of the drilled pier or as approved by the Engineer. Remove any contaminated concrete from the top of the drilled pier and wasted concrete from the area surrounding the drilled pier upon completion. Permanently mark the top of each foundation with a stamp or embedded plate to identify the depth of the foundation. #### 4. Concrete Placement Time: Place concrete within the time frames specified in Table 1000-2 of the *Standard Specifications* for Class AA concrete except as noted herein. Do not place concrete so fast as to trap air, water, fluids, soil or any other deleterious materials in the vicinity of the reinforcing steel and the annular zone between the rebar cage and the excavation walls. Should a delay occur because of concrete delivery or other factors, reduce the placement rate to maintain some movement of the concrete. No more than 45 minutes is allowed between placements. # 5. Scheduling and Restrictions: During the first 16 hours after a drilled pier has achieved its initial concrete set as determined by the Engineer, do not drill adjacent piers, install adjacent piles, or allow any heavy construction equipment loads or "excessive" vibrations to occur at any point within a 20 foot radius of the drilled pier. The foundation will be considered acceptable for loading when the concrete reaches a minimum compressive strength of 3000 psi. This provision is intended to allow the structure to be installed on the foundation in a shorter time frame, and does not constitute full acceptance of the drilled pier. Full acceptance will be determined when the concrete meets its full strength at 28 days. In the event that the procedures described herein are performed unsatisfactorily, the Engineer reserves the right to shut down the construction operations or reject the drilled piers. If the integrity of a drilled pier is in question, use core drilling, sonic or other approved methods at no additional cost to the Department and under the direction of the Engineer. Dewater and backfill core drill holes with an approved high strength grout with a minimum compressive strength of 4500 psi. Propose remedial measures for any defective drilled piers and obtain approval of all proposals from the Engineer before implementation. No additional compensation will be paid for losses or damage due to remedial work or any investigation of drilled piers found defective or not in accordance with these special provision or the plans. # D. Drilled Pier Foundations with Wing Walls: # 1. General: Wing walls are reinforced concrete sections, rectangular in shape that protrude horizontally out from two sides of a drill pier shaft. They are cast-in-place together with a drilled pier in a monolithic pour. They are used to eliminate torsional rotation of a foundation designed for supporting poles with mast arms. NCDOT Metal Pole Standards provide design details for two types of wing walls based on their size and concrete volume: - TYPE 1: 1'-6" long by 1'-0" wide by 3'-0" deep (.4 cubic yards) - TYPE 2: 3'-0" long by 1'-0" wide by 5'-0" deep (1.2 cubic yards) The type of wing wall to be used, if required, is determined when a standard foundation is selected from the Standard Foundations Chart shown on the plans. For non-standard site-specific pole designs, the contractor-selected pole fabricator will determine whether wings are needed for the pole foundation. Version 06.2 20 print date: 08/30/06 #### R-2904 Signals & Intelligent Transportation Systems Contact the Engineer for assistance in resolving constructibility issues if wing walls for a foundation are required, but can not be installed because: - of unforeseen difficulties such as underground utility obstructions, - the construction of the wings may compromise a roadway base, - the soil conditions are so unstable that construction of the wings may compromise the integrity of the drill pier shaft, or - underground rock formations make excavation impractical. #### 2. Excavation: Excavate for wing walls after boring of the drill pier shaft is complete. Follow excavation procedure as necessary per Section C1 (Drilled Pier Construction – Excavation). If unstable, caving or sloughing soils are anticipated or encountered, stabilize excavation for wings using temporary shoring during excavation and through concrete placement. In wet pour conditions, advise and gain approval from the Engineer as to the planned construction method intended for the complete installation of the drilled pier before performing any excavation of the drill pier or its wings. # 3. Reinforcing Steel: Completely assemble the wing wall cage along with the drill pier cage. Install horizontal bars in cone continuous length so they extend completely through the drill shaft cage, out to each wing tip. Follow details described in Section C2 (Drilled Pier Construction – Reinforcing Steel). If a drilled pier casing has been installed to construct the drill shaft to stabilize the shaft walls, installation of the wing wall reinforcing steel may not be possible until the drill shaft casing has been extracted. Constructibility issues must be resolved and construction methods approved to the satisfaction of the Engineer before assembly of the reinforcing cage. #### 4. Concrete Placement: Place concrete such that the drilled pier and wing walls are a monolithic structure. Follow provisions described in Section C3 (Drilled Pier Construction – Concrete). No construction joints or keys will be allowed. # 4.5. CUSTOM DESIGN OF TRAFFIC SIGNAL SUPPORTS #### A. Metal Poles: Ensure that the anchor bolts have the required diameters, lengths, and positions, and will develop strengths comparable to their respective poles. # B. Mast Arms: Use a full penetration groove weld with a backing ring to connect the mast arm to the pole. Refer to Standard Drawings for Metal Poles M5. # 4.6. METAL SIGNAL POLE REMOVALS ### A. Description: Remove and dispose of existing metal signal poles including mastarms, and remove and dispose of existing foundations, associated anchor bolts, electrical wires and connections. #### **B.** Construction Methods: #### 1. Foundations: Remove and promptly dispose of the metal signal pole foundations include reinforcing steel, electrical wires, and anchor bolts to a minimum depth of two feet below the finished ground elevation. At the Contractor's option, remove the complete foundation. Version 06.2 21
print date: 08/30/06 #### 2. Metal Poles: Assume ownership of the metal signal poles, remove the metal signal poles, and promptly transport the metal signal poles from the project. Use methods to remove the metal signal poles and attached traffic signal equipment that will not result in damage to other portions of the project or facility. Repair damages that are a result of the Contractor's actions at no additional cost to the Department. Transport and properly dispose of the materials. Backfill and compact disturbed areas to match the finished ground elevation. Seed unpaved areas. Use methods to remove the foundations that will not result in damage to other portions of the project or facility. Repair damages that are a result of the Contractor's actions at no cost to the Department. #### 4.7. MEASUREMENT AND PAYMENT Actual number of State-furnished metal strain signal poles without regard to height or load capacity installed and accepted. Actual number of State-furnished metal poles with single mast arms installed, and accepted. Actual number of soil tests with SPT borings drilled furnished and accepted. Actual volume of concrete poured in cubic yards of drilled pier foundation furnished, installed and accepted. No measurement will be made of foundation designs, as these will be considered incidental to installation of State-furnished metal signal supports. Actual number of metal signal pole foundations removed and disposed. Actual number of metal signal poles removed and disposed. Payment will be made under: | Install State-furnished Metal Strain Signal Pole | Each | |---|------------| | Install State-furnished Metal Pole and Luminaire with Single Mast Arm | | | Install State-furnished Metal Pole with Single Mast Arm | Each | | Soil Test | Each | | Drilled Pier Foundation | Cubic Yard | | Metal Pole Foundation Removal | Each | | Metal Pole Removal | Fach | #### 5. CONTROLLERS WITH CABINETS # 5.1. MATERIALS - TYPE 170E CONTROLLERS Conform to the CALTRANS Traffic Signal Control Equipment Specifications and addendum 8, Specifications for Model 170E Enhanced Controller Unit and Associated Model 412C and Model 172 Modules except as required herein. Provide model 412C Program Modules as defined in CALTRANS Addendum 8 except as specified otherwise herein. Provide program module delivery with Memory Select #4 Configuration except that all RAM must be DALLAS Non-volatile RAM or an approved equal. Ensure that the removal of the program module from the controller will place the intersection into flash. Provide diagnostic software or removable diagnostic PROM modules that will test and diagnose the following: Version 06.2 22 print date: 08/30/06 - systems of the controller, including the internal memory, Program Module, Real Time Clock, I/O circuitry, display, and keyboard; - systems of the cabinet, including the output file, input file, police panel, flashing operation, and cabinet switches; and - systems of the conflict monitor by checking all possible conflicts in a logical sequence and resetting the conflict monitor each time, and by testing red failure function and red detect cable disconnects. Ensure that the automatic reset function can be enabled by inserting a diagnostic plug in the jack labeled "Conflict Monitor Test" in the "TEST" position. In addition to CALTRANS system communications capability between a central computer and master controller and master to local controller communications, provide communications capability with the intersection conflict monitor via an RS-232C/D port on the monitor. Ensure controller receives data from the conflict monitor through a controller Asynchronous Communications Interface Adapter (ACIA) determined by the controller software manufacturer. Ensure that with the appropriate software, the controller is capable of communicating directly through a laptop nine pin serial port to the same monitor RS-232C/D to retrieve all event log information. Furnish a communications connecting cable with the following pin connections. | 170 | | Conflict Monitor DB-9 | |-----------|------------|-----------------------| | RX pin L | Connect to | TX pin 2 | | TX pin K | Connect to | RX pin 3 | | +5 pin D | Connect to | DTR pin 4 | | GND pin N | Connect to | GND pin 5 | Provide a male DB-9 connector on the cable for connection to the monitor. Provide socket mounting for through-hole mount devices with 14 or more pins. Ensure that all sockets are AUGAT-500 series machined sockets, or equal. Provide a moisture resistant coating on all circuit boards. Mount circuit boards vertically. #### 5.2. MATERIALS – GENERAL CABINETS Provide a moisture resistant coating on all circuit boards. Provide one V150LA20 MOV or equal protection on each load switch field terminal. Provide a power line surge protector that is a two-stage device that will allow connection of the radio frequency interference filter between the stages of the device. Ensure that a maximum continuous current is at least 10A at 120V. Ensure that the device can withstand a minimum of 20 peak surge current occurrences at 20,000A for an 8x20 microsecond waveform. Provide a maximum clamp voltage of 280V at 20,000A with a nominal series inductance of 200µh. Ensure that the voltage does not exceed 280V. Provide devices that comply with the following: Version 06.2 23 print date: 08/30/06 | Frequency (Hz) | Minimum Insertion Loss (dB) | |----------------|-----------------------------| | 60 | 0 | | 10,000 | 30 | | 50,000 | 55 | | 100,000 | 50 | | 500,000 | 50 | | 2,000,000 | 60 | | 5,000,000 | 40 | | 10,000,000 | 20 | | 20,000,000 | 25 | #### 5.3. MATERIALS – TYPE 170E CABINETS # A. Type 170 E Cabinets General: Conform to CALTRANS Traffic Signal Control Equipment Specifications except as required herein. Furnish CALTRANS Model 336S pole mounted cabinets configured for 8 vehicle phases with power distribution assemblies (PDAs) number 2, and 4 pedestrian phases or overlaps. Furnish CALTRANS Model 332A base mounted cabinets with PDAs #2 and configured for 8 vehicle phases, 4 pedestrian phases, and 4 overlaps. When overlaps are required, provide auxiliary output files for the overlaps. Do not reassign load switches to accommodate overlaps unless shown on electrical details. # **B.** Type 170 E Cabinet Electrical Requirements: Provide a cabinet assembly designed to ensure that upon leaving any cabinet switch or conflict monitor initiated flashing operation, the controller starts up in the programmed start up phases and start up interval. Furnish two sets of non-fading cabinet wiring diagrams and schematics in a paper envelope or container and placed in the cabinet drawer. Provide surge suppression in the cabinet for each type of cabinet device. Provide surge protection for the full capacity of the cabinet input file. All AC+ power is subject to radio frequency signal suppression. If additional surge protected power outlets are needed to accommodate fiber transceivers, modems, etc.; install a UL listed, industrial, heavy-duty type power outlet strip with a maximum rating of 15 A / 125 VAC, 60 Hz. Provide a strip that has a minimum of 3 grounded outlets. Ensure the power outlet strip plugs into one of the controller unit receptacles located on the rear of the PDA. Ensure power outlet strip is mounted securely; provide strain relief if necessary. Connect detector test switches for cabinets as follows: | 336S Cabinet | | 332A Cabinet | | | |------------------------|-----------|------------------------|-----------|--| | Detector Call Switches | Terminals | Detector Call Switches | Terminals | | | Phase 1 | II-F | Phase 1 | II-W | | | Phase 2 | I2-F | Phase 2 | I4-W | | | Phase 3 | I3-F | Phase 3 | I5-W | | | Phase 4 | I4-F | Phase 4 | I8-W | | | Phase 5 | I5-F | Phase 5 | J1-W | | | Phase 6 | I6-F | Phase 6 | J4-W | | | Phase 7 | I7-F | Phase 7 | J5-W | | | Phase 8 | I8-F | Phase 8 | J8-W | | Provide a terminal mounted loop surge suppresser device for each set of loop terminals in the cabinet. For a 10x700 microsecond waveform, ensure that the device can withstand a minimum of 25 peak surge current occurrences at 100A, in both differential and common modes. Ensure that the maximum breakover voltage is 170V and the maximum on-state clamping voltage is 30V. Provide a maximum response time less than 5 nanoseconds. Ensure that off-state leakage current is less than $10 \,\mu A$. Provide a nominal capacitance less than 220pf for both differential and common modes. Provide surge suppression on each communications line entering or leaving a cabinet. Ensure that the communications surge suppresser can withstand at least 80 occurrences of an 8x20 microsecond wave form at 2000A and a 10x700 microsecond waveform at 400A. Ensure that the maximum clamping voltage is suited to the protected equipment. Provide a maximum response time less than 1 nanosecond. Provide a nominal capacitance less than 1500pf and a series resistance less than 15 Ω . Provide surge suppression on each DC input channel in the cabinet. Ensure that the DC input channel surge suppresser can withstand a peak surge current of at least 10,000 amperes in the form of an 8x20 microsecond waveform and at least 100 occurrences of an 8x20 microsecond wave form at 2000 A. Ensure that the maximum clamping voltage is 30V. Provide a maximum response time less than 1 nanosecond and a series resistance less than 15 Ω per line. Provide protection for each preemption or 120 Vrms single phase signal input by an external stud mounted surge protector. Ensure that a minimum stud size of 1/3 inch, and Number 14 AWG minimum sized wire leads with 1 foot minimum lengths. Ensure that a peak surge trip point less than 890 volts nominal for a 600 volt rise per microsecond impulse, and 950 volts nominal for a 3000 volt per microsecond rise impulse. Provide a maximum surge response time less than 200 nanoseconds at 10 kV per microsecond. Ensure
that the AC isolation channel surge suppresser can withstand at least 25 occurrences of a 8x20 waveform of 10,000 amperes and a peak single pulse 8x20 microsecond wave form of 20,000 amperes. Provide a maximum clamping voltage of 30V. Provide a maximum response time less than 1 nanosecond. Ensure that the discharge voltage is under 200 volts at 1000 amperes and the insulation resistance is 100 megaohms. Provide an absolute maximum operating line current of one ampere at 120 Vrms. Provide conductors for surge protection wiring that are of sufficient size (ampacity) to withstand maximum overcurrents which could occur before protective device thresholds are attained and current flow is interrupted. Furnish a fluorescent fixture in the rear across the top of the cabinet and another fluorescent fixture in the front across the top of the cabinet at a minimum. Ensure that the fixtures provide sufficient light to illuminate all terminals, labels, switches, and devices in the cabinet. Conveniently Version 06.2 25 print date: 08/30/06 locate the fixtures so as not to interfere with a technician's ability to perform work on any devices or terminals in the cabinet. Provide a protective diffuser to cover exposed bulbs. Furnish all bulbs with the cabinet. Provide door switch actuation for the fixtures. Furnish a police panel with a police panel door. Ensure that the police panel door permits access to the police panel when the main door is closed. Ensure that no rainwater can enter the cabinet even with the police panel door open. Provide a police panel door hinged on the right side as viewed from the front. Provide a police panel door lock that is keyed to a standard police/fire call box key. In addition to CALTRANS Specifications, provide the police panel with a toggle switch connected to switch the intersection operation between normal stop-and-go operation (AUTO) and manual operation (MANUAL). Ensure that manual control can be implemented using inputs and software such that the controller provides full programmed clearance times for the yellow clearance and red clearance for each phase while under manual control. Provide a 1/4-inch locking phone jack in the police panel for a hand control to manually control the intersection. Provide sufficient room in the police panel for storage of a hand control and cord. Provide detector test switches inside the cabinet on the door or other convenient location which may be used to place a call on each of eight phases based on standard CALTRANS input file designation for detector racks. Provide three positions for each switch: On (place call), Off (normal detector operation), and Momentary On (place momentary call and return to normal detector operation after switch is released). Ensure that the switches are located such that the technician can read the controller display and observe the intersection. Provide a shorting jack inside cabinet that functions exclusively to call the controller and cabinet assembly into the automatic diagnostics functions. Ensure shorting jack will mate with a Switchcraft Model 190 plug or equivalent. Place jack in a convenient, unobstructed location inside cabinet. When the mating plug is inserted into the jack, ensure controller enters the diagnostic test mode and a controller generated monitor reset signal is placed on Pin C1-102 (monitor external reset) of the model 210 conflict monitor which causes the monitor to automatically reset. Equip cabinet with a connector and terminal assembly designated as P20 (Magnum P/N 722120 or equivalent) for monitoring the absence of any valid AC+ signal display (defined here as red, yellow, or green) input on any channel of the conflict monitor. Connect the terminal through a 3 1/2 feet 20 wire ribbon cable which mates on the other end to a connector (3M-3428-5302 or equivalent) installed in the front of the Type 210 enhanced conflict monitor. Ensure that the female connector which mates with the connector on the conflict monitor has keys to ensure that proper connection. Ensure that the cabinet enters the flash mode if the ribbon cable is not properly connected. Provide a P20 connector and terminal assembly that conforms to Los Angeles City DOT "Traffic Signal Specification DOT 170 ATSAC Universal and Related Equipment #54-053-02". Terminate ribbon cable at the P20 connector and terminal assembly. Ensure the P20 connector and mating ribbon cable connector is keyed to prevent cable from being improperly installed. Wire the P20 connector to the traffic signal red displays to provide inputs to conflict monitor as shown: Version 06.2 26 print date: 08/30/06 R-2904 Signals & Intelligent Transportation Systems | Pin# | Function | Pin # | Function | |------|--------------------|-------|---------------| | 1 | Channel 15 Red | 11 | Channel 9 Red | | 2 | Channel 16 Red | 12 | Channel 8 Red | | 3 | Channel 14 Red | 13 | Channel 7 Red | | 4 | GND | 14 | Channel 6 Red | | 5 | Channel 13 Red | 15 | Channel 5 Red | | 6 | Special Function 2 | 16 | Channel 4 Red | | 7 | Channel 12 Red | 17 | Channel 3 Red | | 8 | Special Function 1 | 18 | Channel 2 Red | | 9 | Channel 10 Red | 19 | Channel 1 Red | | 10 | Channel 11 Red | 20 | Red Enable | Provide a convenient means to jumper 120 VAC from the signal load switch AC+ supply bus to any channel Red input to the P20 connector in order to tie unused red inputs high. Ensure that easy access is provided to the jumper connecting terminals on the back side of cabinet. Locate the jumper terminals connecting to all 16 channel Red inputs in the same terminal block. For each channel Red input terminal, provide a companion terminal supplying AC+ from the signal bus. Provide one of the following two methods for providing Signal AC+ to the channel red input: - Place a commercially available jumper plug between the channel Red input and its companion Signal Bus AC+ terminal. - Place a jumper wire between a channel red input screw terminal and its companion Signal Bus AC+ screw terminal. Connection between channel Red input terminal and its companion Signal Bus AC+ terminal must not require a wire greater than 1/2 inch in length. Conform to the following Department wiring requirements: - Wire the Red Enable monitor input to the Signal Bus AC+ terminal TB01-1. - Do not connect either the special function 1 or the special function 2 monitor input to the red monitor card. - Ensure that removal of the P-20 ribbon cable will cause the monitor to recognize a latching fault condition and place the cabinet into flashing operation and that this is implemented in the conflict monitor software. Ensure that removal of the conflict monitor from the cabinet will cause the cabinet to revert to flashing operation. Provide Model 200 load switches and Model 204 flashers. ## C. Type 170 E Cabinet Physical Requirements: Provide a surge protection panel with 16 loop protection devices and designed to allow sufficient free space for wire connection/disconnection and surge protection device replacement. Provide an additional three slots protected with six AC+ interconnect surge devices and two protected by four DC surge protection devices. Provide no protection devices on slot 14. Attach flash sense and stop time to the upper and lower slot as required. i) For pole mounted cabinets, mount surge protection devices for the AC+ interconnect cable inputs, inductive loop detector inputs, and low voltage DC inputs on a fold down panel assembly on the rear side of the input files. Fabricate the surge protection devices from sturdy aluminum and incorporate a swing down back panel to which the surge protection devices are attached. Attach the swing down panel to the assembly using thumb screws. Have the surge protection devices mounted horizontally on the panel and soldered to the feed through terminals of four 14 position terminal blocks with #8 screws mounted on the other side. ii) For base mounted cabinets, attach separate surge protection termination panels to each side of the cabinet rack assembly. Mount the surge protection termination panel for AC isolation devices on the same side of the cabinet as the AC service inputs. Install the surge protection termination panel for DC terminals and loop detector terminals on the opposite side of the cabinet from the AC service inputs. Attach each panel to the rack assembly using bolts and make it easily removable. Mount the surge protection devices in horizontal rows on each panel and solder to the feed through terminals of 14 position terminal blocks with #8 screws mounted on the other side. Wire the terminals to the rear of a standard input file using spade lugs for input file protection. Provide permanent labels that indicate the slot and the pins connected to each terminal that may be viewed from the rear cabinet door. Label and orient terminals so that each pair of inputs is next to each other. Ensure the top row of terminals is connected to the upper slots and the bottom row of terminals is connected to the bottom slots. Indicate on the labeling the slot number (1-14) and the terminal pins of the input slots (either D & E for upper or J & K for lower). Terminate all grounds from the surge protection on a 15 position copper equipment ground bus attached to the rear swing down panel. Ensure that a Number 4 AWG green wire connects the surge protection panel assembly ground bus to the main cabinet equipment ground. Provide a standard input file and surge protection panel assembly that fits outside and behind the input file. Ensure the fold down panel allows for easy removal of the input file without removing the surge protection panel assembly or its parts. Provide a minimum 14 x 16 inch pull out, hinged top shelf located immediately below controller mounting section of the cabinet. Ensure the shelf is designed to fully expose the table surface outside the controller at a height approximately even with the bottom of the controller. Ensure the shelf has a storage bin interior which is
a minimum of 1 inch deep and approximately the same dimensions as the shelf. Provide an access to the storage area by lifting the hinged top of the shelf. Fabricate the shelf and slide from aluminum or stainless steel and ensure the assembly can support the 170E controller plus 15 pounds of additional weight. Ensure shelf has a locking mechanism to secure it in the fully extended position and does not inhibit the removal of the 170E controller or removal of cards inside the controller when fully extended. Provide a locking mechanism that is easily released when the shelf is to be returned to its non-use position directly under the controller. # D. Type 170 E Model 2010 Enhanced Conflict Monitor: Furnish Model 2010 Enhanced Conflict Monitors with 16 channels. In addition to CALTRANS requirements, ensure the conflict monitor monitors for the absence of a valid voltage level on at least one channel output of each load switch. Ensure that the absence of the programming card will cause the conflict monitor to trigger, and remain in the triggered state until reset. Provide a conflict monitor that recognizes the faults specified by CALTRANS and the following additional per channel faults that apply for monitor inputs to each channel: - consider a Red input greater than 70 Vrms as an "on" condition; - consider a Red input less than 50 Vrms as an "off" condition (no valid signal); - consider a Red input between 50 Vrms and 70 Vrms to be undefined by these specifications; - consider a Yellow or Green input greater than 25 Vrms as an "on" condition; - consider a Green or Yellow input less than 15 Vrms as an "off" condition; and - consider a Green or Yellow input between 15 Vrms and 25 Vrms to be undefined by these specifications. Ensure monitor will trigger upon detection of a fault and will remain in the triggered (failure detected) state until unit is reset at the front panel or through the remote reset input for the following failures: - 1. Red Monitoring or Absence of Any Indication (Red Failure): A condition in which no "on" voltage signal is detected on any of the green, yellow, or red inputs to a given monitor channel. If a signal is not detected on at least one input (R, Y, or G) of a conflict monitor channel for a period greater than 1000 ms when used with a 170 controller and 1500 ms when used with a 2070L controller, ensure monitor will trigger and put the intersection into flash. If the absence of any indication condition lasts less that 750 ms when used with a 170 controller and 1200 ms when used with a 2070L controller, ensure conflict monitor will not trigger. Have red monitoring occur when the P20 Connector is installed and both the following input conditions are in effect: a) Red Enable input to monitor is active (Red Enable voltages are "on" at greater than 70 Vrms, off at less than 50 Vrms, undefined between 50 and 70 Vrms), and b) neither Special Function 1 nor Special Function 2 inputs are active. - 2. Yellow Indication Sequence Error: Yellow indication following a green is missing or shorter than 2.7 seconds (with \pm 0.1-second accuracy). If a channel fails to detect an "on" signal at the Yellow input following the detection of an "on" signal at a Green input for that channel, ensure that the monitor triggers and generates a sequence error fault indication. - 3. **Dual Indications on the Same Channel:** In this condition, more than one indication (R,Y,G) is detected as "on" at the same time on the same channel. If dual indications are detected for a period greater than 500 ms, ensure that the conflict monitor triggers and displays the proper failure indication (Dual Ind fault). If this condition is detected for less than 250 ms, ensure that the monitor does not trigger. Enable the monitor function for short/missing yellows and for dual indications on a per channel basis. Provide Special Function 1 and Special Function 2 that comply with the Los Angeles City DOT *Traffic Signal Specification DOT 170 ATSAC Universal and Related Equipment #54-053-02* to eliminate red failure monitoring while allowing other additional enhanced fault monitoring functions to continue. Ensure that the removal of the P-20 ribbon cable will cause the monitor to recognize a latching fault condition and place the cabinet into flashing operation. Ensure that when the Conflict Monitor is triggered due to a fault, it provides an LED indication identifying the type of failure detected by the monitor except for the P20 ribbon cable removal fault. Ensure that the monitor indicates which channels were active during a conflict condition and which channels experienced a failure for all other per channel fault conditions detected, and that these indications and the status of each channel are retained until the Conflict Monitor is reset. Ensure that the conflict monitor will store at least nine of the most recent malfunctions detected by the monitor in EEPROM memory. For each malfunction, record at a minimum the time, date, type of malfunction, relevant field signal indications, and specific channels involved with the malfunction. Provide communications from the monitor to the 170/2070L controller via an RS-232C/D port on the monitor in order to upload all event log information from the monitor to the controller or to a Department-furnished system computer via the controller. Ensure that the controller can receive the data through a controller Asynchronous Communications Interface Adapter (Type 170E) or Async Serial Comm Module (2070L) determined by the controller software. Provide software capable of Version 06.2 29 print date: 08/30/06 communicating directly through the same monitor RS-232C/D to retrieve all event log information to a Department-furnished laptop computer. In addition to the connectors required by the CALTRANS Specifications, provide the conflict monitor with a connector mounted on the front of the monitor (3M-3428-5302 with two polarizing keys or equal) which mates with a 20 pin ribbon cable connector that conducts the signals from the P20 connector on the cabinet assembly. Provide a P20 connector and terminal assembly that complies with the Los Angeles City DOT "Traffic Signal Specification DOT 170 ATSAC Universal and Related Equipment #54-053-02". Provide connector pins on the monitor with the following functions: | Pin# | Function | Pin# | Function | |------|--------------------|------|---------------| | 1 | Channel 15 Red | 11 | Channel 9 Red | | 2 | Channel 16 Red | 12 | Channel 8 Red | | 3 | Channel 14 Red | 13 | Channel 7 Red | | 4 | Chassis Ground | 14 | Channel 6 Red | | 5 | Channel 13 Red | 15 | Channel 5 Red | | 6 | Special Function 2 | 16 | Channel 4 Red | | 7 | Channel 12 Red | 17 | Channel 3 Red | | 8 | Special Function 1 | 18 | Channel 2 Red | | 9 | Channel 10 Red | 19 | Channel 1 Red | | 10 | Channel 11 Red | 20 | Red Enable | Provide a DB-9 female connector for the purpose of data communication with the controller. Electrically isolate the port interface electronics from all monitor electronics, excluding Chassis Ground. Furnish a communications connecting cable with pin connections as follows: | 170 | | Conflict Monitor DB-9 | |-----------|------------|-----------------------| | RX pin L | Connect to | TX pin 2 | | TX pin K | Connect to | RX pin 3 | | +5 pin D | Connect to | DTR pin 4 | | GND pin N | Connect to | GND pin 5 | | 2070L | | Conflict Monitor DB-9 | |-----------|------------|-----------------------| | DCD pin 1 | Connect to | DCD pin 1 | | RX pin 2 | Connect to | TX pin 2 | | TX pin 3 | Connect to | RX pin 3 | | GND pin 5 | Connect to | GND pin 5 | | RTS pin 7 | Connect to | CTS pin 7 | | CTS pin 8 | Connect to | RTS pin 8 | #### 5.4. MATERIALS – TYPE 170 DETECTOR SENSOR UNITS Furnish detector sensor units that comply with Chapter 5, "General Requirements for Detector Sensor Units," of the CALTRANS Specifications, and the requirements for Model 222 and Model 224 loop detector sensor units. Version 06.2 30 print date: 08/30/06 186 # 6. LUMINAIRE MAST ARMS #### **6.1.DESCRIPTION** Furnish and install luminaire mast arms (excluding lighting assemblies) and all necessary hardware in accordance with the plans and specifications. Comply with the provisions of Section 1700. Luminaires shall be on two diagonal corners, and non-luminaire poles shall be used on the two remaining corners. Luminaires shall be rotated with respect to the pole and arm to provide the optimum intersection illumination. Luminaires need not align with the signal mastarm. These custom-designed mast arms and poles shall be similar in appearance to the following photo examples: Lighting assembly to be provided and installed by: Research Triangle Foundation of NC 2 Hanes Drive RTP, NC 27709 P.O. Box 12255, RTP, NC 27709 (919)-549-8181 Fax: (919)-549-8246 Liz Rooks Verify lighting assembly manufacturer and specifications prior to submittal of shop drawings. #### 6.2.MATERIALS Comply with the provisions of Section Section 4 of these Project Special Provisions. # **6.3.CONSTRUCTION METHODS** Comply with the provisions of Section Section 4 of these Project Special Provsions.