PROJECT SPECIAL PROVISIONS

Roadway

7-1-95

SP1R01

CLEARING AND GRUBBING:

9-17-02

Perform clearing on this project to the limits established by Method "III" shown on Standard No. 200.03 of the Roadway Standards.

The 2002 Standard Specifications shall be revised as follows:

Page 2-3, Article 200-5

Delete the first sentence of this article and insert the following:

The property owner will have no right to use or reserve for his use any timber on the project. All timber cut during the clearing operations is to become the property of the Contractor, and shall be either removed from the project by him, or else shall be satisfactorily disposed of as hereinafter provided.

SP2R01

BURNING RESTRICTIONS:

7-1-95

Open burning is not permitted on any portion of the right-of-way limits established for this project. Do not burn the clearing, grubbing or demolition debris designated for disposal and generated from the project at locations within the project limits, off the project limits or at any waste or borrow sites in this county. Dispose of the clearing, grubbing and demolition debris by means other than burning, according to state or local rules and regulations.

SP2R05

SHALLOW UNDERCUT:

2-19-02_R

Perform undercut excavation and place a combination of fabric for soil stabilization and Class IV Subgrade Stabilization at locations as directed by the Engineer. Work includes performing undercut excavation, disposing of unsuitable material, furnishing and placing fabric for soil stabilization; and furnishing, placing and compacting Class IV Subgrade Stabilization.

MATERIALS

Class IV Subgrade Stabilization.....Section 1016-3, Class IV; or

Material meeting gradation requirements of Table 520-1,

Column C

CONSTRUCTION METHODS

Perform undercut excavation in accordance with Section 225 and/or Section 226.

Place fabric for soil stabilization in accordance with Section 270.

Place Class IV Subgrade Stabilization by back dumping material on previously placed fabric.

Compact material to 95% of AASHTO T-99, Method "D" density or compact material to the highest density that can be reasonably obtained.

METHOD OF MEASUREMENT

Undercut Excavation will be measured in accordance with Section 225 and/or Section 226.

Fabric for Soil Stabilization will be measured in accordance with Article 270-4.

Class IV Subgrade Stabilization, as accepted in place, will be measured by the ton (metric ton), in accordance with Section 106-7.

BASIS OF PAYMENT

Payment will be made for quantities as measured above for the pay items listed below:

Pay Item Pay Unit

Undercut Excavation Cubic Yard (Cubic Meter)
Fabric for Soil Stabilization Square Yard(Square Meter)

Class IV Subgrade Stabilization Ton (Metric Ton)

SP2R35

BORROW EXCAVATION:

2-19-02

Revise the 2002 Standard Specifications as follows:

Page 2-20, Article 230-6

After the first paragraph, insert the following paragraph:

"No direct payment will be made for the work of Evaluation of Potential Wetlands and Endangered Species as outlined above. Payment at the contract unit price for the pay item 'Borrow Excavation' or 'Grading - Lump Sum' will be considered full compensation for this work.'

SP2R37

SHOULDER AND FILL SLOPE MATERIAL(LUMP SUM GRADING) 5-21-02

General:

Perform the required shoulder and slope construction for this project in accordance with the applicable requirements of Section 226 of the Standard Specifications except as follows:

Construct the top 6 inches (150 mm) of shoulder and fill slopes with soils capable of supporting vegetation.

Provide soil with a P.I. greater than 6 and less than 25 and with a pH ranging from 5.5 to 6.8. Remove stones and other foreign material 2 inches (50 mm) or larger in diameter. All soil is subject to test and acceptance or rejection by the Engineer.

Obtain material from within the project limits or approved borrow source.

Where the material has been obtained from an authorized stockpile or from a borrow source, measurement and payment will be made as provided in Section 230 of the Specifications, "Borrow Excavation".

SP2R45

GRADING:

The 2002 Standard Specifications shall be revised as follows:

Page 2-3 and 2-14, Section 226

Delete the words "Borrow Excavation" as Borrow Excavation will be covered under Section 230 of the Standard Specifications for this contract.

The Grading in this contract will be in accordance with Section 226 of the Standard Specifications.

PLASTIC PIPE:

Description:

Install plastic pipe in locations shown on the plans and as directed by the Engineer.

Plastic pipe shall be HDPE pipe material and shall conform to the requirements of Subarticle 1032-10 of the Standard Specifications and installation shall conform to the requirements of Section 300 for Method A of the Standard Specifications, except that the minimum cover shall be at least 12 inches (300mm).

Method of Measurement:

The quantity of plastic pipe to be paid for shall be the actual number of linear meters of plastic pipe installed and accepted.

Basis of Payment:

The quantity of plastic pipe measured as provided for above will be paid for at the contract unit price per linear meter for "____ mm Plastic Pipe".

FLOWABLE FILL: 9-17-02

Provide and install flowable fill material in accordance with Articles 340-2 of the Standard Specifications.

Discharge flowable fill material directly from the truck into the space to be filled, or by other approved methods. The mix may be placed full depth or in lifts as site conditions dictate. The Contractor shall provide a method to plug the ends of the existing pipe in order to contain the flowable fill.

At locations where flowable fill is called for on the plans and a pay item for flowable fill is included in the contract, the quantity of flowable fill to be paid for will be the actual number of cubic yards (cubic meters) of flowable fill that have been satisfactorily placed and accepted.

The quantity of flowable fill, measured as provided above, will be paid for at the contract unit price per cubic yard (cubic meter) for "Flowable Fill". Such price and payment will be full compensation for all work covered by this provision including but not limited to the mix design, furnishing, hauling, placing and containing the flowable fill.

SP3R30

Payment will be made under:

ASPHALT PAVEMENTS - SUPERPAVE

01-18-05

Revise the 2002 Standard Specifications as follows:

PRIME COAT

Page 6-2, Article 600-9

Delete the first paragraph and substitute the following:

The quantity of prime coat to be paid will be the number of gallons (liters) of prime coat material that has been satisfactorily placed on the roadway. Each distributor load of prime coat material delivered and utilized on the project will be measured.

ASPHALT TACK COAT

Page 6-4, Article 605-8

Insert the following after paragraph one.

Take necessary precautions to limit the tracking and/or accumulation of tack coat material on either existing or newly constructed pavements. Excessive accumulation of tack may require corrective measures.

FIELD VERIFICATION AND JOB MIX FORMULA ADJUSTMENTS

Page 6-7, Article 609-4

Delete the first paragraph and substitute the following:

Conduct field verification of the mix at each plant within 30 calendar days prior to initial production of each mix design, when required by the Allowable Mix Adjustment Policy and when directed as deemed necessary.

Page 6-8, Article 609-4

Delete the first paragraph and substitute the following:

Retain records of these calibrations and mix verification tests, including Superpave Gyratory Compactor (SGC) printouts, at the QC laboratory. In addition, furnish copies, including SGC printouts, to the Engineer for review and approval within one working day after beginning production of the mix.

Page 6-8, Article 609-4

Add the following sentence at the end of the last paragraph:

Any mix produced that is not verified may be assessed a price reduction at the Engineer's discretion in addition to any reduction in pay due to mix and/or density deficiencies.

Quality control minimum sampling and testing schedule:

Page 6-8, Subarticle 609-5(A)

Delete the second sentence in the fourth paragraph and substitute the following:

This person is responsible for monitoring all roadway paving operations and all quality control processes and activities, to include stopping production or implementing corrective measures when warranted.

Page 6-9, Subarticle 609-5(C)1

Delete the second sentence in the second paragraph and substitute the following:

Retain the QC compacted volumetric test specimens for 5 calendar days, commencing the day the specimens are prepared.

Page 6-9, Subarticle 609-5(C)2

At the bottom of this page, delete the sentence directly above the <u>Accumulative Production</u> <u>Increment</u> and substitute the following:

Sample and test the completed mixture from each mix design at the following minimum frequency during mix production:

Page 6-10, Subarticle 609-5(C)2

Revise Items B, C, D and E on this page as follows:

- B. Gradation on Recovered Blended Aggregate from Mix Sample (AASHTO T 30 Modified) Grade on all sieves specified on JMF
- C. Maximum Specific Gravity (AASHTO T 209 or ASTM D 2041), optional (ASTM D 6857)
- D. Bulk Specific Gravity of Compacted Specimens (AASHTO T166), optional (ASTM D 6752), Average of 3 specimens at N_{des} gyrations (AASHTO T 312)
- E. Air Voids (VTM) (AASHTO T 269), Average of 3 specimens at N_{des} gyrations

Page 6-11, Subarticle 609-5(C)2

At the top of this page, delete Item B.," Reclaimed Asphalt Pavement..." and substitute the following:

B. Reclaimed Asphalt Pavement (RAP) Binder Content and Gradation (AASHTO T 308 Modified or T 164 and AASHTO T 30 Modified) (sampled from stockpiles or cold feed system at beginning of production and weekly thereafter). Have RAP approved for use in accordance with Article 1012-1(G). (Split Sample Required)

Page 6-11, Subarticle 609-5(C)2

Insert the following sampling and testing at the end of this Subarticle:

- F. Uncompacted Void Content of Fine Aggregate, AASHTO T 304, Method A (natural sand only). Performed at Mix Design and when directed as deemed necessary. (Split Sample Required)
- G. Reclaimed Asphalt Shingle Material (RAS) Binder Content and Gradation (AASHTO T 308 Modified or T 164 and AASHTO T 30 Modified) (sampled from stockpiles or cold feed system at beginning of production and weekly thereafter). Have RAS approved for use in accordance with Article 1012-1(F). (Split Sample Required)

CONTROL CHARTS

Page 6-11, Subarticle 609-5(C)3

Delete the first paragraph and substitute the following:

Maintain standardized control charts furnished by the Department at the field laboratory. For mix incorporated into the project, record full test series data from all regularly scheduled random samples or directed samples which replace regularly scheduled random samples, on control charts the same day the tests are obtained.

In addition, partial test series results obtained due to reasons outlined in Subarticle 609-5(C)2 will be reported to Quality Assurance personnel on the proper forms, but will not be plotted on the control charts.

Page 6-12, Subarticle 609-5(C)3

Delete item 3 in the list below the second full paragraph and substitute the following:

3. If failure to stop production after two consecutive moving averages exceed the warning limits occurs, but production does stop at a subsequent time, re-establish a new moving average beginning at the actual production stop point.

Guilford County

Page 6-12, Subarticle 609-5(C)3

Delete the first and second sentence in the third full paragraph and substitute the following:

In addition, re-establish the moving averages for all mix properties.

CONTROL LIMITS

Page 6-12, Subarticle 609-5(C) 4

At the bottom of this page, delete the table and substitute the following:

		CONTROL L	IMITS	
Mix Control	Target Source	Warning	Moving Average	Individual
Criteria	***************************************	Limit	Limit	Limit
2.36mm Sieve	JMF	±4.0 %	±5.0 %	±8.0 %
0.075mm Sieve	JMF	±1.5 %	±2.0 %	±2.5 %
Binder Content	JMF	±0.3 %	±0.5 %	±0.7 %
VTM @ N _{des}	JMF	±1.0 %	±1.5 %	±2.0 %
VMA @ N _{des}	Min. Spec. Limit	-0.5%	-0.8%	-1.0%
P _{0.075} / P _{be} Ratio	Max. Spec. Limit	0.0	N/A	+0.4%
%G _{mm} @ N _{ini}	Max. Spec. Limit	N/A	N/A	+2.0%
TSR	Min. Spec. Limit	N/A	N/A	-15.0%

CONTROL I INTER

Allowable Retesting for Mix Deficiencies:

Page 6-14, Subarticle 609-5C(7)

In the first paragraph, insert the following as the fourth sentence:

The Contractor under the supervision of the Department's QA personnel will perform these retests.

FIELD COMPACTION QUALITY CONTROL

Page 6-15, Subarticle 609-5(D)1

Delete the first and second sentences in the fourth paragraph and substitute the following:

Base and intermediate mix types (surface mixes not included) utilized for pavement widening of less than 4.0 feet and all mix types used in tapers, irregular areas and intersections (excluding full width travel lanes of uniform thickness), will not be subject to the sampling and testing frequency specified above provided the pavement is compacted using approved equipment and procedures. However, the Engineer may require occasional density sampling and testing to evaluate the compaction process.

Page 6-16, Subarticle 609-5(D)1

Delete item number 2 at the top of this page. Item number 3 should be re-numbered as 2 after the specified deletion.

Pavement Samples (Cores)

Page 6-16, Subarticle 609-5(D)(2)

In the first paragraph, delete the second sentence and insert the following as the last sentence in that paragraph:

The use of a separator medium beneath the layer to be tested is prohibited.

LIMITED PRODUCTION PROCEDURE

Page 6-17, Subarticle 609-5(D) 5

Delete the first paragraph and substitute the following:

Proceed on limited production when, for the same mix type, one of the following items occur:

- (1) Two consecutive failing lots, excluding lots representing an individual resurfacing map or portion thereof.
- (2) Three consecutive failing lots, with each lot representing an individual resurfacing map or portion thereof.
- (3) Two consecutive failing nuclear control strips.

Pavement within each construction category (New and Other), as defined in Article 610-13, and pavement placed simultaneously by multiple paving crews will be evaluated independently for limited production purposes.

Delete the first sentence in the last paragraph and substitute the following:

If the Contractor does not operate by the limited production procedures as specified above, the two consecutive failing density lots, three consecutive failing lots with each lot representing an individual resurfacing map or portion thereof, or two consecutive failing nuclear control strips, whichever is applicable, and all mix produced thereafter will be considered unacceptable.

DOCUMENTATION (RECORDS)

Page 6-18, Subarticle 609-5(E)

Delete the third and fourth sentence in the first full paragraph and substitute the following:

Maintain all QC records, forms and equipment calibrations for a minimum of 3 years from their completion date.

Delete the second full paragraph and substitute the following:

Falsification of test results, documentation of observations, records of inspection, adjustments to the process, discarding of samples and/or test results, or any other deliberate misrepresentation of the facts will result in the revocation of the applicable person's QMS certification. The Engineer will determine acceptability of the mix and/or pavement represented by the falsified results or documentation. If the mix and/or pavement in question is determined to be acceptable, the Engineer may allow the mix to remain in place at no pay for the mix, asphalt binder and other mix components. If the mix and/or pavement represented by the falsified results is determined not to be acceptable, remove and replace with mix, which complies with the Specifications. Payment will be made for the actual quantities of materials required to replace the falsified quantities, not to exceed the original amounts.

QUALITY ASSURANCE

Page 6-18, Article 609-6

In Item 1 under Plant Mix Quality Assurance, substitute "5 percent" for "10 percent".

In Item 2 under <u>Plant Mix Quality Assurance</u>, substitute "sampling and testing procedures" for "tests".

In Item 4 under Plant Mix Quality Assurance, add "for that increment" after the word "sample".

In Item 5 under <u>Plant Mix Quality Assurance</u>, add "at a frequency equal to or greater than 10 percent of the QC sample frequency"; or

Insert the following after Item 5 under Plant Mix Quality Assurance:

6. By any combination of the above.

Delete the paragraph below Plant Mix Quality Assurance, and replace with the following:

The Engineer will conduct assurance tests on both split QC samples taken by the Contractor and verification samples taken by the Department. These samples may be the regular quality control samples or a sample selected by the Engineer from any location in the process or verification samples taken at random by the Department. The frequency will be equal to or greater than 5 percent of that required of the Contractor as stated in Subarticle 609-5(C)2. The Engineer may select any or all samples for assurance testing.

In Item 1 under <u>Density Quality Assurance</u>, delete the wording at the end of the sentence "at a frequency equal to or greater than 10 percent of the frequency required of the Contractor".

In Item 3 under Density Quality Assurance, substitute 5 percent for 10 percent.

Page 6-19, Article 609-6

In Item 4 under <u>Density Quality Assurance</u>, add "at a frequency equal to or greater than 10 percent of the QC sample frequency."

Insert the following after Item 4 under Density Quality Assurance:

5. By periodically directing the recalculation of random numbers for the Quality Control core or nuclear density test locations. The original QC test locations may be tested by QA and evaluated as verification tests.

LIMITS OF PRECISION

Page 6-19, Article 609-6

In the limits of precision table, delete the last three rows and substitute the following:

QA retest of prepared QC Gyratory Compacted

Volumetric Specimens	± 0.015
Retest of QC Core Sample	± 1.2% (% Compaction)
Comparison of QA Core Sample	± 2.0% (% Compaction)
QA Verification Core Sample	± 2.0% (% Compaction)
Nuclear Comparison of QC Test	± 2.0% (% Compaction)
QA Nuclear Verification Test	± 2.0% (% Compaction)

In the first sentence of the paragraph below the limits of precision table, insert "or verification test results" after "quality assurance test results".

In the third sentence of the second paragraph below the limits of precision table, insert "or verification test results" after "quality assurance test results".

ASPHALT CONCRETE PLANT MIX PAVEMENTS – DESCRIPTION

Page 6-20, Article 610-1

Insert the following after the last paragraph:

A high frequency of asphalt plant mix, density, or mix and density deficiencies occurring over an extended duration of time may result in future asphalt, which is represented by mix and/or density test results not in compliance with minimum specification requirements, being excluded from acceptance at an adjusted contract unit price in accordance with Article 105-3. This acceptance process may apply to all asphalt produced and /or placed and may continue until the Engineer determines a history of quality asphalt production and placement is reestablished.

MATERIALS

Page 6-21, Article 610-2

Delete reference of Anti-strip additive (chemical) to **Article 1020-2** and substitute **Article 1020-8**.

COMPOSITION OF MIXTURES (MIX DESIGN AND JOB MIX FORMULA)

Page 6-21, Subarticle 610-3(A)

At the end of the second paragraph, add the following sentence:

In addition, submit Superpave gyratory compactor printouts for all specimens compacted at N_{des} and N_{max} during the mix design process.

Insert the following paragraph after the second paragraph:

For the final surface layer of the specified mix type, use a mix design with an aggregate blend gradation above the maximum density line on the 2.36 mm and larger sieves.

Insert the following at the end of the third paragraph:

When the percent of binder contributed from RAS or a combination of RAS and RAP exceeds 20 percent of the total binder in the completed mix, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the binder grade specified in Table 610-2 for the mix type.

Delete the fourth paragraph and substitute the following:

For Type S 12.5D mixes, the maximum percentage of reclaimed asphalt material is limited to 15% and shall be produced using virgin asphalt binder grade PG 76-22. For all other recycled mix types, when the percentage of RAP is 15 percent or less of the total mixture, the virgin binder PG grade shall be as specified in Table 610-2 for the specified mix type. When the percentage of RAP is greater than 15 but not more than 25 percent of the total mixture, the virgin binder PG grade shall be one grade below (both high and low temperature grade) the specified grade for the mix type. When the percentage of RAP is greater than 25 percent of the total mixture, the Engineer will establish and approve the asphalt binder grade.

Page 6-22, Subarticle 610-3(A)

Insert the following sentence at the end of the Item 4:

If natural sand is utilized in the proposed mix design, determine and report the Uncompacted Void Content of the natural sand in accordance with AASHTO T-304, Method A.

Page 6-23, Subarticle 610-3(A)

Under the quantities of mix components insert the following sentence:

When requested by the Engineer, submit to the Department's Materials and Tests Unit, in Raleigh, six (6) Superpave Gyratory Compactor specimens compacted to a height of 75 mm and to a void content (VTM) of 4.0% +/- 0.5% for performance rut testing with the Asphalt Pavement Analyzer.

JOB MIX FORMULA

Page 6-24, Subarticle 610-3(C)

Delete Table 610-1 and associated notes. Substitute the following:

TABLE 610-1 SUPERPAVE AGGREGATE GRADATION DESIGN CRITERIA

Standar			•	Percent	······································			·····				
d												
Sieves			M	lix Type (Nomin	al Maxi	mum A	ggregat	e Size)			
	4.75 n	nm (a)	9.5 m	ım (c)	12.5 n	nm (c)	19.0	mm	25.0	mm	37.5	mm
(mm)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
50.0											100.0	
37.5									100.0		90.0	100.0
25.0							100.0		90.0	100.0		90.0
19.0					100.0		90.0	100.0		90.0		
12.5	and the state of t		100.0		90.0	100.0		90.0				
9.5	100.0		90.0	100.0		90.0						
4.75	90.0	100.0		90.0			WY CONCURRENCE OF THE PARTY OF		and the second s		and the second s	
2.36	65.0	90.0	32.0(b)	67.0(b)	28.0	58.0	23.0	49.0	19.0	45.0	15.0	41.0
1.18												
0.600					report of the traper parties or many pre-						50 - 0000000 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
0.300												
0.150												
0.075	4.0	8.0	4.0	8.0	4.0	8.0	3.0	8.0	3.0	7.0	3.0	6.0

- (a) For Type S 4.75A, a minimum of 50% of the aggregate components shall be manufactured material from the crushing of stone.
- (b) For Type SF 9.5A, the percent passing the 2.36mm sieve shall be a minimum of 60% and a maximum of 70%.
- (c) For the final surface layer of the specified mix type, use a mix design with an aggregate blend gradation above the maximum density line on the 2.36 mm and larger sieves.

Page 6-25, Subarticle 610-3(C),

Delete Table 610-2 and associated notes. Substitute the following:

TABLE 610-2 SUPERPAVE MIX DESIGN CRITERIA

	Design	Binder	Com	paction I	Levels	7	olumetric	Properties	(c)
Mix	ESALs	PG						01-12-4-1-12-12-12-12-12-12-12-12-12-12-12-12-1	
Туре	millions	Grade	No.	Gyration	ns @	VMA	VTM	VFA	%Gmm
(f)	(a)	(b)	N _{ini}	N _{des}	N _{max}	% Min.	%	Min Max.	@ N _{ini}
S-4.75A	<0.3	64 -22	6	50	75	20.0	7.0-15.0		
SF-9.5A	<0.3	64 -22	6	50	75	16.0	3.0 - 5.0	70 - 80	≤ 91.5
S-9.5B	0.3 - 3	64 -22	7	75	115	15.0	3.0 - 5.0	65 - 80	≤ 90.5
S-9.5C	3 - 30	70 -22	8	100	160	15.0	3.0 - 5.0	65 - 76	≤ 90.0
S-12.5C	3 - 30	70 -22	8	100	160	14.0	3.0 - 5.0	65 - 75	≤ 90.0
S-12.5D	> 30	76 -22	9	125	205	14.0	3.0 - 5.0	65 - 75	≤ 90.0
I-19.0B	< 3	64 -22	7	75	115	13.0	3.0 - 5.0	65 - 78	≤90.5
I-19.0C	3 - 30	64 -22	8	100	160	13.0	3.0 - 5.0	65 - 75	≤ 90.0
I-19.0D	> 30	70 -22	9	125	205	13.0	3.0 - 5.0	65 - 75	≤ 90.0
B-25.0B	< 3	64 -22	7	75	115	12.0	3.0 - 5.0	65 - 78	≤ 90.5
B-25.0C	> 3	64 -22	8	100	160	12.0	3.0 - 5.0	65 - 75	≤ 90.0
B-37.5C	> 3	64 -22	8	100	160	11.0	3.0 - 5.0	63 - 75	≤ 90.0
	Design P	 arameter				Design (l Criteria		
All	1. %G _{mm}	@ N _{max}				≤ 98.0%	(d)		
Mix	2. Dust to	Binder R	atio (P _{0.0}	₀₇₅ / P _{be})		0.6 - 1.4			
Types	1	ed Tensile ITO T 283	_	` ,		85 % Mi	in. (e)		

Notes:

- (a) Based on 20 year design traffic.
- (b) When Recycled Mixes are used, select the binder grade to be added in accordance with Subarticle 610-3(A).
- (c) Volumetric Properties based on specimens compacted to N_{des} as modified by the Department.
- (d) Based on specimens compacted to N_{max} at selected optimum asphalt content.
- (e) AASHTO T 283 Modified (No Freeze-Thaw cycle required). TSR for Type S 4.75A, Type B 25.0 and Type B 37.5 mixes is 80% minimum.
- (f) Mix Design Criteria for Type S 4.75A may be modified subject to the approval of the Engineer

WEATHER, TEMPERATURE, AND SEASONAL LIMITATIONS FOR PRODUCING AND PLACING ASPHALT MIXTURES

Page 6-26, Article 610-4, Table 610-3

Delete the title of **Table 610-3** and substitute the following title:

ASPHALT PLACEMENT- MINIMUM TEMPERATURE REQUIREMENTS

In the first column, third row; delete reference to the ACSC Types S 9.5A and S 12.5B mix.

Add the following minimum placing temperatures for mix types S 4.75A and SF 9.5A.

Asphalt Concrete Mix Type	Minimum Air Temperature	Minimum Road Surface Temperature
ACSC, Type S 4.75A, SF 9.5A	40°F (5°C)	50°F (10°C)

SPREADING AND FINISHING

Page 6-32, Article 610-8

Insert the following after the second sentence within the sixth paragraph.

Take necessary precautions during production, loading of trucks, transportation, truck exchanges with paver, folding of the paver hopper wings, and conveying material in front of the screed to prevent segregation of the asphalt mixtures.

Page 6-32, Article 610-8

Delete the last paragraph beginning on this page and continuing on the next page and substitute the following:

Use pavers equipped with an electronic screed control that will automatically control the longitudinal profile and cross slope of the pavement. Control the longitudinal profile through the use of either a mobile grade reference(s), including mechanical, sonic and laser grade sensing and averaging devices, an erected string line(s) when specified, joint matching shoe(s), slope control devices or the approved methods or combination of methods. Unless otherwise specified, use a mobile grade reference system capable of averaging the existing grade or pavement over a minimum 30 foot (9.1 meter) distance or by non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet. Establish the position of the reference system such that the average profile grade is established at the approximate midpoint of the system. The transverse cross-slope shall be controlled as directed by the Engineer.

Page 6-33, Article 610-8

Delete the second full paragraph on this page and substitute the following:

Use the 30 foot (9.1 meter) minimum length mobile grade reference system or the non-contacting laser or sonar type ski with at least four referencing stations mounted on the paver at a minimum length of 24 feet to control the longitudinal profile when placing the initial lanes and all adjacent lanes of all courses, including resurfacing and asphalt in-lays, unless other specified or approved. A joint matching device short (6 inch [152.4 mm] shoes) may be used only when approved.

At the end of the third full paragraph, add the following sentence:

Waiver of the use of automatic screed controls does not relieve the Contractor of achieving plan grades and cross-slopes.

Insert the following as the last paragraph:

Repair any damage caused by hauling equipment across structures at no additional cost to the Department.

DENSITY REQUIREMENTS

Page 6-34, Article 610-10,

Delete **Table 610-4** and substitute the following table and associated notes:

Table 610-4
MINIMUM DENSITY REQUIREMENTS

MINIMICIAL DENSI.	I I KEQUIKEMENIS
MIX TYPE	MINIMUM % of G _{mm}
SUPERPAVE MIXES	(Maximum Specific Gravity)
S 4.75A	85.0 ^(a,b)
SF 9.5A	90.0
S 9.5X, S 12.5X, I 19.0X,	92.0
B 25.0X, B 37.5X	

- (a) All S 4.75A pavement will be accepted for density in accordance with Article 105-3
- (b) Compaction to the above specified density will be required when the S 4.75 A mix is applied at a rate of 100 lbs/sy (55 kg/m²)

Page 6-34, Article 610-10

Delete the second paragraph and substitute the following:

Compact base and intermediate mix types (surface mixes not included) utilized for pavement widening of less than 4.0 feet (1.2 meters) and all mix types used in tapers, irregular areas and intersections (excluding full width travel lanes of uniform thickness), using equipment and procedures appropriate for the pavement area width and/or shape. Compaction with equipment other than conventional steel drum rollers may be necessary to achieve adequate compaction. Occasional density sampling and testing to evaluate the compaction process may be required. Densities lower than that specified in Table 610-4 will be accepted, in accordance with Article 105-3, for the specific mix types and areas listed directly above.

SURFACE REQUIREMENTS AND ACCEPTANCE

Page 6-35, Article 610-12

Delete the first paragraph and substitute the following:

Construct pavements using quality paving practices as detailed herein. Construct the pavement surface smooth and true to the plan grade and cross slope. Immediately correct any defective areas with satisfactory material compacted to conform with the surrounding area. Pavement imperfections resulting from unsatisfactory workmanship such as segregation, improper longitudinal joint placement or alignment, non-uniform edge alignment and excessive pavement repairs will be considered unsatisfactory and if allowed to remain in place will be accepted in accordance with Article 105-3.

When directed due to unsatisfactory laydown or workmanship, operate under the limited production procedures. Limited production for unsatisfactory laydown is defined as being restricted to the production, placement, compaction, and final surface testing (if applicable) of a sufficient quantity of mix necessary to construct only 2500 feet (750 meter) of pavement at the laydown width.

Remain on limited production until such time as satisfactory laydown results are obtained or until three consecutive 2500 foot (750 meter) sections have been attempted without achieving satisfactory laydown results. If the Contractor fails to achieve satisfactory laydown results after three consecutive 2500 foot (750 meter) sections have been attempted, cease production of that mix type until such time as the cause of the unsatisfactory laydown results can be determined. As an exception, the Engineer may grant approval to produce a different mix design of the same mix type if the cause is related to mix problem(s) rather than laydown procedures.

Mix placed under the limited production procedures for unsatisfactory laydown or workmanship will be evaluated for acceptance in accordance with Article 105-3.

DENSITY ACCEPTANCE

Page 6-36, Article 610-13

Delete the second paragraph and substitute the following:

The pavement will be accepted for density on a lot by lot basis. A lot will consist of one day's production of a given job mix formula on a contract. As an exception, separate lots will be established when the one of the following occurs:

- (1) Portions of pavement are placed in both "New" and "Other" construction categories as defined below. A lot will be established for the portion of the pavement in the "New" construction category and a separate lot for the portion of pavement in the "Other" construction category.
- (2) Pavement is placed on multiple resurfacing maps, unless otherwise approved prior to paving. A lot will be established for each individual resurfacing map or portion thereof.
- (3) Pavement is placed simultaneously by multiple paving crews. A lot will be established for the pavement placed by each paving crew.
- (4) Pavement is placed in different layers. A lot will be established for each layer.
- (5) Control strips are placed during limited production.

The Engineer will determine the final category and quantity of each lot for acceptance purposes.

Page 6-36, Article 610-13

Delete the first sentence in the third paragraph and insert the following:

The "New" construction category will be defined as pavements of uniform thickness, exclusive of irregular areas, meeting all three of the following criteria:

Delete the sixth paragraph and substitute the following:

A failing lot for density acceptance purposes is defined as a lot for which the average of all test sections, and portions thereof, fails to meet the minimum specification requirement. If additional density sampling and testing, beyond the minimum requirement, is performed and additional test sections are thereby created, then all test results shall be included in the lot average. In addition, any lot or portion of a lot that is obviously unacceptable will be rejected for use in the work.

45

Page 6-36, Article 610-13

Delete the last paragraph and substitute the following:

Any density lot not meeting minimum density requirements detailed in Table 610-4 will be evaluated for acceptance by the Engineer. If the lot is determined to be reasonably acceptable, the mix will be paid at an adjusted contract price in accordance with Article 105-3. If the lot is determined not to be acceptable, the mix will be removed and replaced with mix meeting and compacted to the requirement of these specifications.

BASIS OF PAYMENT, ASPHALT PAVEMENTS

Page 6-37, Article 610-16

Add the following to the second paragraph:

The quantity of hot mix asphalt pavement, measured as provided in Article 610-15, will be paid for at the contract unit prices per ton (metric ton) for "Asphalt Concrete Surface Course, Type S 4.75A, and SF 9.5A".

Add the following to the payment item description:

Asphalt Concrete Surface Course,	, Type S 4.75A	Ton (Metric Ton)
Asphalt Concrete Surface Course,	, Type SF 9.5A	Ton (Metric Ton)

Delete reference to the Asphalt Concrete Surface Course, Types S 9.5A and S 12.5B in both the second paragraph and in the payment description.

ASPHALT BINDER FOR PLANT MIX - METHOD OF MEASUREMENT

Page 6-39, Article 620-4

Delete the first sentence of the second paragraph and substitute the following:

Where recycled plant mix is being produced, the grade of asphalt binder to be paid for will be the grade for the specified mix type as required in Table 610-2 unless otherwise approved.

OPEN-GRADED ASPHALT FRICTION COURSE CONSTRUCTION REQUIREMENTS

Page 6-43, Article 650-5

Add the following paragraph after the first paragraph:

Do not place open-graded asphalt friction course between October 31 and April 1 of the next year, unless otherwise approved. Place friction course, Type FC-1 mixes, only when the road surface temperature is 50°F (10°C) or higher and the air temperature is 50°F (10°C) or higher.

The minimum air temperature for Type FC-1 Modified and FC-2 Modified mixes will be 60°F (15°C).

AGGREGATES FOR ASPHALT PLANT MIXES

Page 10-34, Subarticle 1012-1(B)4

Delete and substitute the following:

(4) Flat and Elongated Pieces:

Use coarse aggregate meeting the requirements of Table 1012-1 for flat and elongated pieces when tested in accordance with ASTM D 4791 (Section 8.4) on the No. 4 (4.75 mm) sieve and larger with a 5:1 aspect ratio (maximum to minimum) for all pavement types, except there is no requirement for Types S 4.75A, SF 9.5A, and S 9.5B.

Page 10-35, Table 1012-1

Delete **Table 1012-1** and substitute the following:

Table 1012-1
AGGREGATE CONSENSUS PROPERTIES^(a)

¿	110011	EGATE CONSENSU	OINOIDMILLO	
Mix Type	Course	Fine	Sand	Flat &
	Aggregate	Aggregate	Equivalent	Elongated
	Angularity ^(b)	Angularity		5:1 Ratio
	The state of the s	% Minimum	% Minimum	% Maximum
	ASTM	AASHTO	AASHTO	ASTM D 4791
	D 5821	T 304 Method A	T 176	Section 8.4
S 4.75 A		40	40	
SF 9.5 A S 9.5 B	75 / -	40	40	10 ^(c)
I 19.0 B	137-	10	40	10
B 25.0 B				
S 9.5 C		THE RESERVE OF THE CONTROL OF THE PROPERTY OF	THE STATE OF THE S	The state of the s
S 12.5 C				
I 19.0 C	95 / 90	45	45	10
B 25.0 C				
B 37.5 C				
S 12.5 D				
I 19.0 D	100 / 100	45	50	10
OGAFC	100 / 100	N/A	N/A	10

- (a) Requirements apply to the course aggregate blend and/or fine aggregate blend
- (b) 95/90 denotes that 95% of the course aggregate (+No.4 or + 4.75mm sieve)has one fractured face and 90% has two or more fractured faces.
- (c) Does not apply to Mix Types SF 9.5 A or S 9.5 B

Page 10-36, Subarticle 1012-1(C)1

Insert the following after the fourth paragraph:

When natural sand is utilized in "C" or "D" level asphalt mixes, do not exceed the maximum natural sand percentage in the mix design and/or production aggregate blend detailed in Table 1012-1A.

Table 1012-1A

Uncompacted Void Content of Fine Aggregate AASHTO T 304 Method A	Maximum Percent Natural Sand Included in Mix Design and/or
	Production*
Less than 42.0	10
Equal to 42.0 to 44.9	15
Equal to 45.0 and greater	20

^{*}Maximum percent natural sand may be exceeded with approval from Pavement Construction Engineer upon satisfactory evaluation of pavement performance testing

FINE AGGREGATE ANGULARITY

Page 10-36, Subarticle 1012-1(C)6

Delete reference to AASHTO TP 33 Method A and substitute AASHTO T 304, Method A.

Page 10-37, Subarticle 1012-1(H)

Delete this Subarticle. It is a duplicate of Subarticle 1012-1(F) located on Page 10-36.

ASPHALT BINDER

Page 10-46, Article 1020-2

Delete the first paragraph and substitute the following:

Use Performance Graded Asphalt Binder meeting the requirements of AASHTO M 320. See Article 610-3 for the specified grades. Submit a Quality Control Plan for asphalt binder production in conformance with the requirements of AASHTO R 26 to the Materials and Tests Unit.

SP6R01

ASPHALT BINDER CONTENT OF ASPHALT PLANT MIXES:

 $11-21-00_{\rm R}$

The approximate asphalt binder content of the asphalt concrete plant mixtures used on this project will be as follows:

Asphalt Concrete Base Course, Type B 25.0	4.3%
Asphalt Concrete Intermediate Course, Type I 19.0	4.7%

Asphalt Concrete Surface Course, Type S 4.75A	7.0%
Asphalt Concrete Surface Course, Type SF 9.5A	6.5%
Asphalt Concrete Surface Course, Type S 9.5	6.0%
Asphalt Concrete Surface Course, Type S 12.5	5.5%

The actual asphalt binder content will be established during construction by the Engineer within the limits established in the Standard Specifications or Project Special Provisions.

SP6R15

ASPHALT PLANT MIXTURES:

 $7-1-95_{c}$

Place asphalt concrete base course material in trench sections with asphalt pavement spreaders made for the purpose or with other equipment approved by the Engineer.

SP6R20

PRICE ADJUSTMENT - ASPHALT BINDER FOR PLANT MIX:

11-21-00

Price adjustments for asphalt binder for plant mix will be made in accordance with Section 620 of the Standard Specifications as modified herein.

The base price index for asphalt binder for plant mix is \$231.91 per ton (metric ton).

This base price index represents an average of F.O.B. selling prices of asphalt binder at supplier's terminals on December 1, 2004.

SP6R25

DISPOSAL OF WASTE AND DEBRIS:

2-19-02

Revise the 2002 Standard Specifications as follows:

Page 8-9, Subarticle 802-2(7. Buffer Zones:)

At the end of the last sentence in this subarticle, add the words "unless superseded by an environmental permit."

SP8R03

MODIFIED CONCRETE FLUME WITH CONCRETE OUTLET: 3-19-96

At locations shown in the plans, construct concrete flumes, concrete curb, and apron in accordance with the details in the plans. Use materials meeting the requirements of Section 825 of the Standard Specifications except that the concrete must be Class "B" or of higher compressive strength.

Each concrete flume, concrete curb, and apron completed and accepted will be paid for at the contract unit price per each for "Modified Concrete Flume". Such price and payment will be full compensation for all materials, labor, equipment, tools, removing and disposing of the temporary slope drains, and any other incidentals necessary to complete the work satisfactorily.

The concrete curb and ditch outside the pay limits of the apron will be measured and paid for in accordance with Section 846 and 850 of the Standard Specifications.

SP8R10

Payment will be made under:

Modified Concrete Flume......Each

POLYMER DRAIN LINE

11-04-04

Description

Furnish and install polymer drain lines, grates and frames conforming to these specifications and in accordance with the plans.

Materials

The precast concrete drain line shall be manufactured using polyester polymer concrete. The channels shall have tongue and groove joints. The polymer concrete shall have a minimum compressive strength of 13,050 psi (90 Mpa). The concrete encasement adjacent and beneath the channel shall be class B. The grates and frames shall meet the requirements of ASTM A48 Class 30.

Construction

The precast unit shall be placed tongue to groove and in accordance with the details in the plans.

Measurement

The quantity of polymer drain line to be paid for will be the actual number of linear feet (linear meters) which have been incorporated in the completed and accepted work. Measurement will be made along the surface of the drain line.

Payment

The quantity of drain line measured as provided for above will be paid for at the contract unit price per linear foot (linear meter) for "____ inch (mm) polymer drain line". No separate payment will be made for the grates and frames, as the cost shall be included in the until bid price for the drain line.

MODULAR BLOCK RETAINING WALL:

(SPECIAL)

1.0 DESCRIPTION:

Design, prepare plans, and construct modular block retaining walls to the lines, grades and locations shown in the plans and in accordance with this specification and the details shown in the plans. Work includes all excavation, leveling pad, concrete face block, cap block coping, cast-in-place coping, retaining wall backfill, the fabric above the #57 stone, temporary shoring for wall construction, and all other materials, labor, tools, equipment and incidentals necessary to complete the work.

The Contractor has the option of providing the Keysystem Retaining Wall, the Reinforced Earth Pyramid Wall, the Tensar Mesa Retaining Wall, or approved equal that must be approved by the NCDOT before beginning the wall design.

For further information concerning the Keysystem Retaining Wall, contact:

Keystone Retaining Wall Systems 4444 West 78th Street Minneapolis, MN 55435 Telephone (800) 747-8971 www.keystonewalls.com

For further information concerning the Reinforced Earth Pyramid Wall, contact:

The Reinforced Earth Company 8614 Westwood Center Drive, Suite 1100 Vienna, VA 22182 Telephone (703) 821-1175 www.recousa.com

For further information concerning the Tensar Mesa Retaining Wall, contact:

Tensar Earth Technologies, Inc. 5883 Glenridge Drive, Suite 200 Atlanta, GA 30328 Telephone (404) 250-1290 www.tensarcorp.com

Design the retaining walls to meet the criteria of the current AASHTO Standard Specifications for Highway Bridges and the requirements specified in the plans.

Submit eight sets of complete working drawings/shop plans, erection plans and design calculations, sealed by a North Carolina Registered Professional Engineer for review and approval prior to beginning wall work. Allow 40 days for review and approval from the date they are received by the Engineer until they are returned to the Contractor.

Provide the option chosen to meet the requirements of Section 1000, Section 1077 and all other applicable articles of the Standard Specifications with the additions and exceptions specified in this Special Provision.

2.0 GENERAL:

The Resident Engineer will schedule a Preconstruction Conference with representatives from the Contractor, Supplier, and Geotechnical Engineering Unit to discuss construction details and inspection of the retaining wall.

Provide all necessary material from the Supplier chosen.

Obtain from the Supplier, technical instruction and guidance in preconstruction activities, including the preconstruction conference, and on-site technical assistance during construction. Follow any instructions from the Supplier closely unless otherwise directed by the Engineer.

3.0 MATERIALS:

A. <u>Concrete Modular Block:</u>

Provide the concrete mix designed by the Supplier and approved by the State Materials Engineer prior to use. Furnish a copy of the Supplier's approval to the Resident Engineer and to the Materials and Tests Unit in Raleigh. Manufacture the concrete facing blocks in accordance with ASTM C 1372 and ASTM C 140.

Physical Properties - Supply concrete for blocks that attains a minimum 28-day compressive strength of 27.6 MPa and has a maximum moisture absorption of 6% after 24 hours.

Add Mixtures and Color - Add mixtures, i.e., color, silica, air entraining reducers, etc., that have been previously established as suitable and conform to applicable ASTM Specifications or have been demonstrated to be suitable to the concrete blocks are allowed.

Finish and Appearance - Provide blocks free of defects that indicate imperfect molding, block weakening or lessened durability. Provide blocks free of chips and cracks.

Face Finish – Provide a natural rock-like face finish on the front face of the blocks, unless otherwise shown in the plans.

Marking - Clearly scribe the date of manufacture and the production lot number on a tag affixed to each pallet of blocks shipped.

Handling, Storage and Shipment - Do not ship blocks until a minimum compressive strength of 21 MPa is reached. Handle, store and ship all blocks in such a manner as to eliminate the dangers of chipping, discoloration, cracks, fractures, and excessive bending stresses.

Block Dimensions - Dimension variances must be in accordance with ASTM C 1372. Make adjustments for the specified patterns on the facing surface.

Testing, Inspection and Acceptance - Acceptance of concrete blocks with respect to compressive strength and absorption will be determined on the basis of ASTM Method C 140. Full blocks may be used in place of coupons.

Acceptance - If any of the tests indicates non-compliance, then the Engineer will perform a second testing of the same production lot. The results of the second tests will determine the acceptability of the lot. Failure to meet any of the requirements specified in Section 3A will be grounds for rejection of the blocks. Minor cracks and chips incidental to the usual method of manufacture and shipments are not grounds for rejection (A "production lot" is defined as a maximum of 10,000 blocks).

B. <u>Concrete Leveling Pad:</u>

Provide Class A concrete conforming to the applicable requirements in Sections 420 and 1000 of the Standard Specifications for the leveling pad.

C. Coping:

Use Cap Block coping for walls that require cap block coping in plans as supplied by the wall manufacturer. The Cap Blocks must meet all the requirements of Section 3.0, Part A, of this Provision.

Use Class A concrete for walls that require cast-in-place coping and apply the requirements in Sections 420 and 1000 of the Standard Specifications. Apply the requirements in Sections 425 and 1070 of the Standard Specifications to the reinforcing steel in coping.

D. Soil Reinforcement:

Soil Reinforcement may be either Steel or Extensible Reinforcement. Steel Reinforcement:

Reinforcing steel must conform to the applicable requirements in Sections 425 and 1070 of the Standard Specifications.

Shop fabricate the reinforcing elements of cold drawn steel wire conforming to the minimum requirements of ASTM A 82 and weld into the finished elements in accordance with ASTM A 185. Galvanize after the mesh is fabricated in accordance with the minimum requirements of ASTM A 123.

Extensible Reinforcement:

The geogrid must be a regular network of integrally connected polymer tensile elements with aperture geometry sufficient to permit significant mechanical interlock with the surrounding soil or rock. The geogrid structure must be dimensionally stable and able to retain its geometry under manufacture, transport, and installation.

E. <u>Attachment Devices:</u>

Steel Connectors:

Connector pins – Fabricate from cold drawn steel wire conforming to the requirements of ASTM A82. Galvanize in accordance with ASTM A123.

Steel Alignment/Shear Pins:

Alignment/Shear pins – Utilize alignment/shear pins where only block to block connections are required. Pins must be a minimum of 12.7 mm diameter and sufficient flexural and shear strengths for the actual loading requirements. Provide material strength testing data to verify the pin's strengths. Provide methods for the alignment and positive connection of the block units for the Engineer's approval prior to beginning of the wall construction.

Geogrid Connectors:

Geogrid Connectors – To evaluate the long-term geogrid strength at the connection with the wall facing, reduce T_{ult} using the connection/seam strength determined in accordance with ASTM D4884 for structural connections. A positive mechanical connection is required between the geogrid reinforcements and the wall facing elements. Reinforcements connected to the facing through embedment between the facing elements using a partial or full friction connection will not be allowed.

F. <u>Backfill/Corefill (Retaining Wall):</u>

Walls with Steel Reinforcements:

For the walls with steel reinforcements, use #57 stone backfill material conforming to the applicable requirements of Section 1005 of the Standard Specifications and meeting the following criteria:

Be free of organic or otherwise deleterious substances.

Contain a maximum organic content of 0.1 %.

Soundness (AASHTO T-1 04) - Have a maximum weighted average loss of 15% when subjected to 5 cycles of the soundness test.

Resistance to Abrasion (AASHTO T-96) - Have a maximum percentage of wear of 55 percent.

Electrochemical: Resistivity > 5000 OHM-CM ASTM D-1125 4.5 ASTM D-1293 Furnish a Type IV certification in accordance with Article 106-3 of the Standard Specifications to the Engineer before placement of any backfill. Include a copy of all test results conducted in accordance with the above requirements in the certification. The Engineer determines the frequency of sampling backfill material by NCDOT necessary to assure compliance with gradation and electrochemical requirements.

Sample Preparation:

Obtain approximately 2000 grams of representative material and transfer it into a 3.8-liter wide mouth plastic jug. Then add an equal weight of deionized or distilled water to the sample, and let this mixture set for approximately 30 minutes. At the end of this period, place a lid on the container and vigorously agitate the mixture for three minutes. Repeat this agitation at the two hour and four hour intervals. Allow the sample to set for approximately 20 hours after the four hour agitation so the solids will settle out. At this time remove a sufficient amount of the solution and filter through a coarse paper (Fisher Q8) to obtain the supernate to be analyzed in accordance with the above procedures.

Walls with Geogrid Reinforcements:

For the walls with geogrid reinforcements, use Select Material, Class III for backfill conforming to the applicable requirements of Section 1016 of the Standard Specifications. Use #57 stone for corefill and for backfill within 2 feet behind the back of the block units conforming to the applicable requirements of Section 1005 of the Standard Specifications.

G. Backfill Separation Fabric:

Place a layer of fabric on top of the completed wall backfill to prevent migration of fines from common backfill placed above from contaminating the wall backfill. Use fabric meeting the applicable requirements for Type 2 fabric as described in Section 1056 of the Standard Specifications.

Overlap the fabric a minimum of 450 mm.

H. Handrail:

Construct 37.5 mm diameter steel pipe handrail with schedule 40 plain end galvanized steel pipe meeting the requirements of ASTM A53 as shown on details in plans. Embed pipe rail a minimum of 200 mm into proposed wall with chemical or concrete grout anchoring system as directed by the Engineer. Galvanize according to Section 1076 of the Standard Roadway Specifications.

Weld in accordance with Article 1072-20 of the Standard Specifications. Paint in accordance with Section 442 of the Roadway Specifications. Pre-measure and center the rail location on top of the wall for post spacing. Use a rotary drill for drilling of postholes. Impact drills will not be allowed to minimize damage to the wall.

4.0 <u>CONSTRUCTION METHODS</u>:

A. <u>Site Preparation</u>:

Perform surface excavation operations and random fill construction in the vicinity of the structure in accordance with the applicable portions of this special provision and in reasonably close conformity to the lines, grades, dimensions, and cross-sections shown on the plans.

B. Retaining Wall Excavation:

Excavate all material necessary for the construction of the wall in accordance with the plans and this provision. Excavation includes the construction and subsequent removal of all necessary bracing, shoring, sheeting and cribbing and all pumping, bailing, and draining. Perform random backfilling in accordance with the details on the plans and dispose of or stockpile surplus or unsuitable excavated material as directed by the Engineer.

Perform all necessary clearing and grubbing at the site in accordance with Section 200 of the Standard Specifications.

Notify the Engineer a sufficient time before beginning the excavation so that measurements may be taken of the undisturbed ground.

Shore or brace the excavation in accordance with local and state safety standards. Perform excavation and related work in such sequence that no portion of the wall will be endangered by subsequent operations.

Obtain approval of the Engineer before beginning the excavation when the wall is adjacent to a traveled way. Submit drawings and design calculations, designed and detailed by a North Carolina Registered Professional Engineer, in accordance with the provisions of Sub-Article 410-5(D) of the Standard Specifications.

Notify the Engineer after the excavation for each location of the wall is performed. Do not place concrete leveling pad until the Engineer has approved the depth of the excavation, the character of the foundation material, and has given permission to proceed.

Remove all sheeting and bracing as the random backfilling progresses.

Obtain approval of the Engineer for all random backfill. Large or frozen lumps, wood or other undesirable material is not allowed in the backfill. Compact all backfill in accordance with Sub-Article 235-4(C) of the Standard Specifications.

C. Wall Erection:

(1) <u>Foundation Preparation</u>:

Prior to wall construction, grade the foundation for the structure level for a minimum width equal to the length of reinforcing elements plus one foot. Compact the foundation to a minimum of 95% of the maximum dry density as determined by AASHTO T-99.

(2) Leveling Pad Construction:

Construct an unreinforced concrete leveling pad of Class A concrete having the dimensions and at the locations and elevations shown on the plans. Cure the leveling pad a minimum of 24 hours before placement of wall blocks.

(3) Placing Concrete Face Blocks:

Place the first course of concrete wall blocks on the leveling pad and check for elevation and alignment. Check for full contact with the leveling pad.

Install the connecting pins at the reinforcement locations and the alignment pin, if required, at all other locations. Fill all voids with corefill and tamp.

Place the backfill behind this course and compact. Be sure that each course is completely corefilled and backfilled before placing the reinforcement element or proceeding to the next course. Clean all excess material from the top of blocks and install the next course. Ensure that connecting pins protrude into the adjoining courses. Move each block forward, toward the exposed wall face, until it is restrained by the pins in the previous course.

Repeat this procedure to the extent of the wall height. Construct the wall vertical or as near vertical as the wall system will allow. The overall vertical tolerance of the wall and the horizontal alignment tolerance must not exceed 13 mm per 3 meters.

(4) Placing Retaining Wall Backfill and Reinforcing Elements:

Place backfill within the structure, closely following the erection of each lift of blocks. Place the backfill material in layers for the full width shown on the plans. Place layers not more than 190 mm in depth (loose thickness) and compact.

Compact #57 stone backfill with at least four passes with a vibratory roller in the vibratory mode having a weight of 7.3-9.1 metric tons, or as directed by the Engineer.

Compact each layer of Select Material, Class III to a density equal to at least 95% of that obtained by compacting a sample of the material in accordance with AASHTO T99 as modified by the Department.

At each reinforcing element level of the wall, level and compact the backfill material before placing and attaching the reinforcing element. Place the reinforcing elements horizontally, normal to the face of the wall or as shown on the plans. Compact the backfill layers in a direction parallel to the wall, without disturbance or distortion of reinforcing elements or wall blocks.

Within one (1) meter of the face of the wall, use a hand-operated mechanical compactor as a precaution against pushing blocks outward and distorting the vertical face of the wall. Exercise extreme care to prevent bending of the reinforcing elements during compaction. Compact as required with a minimum of three passes of the compactor.

At the end of each day's operation, slope the areas adjacent to the stone backfill such that in the event of rain, surface runoff will be directed away from the backfill area. Contamination of the stone backfill by soil fines from runoff will be grounds for rejection of the backfill.

D. Cap Block Coping

Install Cap Block as shown on the construction drawings. Install cast-in-place concrete coping as shown on construction drawings.

5.0 MEASUREMENT AND PAYMENT:

No measurement for payment will be made since the work covered under this provision will be paid at the lump sum bid price for Modular Block Retaining Wall. This payment will be for full compensation for all work described in this provision including, but not limited to, submittal of design plans and calculations, materials, labor, equipment, testing, excavation, backfilling, temporary shoring for wall construction and all incidentals necessary to complete the work.

Modular Block Retaining Wall at Sta. 57+34.739 to 57+75.000 –L–.....Lump Sum Modular Block Retaining Wall at Sta. 10+46.000 to 10+74.000 –Y14–.....Lump Sum

Modular Block Retaining Wall at Sta. 13+52.000 to 13+87.000 -Y14-.....Lump Sum

Modular Block Retaining Wall at Sta. 14+06.000 to 14+20.000 –Y14–.....Lump Sum

CONCRETE CANTILEVER RETAINING WALL:

(SPECIAL)

Guilford County

1.0 DESCRIPTION

Design, prepare plans, and construct the concrete cantilever retaining wall to the lines, grades, and locations shown in the plans and in accordance with this specification and the details shown in the plans unless otherwise directed by the Engineer. Work includes all excavation, retaining wall backfill, subsurface drainage, furnishing and placing concrete, reinforcing steel, construction joints, and all other materials, labor, tools, equipment and incidentals necessary to complete the work.

2.0 Requirements

Design the concrete cantilever retaining wall to withstand lateral earth and water pressures, including any dead and live load surcharge, self weight of the wall, temperature and shrinkage effects, and earth quake loads in accordance with the most recent edition of the allowable strength design AASHTO Standard Specifications for Highway Bridges (including interims).

3.0 Design

A North Carolina Licensed Professional Engineer must seal all design calculations, plans and recommendations. Design the concrete cantilever retaining wall in accordance with the following Sections of the AASHTO Standard Specifications:

- Section 5 Retaining Walls
- Section 8 Reinforced Concrete.

Dimension the concrete cantilever retaining wall to ensure stability against possible failure modes by satisfying the following factor of safety criteria:

- Sliding ≥ 1.5
- Overturning ≥ 2.0
- Bearing Capacity in accordance with Section 4 of the AASHTO Standard Specifications for Highway Bridges.

Do not exceed an allowable bearing pressure of 3 ksf (150 kPa) for spread footings. Use the following default soil parameters for design of the concrete cantilever retaining wall in absence of a site-specific subsurface investigation in accordance with this provision.

- Unit Weight = $120 \text{ lbs./ft}^3 (18.8 \text{ kN/m}^3)$
- Friction angle = 30 degrees
- Cohesion = 0 psf (kPa)

Consider the overall stability of slopes in the vicinity of walls as part of the design of the retaining wall. Use a limiting equilibrium method of analysis to check the overall stability of the retaining wall, retained slope, and foundation soil or rock. Use a minimum factor of safety of 1.3 for global stability.

Submit five sets of shop drawings and two sets of design calculations for review, comments and acceptance. Have a North Carolina Registered Professional Engineer check and seal the shop drawings and design calculations. Allow 30 days for review and approval from the date the Engineer receives the shop drawings and design calculations until they are returned to the Contractor.

Guilford County

Submit one 22" x 34" (560 mm x 860 mm) reproducible set of the working drawings, after the Engineer reviews the drawings and corrections are made, if necessary.

4.0 Materials

A. Reinforcing Steel

Use reinforcing Steel conforming to the applicable requirements in Sections 425 and 1070 of the Standard Specifications.

B. Backfill

C. Use backfill material conforming to the plans and the applicable requirements of Section 1005 of the Standard Specifications.

5.0 Construction

D. Construct the concrete cantilever retaining wall in accordance with Section 842-3 of the Standard Specifications.

6.0 Basis of Payment

Payment for the wall will be at the contract lump sum price bid for "Concrete Cantilever Retaining Wall". Such lump sum price will be full compensation for all materials, tools, equipment, labor and incidentals necessary to design, furnish and construct the wall in accordance with this specification and the details shown in the plans.

CONCRETE RETAINING WALL WITH BRICK VENEER AND HANDRAIL:

Construct concrete retaining wall at location shown on the plans and in accordance with Section 842 of the Standard Specifications, the detail in the plans and as directed by the Engineer.

The quantity of concrete retaining wall to be paid for shall be actual number of cubic meters of concrete retaining wall constructed and accepted.

The quantity of concrete retaining wall, measured as provided for above, shall be paid for at the contract unit price per cubic meter for "Concrete Retaining Wall with Brick Veneer".

Such price and payment shall be full compensation for all work associated with this provision, including, but not limited to, all work described in Section 842 of the Standard Specifications, brick veneer, handrail and all other incidentals necessary to satisfactorily complete the work.

Payment will be made unde

CONVERT EXISTING JUNCTION BOX TO DROP INLET:

1-01-02

At the proper phase of construction, convert the existing junction box at locations indicated in the plans or where directed, to drop inlet in accordance with the details in the plans and the applicable requirements of Sections 840 and 859 of the Standard Specifications.

The quantity of converting existing junction box to drop inlet to be paid for will be the actual number of existing junction box converted to drop inlet, completed and accepted.

The quantity of converting existing junction box to drop inlet, measured as provided above, will be paid for at the contract unit price each for "Convert Existing Junction Box to Drop Inlet". Such price and payment is considered full compensation for all equipment, materials, labor, tools, and incidentals necessary to complete each conversion satisfactorily.

SP8R50

Payment will be made under:

GUARDRAIL POSTS AND OFFSET BLOCKS:

06-22-04

Revise the 2002 Standard Specifications as follows:

Page 10-69, Subarticle 1046-3

Delete this sub-article in its entirety and replace with the following:

1046-3 POSTS AND OFFSET BLOCKS.

(A) General:

The Contractor may at his option furnish either of the following types of steel guardrail posts. Only one type of post will be permitted at any one continuous installation. Use structural steel posts throughout the project, unless otherwise directed or detailed in the plans.

- 1. Steel W6 x 8.5 or W6 x 9.0 posts
- 2. Steel 4.5" x 6.0" "C" shape posts (C150 x 12.2 kg/m)

The Contractor may at his option furnish either of the following types of treated timber posts if specifically directed or detailed in the plans. Only one type of post will be permitted at any one continuous installation.

- 1. Timber 6" x 8" (152 mm x 203 mm) posts.
- 2. Timber 8" x 8" (203 mm x 203 mm) posts.

.

(B) Structural Steel Posts:

Fabricate steel posts for guardrail of the size and weight shown on the plans from structural steel complying with the requirements of Section 1072. Metal from which C shape posts are fabricated shall meet the requirements of ASTM A570 for any grade of steel, except that mechanical requirements shall meet the requirements of ASTM A36. Punch or drill the holes for connecting bolts. Burning will not be permitted. After fabrication, the posts shall be galvanized in accordance with Section 1076.

(C) Treated Timber Posts:

Timber guardrail posts shall be of treated southern pine meeting the requirements of Article 1082-2 and 1082-3.

Bore bolt holes to a driving fit for the bolts. A minus tolerance of 1 percent will be allowed in the length of the post. Perform all framing and boring before the posts receive preservative treatment.

(D) Offset Blocks:

Provide 8-inch deep recycled plastic or composite offset blocks that have been approved for use with the guardrail shown in the standard drawings and/or plans. Only one type of offset block will be permitted at any one continuous installation. Prior to beginning the installation of recycled offset block, submit the FHWA acceptance letter for each type of block to the Engineer for approval.

Treated timber offset blocks with steel beam guardrail will not be allowed unless required by Specifications, directed by the Engineer or detailed in the plans. Steel offset blocks with steel beam guardrail will not be allowed.

Recycled plastic or composite offset blocks shall be made from no less than 50% recycled plastic or composite, and shall meet the following minimum requirements:

•	Specific Gravity:	0.950
_	Communications Strongeth in Lateral Directions	1600 .

- Compressive Strength in Lateral Direction:............. 1600 psi (11 MPa)

- Testing...... Shall pass NCHRP Report 350, Test Level 3 by CRASH TESTING

Revise the 2002 Standard Roadway Drawings as follows:

Sheet 4 of 6, Standard 862.03, delete the note and substitute the following:

Note: The midpost and offset block of the WTR section will require special bolt hole drilling in the thrie beam offset block and line post.

SP8R57

REMOVE, STOCKPILE AND RESET FENCE:

The Contractor shall remove, stockpile and reset fence in accordance with Section 867 of the Standard Specifications and as directed by the Engineer.

The Contractor's attention is directed to the fact that the fence will need to be stockpiled for an indeterminate amount of time.

Method of Measurement will be in accordance with Section 867 of the Standard Specifications.

The quantity of remove, stockpile and reset fence, measured as provided for above shall be paid for at the contract unit price per meter for "Remove, Stockpile and Reset Fence".

Such price and payment shall be full compensation for all work covered by this provision including, but not limited to, removal and stockpiling of fence, resetting fence and all other incidentals required to satisfactorily complete this work.

PREFORMED SCOUR HOLE WITH LEVEL SPREADER APRON:

10-15-02

Description:

Construct and maintain preformed scour holes with spreader aprons at the locations shown on the plans and in accordance with the details in the plans. Work includes excavation, shaping and maintaining the hole and apron, furnishing and placing filter fabric, rip rap (class as specified in the plans) and permanent soil reinforcement matting.

Materials:

Materials shall meet the requirements of Division 10 and this provision:

Plain rip rap	Article 1042
Filter Fabric	Article 1042-2

The permanent soil reinforcement matting shall be permanent erosion control reinforcement mat and shall be constructed of 100% coconut fiber stitch bonded between a heavy duty UV stabilized cuspated (crimped) netting overlaid with a heavy duty UV stabilized top net. The three nettings shall be stitched together on 1.5 inch (38 mm) centers UV stabilized polyester thread to form a permanent three dimensional structure. The mat shall have the following physical properties:

Property	Test Method	Value	Unit
Ground Cover	Image Analysis	93	%
Thickness	ASTM D1777	0.63 (16)	in (mm)
Mass Per Unit Area	ASTM D3776	0.92 (0.50)	lb/sy (kg/m2)
Tensile Strength	ASTM D5035	480 (714.2)	lb/ft (kg/m)
Elongation	ASTM D5035	· 49	%
Tensile Strength	ASTM D5035	960 (1428.5)	lb/ft (kg/m)
Elongation	ASTM D5035	31	%
Tensile Strength	ASTM D1682	177 (80.3)	lbs (kg)
Elongation	ASTM D1682	22	%
Resiliency	ASTM D1777	>80	%
UV Stability *	ASTM D4355	151 (68.5)	lbs (kg)
Color(Permanent Net)		UV Black	(C)
Porosity (Permanent Net)	Calculated	>95	%
Minimum Filament	Measured	0.03 (0.8)	in (mm)
Diameter (permanent net)		` /	` ,

^{*}ASTM D1682 Tensile Strength and % strength retention of material after 1000 hours of exposure in a Xenon-arc weatherometer.

A certification (Type 1, 2, or 3) from the manufacturer showing:

- 1) the chemical and physical properties of the mat used, and
- 2) conformance of the mat with this specification will be required.

Soil Preparation:

All areas to be protected with the mat shall be brought to final grade and seeded in accordance with Section 1660. The surface of the soil shall be smooth, firm, stable and free of rocks, clods, roots or other obstructions which would prevent the mat from lying in direct contact with the soil surface. Areas where the mat is to be placed will not need to be mulched.

Measurement:

The quantity of "Preformed Scour Holes with Level Spreader Aprons" to be paid for shall be the actual number which have been incorporated into the completed and accepted work.

Basis of Payment:

The quantity of scour holes with spreader aprons, measured as provided above, will be paid for at the contract unit price each for "Preformed Scour Hole with Level Spreader Apron." Such price and payment will be full compensation for all work covered by this provision.

SP8R105

CONCRETE SIDEWALKS, DRIVEWAYS AND WHEELCHAIR RAMPS 10-21-03

Revise the 2002 Standard Specifications as follows:

PAGE 8-33, SECTION 848

Section 848-2 Add the following:

Detectable Warnings:

Detectable warnings may be either truncated dome concrete paving blocks or stamped concrete. Use Class "B" concrete.

Detectable warnings shall consist of raised truncated domes. Truncated Domes shall have a base diameter of no less than 0.9 inches (23 mm) to no more than 1.4 inches (36 mm), a top diameter of no less than 50 % to no more than 65% of the base diameter, and a height of 0.2 inches (5 mm). Truncated domes shall have center-to-center spacing of no less than 1.6 inches (41 mm) to no more than 2.4 inches (61 mm), and a base to base spacing of 0.65 inches (16 mm) minimum, measured between the most adjacent domes on square grid.

Section 848-3 Add the following:

Install 24 inches (600 mm) in length of truncated dome paving blocks along the bottom of the curb ramps in accordance the plans and details.

Obtain 70 percent contrast visibility with adjoining surfaces, either light-on-dark, or dark-on-light sequence covering the entire ramp.

Section 848-5

Add the following sentence to the third paragraph:

Such price will include furnishing and installing raised truncated domes.

SP8R120

AGGREGATE PRODUCTION:

11-20-01

Provide aggregate from a producer who utilizes the new Aggregate Quality Control/Quality Assurance Program that is in effect at the time of shipment.

No price adjustment is allowed to contractors or producers who utilize the new program. Participation in the new program does not relieve the producer of the responsibility of complying with all requirements of the Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

SP10R05

CONCRETE BRICK AND BLOCK PRODUCTION:

11-20-01

Provide concrete brick and block from a producer who utilizes the new Solid Concrete Masonry Brick/Unit Quality Control/Quality Assurance Program that is in effect on the date that material is received on the project.

No price adjustment is allowed to contractors or producers who utilize the new program. Participation in the new program does not relieve the producer of the responsibility of complying with all requirements of the Standard Specifications. Copies of this procedure are available upon request from the Materials and Test Unit.

SP10R10

FINE AGGREGATE:

11-19-02

Revise the 2002 Standard Specifications as follows:

Page 10-17, Table 1005-2

Make the following change to the table:

For Standard Size 2MS the following gradation change applies.

The minimum percent shown for material passing the No. 8 (2.36mm) sieve has been changed from 84 to 80.

SP10R15

BORROW MATERIAL

02-17-04

Revise the 2002 Standard Specifications as follows:

Page 10-44

Section 1018-2 II (b) Delete the last sentence in its entirety.

SP10R17

METAL POSTS AND RAILS:

 $01-21-03_{R}$

Revise the 2002 Standard Specifications as follows:

1050-3 METAL POSTS AND RAILS.

Page 10-72, (A) Chain Link Fence: Delete paragraphs 2 and 3, and replace with the following:

Steel H posts must have a minimum yield strength of 45,000 pi (310 MPa) and weigh 3.26 pounds per foot (4.85 kg/m). Galvanize steel H posts in accordance with ASTM F 1043 with a Type A coating. Aluminum H posts must weigh 1.25 pounds per foot (1.86 kg/m).

Roll formed steel line posts must be a 1.625" x 1.875" (41.3 mm x 47.6 mm) section weighing 2.40 lb/lf (3.57 kg/m) after galvanizing and be formed from 0.121" (3.1 mm) thick sheet having a minimum yield strength of 45,000 psi (310 MPa). Roll formed steel brace rails and top rails must be a 1.250" x 1.625" (31.8 mm x 41.3 mm) section weighing 1.35 lb./lf (2.01 kg/m) after galvanizing and be formed from 0.080" (2.0 mm) thick sheet steel having a minimum yield strength of 45,000 pi (310 Map). Galvanize all roll formed members after fabrication in accordance with ASTM F 1043 with a Type A coating.

Page 10-73, (A) Chain Link Fence: Delete sentence one of paragraph four and replace with the following:

Vinyl coated posts must be pipe posts meeting the requirements of AASHTO M 181, and have a fusion bonded vinyl coating of at least 6 mils (0.15 mm) thick.

Add the following as the penultimate paragraph:

For pipe 1.90" OD and under, the outside diameter at any point shall not vary more than 1/64" (0.4 mm) over nor more than 1/32" (0.8 mm) under the standard specified. For pipe 2.375" OD and over, the outside diameter shall not vary more than \pm 1% from the standard specified nor shall the minimum wall thickness at any point be more than 12.5% under the nominal wall thickness specified.

Page 10-73 (B) Woven Wire Fence: Add the following as the penultimate paragraph:

For pipe 1.90" OD and under, the outside diameter at any point shall not vary more than 1/64" (0.4 mm) over nor more than 1/32" (0.8 mm) under the standard specified. For pipe 2.375" OD and over, the outside diameter shall not vary more than \pm 1% from the standard specified nor shall the minimum wall thickness at any point be more than 12.5% under the nominal wall thickness specified.

1050-7 FITTINGS AND ACCESSORIES

Page 10-75, delete the last sentence of the last paragraph and replace with the following: The vinyl coating must be at least 6 mils (0.15 mm) thick, except that the coating on tension wire, hog rings, and tie wires must be at least 20 mils (0.50 mm) thick.

SP10R20

COATED, PAVED AND LINED CORRUGATED STEEL CULVERT PIPE: 10-21-03

Revise the 2002 Standard Specifications as follows:

Section 1032-4(E) Optional Coatings for Bituminous Coated Pipe and Pipe Arch:

Page 10-58. Delete Numbers 2. and 3., and substitute the following:

2. Type B: In lieu of Type B, Half Bituminous Coated and Partially Paved galvanized pipe, aluminized pipe or polymeric coated pipe without bituminous coating and paving may be used.

3. Type C: In lieu of Type C, Fully Bituminous Coated and Partially Paved galvanized pipe, aluminized pipe or polymeric coated pipe without a bituminous coating and paving may be used.

SP10R25

TRAFFIC CONTROL

01-18-05

Revise the 2002 Standard Specifications as follows:

Article 1089-1 WORK ZONE SIGNS is deleted. Substitute the following:

(A) General:

Rigid sign retroreflective sheeting requirements for Types VII, VIII and IX (prismatic) fluorescent are described in Tables 1089-A, 1089-B and 1089-C. Cover the entire sign face of the sign substrate with NCDOT approved Type VII, VIII or IX (prismatic) fluorescent orange reflective sheeting. Apply the reflective sheeting in a workmanlike manner so that there are no bubbles or wrinkles in the material.

Roll-up sign retroreflective requirements are described in Table 1089-D.

1. Work Zones Signs (Stationary)

Use Type VII, VIII or IX (prismatic) fluorescent orange retroreflective sheeting that meets the following reflective requirements in Tables 1089-A, 1089-B or 1089-C respectively. Use approved composite or aluminum for sign backing. Signs and sign supports must meet or exceed NCHRP 350 requirements for Breakaway Devices.

Minimum Coefficier TYPE VII Fluoresce (Candelas per lux pe	r square meter)		
Observation Angle	Entrance Angle		
	-4°	30°	
s parametras (1984) (1986)			
0.1°	300	170	
0.2°	230	130	
0.5°	72	41	

 0.5°

35

Minimum Coefficier TYPE VIII Fluoresco (Candelas per lux pe	ent Orange	reflection R _A for Sheeting
Observation Angle	Entrance	Angle
	-4°	30°
0.1°	300	135
0.2°	210	95

75

Minimum Coefficier TYPE IX Fluorescer (Candelas per lux pe		for	
Observation Angle	Entrance Angle		
	-4°	30°	
	production with the production of the second	terrent grant. Bedreviller i de Laure de Perent.	
0.1°	200	110	
0.2°	115	65	
0.5°	72	41	
1.0°	24	14	

2. Work Zones Signs (Barricade Mounted)

Use approved composite or roll-up signs for barricade mounted sign substrates. Approved composite barricade mounted warning signs (black on orange) must be Type VII, VIII or IX sheeting which meet the retroreflective requirements of Table 1089-A, 1089-B or 1089-C. Roll-up mounted barricade warning signs (black on orange) must meet the retroreflective requirements in Table 1089-D. Sign and barricade assembly must meet or exceed the requirements of NCHRP 350 for Work Zone Category II Devices.

3. Work Zones Signs (Portable)

Use approved composite or roll-up sign substrates on portable sign stands.

Composite - Use Type VII, VIII or IX (prismatic) fluorescent orange retroreflective sheeting that meets the following reflective requirements in Tables 1089-A, 1089-B or 1089-C. Signs and sign supports must meet or exceed NCHRP 350 requirements for Breakaway Devices.

Roll-up Signs - Use fluorescent orange retroreflective roll-up signs that meet the following reflective requirements:

Minimum Coefficier Orange Roll-Up Sign (Candelas per lux pe		for Fluorescent	
Observation Angle	Entrance Angle		
	-4°	30°	
Lagrandia (Gibbs) propins		PRODUCTION OF THE PRODUCT OF THE PRO	
0.1°	300	120	
0.2°	200	80	
0.5°	90	34	

Use roll up signs that have a minimum 3/16" x 1 1/4" horizontal rib and 38" x 1 1/4" vertical rib and has been crash test to meet NCHRP 350 requirements and Traffic Control qualified by the Work Zone Traffic Control Unit.

Add the following after 1089-1(C):

(D) Warranty

Warranty requirements for rigid sign retroreflective sheeting Types VII, VIII and IX are described in Section 1093-9 (F) and Tables 1089 A, B and C.

Roll-up fluorescent orange retroreflective signs will maintain 80% of its retroflectivity (Table 1089-D) for years 1-2 and 50% for year 3.

Rigid and Rollup Fluorescent orange signs will maintain a Fluorescence Luminance Factor $(Y_F)^*$ of 13% for three (3) years.

*Fluorescence Testing Method is described in ASTM E2301 Test Methods for Fluorescent Retro reflective Sheeting.

Rigid and Roll up fluorescent orange signs shall maintain a total Luminance Factor (Y) of 25 for three (3) years and conform to the requirements of Table 1089-E when measured in accordance with ASTM D4956.

Table 1089-E Fluorescent Orange colorimetric requirements								
Color	1		2		3		4	
Coloi	X	y	X	у	X	у	X	у
Fluorescent Orange	0.583	0.416	0.535	0.400	0.595	0.351	0.645	0.355

BARRICADES

Article 1089-3(A) General, delete both paragraphs and substitute the following:

Type III Barricades shall be constructed of perforated square steel tubing and/or angle iron. Provide Type III barricades that use a cross member or stabilization bar and meet the requirements of NCHRP 350 for Work Zone Category II Devices with composite and roll-up signs attached.

Use approved composite or plastic barricade rails that have a smooth face and have alternating orange and white retroreflective stripes that slope at an angle of 45 degrees.

Article 1089-3(C) Reflective Sheeting, delete the first paragraph only and substitute the following:

Use Type VII, VIII or IX (prismatic) retroreflective fluorescent orange sheeting on both sides of the barricade rails. The rail sheeting retroreflectivity values shall meet the retroreflectivity requirements in Table 1089-A, 1089-B or 1089-C and shall be listed on the Department's approved product list or accepted as traffic qualified by the Traffic Control Unit.

SP10R30

TEMPORARY SHORING FOR MAINTENANCE OF TRAFFIC:

 $1-15-02_{R}$

Revise the 2002 Standard Specifications as follows:

Delete Section 1175 and insert the following:

Description

Furnish, install, and remove sheeting, shoring, and bracing necessary to maintain traffic at locations shown on the Traffic Control Plans, and other locations determined during construction. Shoring required to maintain traffic is defined as shoring necessary to provide lateral support to the side of an excavation or embankment parallel to an open travelway when a theoretical 2:1 or steeper slope from the bottom of the excavation or embankment intersects the existing ground line closer than five (5) feet (1.5 m) from the edge of pavement of the open travelway. Contractor has option of submitting their own shoring design or using the Standard shoring design, unless otherwise noted in the plans.

Materials

Sheet piling must be hot rolled and conform to the requirements of ASTM A328.

Steel piles must conform to the requirements of ASTM A36.

Timber and lumber must conform to the requirements of Article 1082-1 in Standard Specifications.

Include all materials proposed for use in temporary shoring in the shoring design submittal described below.

Provide a Type 7 Contractor's Certification for all shoring materials used.

Contractor Shoring Design

Submit shoring design for review and approval by the Engineer prior to beginning construction.

Submit calculations and detail drawings in accordance with section 410-4 of the Standard Specifications.

Design all temporary shoring in accordance with the latest edition of AASHTO's <u>Guide Design Specifications for Bridge Temporary Works</u>.

If temporary concrete barrier is to be located within three (3) feet (1 m) of the top of the shoring, measured to the back face of the barrier, then design the temporary shoring to resist the lateral movement of the barrier when struck by a vehicle and extend the shoring out of the ground at least to the top elevation of the temporary concrete barrier. Design the temporary shoring to resist an impact load of two (2) kips/foot (29 kN/m) applied at one and half (1.5) feet (0.5 m) above ground. This shoring will be paid for as "Temporary Shoring - Barrier Supported". Temporary concrete barrier is paid for separately.

Standard Shoring Design

Select the appropriate shoring design from the "Standard Temporary Shoring for Maintenance of Traffic" detail drawing as shown in the plans.

Submit a "Standard Shoring Selection Form" to Engineer a minimum of fourteen (14) days prior to beginning construction of shoring.

Find Standard Shoring Selection Form as follows:

- 1. Go to NCDOT webpage (www.doh.dot.state.nc.us)
- 2. Click on Doing Business with NCDOT link
- 3. Scroll down and click on Soils and Foundation Design Section Forms link
- 4. Click on Standard Shoring Selection Form

Criteria for the Standard Shoring Designs

- Maximum height of shoring excavation is eleven (11) feet (3.35 meters).
- Groundwater table is not above bottom of shoring excavation.
- Traffic surcharge equal to 240 psf (11 kPa).
- Soldier pile spacing is six (6) feet (1.8 meters).
- Soldier pile embedment depths are for driven piles.
- Timber lagging must have minimum thickness of three (3) inches (76 mm).
- Timber must have a minimum allowable bending stress of 1000 psi (6895 kPa).

If conditions at the shoring location do not meet the criteria of the Standard shoring design as outlined above and in the plans, then Contractor must submit a shoring design to the Engineer for approval.

Construction Methods

Install and interlock steel sheet piles to a tolerance of not more than 3/8 inch per foot (30mm per meter) from vertical.

If soldier piles are used, then install piles to a tolerance of not more than 1/4 inch per foot (20mm per meter) from vertical.

If soldier piles are to be installed in drilled holes, then set piles in drilled holes and fill the holes as soon as practical after installing the piles.

Excavate or auger the soil and rock in two (2) foot (610 mm) diameter holes to the required embedment depth as shown on the approved design. Maintain holes, if required, by casing or other means. Set soldier piles to bottom of the hole prior to backfilling. Backfill holes with Class A concrete to the bottom of excavation. Fill remainder of hole with a lean sand-grout mixture to the ground surface. Remove mixture as necessary to install timber lagging.

Use timber lagging with a minimum three (3) inch (76mm) thickness perpendicular to the pile flange. Install timber lagging with a minimum bearing distance of three (3) inches (76 mm) on each pile flange. Backfill voids behind lagging with granular material or compacted excavated material to the satisfaction of the Engineer.

Backfill and compact fill for shoring excavation prior to removal of shoring.

If the design embedment depth is not achieved, then notify the Engineer immediately.

Method of Measurement

The quantity of temporary shoring to be paid for will be the actual number of square feet (square meter) of exposed face of the shoring measured from the bottom of the shoring excavation or embankment to the top of the shoring, with the upper limit for pay purposes not to exceed one (1) foot (0.3 m) above the retained ground elevation.

The quantity of temporary shoring - barrier supported to be paid for will be the actual number of square feet (square meter) of exposed face of the shoring measured from the bottom of the excavation or embankment to the top of the shoring, with the upper limit for pay purposes not to exceed one (1) foot (0.3 m) above the retained ground elevation.

Basis of Payment

Payment for temporary shoring will only be made at locations where it is required in order to maintain traffic. Trench boxes are not considered temporary shoring for the maintenance of traffic and will not be paid for under this special provision. Such payment will include, but not limited to, furnishing all labor, tools, equipment, and all incidentals necessary to install shoring and complete the work as described in this special provision.

The quantity of shoring necessary for the maintenance of traffic, measured as provided above, will be paid for at the contract unit price per square foot (square meter) of "Temporary Shoring".

The quantity of shoring with temporary concrete barrier located within three (3) feet (1.0 meter) of the shoring will be paid for at the contract unit price per square foot (square meter) of "Temporary Shoring - Barrier Supported".

Payment will be made under:

Temporary Shoring - Barrier Supported......Square Feet (Square Meter)

Square Feet (Square Meter)

SP11R01

DRUMS: 07-16-02

Revise the 2002 Standard Specifications as follows:

Page 10-195, Subarticle 1089-5(C)

Delete the first (1st) sentence of the first (1st) paragraph and insert the following:

"Provide a minimum of three orange and two white alternating horizontal circumferential stripes covering the entire outside with each drum."

SP11R05

WORK ZONE SIGNS

01-18-05

Revise the *Standard Specifications* as follows:

DESCRIPTION

Page 11-5, Article 1110-1 Description

Replace the second paragraph with the following:

Furnish, install, maintain and relocate portable work zone signs and portable work zone sign stands in accordance with the plans and specifications. When portable work zone signs and portable work zone sign stands are not in use for periods longer than 30 minutes, collapse sign stand and reinstall once work begins.

Replace the last sentence in the third paragraph with the following:

Use work zone signs (portable) only with portable work zone sign stands specifically designed for one another. Work Zone Signs (portable) may be roll up or approved composite.

MATERIALS

Page 11-5, Article 1110-2 Part (A) General:

Add the following:

Barricade Mounted Signs......Article 1089-3

MATERIAL QUALIFICATIONS

Page 11-5, Article 1110-2 Part (B) Material Qualifications.

Delete the first sentence in the first paragraph and replace with the following:

Provide portable work zone sign stands, portable signs and sign sheeting which are listed on the North Carolina Department of Transportation's approved product list or accepted as traffic qualified by the Traffic Control Unit.

Delete "Traffic Control Section" in the second sentence of the first paragraph and insert "Traffic Control Unit".

CONSTRUCTION METHODS

Page 11-6, Article 1110-3 CONSTRUCTION METHODS.

Replace Article 1110-3 (B) Work Zone Signs (Barricade Mounted) with the following:

Mount approved composite or roll-up signs to barricade rails so that the signs do not cover more than 50 percent of the top two rails or 33 percent of the total area of the three rails. Signs are to be mounted a minimum of 1' from the ground to the bottom of the sign.

Replace Article 1110-3 (C, 2) Work Zone Signs (Portable) with the following:

Install portable work zone signs to carry roll-up or approved composite at a minimum height of 1' from the bottom of the sign to the ground on two lane-two way roadways.

Install portable work zone signs to carry roll-up or approved composite at a minimum height of 5' from the bottom of the sign to the ground on multi-lane roadways.

METHOD OF MEASUREMENT AND BASIS OF PAYMENT

Method of Measurement and Basis of Payment will be in accordance with Section 1110-5 and 1110-6 of the *Standard Specifications*.

SP11R15

<u>BARRICADES</u> 01-18-05

Revise the 2002 Standard Specifications as follows:

Page 11-12, Article 1145-2 Materials, delete the contents and substitute the following:

(A) General

Refer to Division 10:

(B) Material Qualifications

Provide Type III barricades and barricade rails that are listed on the North Carolina Department of Transportation's approved product list or accepted as traffic qualified by the Traffic Control Unit. For more information on the Traffic Qualification process, contact the Traffic Control Unit at Century Center Building B, 1020 Birch Ridge Drive, Raleigh, NC 27610; (919) 250-4159, or see the approved product list on the NCDOT web site at: www.doh.dot.state.nc.us/construction/tc/Apv_Prod/apv_prod.htm

(C) Historical Performance:

Historical performance of Type III barricades and barricade rails will be used in determining future use of the material by the NCDOT, even if the Type III Barricade is traffic-qualified. Poor past or poor current performance of Type III Barricades at any site, whether or not related to a specific contract may be grounds for non-acceptance of a product on any project under contract.

MEASUREMENT AND PAYMENT

Method of Measurement and Basis of Payment will be in accordance with Section 1145-5 and 1145-6 of the *Standard Specifications*.

SP11R20

PAVEMENT MARKING GENERAL REQUIREMENTS:

07-16-02

Revise the 2002 Standard Specifications as follows:

Page 12-10, Subarticle 1205-3(J)

Delete the first (1st) sentence of the first (1st) paragraph and insert the following:

"Have at least one member of every pavement marking crew working on a project certified through the NCDOT Pavement Marking Technician Certification Process. For more information contact the Traffic Control, Marking and Delineation Section of the North Carolina Department of Transportation at 919-250-4151 or

http://www.doh.dot.state.nc.us/preconstruct/traffic/congestion/TC/"

SP12R01

PERMANENT SEEDING AND MULCHING:

07-01-95

The Department desires that permanent seeding and mulching be established on this project as soon as practical after slopes or portions of slopes have been graded. As an incentive to obtain an early stand of vegetation on this project, the Contractor's attention is called to the following:

For all permanent seeding and mulching that is satisfactorily completed in accordance with the requirements of Section 1660, "Seeding and Mulching", and within the following percentages of elapsed contract times, an additional payment will be made to the Contractor as an incentive additive. The incentive additive will be determined by multiplying the number of acres of seeding and mulching satisfactorily completed times the contract unit bid price per acre for "Seeding and Mulching" times the appropriate percentage additive.

Percentage of	<u>Percentage</u>
Elapsed Contract Time	<u>Additive</u>
0% - 30%	30%
30.01% - 50%	15%

Percentage of elapsed contract time is defined as the number of calendar days from the date of availability of the contract to the date the permanent seeding and mulching is acceptably completed divided by the total original contract time.

SP16R01