

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

PAT L. MCCRORY GOVERNOR ANTHONY J. TATA Secretary

February 26, 2013

MEMORANDUM TO: Mr. Pat Ivey, PE Division 9 Engineer

E.J. Jusk

FROM:

Philip S. Harris, III, P.E. Natural Environment Section Project Development and Environmental Analysis Unit

SUBJECT:

Forsyth County; SR 3000 Extension from SR 2999 to US 158; Federal Aid Project No. STP-3000(a); W.B.S. No. 34845.1.1; **T.I.P. U-2707**

Attached are the U.S. Army Corps of Engineers Section 404 Individual Permit and the N.C. Division of Water Quality Section 401 Water Quality Certification for the above referenced project. All environmental permits have been received for the construction of this project.

A copy of this permit package will be posted on the NCDOT website at: http://www.ncdot.gov/doh/preconstruct/pe/neu/permit.html

Cc:

Mr. Randy Garris, P.E. State Contract Officer
Mr. Kent Boyer, Division Environmental Officer
Mr. Majed Alghandour, P. E., Programming and TIP
Mr. Jay Bennett, P.E., Roadway Design Unit
Mr. Dewayne Sykes, P.E. Utilities Unit
Mr. Art McMillan, P.E., Hydraulics Unit
Mr. Tom Koch, P.E., Structure Design Unit
Mr. Mark Staley, Roadside Environmental Unit
Mr. Ron Hancock, P.E., State Roadway Construction Engineer
Mr. Mike Robinson, P.E., State Bridge Construction Engineer
Mr. Eric Midkiff, P.E., PDEA Central Region
Mr. Clarence Coleman, P.E., FHWA
Ms. Beth Harmon, EEP
Mr. Phillip Ayscue, Office of Inspector General

LOCATION:

1020 BIRCH RIDGE DRIVE RALEIGH NC 27610-4328

PROJECT COMMITMENTS

TIP Project No. U-2707 SR 3000 (Idols Rd.) extension from SR 2999 (Hampton Road) to US 158 (Clemmons Road) Forsyth County Federal Aid No. STP-3000(1) State Project No. 8.2624101 WBS No. 34845.1.1

Commitments Developed through Project Development and Design

Current status, changes, or additions to the project commitments as shown in the environmental document for the project are printed in *italic* font.

Design Services/Division 9

• NCDOT will provide 4-ft paved shoulders to accommodate bicycle traffic along Idols Road Extension.

This commitment was addressed during design and will be implemented during construction.

• NCDOT will provide a left-turn lane for the access road to the historic property, Hanes Farm, if Alternative A is recommended and constructed.

Alternative B has been selected as the Preferred Alternative, so this commitment no longer applies.

• NCDOT will minimize tree removal between the railroad right of way and the edge of pavement on the new alignment in the area of the historic property, Hanes Farm, if Alternative B, C, or D is recommended and constructed.

This commitment was addressed during design and will be implemented during construction.

Roadside Environmental

• NCDOT will control erosion and sedimentation for the Muddy Creek crossing and the tributary culvert installation through the appropriate specification, installation, and maintenance of high quality erosion and sedimentation control measures.

The original commitment was based on Muddy Creek's 303(d) status at the time the Environmental Assessment was published (February 2002). Muddy Creek is currently included on the 2012 Final 303(d) list due to metals (copper and zinc), not sedimentation or turbidity. Therefore, NCDOT will utilize standard Best Management Practices for sedimentation and erosion control throughout construction of the project.

PDEA

• NCDOT will coordinate with the N.C. Division of Water Quality (DWQ) to fulfill the necessary requirements regarding stream mitigation. Compensatory mitigation with regard to stream mitigation is left to the discretion of DWQ. Pertinent details of the stream modifications will be outlined in the application for the 401 Water Quality Certification.

NCDOT coordinated with DWQ regarding the development of a compensatory stream mitigation plan. This commitment was addressed during the permitting process, via the inclusion of the compensatory stream mitigation plan in the permit application for the project. The 401 Permit was approved August 6, 2012.

The compensatory stream mitigation plan will be implemented prior to or during construction.

GeoEnvironmental

• One site exists within the project area that has the potential for Underground Storage Tank (UST) involvement. NCDOT will conduct further studies if the proposed project impacts the UST.

The parcel, former Ava Katrina Robertson property, at the intersection of Idols Road and Hampton Road was acquired by Right of Way. The GeoEnvironmental Section has conducted all necessary studies and preformed all necessary remediation at the site.

COMMITMENTS FROM PERMITTING

Natural Environment Section—Engineering Group

404 condition f

Compensatory mitigation for the unavoidable impacts to 892 (not including mitigation for 11 ft. of stream bank stabilization included in the requested 903 linear ft. of stream channel impacts) linear ft. of stream impact associated with the proposed project shall be provided by on-site stream restoration and enhancement to be performed by NCDOT at a 1:1 ratio. The on-site mitigation will be constructed and in compliance with the attached U-2707 Stream Mitigation Plan dated December 22, 2011 and identified as (Exhibit C).

401 condition 2

Compensatory mitigation for impacts to 831 linear ft. of streams at a replacement ratio of 1:1 is required. Compensatory mitigation for impacts to jurisdictional streams shall be provided by on-site stream relocation and restoration (1:1 ratio) of 1800 linear ft. of stream S-JH-A ('Reach 1') and by on-site enhancement (2:1) of 153 linear ft. of stream S-JH-B ('Reach 2'), generating 1876.5 stream mitigation credits. The on-site stream relocation shall be constructed in accordance with the design submitted in your May 10,

U-2707 Permit Greensheet January 2013 Page 2 of 3 2012 application and additional information received electronically on June 25, 2012. All on-site mitigation sites shall be protected in perpetuity by a conservation easement or through NCDOT fee simple acquisition and recorded in the NCDOT Natural Environment Section mitigation geodatabase. Please be reminded that as-builts for the completed streams shall be submitted to the North Carolina Division of Water Quality 401 Wetlands Unit with the as-builts for the rest of the project. If the parameters of this condition are not met, then the permittee shall supply additional stream mitigation for the 831 linear ft. of impacts. All channel relocations will be constructed in a dry work area, will be completed and stabilized, and must be approved on-site by NCDWQ staff, prior to diverting water into the new channel. Whenever possible, channel relocations shall be allowed to stabilize for an entire growing season. All stream relocations shall have a 50foot wide native wooded buffer planted on both sides of the stream unless otherwise authorized by this Certification. A transitional phase incorporating rolled erosion control product (RECP) and appropriate ground cover is allowable.

401 condition 3

The stream mitigation site shall be monitored annually for five years or until success criteria are satisfied. Monitoring protocols shall follow the Monitoring Level I outlined in the Stream Mitigation Guidelines, April 2003.

401 condition 4

Success of the mitigation site shall be determined by NCDWQ during an on-site visit at or near the end of the monitoring period.

DEPARTMENT OF THE ARMY PERMIT

Permittee: NCDOT SR 3000 (IDOLS ROAD) EXTENSION TIP U-27007 ATTN: DR. GREGORY J. THORPE, PH.D.

Permit No.: SAW-1998-20439

Issuing Office: USAED, WILMINGTON – CESAW-RG-R

NOTE: The term "you" and its derivatives, as used in this permit, means the permittee or any future transferee. The term "this office" refers to the appropriate district or division office of the Corps of Engineers having jurisdiction over the permitted activity or the appropriate official of that office acting under the authority of the commanding officer.

You are authorized to perform work in accordance with the terms and conditions specified below.

Project Description: The North Carolina Department of Transportation (NCDOT) has identified this project as TIP U-2707, which involves the construction of a 2.0 mile roadway on new location, as well as the replacement of bridge no. 109 over the Norfolk Southern Railroad and reconfiguration of the intersection of Idols and Hampton Roads. The cross section of the proposed new location facility consists of two 12 ft. travel lanes, 4 ft. paved shoulder to accommodate bicycles, and 4 ft. grass shoulders. The project would permanently impact 903 linear feet of the jurisdictional stream channels of Muddy Creek and two unnamed tributaries to Muddy Creek. In addition, impacts are proposed to 0.81 acre of jurisdictional wetlands adjacent to these tributaries. To mitigate for all unavoidable permanent impacts to jurisdictional features, the applicant proposes compensatory mitigation for 892 linear feet of permanent stream impacts (not including bank stabilization) and 0.81 acre of permanent riparian wetland impacts. On-site stream restoration and enhancement will be performed by NCDOT to compensate for all 892 linear feet of permanent riparian wetland impacts will be provided by North Carolina Ecosystem Enhancement Program (NCEEP) to satisfy the compensatory mitigation requirements associated with federal and state permits. In a letter dated March 6, 2010, NCEEP has agreed to provide the required wetland mitigation for this proposal if permitted.

2707

Project Location: The project, known as TIP U-27027, is a 2.0 mile roadway on new location, as wetlands the replacement of bridge no. 109 over the Norfolk Southern Railroad and the reconfiguration of the intersection of Idols and Hampton Roads. The cross section of the proposed new location facility consists of two 12 ft. travel lanes, 4 ft. paved shoulders to accommodate bicycles, and 4 ft. grass shoulders. Impacts are proposed to Muddy Creek and two unnamed tributaries to Muddy Creek. In addition, impacts are proposed to 0.81 acre of jurisdictional wetlands adjacent to these tributaries. All project streams are tributaries to the Yadkin-Pee Dee River Basin in Forsyth County. (U.S. Geological Survey [USGS] Hydrologic Unit [HUC] 03040101). The approximate center of project is at 36.0124° N., -80.3586° W.

Permit Conditions:

General Conditions:

1. The time limit for completing the work authorized ends on <u>December 31, 2019</u> If you find that you need more time to complete the authorized activity, submit your request for a time extension to this office for consideration at least one month before the above date is reached.

2. You must maintain the activity authorized by this permit in good condition and in conformance with the terms and conditions of this permit. You are not relieved of this requirement if you abandon the permitted activity, although you may make a good faith transfer to a third party in compliance with General Condition 4 below. Should you wish to cease to maintain the authorized activity or should you desire to abandon it without a good faith transfer, you must obtain a modification of this permit from this office, which may require restoration of the area.

3. If you discover any previously unknown historic or archeological remains while accomplishing the activity authorized by this permit, you must immediately notify this office of what you have found. We will initiate the Federal

and state coordination required to determine if the remains warrant a recovery effort or if the site is eligible for listing in the National Register of Historic Places.

4. If you sell the property associated with this permit, you must obtain the signature of the new owner in the space provided and forward a copy of the permit to this office to validate the transfer of this authorization.

5. If a conditioned water quality certification has been issued for your project, you must comply with the conditions specified

in the certification as special conditions to this permit. For your convenience, a copy of the certification is attached if it contains such conditions.

6. You must allow representatives from this office to inspect the authorized activity at any time deemed necessary to ensure that it is being or has been accomplished in accordance with the terms and conditions of your permit,

Special Conditions:

SEE ATTACHED SPECIAL CONDITIONS

Further Information:

- 1. Congressional Authorities: You have been authorized to undertake the activity described above pursuant to:
 - () Section 10 of the Rivers and Harbors Act of 1899 (33 U.S.C. 403).
 - (X) Section 404 of the Clean Water Act (33 U.S.C. 1344).
 - () Section 103 of the Marine Protection, Research and Sanctuaries Act of 1972 (33 U.S.C. 1413).
- 2. Limits of this authorization.
 - a. This permit does not obviate the need to obtain other Federal, state, or local authorizations required by law.
 - b. This permit does not grant any property rights or exclusive privileges.
 - c. This permit does not authorize any injury to the property or rights of others.
 - d. This permit does not authorize interference with any existing or proposed Federal project.
- 3. Limits of Federal Liability. In issuing this permit, the Federal Government does not assume any liability for the following:
 - a. Damages to the permitted project or uses thereof as a result of other permitted or unpermitted activities or from natural causes.
 - b. Damages to the permitted project or uses thereof as a result of current or future activities undertaken by or on behalf of the United States in the public interest.
 - c. Damages to persons, property, or to other permitted or unpermitted activities or structures caused by the activity authorized by this permit.
 - d. Design or construction deficiencies associated with the permitted work.

e. Damage claims associated with any future modification, suspension, or revocation of this permit.

Reliance on Applicant's Data: The determination of this office that issuance of this permit is not contrary to the 4. public interest was made in reliance on the information you provided.

5. Reevaluation of Permit Decision. This office may reevaluate its decision on this permit at any time the circumstances warrant. Circumstances that could require a reevaluation include, but are not limited to, the following:

- a. You fail to comply with the terms and conditions of this permit.
- b. The information provided by you in support of your permit application proves to have been false, incomplete, or inaccurate (See 4 above).
- c. Significant new information surfaces which this office did not consider in reaching the original public interest decision.

Such a reevaluation may result in a determination that it is appropriate to use the suspension, modification, and revocation procedures contained in 33 CFR 325.7 or enforcement procedures such as those contained in 33 CFR 326.4 and 326.5. The referenced enforcement procedures provide for the issuance of an administrative order requiring you to comply with the terms and conditions of your permit and for the initiation of legal action where appropriate. You will be required to pay for any corrective measures ordered by this office, and if you fail to comply with such directive, this office may in certain situations (such as those specified in 33 CFR 209.170) accomplish the corrective measures by contract or otherwise and bill you for the cost.

6. Extensions. General condition 1 establishes a time limit for the completion of the activity authorized by this permit, Unless there are circumstances requiring either a prompt completion of the authorized activity or a reevaluation of the public interest decision, the Corps will normally give favorable consideration to a request for an extension of this time limit.

Your signature below, as permittee, indicates that you accept and agree to comply with the terms and conditions of this permit.

(PERMITTEE) NOOT SR 3000 (IDOLS ROAD) TIP U-2707

DR.GREGORY J. THORPE, PH.D.

Oct 31, 2012 (DATE)

This permit becomes effective when the Federal official, designated to act for the Secretary of the Army, has signed below.

(DISTRICT Engineer) STEVEN A. BAKER, COLONEL

11/06/12

When the structures or work authorized by this permit are still in existence at the time the property is transferred, the terms and conditions of this permit will continue to be binding on the new owner(s) of the property. To validate the transfer of this permit and the associated liabilities associated with compliance with its terms and conditions, have the transferee sign and date below.

(Transferee)

(DATE)

SPECIAL CONDITIONS: ACTION ID: SAW-1998-20439 NCDOT SR 3000 (Idols Road) TIP U-2707

Failure to institute and carry out the details of the following special conditions below (listed as aw) will result in a directive to cease all ongoing and permitted work within waters of the United States, including wetlands, associated with the permitted project, or such other remedies and/or fines as the U.S. Army Corps of Engineers District Commander or his authorized representatives may seek.

a) The North Carolina Division of Water Quality (DWQ) permit/certification number WQC003938 was issued for this project on August 6, 2012. Special conditions were issued associated with this water quality permit/certification and a copy of these conditions is attached as (Exhibit A). These referenced conditions are hereby incorporated as special conditions of this permit.

b) All work authorized by this permit must be performed in strict compliance with the attached plans which were received on May 9, 2012. These plans are a part of this permit and identified as (Exhibit B). Any modification to these plans must be approved by the US Army Corps of Engineers (USACE) prior to implementation.

c) The permittee shall schedule a preconstruction meeting between its representatives, the contractor's representatives, and the Corps of Engineers, Raleigh Regulatory Field Office, NCDOT Regulatory Project Manager, prior to any work within jurisdictional waters and wetlands to ensure that there is a mutual understanding of all of the terms and conditions contained within this Department of the Army Permit. The permittee shall provide the USACE, Raleigh Regulatory Field Office, NCDOT Regulatory Project Manager, with a copy of the final plans at least two weeks prior to the preconstruction meeting along with a description of any changes that have been made to the project's design, construction meeting for a time when the USACE and North Carolina Division of Water Quality (NCDWQ) Project Managers can attend. The permittee shall invite the Corps and NCDWQ Project Managers a minimum of thirty (30) days in advance of the scheduled meeting in order to provide those individuals with ample opportunity to schedule and participate in the required meeting.

d) Except as authorized by this permit or any USACE approved modification to this permit, no excavation, fill or mechanized land-clearing activities shall take place at any time in the construction or maintenance of this project, within waters or wetlands. This permit does not authorize temporary placement or double handling of excavated or fill material within waters or wetlands outside the permitted area. This prohibition applies to all borrow and fill activities connected with this project.

e) Except as specified in the plans attached to this permit, no excavation, fill or mechanized land-clearing activities shall take place at any time in the construction or maintenance of this project, in such a manner as to impair normal flows and circulation patterns within waters or wetlands or to reduce the reach of waters or wetlands.

SPECIAL CONDITIONS: ACTION ID: SAW-1998-20439 NCDOT SR 3000 (Idols Road) TIP U-2707

f) Compensatory mitigation for the unavoidable impacts to 892 (not including mitigation for 11 feet of stream bank stabilization included in the requested 903 linear feet of stream channel impacts) linear feet of stream impact associated with the proposed project shall be provided by on-site stream restoration and enhancement to be performed by NCDOT at a 1:1 ratio. The on-site mitigation will be constructed and in compliance with the attached U-2707 Stream Mitigation Plan dated December 22, 2012 and identified as (Exhibit C).

Compensatory mitigation for 0.81 acre of permanent Riparian-Nonriverine wetland impacts associated with the project will be provided by North Carolina Ecosystem Enhancement Program (NCEEP), as outlined in the letter dated March 6, 2012, from Michael Ellison, EEP Deputy Director. In order to compensate for this wetland impact associated with this permit, mitigation shall be provided in accordance with the provisions outlined on the most recent version of the attached Compensatory Mitigation Responsibility Transfer Form. The requirements of this form, including any special conditions listed on this form, are herby incorporated as special conditions of this permit authorization and identified as (Exhibit D).

g) All mechanized equipment will be regularly inspected and maintained to prevent contamination of waters and wetlands from fuels, lubricants, hydraulic fluids, or other toxic materials. In the event of a spill of petroleum products or any other hazardous waste, the permittee shall immediately report it to the N.C. Division of Water Quality at 1 (800) 858-0368 and provisions of the North Carolina Oil Pollution and Hazardous Substances Control Act will be followed.

h) The permittee shall advise the Corps in writing prior to beginning the work authorized by this permit and again upon completion of the work authorized by this permit.

i) Unless otherwise authorized by this permit, all fill material placed in waters or wetlands shall be generated from an upland source and will be clean and free of any pollutants except in trace quantities. Metal products, organic materials (including debris from land clearing activities), or unsightly debris will not be used.

j) The permittee shall require its contractors and/or agents to comply with the terms and conditions of this permit in the construction and maintenance of this project, and shall provide each of its contractors and/or agents associated with the construction or maintenance of this project with a copy of this permit. A copy of this permit, including all conditions, shall be available at the project site during construction and maintenance of this project

SPECIAL CONDITIONS: ACTION ID: SAW-1998-20439 NCDOT SR 3000 (Idols Road) TIP U-2707

k) The permittee shall employ all sedimentation and erosion control measures necessary to prevent an increase in sedimentation or turbidity within waters and wetlands outside the permit area. This shall include, but is not limited to, the immediate installation of silt fencing or similar appropriate devices around all areas subject to soil disturbance or the movement of earthen fill, and the immediate stabilization of all disturbed areas. Additionally, the project must remain in full compliance with all aspects of the Sedimentation Pollution Control Act of 1973 (North Carolina General Statutes Chapter 113A Article 4).

1) The permittee shall remove all sediment and erosion control measures placed in wetlands or waters, and shall restore natural grades in those areas, prior to project completion.

m) During the clearing phase of the project, heavy equipment must not be operated in surface waters or stream channels. Temporary stream crossings will be used to access the opposite sides of stream channels. All temporary diversion channels and stream crossings will be constructed of non-erodible materials. Grubbing of riparian vegetation will not occur until immediately before construction begins on a given segment of stream channel.

n) No fill or excavation for the purposes of sedimentation and erosion control shall occur within jurisdictional waters, including wetlands, unless it is included on the plan drawings and specifically authorized by this permit.

o) The permittee, upon receipt of a notice of revocation of this permit or upon its expiration before completion of the work will, without expense to the United States and in such time and manner as the Secretary of the Army or his authorized representative may direct, restore the water or wetland to its pre-project condition.

p) Violations of these conditions or violations of Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act must be reported in writing to the Wilmington District U.S. Army Corps of Engineers within 24 hours of the permittee's discovery of the violation.

q) The permittee will ensure that the construction design plans for this project do not deviate from the permit plans attached to this authorization. Written verification shall be provided that the final construction drawings comply with the attached permit drawings prior to any active construction in waters of the United States, including wetlands. Any deviation in the construction design plans will be brought to the attention of the Corps of Engineers, Raleigh Regulatory Field Office prior to any active construction in waters or wetlands.

<u>SPECIAL CONDITIONS: ACTION ID: SAW-1998-20439</u> <u>NCDOT SR 3000 (Idols Road) TIP U-2707</u>

r) Prior to commencing construction within jurisdictional waters of the United States for any portion of the proposed project, the permittee shall forward the latest version of project construction drawings to the Corps of Engineers, Raleigh Regulatory Field Office NCDOT Regulatory Project Manager. Half-size drawings will be acceptable.

s) The permittee shall take measures to prevent live or fresh concrete from coming into contact with any surface waters until the concrete has hardened.

t) Measures will be included in the construction/installation that will promote the safe passage of fish and other aquatic organisms. The dimension, pattern, and profile of the stream above and below a pipe or culvert should not be modified by widening the stream channel or by reducing the depth of the stream in connection with the construction activity. The width, height, and gradient of a proposed opening should be such as to pass the average historical low flow and spring flow without adversely altering flow velocity. Spring flow should be determined from gauge data, if available. In the absence of such data, bankfull flow can be used as a comparable level.

u) Culverts greater than 48 inches in diameter will be buried at least one foot below the bed of the stream. Culverts 48 inches in diameter or less shall be buried or placed on the stream bed as practicable and appropriate to maintain aquatic passage, and every effort shall be made to maintain the existing channel slope. The bottom of the culvert must be placed at a depth below the natural stream bottom to provide for passage during drought or low flow conditions. Destabilizing the channel and head cutting upstream should be considered in the placement of the culvert. A waiver from the depth specifications in this condition may be requested in writing. The waiver will be issued if it can be demonstrated that the proposal would result in the least impacts to the aquatic environment.

v) To ensure that all borrow and waste activities occur on high ground and do not result in the degradation of adjacent wetlands and streams, except as authorized by this permit, the permittee shall require its contractors and/or agents to identify all areas to be used to borrow material, or to dispose of dredged, fill, or waste material. The permittee shall provide the USACE with appropriate maps indicating the locations of proposed borrow or waste sites as soon as the permittee has that information. The permittee will coordinate with the USACE before approving any borrow or waste sites that are within 400 feet of any streams or wetlands.

w) If the permittee discovers any previously unknown historic or archaeological sites while accomplishing the authorized work, he shall immediately stop work and notify the Corps of Engineers, Raleigh Regulatory Field Office NCDOT Regulatory Project Manager who will initiate the required State/Federal coordination.

U.S. ARMY CORPS OF ENGINEERS

Wilmington District

Compensatory Mitigation Responsibility Transfer Form

Permittee: North Carolina Department of Transportation, Division of HighwaysAction ID: SAW- 199820439Project Name: SR 3000 (Idols Road) extension TIP U-2707County:Forsyth

Instructions to Permittee: The Permittee must provide a copy of this form to the Mitigation Sponsor, either an approved Mitigation Bank or the North Carolina Ecosystem Enhancement Program (NCEEP), who will then sign the form to verify the transfer of the mitigation responsibility. Once the Sponsor has signed this form, it is the Permittee's responsibility to ensure that to the U.S. Army Corps of Engineers (USACE) Project Manager identified on page two is in receipt of a signed copy of this form before conducting authorized impacts, unless otherwise specified below. If more than one mitigation will occur in more than one 8-digit Hydrologic Unit Code (HUC), multiple forms will be attached to the permit, and the separate forms for each Sponsor and/or HUC must be provided to the appropriate mitigation Sponsors.

Instructions to Sponsor: The Sponsor must verify that the mitigation requirements shown below are available at the identified site. By signing below, the Sponsor is accepting full responsibility for the identified mitigation, regardless of whether or not they have received payment from the Permittee. Once the form is signed, the Sponsor must update the appropriate ledger and provide a copy of the signed form to the Permittee and to the USACE Bank/In-Lieu Fee Program Manager. The Sponsor must also comply with all reporting requirements established in their authorizing instrument.

Permitted Impacts and Compensatory Mitigation Requirements:

Permitted Impacts Requiring Mitigation* 8-digit HUC and Basin: 03040101, Upper Yadkin River Basin

Strea	m Impacts (linear	feet)		Wetland Im	pacts (acres)	
Warm	Cool	Cold	Riparian Riverine	Riparian Non-riverine	Non-Riparian	Coastal
				0.81		

*If more than one mitigation sponsor will be used for the permit, only include impacts to be mitigated by this sponsor.

Compensatory Mitigation Requirements:	8-digit HUC and Basin: 03040101 Upper Yadkin River Basin
--	--

Strea	am Mitigation (cro	edits)		Wetland Mitig	gation (credits)	
Warm	Cool	Cold	Riparian Riverine	Riparian Non-riverine	Non-Riparian	Coastal
				0.81		

Mitigation Site Debited: NCEEP

(List the name of the bank to be debited. For umbrella banks, also list the specific site. For NCEEP, list NCEEP. If the NCEEP acceptance letter identifies a specific site, also list the specific site to be debited).

Section to be completed by the Mitigation Sponsor

Statement of Mitigation Liability Acceptance: I, the undersigned, verify that I am authorized to approve mitigation transactions for the Mitigation Sponsor shown below, and I certify that the Sponsor agrees to accept full responsibility for providing the mitigation identified in this document (see the table above), associated with the USACE Permittee and Action ID number shown. I also verify that released credits (and/or advance credits for NCEEP), as approved by the USACE, are currently available at the mitigation site identified above. Further, I understand that if the Sponsor fails to provide the required compensatory mitigation, the USACE Wilmington District Engineer may pursue measures against the Sponsor to ensure compliance associated with the mitigation requirements.

Mitigation Sponsor Name:____

Name of Sponsor's Authorized Representative:__

Signature of Sponsor's Authorized Representative

Date of Signature

USACE Wilmington District

Compensatory Mitigation Responsibility Transfer Form, Page 2

Conditions for Transfer of Compensatory Mitigation Credit:

- Once this document has been signed by the Mitigation Sponsor and the USACE is in receipt of the signed form, the Permittee is no longer responsible for providing the mitigation identified in this form, though the Permittee remains responsible for any other mitigation requirements stated in the permit conditions.
- Construction within jurisdictional areas authorized by the permit identified on page one of this form can begin only
 after the USACE is in receipt of a copy of this document signed by the Sponsor, confirming that the Sponsor has
 accepted responsibility for providing the mitigation requirements listed herein. For authorized impacts conducted by
 the North Carolina Department of Transportation (NCDOT), construction within jurisdictional areas may proceed upon
 permit issuance; however, a copy of this form signed by the Sponsor must be provided to the USACE within 30 days of
 permit issuance. NCDOT remains fully responsible for the mitigation until the USACE has received this form, confirming
 that the Sponsor has accepted responsibility for providing the mitigation requirements listed herein.
- Signed copies of this document must be retained by the Permittee, Mitigation Sponsor, and in the USACE administrative records for both the permit and the Bank/ILF Instrument. It is the Permittee's responsibility to ensure that the USACE Project Manager (address below) is provided with a signed copy of this form.
- If changes are proposed to the type, amount, or location of mitigation after this form has been signed and returned to the USACE, the Sponsor must obtain case-by-case approval from the USACE Project Manager and/or North Carolina Interagency Review Team (NCIRT). If approved, higher mitigation ratios may be applied, as per current District guidance and a new version of this form must be completed and included in the USACE administrative records for both the permit and the Bank/ILF Instrument.

Comments/Additional Conditions:

This form is not valid unless signed by the mitigation Sponsor and USACE Project Manager. For questions regarding this form or any of the conditions of the permit authorization, contact the Project Manager at the address below.

USACE Project Manager: USACE Field Office:

John Thomas Raleigh Regulatory Field Office US Army Corps of Engineers 3331 Heritage Trade Drive, Suite 105 Wake Forest, North Carolina 27587

Email:

USACE Project Manager Signature

October 1, 2012 Date of Signature

Current Wilmington District mitigation guidance, including information on mitigation ratios, functional assessments, and mitigation bank location and availability, and credit classifications (including stream temperature and wetland groupings) is available at <u>http://ribits.usace.army.mil</u>.

Page 2 of 2

The Wilmington District is committed to providing the highest level of support to the public. To help us ensure we continue to do so, please complete the Customer Satisfaction Survey located at our website at http://regulatory.usacesurvey.com/ to complete the survey online.

North Carolina Department of Environment and Natural Resources

Beverly Eaves Perdue Governor Division of Water Quality Charles Wakild, P.E Director

August 6, 2012

Fred Land VI	Secretary
AUG y Zui	د
DIVISION OF HIGHWA	YS VIRON

Dr. Greg Thorpe, PhD., Manager Project Development and Environmental Analysis North Carolina Department of Transportation 1548 Mail Service Center Raleigh, North Carolina, 27699-1548

 Subject: 401 Water Quality Certification Pursuant to Section 401 of the Federal Clean Water Act with ADDITIONAL CONDITIONS for Proposed extension of SR 3000 (Idols Rd) from SR 2999 (Hampton Road) to US 158 (Clemmons Road) in Forsyth County, Federal Aid Project No. STP-3000 (1), State Project No. 8.2624101, TIP U-2707. NCDWQ Project No. 2012-0470

Dear Dr. Thorpe:

Attached hereto is a copy of Certification No. 003938 issued to The North Carolina Department of Transportation (NCDOT) dated August 6, 2012.

If we can be of further assistance, do not hesitate to contact us.

Sincerely,

Charles Wakild Director

Attachments

 cc: John Thomas, US Army Corps of Engineers, Raleigh Field Office (electronic copy only) Kent Boyer, Division 9 Environmental Officer (electronic copy only) Chris Militscher, Environmental Protection Agency (electronic copy only) Marla Chambers, NC Wildlife Resources Commission Jason Elliott, NCDOT, Roadside Environmental Unit (electronic copy only) Beth Harmon, Ecosystem Enhancement Program (electronic copy only) Wetlands/401 Transportation Unit File Copy

Transportation and Permitting Unit 1650 Mail Service Center, Raleigh, North Carolina 27699-161 * Location: 512 N. Salisbury St. Raleigh, North Carolina 27604 Phone: 919-807-6300 \ FAX: 919-807-6492 Internet: www.ncwaterguality.org

401 Water Quality Certification Pursuant to Section 401 of the Federal Clean Water Act with ADDITIONAL CONDITIONS

THIS CERTIFICATION is issued in conformity with the requirements of Section 401 Public Laws 92-500 and 95-217 of the United States and subject to the North Carolina Division of Water Quality (NCDWQ) Regulations in 15 NCAC 2H .0500. This certification authorizes the NCDOT to impact 0.81 acres of jurisdictional wetlands, and 903 linear feet of jurisdictional streams Forsyth County. The project shall be constructed pursuant to the application dated received May 10, 2012 with additional information dated received June 25, 2012 and July 17, 2012. The authorized impacts are as described below:

Stream Im	nacts in	the Y	adkin-Pee	Dee l	River Basi	n
Stitum im	paces m	the r	aanin 1 ee	DUU		

Site	Permanent Fill in Intermittent Stream (linear ft)	Temporary Fill in Intermittent Stream (linear ft)	Permanent Fill in Perennial Stream (linear ft)	Temporary Fill in Perennial Stream (linear ft)	Total Stream Impact (linear ft)	Stream Impacts Requiring Mitigation (linear ft)
2	61				61	
3			831		831	831
6			11		11	
Total	61		842		903	831

Total Stream Impact for Project: 903 linear feet

Site	Fill (ac)	Fill (temporary) (ac)	Excavation (ac)	Mechanized Clearing (ac)	Hand Clearing (ac)	Area under Bridge (ac)	Total Wetland Impact (ac)
1				0.03			0.03
4	0.78						0.78
	0.78			0.03			0.81
Total							

Wetland Impacts in the Yadkin River Basin (riverine)

Total Wetland Impact for Project: 0.81 acres.

The application provides adequate assurance that the discharge of fill material into the waters of the Yadkin-Pee Dee River Basin in conjunction with the proposed development will not result in a violation of applicable Water Quality Standards and discharge guidelines. Therefore, the State of North Carolina certifies that this activity will not violate the applicable portions of Sections 301, 302, 303, 306, 307 of PL 92-500 and PL 95-217 if conducted in accordance with the application and conditions hereinafter set forth.

This approval is only valid for the purpose and design that you submitted in your application dated received May 10, 2012 with additional information dated received June 25, 2012 and July 17, 2012. Should your project change, you are required to notify the NCDWQ and submit a new application. If the property is sold, the new owner must be given a copy of this Certification and approval letter, and is thereby responsible for complying with all the conditions. If any additional wetland impacts, or stream impacts, for this project (now or in the future) exceed one acre or 150 linear feet, respectively, additional compensatory mitigation may be required as described in 15A NCAC 2H .0506 (h) (6) and (7). For this approval to remain valid, you are required to comply with all the conditions listed below. In addition, you should obtain all other federal, state or local permits before proceeding with your project including (but not limited to) Sediment and Erosion control, Coastal Stormwater, Non-discharge and Water Supply watershed regulations. This Certification shall expire on the same day as the expiration date of the corresponding Corps of Engineers Permit.

Condition(s) of Certification:

- 1. The NCDOT Division Environmental Officer or Environmental Assistant will conduct a pre-construction meeting with all appropriate staff to ensure that the project supervisor and essential staff understand the potential issues with the stream mitigation site. NCDWQ staff shall be invited to the pre-construction meeting.
- 2. Compensatory mitigation for impacts to 831 linear feet of streams at a replacement ratio of 1:1 is required. Compensatory mitigation for impacts to jurisdictional streams shall be provided by onsite stream relocation and

restoration (1:1 ratio) of 1800 linear feet of Stream S-JH-A ('Reach 1') and by on-site enhancement (2:1) of 153 linear feet of Stream S-JH-B ('Reach 2'), generating 1876.5 stream mitigation credits. The onsite stream relocation shall be constructed in accordance with the design submitted in your May 10, 2012 application and additional information dated received electronically on June 25, 2012. All on-site mitigation sites shall be protected in perpetuity by a conservation easement or through NCDOT fee simple acquisition and recorded in the NCDOT Natural Environment Unit mitigation geodatabase. Please be reminded that as-builts for the completed streams shall be submitted to the North Carolina Division of Water Quality 401 Wetlands Unit with the as-builts for the rest of the project. If the parameters of this condition are not met, then the permittee shall supply additional stream mitigation for the 831 linear feet of impacts. All channel relocations will be constructed in a dry work area, will be completed and stabilized, and must be approved on site by NCDWQ staff, prior to diverting water into the new channel. Whenever possible, channel relocations shall be allowed to stabilize for an entire growing season. All stream relocations shall have a 50-foot wide native wooded buffer planted on both sides of the stream unless otherwise authorized by this Certification. A transitional phase incorporating rolled erosion control product (RECP) and appropriate temporary ground cover is allowable.

- 3. The stream mitigation site shall be monitored annually for five years or until success criteria are satisfied. Monitoring protocols shall follow the Monitoring Level I outlined in the Stream Mitigation Guidelines, April 2003.
- 4. Success of the mitigation site shall be determined by NCDWQ during an on-site visit at or near the end of the monitoring period.
- 5. There are no temporary impacts permitted at this time. If temporary impacts are needed, a permit modification will be required.
- 6. Post-construction stormwater shall be designed as approved in the permit application. If any changes are made to the post-construction stormwater design, the Division of Water Quality shall be contacted for approval of the changes.
- 7. Two copies of the final construction drawings shall be furnished to NCDWQ Central Office prior to the preconstruction meeting. The permittee shall provide written verification that the final construction drawings comply with the permit drawings contained in the application dated received May 10, 2012 with additional information dated received June 25, 2012 and July 17, 2012. Any deviations from the approved drawings are not authorized unless approved by the NC Division of Water Quality.
- 8. All channel relocations will be constructed in a dry work area and stabilized before stream flows are diverted. Channel relocations will be completed and stabilized, and must be approved on site by NCDWQ staff, prior to diverting water into the new channel. Whenever possible, channel relocations shall be allowed to stabilize for an entire growing season. Vegetation used for bank stabilization shall be limited to native woody species, and should include establishment of a 30 foot wide wooded and an adjacent 20 foot wide vegetated buffer on both sides of the relocated channel to the maximum extent practical. All stream banks shall be matted with coir fiber matting. Also, rip-rap may be allowed if it is necessary to maintain the physical integrity of the stream, but the applicant must provide written justification and any calculations used to determine the extent of rip-rap coverage requested. Once the stream has been turned into the new channel, it may be necessary to relocate stranded fish to the new channel to prevent fish kills.
- 9. The post-construction removal of any temporary bridge structures must return the project site to its preconstruction contours and elevations. The impacted areas shall be revegetated with appropriate native species.
- 10. Strict adherence to the most recent version of NCDOT's Best Management Practices For Bridge Demolition and Removal approved by the US Army Corps of Engineers is a condition of the 401 Water Quality Certification.
- 11. Bridge deck drains shall not discharge directly into the stream. Stormwater shall be directed across the bridge and pre-treated through site-appropriate means (grassed swales, pre-formed scour holes, vegetated buffers, etc.) before entering the stream. Please refer to the most current version of *Stormwater Best Management Practices*.
- 12. There shall be no bents in the water. If the bridge design changes, this permit shall be modified.
- 13. No drill slurry or water that has been in contact with uncured concrete shall be allowed to enter surface waters. This water shall be captured, treated, and disposed of properly.
- 14. Riprap shall not be placed in the active thalweg channel or placed in the streambed in a manner that precludes aquatic life passage. Bioengineering boulders or structures should be properly designed, sized and installed.
- 15. The stream channel shall be excavated no deeper than the natural bed material of the stream, to the maximum extent practicable. Efforts must be made to minimize impacts to the stream banks, as well as to vegetation responsible for maintaining the stream bank stability. Any applicable riparian buffer impact for access to stream channel shall be temporary and be revegetated with native riparian species.
- 16. Unless otherwise approved in this certification, placement of culverts and other structures in open waters and streams shall be placed below the elevation of the streambed by one foot for all culverts with a diameter greater than 48 inches, and 20 percent of the culvert diameter for culverts having a diameter less than 48 inches, to allow low flow passage of water and aquatic life. Design and placement of culverts and other structures including temporary erosion control measures shall not be conducted in a manner that may result in dis-equilibrium of wetlands or streambeds or banks, adjacent to or upstream and down stream of the above structures. The applicant

is required to provide evidence that the equilibrium is being maintained if requested in writing by NCDWQ. If this condition is unable to be met due to bedrock or other limiting features encountered during construction, please contact NCDWQ for guidance on how to proceed and to determine whether or not a permit modification will be required.

- 17. During the construction of the project, no staging of equipment of any kind is permitted in waters of the U.S., or protected riparian buffers.
- 18. The dimension, pattern and profile of the stream above and below the crossing shall not be modified. Disturbed floodplains and streams shall be restored to natural geomorphic conditions.
- 19. The use of rip-rap above the Normal High Water Mark shall be minimized. Any rip-rap placed for stream stabilization shall be placed in stream channels in such a manner that it does not impede aquatic life passage.
- 20. The Permittee shall ensure that the final design drawings adhere to the permit and to the permit drawings submitted for approval.
- 21. All work in or adjacent to stream waters shall be conducted in a dry work area. Approved BMP measures from the most current version of NCDOT Construction and Maintenance Activities manual such as sandbags, rock berms, cofferdams and other diversion structures shall be used to prevent excavation in flowing water.
- 22. Heavy equipment shall be operated from the banks rather than in the stream channel in order to minimize sedimentation and reduce the introduction of other pollutants into the stream.
- 23. All mechanized equipment operated near surface waters must be regularly inspected and maintained to prevent contamination of stream waters from fuels, lubricants, hydraulic fluids, or other toxic materials.
- 24. No rock, sand or other materials shall be dredged from the stream channel except where authorized by this certification.
- 25. Discharging hydroseed mixtures and washing out hydroseeders and other equipment in or adjacent to surface waters is prohibited.
- 26. The permittee and its authorized agents shall conduct its activities in a manner consistent with State water quality standards (including any requirements resulting from compliance with §303(d) of the Clean Water Act) and any other appropriate requirements of State and Federal law. If NCDWQ determines that such standards or laws are not being met (including the failure to sustain a designated or achieved use) or that State or federal law is being violated, or that further conditions are necessary to assure compliance, NCDWQ may reevaluate and modify this certification.
- 27. All fill slopes located in jurisdictional wetlands shall be placed at slopes no flatter than 3:1, unless otherwise authorized by this certification.
- 28. A copy of this Water Quality Certification shall be maintained on the construction site at all times. In addition, the Water Quality Certification and all subsequent modifications, if any, shall be maintained with the Division Engineer and the on-site project manager.
- 29. The outside buffer, wetland or water boundary located within the construction corridor approved by this authorization shall be clearly marked by highly visible fencing prior to any land disturbing activities. Impacts to areas within the fencing are prohibited unless otherwise authorized by this certification.
- 30. The issuance of this certification does not exempt the Permittee from complying with any and all statutes, rules, regulations, or ordinances that may be imposed by other government agencies (i.e. local, state, and federal) having jurisdiction, including but not limited to applicable buffer rules, stormwater management rules, soil erosion and sedimentation control requirements, etc
- 31. The Permittee shall report any violations of this certification to the Division of Water Quality within 24 hours of discovery.
- 32. Upon completion of the project (including any impacts at associated borrow or waste sites), the NCDOT Division Engineer shall complete and return the enclosed "Certification of Completion Form" to notify NCDWQ when all work included in the 401 Certification has been completed.
- 33. Native riparian vegetation must be reestablished in the riparian areas within the construction limits of the project by the end of the growing season following completion of construction.
- 34. There shall be no excavation from, or waste disposal into, jurisdictional wetlands or waters associated with this permit without appropriate modification. Should waste or borrow sites, or access roads to waste or borrow sites, be located in wetlands or streams, compensatory mitigation will be required since that is a direct impact from road construction activities.
- 35. Erosion and sediment control practices must be in full compliance with all specifications governing the proper design, installation and operation and maintenance of such Best Management Practices in order to protect surface waters standards:
 - a. The erosion and sediment control measures for the project must be designed, installed, operated, and maintained in accordance with the most recent version of the *North Carolina Sediment and Erosion Control Planning and Design Manual*.

- b. The design, installation, operation, and maintenance of the sediment and erosion control measures must be such that they equal, or exceed, the requirements specified in the most recent version of the *North Carolina Sediment and Erosion Control Manual*. The devices shall be maintained on all construction sites, borrow sites, and waste pile (spoil) projects, including contractor-owned or leased borrow pits associated with the project.
- c. For borrow pit sites, the erosion and sediment control measures must be designed, installed, operated, and maintained in accordance with the most recent version of the *North Carolina Surface Mining Manual*.
- d. The reclamation measures and implementation must comply with the reclamation in accordance with the requirements of the Sedimentation Pollution Control Act.
- 36. Sediment and erosion control measures shall not be placed in wetlands or waters unless otherwise approved by this Certification.

Violations of any condition herein set forth may result in revocation of this Certification and may result in criminal and/or civil penalties. This Certification shall become null and void unless the above conditions are made conditions of the Federal 404 and/or Coastal Area Management Act Permit. This Certification shall expire upon the expiration of the 404 or CAMA permit.

If you wish to contest any statement in the attached Certification you must file a petition for an administrative hearing. You may obtain the petition form from the office of Administrative hearings. You must file the petition with the office of Administrative Hearings within sixty (60) days of receipt of this notice. A petition is considered filed when it is received in the office of Administrative Hearings during normal office hours. The Office of Administrative Hearings accepts filings Monday through Friday between the hours of 8:00am and 5:00pm, except for official state holidays. The original and one (1) copy of the petition must be filed with the Office of Administrative Hearings.

The petition may be faxed-provided the original and one copy of the document is received by the Office of Administrative Hearings within five (5) business days following the faxed transmission. The mailing address for the Office of Administrative Hearings is:

Office of Administrative Hearings 6714 Mail Service Center Raleigh, NC 27699-6714 Telephone: (919)-431-3000, Facsimile: (919)-431-3100

A copy of the petition must also be served on DENR as follows:

Mr. William Cary, General Counsel Department of Environment and Natural Resources 1601 Mail Service Center

This the 6th day of August 2012

DIVISION OF WATER QUALITY

Charles Wakild Director

WQC No. 003938

aves Perdue Charles Wakild, P.E. AUG & AUG &	North Carol	ina Department of Environment and Natural Resources
County: C	aves Perdue	Division of Water Quality Charles Wakild, P.E.
NCDWQ Project No.: County: Applicant:		
NCDWQ Project No:		DIVISION OF HIGHWAYS
Applicant:		PDEA-OFFICE OF NATURAL ENVIRU
Project Name:	NCDWQ Project No.:	County:
Project Name:	Applicant:	
Certificate of Completion Upon completion of all work approved within the 401 Water Quality Certification or applicable Buffer Rules, and any subsequent modifications, the applicant is required to return this certificate to the 401 Transportation Permitting Unit, North Carolina Division of Water Quality, 1650 Mail Service Center, Raleigh, NC, 27699-1650. This form may be returned to NCDWQ by the applicant, the applicant's authorized agent, or the project engineer. It is not necessary to send certificates from all of these. Applicant's Certification		
Upon completion of all work approved within the 401 Water Quality Certification or applicable Buffer Rules, and any subsequent modifications, the applicant is required to return this certificate to the 401 Transportation Permitting Unit, North Carolina Division of Water Quality, 1650 Mail Service Center, Raleigh, NC, 27699-1650. This form may be returned to NCDWQ by the applicant, the applicant's authorized agent, or the project engineer. It is not necessary to send certificates from all of these. Applicant's Certification I,, hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature: Date: Agent's Certification I,, hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature: Date: Engineer's Certification Material Material		
any subsequent modifications, the applicant is required to return this certificate to the 401 Transportation Permitting Unit, North Carolina Division of Water Quality, 1650 Mail Service Center, Raleigh, NC, 27699-1650. This form may be returned to NCDWQ by the applicant, the applicant's authorized agent, or the project engineer. It is not necessary to send certificates from all of these. Applicant's Certification I,	Certificate of Completion	
Unit, North Carolina Division of Water Quality, 1650 Mail Service Center, Raleigh, NC, 27699-1650. This form may be returned to NCDWQ by the applicant, the applicant's authorized agent, or the project engineer. It is not necessary to send certificates from all of these. Applicant's Certification I,, hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature: Date: Date:		
may be returned to NCDWQ by the applicant, the applicant's authorized agent, or the project engineer. It is not necessary to send certificates from all of these. Applicant's Certification I,		
necessary to send certificates from all of these. Applicant's Certification I,		
I,	may be retained to med to g by the	
I,	necessary to send certificates from	
was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature:	•	
compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature:	Applicant's Certification	all of these.
specifications, and other supporting materials. Signature: Date: Agent's Certification I,, hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature: Date: Engineer's Certification I,, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification	all of these.
Agent's Certification I,	Applicant's Certification I, was used in the observation of the c	all of these. , hereby state that, to the best of my abilities, due care and diligence construction such that the construction was observed to be built within substantial
I,, hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature: Date: Date: Engineer's Certification Partial Final I,, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I, was used in the observation of the c compliance and intent of the 401 W	, hereby state that, to the best of my abilities, due care and diligence construction such that the construction was observed to be built within substantial fater Quality Certification and Buffer Rules, the approved plans and
I,, hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature: Date: Date: Engineer's Certification Partial Final I,, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I,	, hereby state that, to the best of my abilities, due care and diligence construction such that the construction was observed to be built within substantial fater Quality Certification and Buffer Rules, the approved plans and materials.
was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials. Signature: Date: Date: Engineer's Certification Final, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I,	, hereby state that, to the best of my abilities, due care and diligence construction such that the construction was observed to be built within substantial fater Quality Certification and Buffer Rules, the approved plans and materials.
specifications, and other supporting materials. Signature: Date: Date: Engineer's Certification Partial Final I,, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I,	all of these. , hereby state that, to the best of my abilities, due care and diligence construction such that the construction was observed to be built within substantial fater Quality Certification and Buffer Rules, the approved plans and materials. Date:
Signature:	Applicant's Certification I,	
Engineer's Certification Partial Final I,, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I,	all of these, hereby state that, to the best of my abilities, due care and diligence onstruction such that the construction was observed to be built within substantial 'ater Quality Certification and Buffer Rules, the approved plans and materials
Partial Final, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I,	all of these, hereby state that, to the best of my abilities, due care and diligence onstruction such that the construction was observed to be built within substantial 'ater Quality Certification and Buffer Rules, the approved plans and materials
Partial Final, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I,	
I,, as a duly registered Professional Engineer in the State of North Carolina, having been authorized to observe (periodically, weekly, full time) the construction of the project, for the Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I, was used in the observation of the compliance and intent of the 401 W specifications, and other supporting Signature: Agent's Certification I, was used in the observation of the compliance and intent of the 401 W specification Signature: Signature: Signature: Signature: Signature: Signature:	
Permittee hereby state that, to the best of my abilities, due care and diligence was used in the observation of the construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I,	All of these.
construction such that the construction was observed to be built within substantial compliance and intent of the 401 Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I, was used in the observation of the c compliance and intent of the 401 W specifications, and other supporting Signature: Agent's Certification I, was used in the observation of the c compliance and intent of the 401 W specifications, and other supporting Signature:	all of these.
Water Quality Certification and Buffer Rules, the approved plans and specifications, and other supporting materials.	Applicant's Certification I,	all of these.
	Applicant's Certification I,	all of these.
Signature Registration No.	Applicant's Certification I,	all of these.
	Applicant's Certification I,	all of these.

An Equal Opportunity Affirmative Action Employer

-

Site No. Station (From/To) Structure Size / Type Permanent Fill in vestands Temp. in vestands Excavation in vestands Hand in model (ac) 1 -140+80 48° (ac) Size / Type Vestands (ac) in vestands					WET	LAND IMPA(WETLAND PEKMIT IMPACT SUMMARY WETLAND IMPACTS		SUMMARY		SURFACE WATER IMPACTS	PACTS	
Station Structure Fill Find Size / Type Vetta -L- 40+80 48" -(at -L- 75+98 to 90+31 Roadway Fill (at -L- 75+98 to 84.02 Rt Roadway Fill 0.7 -L- 90+85 Rt Bank Stabilization 0.7								Hand			Existing	Existing	
(From/To) Size / Type Wett -L- 40+80 48" -L -L- 73+09 to 90+31 Roadway Fill 0.1 -L- 90+85 Rt Bank Stabilization 0.1 -L 100 Rt 0.1 <td< td=""><td>lite</td><td>Station</td><td>Structure</td><td>Permanent Fill In</td><td>Temp. Fill In</td><td>Excavation in</td><td>Excavation Mechanized in Clearing</td><td>Clearing in</td><td>Permanent SW</td><td>Temp. SW</td><td>Channel Impacts</td><td>Channel Impacts</td><td>Natural Stream</td></td<>	lite	Station	Structure	Permanent Fill In	Temp. Fill In	Excavation in	Excavation Mechanized in Clearing	Clearing in	Permanent SW	Temp. SW	Channel Impacts	Channel Impacts	Natural Stream
-L- 40+80 48" -L- 68+50 48" -L- 73+09 to 90+31 Roadway Fill -L- 73+09 to 84.02 Rt Roadway Fill -L- 75+98 to 84.02 Rt Roadway Fill -L- 90+85 Rt 1@96" CAAP -L- 90+85 Rt Bank Stabilization -L- 90+85 Rt -100 -L- 90+85 Rt -100 -L -100 -L -100 -L -100 -L -100 -L -100 <td< td=""><td>0</td><td>(From/To)</td><td>Size / Type</td><td>Wetlands (ac)</td><td>Wetlands (ac)</td><td>Wetlands (ac)</td><td>in Wetlands (ac)</td><td>Wetlands (ac)</td><td>impacts (ac)</td><td>impacts (ac)</td><td>Permanent (ft)</td><td>Temp. (ft)</td><td>Design (ft)</td></td<>	0	(From/To)	Size / Type	Wetlands (ac)	Wetlands (ac)	Wetlands (ac)	in Wetlands (ac)	Wetlands (ac)	impacts (ac)	impacts (ac)	Permanent (ft)	Temp. (ft)	Design (ft)
-L-68+50 48" -L-73+09 to 90+31 Roadway Fill -L-73+09 to 90+31 Roadway Fill -L-75+98 to 80.02 Rt Roadway Fill -L-89.00 Lt 1@96" CAAP -L-90+85 Rt Bank Stabilization -1-90+85 Rt -10.1	-	-L- 40+80	48"				0.03	·					
-L-73+09 to 90+31 Roadway Fill -L-75+98 to 84.02 Rt Roadway Fill -L-75+98 to 84.02 Rt Roadway Fill -L-90+85 Rt Bank Stabilization -L-90+85 Rt Bank Stabilization	2	-L- 68+50	48"						<0.01		61		
-L. 75+98 to 84.02 Rt Roadway Fill 0.1 -L- 90+85 Rt Bank Stabilization 9.1 -L- 90-85 Rt Bank Stabilization 9.1 -L- 90-85 Rt Bank Stabilization 9.1 -L- 90-85 Rt 9.1 9.1		-L- 73+09 to 90+31	Roadway Fill						0.10		831		1876.5
-L- 90+85 Rt Bank Stabilization -L- 90		L- 75+98 to 84.02 Rt	Roadway Fill	0.78									
-L- 90+85 Rt Bank Stabilization	5*	-L- 89.00 Lt	1@96" CAAP										
posed 96" CAAP is considered an enhancement due tion impacts will be calculated here.	9	-L- 90+85 Rt	Bank Stabilization						<0.01		11		
posed 96" CAAP is considered an enhancement due function of the function of th													
posed 96" CAAP is considered an enhancement due function of the function of th													
posed 96" CAAP is considered an enhancement due function of the function of th													
posed 96" CAAP is considered an enhancement due function of the function of th													
posed 96" CAAP is considered an enhancement due function of the calculated here.													
posed 96" CAAP is considered an enhancement due function of the calculated here.													
posed 96" CAAP is considered an enhancement due function of the calculated here.													
posed 96" CAAP is considered an enhancement due function of the calculated here.													
posed 96" CAAP is considered an enhancement due to impacts will be calculated here.													
posed 96" CAAP is considered an enhancement due fine in impacts will be calculated here.	_												
posed 96" CAAP is considered an enhancement due fine in impacts will be calculated here.													
posed 96" CAAP is considered an enhancement due function of the calculated here.													
posed 96" CAAP is considered an enhancement due to impacts will be calculated here.	_												
posed 96" CAAP is considered an enhancement due fino impacts will be calculated here.													
posed 96" CAAP is considered an enhancement due to impacts will be calculated here.													
posed 96" CAAP is considered an enhancement due find impacts will be calculated here.	TALS:			0 78			0.03		0 10		903		1876.5
enhancement due	JIALS.			0.10			60.0		2		60e		
	The propo prefore no	sed 96" CAAP is consic o impacts will be calcula	dered an enhanceme ited here.	nt due to the	reconnection	n of the fish p	assage and h	ydrology,		NCD	NC DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS	artment of transpor division of highways	ETATION 3
											FORSYTH C WBS - 34845.1.1	FORSYTH COUNTY - 34845.1.1 (U-2707)	(20
	20110E									SHEET 15 of 15	らい		11/20/01

PROPERTY OWNERS

REFERENCE NO.	NAMES	ADDRESSES
20-A	LENTZ PROPERTY MANAGEMENT, LLC	PO BOX 989 Clemmons, NC 27012
22	EDNA BINGHAM	PO BOX 5 Clemmons, NC 27012
13	NORFOLK SOUTHERN RR	THREE COMMERCIAL PLACE NORFOLK, VA 23510
26	JOSEPH C.GOODMAN MARY ANN HARRIS GOODMAN	3049 S.STRATFORD ROAD WINSTON SALEM, NC 27103

NCDOT

DIVISION OF HIGHWAYS FORSYTH COUNTY PROJECT: U-2707

SR 3000 (IDOLS ROAD), FROM SR 2999 (HAMPTON ROAD) TO US 158 (CLEMMONS ROAD)

sheet (4 of (5

12 / 02 / 11
	Natural	Stream Design	(II)			1876.5												1876.5			IATION	Ā	11/20/61
ACTS	Existing	Impacts Temp.	(¥)																		AKTMENT OF TRANSPOR DIVISION OF HIGHWAYS	FORSYTH COUNTY	
SURFACE WATER IMPACTS	Existing	Impacts Permanent	(f t)		61	831			11		- - - - - - - - - - - - - - - - - - -							903			NC DEPARIMENT OF TRANSPORTATION DIVISION OF HIGHWAYS	FORSYTH C WRS - 34845 1 1	ب ب ب
	1	SW SW impacts	(ac)													,					NCDE		
SUMMARY	Dormanont	SW impacts	(ac)		<0.01	0.10			<0.01									0.10					
T IMPACT	Hand	Vetlands	(ac)																	drology,			
WETLAND PERMIT IMPACT SUMMARY WETLAND IMPACTS	Mochanizad	Clearing in Wetlands	(ac)	0.03														0.03		ssage and hy			
WETL/	Evention Monhonizod	Wetlands	(ac)																-	of the fish pa			
WETI	1 2 2	Fill In Wetlands	(ac)				<i>a</i>													econnection			
	+	Fermanen Fill In Wetlands	(ac)				0.78											0.78		t due to the r			
L		Structure Size / Type		48"	48"	Roadway Fill	Roadway Fill	1@96" CAAP	Bank Stabilization											ered an enhancemen	ted here.		
×		Station (From/To)		-L- 40+80	-L- 68+50	-L- 73+09 to 90+31	-L- 75+98 to 84.02 Rt	-L- 89.00 Lt	-L- 90+85 Rt											* The proposed 96" CAAP is considered an enhancement due to the reconnection of the fish passage and hydrology,	therefore no impacts will be calculated here.		
		Site No.		~	7	ო	4	5*	9									 TOTALS:		* The prot	therefore		

EXHIBIT C

U-2707 STREAM MITIGATION PLAN FORSYTH COUNTY, NORTH CAROLINA

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

٦

DECEMBER 22, 2011

U-2707 Stream Mitigation Plan

Forsyth County, North Carolina

December 5, 2011

Prepared For: North Carolina Department of Transportation

Report Prepared by Mulkey, Inc.:

Emmett Perdue, P.E. Design Engineer – Natural Resources

Wendee Smith Project Manager – Natural Resources Group Manager

Page 2 of 81

Table of Contents

A A TH A CHICH THESE ANTRACESERS AS ITTACES.	
1.0 BASELINE INFORMAITON	
*	
1.3 Project Site Description	
1.3.1 Topography. Physiographic Providence, and Soils	,
1.3.2 Jurisdictional Wetlands	
1.3.3 Existing Plant Communities	
1.3.4 Threatened and Endangered Species	•
2.0 SITE SELECTION AND AND AND AND AND AND AND AND AND AN	
2.1 Reach 1 (R1) Existing Conditions	,
2.2 Reach 2 (R2) Existing Conditions	
3.0 SITE PROTECTION INSTRUMENT	
4.0 OBJECTIVES	ŧ
5.0 MITIGATION WORK PLAN	ł •
5.1 Natural Channel Design	1
5.1.1 Introduction	ł
5.1.2 Reference Reach Analyses	ł
5.1.3 Sediment Transport Analysis	ł
5.1.4 Flood Analysis	į
5.1.5 Proposed Design Reach 1 (R1)	j.
5.1.6 Proposed Design Reach 2 (R2)	
5.1.7 Stream Riparian Planting Plan	0
5.2 Construction Implementation	1
	-
6.0 PERFORMANCE STANDARDS	.1
7.0 MONITORING REQUIREMENTS1	1
1.0 MOUNTORING REQUIRENTENT Samesanansenansenansenansenansenansenanse	-
8.0 OTHER INFORMATION	2
9.0 DETERMINATION OF CREDITS 1 9.1 Credit Release Schedule 1	2
01 Credit Release Schedule	2
10.0 GEOGRAPHIC SERVICE AREA	2
11.0 MAINTENANCE PLAN	3
12.0 LONG TERM MANAGEMENT PLAN	3
13.0 FINANCIAL ASSURANCES	3

List of Figures

Figure 1. Vicinity Map

Figure 2. Drainage Area Map

Figure 3. Reference Reach Vicinity Map - Spencer Creek

Figure 4. FEMA Flood Map

Appendices

Appendix A Profiles & Cross Sections Appendix B Particle Size Distribution Appendix C Entrainment Calculations Appendix D Velocity Calculations Appendix E Design Cross Sections Appendix F Morphological Tables Appendix G Pipe Calculations Appendix H Typicals & Details Appendix I Plan & Profile

U-2707 STREAM MITIGATION PLAN FORSYTH COUNTY WBS NO.: 34845.1.1 DECEMBER 22, 2011

1.0 BASELINE INFORMATION

1.1 Introduction

This U-2707 stream mitigation plan proposes improvements to be implemented by the North Carolina Department of Transportation (NCDOT) along two unnamed tributaries (UT's) to Muddy Creek. The plan is being completed to provide on-site mitigation for unavoidable stream impacts associated with the construction of Transportation Improvement Project (TIP) number U-2707, or the Idols Road Extension (SR 3000) in Forsyth County, North Carolina near the town of Clemmons. The project location is within the floodplain of Muddy Creek and consists of approximately 1,800 linear feet of restoration along Reach 1 (R1) coupled with the enhancement of bank conditions and reconnection of hydrology associated with the replacement of a culvert along Reach 2 (R2) (Figure 1).

1.2 General Watershed Information

The two unnamed tributaries are situated within the Yadkin-Pee Dee River Basin within the US Geological Survey (USGS) hydrological unit code (HUC) 03040101 and the NC Division of Water Quality (NCDWQ) sub-basin 03-07-04. R1 has an existing drainage area of 0.42 square miles (271 acres) at the culvert under Clouds Harbor Trail, the upstream limit of the project, increasing to 0.49 square miles (316 acres) at the point where the road alignment will fill the stream. R2 has an existing drainage area of 0.62 square miles (410 acres) at the culvert inlet. Both of these drainage areas are predominantly woodland/pasture areas with residential and commercial intermixed.

1.3 Project Site Description

1.3.1 Topography, Physiographic Providence, and Soils

The project site is situated entirely within the southwest portion of the Muddy Creek floodplain. A railway embankment and the future SR 3000 (Idols Road) form the southeastern boundary of the project site. The floodplain of Muddy Creek is relatively flat with minimal elevation change. There is a large levee on the western bank of Muddy Creek that separates it from R2. Elevation ranges on the project site from 700 feet above mean sea level (msl) along Clouds Harbor Trail to 679 feet msl at the confluence with Muddy Creek. The U-2707 mitigation site is within the Piedmont physiographic province: specifically, the Southern Outer Piedmont Ecoregion (Griffith et al., 2002). According to the Forsyth County Soil Survey. Chewacla soils dominate the project area.

1.3.2 Jurisdictional Wetlands

Jurisdictional wetland determinations were performed using the three-parameter approach as prescribed in the 1987 *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory, 1987). NCDOT personnel performed wetland delineations between December 1998 and November 2001 and reconfirmed any changes in June 2011. Four small wetlands occur within the entire U-2707 project area. Three of these areas were found to be non-jurisdictional due to a lack of hydric soils and are not within the work limits of the mitigation site. The fourth is contained within the stream banks of R1 approximately 165 feet downstream of Clouds Harbor Trail. This fourth wetland was deemed to be unimportant and non-mitigable because it was created by horses accessing the stream. The banks in this location are severely degraded and almost nonexistent therefore creating an inline channel pool/wetland area (NCDOT, 2002).

1.3.3 Existing Plant Communities

The vegetative communities found within the project area can be characterized by two major groupings. These groupings include pastureland (predominantly fescue) and the riparian fringe. The riparian fringe is a narrow band of vegetation found along each unnamed tributary. Common herbaceous species found include poison ivy (*Toxicondendron radicans*), jewelweed (*Impatiens capensis*), common violet (*Viola sp.*), common greenbrier (*Smilax roundifolia*), Japanese honeysuckle (*Lonicera japonica*), multiflora rose (*Rosa multiflora*), and giant cane (*Arundinaria gigantea*). Woody species located in the subcanopy primarily consist of silky dogwood (*Cornus amomum*), Chinese privet (*Ligustrum sinense*), river birch (*Betula nigra*), black willow (*Salix nigra*), and black cherry (*Prunus serotina*). Common tree species occupying the canopy of the riparian fringe include boxelder (*Acer negundo*), green ash (Fraxinus pennsylvanica), and tulip poplar (*Liriodendron tulipifera*).

1.3.4 Threatened and Endangered Species

According to the US Fish and Wildlife Service (USFWS), two endangered and one threatened species are known to occur in Forsyth County. The threatened species (bog turtle) is listed by similarity of appearance (S/A), but is neither biologically threatened nor endangered. Therefore, the bog turtle is not subject to Section 7 consultation (Endangered Species Act). Information regarding these federally listed species can be found in Table 1.

Common Name	Scientific Name	Federal Status	Preferred Habitat	Habitat Availability	Biological Conclusion
Red-cockaded woodpecker	Picoides borealis	Endangered	Open park-like pine stands (live) w little undergrowth	No	No Effect
Small-anthered bîttercress	Cardamine microanthera	Endangered ^A	Near seeps and wet rock crevices, moist woods near small streams, full to partial sun	No	No Effect
Bog Turtle	Clemmys muhlenbergii	Threatened (S/A) ^B	Shallow spring-fed fens, open and sunny muddy-bottomed streams	No	Not Applicable

Table 1.	Federally	Listed S	pecies for	Forsyth	1 County

^A Denotes no specimen from Forsyth County found in the past twenty years.

^B Threatened due to similarity of appearance (S:A) denotes a species that is threatened due to similarity of appearance with other rare species and is listed for its protection. These species are not biologically endangered or threatened and are not subject to Section " consultation.

2.0 SITE SELECTION

Both R1 and R2 were selected because of their proximity to the impact that they will offset and due to their degraded condition. As a part of the U-2707 right-of-way, these unnamed tributaries are part of the system being impacted by the construction of the Idols Road Extension. After analyzing all the impacted systems affected by the U-2707 project. R1 and R2 were identified as highly degraded systems offering the most potential ecological uplift. Therefore, the proximity to the impact being offset and the degraded nature of the streams offer an exemplary mitigation site,

2.1 Reach 1 (R1) Existing Conditions

The headwaters of R1 originate in a residential neighborhood approximately 0.3 miles south of the intersection of existing SR 3000 (Hampton Road) and US 158. The tributary flows in a southerly direction for approximately 0.3 miles before turning to the east/northeast and eventually connecting with R2 just upstream of Muddy Creek. The drainage area associated with R1 is 316 acres (0.49 mi²) and is predominantly woodland/pasture with residential intermixed (Figure 2). The current location of the R1 stream channel (along the northeast toe of the Norfolk Southern railroad embankment) is a product of agricultural operations and railroad construction. Agriculture practices over the last century have played a major role in the destabilization of R1 by relocating, straightening, and channelizing the stream to provide for more active and accessible pastureland. In addition, vegetation removal throughout what should be the riparian buffer coupled with livestock access to the stream for watering purposes have created unstable banks contributing more sediment to the system. In addition to bank instability, Muddy Creek being actively dredged has increased the rate at which lower sections of R1 have become incised and entrenched. To combat this incision and the instability along the railroad, large boulders and concrete have been placed throughout the downstream section effectively removing any aquatic passage or hydrologic connection to Muddy Creek.

The vertical longitudinal profile of R1 indicates an altered system with fluctuating boundary conditions that is on the border of instability. Currently, the existing R1 channel flows approximately 2,000 linear feet within the limits of the U-2707 project area. The existing channel slope averages 0.00632 ft/ft over a representative 1100 feet of channel which is characteristic of E and C channels typical for this valley type. However, the upper 300 feet of the reach is characterized by a flat bed slope while the banks and bankfull channel are holding the average bankfull slope. This section of channel is actively being accessed by livestock and therefore the bed is being compressed into a uniform condition. The channel has also been straightened and channelized which is visible in the plan view of the channel and through the levees on both sides of the channel in cross sections 1 and 2. From station 300 to 600, the channel is not actively being accessed by livestock and maintains the best riparian buffer. This section of channel is the most stable with minimal incision occurring and consistent slope features across the banks, bankfull, water surface and bed. The lower 500 feet (station 600 to 1100), however, show the beginnings of incision as the channel bed deepens relative to the banks. This can be attributed to a downstream head cut moving through the channel as a result of the active dredging occurring in Muddy Creek. This corresponds to cross section 5 having a deep, narrow channel bottom as is the case with C streams moving towards G streams. These three scenarios depict a stream with instability on the upper and lower ends and altering

boundary conditions throughout. The tendency for streams in this situation is for the upper and lower conditions to migrate through the center and alter the channel conditions until equilibrium is reached. The complete data set for the existing profile information for R1 is presented in Appendix A.

Cross	Station	Morph.	BKF	BKF	BKF Max	W/D	Ent.	LBH	Stream
Section	No.	Feature	Area (ft ²)	Width (ft)	Depth (ft)	Ratio*	Ratio*	Ratio*	Class.*
1	88.5	Riffle	9.86	11.58	1.63	13.62	10.05	1.54	C5
2	136.5	Pool	18.73	14.22	2.4?	10.77	9.46		
3	465.5	Riffle	8.93	13.66	1.68	21.02	13.18	1.31	C5
4	538	Pool	16.55	17.87	2.08	19.22	8.95		[•••
5	1115	Riffle	14.00	8.86	2.37	5.61	14.66	1.33	E5
6	N/A	Riffle	13.35	14.82	1.41	16.47	3.29	1.73	C5

Table 2. Summary of Existing Cross Sections – Reach 1 (R1)

"Notes: Ent. Ratio 15 "Entrenchment Ratio"

W/D Ratio is "Width/Depth Rauo"

LB Ratio is "Low Bank Height Ratio"

Stream classification is only viable along riffle sections.

The cross section data is summarized in Table 2 above but graphs and the associated data can also be found in Appendix A. The cross section data suggests RI is a stable C5 channel based on the Rosgen stream classification system (Rosgen, 1994). However, upon closer inspection of the riffle cross section graphs (pool cross sections are not used for evaluation), three trends toward instability can be spotted. The first, typical of most stream channels and not an indication of instability alone, is the bankfull area and width are both generally increasing as the riffle cross sections move downstream. The second is the degree of incision (Low Bank Height Ratio) remains consistent until cross section 6, where it increases slightly. And the third is the entrenchment ratio remains above 10 until the last cross section where it drops significantly to 3.29. These trends together indicate channel conditions that result in the floodplain being removed from the bankfull elevation as the bankfull elevation sinks lower into the stream channel on the downstream end. This situation is indicative of altered boundary conditions creating head cuts which travel upstream creating instability by producing steep, denuded, undercut banks; excessive in channel velocities; and overly widened channels.

A reach-wide modified Wolman Pebble Count was conducted to determine the average d_{50} (50% of the sampled population is equal to or finer than the representative particle diameter) to be approximately 0.13 mm for R1, which falls into the very fine sand size category. The wetted perimeter d_{50} was approximately 2.5mm. The bar sample was predominantly sand and therefore the d_{50} could not be determined. The particle size distribution data is presented in Appendix B. The results of the data suggest R1 is a sand dominated system with little grade control evidenced by the absence of a true pavement/subpavement stratum. These types of systems have a sensitive response to the alteration of boundary conditions since the channel is not well armored. Therefore these systems depend highly on bank vegetation and channel dimension, pattern and profile to maintain equilibrium.

The vertical longitudinal profile, corresponding cross sections, and material substrate of R1 exhibit conditions in which the channel is on the beginning path of instability. Taking into

account the typical stream types for this valley and the existing condition data, R1 is moving from a C to a Gc on a stream successional path of $E \rightarrow C \rightarrow Gc \rightarrow F \rightarrow C \rightarrow E$ (See Diagram 1 below). If allowed to fully develop, the channel's instability will lead to increased sediment supply through the mass wasting of banks, vertical instability, and channel widening.

Diagram 1. Stream Channel Succession

2.2 Reach 2 (R2) Existing Conditions

The R2 stream channel originates just north of the intersection of SR 3000 and US 158 and flows in an easterly direction for approximately 1.0 mile before turning south. R2 then flows south across the Muddy Creek floodplain for approximately 0.5 mile and eventually confluences with R1 just upstream of Muddy Creek. The existing drainage area associated with R2 is 0.64 square mile (410 acres.). R2 contains approximately 400 linear feet of existing channel within the project area and classifies as a G5 stream type. The average slope of this channel is 0.0023 ft/ft which is typical for streams in this valley type. The stream channel and banks associated with this tributary have been principally altered through channelization evidenced by the linear characteristics in the plan view (Figure 1 and 2). The stream section below the culvert has also seen increased entrenchment due to the dredging of Muddy Creek.

Agricultural access through the installation of a farm path and the associated stream crossing has exacerbated the degradation in R2. A high level analysis of R2 was not conducted because the farm path culvert was identified as the major obstacle inhibiting aquatic passage. R2 displays signs of stability upstream of the farm path culvert; however immediately downstream of the culvert the stream is severely entrenched and incised. Erosion around the culvert is causing the path to collapse into the stream channel. The severity in elevation drop from the inlet to the outlet of the culvert does not allow fish passage and minimizes any hydrologic connection of the upper part of R2 to Muddy Creek.

3.0 SITE PROTECTION INSTRUMENT

The Site will be located within the NCDOT right-of-way for the project and designated on the plan sheets as a mitigation area. The Site will be managed to prohibit all use inconsistent with its use as mitigation, including any activity that would materially alter the biological integrity or functional and educational value of the site, consistent with the mitigation plan. The Site will be recorded on the NEU mitigation geo-database (MGD). The MGD is distributed to the Divisions to designate the location and protected status of all onsite mitigation. After closeout, the Site will be placed in the NCDOT Stewardship Program for long term management and protection.

The Site will be managed according to the terms of this mitigation plan and the NCDOT Stewardship Process.

4.0 OBJECTIVES

The goal of the project is to improve water quality, to reduce bank erosion, to reestablish a floodplain along R1, and to improve the aquatic and terrestrial wildlife habitat. The functional restoration of the site will occur through a mixture of various treatments consistent with natural channel design techniques for 1800 linear feet of R1 and 153 linear feet of R2. Along R1, these techniques will include removing livestock from the stream through the implementation of a conservation easement; establishing a floodplain or reconnecting the stream back to its historic floodplain; increasing the amount of aquatic habitat through the addition of rock and wood structures; and reestablishing native plant communities throughout the conservation easement, whereby reintroducing shading, cover areas, and travel corridors. The restoration of R2 will be limited to the replacement of the existing culvert with a new arched pipe with baffles to allow functional fish passage, establish grade control, and minimize velocities therefore providing a more stable stream system.

5.0 MITIGATION WORK PLAN

The mitigation work plan will consist of construction activities associated with the implementation of the natural channel design set forth below.

5.1 Natural Channel Design

Natural channel design is the principle developed by Dave Rosgen of using stable reference reach streams to develop and project dimensionless variables onto unstable reaches with similar boundary conditions in order to superimpose a new stable system in low quality environments. The following section outlines the parameters necessary to undertake natural channel design and describes the fully developed mitigation plan.

5.1.1 Introduction

Based on existing condition data, the restoration of the U-2707 project was broken into two reaches, Reach 1 (R1) and Reach 2 (R2). R1 will undergo the most extensive restoration via priority I and II restoration techniques. Due to the nature of the valley and changing channel characteristics, explained further below, R1 was further divided into R1a (upstream 920ft) and R1b (downstream 880ft). R2 restoration is comprised of the removal and replacement of a nonfunctioning culvert and therefore some of the following analysis does not apply.

5.1.2 Reference Reach Analyses

One reference reach has been identified for use on the U-2707 stream restoration site. Spencer Creek was chosen as it represents a stable, rural, piedmont stream type and shares the same watershed size and characteristics as the project stream.

Spencer Creek is situated in Montgomery County, approximately 8.0 miles from Troy along the west side of SR 1134 (Figure 3). Spencer Creek is characterized as a second order stream and classifies as a rural E4/C4 stream type. Specific morphological data for this reference reach are given within the morphological table found in Appendix B. Its watershed is approximately 0.55 square mile (355 acres) and encompasses large tracts of undeveloped woodland within the Uwharrie National Forest. Common riparian species found along this stream corridor include

American holly (*Ilex opaca*). red maple (*Acer rubrum*), sweet gum (*Liqiudambar styraciflua*), mountain laurel (*Kalmia latifolia*). flowering dogwood (*Cornus florida*), water oak (*Quercus nigra*), willow oak (*Quercus phellos*). sourwood (*Oxydendrum arboreum*), and giant cane.

5.1.3 Sediment Transport Analysis

Sediment plays a major role in the influence of channel stability and morphology (Rosgen, 1996). A stable stream has the capacity to move its sediment load without aggrading or degrading.

The critical dimensionless shear stress (τ^*_{ci}) is the measure of force required to initiate general movement of particles in a bed of a given composition. Based on the d_i of 2.7 mm obtained from the active riffle sampling at cross section 3 and using a value of 0.1 mm for the bar sample d_{50} due to the composition of sand for R1, the critical dimensionless shear stress was calculated to be approximately 0.019 lbs/ft². Evaluating R1a and R1b with a consistent bankfull slopes, the differing channel geometries provide different bankfull shear stresses. R1a being classified a C5 channel has a smaller bankfull cross sectional area, but the geometry has a wider bankfull width and shallower depth resulting in a bankfull shear stress of 0.225 lbs/ft². R1b being classified an E5 channel has a larger bankfull area, but the smaller width and greater depth creates an environment where velocities are extremely high resulting in higher bankfull shear stress of 0.496 lbs/ft². These shear stresses result in the entrainment of particles a minimum of 16 mm in R1a and 38 mm in R1b. Entrainment and velocity calculation sheets used for this analysis are presented in Appendices C and D, respectively.

The bankfull shear stress for the proposed channel has to be sufficient to move the D_{84} of the bed material. The largest D_{84} particle determined within active riffles across the site was 4.87mm. Based on the entrainment calculations for the proposed R1a and R1b, the calculated bankfull shear stresses of 0.403 lbs/ft² and 0.284 lbs/ft² would move particles of 30 mm and 21 mm respectively. The proposed design provides the correct C5 channel geometry for both R1a and R1b, as seen in the design cross section overlays in Appendix E. However, due to valley conditions. R1a has an increased slope of 0.0080 ft/ft. This increase in slope increases velocities through the system with the same relative bankfull area and geometry which in turn creates a higher shear stress. Being further downstream and to match the existing conditions, R1b has a slightly larger bankfull cross sectional area than R1a but still retains the C5 channel geometry. This change in geometry coupled with the flattening of the slope through this section due to valley conditions allows the velocities and bankfull shear stress to be greatly reduced when compared to the existing conditions.

This analysis proves the system contains more than adequate bankfull shear stress to move the sediment through the system and raises concerns about degradation. The expected bankfull shear stress would move particles ranging from 21 mm to 30 mm. The largest particle found on depositional bars was 6 mm, while the D_{84} and D_{100} of the reach wide sampling of R1 was determined to be 8 mm and 32 mm, respectively. Therefore, the proposed design has sufficient shear stress to move the bedload associated with the project reach. However it will be extremely important that vegetation, grade control structures, and design plan form tolerances are strictly adhered to in construction as these will assist in maintaining the long term stability of the proposed channel, in particular in R1a.

5.1.4 Flood Analyses

The entire U-2707 mitigation site, including the channel of Muddy Creek and its immediate floodplain are located within the Federal Emergency Management Association's (FEMA) 100-year flood boundary, as depicted on Figure 4 (FEMA, 1991). These areas are inundated by the 100-year flood of Muddy Creek, where Base Flood Elevations (BFE) have been determined and a floodway established. However, the flood mapping only pertains to Muddy Creek proper. The unnamed tributaries are not a part of the flood study and are inundated by the floodwaters of Muddy Creek.

5.1.5 Proposed Design Reach 1 (R1)

The restoration of R1 has been divided into two sections. R1a and R1b, for design purposes. R1a, the upstream portion of R1 from Station 0-00 to 9+20, is characterized by a steeper valley slope and smaller bankfull channel. This area has been severely impacted by the agricultural practices of channelization and through livestock access. The stream channel has been straightened and deepened in locations while the banks have consistent levees on both sides of the channel except for where livestock is actively accessing the stream as a water supply. In the current condition, the channel classifies as a C5 stream, however as mentioned in Section 2 above, the system appears to be trending through the $E \rightarrow C \rightarrow Gc \rightarrow F \rightarrow C \rightarrow E$ stream succession. Therefore the design approach for R1a is to halt the succession at the first stage. $E \rightarrow C$, through the design of a stable C channel; then reverse the trend, effectively jumping to the C $\rightarrow E$ stage, through the implementation of a vigorous vegetation plan.

R1a, being in the upstream steep valley scenario. will undergo Priority I restoration. This consists of raising the bed elevation such that the corresponding bankfull elevation matches the natural ground of the historic floodplain. In the case of R1a, performing this while keeping within the design ranges of the horizontal plan form variables of sinuosity, meander length, belt width, pool to pool spacing, and radius of curvature, the resulting bankfull slope was 0.0080 ft/ft (See Appendix F). The bankfull cross section was designed based on a cross sectional area of 10.0 ft² which matches the existing conditions and the NC Piedmont Regional Curve Data for a drainage area of 0.46 mi². The channel was then shaped based on a stable C5 dimension with a width to depth ratio of 14.4. This results in a bankfull width of 12.0 feet and a maximum bankfull depth of 1.37 feet. As depicted in the design overlays of cross section 1 and 3 in Appendix E, this geometry closely matches the existing conditions geometry at the bankfull stage therefore indicating a correct sizing. With the design of a stable C5 channel, the implementation of structures will provide vertical stability. Then a vigorous planting of the stream banks will facilitate bank stabilization and encourage a tightening of the bankfull width through sedimentation to form a stable E channel. This process will stabilize the system without moving through the complete $E \rightarrow C \rightarrow Gc \rightarrow F \rightarrow C \rightarrow E$ stream succession minimizing mass wasting of banks and down cutting of the channel.

R1b. the downstream section of R1, is characterized by a flatter valley slope, larger bankfull area and has the downstream elevation boundary condition at the confluence with R2. This channel encompasses the 863 feet of R1 being relocated due to the construction of SR3000. The current channel condition has been impacted by channelization and the creation of levees, but has also experienced inappropriate stabilization techniques along the section that abuts the railroad

alignment. In this area, concrete and large boulders have been introduced to the stream channel as vertical grade control. However, this technique has removed any hydrologic or aquatic connection to Muddy Creek by hardening large drops throughout the lower 300 feet. The disconnection to Muddy Creek coupled with the constraints imposed by the construction of SR3000 required R1b to be diverted to connect with R2 prior to connecting with Muddy Creek. This diversion resulted in a net loss of 185 linear feet of channel along R1 as R2 now makes the 185 foot connection to Muddy Creek.

Given the downstream elevation constraint imposed by the confluence with R2, R1b will undergo Priority II restoration. This type of restoration involves allowing the channel to drop through the natural valley ground level in an effort to meet other constraints. However, to ensure proper stability and flood capacity, a bankfull bench is excavated at the bankfull elevation to create the necessary floodplain. To achieve the required floodplain for a C5 channel, the entrenchment ratio (ratio of floodprone width to bankfull width) has to be greater than 2.2. Based on the NC Piedmont Regional Curve Data for a drainage area of 0.49 mi², the appropriate bankfull cross sectional area is 15.0 ft². Using a width to depth ratio of 13.0 provided a bankfull width of 14.0 feet and a maximum depth of 1.6 feet. Similar to R1a, design overlays of cross sections 5 and 6 in Appendix E confirm this geometry is suitable in comparison to the bankfull stage associated with the existing conditions. Using the entrenchment ratio of 2.2 and a bankfull width of 14.0 feet, the minimum floodprone width was calculated to be 30.8 feet. The design incorporates a 35.0 feet floodprone width to ensure this minimum is achieved. Adhering to the design variable ranges associated with sinuosity. meander length, belt width, pool to pool spacing, and radius of curvature (See Appendix F) while meeting the elevation constraints imposed by connecting R1a to R2; the design bankfull slope for R1b was determined to be 0.0044 ft/ft. These channel modifications in slope and geometry significantly lower the shear stress and velocities in this section creating a more stable system. As with R1a, the implementation of structures for grade control and vegetation for bank stability and channel tightening will significantly improve the long term stability of the channel. However, R1b was closer to the second stage of the $E \rightarrow C \rightarrow Gc \rightarrow F \rightarrow C \rightarrow E$ stream succession as indicated by the incision in cross section 5 and the entrenchment in cross section 6. The degradation processes in the lower portion of the reach were most likely tied to the dredging operation in Muddy Creek. Therefore, the decision to divert the channel to R2 now requires measures be taken to stabilize R2 as it now provides the hydrologic and aquatic connection to Muddy Creek.

5.1.6 Proposed Design Reach 2 (R2)

The work along R2 will consist of the replacement of a degraded culvert causing restrictive water passage effectively removing any hydrologic and aquatic connection to Muddy Creek while increasing erosive forces immediately downstream of the crossing. The existing pipe is an 18 inch corrugated metal pipe (CMP) with a buried inlet and a perched outlet approximately 3 feet above bed elevation. The downstream section of R2 is extremely incised and entrenched as a result of the perched pipe and active dredging occurring in Muddy Creek. Simply removing the degraded culvert would remove agricultural access and create an unstable transition in elevation which would result in a severe head cut moving upstream. Therefore the design must maintain agricultural access, provide vertical stability, and reconnect the aquatic passage of the upstream reach to Muddy Creek.

A 112 inch by 75 inch corrugated aluminum arch pipe (CAAP) was selected based on stream channel size and because this type of pipe can be easily modified to incorporate a baffling system. The baffling system is installed in such a manner as to create a sinuous low flow path through the pipe that encourages fish passage. The 75 inch height of the pipe coupled with a 1.15 foot headwall matches the existing grades of the surrounding banks allowing for easy path construction. The original drainage area of the culvert was 0.64 mi² before diverting R1 into R2 upstream of the culvert. Including R1, the new drainage area for the culvert is 1.13 mi² which based on an ungauged station analysis of that size produces a 2 year design discharge of 172 cfs and a 5 year design discharge of 319 cfs. Taking into account the baffling system, the flow path of this pipe is reduced to an equivalent pipe size of an 87 inch by 63 inch CAAP. The baffling system also effectively raised the invert elevation of the pipe to the invert of the first baffle. Accounting for these hydraulic changes, an analysis of the pipe determined the 5 year return interval caused the water to overtop the farm path by 2.41 feet whereas the 2 year return interval placed the water 1.5 feet below the road. As the pipe is installed to provide agricultural access, to allow for fish passage, and is completely contained within NCDOTs right of way; these hydraulic conditions were deemed acceptable for the purpose. The baffled pipe system will provide for the aquatic and hydrologic connection now missing throughout R1 and R2. Specific details of the pipe design can be found in Appendix G and in Appendix H within the details of the construction plans.

5.1.7 Stream Riparian Planting Plan

A protected riparian buffer will be established as part of the on-site mitigation and the entire conservation easement will be fenced to restrict access to the restored areas and the SR 3000 right-of-way. The planting plan for the riparian and upland buffers of the U-2707 site will provide post-construction erosion control and riparian habitat enhancement. The planting plan will also attempt to blend existing vegetative communities into recently restored areas. Plantings in the buffer areas will include native species appropriate for the Piedmont physiographic province. Plants within the floodplain will be flood tolerant species, which can accommodate periodic flooding events throughout the year. A variety of trees will be planted to provide cover and habitat for wildlife as well as soil stabilization. NCDOT Roadside Environmental Unit will develop the specific details and plant lists to be utilized on the U-2707 restoration site.

Trees with extensive, deep rooting systems will assist in stabilizing the banks in the long term. Colonization of local herbaceous vegetation will inevitably occur, which will provide additional soil stability. Tree species will be planted as bare root stock on random 8-foot centers at a frequency of 680 stems per acre. Planting stock will be culled to remove inferior specimens, so only healthy, viable stock will be planted at the U-2707 restoration site. Planting of species will utilize dormant plant stock and will be performed to the extent practicable between December 1st and March 15th.

A complete Plan and Profile (Sheets MIT-03 and MIT-04) of the design described above along with the Planting Plan (Sheets PLT-03 and PLT-04) can be found in Appendix I. Specific details regarding construction and typicals of the stream can be found in Appendix H.

5.2 Construction Implementation

Construction activities associated with the implementation of the natural channel design outlined above will include excavation, structure installation, pipe removal and replacement, utility marking, and vegetation installation. Prior to any work, the permittee will be responsible for the knowledge and implementation of appropriate erosion control practices that meet all local. county, and state regulations. The use of a pump around system will be incorporated and where possible work will be conducted offline to minimize sediment input. Work will continue in a fashion that allows for any land disturbance to be adequately treated by the end of each day. Prior to any work beginning, the permittee will be responsible for marking all utilities on-site and to confirm the elevations and locations shown on the plans. Excavation will be performed by qualified personnel using equipment suitable for the conditions. Excavation will include cutting the channel, bankfull bench, and any work necessary to remove the existing culvert. To stabilize the banks, seed and straw will be immediately applied to the newly cut channel and covered with coir fiber matting. Structure installation will include the installation of rock (or log if deemed acceptable on site) cross vanes and constructed riffles. These structures are installed to provide grade control and offer bank protection so it is important qualified personnel use equipment outfitted for stream restoration. Similar to the structure installation. the pipe removal and replacement will require specialized equipment and personnel familiar with the installation of CAAPs and baffling systems. The last phase of construction will consist of planting the conservation easement. As the vegetation is as important as the channel construction and structure installation, the vegetation should be installed by a qualified landscaper or person of similar background. This site will require the installation of bare root stock and live stake material, each of which requires particular handling and installation for manual installation.

6.0 PERFORMANCE STANDARDS

The NCDOT shall monitor stream channel stability and buffer vegetation survival on the site. Post-restoration monitoring will be conducted for a minimum of five years or until the success criteria are met following the completion of construction to document project success. Monitoring approaches follow those recommended by the Stream Mitigation Guidelines (USACE and NCDWQ 2003). These approaches are described below in Section 7.0.

7.0 MONITORING REQUIREMENTS

The stream mitigation site will be monitored for five years or until success criteria is satisfied. Monitoring protocols shall follow the Monitoring Level 1 outlined in the Stream Mitigation Guidelines. April 2003. NCDOT will evaluate the success of the stream restoration project based on guidance provided by the Stream Mitigation Guidelines disseminated by the United States Army Corps of Engineers- Wilmington District. The survey of the channel dimension will consist of permanent cross sections placed at equal number of pools and riffles. Annual photographs showing both banks and upstream and downstream views will be taken from permanent, mapped photo points. The survey of the longitudinal profile will represent distinct areas of the stream and cover a cumulative total of approximately 1.800 linear feet LF of channel. The entire restored length of stream will be investigated for channel stability and instream structure functionality. Any evidence of channel instability will be identified, mapped and photographed.

8.0 OTHER INFORMATION

No other information is available.

9.0 DETERMINATION OF CREDITS

			Re	storation		;,,,,,,,,,,,,,,,,,,,,,,,				
Stream	Station	Priority Level	Type	Existing Length of Channel (If)	Proposed Length of Channel (II)	Stream Mitigation Units (SMU)				
Reach 1	0+00 to 9+20	I	Perennial	920	920	920				
Reach 1	9+20 to 11+22	II	Perennial	202	202	202				
Relocation										
Stream Station Priority Level Type Existing Length of Channel (if) Proposed Length of Channel (if) Stream										
Reach 1	11+22 to 18+00	n	Perennial	863 .	678	678				
**************************************			Enh	ancement						
Stream Station Priority Type Existing Length Proposed Length Stream Stream Station Level Type of Channel (if) of Channel (if) Un										
Reach 2	0+00 to 1+53	I	Perennial	153	153	76.5				
			Total	2138	1953	1876.5				

The site will be debited at the following ratios: 1:1 for stream restoration and 2:1 for stream enhancement to mitigate for the 903 linear feet of stream impacts associated with U-2707. An as-built report will be submitted within 60 days of completion of the project to verify final feet of mitigation. The success of the mitigation areas and determination of final credits will be based upon successful completion of the monitoring.

No wetland credit is currently proposed. However, there is potential for wetland restoration within the floodplain of Reach 1. Any wetland restoration will be documented during the monitoring phase and addressed with the agencies at a future time.

9.1 Credit Release Schedule

NCDOT proposes immediate, full release of the stream restoration and enhancement and the wetland restoration as on-site mitigation for the impacts associated with U-2707. Any mitigation not debited for U-2707 will be placed on the NCDOT debit ledger for future use on other projects.

10.0 GEOGRAPHIC SERVICE AREA

The U-2707 Mitigation Plan has been developed to provide on-site mitigation for unavoidable stream impacts associated with the construction of Transportation Improvement Project (TIP) number U-2707, or the Idols Road Extension (SR 3000) in Forsyth County, North Carolina near the town of Clemmons. The Site is situated within the Yadkin-Pee Dee River Basin within the US Geological Survey (USGS) hydrological unit code (HUC) 03040101 and the NC Division of Water Quality (NCDWQ) sub-basin 03-07-04. All stream and wetland mitigation assets not

compensate for impacts beyond the GSA may be considered by the Corps or the permitting agency on a case-by-case basis.

11.0 MAINTENANCE PLAN

The Site will be held by NCDOT and placed on the NEU mitigation geodatabase. If an appropriate third party recipient is identified in the future, then the transfer of the property will include a conservation easement or other measure to protect the natural features and mitigation value of the site in perpetuity.

12.0 LONG TERM ADAPTIVE MANAGEMENT PLAN

The Site will be managed by the NCDOT according to the site plans. In the event that unforeseen issues arise that affect the management of the site, any remediation will be addressed by NCDOT in coordination with the Interagency Review Team.

13.0 FINANCIAL ASSURANCES

The Site is will be managed by NCDOT with its own distinct cost center number within the NCDOT budgeting and financial tracking system. Therefore, all accounting for revenues, contract encumbrances, fund transfers, and expenses will be performed and reported independent from other capital budget or operating budget accounting.

RIVERMORPH PROFILE SUMMARY

River Name: UT to Muddy Creek Reach Name: Existing Conditions Profile Name: Longitudinal Profile Survey Date: 06/29/2011

Survey Data

DIST	СН	WS	BKF	L8	RB	BKF SL	REW
0 0.625 0.795 6.222 11.832 15.196 15.91	693.86						695.585 695.353 695.661 695.451 695.501 695.508
23.074 23.074 35.993	692.516						695.545 695.56
36.912 39.507 44.881	694.001						695.59 695.587
47.663 50.396 50.837	695.034						695.575 695.603
54.722 63.645 63.749	695.233 694.927						695.075
73.117 73.2 73.794	694.716						694.928
74.078 81.249				697.024 696.974			696.585
82.706 82.877 83.024	694.668				696.285		694.882
88.5 99.124 99.525	694.665		696.299	696.086	696.869		694.87 694.727
99.892 99.892 106.129	694.174		۰		696.881		694.688
106.979 111.923 111.923	693.842 693.713			·			
111.923 114.753				695.735	696.35		694.588
116.742 120.095 120.095	693.546 693.327						694.643
120.095 123.141 124.212	693.447			696.526			694.746
127.768	UJJ : 777			COC ACO	695.745		<u>Page 23 of 81</u>

		N		
331.674 333.534		695.1	694,404	ļ
333.534 341.028	693.833 693.983	∿ರೊಳ್ ಟ್ ≵ ಹರಿಸಿ		
344.937 347.63	693.888		694.318	3
350.418 350.989	ميد مير بيرو يو ميرو ميرو ميرو ا	604 000	694.232	2
351.841	693.909	. 694,992		
352.811 353.7	693.785	695.413		
356.197 356.197	693.848	694.921		
356.197	0001010		694,193	ł
360.804 363.215	693.916	695.4		
366.921 373.203	694.087	695.264		
373.203 376.582	~~	695.039 695.1		
382.241	~~~ ~~	053.1	694.189	1
383.637 385,519	693.86	695.283		
392.281 394.032	693.489	694.947		
394.708 396.542	693.895		694.231	
396.542		694.983		
406.39 406.39	693.427		693.818	•
407.997 408.593		694.636 695.107		
411,161	693.223		~~~ ~~~	
412.037 414.26		694.637	693.689	
421.844 423.082		694.472 694.23		
423.112 423.112	693.091		693.533	
431.014		694,461		
431.317 431.771	693		693.552	
431.95 438.872		. 694.27 694.468		
439.792 440.087	692.974		693.326	
440.898	•	694.469		
447.108 447.108	692.673	694.336		
447,599 447.965	•	694.327	693.155	
451.908 453.145	692.477	694.334		
453.145			693,216	
455.345 457.389	692.731	694.274		
458.313 460.023		693.628	693	
461.541 461.805	692.719	CAA 333	** ** **	
465.5	692.641	694.221 694.318 694.318 694.21 694.318	693.093	Pa

Page 24 of 81

625.309		692.564	CA A A A
635.241 635.241		692.584	691.314
635.241	691.053	072.304	
639.735	001.002.0	692.456	
640.767		692,468	
641.297			691.153
641.691	690.848		,
641.736		692.528	
650.351	CAA 7A1	693.056	
650.769 650.95	690.701	692,803	•
651.129		032,003	691.021
661.495		693.23	V all alle d' V lane pice
661.495	690.612		
662.436			690.982
663.46		691.985	
668.731	~~~ ~~~	693.003	
669.118	690.381		CAA 000
669.382		692,052	690.833
671.086 671.777		692,032	
674,104	689.955	0.74. 544	
674.957	003:333		690,586
675.335		692.563	
680.051		692.856	
680.753	690.225		***
681.12		CAD 330	690.595
682.151		- 692.329 692.309	
685.566 686.997		092.309	690.676
686.997	690.274		090.070
686.997	UJU + Ex T	692.646	
693.424		692,137	
693,924	690.233		
695.323			690,603
695.537		692.141	
705.96		692.541 692.155	
706.456 706.756		UZC : LJJ	690.457
707.13	690.071		<i>~~~</i>
722.031	689.925		
722.184			690.19
722.943		692.317	
723.709		692.153	CAA === C
731.686	COA 787		689.726
731.904 732.747	689.253	692.102	
733.164		691.973	
745.342		692.299	
745.836	689.319		
745.836			689.559
749.539		691.573	
749.97		692.149	COD 100
753.833	CON 111	•	689.499
754.193 754.193	689.151	692.271	
762.004		- 691.827	
762.787		ا بنه کپ ۵ شه کې دې ا	689.452
763.028	689.046		Pag
763.028		692.123	

Page 25 of 81

957.256				690.742)	
960.778 962.98	687.184		691.1			
964.518	001.70%					688.335
967.327	687.656					
967.836				COA 955	7	688.282
971.514 975.646	687.834			690.857		
975.995	00.100.					688.236
980.071			691.151			
981.588 985.416	687.921			690.764	÷	
985.997	007.921					688.206
997.44			691.088			
997.44	687.703					688.206
998.031 1001.877				690.787	\$	000.200
1005.131	-		690.245			
1006.051	~~~~					688.196
1006.249 1011.827	687.822					688.239
1011.827	687.846					000,200
1015.221				. 690 . 939		
1016.241	C97 7CA		689.619			
1019.807 1019.807	687.764					688.177
1023.383				690.792		
1026.997	687.379					
1027.94 1030.424			689.739			688.254
1031.593			~~~ <i>~~~</i> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			688.248
1032.83	687,738					
1035.472 1035.601			689.825	690.031		
1041.331	687.937			VJV - V <i>J</i> J		
1042.459						688,245
1043.257			690.429	690.508		
1047.057 1051.403	687.839			020.300		
1051.518						688.201
1056.684	C07 70C		692.099			
1061.414 1061.725	687.705					688.05
1062.482				690.197		
1069.657			691.999	COD 303		
1075.188 1075.529				690.292		687.982
1076.185	687.725					907 1906
1077.718			691.654			***
1086.712 1087.274	687.538					687.934
1089.763				690.297		
1094.75						687.992
1094.998	687.641		C01 /C1			
1095.412 1102.243			691.461 691.038			
1103.956			✓☞≈≈⋞⋎ॻॷ	690.189		
1105.034	معالم المعار المعار المعار المعار المعار					688.029
1105,204 1115	687.774 687.445	 680 9nc	690.588	GON 765	680 806	687 045
C.S.J.L.	VUI . 44J	003.000	001.00	030.703	002.000	001.543

!

Page 27 of 81

RIVERMORPH CROSS SECTION SUMMARY

Reach Nam	e: UT to e: Exist tion Name: XS1 R te: 06/14	ing Conditi iffle /2011	ons		
Cross Sec	tion Data Entry				
BM Elevat Backsight	ion: Rod Reading:	0 ft 0 ft			
ТАРЕ	FS	ELEV		NOTE	
0 15 30 40 50 57 59 65 71 75 78 81 82 82.5 83 83.5 84 85 87 89 94 100 115 125 140 155 170		699.06 698.00 697.63 697.43 696.99 696.73 696.79 697.31 697.31 697.18 696.86 694.99 694.67 694.67 694.67 694.66 694.99 695.16 695.84 695.84 696.29 695.84 696.29 695.84 696.29 695.84 697.43 697.09 697.130 697.130 698.434 699.059 699.673	63 42 29 44 29 88 63 65 99 88 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 65 98 98 98 98 98 98 98 98 98 98 98 98 98	GS GS GS GS GS GS GS GS GS GS GS GS GS G	
Cross Sect	ional Geometry		ته دریه خمه ومه ومه ومه وی درید.		. In the set of the se
Bankfull E Floodprone Bankfull W Entrenchme Mean Depth Maximum De Width/Dept	nt Ratio (ft) pth (ft)	Channel 697.94 696.3 116.36 11.58 10.05 0.85 1.63 13.62 9.86	Left 697.94 696.3 5.35 0.9 1.63 5.94 4.79 2.27	Right 697,94 696.3 6.22 0.81 1.63 7.68 5.07	Page 28 of 81

0 10

RIVERMORPH CROSS SECTION SUMMARY

River Na Reach Na Cross Se Survey D	me:		ek i ons		
Cross Se	ction Data Entry		60 400 400 Con Star Max 400 Con sar α.		
BM Eleva Backsigh	tion: t Rod Reading:	0 ft 0 ft		·	
TAPE	FS	ELEV	•	NOTE	
0 15 30 40 50 58 63 68 73 78 80 81 82 83 84 86 88 90 92 95 100 115 125 140		698.81 697.78 697.38 697.13 696.49 696.40 696.80 696.80 696.80 696.83 696.65 695.08 694.53 694.53 694.53 694.54 694.52 695.20 695.20 695.91 696.78 696.57 697.40 698.23	803 803 803 803 803 803 803 804 807 809 809 11 809 809 809 809 809 809 809 809	GS GS GS GS GS GS GS GS GS EEW SB TW SB SB TW SB SB REW GS REW GS RB GS GS GS GS GS GS	
Cross Sec	tional Geometry			ධා ධාල සිට නියා වියා වියා නිම නිම විය විය දුයා දෙය දෙය දෙය	
Bankfull Floodpron Bankfull Entrenchm Mean Dept Maximum D Width/Dep Bankfull Wetted Pe	h (ft) epth (ft) th Ratio Area (sq ft) rimeter (ft) Radius (ft) Station	Channel 698.44 695.97 134.5 14.22 9.46 1.32 2.47 10.77 18.73 15.15 1.24 77.98 92.2	Left 698.44 695.97 7.11 1.5 2.47 4.74 10.66 9.78 1.09 77.98 85.09	Right 698.44 695.97 7.11 1.13 2.04 6.29 8.06 9.45 0.85 85.09 92.2	<u>Page 30 of 81</u>

:

Page 31 of 81

RIVERMORPH CROSS SECTION SUMMARY

River Name: UT to Reach Name: Exist Cross Section Name: XS3 R Survey Date: 06/14 Cross Section Data Entry	iffle	ek ions	. 20 100 100 107 107 107 107 107 107 107 107	
BM Elevation:	0 ft			
Backsight Rod Reading: TAPE FS	0 ft ELEV		NOTE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	693.96	26 887 47 49 003 72 399 99 44 8 68 324 24 13 72 95 8 22 3 06 78 67 1	GS	
Cross Sectional Geometry			아이 같은 같은 것은 것은 것은 것은 것은 것은 것은 것을 수요 같은 것을 수요.	역 10 10 10 10 10 10 10 10 10 10 10 10 10
Floodprone Elevation (ft) Bankfull Elevation (ft) Floodprone Width (ft) Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft)	Channel 696 694.32 180 13.66 13.18 0.65 1.68 21.02 8.93 14.85 0.6		696 694.32 4.57 0.84 1.68 5.44 3.85 6.91	Page 32

of 81

I

Page 33 of 81

RIVERMORPH CROSS SECTION SUMMARY

River Name Reach Name Cross Sect Survey Dat	Exist Eion Name: XS4 P	600	ek Tons		
Cross Sect	tion Data Entry	anna anna 4000 film Sola Jamp anna dhù ành bha	997 Cr Rh 12 10 Cr rs ku c	. 637 678 678 679 529 529 529 529 529 544 64 64	
BM Elevation: . Backsight Rod Reading:		0 ft 0 ft			
TAPE	FS	ELEV		NOTE	
0 20 40 50 65 75 82 88 92 96 99 100 101 101.5 102.5 103.5 104 106 110 114 125 140 160		694.0 693.8 693.8 693.8 694.7 694.4 693.9 694.0 693.7 693.4 693.7 693.4 693.0 692.5 692.0 692.5 692.0 692.5 692.5 692.5 692.5 692.5 692.5 692.5 692.5	469 737 238 96 041 102 461 282 505 465 57 303 527 86 91 22 926 8253 83555 52789 49204 80396	GS GS GS GS GS GS GS GS GS GS LEW TW SB SB REW GS RB GS GS GS GS GS	
Cross Sect	ional Geometry				20 89 Est ter an in in in an an an an an an in in in in
	Width (ft) dth (ft) nt Ratio (ft) th (ft) Ratio ea (sq ft) meter (ft) adius (ft) station	Channe	Left - 696.21 694.13 11.58 0.84 2.08 13.79 9.7 13.92 0.7 92	Right 696.21 694.13 6.29 1.09 1.89 5.77 6.85 8.55 0.8 103.58	<u>Page 34</u>

Page 34 of 81
Page 35 of 81

RIVERMORPH CROSS SECTION SUMMARY

Cross Sec Survey Da	ne: Exist ction Name: XS5 R ate: 06/14	iffle	ek ions		
Cross Sec BM Elevat	tion Data Entry	0 ft			·
	Rod Reading:	0 ft			
ТАРЕ	FS	ELEV	- 6000 5200 5500 5000 5000 5200 5200 5000	NOTE	100 100 100 100 100 100 100 100 100 100
0 15 30 40 47 51 54 57 58 58.7 60 61 62 63 64 62 63 64 65 66 68 70 72 76 85 100 110 120 130		690.03 690.41 690.36 690.14 691.65 691.68 690.76 689.94 687.94 687.99 687.44 687.47 687.47 687.99 688.52 688.72 688.72 689.80 690.59 690.60 690.14 690.08 689.58 689.71 690.25 690.36	06 63 02 43 5 41 5 41 5 8 47 6 1 5 8 8 7 79 6 1 35 22 18	GS GS GS GS GS GS GS GS GS GS GS GS GS G	
Cross Sec	tional Geometry	9 Eer 60a	Kina Kuna Kuna (kuna Kuna Kuna Kuna Kuna K	에는 손실을 쉽게 있다. 것이라 있다. 것이라 있다. 것이는 것이 있다. 것이는 것이 있다. 것이 있다. 이번 것이 있다.	
Bankfull I Floodprond Bankfull I Entrenchmo Mean Dept Maximum Do Width/Dept Bankfull A Wetted Per	ent Ratio 1 (ft) epth (ft)	Channel 692.18 689.81 130 8.86 14.66 1.58 2.37 5.61 14 10.56 1.33	Left 692.18 689.81 1.93 1.05 1.97 1.84 2.03 4.81 0.42	Right 692.18 689.81 1.73 2.37 4.01 11.97 9.7 1.23	<u>Page 36 of 81</u>

Page 37 of 81

·

RIVERMORPH CROSS SECTION SUMMARY

Reach Name: Exist Cross Section Name: XS6 R Survey Date: 06/14	Muddy Creek ing Conditions iffle /2011		
Cross Section Data Entry BM Elevation:	0 ft		
Backsight Rod Reading:	0 ft		
TAPE FS	ELEV	NOTE	ter til ber jur mit den per ich den til jur det
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	689.5793 689.5134 689.1252 688.8049 688.3591 688.8873 688.8949 688.6721 687.0096 686.678 686.4578 686.4578 686.8219 687.4243 687.866 689.537 690.4895 691.1334	GS GS GS GS GS LB GS GS LEW TW REW GS GS BKF GS GS GS GS	
Cross Sectional Geometry		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	97 107 407 507 507 507 507 507 507 507 507 507 5
Bankfull Width (ft) Entrenchment Ratio Mean Depth (ft) Maximum Depth (ft) Width/Depth Ratio Bankfull Area (sq ft) Wetted Perimeter (ft) Hydraulic Radius (ft) Begin BKF Station End BKF Station	ChannelLef689.28689687.8768748.6914.827.113.290.90.941.411.3516.477.5513.356.7515.238.750.880.7755.6955.6970.5162.8	.28 689.28 .87 687.87 2 7.7 4 0.86 9 1.41 7 8.95 1 6.64 3 9.28 7 0.71 59 62.81	
Entrainment Calculations			 Page 38

Entrainment Formula: Rosgen Modified Shields Curve

U2707 R1 Reachwide Pebble Count

Page 39 of 81

	UT to Muddy C Existing Cond U2707 R1 Reac 06/14/2011	itions		
Size (mm)	TOT #	ITEM %	CUM %	
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	35 15 12 7 2 5 2 2 4 4 4 6 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	35.00 15.00 12.00 7.00 2.00 5.00 2.00 4.00 4.00 4.00 4.00 3.00 3.00 3.00 0	35.00 50.00 62.00 69.00 71.00 76.00 78.00 80.00 84.00 84.00 94.00 97.00 100.00	
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.03 0.06 0.13 8 18.2 32 35 41 24 0 0 0			

Total Particles = 100.

Active Riffle XS 1

Particle Size (mm)

Page 41 of 81

.

River Name: Reach Name: Sample Name: Survey Date:	UT to Muddy C Existing Cond Active Riffle 11/30/2011	itions		
Size (mm)	TOT #	ITEM %	CUM %	
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	0 4 8 5 6 13 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 10.00 20.00 12.50 15.00 32.50 10.00 0.00	0.00 10.00 30.00 42.50 57.50 90.00 100.00	
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.16 0.35 0.75 1.82 3 4 0 90 10 0 0 0			

Total Particles = 40 (need at least 60).

Page 43 of 81

River Name: Reach Name: Sample Name: Survey Date:	UT to Muddy C Existing Cond Active Riffle 11/30/2011	itions		
Size (mm)	TOT #	ITEM %	CUM %	
$\begin{array}{r} 0 & - & 0.062 \\ 0.062 & - & 0.125 \\ 0.125 & - & 0.25 \\ 0.25 & - & 0.50 \\ 0.50 & - & 1.0 \\ 1.0 & - & 2.0 \\ 2.0 & - & 4.0 \\ 4.0 & - & 5.7 \\ 5.7 & - & 8.0 \\ 8.0 & - & 11.3 \\ 11.3 & - & 16.0 \\ 16.0 & - & 22.6 \\ 22.6 & - & 32.0 \\ 32 & - & 45 \\ 45 & - & 64 \\ 64 & - & 90 \\ 90 & - & 128 \\ 128 & - & 180 \\ 180 & - & 256 \\ 256 & - & 362 \\ 362 & - & 512 \\ 512 & - & 1024 \\ 1024 & - & 2048 \\ Bedrock \end{array}$		0.00 2.50 7.50 7.50 12.50 7.50 37.50 17.50 7.50 0.00 0	2.50	
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.45 1.67 2.67 4.87 6.47 8 0 37.5 62.5 0 0		-	

Total Particles = 40 (need at least 60).

Particle Size (mm)

Active Riffle XS 5

.

Page 45 of 81

RIVERMORPH PARTIC	LE SUMMARY
-------------------	------------

River Name: Reach Name: Sample Name: Survey Date:	UT to Muddy C Existing Conc Active Riffle 11/30/2011	Creek ditions 2 XS 5		
Size (mm)	TOT #	ITEM %	CUM %	
0 - 0.062 0.062 - 0.125 0.125 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 4.0 - 5.7 5.7 - 8.0 8.0 - 11.3 11.3 - 16.0 16.0 - 22.6 22.6 - 32.0 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048 Bedrock	$ \begin{array}{c} 0 \\ 7 \\ 9 \\ 11 \\ 7 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0.00 17.50 22.50 27.50 17.50 15.00 0.00	0.00 17.50 40.00 67.50 85.00 100.00	
D16 (mm) D35 (mm) D50 (mm) D84 (mm) D95 (mm) D100 (mm) Silt/Clay (%) Sand (%) Gravel (%) Gravel (%) Boulder (%) Bedrock (%)	0.12 0.22 0.34 0.97 1.67 2 0 100 0 0 0			

Total Particles = 40 (need at least 60).

Siarus:	www.com/www.com/www.com/with	g Conditions	خدمند		Location		Forsythe	
Project		3-2707			Reach:			Count Riffle 3
Date:		22,'2011		C)bservers:	¥25/56/2010/10/10/10/10/10/10/10/10/10/10/10/10/	EMP	<u> 2000-2000-2000-2000</u>
Value	Variable			Definition				and the second
			tired informatio		ent Souly	*		-
Contraction of the second second second second	D ₅₀ (mm)		(1) or Pavement			Riffe	Į.	Salect Sample
<u>. 0.1</u> I	∑ ₅₀ immī		ample -1: or Subp			Bar Sample	113	Туре
<u>6</u> 1) _{ii} (mmi	Largest Particle	from Bar Sample	[1] or Pavemen	t (2)	Bar Sample	E.	
= 0.020 = I		Dı (mmi . 304.	-					
A CONTRACTOR OF A CONTRACTOR O	i (fiz fiz	Bankfull Water						
A Comparison of the Instance of the Instance of the		Bankfull Mean Bankfull Cross	-					
8.93 A	V in j V _p iffe	Werted Permet						:
			∽ cific Weight of Se					
	' (Ibs/ ft ³ -	-		ament 1.003				
02.4 1	11121 1F	Density of Wat	and paper and a second seco • • •	interpitation marketing and and a second		, 		
		ݯ ^ې د د دې سر يې سر يې مو دو د د د کې و دو د و د و د وې د وې د و	ation of Genical	فللترجيع وحابين والموالة والمسوقة ليبينا منتج يوحيره ابراجع زير خصير بسريرو مراجهتها يبط	hcar bir	(Let eff	Sec. 1	
<u>27.00</u> ⊑]) _{50/} D 50	Range 3-7	Use Equation 1:					
Hernites . I as is adventited 7			$\tau_{a} = 0.0834 (D_{5})$					
2.22 C	D ₆ /D ₅₀	Range 1.3-3.0	Use Equation 2:					
			$\tau_{\alpha} = 0.0384 \langle D_{\mu} \rangle$					alialitateritaritte
0.019 T	©	Critical Dimens	ionless Shear Stre	55		Equation Us	sed:	15年2555
	Cura	lare Bankfull 8	lean Depen Req	uic d far Entra	innent of	1 Angel a Pag	GTC1	
0.102 d			ull Mean Depth (I					
		d_=		τ _e γ,D _i				
		-		S Maria Salahan Marian	Scenctus 75			
6,349 d.	۶d <u>.</u>	Stability:	<u>ille anne a</u>	Degrading		Manazara ing manadana di ana di an		
	and the second secon	<u>ى بەلەر بەلەر بەلەر بەلەر بەلەر بەلەر بەر بەر بەر بەر بەر بەر بەر بەر بەر ب</u>	(Sarine Slope 1		itali. T	a afiliargest	Particle	
5, 0.001 K	r	Required Bankf	ill Water Surface	-				
		S, =	4779745847445447474498474544747474747474747474747474747474747	τ _α χD _i				
THE REAL PROPERTY OF	10	a. 1 M.		d erectrones				
6.349 S/		Stability:)egrading	n de se			
	1	the second s	Chansport Ville	dataan - Bankfu	al Sheni S	tress.		-
2 0.60 🙀 R		Hydraulic Radiu		× 65747			•	
an a		$\mathbf{R} =$	*	$A_{f}W_{p}$				
0.225 tr		Bankfull Shear S		*335				
		· 7.=		yrs				
Y	-		ial Homogeneous			-		
			reach wide pebb pold et al [®] Curve D					at).
						we and the days of		
-1 16 m	-		Size (mm) At Ba			174		
	1		Leopold, Wolman	-		indline.		
0.085 ПЬ.			Stress (Ibs/ ft ²) Re	-		milling		-
1	ļ	predicted by the	Leopold, Wolma	n oc minier 1904	rower-tre	annae.		
N/A m]	Movable Particle	Size (mmj At Ba	nkfull Shear Stre	:\$5			
N/A. m	4		Colorado Data Pe					
N/A IB.	· **		Stress (lbs/ft ² Re	-	D.			
and the second	1		Colorado Data Po					
Ta	nea from The	Reference Keath Freid	Boos, 2005 by Rosge	in and Suvey				

.

.

Entrainment Calculation Form

.

Status: 1	roposed, iteration 1	Loc	ation: Forsythe Co.
Project:	<u>U-2707</u>	-	each: R1a, XS 3, Pebble Count Riffle 3
Date:	7-22/2011	- Obse	rvcrs: <u>EMP</u>
Value Va	riable	Definition	
and spectra strange where same		and Internation for Englishment.	* [
$2.7 - D_{50}$:	mmj D ₅₀ from Riffle	1) or Pavement (2)	Riffie Select Sample
0,1 D 50		imple (1° or Subpavement (2)	Bar Sample Type
6 Di (D	imj Largest Particle	from Bar Sample (1) or Pavement (2)	Bar Sample
⇒ 0.020 . D. fr			
0:008 S (ft/	-		
0.84 d (ft)		*	
<u>10</u> A fr			
12-39 W _p (
i. 1.65	·	afic Weight of Sediment (1.65)	
62.4 H y (lbs	and the second secon		
	and the second	mun of Crinical Officerementics. The	at Stress
₩ 27.00 È D ₅₀ ,	D ⁵⁰ Range 3-	Use Equation 1:	
		$\tau_{a} = 0.0834 (D_{50}, \hat{D}_{50})^{-0.872}$	
2.22 D ₀ /T)50 Range 1.3-3.0	Use Equation 2:	
		$\tau_{c} = 0.0384 (D_{c} D_{50})^{-0.607}$	
₹ <u>0.019</u> ₹ ₌	Critical Dimensi	onless Shear Stress	Equation Used:
	Cacalore Bankfull N	ican Depth Required for Entrainer	at of Large a Paralele
0.077 d.	The second s	all Mean Depth (fr)	
Part i con a la la forte da la la	*	~ ~ D.	
	d_=	S	
10.940 d.d.	Stability:	Degrading	
C. C. C.	Health Rankfull Very	- Surface Shape Required for Encou	amontal Largest Particle
0.001 S.	Required Bankfu	all Water Surface Slope (ft/ff;	
	- <u>S</u> _=	τ _{ci} γ _s D _i	
	- <u> </u>	đ	
10.940 S/S _r	Stability:	Degrading	
A CONTRACTOR	Sedance	Transpare Validation Bankfall S	LAI MERS
0.81 R	Hydraulic Radiu	s (fC	
	R =	A/W_p	
0.403 F T.	Bankfull Shear S	tress (Ib. it ²)	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	YRS	
Y or 1	N Is the Bed Mater	al Homogeneous?	
	Determine from	reach wide pebble count distribution opold en al" Curve Data, n' heterogeneous use	m (Use your best judgement). "Colorado" Curve Data.
	11 homogeneous use the	alling reas and a reach a rear fareau and	
30 mm		Size (mm) At Bankfull Shear Stress	***
	-	Leopold, Wolman, & Miller 1964 Pov	ver-trendline.
0.085 % B/ft ³		Stress (lbs. ft ² ) Required To Move D	19*
<u></u>	predicted by the	Leopold, Wolman. & Miller 1964 Poy	rer-trendline.
	Movable Particle	Size (mm, At Bankfull Shear Stress	
13- <u>-</u> - 4			1
N/A mm		Colorado Dara Power-trendline.	
	predicted by the Predicted Shrat		
NZA B-ft ²	predicted by the Predicted Shear S predicted by the	Colorado Dara Power-trendline.	

#### **Entrainment Calculation Form**

.

Project     U-270"     Reach:     R1b, XS 5, Pebble Count Riffle 3       Date:     -'.22./2011     Observers:     EMP       Value     Value     Definition	Status	Existing Conditions	Linterningin (Selector)	Location	- Fr	usythe C	<u>о</u> .
Date       T22/2011       Observers       EMP         Value       Variable       Definition         22.1       Definition       Sector Sample 1: or Subparement (2)       Sittle 1: or Subparement (2)       Sitt	27. March 442.4				ent manufacture international and internationa	**************************************	the second s
Value       Definition         227       D ₁₀ (rm)       D ₂₀ from Bifle (1: or Pavement (2: 100 Pavement (			~				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rinterio		- Definition				
01 $D_{g0}$ from Bar Sample 11 or Sabpavement 22.       Ber Sanote       1.57         0.020       D ₁ (mm)       Largest Particle from Bar Sample 11 or Pavement 22.       Ber Sanote       1.57         0.020       D ₁ (frit)       D ₁ (mm)       John Sample 11 or Pavement 22.       Ber Sanote       1.57         0.0205       D ₁ (frit)       D ₁ (mm)       John Sample 11 or Pavement 22.       Ber Sanote       1.57         0.0205       D ₁ (frit)       D ₁ (mm)       John Sample 11 or Pavement 22.       Ber Sanote       1.57         0.0205       D ₁ (frit)       D ₁ (mm)       John Sample 11 or Pavement 22.       Ber Sanote       1.57         0.0205       D ₁ (frit)       D ₁ (frit)       Sample 12 or Pavement 22.       Ber Sanote       1.57         116       A ₁₇ Bashifill Mean Depth       A       A       1.65         27.00 c       D ₂₀ /D ₂₀ Range 37       Use Equators 1: $\tau_{i_0} = 0.0384(D_{10}, T_{20})^{-0.057}$ 12.22.1       D ₂ /D ₂₀ Range 37       Use Equators 1: $\tau_{i_0} = 0.0384(D_{10}, T_{20})^{-0.057}$ 12.22.1       D ₂ /D ₂₀ Range 37       Use Equators 1: $\tau_{i_0} = 0.0384(D_{10}, T_{20})^{-0.057}$ 12.22.1       D ₂ /D ₂₀ Range 37		Requ	ind Information for Earland	cor Anabi	-is -		
D       D       Stands       D       Stands       Type         D       D       Image Particle from Bar Sample (1) or Subparement (2)       Bar Sample (1)       Bar Sample (1)       Type         0.020       D       D       Image Particle from Bar Sample (1) or Parement (2)       Bar Sample (1)       Bar Sample (1)       Type         0.020       D       D       Image Particle from Bar Sample (1) or Parement (2)       Bar Sample (1)       Bar Sample (1) <td>2.7 D₅₀</td> <td>(mm) D₅₀ from Riffle</td> <td>(1) or Pavement (2)</td> <td></td> <td>Riffie</td> <td>1</td> <td>Select Sample</td>	2.7 D ₅₀	(mm) D ₅₀ from Riffle	(1) or Pavement (2)		Riffie	1	Select Sample
Sec $f_{1}$ (map)       Largest Paracle from Bar Sample (1), or Payement (2)       Bar Sample $[\nabla]$ 0.020       D, (fr.)       Di (mm)       50.48 (mm/ft)       Bar Sample $[\nabla]$ 0.020       D, (fr.)       Barkfull Wears Surples Slope       d'ft.       Barkfull Mean Depth         135       A (fr.)       Barkfull Mean Depth       Barkfull Mean Depth         136       A (fr.)       Barkfull Mean Depth       Barkfull Mean Depth         136       A (fr.)       Barkfull Mean Depth       Barkfull Construction       Markfull Mean Depth         136       A (fr.)       Barkfull Mean Depth       Barkfull Construction       Markfull Mean Depth         136       M, (fr.)       Weater (62.4)       Use Equation 1: $\vec{\tau}_{a} = 0.0384(D_{a}/D_{a})^{-0.6012}$ 27.00 c       D_g/D_g       Range 3-7       Use Equation 2: $\vec{\tau}_{a} = 0.0384(D_{a}/D_{a})^{-0.6012}$ 27.01 f.       D_g/D_g       Range 3-7       Use Equation 2: $\vec{\tau}_{a} = 0.0384(D_{a}/D_{a})^{-0.6012}$ 27.01 f.       Crucel Dimensionless Stars Stress       Equation 1: $\vec{\tau}_{a} = 0.0384(D_{a}/D_{a})^{-0.6012}$ 27.02 f.       A (g.)       Starbility: $\vec{t}_{a} = \frac{f_{a}/gD_{a}}$ $\vec{t}_{a} = \frac{f_{a}/gD_{a}}$ 20.02 f. <td>0.1 D n</td> <td>(mm) D₅₀ from Bar Sa</td> <td>mple '1' or Subpavement (2)</td> <td></td> <td>Bar Sample</td> <td>j 🖤</td> <td></td>	0.1 D n	(mm) D ₅₀ from Bar Sa	mple '1' or Subpavement (2)		Bar Sample	j 🖤	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Constitution of the second state of the second state			ur (2)	Bar Sample	ī 🔀	
132 1414 (fit)Bankfull Mean Depth A :fit)133R 			8 (mm/ft)		<u> </u>		
13       A : $fr^2$ .       Bankfull Cross Sectional Area         10:55       W _a : (fr.       Watted Perimeter         10:56       Y       Submerged Specific Weight of Sediment [1.65]         • 62.4       Y(Ds/ft ² )       Density of Watter (62.4)         27,00 c       D ₂₀ /D ₂₀ Range 3.7       Use Equation 1: $r_a = 0.0834(D_{20}/D_{20})^{0.052}$ The equation 2: $r_a = 0.0384(D_2/D_{20})^{0.052}$ 12.22       D ₂ /D ₂₀ Range 3.7       Use Equation 2: $r_a = 0.0384(D_2/D_{20})^{0.052}$ 12.23       D ₂ /D ₂₀ Range 1.3-3.0       Use Equation 2: $r_a = 0.0384(D_2/D_{20})^{0.052}$ 12.23       D ₂ /D ₂₀ Range 1.3-3.0       Use Equation 2: $r_a = 0.0384(D_2/D_{20})^{0.052}$ 12.24       Cantral Dimensionless Shear Stress       Equation 1: $r_a = 0.0384(D_2/D_{20})^{0.052}$ 13.3       R       Required Bankfull Mean Depth (ft) $d_a = \frac{f_{abb}D_{ab}}{f_{ab}}$ 13.3       R       Hydraulic Radius (ft)       Required Bankfull Water Surface Stope (ft) ft)         13.3       R       Hydraulic Radius (ft) $q_a = \sqrt{W_p}$ 13.3       R       Hydraulic Radius (ft) $q_a = \sqrt{W_p}$ 13.4       Hydraulic Radius (ft)	0.006 S /ft	fry Bankfull Water	Surface Slope				
16.55 $V_{\alpha}$ fr:       Wated Perimeter         16.5 $V_{\alpha}$ fr:       Submerged Specific Waght of Sediment (1.65)         16.5 $V_{\alpha}$ (B>/ft ² )       Density of Water (62.4)         27.00 $c$ $D_{20}/D_{20}$ Range 37       Use Equation 1: $\tau_{\alpha} = 0.0334(D_{20}/D_{20})^{-0.052}$ Range 37       Use Equation 1: $\tau_{\alpha} = 0.0334(D_{20}/D_{20})^{-0.052}$ Range 37       Use Equation 1: $\tau_{\alpha} = 0.0334(D_{20}/D_{20})^{-0.052}$ Range 37       Use Equation 2: $\tau_{\alpha} = 0.0334(D_{20}/D_{20})^{-0.052}$ Range 37       Use Equation 2: $\tau_{\alpha} = 0.0334(D_{20}/D_{20})^{-0.052}$ Range 37       Use Equation 2: $\tau_{\alpha} = 0.0334(D_{20}/D_{20})^{-0.052}$ Range 3:-7       Use Equation 2: $\tau_{\alpha} = 0.0334(D_{20}/D_{20})^{-0.052}$ Range 3:-7       Use Equation 3: $0.002 \pm d$ Required Bankfull Mean Depth (R)       Range 4:-7       Range 4:-7 $t_{15.433} \pm drd_{1}$ Stability: $T_{1.44}$ Range 4:-7       Range 4:-7 $t_{15.433} \pm Sr.5$ Stability: $T_{1.44}$ Range 4:-7       Range 4:-7 $t_{1.5.433} \pm Sr.5$ Stability: $T_{1.45}$ Range 4:-7       RR	1.58 d (fi	Bankfoll Mean I	Depth				
1.65 $\gamma_i$ Submerged Specific Weight of Sediment (1.65) $\sim 62.4$ $\gamma(Bos/fth^2)$ Density of Watter (62.4)         Calculation of Limitskin Watter States $\sim 27,00$ , c $D_{50}/D_{50}$ Range 3.7       Use Equation 1: $\tau_{\alpha}^{-} = 0.0384(D_{50}/D_{50}^{-0.667})       \tau_{\alpha}^{-} = 0.0384(D_{50}/D_{50}^{-0.667})         \sim 2.22^{-1} D_{9}/D_{50}       Range 1.3-5.0       Use Equation 2:         \tau_{\alpha}^{-} = 0.0384(D_{5}/D_{50}^{-0.667})       \tau_{\alpha}^{-} = 0.0384(D_{5}/D_{50}^{-0.667})         \sim 0.0100^{-1} \tau_{\alpha}^{-}       Cranical Dimensionless Shear Stress       Equation Used:         \sim 0.0102^{-1} d       Required Bankfull Mean Depth (ft)       d d =$	Sector and the sector of the s						
62.4 $T(B \times ft^{A})$ Density of Water (62.4)         27.00       C $D_{30}/D_{30}$ Range 3.7       Use Equation 1: $\tau_{a}^{'} = 0.0384(D_{30}/D_{50}^{'})^{0.0572}$ 22.22 $D_{a}/D_{30}$ Range 3.3       Use Equation 2: $\tau_{a}^{'} = 0.0384(D_{20}/D_{50}^{'})^{0.0572}$ 20.09 $t_{a}^{'} = 0.0384(D_{20}/D_{50}^{'})^{0.0572}$ $t_{a}^{'} = 0.0384(D_{20}/D_{50}^{'})^{0.0572}$ 20.09 $t_{a}^{'} = 0.0384(D_{20}/D_{50}^{'})^{0.0577}$ $t_{a}^{'} = 0.0384(D_{20}/D_{50}^{'})^{0.0577}$ 20.09 $t_{a}^{'} = 0.0384(D_{20}/D_{50}^{'})^{0.0577}$ $t_{a}^{'} = 0.0384(D_{20}/D_{50}^{'})^{0.0577}$ 20.09 $t_{a}^{'} = 0.0384(D_{20}/D_{50}^{'})^{0.0577}$ $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0577}$ 20.09 $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0577}$ $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0577}$ 20.09 $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0577}$ $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0577}$ 20.09 $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0577}$ $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0577}$ 20.09 $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0777}$ $t_{a}^{'} = 0.0384(D_{20}/D_{10}^{'})^{0.0777}$ 20.00 $t_{a}^{'} = 0.0584(D_{10}/D_{10}^{'})^{0.0777}$ $t_{a}^{'} = 0.0584(D_{10}/D_{10}^{'})^{0.0777}$ 20.000 $t_$	10,56 W.	-					
$\begin{array}{c} Clear Arms of Chinese Gamma active Start Starts Sta$			ific Weight of Sediment [1.65]				
27,00 • $D_{50}$ $D_{50}$ Range 3       Use Equation 1: $\vec{\tau}_{a} = 0.0334 (D_{50})^{-0.052}$ 2.22 $D_{1}/D_{50}$ Range 1.3-3.0       Use Equation 2: $\vec{\tau}_{a} = 0.0384 (D_{2}/D_{50})^{-0.057}$ 2.019 $\vec{\tau}_{a}$ Critical Dimensionless Shear Stress       Equation Used:         2.019 $\vec{\tau}_{a}$ Critical Dimensionless Shear Stress       Equation Used:         2.019 $\vec{\tau}_{a}$ Critical Dimensionless Shear Stress       Equation Used:         2.010 $\vec{\tau}_{a}$ Required Bankfull Mean Depth (ft) $\vec{\tau}_{a} = \frac{\vec{\tau}_{a} (D_{a})}{Degrading?}$ 2.000 $\vec{S}_{a}$ Required Bankfull Water Surface Stope (ft/ft) $\vec{S}_{a} = \frac{\vec{\tau}_{a} (D_{a})}{\vec{T}_{a}}$ 3.15.433 $\vec{S}_{a}$ Stability:       Degrading? $\vec{T}_{a}$ 3.13.       R       Hydraulic Reduits (ft) $\vec{T}_{a} = A/W_{p}$ $\vec{T}_{a} = A/W_{p}$ 3.436 $\vec{\tau}_{a}$ Bankfull Shear Stress (b/ft ² ) $\vec{\tau}_{a} = RS$	62.4 γ (It	os/ft ² : Density of Ward	at (62.4)	<u>1.5 a. 1.9 parts and a state was a stat</u>			
$\vec{\tau}_{a} = 0.0834(D_{50}/D_{50}^{-0.652})$ $\vec{\tau}_{c} = 0.0384(D_{c}/D_{50}^{-0.657})$ $\vec{\tau}_{c} = 0.0384(D_{c}/D_{50}^{-0.657})$ Equation 2: $\vec{\tau}_{c} = 0.0384(D_{c}/D_{50}^{-0.657})$ Equation Used: $\vec{\tau}_{c} = \frac{\vec{\tau}_{c}}{\sqrt{t}}D_{c}}$ Equation Used: $\vec{\tau}$		Calcul	aton of Crimest Dam reconfess	She is St			
2.22 $D_p/D_{50}$ Range 1.3-3.0       Use Equation 2: $r_e^{-} = 0.0384(D_p/D_{50}^{-0.0557})$ 0.019 $\vec{r}_e$ Cannel Dimensionless Shear Stress       Equation Used:       2.22         0.019 $\vec{r}_e$ Cannel Dimensionless Shear Stress       Equation Used:       2.22         0.019 $\vec{r}_e$ Cannel Dimensionless Shear Stress       Equation Used:       2.22         0.010 $\vec{r}_e$ Cannel Dimensionless Shear Stress       Equation Used:       2.22         0.102 $\vec{d}_e$ Required Bankfull Mean Depth (ft) $\vec{r}_e/kD_e$ $\vec{r}_e/kD_e$ $\vec{r}_e/kD_e$ 0.102 $\vec{d}_e$ Required Bankfull Water Surface Stope (ft/ft) $\vec{r}_e = -\frac{\vec{r}_e/kD_e}{kD_e}$ $\vec{r}_e/kD_e$ $\vec{r}_e/kD_e$ $\vec{r}_e = -\frac{\vec{r}_e/kD_e}{kD_e}$ $\vec{r}_e/kD_e$ $\vec{r}_e/k$	27,00 c D ₅₀	D ₅₀ Range 3-7	Use Equation 7:				
$\vec{\tau}_{e} = 0.0384 (D_{e}D_{50}^{-0.087})$ Equation Used: $\vec{\tau}_{e} = 0.0384 (D_{e}D_{50}^{-0.087})$ Equation Used: $\vec{\tau}_{e} = 0.0384 (D_{e}D_{50}^{-0.087})$ Equation Used: $\vec{\tau}_{e} = \frac{\vec{\tau}_{e}d_{e}D_{1}}{S}$ $\vec{\tau}_{e} = \frac{\vec{\tau}_{e}d_{e}D_{2}}{S}$ $\vec{\tau}_{e} = \frac{\vec{\tau}_{e}d_{e}D_{2}}{d}$ $\vec{\tau}_{e}$			$\tau_{a} = 0.0834 (D_{50}, D_{50})^{-0.672}$				
$v_{a}$ Cantral Dimensionless Shear Stress       Equation Used: $v_{a}$ and $U$ Bankfull Main Depth (fc) $d_{a}$ Required Bankfull Main Depth (fc) $d_{a}$ $d_{a} = \frac{r_{a} r_{b} D_{b}}{S}$ S         15.433 $drd_{a}$ Stability:       Degrading         Understand Varies Surface Surper Federated for Encounters of Largerst Federate         0.000       S.       Required Bankfull Water Surface Super (frift) $v_{a} = \frac{r_{a} r_{b} D_{b}}{r_{a}}$ $drd_{a}$ Stability: $v_{a} = \frac{r_{a} r_{b} D_{b}}{r_{a}}$ $drd_{a}$ Stability: $v_{a} = \frac{r_{a} r_{b} D_{b}}{r_{a}}$ $drd_{a}$ Stability:         Degrading:         (133)         Stability: $T_{a} r_{b} D_{b}$ Degrading:         There is a stress (lb) fr ² : $v_{a} = r_{a} r_{b} N_{b}$ $r_{a} = r_{a} r_{b} N_{b}$ Output frame from reach wide pebble count distribution (Use your best judgement).         If homogeneous we "Loopoid e at" Curve Data, if hearingeneous we "Coimdo" Curve Data.         Novelbe Particle Size (nm) At Bankfull Shear Stress         predicted by the Leopoid, Wolman, & Miller 1964 Power-trendline. <td< td=""><td>2.22 D/1</td><td>D₅₀ Range 1.3-3.0</td><td>Use Equanon 2:</td><td></td><td></td><td></td><td></td></td<>	2.22 D/1	D ₅₀ Range 1.3-3.0	Use Equanon 2:				
Cardiate Bankfull Mean Depth (ft;         0.102       d,       Required Bankfull Mean Depth (ft; $d_{z} =$	Contraction of the local division of the loc		$\tau_{\rm c} = 0.0384 (D_{\rm b}/D_{50})^{-0.887}$				
Creation Characterized for the initial product of Lancest Particle         0.102 +       d.       Required Bankfull Mean Depth (ft) $d_z =$	0.019 3 a	Critical Dimensi	onless Shear Stress		Equation Used:		<b>3</b> 22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Tana an Darrie	1	
$d_{c} = \underbrace{f_{c} M_{D}}{S}$ $f_{c} + \frac{f_{c} M_{D}}{S}$	0.102 - 2	and the second					
15.433d/d.Stability:DegradingCatestate Bonendi Water Surface Super Required for Foremanism of Largest Particle.w0.000S.Required Bankfull Water Surface Slope (fr/ft) $S_{g} =dd_{g}(gD)S_{g} =dd_{g}(gD)Stability:DegradingSubment France for Weblations Bankfull Shear Succes1.33R Hydraule Radius (ft)R =A/W_g0.4966Y or NIs the Bed Material Homogeneous?Determine from reach wide pebble count distribution (Use your best judgement).If homogeneous use "Leopold or al" Curve Data, if hears Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.0.085lb, ft?Predicted Shear Stress (lbs: ft?: Required To Move D.predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.MAAmmMovable Particle Size imm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.MAAmmMovable Particle Size imm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.MAAmmMovable Particle Size imm) At Bankfull Shear Stresspredicted by the Colorado Data Power-trendline.MAAmmPredicted Shear Stress (lbs: ft? Required To Move D.predicted by the Colorado Data Power-trendline.MAApredicted by the Colorado Data Power-trendline.$		negunes sanas	*				
15.433d/d.Stability:DegradingCatestate Bonendi Water Surface Super Required for Foremanism of Largest Particle.w0.000S.Required Bankfull Water Surface Slope (fr/ft) $S_{g} =dd_{g}(gD)S_{g} =dd_{g}(gD)Stability:DegradingSubment France for Weblations Bankfull Shear Succes1.33R Hydraule Radius (ft)R =A/W_g0.4966Y or NIs the Bed Material Homogeneous?Determine from reach wide pebble count distribution (Use your best judgement).If homogeneous use "Leopold or al" Curve Data, if hears Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.0.085lb, ft?Predicted Shear Stress (lbs: ft?: Required To Move D.predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.MAAmmMovable Particle Size imm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.MAAmmMovable Particle Size imm) At Bankfull Shear Stresspredicted by the Leopold, Wolman, & Miller 1964 Power-trendline.MAAmmMovable Particle Size imm) At Bankfull Shear Stresspredicted by the Colorado Data Power-trendline.MAAmmPredicted Shear Stress (lbs: ft? Required To Move D.predicted by the Colorado Data Power-trendline.MAApredicted by the Colorado Data Power-trendline.$		d,=	* are : S		τ.		
Calculate Bankfull Water Surface Stope Required for Enterangement of Largent Particle $x_{0.000}$ S.       Required Bankfull Water Surface Stope (ft/ft)         Stability:         Calculation         Calculation         Stability:         Degrading         Stability:         Colspan="2">Stability:         Colspan="2">Stability:         Colspan="2">Stability:         Stability:         A/Wp         Stability:         The colspan="2">Stability:         Y or N       Is the Bed Material Homogeneous?         Determine from reach wide pebble c	15.433 d.d.	Stebility:			•		
$0.000$ S.Required Bankfull Water Surface Slope (fiffl) $S_{e} = \frac{\tau_{c} \gamma_{k} D_{c}}{d}$ $S_{e} = \frac{\tau_{c} \gamma_{k} D_{c}}{d}$ $d$ $15.433$ S/S.Stability:Degrading:1.33RHydraulic Radius (ft) $R = A/W_{p}$ $0.496$ $\tau_{c}$ Bankfull Shear Stress (lb/ft ² ) $\tau_{c} = \gamma RS$ Y or NIs the Bed Material Homogeneous? Determine from reach wide pebble count distribution (Use your best judgement). If homogeneous use "Leopoid et al" Curve Data, if heterogeneous use "Colorado" Curve Data. $0.685^{\circ}$ Ib. ft ² Movable Particle Size (min) At Bankfull Shear Stress predicted by the Leopoid, Wolman, & Miller 1964 Power-trendline. $MA_{A}$ minMovable Particle Size (min) At Bankfull Shear Stress predicted by the Leopoid, Wolman, & Miller 1964 Power-trendline. $MA_{A}$ Movable Particle Size (min) At Bankfull Shear Stress predicted by the Leopoid, Wolman, & Miller 1964 Power-trendline. $MA_{A}$ minMovable Particle Size (min) At Bankfull Shear Stress predicted by the Loopoid, Data Power-trendline. $MA_{A}$ minMovable Particle Size (min) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline. $MA_{A}$ Movable Particle Size (min) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline. $MA_{A}$ minPredicted Shear Stress (lbs: ft ² ; Required To Move D; predicted by the Colorado Data Power-trendline.							linguistanti anno 1997. Anno 1997 - Anno
$\frac{s_{e} = \frac{r_{c} \gamma_{e} D}{d}}{d}$ $\frac{15.433}{15.433}$ S/S _e Stability: $\frac{s_{e} = \frac{r_{c} \gamma_{e} D}{d}}{S(S_{e} - Stability: Degrading)}$ $\frac{s_{e} = \frac{r_{e} \gamma_{e} P}{P}$ $\frac{s_{e} = \frac{r_{e} \gamma_{e} P}{P}$ Y or N Is the Bed Material Homogeneous? Determine from seach wide pebble count distribution (Use your best judgement). If homogeneous use "Leopold et al" Curve Data, if hererogeneous use "Colorado" Curve Data. $\frac{38}{100}$ $\frac{mn}{100}$ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $\frac{36}{100}$ $\frac{mn}{100}$ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $\frac{36}{100}$ $\frac{mn}{100}$ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $\frac{36}{100}$ $\frac{mn}{100}$ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $\frac{36}{100}$ $\frac{mn}{100}$ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $\frac{36}{100}$ $\frac{mn}{100}$ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $\frac{36}{100}$ $\frac{mn}{100}$ Predicted Shear Stress (lbs. ft ² ; Required To Move D, predicted by the Colorado Data Power-trendline. $\frac{36}{100}$ $\frac{10}{100}$ $\frac{10}$	a state of the second	the second se		MAN REPAIRS			
d15.433S/SrStability:DegradingSodiment Transport Valedation - Variation Space1.33RHydraulic Radius (fr) R = $A/W_p$ 1.33RHydraulic Radius (fr) R = $A/W_p$ 0.496 $\tau_c$ Bankfull Shear Stress (lb/ft ² ) $\tau_c = \gamma RS$ Y or NIs the Bed Maternal Homogeneous?Determine from reach wide pebble count distribution (Use your best judgement). If homogeneous use "Leopold et. al" Curve Data, if hererogeneous use "Colorado" Curve Data.38mmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.0.085lb/ft ² Predicted Shear Stress (lbs/ft ² ) Required To Move D. predicted by the Leopold Wolman, & Miller 1964 Power-trendline.N/Amm'Movable Particle Size (imm) At Bankfull Shear Stress predicted by the Leopold Wolman, & Miller 1964 Power-trendline.N/Amm'Predicted Shear Stress (lbs/ft ² ) Required To Move D. predicted by the Colorado Data Power-trendline.N/Amm'Predicted Shear Stress (lbs. ft ² ) Required To Move D. predicted by the Colorado Data Power-trendline.		nequirea izanza					
Section of Transport Valuation - Barkfull Shear Stress1.33RHydraulic Radius (ft) R = $A_f W_g$ R = $A_f W_g$ $R = A_f W_g$ 0.496 $\tau_c$ Bankfull Shear Stress (lb/ft ² ) $\tau_c = \gamma RS$ Y or NIs the Bed Material Homogeneous? Determine from reach wide pebble count distribution (Use your best judgement). If homogeneous use "Leopold et al" Curve Data, if hererogeneous use "Colorado" Curve Data.38mmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.90.085lb/ft ^{2*} Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.N/AmmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.N/AmmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold Wolman, & Miller 1964 Power-trendline.N/Ah.ft ^{2*} Predicted Shear Stress (lbs. ft ² Required To Move D. predicted by the Colorado Data Power-trendline.N/Ah.ft ^{2*} Predicted Shear Stress (lbs. ft ² Required To Move D. predicted by the Colorado Data Power-trendline.		5,=	43144 A		:		
Section of Transport Valuation - Barkfull Shear Stress1.33RHydraulic Radius (ft) R = $A_f W_g$ R = $A_f W_g$ $R = A_f W_g$ 0.496 $\tau_c$ Bankfull Shear Stress (lb/ft ² ) $\tau_c = \gamma RS$ Y or NIs the Bed Material Homogeneous? Determine from reach wide pebble count distribution (Use your best judgement). 	1. 1. 15 433 1 S/S.	Stability:	Creeding W	reety			
1.33RHydraulic Radius (ft) R = $A/W_p$ $R = A/W_p$ Bankfull Shear Stress (lb/ft². $\tau_c = \gamma RS$ $T = \gamma RS$ Y or NY or NIs the Bed Material Homogeneous? Determine from reach wide pebble count distribution (Use your best judgement). 		In the second					and the second
R = $A/W_p$ 0.496 $\tau_c$ Bankfull Shear Stress (lb/ft²). $\tau_c =$ $\gamma RS$ Y or NIs the Bed Material Homogeneous? Determine from reach wide pebble count distribution (Use your best judgement). If homogeneous use "Leopold et al" Curve Data, if hererogeneous use "Colorado" Curve Data.38mmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.0.085 $lb_r ft^2$ Predicted Shear Stress (lbs/ft^2) Required To Move D. predicted by the Leopold. Wolman, & Miller 1964 Power-trendline.N/AmmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold. Wolman, & Miller 1964 Power-trendline.N/AmmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold. Wolman, & Miller 1964 Power-trendline.N/AfmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.N/Ahb/ft²Predicted Shear Stress (lbs/ft². Required To Move D. predicted by the Colorado Data Power-trendline.N/Ahb/ft²Predicted Shear Stress (lbs/ft². Required To Move D. predicted by the Colorado Data Power-trendline.				un oncar:	MEERS		
$0.496$ $\tau_c$ Bankfull Shear Stress (lb/ft²) $\tau_c =$ $\gamma RS$ Y or NIs the Bed Maternal Homogeneous? Determine from seach wide pebble count distribution (Use your best judgement). If homogeneous use "Loopold et. al" Curve Data, if hererogeneous use "Colorado" Curve Data.38mmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $0.085^{-1}$ Determine from stress (lbs: ft²: Required To Move D. predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $N/A$ mmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $N/A$ mmMovable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. $N/A$ Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline. $N/A$ Predicted Shear Stress (lbs: ft²: Required To Move D. predicted by the Colorado Data Power-trendline.	1.33	-					
Test     YRS       Yor N     Is the Bed Material Homogeneous?       Determine from reach wide pebble count distribution (Use your best judgement). If homogeneous use "Leopold et al" Curve Data, if henerogeneous use "Colorado" Curve Data.       38     mm       38     mm       0.085*     lbr fr ² Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline. Predicted Shear Stress (lbsr fr ² ; Required To Move D. predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.       MA     mm       Movable Particle Size imm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.       Movable Particle Size imm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.       Movable Particle Size imm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.       Motable Particle Size imm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.	and the state		<i>n</i>				
Y or N       Is the Bed Material Homogeneous?         Determine from reach wide pebble count distribution (Use your best judgement). If homogeneous use "Leopold et al" Curve Data, if heterogeneous use "Colorado" Curve Data.         38.       mm         38.       mm         0.085.*       br ft"         N/A       mm         N/A       mm         N/A       br ft"	1.420 H	• •	-				
Determine from reach wide pebble count distribution (Use your best judgement). If homogeneous use "Leopold et. al" Curve Data, if hererogeneous use "Colorado" Curve Data.         38       mm         mm       Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Möller 1964 Power-trendline.         0.085       Predicted Shear Stress (lbs: ft ² Required To Move D. predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.         M/Ai       Predicted Shear Stress (lbs: ft ² Required To Move D. predicted by the Colorado Data Power-trendline.         N/Ai       Predicted Shear Stress (lbs: ft ² Required To Move D. predicted by the Colorado Data Power-trendline.							
If homogeneous use "Leopold et. al" Curve Data, if hemogeneous use "Colorado" Curve Data.         38       mm         38       mm         0.085       Ib, ft"         NA       mm         NA       b, ft"         NA       b, ft"         NA       Predicted Shear Stress (Ibs, ft") Required To Move D.         predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         NA       mm         NA       mm         b, ft"       Movable Particle Size (mm) At Bankfull Shear Stress predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         NA       mm         NA       b, ft"         NA       b, ft"	Y or			harding of t			a
38       mm       Movable Particle Size (mm) At Bankfull Shear Stress         predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.       Predicted Shear Stress (lbs: ft ² ) Required To Move D.         0.085       predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         N/A       mm         Movable Particle Size (mm) At Bankfull Shear Stress         predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         Movable Particle Size (mm) At Bankfull Shear Stress         predicted by the Colorado Data Power-trendline.         N/A         Ib: ft ² predicted Shear Stress (lbs: ft ² Required To Move D.         predicted Shear Stress (lbs: ft ² Required To Move D.         predicted by the Colorado Data Power-trendline.         Predicted Shear Stress (lbs: ft ² Required To Move D.         predicted by the Colorado Data Power-trendline.		Letermine from a If homogeneous use "Let	regen wide people count distri pold et. al ^a Curve Data, if heterogeneo	pution (U us use "Coie	se your best jui prado" Curve Data.	igemen	9.
265       mm       predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         0.085       lb, fr ² Predicted Shear Stress (lbs; fr ² ) Required To Move D.         10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		-					
0.085       Ib, ft ² Predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         N/A       Ib, ft ² Predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         N/A       Ib, ft ² Movable Particle Size imm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline.         N/A       Ib, ft ² Predicted Shear Stress (lbs, ft ² Required To Move D.         predicted by the Colorado Data Power-trendline.       Predicted Shear Stress (lbs, ft ² Required To Move D.         predicted by the Colorado Data Power-trendline.       Predicted Shear Stress (lbs, ft ² Required To Move D.	38 mm				an Aliana		
0.085*       Ib; ft ² predicted by the Leopold, Wolman, & Miller 1964 Power-trendline.         M/A:       mm         mm       Movable Particle Size imm) At Bankfull Shear Stress         predicted by the Colorado Data Power-trendline.         Predicted Shear Stress (lbs. ft ² )         Required To Move D.         predicted by the Colorado Data Power-trendline.		Deadlered Share					
Movable Particle Size imm) At Bankfull Shear Stress predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs. ft ² Required To Move D predicted by the Colorado Data Power-trendline.	0.085 Ib, ft		-		endline		
M/A: mm predicted by the Colorado Data Power-trendline. Predicted Shear Stress (lbs. ft ² Required To Move D. predicted by the Colorado Data Power-trendline.		fucuries of the	anophina evaluation of telling 1904	- a construct	urse Notabet 1944		
Predicted by the Colorado Data Power-trendline. Predicted Shear Stress fibs. ft ² . Required To Move D. predicted by the Colorado Data Power-trendline.	N/A	Movable Particle	Size imm) At Bankfull Shear Str	ess			
predicted by the Colorado Data Power-trendline.	Critic Film						
	N/A IL			e D _i			
Taken from 'in Edgenenic Reach i'verd Book, 2005 by Kosgen fild Silvey		predicted by the					
	Taker	n trom 1 in Reference Reach Freid	Door 2010 DV Hosgen and Suvey			nary anna an a	J.

#### **Entrainment Calculation Form**

Status:		d, iteration 1		Location Reach		and the second se
Project: Date:	And the second se	3-270 ⁻¹ 22/2011	***	Observers	( Configuration of the second s	and the second se
	**************************************	endef side \$ 3.			*****************	
Value	Variable		<b>" Defini</b> ared 4ntarmation of <i>F</i> that	the second se		<u></u>
C	D. August					Select Sample
	D ₅₀ (mm)		(1) or Pavement (2)	201	8	章1.541
mineral descention whether with the later.	D ₅₀ (mm)	**	ample [1] or Subpavement (			Type -
<b></b>	Dı (mmi		from Bar Sample (1) or Par	(ش) emenr	Bar Sample	
	$D_i(ft)$	Di (mmi - 304.)				
	S (fr/fi)	Bankfull Water				
and at the second s	d (fr:	Bankfull Mean l Bankfull Cross	-			
1 million and the second se	A (ff ² ) W7 665	Wetted Perimet				
	W _p fft			X53		
	Vs were see h		cific Weight of Sediment (1	ani Tani		
62.4	y.(lbs/it)	Density of Wats	the second s			
		Calcul	ation of Critical Dimension	mics's sheet St	C	
27.00	D ₅₀₇ D ₅₀	Range 3-	Use Equation 1:			
			$\tau_{a} = 0.0834 (D_{50}/D_{50})^{-0.8}$	n		and the second
2,22	D _i /D ₅₀	Range 1.3-3.0	Use Equation 2:			
<u></u>		-	$\tau_{in} = 0.0384 (D_i, D_{50})^{-0.885}$	•		
0.019	r [°] a	Critical Dimens	ionless Shear Stress		Equation Used:	2
T	L	** 11* * 11.*				The state of the second st
	and the second	and the second se	tean Dentä Required for	Lathinnent of	HANLEY STREET	
0.140	đ,	Required Banki	all Mean Depth (ff;			
		d,=	ť _d yp.		•	
7.665	đ/đ,	Stability:	Degrading			
			· Surface Suppe Required			
			ull Water Surface Slope (ft/		and the second	
0.001	S.	Reduted Darrei		*47		
		S,=	Ť _č ijDi		•	
7.665	S/S,	Stability:	Degrading		•	
1.00.5						F
		Sedimen	Jionstein Validation - E	ankusi-Shear S	Stress	<del></del>
1.03	R	Hydraulic Radiu	-			
L		R=	-			
0.284	ī,	Bankfull Shear S	-			
		<i>v</i> .=	YRS			
Y Y	Y or N	Is the Bed Mater	rial Homogeneous?	Me		
	I 164-0	Determine from	reach wide pebble count opold et. al" Curve Data, if heter	distribution (U openeous use "Cold	se your best juagen mdo" Curve Data.	ient).
21			e Size (mm) At Bankfull She			• • •
			Leopold, Wolman, & Mille		endline.	
0.085	in the		Stress (lbs/it ² ) Required To		11:	
<u> Charletty</u>		predicted by the	Leopold, Wolman, & Mille	r 1904 Power-tri	endune.	
	-	Movable Particle	e Size (mm) At Bankfull She	ar Stress		
			Colorado Data Power-tren			
a compe			Stress (lbs/ft [*] ) Required To			
	h itt		Colorado Data Power-tren			
- mut - 100-100 - 1			Book, 2005 by Rosgen and Silve			•

#### **Entrainment Calculation Form**

,

.

.

Project:	U-2707	Location:	Forsyth County. NG
Stream:	UT to Muddy Creek	Reach:	R1 Existing XS1
	8/16/2011	Observers:	Mulkey
Date:	OF IQ/ZVII		and and a second s

Input Variat	lles	Output Variables	
Bankfull X-Sec Area (Abkf)	9.86 sq ft	Bankfull Mean Depth (Dbkf)	0,85 ft
Bankfull Width (Wbkf)	11.58 ft	Wetted Perimeter (WP)	一世。云云13.28 ft 了会想了
D84 (Riffle or pavement)	1.82 mm	D84 (mm/304.8)	] 云。金树和 0.01 和 P 拖 注意
Bankfull Slope (S)	0.0063 ft/ft	Hydraulic Radius (R)	2月4日 0.74 ft 信心如何
Gravitational Accleration (g)	32.2 ft/sg sec	Dbkf/D84 (use D84 in ft)	142.35 ft/ft and and
Bankfull Maximum Depth	1,63 ft.	R/D84 (use D84 in ft)	· · · · · · · · · · · · · · · · · · ·

Dbkf/D84, u/u*, Mannings n	
u/u* (Using Dbki/D84 Red Book: p188; Blue p233)	13.5 ft/s/ft/s
Mannings n (Red Book: p189; Blue :p236)	0.024
Velocity (From Mannings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	14.4.04 fVs

	u/u*=2.63+5.7logR/D84	
u*	u* = (gRS)^.5	₩44年7月 0.39 ft/s 地名法
Velocity:	$u = u^{*}(2.83+5.7\log(R/D84))$	3430 15.74 fl/s 2013

	Mannings n by StreamTy	De
Stream type		<u>C6</u>
Mannings n	(Red Book: p187: Blue :p237)	0,036
Velocity (From I	Mannings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	2.77 fl/s

Continuity Equation	
Qokf (cfs) original curve or stream gage hydraulic geometry	53 cls
Velocity (u=Q/A) or from stream gage hydraulic geometry	5.38 ft/s

Sandbed stream

.

.

Dr. Richard Hey Method	
	一般的表达:14.2月中的直接
Friction Factor - f $1/f^{1/2} = 2.03 \log (aR/3.5D84)$	(13) 14 0.033 15 12 14
Velocity (From D'Arcy Weisbach equation: u=(8*g*R S/I)*1/2)	6.03 ft/s

·

Project:	U-2707	Location:	Forsyth County, NC
Stream:	UT to Muddy Creek	Reach:	R1 Existing XS3
Date:	8/16/2011	Observers:	Mulkey
	Contraction of the second s		ALTERNATION OF A DESCRIPTION OF A DESCRIPT

Input Variables		Output Variables	
Bankfull X-Sec Area (Abkf)	-8.93 sq ft	Bankfull Mean Depth (Dbkf)	0.65 ft
Bankfull Width (Wbkf)	13:66 ft	Wetted Perimeter (WP)	
D84 (Riffle or pavement)	4.887 mm	D84 (mm/304.8)	1.3.2 ft - 1.2 ft - 1
Bankfull Slope (S)	0.0063 ft/ft	Hydraulic Radius (R)	0.60 ft
Gravitational Accleration (g)	32.2 fl/sq sec	Dbkf/D84 (use D84 in ft)	40.54 ft/ft
Bankfull Maximum Depth	1,68 ft.	R/D84 (use D84 in ft)	1

	Dbkf/D84, u/u*, Mannings n	
u/u*	(Using Dbkf/D84 Red Book: p188; Blue p233)	11.2 ft/s/ft/s
Mannings	n (Red Book: p189; Blue :p236)	0.026
Velocity	(From Mannings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	3.22 ft/s

	u/u*=2.83+5.7logR/D84	
u*	u* = (gRS)^.5	0.35 ft/s = 1
Velocity:	u = u*(2.83+5.7log(R/D84))	4.11 ft/s 🕬

.

the second of th

	Mannings n by StreamType	
Stream type		C5
Mannings n	(Red Book: p187; Blue :p237)	0.035
Velocity (From Mai	nnings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	2.39 fVs 📷 🔤

Continuity Equation	
Q5kf (cfs) original curve or stream gage hydraulic geometry	53 cfs
Velocity (u=Q/A) or from stream gage hydraulic geometry	5.94 ft/s

Sandbed stream

	Dr. Richard Hey Method	
Coefficient a	$a = 11(R/dmax)^{4}-0.314$	- 高學是生15.4 小江如神社》
<b>Friction Factor</b>		一位。1997年1997年1997年1997年1997年1997年1997年1997
Velocity	(From D'Arcy Weisbach equation: u=(8"g"R S/t)^1/2)	4.43 ft/s

Project:	U-2707	Location:	Forsyth County, NC
Stream:	UT to Muddy Creek	Reach:	R1 Existing XS5
Date:	8/16/2011	Observers:	Mulkey

Input Varia	bles	Output Va	riables
Bankfull X-Sec Area (Abkf)	14 sq ft	Bankfüll Mean Depth (Dbkf)	1.58 ft
Bankfull Width (Wbkf)	8.86 ft	Wetted Perimeter (WP)	12.02 ft : 2
D84 (Riffle or pavement)	0.97 mm	D84 (mm/304.8)	5.00 ft # 22 2
Bankfull Stope (S)	0.0063 ft/ft	Hydraulic Radius (R)	· · · · · · · · · · · · · · · · · · ·
Gravitational Accleration (g)	32.2 ft/sq sec -	Dbkf/D84 (use D84 in ft)	496.48 ft/ft 👘 🔄
Bankfull Maximum Depth	2.37 代	R/D84 (use D84 in ft)	

Alternative states and states	• • • • • • • • • • • • • • • • • • •	
	Dbk//D84, u/u*, Mannings n	
u/u*	(Using Dbkf/D84 Red Book: p188; Blue p233)	fi/s/ft/s
Mannings n	(Red Book: p189; Blue :p236)	
Velocity (Fron	n Mannings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	#DIV/01 ft/s 编编
Beergering and an and a second second	PUNARIE TO CALCULATE DUE TO LOW D2	Are

#### UNABLE IU CALEVENICUU

	u/u*=2.83+5.7logR/D84	
u*		(二) (1.49 ft/s ) (1.49 ft/s )
Velocity:	u = u"(2.83+5.7log(R/D84))	(小) 427, 8.49 ft/s 回 2004

Mannings n by StreamType	
Stream type	C5
Mannings n (Red Book: p187; Blue :p237)	0.035
Velocity (From Mannings' equation: u=1,4865 * (R^2/3)(S^1/2)/n)	3.74 ft/s 💷 🗄

Continuity Equation	
Qbkf (cfs) original curve or stream gage hydraulic geometry	53 cfs
Velocity (u=Q/A) or from stream gage hydraulic geometry	3.79 ft/s 👘 🔝

Sandbed stream

ł

Sandbed stream		
	Dr. Richard Hey Method	The state of the s
Coefficient a	a = 11(R/dmax)^-0.314	· 13.9 学经科组
Friction Factor		1 4 4 5 6 .0.024 金元光電波
Velocity	(From D'Arcy Weisbach equation: u=(8"g"R S/f)^1/2)	8,84 ft/s

<b>Project:</b>	U-2707	Location:	Forsyth County, NC
Stream:	UT to Muddy Creek	Reach:	Proposed R1a
Date:	8/16/2011	Observers:	Mulkey

Based on Characteristics of Riffle Number 3

Input Varia	bles	Output Variables	
Bankfull X-Sec Area (Abkf)	10 sq ft	Bankfull Mean Depth (Dbkf)	Q.84 ft
Bankfull Width (Wbkf)	12 ft	Wetted Perimeter (WP)	13.68 ft 13.68 ft
D84 (Riffle or pavement)	4.87 mm	D84 (mm/304.8)	30-54 0.02 ft 55-54
Bankfull Slope (S)	0.0075 ft/ft	Hydraulic Radius (R)	上: 一社 0.73 ft 中 一子 子子
Gravitational Accleration (g)	32:2 ft/sq sec	Dbki/D84 (use D84 in ft)	(A) # 52.57 fl/ft 計論書
Bankfull Maximum Depth	1.4 ft.	R/D84 (use D84 in ft)	(小平) 45.75 ft/ft 空中)

	······································	
	Dhki/D84, u/u*, Mannings n	
u/u*	(Using Dbkf/D84 Red Book: p188; Blue p233)	12 ft/s/ft/s
Mannings n	(Red Book: p189; Blue :p236)	0.025
Velocity (I	From Mannings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	4.18 ft/s

	u/u*=2:83+5,7logR/D84	
u*	u* = (gRS)^.5	· 考虑这次 0.42 ft/s + 235
Velocity:	u = u*(2.83+5.7log(R/D84))	(字理)(\$17 ft/s)(字里)

	Mannings n by StreamType	
Stream type		C5
Mannings n	(Red Book: p187; Blue :p237)	0,035
Velocity (From Ma	nnings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	注意。 2.98 ft/s 神話語

Continuity Equation	
Qbkf (cfs) original curve or stream gage hydraulic geometry	53 cfs
Velocity (u=Q/A) or from stream gage hydraulic geometry	5.30 ft/s+ ₌≛

Sandbed stream

	Dr. Richard Hey Method	
Coefficient a	$a = 11(R/dmax)^{-0.314}$	(*)
Friction Factor -		
Velocity (F	rom D'Arcy Weisbach equation: u=(8"g"R S/f)*1/2)	宝宝平于5.43 ft/s武法型

Project:	U-2707		Location:	Forsyth County, NC
Stream:	UT to Muddy Creek	•	Reach:	Proposed R1b
Date:	8/16/2011		Observers:	Mulkey

Based on Characteristics of Riffle Number 5

Input Varial	bles	Output Va	riables
Bankfull X-Sec Area (Abkf)	15 sq ft	Bankfull Mean Depth (Dokf)	1.07 ft
Bankfull Width (Wbld)	14 ft	Wetted Perimeter (WP)	海上市 16.14 ft 地位编辑
D84 (Riffle or pavement)	0.97 mm -	D84 (mm/304.8)	() #24-1" 0.00 ft #24-65
Bankfull Slope (S)	0,0044 fl/ft	Hydraulic Radius (R)	0.93 ft 3
Gravitational Accleration (g)	32.2 fVsg sec	Dbkf/D84 (use D84 in ft)	336.22 ft/ft
Bankiull Maximum Depth	1.76 ft.	R/D84 (use D84 in ft)	292.03 和/社 警察

	Dbkf/D84, u/u*, Mannings n	
u/u*	(Using Dbk//D84 Red Book; p188; Blue p233)	ft/s/ft/s
Mannings n	(Red Book: p189; Blue :p236)	
Velocity (From	m Mannings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	, ADIV/0I ft/s ania
E-	**/NARCE TO CALCULATE DUE TO LOW D84**	under nation materialise in a state province is an and the state data and the state in a state of the second se

UNAOLE	1.4	Section of the state of the	1 2 3	2058	5. Q. Y.

	u/u*=2.83+5.7logR/D84	
u*		0.36 ft/s
Velocity:	u = u*(2.83+5.7log(R/D84))	6,13 ft/s

	Mannings n by StreamType	
Stream type		C5
Mannings n	(Red Book: p187; Blue :p237)	0.035
Velocity (From I	Mannings' equation: u=1.4865 * (R^2/3)(S^1/2)/n)	2.68 ft/s

Continuity Equation	
Qbkf (cfs) original curve or stream gage hydraulic geometry	53 čfs
Velocity (u=Q/A) or from stream gage hydraulic geometry	3.53 ft/s

Sandbed stream

1.2.2	Dr. Richard Hey Method	
Coefficient a	a = 11(R/dmax)^-0.314	[注意][[13.6][[[[[]]]]][[[]]]][[[]]]]]
Friction Factor -		0.026
Velocity (F	rom D'Arcy Weisbach equation: u=(8*g*R S/i)^1/2)	6.36 ft/shipe



Page 56 of 81



Page 57 of 81



Page 58 of 81



Page 59 of 81

PARTINICAL PARTINICAL PARTINICAL PARTINICAL PLANE			•	lia		Rian Way of	FIC. PIC.	The office of the		,																			
	Reach 4/1 1355 ACRESi	15,48 11.90-17.70	129 123-141	1.42-437	2000-2279		70/	:60-212 1195	162.00-186.00	10.06-14,45 80-30	64.32-1400	416-7.37	1173-2530	076-163	1254-5425	0.81-351	Illi Hennesser	NC2IMD	UJUBIZ	00115-0.00267	020-031	2.05-2.89	221-223	12.60-20,00	1.05 0.81-1.29	5/98 35/3-68.22	336 231-441	106 10-15	
A BLU	Reference 055 50'III	÷.	Mean: Panget	- 1	1	9	Range:	Ranger					Ranger				Rean:	Ranger	- Meant Range:	Mean; Ranger G	Ranger	Reans Ranger	Range:	Nean: Range:	Heant Ranger	Range	Range:	· Neant	
<u>OLOGICAL MEASUREMENTS 1.446.445</u> UT TO MUDDY CREEK -RL- Sta, 0+00.00 to Sta, 9+20.00	USGS Station	VE3/						0	01111111111111111111111111111111111111	************	2.00	50	7	108		(43			10080	94 \00206	125	103	220	0		00 0000	5/7 5/7		
TCAL MEASUREM UT TO MUDDY CREEK -RI- Sig 0+00.00 to Sta 9+20.00	Proposed Peach	102 30 81 200 Runsol (ean: 12.00					111	nı i.40-1.40 oper 1.40-1.40			nı: 95,10 1961 80,10-102,00		70i 33.47 1961 28.00-49.00		701: 2191 100: 1152-414	Mcant 1.03 Range: 0,96–3,43		Neant 0.00899 Panoe:	Mean: 0.0080 Pange: 0.0080-0.00	Nean; 0.00% Pange: 5.00/20-0	anı 024 ngeı 015-025	Meant (8) Ronget (83-1	an: 22 nde: 220-1	an: 12.0	1	4	1001 2000 0000	Nean: 10 Range:	
M.E.	er Pro	120	2 Meant	†	H Meant 14.00 Ranger			·•••	1		92 Met 73,07 Rar	48 Mex -6,43 P.au	32.89 Ranger	96 Mei -2.90 Rai		056 Mec				000081-0.01136 Rau			1	+	1	1		N/A N/A N/A	1
VCAL UT TO	Existing Citinnel	0.49 50 NI (316. 1 Mean: 11.3	Hange: 0.00574.0U Mean: 0.12 Prince: 058-0.85	Mean: 15. Prone: 1365	Nean: 10, Range: 5.93-	Meanı 5. Rangei						Neon: 4. Rande: 2.47	1	1	Neani 6. Ranae: 128-		1	i e	Mean: JO	can: 0000	eant .0		1	1	E	1	1	Mean: Lander h	
MORPHOLOG	Variables I. Stream tvDe	2.Drainage area 3.Bankruit width	aepth	5.Width/depth ratio	6. Bankfull aross-sectional area	7. Bankfull mean velocity	B. Bankfull discharge, cfs	1.000-03	18 area	II. Entrenchment ratio	12.Meander length	3. Ratic of meander length to bankrull R		15. Ratic of saddus of curvature to		IT.Meander width ratio	ream lengih/valley	19. Valley slope	20. Average stope	21. Paol stope	22. Ratio of pool slope to average slope h	23.Maxhnum pool depth	ool depth te average	25.Pool width	of pool wlath to bankfull	width Er.Pooi to poor spacing		29. Ratio of Tawest bank reight to bankfull velatif for max hankfull dentall	
																													,

# Page 60 of 81

MORPHOLOGICAL, MEASUREMENTS TABLE

<del>مەر</del>ىيە بىرى بىرى بىرى

. . . . . .

SNOISIAE

20 1 1



INCOMPLET'S PLANS INCOMPLET'S PLANS INCOMPLET'S PLANS PRELIMINANY PLANS

Range:

77

Mean: Range:

9148 (Stat 1974) #

ł

-----

311 7 14

a +177 .-

																		•				
ľ.	<u>.</u> Тя	001		<b>4</b>						3			No		LC C	(J)		*		17	: الم	
<u>9</u> 29	1		· 	· · · · · · · · · · · · · · · · · · ·	: 	117 117 11													· · · · · ·			929
	1 1 1 1 1 1 1 1 1 1 1	· · · ; -,	· · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		2,897 2,897 2,002 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,003 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,0000	S S FANId											····	
089	· · ·	:	1.10			ןן, בעבור ען ו ען ו						те еп 7		N						*	(, ) ; , ; ; ; , ; ;	
982	, 1999,000 1 1 1999,000 1 1 1 1 1 1 1 1 1 1 1																					989
069	1 - 4m - 17	· · · · · · · · · · · · · · · · · · ·				م در . د ایک															і. . Г і Г	069
-	ļ :		, , , , , , , , , ,																			5 T
969	, ; ;		· · · · · · · · · · · · · · · · · · ·		1 · ·	1 · · ·		· · · · · · · · · · · · · · · · · · ·														<u>969</u>
äø2	; , , , , , , , , , , , , , , , , , , ,	 	، ، ، ، ، ؛ , ،	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · · · · · · · · · · · · · · · ·											1	 				• • • • • • •	007
			• 1 • 4		4	G G			W\$S	249	HAT	td.	102 102			G				47 0	201 : .	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Page 62 of 81

....

## Page 63 of 81



		1 1							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	_1_			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	ACC ALC REAL FOR	manual of the	2019 PHA 18	0,940,740,009	1 St. (1-)	
	· · · · · · · · · · · · · · · · · · ·											1.2				- 4 I		1.820	<u></u>
									1.00				Carlos and		1984 <u>-</u>	22 生。		1 2 31	a for the second
		1							(No.	• T			10.00 DE 15		( <u>15</u> 2	2. T. S.	<u>. 1</u> (63).	122	
		<u> </u>								1		20.2			Traine .	4 C 2 L	<u></u>	12 2	
										T			12 Mar		3	S-1-14			
		1 .			i				100.00			1. Sec.		2.00	2	S. 199	1000	·	
									1.			2		1. 19. 11	2 (2 m)	2.5		1.2	
T CONTROL		86'889	3.50	2'30	021'1	\$'93	4'63	3.65	250		87.4	E 0	00'5"	100	ELL :	5.1	2.AB	il E.	61252
<u> </u>	2 0 41	00 000			<u></u>									<u> </u>		2010			
T CONTROL	7750	16.269	31.7	5.30	\$20.4	543	£#'9	52.5	1 20-1		14.8	C STE	00 9	A CONTRACT	818	5.9	ਤਾਸ਼	1	92729
10811001		110 000					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							·				Pipes	
	sale larsenation	EFEA' I	ANH',	0. Sal	. <u>Ө</u> -	°ų	(	20	। इ.स.	12	(I) WH .	OWNER	TAA H	MH	S/Ev4	<u>े भ</u> े	ੰਦੇ ਸ਼ੁੰਦੇ ਹ	÷.	SIZE
· · · · · · · · · · · · · · · · · · ·	- Carlos	S			Protection ( 11.1 ( 10.1 Cold St.	Calendary July	1. GOG PA		A CHEVRON AND		Control			TEN		++ML		tyT & e	
Remarks	A second s			đrođ la		de la contra	<u>.</u>	2		000027-00		the bay make the states	0 Charles	Lassa-ra		APRILLS.	NUMBER OF	ing a star	
	Slope	Rt. Side	20.05	i≞u ·	2.4		1				0.024			4	· · · · · ·				
	adola	s obiz .11	00	Slope:	soads	isnnsho				<b>\$</b> Z0	,=qmp .5	3r0.=cor		(ijsj	ion3) S	SISAT	ana ts	13V.IL	PIPE CI
na maana ahaan ka ah	111382															-			
A\N	: vala gri	Overtopp	1	02 285	Elev.	.vn] tslin0	่ บ้	33	[=]	ηR	9 H89	[	:.vəl		5.688	-			H.W. Con
AN	"yosig bui	Overtopp			• _			%61-2	"š\$ .					tsini	SESU				Hydrologi
∀/N	, bail Freq.	neuobb			W.T						– "sı				ר-צ		:		Direction
AW	H,W, Elev.:					$\neg \neg$					.W.Н				liewbear	ų			Type Entr
A/N		l lluixaea			н-	\			- T		_				S CAAP	7x211 i	DI	:sqi9 :	SizelType
86 889	W Elev.					,	< <p>\</p>								-06	-			.wex2
		a ngisaa					$\sum$						·		AVN	-			station:
sio STI		Pesign F							ี ม	- 7	S'069			:.val∃	[				
SYR 2 YR		agenisiQ 7 opinoQ											1	spinoni	1				
.im .pe £1.1						1	1 9.069		10										
L	elsü yısmını	2 dela	1												1				
					ງອດຍູເຮອດ	-	Lorsyth	1	County:	-	1017-0	.oN .C.	t	-	10.771	5003	-	;រទឲ្យឃារ	noject Nr
		Checker	-dWE				dhanod	1			202011	-14.0	•		FU 41		15/1/21	•	:ajec
	с —	1o	5	199AS	i i														

•*Pipe ville buried 25 feet at intel and 12 feet at outlet, minimum 1 foot buried for fish passage •*Pipe vill be buried 25 feet at intel and 12 feet at outlet, minimum 1 foot buried for fish passage •*Hydraulics takes into acount pipe is 112x75 CAAP with baffles reducing pipe size to an equivalent 87x63 CAAP •*Hydraulics takes into acount pipe is 112x75 GAAP with baffles reducing pipe size to an equivalent 87x63 CAAP •*Hydraulics takes into acount pipe is 112x75 CAAP with baffles reducing pipe size to an equivalent 87x63 CAAP •*Discharges based on 25 four shoulds •*Discharges based on 25 four Regression Equation with a drainage area of 1.13 sq mi





13.

Applon name: Test'sile anywhere in GA, SC, or NC ....



Page 65 of 81





# Page 67 of 81

I



### Page 68 of 81

I

1



Page 69 of 81



## Page 70 of 81


ł

1



## Page 72 of 81

1

A Second Second Second



92/9

1



SNOISIAE

Page 73 of 81

נטל איז מינישיינסו / 1812נו/ייפונטון ומזיב מסגיקני איז איז מינישיינסו / 1812נו/ייפונטון ומזיב מסגיקני

I



I





## Page 76 of 81

1

Nucountry Physics and Physics	11.44 ^{dit} us (0) 35,000 33,600 33,600 33,600 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1	a standard og af de seg af som general som forske for stør stør som forske for som forske for som for som for s
INCOMP bo kor un po kor un		
	Client Lergin (() 43.99 45.13 46.13 46.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.13 45.1	and the second
1 2471	Chont/Theget Bertrie NSS 00/166 0191E NSS 00/166 0191E NSS 00/166 0191E N 459 536.0091 N 479 5305.0091 N 479 5305.0091 N 479 5305.0091 N 479 5305.0091 N 479 2305.0091 N 479 2305.0091 N 479 20120.0019 N 479 20000 N 479 200000 N 479 200000 N 479 2	
	Currectfingent Lengin (f) <u> </u>	ومعالدها والمواجعة والمتحافظ والمتحافظ والمحافظ والمتعادين والمتعادين والمحافظ والمحافظ
DATA 1	Curve/Phatean Number PTR12-260-571-250 Curve N12-28 Curve N12-28 Curve N12-28 Curve N12-9 Curve N12-9 PTR1-310-97-113-3 Curve N12-9 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-310-97-113-3 PTR1-3	nano any industry i Proping and a state of a sub-
IENT ACH	Shelf00. 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/11 15-60/	
ALIGNMENT DATA REACH 1	Itelation (fil)           AP.00           49.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         35.00           35.00         <	
the contract of the contract o	Defla Anigle 24º 41'20.75'(1(1)) 24º 41'20.75'(1(1)) 24º 41'20.75'(1(1)) 290' 16' 06.57''(1)) 80' 10' 06.57''(1)) 81' 10' 25' 13.47'(1)) 81' 10' 25' 13.47'(1)) 10' 25' 11' 40' 66''(1)) 91' 25' 11' 40' 66''(1)) 91' 25' 11' 40' 66''(1)) 91' 25' 11' 41' 41' 41' 41' 41' 41' 41' 41' 41	
	Churd Jangth (1) 20,05 20,05 20,05 4,020 4,020 4,020 4,023 4,023 4,023 4,020 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,024 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4,026 4	a de la companya de l
	Chond/Thrgent Detrified Chond/Thrgent Detrified N 667 eft 44,00° E N 667 eft 44,00° E N 167 P1926(67° E N 197 P1926(67° E N 197 P1926(67° E N 197 P1926(67° E N 197 P1926(67° E N 667 eft 125295 E N 667 eft 12526 E N 667 eft 12526 E N 197 eft 1101° E N 667 eft 125205 E N 197 eft 1101° E N 197 eft 1001° E N 197 eft 1000° E N 197	er melet melet her son son ander son skiller og er
	g V ohtt 00+00,00 105699(13735 10569(13756) 10569(13756) 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10548 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 10558 105588 105588 105588 105588 105588 105588 1055	nie za star na star za star na
	Bigglinn           Bigglinn           Routhing           Routhing           Routhing           Enabled           Proventing           Ford 4000           Proventing	والمراجع المراجع
	2000,000 1-00,000 1-00,000 1-00,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,0000	

SNOISIAE

Т

ROADWAY DESIGN INDAAULUCS BYDDALE

12/5

ł

1

-



Page 78 of 81

]





## Page 80 of 81

and the second second



ł