TRAFFIC FORECAST
 TECHNICAL
 MEMORANDUM

NCDOT STIP Project R-2721, R-2828 \& R-2829

Wake County \& Johnston County

north carolina Turnpike Authority

PREPARED FOR:
North Carolina Turnpike Authority

PREPARED BY:
HNTB North Carolina, PC
343 East Six Forks Road
Suite 200
Raleigh, NC 27609

COMPLETE 540

TRIANGLE EXPRESSWAY SOUTHEAST EXTENSION

NCDOT STIP PROJECT R-2721, R-2828 \& R-2829

TRAFFIC FORECAST

TECHNICAL MEMORANDUM

Prepared by:
HNTB North Carolina, PC 343 East Six Forks Road Suite 200
Raleigh, NC 27609 NCBELS License \#: C-1554

April 2014

EXECUTIVE SUMMARY

This report supersedes the Triangle Expressway Southeast Extension Final Traffic Forecast Technical Memorandum, dated June 19, 2012, prepared by HNTB. The superseded report includes the 2010, 2012 and 2035 No-Build and 2012 and 2035 Build forecasts for five Detailed Study Alternatives (DSAs 1-5). Since June of 2012, NCDOT has developed 12 additional alternatives (DSAs 6-17). As such, a total of 17 alternatives will be carried forward for detailed study in an Environmental Impact Statement, in accordance with the National Environmental Policy Act (NEPA). The forecast for all 17 DSAs are included in this report and the previous forecast addressing DSAs 1-5 should not be referenced. The same forecasting methodology, described later in this report, has been consistently applied to all 17 DSAs to compare alternatives. Once a preferred alternative is selected through the NEPA process, an updated traffic forecast will be prepared for that alternative using the most current available model and data.

PROJECT DESCRIPTION

HNTB North Carolina, PC has been contracted by the North Carolina Turnpike Authority (NCTA) to develop base, intermediate, and future year traffic forecasts for North Carolina Department of Transportation (NCDOT) State Transportation Improvement Program (STIP) Project R-2721, R2828, and R-2829. The projects combine to form the southern and eastern portions of the Complete 540 - Triangle Expressway Southeast Extension outer loop around Raleigh and surrounding communities in Wake County and Johnston County.

The Complete 540, Triangle Expressway Southeast Extension will complete the Raleigh outer loop. Construction is currently scheduled to be completed in phases. Phase I (southern portion) is between N.C. 55 in Apex and I-40 near the Johnston County line. Phase II (eastern portion) continues the project at I-40 and ends at U.S. 64/U.S. 264 Bypass in Knightdale. The entire project is nearly 30 miles long. The project is located primarily in Wake County with a small portion of the project that extends into Johnston County.

Transportation demands, social and economic demands and mobility considerations are the basis for additional transportation infrastructure in southeastern Wake County. The Southeast Extension will link the towns of Clayton, Garner, Fuquay-Varina, Holly Springs, Apex, Cary, Knightdale, and Raleigh. It will also connect major roadways in southern Raleigh and ease congestion on the Raleigh Beltline (I-440), I-40, NC 42, NC 55, and Ten Ten Road. The project would increase the overall capacity of the existing roadway network and divert traffic from secondary roads in an area that is experiencing substantial growth.

PROJECT-LEVEL FORECAST OBJECTIVES

This document provides design data (design hourly volumes (K-factors), directional distribution percentages (D-factors), and heavy vehicle percentages (single-unit trucks, tractor-trailer-semitrailers)) as well as average annual daily traffic (AADT) estimates for the study corridor, and describes the methodology and data inputs used in the forecasting process. These forecasts will be used to perform capacity analyses, air quality analyses, noise analyses, and pavement design to aid the final design of the project.

The forecasts for this project are derived primarily from comparisons between existing fieldcounted data/base year calibrated travel demand model data and future year growth trends/model estimates. The forecasts also include a review of previous study area forecasts,
output from the Triangle Regional Model (TRM) TRM V4-2008, TRM V4-2009 and TRM V52010, along with engineering judgment. The TRM V4-2008 includes all fiscally-constrained projects contained in the 2030 Capital Area Metropolitan Planning Organization (CAMPO) and Durham-Chapel Hill-Carrboro Metropolitan Planning Organization (DCHC MPO) Long Range Transportation Plans (LRTP) dated September 15, 2004. The Triangle Expressway Southeast Extension was listed in the CAMPO 2030 LRTP with a 2030 horizon year. HNTB collected data from the CAMPO 2030 LRTP, relevant traffic forecasts, and NCDOT STIP projects to be included in the traffic forecast. In order to ensure all No-Build and Build DSAs are comparable and based on similar data, TRM V4-2008 was used as the primary modeling tool for all forecast scenarios.

The 2010 Base Year (No-Build) Forecast was developed using a comparison of historic AADT data at 63 study area locations, 2010 travel demand model data interpolated from 2009 and 2012 No-Build model runs, and field-collected traffic counts (peak hour turning movement, 16hour turning movement and 48-hour classification count) completed from 2009 to 2013.

An intermediate year, 2012, was chosen because it is the opening year of the Triangle Expressway. The 2012 future year scenarios include forecasts for a No-Build alternative and seventeen Build alternatives with the projects as toll facilities. All Build alternative forecasts propose the Southern and Eastern Wake Freeways as controlled access, median divided sixlane freeway facilities. The forecasts use extrapolations of historic AADT in the study area, 2012 intermediate year TRM V4-2008 model data developed by HNTB, and comparisons/adjustments from the 2009/2010/2011 base year traffic counts as they applied to the historic and model information. The 2012 No-Build alternative forecast considers all horizon year 2010 projects in the fiscally constrained 2030 CAMPO LRTP, the 2030 DCHC MPO LRTP, and projects scheduled to be completed in 2012. The 2012 Build alternative considers those same projects, as well and the Southern and Eastern Wake Freeway as controlled-access facilities.

The 2035 future year scenarios include forecasts for a No-Build alternative and the seventeen Build alternatives with the Southern and Eastern Wake Freeway projects as toll facilities. The forecasts use extrapolations of historic AADT data in the study area, 2035 TRM V4 data, and comparisons/adjustments from the field-collected traffic counts as they applied to the historic and model information. The 2035 forecasts consider all fiscally-constrained projects in the CAMPO and DCHC 2030 LRTPs.

Once the preferred alternative is selected through the NEPA process, an updated traffic forecast is anticipated to be prepared for that alternative using the most current available model and data.

FORECAST DATA COLLECTION/DEVELOPMENT

Development of the 2010 Base Year forecast involved the following activities:

- Existing/Historical Traffic Count Data

HNTB collaborated with the NCDOT Traffic Survey Group (TSG) to obtain existing traffic count data (24 hour directional/classification counts) for study area roadways. NCDOT ATR count data was collected at two (2) locations and 2009 AADT freeway ramp counts were provided at seven (7) existing study area interchanges. Two (2) 12-hour intersection counts were also
provided. Data was analyzed for applicability/relevance to traffic conditions and for inconsistencies between adjacent intersections/interchanges/roadway segments.

- Existing Project-Level Traffic Forecasts

HNTB obtained project-level traffic forecasts for NCDOT STIP projects and/or municipal road projects in the study area from the NCDOT Transportation Planning Branch, TSG, and Feasibility Studies Unit (FSU) during the initial preparation of DSA 1-5 project-level forecasts. This included previous 2009 and 2000 forecasts of the Southern and Eastern Wake Freeways.

- Field Data Collection

After researching the availability of existing traffic count data, HNTB collected and/or received, nine (9) peak hour turning movement counts (TMC), twenty-three (23) 16-hour TMC, and four (4) 48 -hour vehicle classification counts. Some traffic counts were completed when local schools and universities were not in session. However, seasonal factors provided by NCDOT for the Triangle area were used to adjust these counts for school traffic. All tube classification counts were collected for a minimum of 48 hours of an average weekday (Tuesday-Thursday). Detailed traffic count information was collected and reviewed in the completion of this forecast.

- Trend Line Estimates

HNTB reviewed all available NCDOT TSG AADT data from the previous 20 years in the project study area. Sixty-three (63) growth trend line estimates for 2035 for locations throughout the traffic forecast study area were developed using the 1990-2010 AADT travel history.

- Triangle Regional Model

HNTB used the TRM V4-2008 obtained from ITRE on October 14, 2009 in the development of the traffic forecast volumes. The TRM V4-2008, TRM V4-2009 and TRM V5-2010 were reviewed, compared and considered in the methodology and forecast development as related to their respective socioeconomic data, highway network, and model validation in the project corridor.

Due to the project forecast timeframe beginning in 2008, the TRM V4-2008 has previously been used throughout the Southeast Extension project process, including all of the following forecasts and reports:

- Southern and Eastern Wake Freeway Final Traffic Forecast Report (HNTB, February 2009)
- Southern and Eastern Wake Expressway Draft Upgrade Existing and Hybrid Alternatives Report (HNTB, January 2010)
- Southeast Extension - First Tier Screening Traffic Memorandum (HNTB, May 2011)
- Triangle Expressway Southeast Extension Final Traffic Forecast Technical Memorandum, (HNTB, June 2012) [Superseded by this document]

While the TRM V4-2009 and TRM V5-2010 model version releases and corresponding output results were considered in the forecast, the TRM V4-2008 output is specifically referenced in the report tables.

HNTB developed a Triangle Regional Toll Diversion Model in December 2010 and applied these toll diversion curves/model to the TRM V4-2008 in an effort to more accurately assess
tolling behavior in the region. With the Toll Diversion Model, the TRM V4-2008 is a Tollcapable tool that is very useful in projecting future traffic as well as the changes in travel patterns of new facilities. The model was used to evaluate the construction of the project as a Toll facility.

2010 BASE YEAR TRAFFIC FORECAST

The 2010 Base Year traffic forecast for the Complete 540 - Triangle Expressway Southeast Extension project was developed through the use of historical traffic growth trends, traffic count data, and interpolated daily traffic assignment data from the 2009 and 2012 TRM V4 No-Build models. Land use information from the TRM V4 was used as one criterion in determining study area growth between the 2010 and future forecast years. The TRM V4 uses specifically delineated Traffic Analysis Zones (TAZs) as areas where trips are generated or attracted based on population and employment data. Appropriate design characteristics (Design Hourly Volume (DHV), Directional Distribution Percentages (D), and Heavy Vehicle Percentage (Duals/TTSTs)) were determined for the 2010 project study area by reviewing relevant historic traffic forecasts, NCDOT historical AADT count station data, and 2009-2013 field collected 48-hour tube count and 16 -hour turning movement count data.

After 2010 Base Year AADTs were estimated, bidirectional flow estimates were made at all project study area intersections. 2010 forecast results show that previous forecast and model predictions for daily traffic varied from field count data due to a quickly changing and developing study area and very low base year volumes, which make it difficult for the regional model to completely account for all existing conditions and recent changes.

2012 AND 2035 TRAFFIC FORECASTS

Intermediate and Future Year forecasts were primarily derived from anticipated daily traffic assignment growth from the 2012 and 2035 TRM V4-2008 runs for study area roadways. This data was converted to growth rates along each roadway segment and results were balanced for consistent upstream/downstream traffic flow and consistency with existing 2010 traffic flow patterns and forecast results.

The 2035 TRM V4-2008 model incorporates changes to future land use in the project study area through adjustments to population and employment data in specific TAZs. The model also includes all regional 2030 LRTP (September 15, 2004) projects, as mentioned previously. In certain instances, historical or model growth rates along facilities were averaged, based on engineering judgment, for select segments along individual facilities (i.e. I-40, US 64/264, US 64 Business and $\mathrm{I}-540$) to provide consistent growth along each corridor and provide reasonable and balanced mainline and turning movement volumes.

As with the 2010 forecast results, 2012 and 2035 data indicates that the application of model growth rates to 2013 forecast volumes produces results that can vary considerably from raw 2012 and 2035 TRM V4 daily assignment data and forecast data from previous forecasts.

TABLE OF CONTENTS

APPENDIX LIST/LIST OF FIGURES. iii
LIST OF TABLES iv
1.0 Project Background 1
1.1 Project Request Information 1
1.2 Project History 5
1.3 Area Information 6
1.4 Route Information 7
2.0 Source of Information and Data 9
2.1 Related Forecasts 9
2.2 Historic AADT Data 9
2.3 Field Data Collection 10
2.4 Field Investigation 14
2.5 Other Sources 14
3.0 2010 Base Year No-Build Traffic Forecast. 17
3.1 Assumptions 17
3.2 2010 Base Year (No-Build) Forecast Methodology 17
3.3 Determination of Base Year No-Build Design Factors. 17
3.4 2010 Base Year (No-Build) Forecast Results 21
4.0 General Model Data 22
4.1 Model Information 22
4.2 Model Validation 23
5.0 2012 Intermediate Year No-Build Traffic Forecast 26
5.1 Assumptions 26
5.2 Fiscal Constraint 26
5.3 Development Activity 27
5.4 Methodology 27
5.5 Design Factors 28
5.62012 No-Build Forecast Results 28
6.0 2012 Intermediate Year Build Traffic Forecast 30
6.1 Assumptions 30
6.2 Methodology 30
6.3 Design Factors 32
6.42012 Build Forecast Results 32
7.02035 Future Year No-Build Traffic Forecast 36
7.1 Assumptions 36
7.2 Fiscal Constraint 37
7.3 Development Activity 37
7.4 Methodology 37
7.5 Design Factors 38
7.6 2035 No-Build Forecast Results 38
8.02035 Future Year Build Traffic Forecast 40
8.1 Assumptions 40
8.2 Methodology 40
8.3 Design Factors 41
8.42035 Build Forecast Results 41
9.02012 / 2035 Future Year Over/Underpass Traffic Forecast 45

APPENDICES

A. Figures
B. Triangle Regional Model Study Area Network
C. NCDOT Historic AADT Linear Regression Charts
D. Toll Diversion Model
E. Detailed TAZ Information
F. Forecasting Summary Data

List of Figures

List of Tables

Table Page

1) Detailed Study Alternatives 1
2) Forecast Scenarios and Alternatives 6
3) Existing Study Area Roadways. 7
4) Historic Traffic Forecasts in the Study Area 9
5) NCDOT Historic AADT Volumes 11-12
6) Field Data Collection 13
7) CAMPO 2030 LRTP Study Area Projects 15-16
8) Design Data Information 19-20
9) 2010 Base Year No-Build Forecast Traffic Volumes 21
10) TRM V4 2005 Base Year TAZ Data 23
11) Model Validation 24-25
12) 2005-2012 TRM V4 TAZ Data Comparison 26
13) 2012 TRM V4 Major Model Transportation Network Laneage 27
14) 2012 No-Build Forecast Traffic Volumes 29
15) 2012 TRM V4 Model Assignment Discrepancies 31-32
16) 2012 Build Traffic Forecast Methodology 34
17) 2012 Build Traffic Forecast Volumes 35
18) 2005-2035 TRM V4 TAZ Data Comparison 36
19) 2035 TRM V4 Major Model Transportation Network Laneage 37
20) 2035 No-Build Traffic Forecast Data 39
21) 2035 Build Traffic Forecast Methodology 43
22) 2035 Build Traffic Forecast Volumes 44
23) Over/Underpass Traffic Forecast 46

1.0 PROJECT BACKGROUND

1.1 Project Request Information

HNTB North Carolina, PC has been contracted by the North Carolina Turnpike Authority (NCTA) to develop base, intermediate, and future year traffic forecasts for the NCDOT STIP Projects R2721, R-2828, and R-2829. The projects combine to form the southern and eastern portions of the Complete 540 - Triangle Expressway Southeast Extension outer loop around Raleigh and surrounding communities in Wake County and Johnston County.

The DSA traffic forecasts for the base, intermediate, and future year No-Build and Build alternatives will be used for the environmental documentation required by NEPA. Seventeen DSAs are being studied in the NEPA process. All alternative routes are displayed in Figure 1. All forecast figures are included in Appendix A. The corridors that combine to form complete alternative routes are illustrated in Table 1.

Table 1. Detailed Study Alternatives

Detailed Study Alternative	NC 55 Bypass to l-40	I-40 to US 64/264 Bypass
1	Orange	Green
2	Orange	Green-Mint-Green
3	Orange	Brown-Tan-Green
4	Orange	Brown-Green
5	Orange	Green-Teal-Brown-Green
6	Orange-Red	Green
7	Orange-Red	Mint-Green
8	Orange-Purple-Blue-Lilac	Green
9	Orange-Purple-Blue-Lilac	Green-Mint-Green
10	Orange-Purple-Blue-Lilac	Brown-Tan-Green
11	Orange-Purple-Blue-Lilac	Brown-Green
12	Orange-Purple-Blue-Lilac	Green-Teal-Brown-Green
13	Orange-Lilac	Green
14	Orange-Lilac	Green-Mint-Green
15	Orange-Lilac	Brown-Tan-Green
16	Orange-Lilac	Brown-Green
17	Orange-Lilac	Green-Teal-Brown-Green

Detailed Study Alternative 1 - This alternative features the Orange Corridor for the southern section of the project. The Orange Corridor, also known as the NCDOT Protected Corridor (August 1996, North Carolina Transportation Corridor Official Map Act, N.C.G.S. § 136-44.50), begins at the Triangle Expressway and NC 55 interchange in Holly Springs and travels eastward to the I-40 and US 70 interchange near the border of Wake and Johnston Counties. The Orange Corridor primarily runs to the south of and parallel to SR 1010 (Ten Ten Road) for the majority of its alignment. The Orange Corridor includes planned interchanges at NC 55, SR 1152 (Holly Springs Road), SR 1386 (Bells Lake Road), US 401, SR 1006 (Old Stage Road), NC 50 and I-40.

DSA 1 includes the Green Corridor for the eastern section of the project. The Green Corridor begins at the I-40 and US 70 interchange and heads north/northeast to the existing I-540 and US 64/264 interchange. The Green Corridor has planned interchanges with I-40, SR 2700 (White Oak Road), US 70 Business, SR 2542 (Rock Quarry Road), SR 2555 (AuburnKnightdale Road), SR 1007 (Poole Road) and US 64/264.

Detailed Study Alternative 2 - DSA 2 utilizes the Orange Corridor (see description above) for the southern section. The eastern section includes the Green and Mint Corridors. The Mint Corridor has interchanges at the same locations as the Green Corridor. The only difference between the two alignments is that the section of the project between Rock Quarry Road and Auburn Knightdale Road has a proposed alignment slightly further to the east in the Mint Corridor option.

Detailed Study Alternative 3 - The Orange Corridor is used for the southern section. The Green, B, and Tan Corridors are used for the eastern section of DSA 3. DSA 3 has planned eastern section interchanges with I-40, SR 2700 (White Oak Road), US 70 Business, SR 5204 (Old Baucom Road), SR 2555 (Auburn-Knightdale Road), SR 1007 (Poole Road) and US $64 / 264$. The I-40, Poole Road, and US 64/264 interchanges are proposed to be at the same locations as the Green Corridor. The Brown Corridor's White Oak Road interchange is located slightly to the east of the Green Corridor interchange. The Brown Corridor then takes a more eastern turn to it proposed US 70 Business interchange, which is located near the Wake and Johnston County line. Next, the Tan Corridor alignment begins and heads north to the proposed Old Baucom Road interchange, different from the Rock Quarry Road location found in the Green Corridor. The planned Auburn-Knightdale Road interchange is at the same location in the Tan Corridor as it is in the Green Corridor. From that point, the Tan Corridor merges back into the Green Corridor alignment.

Detailed Study Alternative 4 - DSA 4 is a slight variation of DSA 3. The Orange Corridor is used for the southern section. The Green and Brown Corridors are utilized for the eastern section of DSA 4. The Brown and Tan Corridors have interchanges on the same facilities. The only variations between the Brown and Tan are that the proposed Brown Corridor interchange with Old Baucom Road is slightly to the east of the Tan interchange location and the planned Auburn-Knightdale Road interchange location is slightly more to the east than the Green and Tan Corridor location. After the Auburn-Knightdale Road interchange the Brown Corridor merges back into the Green Corridor alignment.

Detailed Study Alternative 5 - DSA 5 is a combination of DSAs 1-4. The Orange Corridor is used for the southern section. The Green, Teal, and Brown Corridors are combined to create the eastern section of the project. DSA 5 has proposed interchanges with I-40, SR 2700 (White Oak Road), US 70 Business, SR 5204 (Old Baucom Road), SR 2555 (Auburn-Knightdale Road), SR 1007 (Poole Road), and US 64/264. The planned I-40, White Oak Road, and US 70 Business interchanges are the same as the Green Corridor. The Teal Corridor then aligns to the east and shares the proposed Old Baucom Road and Auburn-Knightdale Road interchanges with the Brown Corridor. This DSA then rejoins the Green Corridor at the Poole Road and US 64/264 interchange locations.

Detailed Study Alternative 6 - This alternative is a combination of the proposed Orange and Red Corridors for the southern section of the project. DSA 6 follows the Orange Corridor through the planned interchanges at NC 55 Bypass, SR 1152 (Holly Springs Road), and SR 1386 (Bells Lake Road). After the proposed Bells Lake Road interchange, the Red Corridor
continues eastward crossing SR 1010 (Ten Ten Road) and forming an interchange with US 401 north of SR 1010. The Red Corridor then continues northeast, traveling between Lake Wheeler and Lake Benson, featuring planned interchanges with SR 1006 (Old Stage Road) and NC 50 north of Lake Benson. The planned I-40 interchange location for the Red Corridor is located south of the existing I-40 and US 70 Business interchange (l-40 Exit 306) and north of the SR 2700 (White Oak Road) overpass.

Continuing into the eastern section of the project, the Red Corridor does not have an interchange with US 70 Business, but instead has a proposed interchange at SR 2542 (Rock Quarry Road) that includes an extension of Rock Quarry Road to the south that forms an intersection with US 70 Business. The proposed Rock Quarry Road interchange on the Red Corridor is in the same location as the Rock Quarry Road interchange on the Green Corridor. After the Rock Quarry Road interchange, DSA 6 follows the remainder of the Green Corridor, with future interchanges at SR 2555 (Auburn-Knightdale Road), SR 1007 (Poole Road) and US 64/264.

Detailed Study Alternative 7 - DSA 7 is a slight variation of DSA 6. DSA 7 utilizes the Orange and then the Red Corridor for the southern section, as described in DSA 6. The eastern section alignment includes the Red Corridor, Mint Corridor (see DSA 2 description above), and Green Corridor.

Detailed Study Alternative 8 - This alternative combines the Orange and then the Purple, Blue, and Lilac Corridors for the southern section of the project. The proposed DSA 8 alignment follows the Orange Corridor through the future interchanges at NC 55 Bypass and SR 1152 (Holly Springs Road). After the Holly Springs Road interchange, the Purple Corridor diverges southward from the Orange Corridor. The proposed Purple Corridor has an interchange with SR 1393 (Hilltop Needmore Road). The Purple Corridor alignment then continues southeast to a planned interchange with US 401. DSA 8 continues eastward on the Blue Corridor alignment, with a proposed interchange at SR 1006 (Old Stage Road). The Blue Corridor then merges into the Lilac Corridor alignment just west of the proposed NC 50 interchange. DSA 8 follows the Lilac Corridor alignment to the I-40 and US 70 interchange.

On the eastern section of the project, the Lilac Corridor alignment merges into the Green Corridor prior to the White Oak Road interchange. After the future White Oak Road interchange location, DSA 6 follows the remainder of the Green Corridor alignment, with future interchanges at SR 2542 (Rock Quarry Road), SR 2555 (Auburn-Knightdale Road), SR 1007 (Poole Road) and US 64/264.

Detailed Study Alternative 9 - DSA 9 is a slight variation of DSA 8. DSA 9 utilizes the Orange, Purple, Blue, and Lilac Corridors for the southern section, as described in DSA 8. The eastern section uses the Green and Mint Corridors (see DSA 2 description above).

Detailed Study Alternative 10 - DSA 10 features the Orange, Purple, Blue, and Lilac Corridor alignments (see DSA 9 description above) for the southern section. The eastern section utilizes a combination of the Brown, Tan, and Green Corridors (see DSA 3 description above).

Detailed Study Alternative 11 - DSA 11 features the Orange, Purple, Blue, and Lilac Corridor alignments (see DSA 9 description above) for the southern section. The eastern section proposed alignment features a combination of the Brown, and Green Corridors (see DSA 4 description above).

Detailed Study Alternative 12 - DSA 12 features the Orange, Purple, Blue, and Lilac Corridor alignment (see DSA 9 description above) for the southern section. The Green, Teal, and Brown Corridors are combined to create the eastern section alignment of this project alternative (see DSA 5 description above).

Detailed Study Alternative 13 - This alternative contains the Orange and Lilac Corridor alignments for the southern section of the project. The proposed Lilac Corridor diverges from the Orange Corridor east of the future SR 1006 (Old Stage Road) interchange. The planned Lilac Corridor interchanges with NC 50 and I-40 and US 70 are north of the locations of the proposed NC 50 and I-40 and US 70 interchanges on the Orange Corridor. On the eastern section of the project, the Lilac Corridor alignment merges into the Green Corridor prior to the proposed White Oak Road interchange. After the White Oak Road interchange, DSA 6 follows the remainder of the Green Corridor.

Detailed Study Alternative 14 - DSA 14 is a slight variation of DSA 13. DSA 14 utilizes the Orange and Lilac Corridor alignments for the southern section. The eastern section features the Green and Mint Corridors (see DSA 2 description above).

Detailed Study Alternative 15 - DSA 15 utilizes the Orange and Lilac Corridor alignments (see DSA 13 description above) for the southern section. The eastern section contains a combination of the Brown, Tan, and Green Corridors (see DSA 3 description above).

Detailed Study Alternative 16 - DSA 16 features the Orange and Lilac Corridor alignments (see DSA 13 description above) for the southern section. The eastern section utilizes a combination of the proposed Brown, and Green Corridors (see DSA 4 description above).

Detailed Study Alternative 17 - DSA 17 features the Orange and Lilac Corridor alignments (see DSA 13 description above) for the southern section. The proposed Green, Teal, and Brown Corridors are combined to create the eastern section of this project alternative (see DSA 5 description above).

The 2010 base year forecast includes existing No-Build conditions only and does not include the Triangle Expressway. The 2012 and 2035 No-Build alternatives include the Triangle Expressway constructed as a toll facility but contain no Southern or Eastern Wake Freeway. The 2012 and 2035 Build alternatives include the Triangle Expressway and Southern and Eastern Wake Freeway.

This traffic forecast document provides design data (design hourly volumes (K-factors), directional distribution percentages (D-factors), and heavy vehicle percentages (single-unit trucks, tractor-trailer-semi-trailers) as well as Average Annual Daily Traffic (AADT) estimates for the DSA traffic forecast study area alternatives and describes the methodology and data inputs used in the forecasting process.

The forecasts for this project are derived primarily from comparisons between existing fieldcounted data/base year calibrated travel demand model data and future year growth trends/model estimates. The forecasts also include a review of previous study area forecasts, output from the Triangle Regional Model (TRM) versions, along with engineering judgment. The TRM V4-2008 includes all fiscally-constrained projects contained in the 2030 Capital Area Metropolitan Planning Organization (CAMPO) and Durham-Chapel Hill-Carrboro Metropolitan

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829

Planning Organization (DCHC MPO) Long Range Transportation Plans (LRTP) dated September 15, 2004. In order to ensure all No-Build and Build DSAs are comparable and based on similar data, TRM V4-2008 was used as the primary modeling tool for all forecast scenarios.

Once the preferred detailed study alternative is selected through the NEPA project process, an updated traffic forecast is anticipated to be prepared for that alternative using the most current available model and data.

1.2 Project History

The Triangle Expressway Southeast Extension was listed in the CAMPO 2030 LRTP (dated September 15,2004) with a 2030 horizon year, in the CAMPO 2035 LRTP (dated May 20, 2009) with a 2025 horizon year, and is currently listed in the 2040 MTP (dated April 2, 2013) with a 2030 horizon year. HNTB collected data from the CAMPO 2030 LRTP, relevant traffic forecasts, and NCDOT STIP projects to be included in the traffic forecast.

Scoping meetings for this traffic forecasting report, and subsequent decisions agreed upon by NCDOT Transportation Planning Branch (TPB), NCDOT Project Development and Environmental Analysis Unit (PDEA), and Federal Highway Administration (FHWA) established the limits of the traffic forecast study area for traffic forecasting and capacity analysis for the 2010 base year and 2012/2035 future years. Figure 2 shows the traffic forecast study area for the base, intermediate and future year forecasts.

Base year (2010) traffic forecasts for a No-Build alternative were developed using a comparison of historic AADT data and field-collected traffic counts. TRM V4-2008 model data was used in development of No-Build and DSA 1-17 forecasts.

An intermediate year, 2012, was selected because it is the opening year of the Triangle Expressway Western Wake Freeway. The 2012 year scenarios include forecasts for a No-Build alternative and a Build alternative with the Southeast Extension as toll facility. All Build alternative forecasts propose the Southern and Eastern Wake Freeways (Southeast Extension) as controlled access, median divided six-lane freeway facilities. The forecasts use extrapolations of historic AADT in the study area, 2012 TRM V4 data, and comparisons/adjustments from traffic counts applied to historic and model information. The 2012 No-Build alternative forecast would include all horizon year 2010 projects in the fiscally constrained 2030 CAMPO LRTP, the 2030 DCHC MPO LRTP, and projects scheduled to be completed in 2012. The 2012 Build alternative considers those same projects, as well and the Southern and Eastern Wake Freeway as controlled-access facilities. Figure 3 shows the study area CAMPO long range transportation plan projects for 2010, 2020, and 2030 per the 2030 LRTP (September 15, 2004).

The 2035 future year scenarios include forecasts for a No-Build alternative and the various Build alternatives with the Southern and Eastern Wake Freeway projects as toll facilities. The forecasts use extrapolations of historic AADT data in the study area, 2035 TRM V4 data, and comparisons/adjustments from the field-collected traffic counts as they applied to the historic and model information. The 2035 forecasts consider all fiscally-constrained projects in the CAMPO and DCHC 2030 LRTPs. The scenarios are summarized in Table 2.

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829

Table 2. Forecast Scenarios and Alternatives

Forecast Scenario	Year	Tolling Assumption	Study Area Network Assumption
Base Year No-Build	2010	$\mathrm{~N} / \mathrm{A}$	Existing Network
Intermediate Year No-Build		\$0.12 Per Mile User Cost	2010 LRTP Projects + Triangle Expressway (Toll Facility)
	2012	\$0.12 Per Mile User Cost	2010 LRTP Projects + Triangle Expressway \& Southeast Extension (Toll Facility)
Design Year No-Build	2035	\$0.12 Per Mile User Cost	Includes all Fiscally-Constrained 2030 LRTP + Southeast Extension (Toll Facility)
Design Year Build Toll			

1.3 Area Information

The project is located primarily in Wake County with a small portion of the project that extends into Johnston County. The Southern Wake Freeway (STIP's R-2721 and R-2828) extends eastward from the NC 55 Holly Springs Bypass to the junction of I-40 and the US 70 Clayton Bypass in Johnston County. For DSAs 6 and 7 that include the Red Corridor for a portion of the Southern Wake Freeway, the southern portion extends from NC 55 to I-40 at a new interchange location north of the I-40/US 70 Clayton Bypass interchange. The Eastern Wake Freeway (STIP R-2829) begins at the I-40/US 70 Clayton Bypass interchange for DSAs 1-5 and 8-17 or the I-40 interchange for DSAs 6 and 7 and ends at the US 64 Knightdale Bypass, completing the outer loop. The entire project length is nearly 30 miles.

Current land use in the traffic forecast study area is a mixture of urban and suburban commercial/residential development. Some interchanges in the traffic forecast study area feature dense "urban" development, while others have little to no existing development on more than one quadrant of the interchange.

1.4 Route Information

Study Area

In collaboration with HW Lochner, NCDOT, CAMPO, and FHWA, the Southern and Eastern Wake Freeway study area was defined for traffic forecasting related to the development of the project Purpose and Need statement and alternatives development and screening. The traffic forecast study area for traffic forecasting, shown graphically in Figure 2, includes the existing freeway and surface street arterials shown in Table 3.

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829 Complete 540-Triangle Expressway Southeast Extension Traffic Forecast Report (DSA 1-17)

Table 3. Existing Study Area Roadways

SR Number	Road Name	Functional Class*	Study Area Cross Sections	$\begin{aligned} & 2009 \\ & \text { AADT } \end{aligned}$	Speed Limit
-	1-40	Interstate	4-6 lane divided	67,000	65
-	1-540	Interstate	6 lane divided	40,000	65
-	US 64 Bypass	Freeway	6 lane divided	60,000	65
-	US 70 Bypass (Clayton Bypass)	Freeway	4 lane divided	23,000	55
-	US 1	Freeway / Principal Arterial	4 lane divided	18,000	65
-	US 401	Principal Arterial	4 lane divided	33,000	55
-	NC 50	Principal Arterial	2 lane undivided	15,200	55
-	NC 55	Principal Arterial	4 lane divided	28,000	55
-	US 70 Business	Principal / Minor Arterial	4 lane divided	$\begin{array}{r} 25,000- \\ 34,000 \\ \hline \end{array}$	55
-	NC 42	Minor Arterial	5 lane with TWLTL	26,000	45
-	NC 42	Minor Arterial	2 lane undivided	12,000	55
1007	Poole Road	Minor Arterial	2 lane undivided	8,600	45
1010	Ten Ten Road	Minor Arterial	2 lane undivided	$\begin{aligned} & 6,100- \\ & 15,000 \\ & \hline \end{aligned}$	45
1152	Holly Springs Road	Minor Arterial	2 lane undivided	8,900	45
2711	Vandora Springs Road	Minor Arterial	2 lane undivided	7,900	35
2233	Smithfield Road	Minor Arterial	2 lane undivided	17,000	45
2711	Vandora Springs Road	Minor Arterial	2 lane undivided	7,900	35
1006	Old Stage Road	Minor Arterial / Collector	2 lane undivided	9,200	45
1010	Cleveland School Road	Major Collector	2 lane undivided	6,000	55
1393	Hilltop Needmore Road	Major Collector	2 lane undivided	3,300	45
2542	Rock Quarry Road	Collector	2 lane undivided	4,000	55
1386	Bells Lake Road	Local	2 lane undivided	10,400	45
2700	White Oak Road	Local	2 lane undivided	6,600	55
2555	Auburn-Knightdale Road	Local	2 lane undivided	2,600	55
1172	Old Smithfield Road	Local	2 lane undivided	1,000	35
1300	Kildaire Farm Road	Local	2 lane undivided	10,600	45
1503	Donny Brook Road	Local	2 lane undivided	3,000	45
2555	Raynor Road	Local	2 lane undivided	3,600	45
2555	Auburn-Knightdale Road	Local	2 lane undivided	3,200	55
5204	Old Baucom Road	Local	2 lane undivided	1,000	55
2516	Hodge Road	Local	2 lane undivided	9,200	45
1153	Old Holly Springs Apex Road	Local	2 lane undivided	1,800	45
2779	Old McCullers Road	Local	2 lane undivided	4,200	35
1421	Old Mills Road	Local	2 lane undivided	600	45
2750	Norman Blalock Road	Local	2 lane undivided	1,000	45
2753	Dwight Rowland Road	Local	2 lane undivided	2,600	45
5204	Old Baucom Road	Local	2 lane undivided	1,000	55
2515	Old Faison Road	Local	2 lane undivided	4,100	45

The following future roadway facilities were also included in the traffic forecast study area:

- Triangle Expressway Western Wake Freeway from NC 55 (Holly Springs Bypass) to NC 55 near the Research Triangle Park (RTP) [This facility is now open to traffic]
- Triangle Expressway Southeast Extension from NC 55 (Holly Springs Bypass) to US 64 Bypass (Knightdale Bypass)

These forecast locations and roadway facilities were chosen as forecast links primarily based on their proximity to and potential impact by the project. Forecasts for existing or proposed -Y- line intersections and/or interchanges were included in this detailed forecasting effort.

Study Area Roadways

There are six major access-controlled freeways in the vicinity of the traffic forecast study area: I40, I-540, NC 540, US 64 Bypass (Knightdale Bypass), and US 70 Bypass (Clayton Bypass). The following are descriptions of the major roadways within the traffic forecast study area:

- l-40 is the primary freeway corridor for regional connectivity between Raleigh, RTP, Durham and Chapel Hill in the Triangle. I-40 varies from a four-lane to an eight-lane freeway in the traffic forecast study area. The posted speed limit is 65 miles per hour (mph) through the traffic forecast study area.
- US 1 is an existing controlled access freeway that serves regional traffic in Cary and Apex. US 1 features a four-lane cross section in the traffic forecast study area, with auxiliary lanes near interchanges. The posted speed limit is 65 mph .
- l-540 is an existing loop freeway around the northern portions of Wake County. It currently spans from I-40 on the western side of Wake County to the US 64 Bypass near Knightdale in eastern Wake County. The facility features a six-lane cross section in the study area, with auxiliary lanes at interchanges and a posted speed limit of 70 mph .
- NC540 is an existing freeway facility that is an extension of I-540 in western Wake County from I-40 to NC 55 near RTP. The facility features a six-lane cross section with a posted speed limit of 70 mph . The segment of NC 540 from NC 55 to NC 54 is a toll facility.
- US 64 Bypass (Knightdale Bypass) is an existing controlled access freeway in the traffic forecast study area providing access to areas of east Wake County to I-440 and further to I95. In the traffic forecast study area, US 64 Bypass features a six-lane cross-section, with auxiliary lanes at interchanges and a posted 65 mph speed limit.
- US 70 Bypass (Clayton Bypass) is an existing controlled access freeway in the traffic forecast study area providing access to areas of Johnston County to I-40. In the traffic forecast study area, the Clayton Bypass contains a four-lane cross-section, with auxiliary lanes at interchanges and a posted speed limit of 65 mph .

Other roadways that are specifically included in the traffic forecast study area include NC 42, NC 50, NC 55, US 70, US 401, Holly Springs Road, Bells Lake Road, Ten Ten Road, Old Stage Road, Rock Quarry Road, Auburn-Knightdale Road and Poole Road. These existing thoroughfares are primarily multi-lane facilities with 35,45 , or 55 mph speed limits in the traffic forecast study area and provide regional connectivity and access throughout Wake County, with interchange connections to the seven major study area freeway facilities.

2.0 SOURCES OF INFORMATION AND DATA

2.1 Related Forecasts

HNTB obtained recent project-level traffic forecasts for NCDOT STIP projects and/or municipal road projects in the traffic forecast study area from the NCDOT TPB, TSG, and Feasibility Studies Unit (FSU). Historic traffic forecast information is summarized in Table 4.

Table 4. Historic Traffic Forecasts in the Study Area

Project STIP \#	Year Forecast Completed	
R-2721 R-2828 R-2829	2009	Forecast includes previous planning-level forecast of the Southern and Eastern Wake Freeways
I-4744	2008	Forecast includes areas along I-40 and US 1/64 from Aviation Parkway to Gorman Street
U-4763B	2007	Forecast includes areas immediately to the west of the I-4744 2007 base year forecast along I-40
R-2000 AA- AF	2008	Forecast includes portions of I-40, I-540, and NC 540 located within the study area
R-2635	2007	Forecast includes Western Wake Freeway
R-2721 R-2828 R-2829	2000	Forecast includes previous forecast of the Southern and Eastern Wake Freeways
R-2552	1998	Forecast includes Clayton Bypass and parts of I-40 in the study area
U-3101	1998	Forecast includes areas of the 2008 I-4744 base year forecast along US 1/64 from I-40 through Cary Parkway

2.2 Historic AADT Data

HNTB reviewed all available NCDOT Traffic Survey Group (TSG) AADT data from the previous 20 years in the project study area. Each data point was evaluated and points that were considered outliers were removed from the data set. Some facilities have experienced fluctuations in AADT and diversions in traffic due to various factors, such as construction of new roadway facilities. For example, AADTs on NC 55 Business, US 70 Business, E. Garner Road, Hodge Road, Poole Road have experienced fluctuation primarily due to construction of NC 55 Bypass, US 70 Bypass and US 264/64 and diversion of traffic. Figure 4 details the study area historic AADT count locations. Sixty-three (63) growth trend line estimates for 2035 for locations throughout the traffic forecast study area were developed using the 1990-2010 AADT travel history. Appendix C contains linear regression graphs based on the historical data points. Table 5 shows the 2002-2009 NCDOT historic AADT volumes for key locations and locations where field traffic data was collected.

2.3 Field Data Collection

HNTB collaborated with the NCDOT TSG to obtain existing traffic count data (24 hour directional/classification counts) for study area roadways. NCDOT ATR count data was collected at two (2) locations and 2009 AADT freeway ramp counts were provided at seven (7) existing study area interchanges. Two (2) 12-hour intersection counts were also provided. Specific locations where historic traffic data was obtained are shown in Figure 5. Data was analyzed for applicability/relevance to traffic conditions and for inconsistencies between adjacent intersections/interchanges/roadway segments.

After researching the availability of existing traffic count data, HNTB coordinated with NCDOT to determine the locations and times of field traffic data collection activities. HNTB collected and/or received, nine (9) peak hour turning movement counts (TMC), twenty-three (23) 16-hour TMC, and four (4) 48-hour vehicle classification counts. Some traffic counts were completed when local schools and universities were not in session. However, seasonal factors provided by NCDOT for the Triangle area were used to adjust these counts for school traffic.

All tube vehicle classification counts were collected for a minimum of 48 hours of an average weekday (Tuesday-Thursday). Detailed traffic count information was collected and reviewed in the completion of this forecast. Figure 5 shows traffic data collection locations. Table 6 provides a summary of the field data collection completed for this forecast.

The 16 -hour and 48 -hour counts were first converted to daily traffic before conversion to AADT. 16 -hour turning movement counts were adjusted to 24 -hour counts by applying a 0.90 adjustment factor. 48-hour traffic tube/classification counts were analyzed during 16-hour periods and the resulting factors ranged from 0.90 to 0.94 . Supporting information from the Institute of Transportation Engineers (ITE) states 16-hour counts generally account for 90 to 95 percent of 24 -hour traffic volumes. Based on this information, a conservative 0.90 adjustment factor was applied to 16 -hour turning movement volumes to convert to 24 -hour counts. Once volumes were adjusted to 24 -hour counts, reciprocal turning movements were added together to estimate bidirectional turns at the intersection or interchange.

HNTB converted the adjusted 24-hour counts to AADT volumes using seasonal adjustment factors provided by the NCDOT Traffic Survey Unit. For data related to interstate and mainline routes (US 264/64,US 70 Bypass, US 1, I-40), ADT volumes were adjusted by the NCDOT Interstate Automatic Traffic Recorder (ATR) Group 11 weekday average for the respective month traffic counts were collected. For non-interstate higher-volume urban secondary routes, such as US 64 Business, NC 42 and Ten Ten Road, ADT volumes were adjusted by the NCDOT non-interstate ATR Group 4 weekday average for the respective month and day traffic counts were collected. For all other study area roadway counts, non-interstate ATR Group 1 was applied.

Table 5. NCDOT Historic AADT Volumes

$\begin{gathered} \text { NCDOT } \\ \text { ID } \end{gathered}$	Roadway	Location	NCDOT Historical AADT Volumes								AADT Extrapolated to 2010+	Project Specific Count Data		2010 NB Traffic Forecast
			2002	2003	2004	2005	2006	2007	2008	2009		TMC	Mainline	
9100872	1-40	from Exit 303 (Jones Sausage Road) to Exit 306 (US 70)	83,000	82,000	88,000	86,000	91,000	93,000	87,000	94,000	99,500			99,500
9103495	1-40	from Exit 306 (US 70) Exit 309 (US 70 Bypass)							68,000	75,000	82,000			75,100
9100873	1-40	from US 70/S-E Wake Expwy to Exit 312 (NC 42)	51,000	49,000	52,000	53,000	56,000	58,000	51,000	55,000	56,300		36,800 ${ }^{\text {a }}$	56,300
5000159	1-40	from Exit 312 (NC 42) to Exit 319 (NC 210)	42,000	38,000	41,000	43,000	44,000	46,000	42,000	44,000	50,100			50,100
9103485	1-540	from US 64/264 to US 64 Business	-	-	-	-	-	38,000	39,000	40,000	41,000	-		41,000
9103484	I-540	N of US 64 Business	-	-	-	-	-	45,000	47,000	48,000	49,700			49,700
5000185	NC 42	E of SR 1628 (Cleveland Crossing Dr)	13,000	13,000	20,000	14,000	15,000	15,000	13,000	15,000	14,800	21,4004		21,000
5000184	NC 42	W of SR 1800 (Technology Drive)	24,000	24,000	24,000	24,000	25,000	27,000	25,000	26,000	26,400	$32,200^{4}$		31,600
5000147	NC 42	N of US 70 Bypass	12,000	12,000	13,000	12,000	13,000	13,000	-	12,000	15,000	11,700 ${ }^{3}$		11,700
9100133	NC 50	S of SR 2562 (New Rand Rd) / N of Southern Wake Expressway (Red)	-	18,000	-	17,000	-	19,000	-	17,000	17,900	19,600 ${ }^{4}$		19,500
9100133	NC 50	S of Southern Wake Expressway (Red)	-	18,000	-	17,000	-	19,000	-	17,000	17,900	19,600 ${ }^{4}$		19,500
9100661	NC 50	N of Ten-Ten Rd (SR 1010)	-	13,000	-	12,000	-	13,000	-	12,000	12,100	14,000 ${ }^{4}$		14,300
9103452	NC 50	N of Southern Wake Expwy / S of Ten-Ten Rd (SR 1010)	-	-	-	13,000	-	15,000	-	-	18,000	15,900 ${ }^{4}$		15,200
9100659	NC 50	N of SR 1010 (Cleveland School Road)	-	13,000	-	12,000	-	11,000	-	12,000	11,200	$15,200^{3}$		15,200
9102426	NC 50	S of SR 1010 (Cleveland School Road)	-	6,800	-	6,100	-	5,800	-	6,100	7,000	$8,000^{3}$		8,000
9103432	NC 55	S of SR 1172 (Old Smithfield Road)	-	-	-	19,000	-	23,000	-	26,000	27,900	28,200 ${ }^{2}$		29,400
9103427	NC 55	from SR 1172 (Old Smithfield Road) to Southern Wake Expressway	-	-	-	19,000	-	25,000	-	28,000	30,800	27,700 ${ }^{2}$		30,200
9103427	NC 55	from Southern Wake Expwy to NC 55 Business	-	-	-	19,000	-	25,000	-	28,000	30,800	$27,700^{2}$		30,200
9100145	SR 1006 (Old Stage Road)	N of SR 2711 (Vandora Springs Rd)	-	11,000	-	11,000	-	8,700	-	10,000	9,300	10,2004		9,700
9100147	SR 1006 (Old Stage Road)	S of SR 2711 (Vandora Springs Rd)	-	17,000	-	16,000	-	15,000	-	16,000	16,900	15,800 ${ }^{4}$		14,800
9100841	SR 1006 (Old Stage Road)	N of Ten-Ten Rd (SR 1010)	-	15,000	-	14,000	-	13,000	-	13,000	12,800	$15,800^{4}$		14,800
9100843	SR 1006 (Old Stage Road)	S of SR 1010 (Ten-Ten Rd)	-	10,000	-	9,600		9,100	-	9,200	10,600	10,800 ${ }^{2}$		7,900
9100843	SR 1006 (Old Stage Road)	S of S Wake Expressway (N of SR 2724 Banks Rd)	-	10,000	-	9,600	-	9,100	-	9,200	10,600	10,800 ${ }^{2}$		7,900
9104172	SR 1006 (Old Stage Road)	N of NC 42 (S of S Wake Expwy)	-	4,300	-	4,400	-	4,100	-	3,900	4,700	$4,400^{5}$		3,800
9104602	SR 1007 (Poole Road)	E of Eastern Wake Expressway	-	10,000	-	5,400	-	4,300	-	3,700	10,600	7,900 ${ }^{2}$		8,100
9100712	SR 1007 (Poole Road)	E of SR 2516 (Hodge Rd)	-	14,000	-	9,100	-	9,100	-	8,600	10,600	7,900 ${ }^{2}$		8,100
9100714	SR 1007 (Poole Road)	W of SR 2516 (Hodge Rd)	-	17,000	-	9,500	-	8,300	-	7,900	6,100	6,600 ${ }^{2}$		6,500
9103453	SR 1010 (Cleveland School Road)	E of NC 50	-		-	5,900	-	6,100	-	6,000	6,100	$7,800^{3}$		7,800
9100743	SR 1010 (Ten-Ten Road)	E of SR 1386 (Bells Lake Road)	-	11,000	-	12,000	-	12,000	-	12,000	16,100	12,600 ${ }^{2}$		13,300
9100839	SR 1010 (Ten Ten Rd)	E of US 401	-	13,000	-	14,000	-	16,000	-	15,000	16,000	14,700 ${ }^{4}$		12,800
9103440	SR 1010 (Ten Ten Rd)	W of US 401	-	-	-	15,000	-	15,000	-	15,000	15,000	15,600 ${ }^{4}$		14,100
9103451	SR 1010 (Ten Ten Rd)	W of NC 50	-	-	-	5,700	-	6,700	-	6,100	6,500	7,500 ${ }^{4}$		6,700
9102947	SR 1153 (Old Holly Springs-Apex Road)	N of Western Wake Freeway	-	2,400	-	920	-	1,500	-	1,800	3,600	.		3,600
9102947	SR 1153 (Old Holly Springs-Apex Road)	S of Western Wake Freeway	-	2,400	-	920	-	1,500	-	1,800	3,600	-		3,600
9104085	SR 1386 (Bells Lake Road)	S of Southern Wake Expressway	-	3,400	-	3,500	-	4,100	-	4,300	4,500	6,000 ${ }^{2}$		4,500
9100745	SR 1386 (Graham Newton Road)	N of SR 1010	-	5,500	-	5,500		6,200	-	6,000	6,900	7,500 ${ }^{2}$		6,900
9103032	SR 1421 (Old Mills Rd)	S of SR 1393 (Hilltop Needmore Rd)	-	-	-	-	-	-	-	600	600	400^{5}		400
9103475	SR 2233 (Smithfield Road)	N of US 64/264	-	-	-	9,000	-	8,000	-	8,300	7,900	6,300 ${ }^{3}$		6,300
9103474	SR 2233 (Smithfield Road)	S of US 64/264	-	-	-	13,000	-	17,000	-	17,000	18,700	16,600 ${ }^{3}$		16,600
9103476	SR 2516 (Hodge Road)	N of US 64/264	-		-	6,400	-	6,300	-	6,600	6,600	6,200 ${ }^{3}$		6,200
9100711	SR 2516 (Hodge Road)	from US 64/264 to SR 1007	-	5,800	-	5,700	-	8,500	-	9,200	8,400	9,000 ${ }^{3}$		9,000
9100713	SR 2516 (Hodge Road)	S of SR 1007	-	1,400	-	1,200	-	1,200	-	1,400	1,200	1,100 ${ }^{2}$		1,100

Table 5 (Continued). NCDOT Historic AADT Volumes

$\begin{gathered} \text { NCDOT } \\ \text { ID } \end{gathered}$	Roadway	Location	NCDOT Historical AADT Volumes								AADTExtrapolatedto $2010+$	Project Specific Count Data		2010 NB Traffic Forecast
			2002	2003	2004	2005	2006	2007	2008	2009		TMC	Mainline	
9100725	SR 2542 (Rock Quarry Road)	W of Eastern Wake Expressway	-	5,500	-	4,600	-	4,600	-	4,000	3,800	$4,000^{2}$		3,900
9100725	SR 2542 (Rock Quarry Road)	E of Eastern Wake Expressway	-	5,500	-	4,600	-	4,600	-	4,000	3,800	4,000 ${ }^{2}$		3,900
9100723	SR 2555 (Auburn Knightdale Road)	N of SR 2542 (Rock Quarry Rd)	-	3,600		3,300	-	2,800	-	2,900	2,600	2,700 ${ }^{2}$		2,600
9100731	SR 2555 (Auburn Knightdale Road)	S of SR 2542 (Rock Quarry Rd)	-	4,000	-	3,600	-	3,400	-	3,500	3,300	3,200 ${ }^{2}$		3,100
9100146	SR 2711 (Vandora Springs Rd)	E of Old Stage Rd (SR 1006)	-	7,500	-	7,800	-	8,400	-	7,900	8,700	7,6004		6,900
9102330	US 1	N of Western Wake Freeway	-	17,000	-	-	-		-	18,000	20,400		21,700 ${ }^{\text {c }}$	21,700
9102330	US 1	S of Western Wake Freeway	-	17,000	-		-		-	18,000	20,400	-	21,700 ${ }^{\text {c }}$	21,700
9100737	US 401	S of St Patrick Dr (SR 2777) / N of Southern Wake Expressway (Red)	-	33,000	-	31,000	-	33,000	-	32,000	32,200	33,100 ${ }^{4}$	-	33,300
9103439	US 401	S of Southern Wake Expressway (Red) / N of SR 1010 (Ten Ten Rd)	-	-	-	31,000	-	33,000	-	31,000	31,700	33,100 ${ }^{4}$	-	33,300
9100838	US 401	N of Southern Wake Expressway (Orange)	-	33,000	-	32,000	-	34,000	-	33,000	27,800	$32,300^{2}$		32,900
9100838	US 401	N of SR 1503 (Donny Brook Rd)	-	33,000	-	32,000	-	34,000	-	33,000	27,800	32,300 ${ }^{2}$		32,900
9100707	US 64 Business	W of I-540		56,000	-	-	-	32,000	-	30,000	37,800	31,700 ${ }^{3}$		31,700
9103492	US 64/264	W of SR 2516 (Hodge Road)	-	-	-	-	-	59,000	-	60,000	60,500		54,300 ${ }^{\text {a }}$	60,500
9103493	US 64/264	from SR 2516 (Hodge Road) to I-540 / Eastern Wake Expressway	-	-	-	-	-	56,000	-	58,000	59,000	-		59,000
9103472	US 64/264	from I-540 / Eastern Wake Expressway to SR 2233 (Smithfield Road)	-	-	-	41,000	-	61,000	-	60,000	68,300	-		68,300
9103473	US 64/264	E of SR 2233 (Smithfield Road)	-	-	-	35,000	-	51,000	-	49,000	55,500		41,500 ${ }^{\text {a }}$	55,500
9100733	US 70	E of l-40	-	49,000	-	49,000	-	50,000	-	34,000	48,000	-		34,000
9100150	US 70	W of l-40	-	22,000	-	25,000	-	29,000	-	29,000	29,100	-		29,000
9100728	US 70	E of Guy Rd (SR 2558) / E of Rock Quarry Road Extension (Red)	-	40,000	-	39,000	-	40,000	-	25,000	-	$31,700^{3}$		31,700
5003514	US 70 Bypass	E of l-40	-	-	-	-	-	-	22,000	23,000	24,000	-	$12,900^{\circ}$	23,000

+ linear rate used, 1990-2010
-" - Data not available.
- 2008 Project Specific TM Counts, factored to AADT estimates

2-2009 Project Specific TM Counts, factored to AADT estimates
3 - 2010 Proiect Specific TM Counts, factored to AADT estimates
4- 2012 Project Speeific TM Counts, factored to AADT estimates
5 - 2013 Project Specific TM Counts, factored to AADT estimates

- 2008 Project Specific 48 Hour Counts factored to AADT estimates
- 2011 Project Specific 48 Hour Counts factored to AADT estimates

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829 Complete 540-Triangle Expressway Southeast Extension

Traffic Forecast Report (DSA 1-17)
Table 6. Field Data Collection

Location	Type Count	Date(s)	County
NC 50 at Ten Ten Road	16 Hour TMC	11/03/2009	Wake
NC 50 at Cleveland School Rd	16 Hour TMC	03/24/2010	Wake
Holly Springs Road at Kildaire Farm Rd	16 Hour TMC	10/22/2009	Wake
Raynor Road at White Oak Road	16 Hour TMC	11/04/2009	Wake
Rock Quarry Road at Auburn Knightdale Road	16 Hour TMC	11/05/2009	Wake
US 401 at Donny Brook Road	16 Hour TMC	$\begin{gathered} 11 / 10 / 2009 \& \\ 10 / 05 / 2011 \end{gathered}$	Wake
US 401 at Wake Tech Drive	16 Hour TMC	10/05/2011	Wake
NC 55 at Smithfield Road	16 Hour TMC	10/28/2009	Wake
Ten Ten Road at Bells Lake Road	16 Hour TMC	10/27/2009	Wake
	Peak Hour TMC	10/27/2009	Wake
Poole Road at Hodge Road	16 Hour TMC	10/29/2009	Wake
Rock Quarry Road at Old Baucom Road	16 Hour TMC	11/18/2009	Wake
US 401 at Ten Ten Road	16 Hour TMC	09/06/2012	Wake
Rock Quarry Road at E. Garner Road	16 Hour TMC	09/06/2012	Wake
NC 50 at Ten Ten Road	16 Hour TMC	09/11/2012	Wake
NC 50 at Timber Drive	16 Hour TMC	04/04/2012	Wake
Timber Drive at Aversboro Road	16 Hour TMC	09/23/2009	Wake
US 70 at White Oak Road	16 Hour TMC	04/04/2012	Wake
US 70 at Guy Road (SR 2558)	16 Hour TMC	10/19/2010	Wake
NC 50 at Buffaloe Road	16 Hour TMC	05/02/2010	Wake
Old Stage Road at Vandora Springs Road	16 Hour TMC	09/06/2012	Wake
Old Stage Road at Norman Blalock Road	16 Hour TMC	08/06/2013	Wake
Hilltop Needmore Road at Old Mills Road	16 Hour TMC	08/06/2013	Wake
US 401 at Dwight Rowland Road	16 Hour TMC	08/06/2013	Wake
US 70 Bypass west of Cornwallis Road (SR 1525)	48 Hour Vehicle Classification Count	11/17 through 11/19/2009	Johnston
US 70 Business west of Guy Road	48 Hour Vehicle Classification Count	11/17 through	Wake
Old Stage Road south of Ten Ten Road	48 Hour Vehicle Classification Count	$11 / 03$ through $11 / 05 / 2009$	Wake
US 1 south of NC 55	48 Hour Vehicle Classification Count	01/04/2011	Wake
US 264 EB Off Ramp at Hodge Road	Peak Hour TMC	05/12/2010	Wake
US 264 WB Off Ramp at Hodge Road	Peak Hour TMC	05/12/2010	Wake
US 70 EB On/Off Ramps at NC 42	Peak Hour TMC	05/11/2010	Johnston
US 70 WB On/Off Ramps at NC 42	Peak Hour TMC	05/11/2010	Johnston
US 64 WB On/Off Ramps at Smithfield Road	Peak Hour TMC	05/13/2010	Wake
US 64 EB On/Off Ramps at Smithfield Road	Peak Hour TMC	05/13/2010	Wake
US 64 Business EB at l-540	Peak Hour TMC	05/20/2010	Wake
US 64 Business WB at I-540	Peak Hour TMC	05/20/2010	Wake

2.4 Field Investigation

Field investigations have been conducted throughout the project forecasting process (2009 to 2013) to examine various detailed study alternatives, observe project study area facilities and collect traffic data.

2.5 Other Sources

HNTB collected information on relevant roadway improvement projects within and around the traffic forecast study area. These include NCDOT STIP projects and the projects listed in the CAMPO 2030 LRTP (dated September 15, 2004). A list of the 2030 LRTP fiscally constrained projects within the traffic forecast study area along with estimated dates of completion (horizon years) and other basic information are detailed in Table 7. The locations of these projects can be seen in Figure 3.

Table 7. CAMPO 2030 LRTP Study Area Projects

Segment Identifier	Facility Name	Segment From	Segment To	Length (miles)	2009 No. of Lanes	Future No. of Lanes	STIP \#
A49a	Poole Road	Maybrook Dr.	Barwell Road	1.00	2	4	-
A91	Jones Sausage Rd.	Rock Quarry Rd	1-40	1.46	2	4	-
A95	NC 55 Widening	Holly Springs Bypass	SR 1108 (Wake Chapel Road)	3.30	2	4	R-2907
F9	US 1-64	US 64	Walnut Street	2.60	4	6	U-3101
A4b	Rogers Lane Extension (NL)	End of Existing Rogers Lane	Rogers Lane/New Hope	0.27	0	4	
F1a	I-540 (North \& East Segment)	Triangle Town Blvd.	US 64 (Knightdale)	7.00	0	6	R-2000
F2	I-540 (East Segment)	US 64	US 64 Bypass	2.12	0	6	R-2641
F4a	I-540 (Western Segment)	140	NC 55 (Morrisville/Cary)	4.01	0	6	R-2000
F8	US 70 (Clayton) Bypass	I-40 (South)	US 70 Business	9.50	0	4	R-2552
F41	I-40 HOV/HOT Project	I-440/ US 1-64	Johnston County	17.29	8	8	-
F41	I-40 HOV/HOT Project	I-440/ US 1-64	Johnston County	17.29	8	8	-
A114	Ten Ten Road	Holly Springs Rd	US 1	3.47	2	4	-
A138a	Timber Dr./Jones Sausage Road Connector	US 70	Timber Drive Extension	0.65	0	4	-
A138b	Timber Dr./Jones Sausage Road Connector	Jones Sausage Road	US 70	0.28	0	4	-
A142b	Timber Drive East	White Oak Road	New Rand Road	1.27	0	4	U-4703
A163a	Holly Springs Road	Sunset Lake Rd	Old Holly Springs Apex	3.58	2	4	-
A166	Center Street/1010	US 1	Apex Peakway	1.04	2	4	-
A217	Sunset Lake Road Connector	NC 55	Optimist Farm Road	3.40	2	4	-
A40	Kildaire Farm Road	Swift Creek	Ten Ten Road	2.00	2	4	-
A480	US 401 (South)	US 70	East Pkwy (FV)	9.85	4	6	-
A51	Smithfield Road	Carrington Drive	Forestville Road	1.17	2	4	U-3441
A96a	NC 55	Olive Chapel Road	US 64	1.16	2	4	R-2906
A96b	NC 55	Apex Peakway (south)	Olive Chapel Road	1.67	2	3	U-2901
A120	Tryon Road Extension	Garner Road	Rock Quarry Road	2.90	0	4	U-3111
A207a	Judd Parkway NE (part NL)	Existing Judd Parkway	NC 55 (Broad Street)	1.70	0	3	-
F4b	I-540 (Western Wake Expressway)	NC 55 (Morrisville/Cary)	US 1	101.00	0	6	R-2635
F4c	I-540 (Western Wake Expressway)	US 1	NC 55 Bypass	2.30	0	6	R-2635
A112	Smithfield Rd.	Poole Road	US 64 Bypass	1.90	2	4	-
A113	Ten-Ten Rd.	Holly Springs Rd	Bells Lake Road	1.14	2	4	-
A117	New Hope Road	Old Poole Road	Rock Quarry Road	1.80	2	4	-
A118	NC 55	NC 42	Harnett County	4.40	2	4	R-2540
A122	Holly Springs Road	Sunset Lake Rd.	Kildaire Farm Road	0.91	2	6	-
A137a	Old Stage Road	US 401	Ten Ten Road	4.19	2	4	-
A138c	Timber Dr./Jones Sausage Road Connector	White Oak Road	I-40 (South)	1.59	2	4	-
A140a	Vandora Springs Road \& Vandora Springs Road Ext.	Timber Drive	Old Stage Road	1.01	2	4	-
A142a	Timber Drive	US 70	White Oak Road	2.05	0	4	-
A143	White Oak Road	US 70	NC 42 (Johnston Co.)	7.32	2	4	-
A149a	Poole Road	I-540	Knightdale-Eagle Rock Rd.	7.64	2	4	-
A158	Hilltop-Needmore Extension (Part NL)	NC 55 (Broad Street)	US 401	5.70	0	3	-
A16	Rock Quarry Rd.	Old Birch Road	New Hope Road	2.00	2	4	-
A172	Kelly Road	Jenks Rd.	Old US 1	5.23	2	4	-
A178a	Olive Chapel Road	Kelly Road	NC 55	1.93	2	4	

Table 7 (Continued). CAMPO 2030 LRTP Study Area Projects

Segment Identifier	Facility Name	Segment From	Segment To	Length (miles)	2009 No. of Lanes	$\begin{gathered} \text { Future } \\ \text { No. } \\ \text { of Lanes } \\ \hline \end{gathered}$	STIP \#
A187	Apex Peakway	NC 55	NC 55	6.19	0	4	
A192	Bells Lake Road	Ten Ten Road	Johnson Pond Road	2.66	2	4	-
A193a	Sunset Lake Road	US 401	Hilltop-Needmore Road	2.58	2	4	-
A193b	Sunset Lake Road	Hilltop-Needmore Road	Optimist Farm Road	2.69	2	4	-
A201a	Rock Quarry Road	New Hope Road	Battle Bridge Road	1.40	2	4	-
A202	East Garner Road	Rock Quarry Rd	Shotwell Road	3.22	2	4	-
A204	Bethlehem Road	Smithfield Road	Grasshopper Road	3.44	2	4	-
A214	Garner Road	Tryon Road	Rock Quarry Road	7.16	2	3	-
A218a	Old Holly Springs Apex Road	Holly Springs Road	Jessie Drive	2.52	2	4	-
A218b	Jessie Dr. (part NL)	Ten Ten Road	Old Holly Springs Road	3.50	2	4	-
A224	Johnson Pond Road	US 401 North	Bells Lake Road	3.52	2	3	-
A403a	Hodge Road	Poole Road	US 64	3.15	2	4	-
A41	Kildaire Farm Road	Ten Ten Road	Kildaire Farm Connector	1.67	2	4	-
A410	Lake Pine Drive/Old Raleigh Road	Cary Parkway	Apex Peakway	1.70	2	4	-
A42	Penny Road	Ten Ten Road	Holly Springs Rd.	3.05	2	4	-
A426	NC 55 (Main Street)	Holly Springs Road	Bobbitt Road	2.96	2	4	-
A427a	Avent Ferry Road	NC 55 Bypass	Cass Holt	1.03	2	4	-
A49b	Poole Road	Barwell Road	I-540	1.57	2	4	-
A4c	Rogers Lane	US 64	Rogers Lane NL	1.13	3	4	-
A52	Smithfield Road	US 64 Bypass	Carrington Drive	2.21	2	4	-
A69	Holly Springs Road	Cary Parkway	Penny Road	2.17	2	6	-
A70	Holly Springs Road	Penny Road	Ten Ten Road	1.14	2	6	-
A71	Holly Springs Road	Ten Ten Road	Kildaire Farm Road Connec	1.59	2	6	-
A88	New Rand Road	NC 50	Old Garner Road	1.63	2	3	U-3607
F44a	I-40 (East)	1-440	US 70 Business (Garner)	4.40	4	8	l-5111
F44b	1-40 (East)	US 70 Business (Garner)	NC 42	6.30	4	8	I-5111
A157	Eastern Parkway	US 401	US 401	7.39	0	4	-
A159	Western Parkway (Fuquay Varina)	NC 55	US 401	5.56	0	4	-
A200	Creech/Jones Sausage Connector	Creech Road	Jones Sausage Rd	1.09	0	4	-
A403b	Hodge Road Extension	US 64	Old Milburnie Road	1.30	0	4	-
F3	I-540 (Eastern Wake Expressway)	1-40 (South)	US 64 Bypass	10.80	0	6	-
F5	I-540 (Southern Wake Expressway)	NC 55 Bypass	US 401 (South)	7.80	0	6	-
F6	I-540 (Southern Wake Expressway)	US 401 (South)	1-40 (South)	8.70	0	6	-

- Data not available.

3.0 2010 BASE YEAR NO-BUILD TRAFFIC FORECAST

3.1 Assumptions

The 2010 Base Year scenario includes a forecast of existing study area conditions using actual field collected traffic counts from 2010 and historical NCDOT AADT data. The 2010 Base Year (No Build) scenario does not include NC 540 (Triangle Expressway / Western Wake Freeway).

A 2010 Base Year Build traffic forecast is not included in this report because during the scoping process it was determined that the Intermediate Year (2012) Build forecast, which does include NC 540 (Western Wake Freeway), would be included instead of the 2010 Base Year Build scenario.

3.2 2010 Base Year (No-Build) Forecast Methodology

A review was conducted for all available previous traffic forecasts and recent daily and peak hour traffic counts developed for the traffic forecast study area. 16-hour and 48-hour traffic counts were converted to AADT volumes using seasonal adjustment factors provided by the NCDOT TSG. Peak hour and 16 -hour counts were used to supplement the forecasting process to help determine distributional splits at interchanges and aid in determining traffic factors where no additional information was available.

To determine interchange and intersection forecasts, AADT volumes, Directional Flow (D), and Design Hourly Volume (DHV) were input into adjustable and non-adjustable peak hour breakout spreadsheets provided by NCDOT TPB. For the 2010 Base Year forecast, balanced volumes were developed at interchanges and intersections and in between roadway segments. Forecast break lines were included along roadways where intervening roadways, developments or large distances did not allow volumes to balance between intersections.

The 2009 TRM V4 model run data was extrapolated to 2010 and shows daily assignment volumes varying (some higher and some lower) from existing count data along study area roadways. This can be attributed to a quickly changing and developing study area and very low base year volumes, which make it difficult for the regional model to completely account for all existing conditions and recent changes.

3.3 Determination of Base Year No-Build Design Factors

Appropriate design characteristics (Design Hourly Volume (DHV), Directional Flow (D), and Truck Percentages) were determined for the study area by reviewing relevant previous traffic forecasts, NCDOT historical AADT count station data, and existing 16-hour and 48 -hour traffic count data. Using this data, the base year (2010 No-Build) forecast was developed. Detailed information on how these values were calculated can be found in Table 8. Additional details in the forecast development are listed below.

Peak Hour Directional (D) factors for this forecast were determined by comparing AM and PM peak hour approach/departure volumes to daily approach departure volumes for a particular roadway segment or corridor. The forecast attempted to provide a consistent D factor along a roadway corridor.

The directional split (D) provides information on the direction of traffic flow in the peak period. Generally D is in the 55% to 65% range for most previous project forecasts. Given that Raleigh
and Research Triangle Park (RTP) are centers of gravity for regional trip-making in this region, most roadway facilities, such as I-40, I-540, US 1, US 264 and US 64, act as radials. Based on existing traffic patterns, a D of 55% to 65% was used for most facilities.

Design Hourly Volume (DHV) factors were determined by comparing approach and departure highest peak hour volumes for a particular segment to the 24 hour average AADT to approximate K_{30}. Traffic forecasts normally report the K -value, which is the percentage of traffic that occurs during the peak period so that the DHV can in turn be estimated by multiplying K times the AADT (Pline, 1999). Typical values of K fall in the 8 to 12 percent range. Since ATR stations are not available throughout the study area, the highest hourly volume from the 16-hour and 48 -hour ADT counts were used to determine the K -values. The K -values were estimated to be between 8 and 12, with lower K values generally occurring on primary routes and higher Kvalues occurring on secondary routes. DHV values are generally consistent with the fieldcollected 48 -hour and 16 -hour traffic counts, which were the raw data source from which the K estimates were made. Total inflow and outflow from intersection legs (or in both directions along a mainline) was calculated for AM and PM peak hours and then the highest value was divided by the raw daily traffic volume estimate (or actual field count) for that segment. The forecast attempted to provide a consistent DHV along a roadway corridor. In some instances, the DHV changed along the corridor to account for a change in traffic characteristics.

Truck Percentage (Duals/TTST) estimates were made for this project with the consideration that the traffic stream is not uniform in its makeup. In addition to passenger vehicles, trucks and buses are generally present on all roadways. Heavier vehicles have a disproportionately large effect on both facility capacity and pavement design. While traffic along the urban I-40 corridor in the traffic forecast study area is dominated by commuters and does not include a single large truck destination point, the I-40, US 1/64, I-440, US 64 Bypass, and US 70 corridors provide primary regional routes for heavy truck traffic. Daily truck percentages in the study area were estimated to be between 3 and 18 percent, with lower truck percentages generally occurring on lower volume secondary routes and higher truck percentages occurring on higher volume primary routes. These values are generally consistent with the field collected 16-hour and 48hour traffic counts.

Truck percentages were determined by examining 16-hour counts, 48 -hour classification data, NCDOT historic truck data from 2002 and 2005, and previous traffic forecasts mentioned in Table 4. From this data, overall truck percentages were separated into two standard classifications - Duals (single-unit trucks with at least one dual-axled tire) and TTSTs (multi-unit trucks with single and twin trailers) - and were forecasted. An attempt was made to maintain consistent truck percentages along roadway corridors except where system interchanges, roadway facility types, special roadway attractors, minor side-streets or other circumstances warranted a change in truck percentages.

Table 8 provides design hourly volume, directional split information and truck percentages.

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829 Complete 540-Triangle Expressway Southeast Extension

Traffic Forecast Report (DSA 1-17)
Table 8. Design Data Information

Roadway	Location	D - Directional Distribution \%			K - Peak Hour Factor \%		
		A - Past Project	B Existing Count	Selected 2010 Value	A - Past Project	B Existing Count	Selected 2010 Value
Eastern Wake Fwy	I-40/US 70 Bypass to 264/64 Bypass	$65^{1}, 60^{6}$	-	55	$10^{1}, 10^{6}$	-	10
1-40	I-440 to NC 42	$55^{1}, 65^{2}, 65^{5}$	60	60	$9^{1}, 13^{2}, 13^{5}$	8	9
NC 42	US 401/NC 55 to US 70 Bypass	65^{1}	55-65	65 / 60	10^{1}	8-10	10, 7
NC 50	US 70 to Cleveland School Road	70^{1}	65-75	65	10^{1}	10,12	10
NC 55/Bypass	US 1 to NC 42	65^{1}	65	65	10^{1}	10	10
Southern Wake Fwy	NC 55 to NC 50	$60^{1}, 60^{6}$	-	65	$11^{1}, 10^{6}$	-	10
Southern Wake Fwy	NC 50 to l-40/US 70 Bypass	$60^{1}, 60^{6}$	-	65	$11^{1}, 10^{6}$	-	10
Old Stage Rd	N / S of Southern Wake Expressway	-	60-65	60 / 65	-	9-11	10
Poole Road	Hodge Rd	-	65	65	-	12	12
Ten Ten Road	US 1 to NC 50	55^{1}	50-60	60	10^{1}	9,10	11
Holly Springs Road	N of Kildaire Farm Road	-	60	60	-	9	9
OHS-Apex Road	N of Western Wake Freeway	60	-	60	10	-	10
Bells Lake Road	Ten Ten Rd	-	65	65	-	12	12
Hilltop Needmore Rd	Sunset Lake Rd to US 401	-	55	55	-	12	12
Rock Quarry Road	W of Eastern Wake Expressway	-	65	65	-	12	12
Auburn Knightdale Rd	Rock Quarry Rd	-	55	55	-	10	10
White Oak Road	Auburn Knightdale Rd/ White Oak Rd	-	65	65	-	12	12
Vandora Springs Rd	Old Stage Rd	-	65	65	-	10	10
US 1	N of Triangle Expressway	60	-	60	8	-	8
US 64 Business	E of I-540	-	-	60	-	-	9
US 64 Business	W of I-540	${ }^{-}$	-	60	-	-	9
US 264/64 Bypass	I-440 to l-540/Eastern Wake Fwy	65^{1}	65	65	10^{1}	10	10
US 264/64 Bypass	I-540/Eastern Wake Fwy to US 64	65^{1}	55	65	10^{1}	9	10
US 70	1-40/440 to I-40	60^{1}	60	60	9^{1}	9	9
US 70	I-40 to Guy Road	55^{1}	55	55	9^{1}	9	9
US 70 Bypass	I-40 to NC 42	$65^{1} / 65^{4}$	65	65	$9^{1} / 10^{4}$	9	9
US 401	N of Ten Ten Rd to NC 42/55		65	65	-	9	9
Triangle Expressway	US 1 to NC 55	$60^{1} / 60^{5}$	-	65	$11^{1} / 9^{5}$	-	10

"-" - Data not available.

* - Forecast design data for referenced forecasts may vary along freeway segments at interchanges and intersections. Only one design data point was referenced for the above table for the noted forecast year.
- R-2721, R-2828, R-2829 - Forecast Design Data (HNTB, 2009)

2 - I-4744 - Forecast Design Data (HNTB, 2008)
5 - R-2635 - Forecast Design Data (NCDOT, 2001)
3 - R-2000AA-AF - Using 2012 Build Toll Forecast Design Data (NCDOT, 2008)
5 - R-2635 - Forecast Design Data (NCDOT, 2001
6 - R-2721, R-2828, R-2829 - Forecast Design Data (NCDOT, 2000)
7 - U-3101 - Using 1998 Build Forecast Design Data (NCDOT 2000)
8 - U-4763B - Using 2030 Build Toll with McCrimmon Parkway Connector (MAB, 2007)

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829 Complete 540 - Triangle Expressway Southeast Extension

Traffic Forecast Report (DSA 1-17)
Table 8 (Continued). Design Data Information

Roadway	Location	Truck Percentage (Dual / TTST)		
		A - Past Project	B - Existing Count	$\begin{gathered} \text { Selected } \\ 2010 \\ \text { Value } \\ \hline \end{gathered}$
Eastern Wake Freeway	I-40/US 70 Bypass to 264/64 Bypass	(6/9) ${ }^{1}, 16^{6}$	-	(6/9)
1-40	I-440 to NC 42	$(6 / 12)^{1}, 10^{2}, 10^{5}$	(6/7)	(6/12)
NC 42	US 401/NC 55 to US 70 Bypass	(4/2) ${ }^{1}$	$(3 / 1)^{\wedge},(3 / 2)^{\wedge},(4 / 2)^{\wedge}$	(4/3)
NC 50	US 70 to Cleveland School Road	$(4 / 2)^{1}$	$(2 / 1)^{\wedge},(3 / 1)^{\wedge}$	(3/1)
NC 55/Bypass	US 1 to NC 42	(4/7) ${ }^{1}$	$(3 / 4)^{\wedge}$	(4/7)
Southern Wake Freeway	NC 55 to NC 50	(6/12) ${ }^{1}, 18^{6}$	-	(6/12)
Southern Wake Freeway	NC 50 to I-40/US 70 Bypass	$(6 / 12)^{1}, 18^{6}$	-	(6/12)
Old Stage Rd	N / S of Southern Wake Expressway	-	(1/1),(3/1),(3/2)	(2/1)
Poole Road	Hodge Rd	-	(3/1)^	(3/1)
Ten Ten Road	US 1 to NC 50	$(2 / 1)^{1}$	(1/1),(3/1),(3/2)	(2/1)
Holly Springs Road	N of Kildaire Farm Road	-	$(2 / 1)^{\wedge}$	(2/1)
Old Holly Springs-Apex Road	N of Western Wake Freeway	(2/1)	-	(2/1)
Bells Lake Road	Ten Ten Rd	-	(1/1)^	(2/1)
Hilltop Needmore Rd	Sunset Lake Rd to US 401	-	$(6,4)^{\wedge}$	(3/2)
Rock Quarry Road	W of Eastern Wake Expressway	-	(2/1)^	(3/1)
Auburn Knightdale Rd	Rock Quarry Rd	-	(4/2)^, (3/1)	(4/2)
White Oak Road	Auburn Knightdale Rd/ White Oak Rd	-	(2/1)^	(2/1)
Vandora Springs Rd	Old Stage Rd	-	(3/1)^	(3/1)
US 1	N of Triangle Expressway	(6/10)	-	(6/10)
US 64 Business	E of I-540	-	(5/3)^	(5/3)
US 64 Business	W of I-540	-	$(5 / 3)^{\wedge}$	(5/3)
US 264/64 Bypass	I-440 to l-540/Eastern Wake Freeway	(6/9) ${ }^{1}$	(6/9)	(6/9)
US 264/64 Bypass	I-540/Eastern Wake Freeway to US 64	$(6 / 10)^{1}$	(11/5)	(6/10)
US 70	I-40/440 to I-40	(5/2) ${ }^{1}$	-	(5/2)
US 70	I-40 to Guy Road	(5/3) ${ }^{1}$	(7/6)	(5/3)
US 70 Bypass	I-40 to NC 42	$(4 / 3)^{1}, 8^{4}$	(4/6)	(4/3)
US 401	N of Ten Ten Rd to NC 42/55	-	$(3 / 1)^{\wedge},(3 / 2)^{\wedge}$	(3/2)
Triangle Expressway	US 1 to NC 55	(6\%/12\%) ${ }^{1}, 18 \%{ }^{5}$	(3/1),	(6/12)

"-" - Data not available.

* - Forecast design data for referenced forecasts may vary along freeway segments at interchanges and intersections. Only one design data point was referenced for the above table for the noted forecast year.
- Based on 16-hr, 12-hr or peak hour TMC

1 - R-2721, R-2828, R-2829 - Forecast Design Data (HNTB, 2009)
-
3 - R-2000AA-AF - Using 2012 Build Toll Forecast Design Data (NCDOT, 2008)
5 - R-2635 - Forecast Design Data (NCDOT, 2001)

4 - R-2552 - Forecast Design Data (NCDOT, 1999)

5 - R-2635 - Forecast Design Data (NCDOT, 2001)
6 - R-2721, R-2828, R-2829 - Forecast Design Data (NCDOT, 2000)
6 - R-2721, R-2828, R-2829 - Forecast Design Data (NCDOT, 2000)
7 - U-3101 - Using 1998 Build Forecast Design Data (NCDOT, 2000)
7 - U-3101 - Using 1998 Build Forecast Design Data (NCDOT, 2000)

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829 Complete 540-Triangle Expressway Southeast Extension

Traffic Forecast Report (DSA 1-17)

3.4 2010 Base Year (No-Build) Forecast Results

Based on the methodology described in the previous section, a 2010 Base Year (No-Build) forecast was completed.

The 2010 Base Year (No-Build) traffic forecast is shown in Figures 11-1 through 11-7. Table 9 provides 2010 TRM V4 volumes, adjusted count data, 2010 NCDOT historic AADT trend line estimates, and 2010 No Build forecast volumes. Due to the large size of the study area, Table 9 shows only selected locations of interest.

Table 9. 2010 Base Year No-Build Forecast Traffic Volumes

Roadway	Location	2010 TRM V4	Count Data	2010 NCDOT Linear Regression*	2010 Forecast Volume
I-40	from Exit 306 (US 70) to US 70 Bypass/Southeast Extension	94,900	-	82,000	75,100
NC 42	E of I-40	20,800	-	14,800	25,900
NC 50	S of Timber Dr	19,800	-	17,900	19,500
NC 50	S of Ten-Ten Road	19,200	15,200 ${ }^{2}$	18,000	15,200
NC 55	from Old Smithfield Road to Triangle Expressway	31,700	28,200 ${ }^{1}$	30,800	29,900
Old Stage Road	S of Vandora Springs Rd	15,200	15,800 ${ }^{3}$	16,900	14,800
Old Stage Road	N of Banks Rd	10,900	10,800 ${ }^{1}$	10,600	7,900
Old Stage Road	S of Norman Blalock Rd	6,200	4,400 ${ }^{4}$	-	4,000
Poole Road	E of Hodge Rd	13,600	7,900 ${ }^{1}$	10,500	7,900
Ten-Ten Road	E of Bells Lake Road	7,800	12,600 ${ }^{1}$	13,300	13,300
Ten-Ten Road	E of US 401	18,700	14,700 ${ }^{3}$	16,000	12,800
Ten-Ten Road	W of NC 50	11,100	7,500 ${ }^{3}$	6,500	6,700
Holly Springs Road	N of Kildaire Farm Road	10,600	8,900 ${ }^{1}$	-	9,000
Old Holly Springs-Apex Road	N of Triangle Expressway	10,200	-	1,900	1,900
Bells Lake Road	S of Ten-Ten Rd	8,500	-	4,500	4,500
Hilltop Needmore Road	E of Old Mills Rd	6,500	4,200 ${ }^{4}$	-	3,500
Rock Quarry Road	W of Southeast Extension	11,800	4,000 ${ }^{1}$	3,800	3,700
Auburn Knightdale Rd	N of Rock Quarry Rd	9,700	2,700 ${ }^{1}$	2,600	2,600
White Oak Rd	E of Raynor Rd	13,900	7,600 ${ }^{1}$	-	7,600
Vandora Springs Rd	E of Old Stage Rd	8,400	7,600 ${ }^{3}$	8,700	6,900
US 1	N of Triangle Expressway	32,800	21,700 ${ }^{2}$	20,400	21,700
US 401	N of Ten-Ten Rd	35,100	$33,100{ }^{3}$	31,700	33,300
US 401	N of Donny Brook Rd	34,800	32,300 ${ }^{1}$	34,900	33,000
US 401	S of Dwight Rowland Rd	26,900	22,800 ${ }^{4}$	-	21,200
US 64 Business	E of I-540	32,900	34,900 ${ }^{2}$	-	34,900
US 64 Business	W of I-540	21,700	31,700 ${ }^{2}$	37,800	31,800
US 64/264	from Hodge Road to I-540 / SE Extension	81,100	-	59,000	59,000
US 64/264	from l-540 / SE Extension to Smithfield Rd	79,000	${ }^{-}$	68,300	68,300
US 70	W of SE Extension	35,500	30,800 ${ }^{1}$	-	30,800
US 70	E of l-40	42,600	-	48,000	34,000
US 70 Bypass	E of I-40	29,000	-	24,000	23,000

$1-2009$ count data, $2-2010$ count data, $3-2012$ count data, $4-2013$ count data, "-" - Data not available.

* 2010 values obtained from AADT Historic Line Extrapolation using linear regression based on historical NCDOT AADTs from 1991-2009.

4.0 GENERAL MODEL DATA

The TRM is used by CAMPO and DCHC-MPO for evaluation of travel demand and air quality modeling for air conformity in the Triangle Region. The model has been developed in collaboration with NCDOT, the North Carolina State University Institute for Transportation Research and Education (ITRE), and the MPOs.

4.1 Model Information

The TRM V4-2008 was the official approved travel demand model used by the MPOs, Triangle Transit, and NCDOT in all plan evaluations and studies in the Triangle area at the beginning of this forecasting document and previous project forecasting efforts. Travel demand models are continually updated over time for various reasons. After the beginning of this project forecasting process, newer versions of the TRM (TRM Version 4-2009 and Version 5-2010) were officially adopted.

Due to the project forecast timeframe beginning in 2008, the TRM V4-2008 has previously been used throughout the Southeast Extension project process, including all of the following forecasts and reports:

- Southern and Eastern Wake Freeway Final Traffic Forecast Report (HNTB, February 2009)
- Southern and Eastern Wake Expressway Draft Upgrade Existing and Hybrid Alternatives Report (HNTB, January 2010)
- Southeast Extension - First Tier Screening Traffic Memorandum (HNTB, May 2011)
- Triangle Expressway Southeast Extension Final Traffic Forecast Technical Memorandum, (HNTB, June 2012) [Superseded by this document]

HNTB used the TRM V4-2008 obtained from ITRE on October 14, 2009 in the development of the traffic forecast volumes in this report. The TRM V4-2009 and TRM V5-2010 were reviewed, compared and considered in the methodology and forecast development as related to socioeconomic data, highway network, and model validation in the project corridor. While the TRM V4-2009 and TRM V5-2010 model version releases and corresponding output results were considered in the forecast, the TRM V4-2008 output is specifically referenced in the report tables.

The TRM V4-2008 has defined 2005 base and 2035 future year networks that were analyzed for the Triangle Expressway Southeast Extension traffic forecasts. The 2035 future network considers all fiscally constrained projects contained in the CAMPO and DCHC MPO 2030 LRTPs (dated September 15, 2004). Figure 3 shows the location of all fiscally constrained projects in the Triangle Expressway Southeast Extension traffic forecast study area. Appendix B includes plots of the TRM V4-2008 networks used in the development of the 2010, 2012, and 2035 forecasts.

HNTB developed a Triangle Regional Toll Diversion Model in December 2010 and applied these toll diversion curves/model to the TRM V4-2008 in an effort to more accurately assess tolling behavior in the region. With the Toll Diversion Model, the TRM V4-2008 is a toll-capable tool that is useful in projecting future traffic as well as the changes in travel patterns of new facilities. The model was used to evaluate the construction of the project as a toll facility. Documentation of the toll diversion modeling procedures can be found in Appendix \boldsymbol{D}.

Land Use Assumptions

Current land use in the traffic forecast study area is a mixture of urban and suburban commercial/residential development. Some interchanges in the traffic forecast study area feature dense "urban" development, while others have little to no existing development on more than one quadrant of the interchange. Land use information from the TRM V4 was used as one criterion in determining study area growth between the 2010, 2012 and 2035 forecast years. The TRM uses specifically delineated TAZs as areas where trips are generated or attracted, based on existing and projected population and employment data. Figure 6 shows locations of TAZs from the TRM V4 in the Triangle Expressway Southeast Extension traffic forecast study area and Table 10, below, shows 2005 base year population and employment data from these TAZs and the entire TRM V4 region.

Table 10. TRM V4 2005 Base Year TAZ Data

TAZ Statistic	Study Area	TRM V4
Employment	10,753	591,389
Special Generator Employment	400	87,824
Households	18,693	505,857
Population	51,797	$1,149,114$
Dwelling Units	20,513	498,562

Source: TRM V4-2008 Socio-Economic Data

4.2 Model Validation

Table 11 provides a listing of key study area segments that are included in the TRM V4 and comparable recent AADT information that provide validation for the use of the TRM V4 in project forecasting methodologies used in this report. The TRM V4 uses a 2010 base year for model calibration. The 2010 base year was used as the calibration year because major roadway network changes have occurred in the study area since the 2005 model year. Using 2005 as the calibration year would not provide as accurate a representation of existing and future year model calibration.

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829 Complete 540-Triangle Expressway Southeast Extension

Traffic Forecast Report (DSA 1-17)
Table 11. Model Validation

Roadway	Key Location	Model Calibration 2010		Forecast Volume	Historic Growth Rate+	2012 No-Build Volumes			2035 No-Build Volumes		
		AADT*	Model	2010		Extrapolate	Model	Forecast**	Extrapolate	Model	Forecast **
I-40	from Exit 306 (US 70) to US 70 Bypass/Southeast Extension	75,000	94,900	75,100	10.3\%	96,000	95,000	75,800	257,000	138,600	108,900
NC 42	E of I-40	15,000	20,800	25,900	--	16,400	22,700	26,400	14,800	26,300	31,000
NC 50	S of Timber Dr	--	19,800	19,500	--	18,800	21,100	20,800	19,100	29,100	28,700
NC 50	S of Ten-Ten Road	--	19,200	15,200	7.4\%	20,000	21,600	17,100	43,000	25,400	19,600
NC 55	from Old Smithfield Road to Triangle Expressway	26,000	31,700	29,900	--	35,300	40,700	39,600	87,000	50,600	51,300
Old Stage Road	S of Vandora Springs Road	16,000	15,200	14,800	3.9\%	17,400	16,200	15,800	23,700	42,500	41,400
Old Stage Road	N of Banks Road	--	10,900	7,900	--	11,100	11,800	8,500	16,700	25,200	18,200
Old Stage Road	S of Norman Blalock Road	--	6,200	4,000	--	--	6,600	4,300	--	13,900	9,100
Poole Road	E of Hodge Road	8,600	13,600	7,900	0.3\%	10,600	15,500	9,000	11,500	46,600	27,100
Ten-Ten Road	E of Bells Lake Road	12,000	7,800	13,300	--	14,000	10,100	17,200	22,400	19,200	32,700
Ten-Ten Road	E of US 401	15,000	18,700	12,800	5.6\%	16,700	21,500	14,700	24,700	27,700	18,900
Ten-Ten Road	W of NC 50	6,100	11,100	6,700	1.7\%	6,700	12,500	7,500	9,000	17,500	10,500
Holly Springs Road	N of Kildaire Farm Road	--	10,600	9,000	--	--	10,800	9,100	--	28,300	23,800
Old Holly SpringsApex Road	N of Triangle Expressway	1,800	10,200	1,900	--	2,100	10,100	10,100	4,600	29,800	29,800
Bells Lake Road	S of Ten-Ten Road	4,300	8,500	4,500	--	4,700	9,200	4,900	8,000	30,400	13,200
Hilltop Needmore Road	E of Old Mills Road	--	6,500	3,500	--	--	7,400	3,900	--	13,800	7,300
Rock Quarry Road	W of Southeast Extension	4,000	11,800	3,700	--	3,300	13,700	4,300	-1,900	30,800	10,000

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
Complete 540-Triangle Expressway Southeast Extension
Traffic Forecast Report (DSA 1-17)
Table 11 (Continued). Model Validation

Roadway	Key Location	ModelCalibration2010		Forecast Volume	Historic Growth Rate+	2012 No-Build Volumes			2035 No-Build Volumes		
		AADT*	Model	BY 2010		Extrapolate	Model	Forecast**	Extrapolate	Model	Forecast **
Auburn Knightdale Road	N of Rock Quarry Road	2,900	9,700	2,600	-3.5\%	2,400	12,600	3,400	-600	28,000	7,600
White Oak Road	E of Raynor Road	--	13,900	7,600	--	--	15,700	8,600	--	31,400	17,200
Vandora Springs Road	E of Old Stage Road	7,900	8,400	6,900	4.3\%	9,200	9,300	7,600	14,600	27,400	22,400
US 1	N of Triangle Expressway	18,000	32,800	21,700	--	21,800	37,300	24,700	38,000	66,600	44,100
US 401	N of Ten-Ten Road	31,000	35,100	33,300	0.0\%	31,700	37,100	35,200	31,700	62,300	59,600
US 401	N of Donny Brook Road	33,000	34,800	33,000	--	36,400	38,100	36,100	54,500	64,200	60,800
US 401	S of Dwight Rowland Road	--	26,900	21,200	--	--	28,200	22,300	--	45,200	35,700
US 64 Business	E of I-540	--	32,900	34,900	--	--	36,600	38,600	--	48,900	56,300
US 64 Business	W of I-540	30,000	21,700	31,800	--	36,700	23,900	35,100	24,000	37,600	50,600
US 64/264	from Hodge Road to I540 / SE Extension	58,000	81,100	59,000	1.8\%	61,000	88,500	65,700	84,000	130,700	98,200
US 64/264	from l-540 / SE Extension to Smithfield Road	60,000	79,000	68,300	10.0\%	77,800	88,600	76,100	187,000	137,400	116,900
US 70	W of SE Extension	34,000	35,500	30,800	--	--	36,900	32,000	--	50,200	43,500
US 70	E of l-40	34,000	42,600	34,000	--	49,400	44,700	35,700	64,900	54,000	53,000
US 70 Bypass	E of l-40	23,000	29,000	23,000	--	26,000	28,800	25,400	49,000	45,600	40,200
Triangle Expressway	From Old Holly Springs to NC 55	--	18,500	--	--	--	19,800	19,800	--	34,800	34,800

* - 2010 AADT Data Not Available - Results are for 2009 AADT
** - IY and FY Forecast Results Taken from Data in Sections 5.0 Through 8.0
+ - Historic Growth Rate = Average Annual Growth Rate From Available 1990-2010 AADT Data
"--" - Data not available

5.02012 INTERMEDIATE YEAR NO-BUILD TRAFFIC FORECAST

The 2012 Intermediate Year No-Build forecast uses extrapolations of historic AADT data in the study area, 2012 intermediate year TRM V4 model data developed by HNTB, and comparisons/adjustments from the 2010 Base Year field data counts as they applied to the historic and model information.

5.1 Assumptions

Future land use in the traffic forecast study area is projected to remain a mixture of rural and suburban commercial/residential development, with higher development intensities in many of the TAZs employed in the TRM V4. Table 12 shows population and employment data from study area TAZs and the entire regional model from the 2005 base year and 2012 model and the percentage change in socio-economic data expected between those years. This information was compared to the growth in traffic assignments for the traffic forecast study area to check for consistency. TRM V4-2008 TAZ socio-economic data can be found in Appendix E.

Table 12. 2005-2012 TRM TAZ Data Comparison

TAZ Statistic	2005		2012 *		$\begin{aligned} & \text { \% Increase } \\ & \text { 2005-2012 } \end{aligned}$	
	Study Area	TRM	Study Area	TRM	Study Area	TRM
Employment	10.8	591.4	21.1	809.8	96.6\%	36.9\%
Special Generator Employment	0.4	87.8	0.4	94.1	6.0\%	7.2\%
Households	18.7	505.9	29.5	551.7	57.6\%	9.0\%
Population	51.8	1,149.1	81.3	1,306.1	57.0\%	13.7\%
Dwelling Units	20.5	498.6	32.1	609.2	56.6\%	22.2\%

All Study Area and TRM values shown in thousands (1000s)
*- 2012 TAZ data interpolated from 2005 to 2035

5.2 Fiscal Constraint

The 2012 Intermediate Year No Build forecast considers all fiscally-constrained projects scheduled for completion by 2012 in the CAMPO / DCHC MPO 2030 LRTP (dated September 15, 2004). The roadway projects listed in the NCDOT's 2009-2015 STIP and CAMPO / DCHC MPO 2030 LRTPs were included in the model used to develop the 2012 traffic forecasts and is reflected in changes to travel patterns/daily traffic assignments in the traffic forecast study area. In addition to changes in the TAZ socio-economic data between the 2005 and 2012 models, all fiscally constrained projects from the 2030 LRTPs were added from the base network. The laneage used in the 2012 TRM V4 for major roadways within the study area is listed in Table 13.

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
Complete 540-Triangle Expressway Southeast Extension
Traffic Forecast Report (DSA 1-17)
Table 13. 2012 TRM V4 Major Model Transportation Network Laneage

Study Area Roadway	2012 Model
Triangle Expressway	Six-Lane Freeway
Triangle Expressway Southeast Extension	N/A
I-40	Four/Six-Lane Freeway
I-540	Six-Lane Freeway
US 64/264	Six-Lane Freeway
US 1	Four-Lane Freeway
US 401	Four-Lane Divided Arterial
US 70	Four-Lane Freeway

5.3 Development Activity

No specific major anticipated developments in the project study area were included in the development of the 2012 Intermediate Year No-Build forecast. Changes in land use intensity are reflected in interpolated changes in the study area (and regional) TAZ socio-economic data found in the TRM V4.

5.4 Methodology

The methodology used to develop the 2012 No-Build forecast is based on the TRM V4 and comparisons with model results, model growth rates on specific network links, historic traffic data extrapolations and comparisons with existing traffic count data. The 2012 No-Build forecast volumes were developed by applying historical AADT growth rates or 2010 to 2012 TRM V4 annual growth rates to 2010 Base Year forecast volumes. 2012 intermediate year TRM V4 model data was developed from the 2010 model by straight-line interpolating socioeconomic data inputs to year 2012, modifying the network as necessary, processing the model and extracting raw model output for use in the forecast development. Bidirectional turning volumes were grown at appropriate rates to reach intermediate year volumes. They were then adjusted to balance with mainline volumes.

In certain instances, historical or model growth rates along facilities were averaged, based on engineering judgment, for select segments along individual facilities (i.e. I-40, US 64/264, US 64 Business and I-540) to provide consistent growth along each corridor and provide reasonable and balanced mainline and turning movement volumes. The 2012 No-Build forecast volumes were adjusted as necessary based on a review of all available data, the study area roadway network and engineering judgment.

The 2012 TRM V4 volumes and those derived from linear regression are very similar in most locations throughout the forecast. Many of the discrepancies can be attributed to changes in the highway network that would have a large impact on travel patterns (i.e., opening of the Triangle Expressway and I-40 widening from Wade Avenue to US 1/64). Most discrepancies occur on lesser facilities that have development potential along them.

Model Growth Rates

One of the primary functions of the 2012 model for this forecasting effort was to serve as a basis for determining model growth rates between 2010 Base Year and 2012 Intermediate Year daily forecast estimates. Data from the 2010 and 2012 No-Build models were compared and annual

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
growth rates were calculated for each link in the study area network using an exponential growth rate method (Future = Base $\left.(1+r a t e)^{n}\right)$. The resulting growth rates were applied to the 2010 Base Year forecast AADTs to calculate 2012 unadjusted AADTs. This data was checked for reasonable growth assumptions. Several adjacent links are not expected to have similar growth patterns if 2012 year data a) did not match a relatively constant growth rate between the 2010 and 2012 model volumes, or b) was likely to increase by a different rate due to changes between the 2010 and 2012 models due to construction of new facilities in the traffic forecast study area.

Due to the changing nature of the study area, certain roadways produced growth rate data that resulted in inconsistent projections using this method. Inconsistencies in growth rate projections were addressed in these areas by using assignment data from the TRM V4 model or adjusted by engineering judgment. Model growth rates on select study area roadways are shown in Table 14. Table 14 also provides a comparison of 2012 TRM V4 daily model assignment data to 2010 Base Year and 2012 Intermediate Year No-Build forecast data.

5.5 Design Factors

Forecast design characteristics (D, DHV, truck percentages) were determined to remain unchanged from the 2010 Base Year, based on a review of relevant TRM data, roadway network changes, future land use growth and engineering judgment. No data collected for this forecast suggests that major changes are expected in the study area for peak hour directional flow changes, changes in percentage of daily traffic expected in the peak hour, or changes to truck percentages along freeway facilities (Triangle Expressway, I-40, US 1, US 64/264, US 70 Bypass) or surface street facilities.

5.6 2012 No-Build Forecast Results

The 2012 No-Build traffic forecast is shown in Figures 12-1 through 12-7. Table 14 provides 2012 TRM V4 No-Build volumes, historic, model and applied growth rates and 2012 Intermediate Year No-Build forecast volumes for selected locations.

The applied growth rate along Old Holly Springs-Apex Road is much greater than the historic and model growth rates because the 2010 No-Build forecast volume was based on historic AADT volumes for Old Holly Springs-Apex Road (see Table 9), while the 2012 No-Build forecast volume is primarily based on 2012 TRM V4 volumes. The 2012 TRM V4 volumes were used for the 2012 No-Build forecast at this location because they better reflect traffic assignment changes due to an interchange on the Triangle Expressway at Old Holly SpringsApex Road and future development near the interchange.

Linear regression data does not provide close correlation to the selected 2012 forecast AADTs for all roadways. The regression data in inconsistent in many locations, since historic data is limited in the area recently opened roadway networks will alter future traffic volumes on existing facilities.

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
Complete 540-Triangle Expressway Southeast Extension Traffic Forecast Report (DSA 1-17)

Table 14. 2012 No-Build Forecast Traffic Volumes

Location	Forecast (2010 NB) Volume	Historic Growth Rate	Model Growth Rate	Applied Rate	$\begin{gathered} 2011 \\ \text { AADT* } \end{gathered}$	2012 NB Volumes	
		1990-2010	2010-2012			Model	Forecast
I-40 from Exit 306 (US 70) to US 70 Byp/SE Ext	75,100	8.2\%	0.05\%	0.47\%	77,000^	95,000	75,800
NC 42 - E of I-40	25,900	5.3\%	4.47\%	0.96\%	19,000^	22,700	26,400
NC $50-\mathrm{S}$ of Timber Drive	19,500	0.3\%	3.23\%	3.28\%	16,000	21,100	20,800
NC $50-\mathrm{S}$ of Ten-Ten Road	15,200	5.4\%	6.07\%	6.07\%	14,000	21,600	17,100
NC 55 - from Old Smithfield Road to Triangle Expressway	29,900	6.1\%	13.31\%	13.33\%	25,000	40,700	39,600
Old Stage Road - S of Vandora Springs Rd	14,800	1.5\%	3.24\%	3.32\%	16,000	16,200	15,800
Old Stage Road - N of Banks Rd	7,900	2.3\%	4.05\%	3.73\%	9,400	11,800	8,500
Old Stage Road - S of Norman Blalock Rd	4,000	-	3.18\%	3.68\%	3,700	6,600	4,300
Poole Road - E of Hodge Rd	7,900	0.5\%	6.76\%	6.74\%	7,100	15,500	9,000
Ten-Ten Road - E of Bells Lake Road	13,300	2.6\%	13.79\%	13.72\%	12,000	10,100	17,200
Ten-Ten Road - E of US 401	12,800	-	7.23\%	7.17\%	15,000	21,500	14,700
Ten-Ten Road - W of NC 50	6,700	-	6.12\%	5.80\%	6,400	12,500	7,500
Holly Springs Road - N of Kildaire Farm Road	9,000	-	0.94\%	1.12\%	-	10,800	9,100
Old Holly Springs-Apex Road - N of Triangle Expressway	1,900	5.1\%	-0.49\%	130.56\%	2,500	10,100	10,100
Bells Lake Road - S of Ten-Ten Rd	4,500	2.2\%	4.04\%	4.35\%	-	9,200	4,900
Hilltop Needmore Road - E of Old Mills Rd	3,500	-	6.70\%	5.56\%	-	7,400	4,000
Rock Quarry Road - W of Southeast Extension	3,700	-1.4\%	7.75\%	7.42\%	3,900	13,700	4,300
Auburn Knightdale Rd - N of Rock Quarry Rd	2,600	-3.9\%	13.97\%	14.35\%	2,900	12,600	3,400
White Oak Road - E of Raynor Rd	7,600	-	6.28\%	6.38\%	-	15,700	8,600
Vandora Springs Rd - E of Old Stage Rd	6,900	2.8\%	5.22\%	4.95\%	7,800	9,300	7,600
US 1-N of Triangle Expressway	21,700	3.4\%	6.64\%	6.69\%	17,000	37,300	24,700
US 401-N of Ten-Ten Rd	33,300	0.0\%	2.81\%	2.83\%	31,000	37,100	35,200
US 401-N of Donny Brook Rd	33,000	2.1\%	4.63\%	4.59\%	32,000	38,100	36,100
US 401-S of Dwight Rowland Rd	21,200	-	2.39\%	2.56\%	-	28,200	22,400
US 64 Business - E of I-540	34,900	-	5.47\%	5.17\%	-	36,600	38,600
US 64 Business - W of I-540	31,800	-1.5\%	4.95\%	5.23\%	28,000	23,900	35,100
US 64/264 - from Hodge Road to I-540 / SE Extension	59,000	1.7\%	4.46\%	5.53\%	62,000	88,500	65,700
US 64/264 - from I-540 / SE Extension to Smithfield Rd	68,300	6.7\%	5.90\%	5.56\%	63,000	88,600	76,100
US $70-\mathrm{W}$ of SE Extension	30,800	-	1.95\%	1.93\%	35,000	36,900	32,000
US $70-\mathrm{E}$ of I-40	34,000	1.4\%	2.44\%	2.47\%	35,000	44,700	35,700
US 70 Bypass - E of I-40	23,000	4.1\%	4.38\%	4.47\%	25,000^	28,800	25,400
Triangle Expressway - From Old Holly Springs to NC 55	-	-	3.45\%	3.45\%	-	19,800	19,800
"-" - Data not available. GR Methodology $\mathrm{F}=\mathrm{B}(1+r)^{n}$ 2012 AADT's not available at most locations ${ }^{\wedge} 2012$ AADT							

6.02012 INTERMEDIATE YEAR BUILD TRAFFIC FORECAST

6.1 Assumptions

The land use and transportation network assumptions, fiscal constraints, and development activity for the 2012 Intermediate Year Build forecast are consistent with those stated in the 2012 Intermediate Year No-Build forecast (Section 5.0). The 2012 Intermediate Year Build forecast includes the completion of the Southeast Extension, in addition to the Triangle Expressway (assumed complete in the 2012 No-Build forecast.

For all DSAs, some existing roadways are proposed for relocation. The following facilities were relocated in the 2012 Build scenarios and forecast volumes were adjusted accordingly to account for the redistribution in future traffic volumes:

- Kildaire Farm Road; relocated north of Southeast Extension on Holly Springs Road opposite Sancroft Drive.
- Donny Brook Road; relocated south on US 401 opposite Wake Tech Main Entrance.
- Old McCullers Road; relocated south to connect to Wake Tech internal roadway.
- Raynor Road and Cascade Drive; relocated west on White Oak Road to align opposite each other.
- Old Baucom Road; realigned east on Rock Quarry Road.

6.2 Methodology

For the 2012 Build forecast, models including the Triangle Expressway Southeast Extension were developed for 2012 DSAs 1 - 17 Build conditions. The 2012 Build model runs for each DSA were then compared to the 2012 No-Build model run results to determine 2012 NoBuild/2012 Build growth rates. These growth rates were then applied to the 2012 No-Build forecast data to produce estimates of 2012 Build forecast daily traffic for facilities existing in the No-Build model network.

Five different model runs (DSA 1, 2, 13 \& 14, DSA 3, 4, 15, \& 16, DSA 5 \& 17, DSA 6 \& 7, and DSA $8 \& 9$) were performed to account for the DSAs in the 2012 build scenario. Minimal model volume differences between the DSA 1, 2, 13 \& 14 model run and the DSA 3, 4, $15 \& 16$ and DSA 5 \& 17 model runs led HNTB to use the same traffic forecast volumes for all facilities west of I-40 for these DSAs. Similarly, DSA 10-12 volumes for facilities west of l-40 were set equal to the DSA $8-9$ volumes. Certain interchange and intersection locations at and east of I-40 have the same forecast volumes in all DSAs. Different forecast volumes were assigned at interchange and intersection locations in the eastern portion of the DSAs where model assignment volume differences warranted.

As in the 2012 No-Build forecast, adjustments to the model growth rate methodology were necessary in certain areas of the network to produce reasonable and balanced daily traffic volume estimates. Any adjustments made for the 2012 No-Build traffic forecasts with regard to incorporating actual 2012 model data were applied consistently to the 2012 Build DSA forecasts. Once the growth rates and adjustments were applied to 2012 Build segments, bidirectional turning movement volumes were then adjusted throughout the study area to account for change in traffic volumes and patterns between the 2012 No-Build and Build forecasts.

Daily directional traffic assignments indicate some traffic reassignment patterns from the 2012 NoBuild, due to constructing the Southeast Extension. These patterns generally indicate slight

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
Complete 540 - Triangle Expressway Southeast Extension
Traffic Forecast Report (DSA 1-17)
increases in -Y- line traffic volumes at Southeast Extension interchanges and a reduction in traffic along parallel facilities. The Southeast Extension also provides some traffic reduction for major arterials such as I-40 and US 264. The project also redistributes local traffic at each interchange. Local traffic shifts represented in the 2012 Build model are characterized by traffic shifting onto Southeast Extension and a corresponding slight decrease in traffic on parallel facilities. Both system-wide and local traffic shifts additively exhibit large-scale changes in traffic patterns in the 2012 model network. The largest percent volume changes in daily assignments generally occur along I-40, Ten Ten Road and Auburn-Knightdale Road, which will be parallel facilities to the Southeast Extension.

TRM V4 Model Assignments

The approved model used by the CAMPO and DHCHMPs provided a basis for the development of growth rates on study area roadways. On certain links in the study area, the TRM V4 daily traffic assignments do not provide daily assignment data that is consistent with existing or anticipated travel patterns. For the DSA corridors, TRM V4 daily traffic assignments are generally very similar for most roadway segments. These areas and relevant descriptions of observations are described in Table 15.

Table 15. 2012 TRM V4 Model Assignment Discrepancies

Area in the TRM	Discussion
Southeast Extension from NC 55 to Holly Springs Road	Daily link volume assignments show a large amount of traffic exiting the Southeast Extension and taking Sunset Lake Road and NC 55 as toll-free shortcuts before rejoining the Southeast Extension west of NC 55 and east of Holly Springs Road. This was an unrealistic travel pattern, based on engineering judgment, and volumes in the traffic forecast were adjusted to account for the TRM's assignment behavior in this area.
DSAs 1, 2, 13 and 14 highway network coding	The Orange and Green Corridors (DSA 1) are the alignments coded into the official highway network of the TRM. It was determined through the evaluation of TRM volumes that this network would also apply to the Mint Corridor used in DSAs 2 and 14 and the Lilac Corridor used in DSAs 13 and 14, due to no interchange relocations and very similar TRM output.
DSAs 3, 4, 15, and 16 highway network coding	DSAs 3 and 4 required edits to the TRM highway network on the eastern section of the Southeast Extension. The project's interchanges with White Oak Road and Auburn-Knightdale Road were left unchanged for modeling purposes. The US 70 Business interchange was relocated east of Guy Road. The Old Baucom Road interchange was relocated from its original location on Rock Quarry Road in the official TRM network. All network attributes remained unchanged from the official highway network. It was determined through the evaluation of TRM volumes that this network would also apply to the Lilac Corridor used in DSAs 15 and 16 due to no interchange relocations and very similar TRM output.
DSA 5 and 17 highway network coding	DSA 5 required edits to the TRM highway network on the eastern section of the Southeast Extension. The project's interchanges with White Oak Road, US 70 Business, and Auburn-Knightdale Road were left unchanged for modeling purposes. The Old Baucom Road interchange was relocated from its original location on Rock Quarry Road in the official TRM network. All network attributes remained unchanged from the official highway network. It was determined through the evaluation of TRM volumes that this network would also apply to the Lilac Corridor used in DSA 17 due to no interchange relocations and very similar TRM output.

Table 15 (Continued). 2012 TRM V4 Model Assignment Discrepancies

Area in the TRM	Discussion
DSAs 6 and 7 highway network coding	DSA 6 (Red Corridor) required edits to the TRM highway network on both the southern and eastern section of the Southeast Extension. The project's interchanges with Holly Springs Road, Bells Lake Road and Auburn-Knightdale Road were left unchanged for modeling purposes. The US 401 interchange was relocated north of Ten Ten Road. The Old Stage Road interchange was relocated south of Vandora Springs Road. The NC 50 interchange was relocated south of Timber Drive. The interchange with l-40 was moved between Exit 306 (US 70 Business) and Exit 309 (US 70 Bypass) on I-40. The interchanges with White Oak Road and US 70 Business were removed. The Rock Quarry Road interchange remained in the same location, but Rock Quarry Road was extended south to intersect with US 70 Business. All network attributes remained unchanged from the official highway network. It was determined through the evaluation of TRM volumes that this network would also apply to the Mint Corridor used in DSA 7 due to no interchange relocations and very similar TRM output.
DSAs 8-9 highway network coding	DSA 8 (Purple-Blue-Lilac Corridor) required edits to the TRM network on the southern section of the Southeast Extension. The project's interchanges with Holly Springs Road and NC 50 were left unchanged for modeling purposes. The Hilltop-Needmore Road interchange was relocated from its original location on Bells Lake Road in the official TRM network. The US 401 interchange was relocated south of Dwight Rowland Road. The Old Stage Road interchange was relocated south of Norman Blalock Road. All network attributes remained unchanged from the official highway network. It was determined through the evaluation of TRM volumes that this network would also apply to the Mint Corridor used in DSA 9 due to no interchange relocations and very similar TRM output.

Appendix Fincludes a chart of 2012 DSA Southeast Extension forecast volumes, a summary table of data used to aid in determining 2012 study area forecast volumes, and raw model output comparisons of the TRM V4-2008 and TRM V4-2009.

6.3 Design Factors

All available information was evaluated, along with engineering judgment, to determine the 2012 Build forecast. All other forecast characteristics (D, DHV, truck percentages) were determined to remain unchanged based on a review of relevant TRM data, roadway network changes, future land use growth and engineering judgment.

The proposed Western Wake Freeway and Southeast Extension are new location roadway facilities that require design data not produced in the 2010 Base Year and/or 2012 Intermediate Year No-Build scenarios. The design data for these roadway segments were generated by comparing previous traffic forecasts, comparing traffic characteristics of similar nearby/parallel facilities, examining existing $1-540$ and NC 540 traffic data, reviewing the TRM data and producing traffic factors reasonable to the study area characteristics based on engineering judgment. The design factors for the new location roadways are included in Table 8.

6.4 2012 Build Forecast Results

Table 16 provides 2012 TRM V4 and forecast volumes for selected DSAs at particular locations of interest, along with the model diversion percentage and the applied diversion percentage for facilities existing in the 2012 No-Build scenario. Table 17 provides 2012 Intermediate Year Build
forecast volumes for all DSAs and 2012 Intermediate Year No-Build forecast volumes for comparison.

DSA 1, 2, 13 and 14

DSA 1 \& 2 forecast volumes range from 17,600 to 33,300 AADT along the Southern Wake Freeway, similar to DSA 3, 4 and 5, and 20,900 to 48,600 AADT east of I-40 along the Eastern Wake Freeway. Figures 13.1 through 13.6 show 2012 forecast volumes for DSA 1, 2, 13 \& 14.

DSA 3, 4, 15 and 16

DSA 3 \& 4 forecast volumes range from 17,600 to 33,300 AADT along the Southern Wake Freeway, similar to DSA 1, 2 and 5, and 18,900 to 51,800 AADT east of I-40 along the Eastern Wake Freeway. Figures 14.1 through $\mathbf{1 4 . 6}$ show 2012 forecast volumes for DSA 3, 4, 15 \& 16.

DSA 5 and 17

DSA 5 forecast volumes range from 17,600 to 33,300 AADT along the Southern Wake Freeway, similar to DSA 1, 2, 3 and 4, and 20,900 to 46,000 AADT east of I-40 along the Eastern Wake Freeway. Figures 15.1 through 15.6 show 2012 forecast volumes for DSA 5 \& 17.

DSA 6 and 7

DSA 6 \& 7 forecast volumes range from 15,200 to 25,300 AADT along the Southern Wake Freeway and 23,000 to 43,800 AADT east of I-40 along the Eastern Wake Freeway. Figures 16.1 through 16.5 show 2012 forecast volumes for DSA $6 \& 7$.

DSA 8 and 9

DSA 8 \& 9 forecast volumes range from 17,100 to 29,000 AADT along the Southern Wake Freeway and 18,800 to 48,500 AADT east of I-40 along the Eastern Wake Freeway. Figures 17.1 through 17.6 show 2012 forecast volumes for DSA 8 \& 9 .

DSA 10 and 11

DSA 10 \& 11 forecast volumes range from 17,100 to 29,000 AADT along the Southern Wake Freeway, similar to DSA 8 \& 9, and 17,000 to 51,700 AADT east of I-40 along the Eastern Wake Freeway. Figures 18.1 through 18.6 show 2012 forecast volumes for DSA 10 \& 11 .

DSA 12

DSA 12 forecast volumes range from 17,100 to 29,000 AADT along the Southern Wake Freeway, similar to DSA 8, 9, 10 \& 11, and 18,800 to 45,900 AADT east of I-40 along the Eastern Wake Freeway. Figures 19.1 through 19.6 show 2012 forecast volumes for DSA 12.

Table 16. 2012 Build Traffic Forecast Methodology

Location	2012 No Build		2012 Build															
			DSA 1,2,13 \& 14				DSA 3,4,15 \& 16				DSA 6 \& 7				DSA 8 \& 9			
	Model	Forecast	Model	Diversion \%		Forecast												
SE Ext (NC 540) - E of NC 55			17,600			17,600	17,100	-	-	17,600	15,200	-		15,200	16,500			23,600
SE Ext (NC 540) - E of Holly Springs Road			21,800			21,800	21,100	-	-	21,800	19,800	-		19,000	29,000			29,000
SE Ext (NC 540) - E of Bells Lake Rd / Hilltop Needmore Rd		-	30,500			30,500	30,000		-	30,500	22,500	-		22,500	28,100			28,100
SE Ext (NC 540) - E of US 401			33,300			33,300	33,000			33,300	22,100			22,100	20,400			20,400
SE Ext (NC 540) - E of Old Stage Road		-	26,100		-	26,100	25,800	-	-	26,100	21,800			21,800	17,100		-	17,100
SE Ext (NC 540) - E of NC 50	-	-	24,200	-	-	24,200	24,300	-	-	24,200	25,300	-		25,300	21,200	-	-	21,200
SE Ext (NC 540) - E of 1-40		-	20,900	-		20,900	18,900	-	-	18,900	23,000			23,000	18,800			18,800
SE Ext (NC 540) - N of White Oak Road	-	-	27,200	-	-	27,200	20,600	-	-	20,600	-	-		-	25,700		-	25,700
SE Ext (NC 540) - N of US 70 Business			34,700			34,700	37,800	.		37,800					32,200			34,000
SE Ext (NC 540) - N of Rock Quarry Rd / Old Baucom Rd		-	37,800			37,800		,			33,400	-		33,400	37,900			37,900
SE Ext (NC 540) - N of Auburn Knightdale Road			37,700			37,700	41,200			41,100	34,100			34,100	37,600			37,600
SE Ext (NC 540) - N of Poole Road			48,600			48,600	51,900			51,800	43,800		-	43,800	47,300		-	48,500
1-40 from Exit 306 (US 70) to US 70 Byp/SE Ext	95,000	75,800	87,300	-8.11	-8.18	69,600	85,900	-9.58	-8.18	69,600	92,500	-2.63	-2.77	73,700	86,300	-9.16	-9.23	68,800
NC $42-\mathrm{E}$ of 1-40	22,700	26,400	16,900	-25.55	-25.38	19,700	16,500	-27.31	-25.38	19,700			-		16,100	-29.07	-29.17	18,700
NC $50-\mathrm{S}$ of Timber Drive	21,100	20,800	-	-	-	-	-		-	-	23,800	12.80	12.98	23,500	-	-	-	-
NC $50-$ S of Ten-Ten Road	21,600	17,100	15,600	-27.78	-26.90	12,500	15,600	-27.78	-26.90	12,500	-		-		21,600	0.00	0.00	17,100
NC 55 - from Old Smithfield Road to Triangle Expressway	40,700	39,600	40,300	-0.98	0.51	39,800	41,200	1.23	0.51	39,800	37,400	-8.11	-6.31	37,100	33,900	-16.71	-14.65	33,800
Old Stage Road - S of Vandora Springs Rd	16,200	15,800	-	-	-	-	-		-	-	21,800	34.57	35.44	21,400	-	-	-	-
Old Stage Road - N of Banks Rd	11,800	8,500	14,000	18.64	45.88	12,400	14,000	18.64	45.88	12,400			-			-	-	
Old Stage Road - S of Norman Blalock Rd	6,600	4,300	-	-	-		-	-	-		-	-	-	-	5,900	-10.61	-11.63	3,800
Poole Road - E of Hodge Rd	15,500	9,000	14,800	4.52	3.33	8,700	14,100	-9.03	-3.33	8,700	13,900	-10.32	-7.78	8,300	14,300	-7.74	-7.78	8,300
Ten-Ten Road - E of Bells Lake Road	10,100	17,200	2,300	-77.23	-22.09	13,400	2,300	-77.23	-22.09	13,400	3,800	-62.38	-29.65	12,100	-	-	-	-
Ten-Ten Road - E of US 401	21,500	14,700									17,000	-20.93	-21.09	11,600				
Ten-Ten Road - W of NC 50	12,500	7,500	5,800	-53.60	17.33	8,800	5,800	-53.60	17.33	8,800	-	-	-	-	11,000	-12.00	-12.00	6,600
Holly Springs Road - N of Kildaire Farm Road	10,800	9,100	11,000	1.85	2.20	9,300	11,000	1.85	2.20	9,300	10,300	-4.63	-3.30	8,800	25,500	136.11	51.65	13,800
Old Holly Springs-Apex Road - N of Triangle Expressway	10,100	10,100	10,600	4.95	4.95	10,600	10,500	3.96	4.95	10,600	9,700	-3.96	-3.96	9,700	9,800	-2.97	-2.97	9,800
Bells Lake Road - S of Ten-Ten Rd	9,200	4,900	16,400	78.26	142.86	11,900	16,300	77.17	142.86	11,900	10,900	18.48	61.22	7,900		-	-	
Hilltop Needmore Road - E of Old Mills Rd	7,400	4,000													12,000	62.16	57.50	6,300
Rock Quarry Road - W of Southeast Extension	13,700	4,300	11,800	-13.87	-13.95	3,700	6,800	-50.36	-51.16	2,100	11,600	-15.33	-9.30	3,900	12,100	-11.68	-6.98	4,000
Auburn Knightdale Rd - N of Rock Quarry Rd	12,600	3,400	3,600	-71.43	-70.59	1,000	8,000	-36.51	-35.29	2,200	4,600	-63.49	-64.71	1,200	3,200	-74.60	-73.53	900
White Oak Road - E of Raynor Rd	15,700	8,600	15,200	-3.18	-3.49	8,300	18,800	19.75	19.77	10,300	-	-	-		15,200	-3.18	-3.49	8,300
Vandora Springs Rd - E of Old Stage Rd	9,300	7,600	-	-	-	-	-	-	-	-	10,400	11.83	22.37	9,300	-	-	-	-
US 1-N of Triangle Expressway	37,300	24,700	36,100	-3.22	-3.24	23,900	36,300	-2.68	-3.24	23,900	36,400	-2.41	-2.02	24,200	36,700	-1.61	-2.02	24,200
US 401 - N of Ten-Ten Rd	37,100	35,200	-	-	-	-	-	-	-	-	38,100	2.70	9.38	38,500	-	-	-	-
US 401 - N of Donny Brook Rd	38,100	36,100	45,900	20.47	20.50	43,500	45,800	20.21	27.15	45,900		-	-	-	-	-	-	-
US 401 - S of Dwight Rowland Rd	28,200	22,400	-	-	-	-	-	-	-	-	-	-	-	-	25,800	-8.51	-8.93	20,400
US 64 Business - E of l-540	36,600	38,600	37,600	2.73	2.85	39,700	38,300	4.64	2.85	39,700	36,600	0.00	0.00	38,600	37,200	1.64	1.55	39,200
US 64 Business - W of l-540	23,900	35,100	26,400	10.46	10.54	38,800	26,800	12.13	10.54	38,800	26,000	8.79	8.83	38,200	26,500	10.88	10.83	38,900
US 64/264 - from Hodge Road to l-540 / SE Extension	88,500	65,700	87,900	-0.68	-0.61	65,300	91,500	3.39	-0.61	65,300	85,300	-3.62	-3.65	63,300	87,600	-1.02	-1.07	65,000
US 64/264-from l-540 / SE Extension to Smithfield Rd	88,600	76,100	86,000	-2.93	-2.76	74,000	85,600	-3.39	-2.76	74,000	86,300	-2.60	-2.63	74,100	86,100	-2.82	-2.76	74,000
US $70-\mathrm{W}$ of SE Extension	36,900	32,000	36,100	-2.17	-1.88	31,400	29,500	-20.05	-19.69	25,700	-	-	-		35,900	-2.71	-2.81	31,100
US $70-\mathrm{E}$ of $\mathrm{I}-40$	44,700	35,700	37,200	-16.78	-16.81	29,700	35,300	-21.03	-20.73	28,300	37,900	-15.21	-15.13	30,300	36,800	-17.67	-17.37	29,500
US 70 Bypass - E of 1-40	28,800	25,400	37,700	30.90	30.71	33,200	33,600	16.67	16.54	29,600	28,500	-1.04	-2.36	24,800	32,400	12.50	11.02	28,200
Triangle Expressway - From Old Holly Springs to NC 55	19,800	19,800	23,200	17.17	17.17	23,200	23,500	18.69	17.17	23,200	17,700	-10.61	13.64	22,500	18,300	-7.58	17.68	23,300

N- - Data not available. 11 , and 12 were forecasted using similar methodology as discussed in Section 62 All 2012 DSA forecast volumes are presented in Table 17.

Table 17. 2012 Build Traffic Forecast Volumes

Location	2012 NB Forecast	2012 Build Forecast Volumes						
		DSA 1,2,13 \& 14	DSA 3,4,15 \& 16	DSA 5 \& 17	DSA 6 \& 7	DSA 8 \& 9	DSA 10 \& 11	DSA 12
SE Ext (NC 540) - E of NC 55		17,600	17,600	17,600	15,200	23,600	23,600	23,600
SE Ext (NC 540) - E of Holly Springs Road		21,800	21,800	21,800	19,000	29,000	29,000	29,000
SE Ext (NC 540) - E of Bells Lake Rd/ Hilltop Needmore Rd		30,500	30,500	30,500	22,500	28,100	28,100	28,100
SE Ext (NC 540) - E of US 401		33,300	33,300	33,300	22,100	20,400	20,400	20,400
SE Ext (NC 540) - E of Old Stage Road		26,100	26,100	26,100	21,800	17,100	17,100	17,100
SE Ext (NC 540) - E of NC 50		24,200	24,200	24,200	25,300	21,200	21,200	21,200
SE Ext (NC 540) - E of I-40	-	20,900	18,900	20,900	23,000	18,800	17,000	18,800
SE Ext (NC 540) - N of White Oak Road		27,200	20,600	25,800		25,700	19,500	24,400
SE Ext (NC 540) - N of US 70 Business	-	34,700	37,800	27,500	-	34,000	37,000	26,900
SE Ext (NC 540) - N of Rock Quarry Rd / Old Baucom Rd		37,800			33,400	37,900	37,100	33,100
SE Ext (NC 540) - N of Auburn Knightdale Road	-	37,700	41,100	35,300	34,100	37,600	41,000	35,200
SE Ext (NC 540) - N of Poole Road		48,600	51,800	46,000	43,800	48,500	51,700	45,900
1-40 from Exit 306 (US 70) to US 70 Byp/SE Ext	75,800	69,600	69,600	69,600	73,700	68,800	68,800	68,800
NC 42 - E of l-40	26,400	19,700	19,700	19,700	-	18,700	18,700	18,700
NC 50-S of Timber Drive	20,800			-	23,500	-		
NC $50-$ S of Ten-Ten Road	17,100	12,500	12,500	12,500	-	17,100	17,100	17,100
NC 55 - from Old Smithfield Road to Triangle Expressway	39,600	39,800	39,800	39,800	37,100	33,800	33,800	33,800
Old Stage Road - S of Vandora Springs Rd	15,800	-	-	-	21,400	-		
Old Stage Road - N of Banks Rd	8,500	12,400	12,400	12,400	-	-	-	-
Old Stage Road - S of Norman Blalock Rd	4,300					3,800	3,800	3,800
Poole Road - E of Hodge Rd	9,000	8,700	8,700	8,700	8,300	8,300	8,300	8,300
Ten-Ten Road - E of Bells Lake Road	17,200	13,400	13,400	13,400	12,100	-		
Ten-Ten Road - E of US 401	14,700	-	-	-	11,600	-	-	-
Ten-Ten Road - W of NC 50	7,500	8,800	8,800	8,800	-	6,600	6,600	6,600
Holly Springs Road - N of Kildaire Farm Road	9,100	9,300	9,300	9,300	8,800	13,800	13,800	13,800
Old Holly Springs-Apex Road - N of Triangle Expressway	10,100	10,600	10,600	10,600	9,700	9,800	9,800	9,800
Bells Lake Road - S of Ten-Ten Rd	4,900	11,900	11,900	11,900	7,900			
Hilltop Needmore Road - E of Old Mills Rd	4,000	-	-	-	-	6,300	6,300	6,300
Rock Quarry Road - W of Southeast Extension	4,300	3,700	2,100	3,500	3,900	4,000	2,200	3,600
Auburn Knightdale Rd - N of Rock Quarry Rd	3,400	1,000	2,200	1,500	1,200	900	2,100	1,400
White Oak Road - E of Raynor Rd	8,600	8,300	10,300	8,500	-	8,300	10,300	8,500
Vandora Springs Rd - E of Old Stage Rd	7,600			-	9,300		-	-
US 1-N of Triangle Expressway	24,700	23,900	23,900	23,900	24,200	24,200	24,200	24,200
US 401 - N of Ten-Ten Rd	35,200			-	38,500	-	-	-
US 401 - N of Donny Brook Rd	36,100	43,500	45,900	43,400	-	-	-	-
US 401 - S of Dwight Rowland Rd	22,400	-	-	-	-	20,400	20,400	20,400
US 64 Business - E of l-540	38,600	39,700	39,700	39,700	38,600	39,200	39,200	39,200
US 64 Business - W of I-540	35,100	38,800	38,800	38,800	38,200	38,900	38,900	38,900
US 64/264- from Hodge Road to l-540 / SE Extension	65,700	65,300	65,300	65,300	63,300	65,000	65,000	65,000
US 64/264- from l-540 / SE Extension to Smithfield Rd	76,100	74,000	74,000	74,000	74,100	74,000	74,000	74,000
US $70-\mathrm{W}$ of SE Extension	32,000	31,400	25,700	33,900		31,100	25,600	33,700
US $70-\mathrm{E}$ of l-40	35,700	29,700	28,300	29,700	30,300	29,500	28,100	29,500
US 70 Bypass - E of I-40	25,400	33,200	29,600	33,200	24,800	28,200	25,400	28,600
Triangle Expressway - From Old Holly Springs to NC 55	19,800	23,200	23,200	23,400	22,500	23,300	23,300	23,300

[^0]
7.02035 FUTURE YEAR NO-BUILD TRAFFIC FORECAST

The 2035 Future Year No-Build forecast uses extrapolations of historic AADT data in the study area, 2035 model data, and comparisons/adjustments from the 2010 Base Year and 2012 Intermediate Year volumes as they applied to the historic and model information.

7.1 Assumptions

Land Use

Future land use in the traffic forecast study area is projected to remain a mixture of rural and suburban commercial/residential development, with higher development intensities in many of the TAZs employed in the TRM V4. It is likely that several interchanges with limited existing development could see higher density development by 2035. Table 18 shows population and employment data from study area TAZs and the entire regional model from the 2005 base year and 2035 model and the percentage change in socio-economic data expected between those years. This information was compared to the growth in traffic assignments for the traffic forecast study area to check for consistency. TRM V4 TAZ socio-economic data can be found in Appendix E.

Table 18. 2005-2035 TRM V4 TAZ Data Comparison

TAZ Statistic	2005		2035		\% Increase 2005-2035	
	Study Area	TRM	Study Area	TRM	Study Area	TRM
Employment	10.8	591.4	55.2	$1,244.2$	413.7	110.4
Special Generator Employment	0.4	87.8	0.5	113.8	25.0	29.6
Households	18.7	505.9	64.8	973.2	247.0	92.4
Population	51.8	$1,149.1$	178.3	$2,264.0$	244.2	97.0
Dwelling Units	20.5	498.6	70.3	986.7	242.6	97.9

All Study Area and TRM values shown in thousands (1000s)

Study Area Transportation Network

The roadway projects listed in the NCDOT's 2009-2015 STIP and CAMPO and DCHC MPO 2030 LRTPs (dated September 15, 2004) were included in the TRM V4-2008 model used to develop the 2035 traffic forecasts and is reflected in changes to travel patterns/daily traffic assignments in the traffic forecast study area. Besides the Triangle Expressway Southeast Extension, many other important projects are anticipated to open in 2035. Scheduled major roadway network changes in the TRM V4 are listed below in Table 19.

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
Complete 540-Triangle Expressway Southeast Extension
Traffic Forecast Report (DSA 1-17)
Table 19. 2035 TRM V4 Major Model Transportation Network Laneage

Study Area Roadway	2035 Model
Triangle Expressway	Six-Lane Freeway
Triangle Expressway Southeast Extension	Six-Lane Freeway
I-40	Eight-Lane Freeway
I-540	Six-Lane Freeway
US 64/264	Six-Lane Freeway
US 1	Four-Lane Freeway
US 401	Six-Lane Divided Arterial
US 70	Four-Lane Freeway

7.2 Fiscal Constraint

The 2035 Future Year No Build forecast considers all fiscally-constrained projects scheduled for completion by 2035 in the CAMPO / DCHC MPO 2030 LRTP (dated September 15, 2004).

7.3 Development Activity

As with the 2012 Intermediate Year forecast assumptions, development activity in the project study area was accounted for by changes in socio-economic data for study area TAZs in the TRM V4. No specific traffic generators were analyzed beyond changes in TAZ data between the 2012 and 2035 forecast years.

7.4 Methodology

The methodology used to develop the 2035 No-Build forecast is based on the TRM V4 and comparisons with model results, model growth rates on specific network links, historic traffic data extrapolations and comparisons with existing traffic count data.

The 2035 Future Year No-Build scenario was completed based on a review and comparison of 2010-2035 and 2012-2035 TRM V4 model growth rates, 2035 TRM V4 data, and historical trend line estimates. Model runs were completed for the 2035 No-Build forecast by removing the Triangle Expressway Southeast Extension from the 2035 model network. The model 2012 NoBuild/2035 No-Build growth rate was applied to the 2012 No-Build forecast to determine 2035 NoBuild forecast volumes. Adjustments were made to produce consistent daily traffic flow patterns upstream and downstream along study area freeways and surface streets. Bidirectional turning movements were forecasted at interchanges to calibrate, as closely as possible, with 2012 and 2035 TRM V4 daily turning movement volumes while accounting for roadway network changes and traffic flow pattern shifts.

As discussed in Section 3.2, the differences in 2010 TRM V4 and Base Year forecast volumes translated into 2035 volume differences, based on a similar proportion or ratio. For instance, I40, US 1, and US 64/264 forecast volumes are much lower than the TRM V4 volumes and US 64 Business volumes are higher due to differences in 2010 TRM V4 and forecast volumes.

Model Growth Rates

One of the primary functions of the 2035 model for this forecasting effort was to serve as a basis for determining annual growth rates between the 2012 Intermediate Year and 2035 Future Year daily forecast estimates. Data from the 2012 and 2035 models for both Build and No-Build

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
alternatives was compared and annual growth rates were calculated for each link in the study area network. The resulting growth rates were applied to the 2012 Intermediate Year forecast AADTs to calculate 2035 unadjusted AADTs. This data was checked for reasonable growth assumptions. Several adjacent links are not expected to have similar growth patterns if 2035 year data a) did not match a relatively constant growth rate between the 2012 and 2035 model volumes, or b) was likely to increase by a different rate due to changes between the 2012 and 2035 models due to construction of new facilities or major TAZ differences in the traffic forecast study area.

In most instances, 2012 Intermediate Year forecast volumes are less than 2012 TRM V4 daily assignments. Therefore, based on model growth rates, 2035 forecast volumes are generally less than 2035 TRM V4 daily assignments on major network facilities such as I-40, US 1, US 64/264, NC 42, NC 50 and NC 55.

Due to the changing nature of the study area, certain roadways produced growth rate data that resulted in inconsistent projections using this method. Inconsistencies in growth rate projections were addressed in these areas by using assignment data from the TRM V4 model or adjusted based on engineering judgment. Model growth rates on select study area roadways are shown on Table 20. Table 20 also provides a comparison of 2035 TRM V4 daily No-Build model assignment data to 2012 Intermediate Year and 2035 Future Year No-Build forecast data.

7.5 Design Factors

Forecast design characteristics (D, DHV, truck percentages) were determined to remain unchanged from the Intermediate Year based on a review of relevant TRM data, roadway network changes, future land use growth and engineering judgment. No data collected for this forecast suggests that major changes are expected in the study area for peak hour directional flow changes, changes in percentage of daily traffic expected in the peak hour, or changes to truck percentages along freeway facilities (Triangle Expressway, I-40, US 1, US 64/264, US 70 Bypass) or surface street facilities.

7.6 2035 No-Build Forecast Results

The 2035 No-Build traffic forecast is shown on Figures 8-1 through 8-6. Table 20 provides 2035 No-Build AADT estimates through interpolation/extrapolation of NCDOT historic count linear regression data, 2035 TRM V4 volumes and the proposed 2035 No-Build forecast volumes.

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
Complete 540-Triangle Expressway Southeast Extension Traffic Forecast Report (DSA 1-17)

Table 20. 2035 No-Build Traffic Forecast Data

Location	Forecast (2012 NB) Volume	Historic Growth Rate (\%)	Model Growth Rate (\%)	Applied Rate (\%)	2035 NB Volumes	
		1990-2010	2012-2035		Model	Forecast
I-40 from Exit 306 (US 70) to US 70 Byp/SE Ext	75,800	8.2	1.66	1.59	138,600	108,900
NC 42 - E of I-40	26,400	5.3	0.64	0.69	26,300	30,900
NC $50-\mathrm{S}$ of Timber Drive	20,800	0.3	1.41	1.41	29,100	28,700
NC 50-S of Ten-Ten Road	17,100	5.4	0.71	0.71	25,400	20,100
NC 55 - from Old Smithfield Road to Tri Expwy	39,600	6.1	0.95	0.95	50,600	47,700
Old Stage Road - S of Vandora Springs Rd	15,800	1.5	4.28	4.29	42,500	41,500
Old Stage Road - N of Banks Rd	8,500	2.3	3.35	3.37	25,200	18,200
Old Stage Road - S of Norman Blalock Rd	4,300	-	3.29	3.31	13,900	9,100
Poole Road - E of Hodge Rd	9,000	0.5	4.90	4.91	46,600	27,100
Ten-Ten Road - E of Bells Lake Road	17,200	2.6	2.83	2.83	19,200	32,700
Ten-Ten Road - E of US 401	14,700	-	1.11	1.10	27,700	18,900
Ten-Ten Road - W of NC 50	7,500	-	1.47	1.47	17,500	10,500
Holly Springs Road - N of Kildaire Farm Road	9,100	-	4.28	4.27	28,300	23,800
Old Holly Springs-Apex Road - N of Tri Expwy	10,100	5.1	4.82	4.82	29,800	29,800
Bells Lake Road - S of Ten-Ten Rd	4,900	2.2	5.33	4.40	30,400	13,200
Hilltop Needmore Road - E of Old Mills Rd	4,000	-	2.75	2.76	13,800	7,300
Rock Quarry Road - W of Southeast Extension	4,300	-1.4	3.73	3.71	31,800	10,400
Auburn Knightdale Rd - N of Rock Quarry Rd	3,400	-3.9	3.53	3.56	28,000	7,600
White Oak Road - E of Raynor Rd	8,600	-	3.06	3.06	31,400	17,200
Vandora Springs Rd - E of Old Stage Rd	7,600	2.8	4.81	4.81	27,400	22,400
US 1-N of Triangle Expressway	24,700	3.4	2.55	2.55	66,600	44,100
US 401-N of Ten-Ten Rd	35,200	0.0	2.28	2.28	62,300	58,800
US 401-N of Donny Brook Rd	36,100	2.1	2.29	2.29	64,200	60,800
US 401-S of Dwight Rowland Rd	22,400	-	2.07	2.07	45,200	35,700
US 64 Business - E of I-540	38,600	-	1.27	1.63	48,900	56,000
US 64 Business - W of I-540	35,100	-1.5	1.99	1.63	37,600	50,900
US 64/264 - from Hodge Road to l-540 / SE Ext.	65,700	1.7	1.71	1.85	130,700	100,100
US 64/264 - from l-540 / SE Extension to Smithfield Rd	76,100	6.7	1.93	1.85	137,400	116,000
US $70-\mathrm{W}$ of SE Extension	32,000	-	1.35	1.34	50,200	43,500
US $70-\mathrm{E}$ of I-40	35,700	1.4	0.83	1.73	54,000	53,000
US 70 Bypass - E of I-40	25,400	4.1	2.02	2.01	45,600	39,700
Tri Expwy - From Old Holly Springs to NC 55	19,800	-	2.48	2.48	34,800	34,800

"-" - Data not available.

8.02035 FUTURE YEAR BUILD TRAFFIC FORECAST

8.1 Assumptions

The land use and transportation network assumptions, fiscal constraints, and development activity for the 2035 Future Year Build forecast are consistent with those stated in the 2035 Future Year No-Build forecast (Section 7.0).

For all DSA corridors, some existing roadways are proposed for relocation. The following facilities were relocated in the 2035 Build DSA scenarios and forecast volumes were adjusted accordingly to account for the redistribution in future traffic volumes.

- Kildaire Farm Road; relocated north of Southeast Extension on Holly Springs Road opposite Sancroft Drive.
- Donny Brook Road; relocated south on US 401 opposite Wake Tech Main Entrance.
- Old McCullers Road; relocated south to connect to Wake Tech internal roadway.
- Raynor Road and Cascade Drive; relocated west on White Oak Road to align opposite each other.
- Old Baucom Road; realigned east on Rock Quarry Road.

8.2 Methodology

For the 2035 Build forecast, models including the Triangle Expressway Southeast Extension were developed for 2035 DSAs 1 - 17 Build conditions. Seven different model runs (DSA 1, 2, 13 \& 14, DSA 3, 4,15 \& 16, DSA 5 \& 17, DSA $6 \& 7$, DSA $8 \& 9$, DSA 10 \& 11, and DSA 12) were performed to account for the DSAs in the 2035 build scenarios. Minimal model volume differences led HNTB to use the same traffic forecast volumes for all facilities west of I-40. Certain interchange and intersection locations at and east of I-40 have the same forecast volumes in all DSAs. Different forecast volumes were assigned at interchange and intersection locations in the eastern portion of the DSAs where model assignment volume differences warranted. TRM V4 model assignment discrepancies and differences between DSAs are described in Table 15.

The 2035 Build model runs for each DSA were then compared to the 2035 No-Build model run results to determine 2035 No-Build/2035 Build growth rates. These growth rates were then applied to the 2035 No-Build forecast data to produce estimates of 2035 Build forecast daily traffic for each DSA. As in the 2035 No-Build forecast, adjustments to the model growth rate methodology were necessary in certain areas of the network to produce reasonable and balanced daily traffic volume estimates. Any adjustments made for the 2035 No-Build traffic forecasts with regard to incorporating actual 2035 model data were applied consistently to the 2035 Build forecast. Once the growth rates and adjustments were applied to 2035 Build segments, bidirectional turning movement volumes were then adjusted throughout the study area to account for change in traffic volumes and patterns between the 2035 No-Build and 2035 Build forecasts.

Daily directional traffic assignments indicate some traffic reassignment patterns from the 2035 NoBuild, due to constructing the Southeast Extension. These patterns show shifts to the Southeast Extension from I-40/l-440 traffic otherwise going through Raleigh and from traffic previously on parallel facilities such as NC 42 and Ten-Ten Road. The Southeast Extension reduces traffic on the eastern side of Raleigh/Wake County, particularly on freeways such as I-440 and the US 64 Bypass. These patterns generally indicate slight increases in -Y- line traffic volumes at Southeast Extension interchanges and a reduction in traffic along parallel facilities. Local traffic shifts at

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
interchanges are characterized by traffic shifting onto Southeast Extension and a corresponding slight decrease in traffic on parallel facilities. Both system-wide and local traffic shifts additively exhibit large-scale changes in traffic patterns in the 2035 model network. The largest percent volume changes in the study area generally occur along I-40, Ten Ten Road and AuburnKnightdale Road, which are parallel facilities to Southeast Extension. All available information was evaluated, along with engineering judgment, to determine the 2035 Build forecast.

Appendix Fincludes a chart of 2035 DSA Southeast Extension forecast volumes, a summary table of data used to aid in determining all study area forecast volumes, and raw model output comparisons of the TRM V4-2008 and TRM V4-2009.

8.3 Design Factors

All available information was evaluated, along with engineering judgment, to determine the 2035 Future Year Build forecast. All other forecast characteristics (D, DHV, truck percentages) were determined to remain unchanged based on a review of relevant TRM data, roadway network changes, future land use growth and engineering judgment. The 2035 Future Year Build scenario design data for Southeast Extension is the same as the 2012 Intermediate Year Build scenario design factors. The design factors for Southeast Extension are included in Table 8.

8.4 2035 Build Forecast Results

Table 21 provides 2035 TRM V4 and forecast volumes for selected DSAs at particular locations of interest, along with the model diversion percentage and the applied diversion percentage for facilities existing in the 2035 No-Build scenario. Table 22 provides 2035 Future Year Build forecast volumes for all DSAs and 2035 Future Year No-Build forecast volumes for comparison.

DSA 1, 2, 13 and 14

DSA 1 \& 2 forecast volumes range from 47,400 to 71,600 AADT along the Southern Wake Freeway, similar to DSA 3, 4 and 5, and 45,900 to 91,900 AADT east of I-40 along the Eastern Wake Freeway. Figures 21.1 through 21.6 show 2035 forecast volumes for DSA 1, 2, 13 \& 14.

DSA 3, 4, 15 and 16

DSA 3 \& 4 forecast volumes range from 47,400 to 71,600 AADT along the Southern Wake Freeway, similar to DSA 1, 2 and 5, and 43,900 to 95,300 AADT east of I-40 along the Eastern Wake Freeway. Figures 22.1 through 22.6 show 2035 forecast volumes for DSA 3, 4, 15 \& 16 .

DSA 5 and 17

DSA 5 forecast volumes range from 47,400 to 71,600 AADT along the Southern Wake Freeway, similar to DSA 1, 2, 3 and 4, and 44,300 to 89,100 AADT east of I-40 along the Eastern Wake Freeway. Figures 23.1 through 23.6 show 2035 forecast volumes for DSA 5 \& 17.

DSA 6 and 7

DSA 6 \& 7 forecast volumes range from 48,800 to 64,800 AADT along the Southern Wake Freeway and 64,800 to 94,000 AADT east of I-40 along the Eastern Wake Freeway. Figures 24.1 through 24.5 show 2035 forecast volumes for DSA 6 \& 7 .

DSA 8 and 9

DSA 8 \& 9 forecast volumes range from 42,000 to 68,300 AADT along the Southern Wake Freeway and 37,900 to 91,400 AADT east of I-40 along the Eastern Wake Freeway. Figures 25.1 through 25.6 show 2035 forecast volumes for DSA 8 \& 9 .

NCDOT STIP PROJECTS R-2721, R-2828, and R-2829
Complete 540-Triangle Expressway Southeast Extension
Traffic Forecast Report (DSA 1-17)

DSA 10 and 11
DSA 10 \& 11 forecast volumes range from 42,000 to 68,300 AADT along the Southern Wake Freeway, similar to DSA 8 \& 9, and 41,000 to 94,800 AADT east of I-40 along the Eastern Wake Freeway. Figures 26.1 through 26.6 show 2035 forecast volumes for DSA 10 \& 11 .

DSA 12
DSA 12 forecast volumes range from 42,000 to 68,300 AADT along the Southern Wake Freeway, similar to DSA 8, 9, 10 \& 11, and 41,400 to 88,600 AADT east of I-40 along the Eastern Wake Freeway. Figures 27.1 through 27.6 show 2035 forecast volumes for DSA 12.

Discussion

There are some discrepancies between NCDOT AADT linear regression estimates, raw TRM V4 model volumes and selected forecast volumes. The following points highlight some of causes of variation and impacts on the selected forecast values:

2035 Historic Forecast Extrapolations - The previous forecasts for STIP R-2635 (Western Wake Freeway) do not replicate with 2010 Base Year, 2012 Build or 2035 Build forecast results, due to a lack of a Base Year scenario and no scenarios with the Old Holly Springs/Apex Road interchange. STIP R-2635 forecasted 2011 and 2030 Build Toll scenarios. Based on direct comparison of data and extrapolations to 2012 and 2035, STIP R-2635 volumes are generally lower in 2012, except along US 1, and are generally higher in 2035, except along NC 55 and Old Holly Springs Apex Road. The planning-level STIP R-2721, R-2828, and R-2829 2011 and 2035 No-Build and Build Toll forecasts are largely based on TRM V4 output and do not include certain TRM V4 model updates, such as the toll diversion module. Therefore, while the volumes presented in this forecast are different, they are generally within a reasonable range. While some discrepancies exist, the variation in forecast volumes can be attributed to the toll diversion module, model growth factors, and an updated TRM V4, which has adjustments to socioeconomic data, 2030 LRTP (dated September 15, 2004) projects, and various other inputs, based on information used in this forecast.

2012 and 2035 TRM V4 Raw Daily Assignment - In the study area and surrounding areas, there are parallel east-west and north-south facilities (I-40, US 264, NC 42, Ten Ten Road, Sunset Lake Road and Auburn-Knightdale Road). Few existing east-west parallel facilities will compete for traffic with Southeast Extension. However, in the 2035 TRM V4, the Kildaire Farm Road Connector appears to attract traffic from Southeast Extension by providing a non-toll parallel facility for a short distance. While this parallel route serves as an attractive option for local and commuter routes, the model appears to over-assign traffic on this connector and under-assign traffic on the segment of Southeast Extension between NC 55 Bypass and Holly Springs Road. While this facility may remain an attractive non-toll route during off-peak periods, the Southeast Extension corridor may be more attractive during the heavier peak hour periods when signalized corridors become congested and travel times increase. TRM V4 raw daily assignment volumes were adjusted along the Southeast Extension to account for this assignment adjustment. This traffic assignment approach was based on a review of appropriate roadway growth rates, facility operating capacities, previously approved forecasts and engineering judgment.

2012 and 2035 Linear Regression from Historic Count Data - Linear regression results do not provide a useful correlation between the selected 2012 and 2035 forecast AADTs for all roadways. The regression data is unreasonable in many locations, since historic data is limited in the area and new roadway networks would alter future traffic volumes on existing facilities.

Table 21. 2035 Build Traffic Forecast Methodology

Location	2035 No Build		2035 Build															
			DSA 1,2,13 \& 14				DSA 3,4,15 \& 16				DSA 6 \& 7				DSA 8 \& 9			
			Model	Diversion \%		Forecast												
	Model	Forecast		Model	Applied													
SE Ext (NC 540) - E of NC 55	-	-	41,400	-		47,400	40,300	-	-	47,400	42,800	-		48,800	45,100			51,100
SE Ext (NC 540) - E of Holly Springs Road	-	-	57,800	-	-	57,800	57,200	-	-	57,800	57,500	-	-	57,500	67,500	-	-	67,500
SE Ext (NC 540) - E of Bells Lake Rd / Hilltop Needmore Rd	-	-	70,300	-	-	70,300	70,200	-	-	70,300	61,300	-	-	61,300	68,300	-	-	68,300
SE Ext (NC 540) - E of US 401	-	-	71,600	-	-	71,600	71,300	-		71,600	59,100			59,100	50,800			50,800
SE Ext (NC 540) - E of Old Stage Road	-		57,300	-	-	57,300	56,700	-		57,300	64,800			64,800	42,000			42,000
SE Ext (NC 540) - E of NC 50			51,800	-		51,800	51,800			51,800	58,200			58,200	49,300			49,300
SE Ext (NC 540) - E of I-40	-		45,900	-		45,900	43,800	-	-	43,900	64,800	-		64,800	37,900		-	42,900
SE Ext (NC 540) - N of White Oak Road	-	-	54,000	-		54,000	46,700	-	-	46,700					51,500			51,500
SE Ext (NC 540) - N of US 70 Business			64,000	-		64,000	66,400	-		66,400					66,900		-	62,500
SE Ext (NC 540) - N of Rock Quarry Rd / Old Baucom Rd	-		69,300	-		69,400	67,200			67,200	73,700	-	-	73,700	73,800	-	-	69,400
SE Ext (NC 540) - N of Auburn Knightdale Road	-	-	72,200	-		72,200	75,700	-	-	75,800	75,500	-	-	75,500	76,400		-	72,000
SE Ext (NC 540) - N of Poole Road	-	-	91,900	-	-	91,900	95,300	-	-	95,300	94,000	-	-	94,000	95,800	-	-	91,400
1-40 from Exit 306 (US 70) to US 70 Byp/SE Ext	138,600	108,900	120,700	-12.91	-12.95	94,800	122,300	-11.76	-12.95	94,800	140,200	1.15	1.29	110,300	126,100	-9.02	-9.00	99,100
NC 42 - E of l-40	26,300	30,900	23,700	-9.89	-10.03	27,800	23,200	-11.79	-10.03	27,800	-	-	-	-	22,800	-13.31	-13.27	26,800
NC $50-\mathrm{S}$ of Timber Drive	29,100	28,700		-						-	35,300	21.31	21.25	34,800	-		-	
NC $50-$ S of Ten-Ten Road	25,400	20,100	18,600	-26.77	-26.37	14,800	18,800	-25.98	-26.37	14,800			-	-	26,200	3.15	3.48	20,800
NC 55 - from Old Smithfield Road to Triangle Expressway	50,600	47,700	49,700	-1.78	3.77	49,500	49,300	-2.57	3.77	49,500	50,500	-0.20	5.24	50,200	49,700	-1.78	3.77	49,500
Old Stage Road - S of Vandora Springs Rd	42,500	41,500									57,200	34.59	34.94	56,000				
Old Stage Road - N of Banks Rd	25,200	18,200	26,300	4.37	15.93	21,100	26,600	5.56	15.93	21,100	-	-	-	-	-	-	-	-
Old Stage Road - S of Norman Blalock Rd	13,900	9,100		-										-	11,800	-15.11	-14.29	7,800
Poole Road - E of Hodge Rd	46,600	27,100	39,600	-15.02	-15.13	23,000	41,200	-11.59	-15.13	23,000	39,500	-15.24	-13.28	23,500	40,000	-14.16	-14.02	23,300
Ten-Ten Road - E of Bells Lake Road	19,200	32,700	6,200	-67.71	-21.71	25,600	6,100	-68.23	-21.71	25,600	8,500	-55.73	-21.10	25,800	-	-	-	-
Ten-Ten Road - E of US 401	27,700	18,900	-	-	-	-		-	-	-	24,800	-10.47	-10.05	17,000	-	-	-	-
Ten-Ten Road - W of NC 50	17,500	10,500	8,800	-49.71	-49.52	5,300	8,800	-49.71	-49.52	5,300					14,000	-20.00	-18.10	8,600
Holly Springs Road - N of Kildaire Farm Road	28,300	23,800	27,400	-3.18	-3.36	23,000	27,800	-1.77	-3.36	23,000	29,500	4.24	4.20	24,800	68,600	142.40	15.13	27,400
Old Holly Springs-Apex Road - N of Triangle Expressway	29,800	29,800	32,900	10.40	10.40	32,900	32,100	7.72	10.40	32,900	43,000	44.30	10.40	32,900	43,300	45.30	10.40	32,900
Bells Lake Road - S of Ten-Ten Rd	30,400	13,200	38,200	25.66	63.64	21,600	38,600	26.97	63.64	21,600	34,600	13.82	48.48	19,600	-			
Hilltop Needmore Road - E of Old Mills Rd	13,800	7,300	-	-	-	-	-	-	-	-	-	-	-	-	21,000	52.17	52.05	11,100
Rock Quarry Road - W of Southeast Extension	31,800	10,400	29,600	-6.92	-10.58	9,300	22,100	-30.50	-33.65	6,900	27,200	-14.47	-14.4\%	8,900	30,100	-5.35	-9.62	9,400
Auburn Knightdale Rd - N of Rock Quarry Rd	28,000	7,600	13,700	-51.07	-51.32	3,700	19,800	-29.29	-27.63	5,500	13,600	-51.43	-51.32	3,700	12,700	-54.64	-55.26	3,400
White Oak Road - E of Raynor Rd	31,400	17,200	33,200	5.73	5.81	18,200	38,000	21.02	20.93	20,800	-	-	-	-	33,400	6.37	6.40	18,300
Vandora Springs Rd - E of Old Stage Rd	27,400	22,400		-							22,600	-17.52	-17.41	18,500				
US 1 - N of Triangle Expressway	66,600	44,100	65,800	-1.20	-1.13	43,600	65,500	-1.65	-1.13	43,600	68,900	3.45	3.40	45,600	70,400	5.71	5.67	46,600
US 401 - N of Ten-Ten Rd	62,300	58,800									70,900	13.80	9.01	64,100				-
US 401 - N of Donny Brook Rd	64,200	60,800	78,700	22.59	22.70	74,600	78,800	22.74	22.70	74,600	-	-	-	-	-	-	-	-
US 401 - S of Dwight Rowland Rd	45,200	35,700											-		50,600	11.95	-3.92	34,300
US 64 Business - E of l-540	48,900	56,000	49,800	1.84	1.79	57,000	50,800	3.89	1.79	57,000	50,500	3.27	3.21	57,800	50,200	2.66	2.68	57,500
US 64 Business - W of l-540	37,600	50,900	40,900	8.78	8.84	55,400	40,700	8.24	8.84	55,400	41,400	10.11	10.22	56,100	40,700	8.24	8.45	55,200
US 64/264 - from Hodge Road to I-540 / SE Extension	130,700	100,100	126,300	-3.37	-3.40	96,700	128,400	-1.76	-3.40	96,700	126,200	-3.44	-3.40	96,700	129,900	-0.61	-0.60	99,500
US 64/264-from l-540 / SE Extension to Smithfield Rd	137,400	116,000	133,800	-2.62	-2.59	113,000	133,000	-3.20	-2.59	113,000	133,100	-3.13	-3.10	112,400	132,500	-3.57	-3.53	111,900
US $70-\mathrm{W}$ of SE Extension	50,200	43,500	51,300	2.19	2.53	44,600	49,200	-1.99	-2.07	42,600					50,900	1.39	1.38	44,100
US $70-\mathrm{E}$ of l-40	54,000	53,000	48,100	-10.93	-10.94	47,200	45,800	-15.19	-15.09	45,000	50,700	-6.11	-6.04	49,800	48,200	-10.74	-10.75	47,300
US 70 Bypass - E of 1-40	45,600	39,700	56,000	22.81	24.69	49,500	53,500	17.32	19.14	47,300	44,200	-3.07	-2.77	38,600	47,700	4.61	17.38	46,600
Triangle Expressway - From Old Holly Springs to NC 55	34,800	34,800	51,900	49.14	49.14	51,900	51,500	47.99	49.14	51,900	55,700	60.06	47.70	51,400	57,100	64.08	51.15	52,600

$$
\frac{\text { Inrangle Expressway }-1}{\text { " }}
$$

Note: DSA 5 \& 17, 10 \& 11, and 12 were forecasted using similar methodology as discussed in Section 8.2. All 2035 DSA forecast volumes are presented in Table 22

Table 22. 2035 Build Traffic Forecast Volumes

Location	2035 NB Forecast	2035 Build Forecast Volumes						
		DSA 1,2,13 \& 14	DSA 3,4,15 \& 16	DSA 5 \& 17	DSA 6 \& 7	DSA \& \& 9	DSA 10 \& 11	DSA 12
SE Ext (NC 540) - E of NC 55	-	47,400	47,400	47,400	48,800	51,100	51,100	51,100
SE Ext (NC 540) - E of Holly Springs Road	-	57,800	57,800	57,800	57,500	67,500	67,500	67,500
SE Ext (NC 540) - E of Bells Lake Rd/ Hilltop Needmore Rd	-	70,300	70,300	70,300	61,300	68,300	68,300	68,300
SE Ext (NC 540) - E of US 401	-	71,600	71,600	71,600	59,100	50,800	50,800	50,800
SE Ext (NC 540) - E of Old Stage Road		57,300	57,300	57,300	64,800	42,000	42,000	42,000
SE Ext (NC 540) - E of NC 50	-	51,800	51,800	51,800	58,200	49,300	49,300	49,300
SE Ext (NC 540) - E of 1-40		45,900	43,900	44,300	64,800	42,900	41,000	41,400
SE Ext (NC 540) - N of White Oak Road	-	54,000	46,700	50,200		51,500	44,500	47,900
SE Ext (NC 540) - N of US 70 Business	-	64,000	66,400	56,100		62,500	64,800	54,800
SE Ext (NC 540) - N of Rock Quarry Rd / Old Baucom Rd	-	69,400	67,200	63,700	73,700	69,400	67,300	63,800
SE Ext (NC 540) - N of Auburn Knightdale Road	-	72,200	75,800	69,800	75,500	72,000	75,600	69,600
SE Ext (NC 540) - N of Poole Road	-	91,900	95,300	89,100	94,000	91,400	94,800	88,600
1-40 from Exit 306 (US 70) to US 70 Byp/SE Ext	108,900	94,800	94,800	94,800	110,300	99,100	99,100	99,100
NC 42 - E of l-40	30,900	27,800	27,800	27,800		26,800	26,800	26,800
NC $50-\mathrm{S}$ of Timber Drive	28,700	-	-	-	34,800	-	-	-
NC $50-$ S of Ten-Ten Road	20,100	14,800	14,800	14,800	-	20,800	20,800	20,800
NC 55 - from Old Smithfield Road to Triangle Expressway	47,700	49,500	49,500	49,500	50,200	49,500	49,500	49,500
Old Stage Road - S of Vandora Springs Rd	41,500	-	-	-	56,000	-	-	-
Old Stage Road - N of Banks Rd	18,200	21,100	21,100	21,100				
Old Stage Road - S of Norman Blalock Rd	9,100	-	-	-	-	7,800	7,800	7,800
Poole Road - E of Hodge Rd	27,100	23,000	23,000	23,000	23,500	23,300	23,300	23,300
Ten-Ten Road - E of Bells Lake Road	32,700	25,600	25,600	25,600	25,800	-	-	-
Ten-Ten Road - E of US 401	18,900	-	-	-	17,000	-	-	-
Ten-Ten Road - W of NC 50	10,500	5,300	5,300	5,300		8,600	8,600	8,600
Holly Springs Road - N of Kildaire Farm Road	23,800	23,000	23,000	23,000	24,800	27,400	27,400	27,400
Old Holly Springs-Apex Road - N of Triangle Expressway	29,800	32,900	32,900	32,900	32,900	32,900	32,900	32,900
Bells Lake Road - S of Ten-Ten Rd	13,200	21,600	21,600	21,600	19,600	-	-	-
Hilltop Needmore Road - E of Old Mills Rd	7,300	-	-			11,100	11,100	11,100
Rock Quarry Road - W of Southeast Extension	10,400	9,300	6,900	6,000	8,900	9,400	6,700	5,800
Auburn Knightdale Rd - N of Rock Quarry Rd	7,600	3,700	5,500	4,800	3,700	3,400	5,100	4,400
White Oak Road - E of Raynor Rd	17,200	18,200	20,800	18,300		18,300	20,900	18,300
Vandora Springs Rd - E of Old Stage Rd	22,400	-	-	-	18,500	-	-	-
US 1-N of Triangle Expressway	44,100	43,600	43,600	43,600	45,600	46,600	46,600	46,600
US 401 - N of Ten-Ten Rd	58,800	-	-	-	64,100	-		-
US 401 - N of Donny Brook Rd	60,800	74,600	74,600	74,600	-	-	-	-
US 401 - S of Dwight Rowland Rd	35,700					34,300	34,300	34,300
US 64 Business - E of l-540	56,000	57,000	57,000	57,000	57,800	57,500	57,500	57,500
US 64 Business - W of l-540	50,900	55,400	55,400	55,400	56,100	55,200	55,200	55,200
US 64/264 - from Hodge Road to l-540 / SE Extension	100,100	96,700	96,700	96,700	96,700	99,500	99,500	99,500
US 64/264-from l-540 / SE Extension to Smithfield Rd	116,000	113,000	113,000	113,000	112,400	111,900	111,900	111,900
US $70-\mathrm{W}$ of SE Extension	43,500	44,600	42,600	47,300	-	44,100	42,200	47,000
US $70-\mathrm{E}$ of 1-40	53,000	47,200	45,000	47,200	49,800	47,300	45,100	47,300
US 70 Bypass - E of l-40	39,700	49,500	47,300	48,900	38,600	46,600	45,300	46,700
Triangle Expressway - From Old Holly Springs to NC 55	34,800	51,900	51,900	51,900	51,400	52,600	52,600	52,600

9.02012 / 2035 FUTURE YEAR OVER/UNDERPASS TRAFFIC FORECAST

Thirty-five (35) overpass and underpass locations were identified based on the preliminary roadway designs of Southeast Extension alternatives. AADT forecast volumes and traffic factors (design hourly volume, directional split information and truck percentages) were developed for -Y- line facilities using the similar forecasting methodology as the other study area roadways. 48hour traffic counts, model data, historical AADT's, previous forecasts, comparing traffic factors from parallel facilities, preparing daily trip generation volumes for residential neighborhoods, and engineering judgment, where applicable, were considered. The forecast volumes shown in Table 23 relate to the numerically lowest DSA corridor number that applies for that location. Appendix F includes additional $-Y$ - line forecasting data.

NCDOT STIP PROJECTS R－2721，R－2828，and R－2829 Complete 540－Triangle Expressway Southeast Extension

Traffic Forecast Report（DSA 1－17）
Table 23．Over／Underpass Traffic Forecast

Triangle Expressway Southeast Extension Crossing Locations				Design Factors （\％）					No－Build Forecast AADT			Build Forecast AADT	
DSA		Y Line	Crossing Type	DHV	D	$\begin{array}{\|l\|} \text { D } \\ \text { Dir } \end{array}$	Duals	TTST	2010	2012	2035	2012	2035
$\stackrel{\rightharpoonup}{\Gamma}$		Old NC 55 （Main St．）	UP	10	65	SB	4	1	17，300	20，000	33，900	17，100	26，500
		Sunset Lake Road	OP	10	65	SB	2	1	10，200	13，200	23，900	8，500	17，500
		Sunset Lake Road	OP	10	65	SB	2	1	7，900	10，200	22，900	6，800	15，900
		Pierce－Olive Road	OP	10	60	SB	2	1	3，300	3，600	9，400	3，600	9，400
		West Lake Road	OP	10	55	SB	5	1	7，300	8，000	16，800	8，000	16，800
		Rhodes Road	OP	11	60	SB	7	1	1，000	1，100	2，200	1，200	2，200
		Deer Meadow Road	OP	10	60	SB	2	1	1100＊	1，100	1，400	1，100	1，400
		Johnson Pond Road	OP	10	65	SB	2	1	2，500	2，800	4，300	2，100	3，100
		Lake Wheeler Road	UP	10	65	SB	2	1	7，000	8，200	14，800	6，500	11，000
	$\underset{\infty}{\sim}$	Optimist Farm Road	OP	10	65	EB	2	1	7，200	9，400	16，500	5，500	11，300
		Johnson Pond Road	OP	10	65	SB	2	1	3，800	3，900	19，200	2，100	11，500
		Hilltop Road	OP	10	65	SB	2	1	4，200	4，800	8，400	3，000	5，100
		Norman Blalock Road	OP	10	65	WB	3	2	1，100	1，100	1，800	1，100	1，800
		Barber Bridge Road	OP	10	65	SB	2	1	700	800	1，300	800	1，300
		Rock Service Station Road	OP	10	65	SB	3	1	2，700	3，300	10，300	2，200	7，100
		Mal Weathers Road	OP	10	65	SB	2	1	800	900	1，500	900	1，500
		Sauls Road	OP	10	65	SB	5	1	1，700	1，900	3，900	1，500	4，200
	$\stackrel{\text { ¢ }}{ }$	Ten－Ten Road	UP	9	55	EB	3	2	15，000	15，600	20，500	10，300	14，700
		Buffaloe Road	OP	11	65	EB	3	1	3，200	3，300	7，500	3，200	5，900
		Thompson Road	OP	10	65	SB	2	1	1，300	1，300	1，700	1，300	1，700
		Aversboro Road	OP	10	60	SB	3	1	7，300	8，100	13，200	8，300	14，000
		Bryan Road	OP	10	65	SB	2	1	1，000	1，100	1，800	1，100	1，800
		White Oak Road	OP	12	65	SB	2	1	10，400	12，100	27，700	11，300	25，800
	$\begin{aligned} & \text { N } \\ & \text { ले } \\ & \text { مَ } \\ & \end{aligned}$	Old McCullers Road	UP	10	65	SB	2	1	1100＊＊	1，200	1，900	1，200	1，900
		Fanny Brown Road	OP	10	65	SB	2	1	4，700	4，900	7，500	3，900	7，500
		Holland Church Road	OP	10	70	SB	6	1	3，300	3，500	6，500	3，500	6，500
		Sauls Road	OP	10	65	SB	5	1	3，400	3，600	6，800	3，800	9，200
		Jordan Road	OP	10	65	SB	2	1	2，000	2，200	4，800	2，200	4，800
	$\overline{\mathrm{N}}$	New Bethel Church Road	OP	10	65	EB	2	1	400	500	900	300	600
$\begin{aligned} & \text { 드む } \\ & \text { む̀ } \\ & \text { 山̈ } \end{aligned}$	¢	Waterfield Dr	UP	10	65	EB	3	1	3，000	3，300	6，500	3，500	6，500
		Raynor Road	UP	12	65	SB	2	1	5，900	7，200	12，300	6，500	11，400
		E．Garner Road	UP	16	75	EB	2	1	3，100	3，700	21，800	3，200	19，900
		Guy Road	OP	8	55	SB	2	1	7，500	8，700	17，200	9，500	19，000
		E．Garner Road	UP	15	75	EB	3	1	6，400	6，000	19，400	6，000	20，400
	$\stackrel{\text { N }}{\text {－}}$	Battle Bridge Road	OP	15	55	EB	12	4	1，100	1，500	3，900	1，400	4，800

＂OP＂－overpass；＂UP＂－underpass
＊ 2010 No－Build AADT for Deer Meadow Road determined using ITE Trip Generation rates．The 2010 No－Build AADT forecast was then grown at model rates
＊＊Old McCullers Rd AADT（near the underpass location）calculated as 25% of Old McCullers Rd forecasted AADT at intersection with US 401.

Appendix A - Figures

Appendix B - Triangle Regional Model Study Area Network

Appendix C - NCDOT Historic AADT Linear Regression Charts

[^1]

[^2]

[^3]

[^4]

[^5]

[^6]

[^7]

[^8]

[^9]

[^10]

[^11]

[^12]

HISTORIC			DATA
STATISTICAL RESULTS			
Year	AADT	AVG ANN INC:	44
1991	1800	AVG ANN RATE:	2.1%
1993	2700	LINEAR REG:	18
1995	2200	EXPONENTIAL REG:	0.9%
1998	2600		
2001	2600	R-SQUARED	0.1672
2003	2600	LINEAR:	0.1925
2005	2300	EXPONENTIAL:	
2007	2400		
2009	2600		

\square
\square
\square
\square
\square

FUTURE PROJECTIONS:				
Avg Ann Inc				
Avg Ann Rate				
2778				
2821				

[^13]

[^14]

[^15]
AADT TREND ANALYSIS

\#17 -- NC 42 E OF CLEVELAND RD (SR 1010)

[^16]

[^17]

[^18]
AADT TREND ANALYSI S

SHOW HII STORI C DATA:	SHOW FUTURE DATA:	SHOW STATI ON \#.	
AVG ANN I NC	AVG ANN I NC	21- NC 55 BUS N OF FELDER AVE (SR 1301)	
AVG ANN RATE	\checkmark AVG anN RATE	FUT YRS:	2013
LINEAR REGRESSI ON	\checkmark LI NEAR REGRESSI ON	\#1	2012
EXPPONENTI AL REGRESSI ON	\checkmark EXPONENTI AL REGRESSI ON	\#2	2020
	USER- DEFI NED (FUT PRO,	\#3	2025
\checkmark HISTORI C DATA	USER- DEFI NED (A. G. R.)	\#4	2030
NORTH CAROLI NA DEPARTMENT OF	ATI ON / TRANSP. PLANNI NG brand	\#5	2035

[^19]
AADT TREND ANALYSI S

\#21B - NC 55 BUS N OF FELDER AVE (SR 1301)

[^20]

[^21]

[^22]

HISTORIC			
DATA	STATISTICAL RESULTS		
Year	AADT	AVG ANN INC:	111
1991	2100	AVG ANN RATE:	3.8%
1993	2700	LINEAR REG:	101
1995	2800	EXPONENTIAL REG:	3.3%
1998	3200		
2001	3600	R-SQUARED	
2003	3400	LINEAR:	0.9252
2009	4100	EXPONENTIAL:	0.8779

NUMBER OF DATA POINTS
\square
\qquad
\longrightarrow
\square

SHOW HISTORIC DATA:	SHOW FUTURE DATA:		SHOW STATION \# :	
AVG ANN INC		AVG ANN INC	24- OLD FAISON RD (SR 2515) E OF HODGE RD (SR	
AVG ANN RATE	\checkmark	avg ann Rate	FUT YRS:	2013
LINEAR REGRESSION	\checkmark	LINEAR REGRESSION	\#1	2012
EXPONENTIAL REGRESSION	\checkmark	EXPONENTIAL REGRESSION	\#2	2020
		USER-DEFINED (FUT PROJ)	\#3	2025
\checkmark HISTORIC DATA		USER-DEFINED (A.G.R.)	\#4	2030
NORTH CAROLINA DEPARTMENT OF	TA	/ TRANSP. PLANNING BRANCH	\#5	2035

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
4544	4757	4585	4928	
4433	4584	4484	4769	
5322	6171	5291	6204	
5878	7431	5795	7313	
6433	8949	6300	8620	
6989	10777	6805	10161	

[^23]

[^24]

[^25]

HISTORIC	DATA	STATISTICAL RESULTS		
Year	AADT	AVG ANN INC:	28	
1991	8100	AVG ANN RATE:	0.3%	
1993	8900	LINEAR REG:	41	
1995	10000	EXPONENTIAL REG:	0.4%	
1998	11000			
2001	12000	R-SQUARED	0.0184	
2003	14000	LINEAR:	0.0186	
2005	9100	EXPONENTIAL:		
2007	9100			
2009	8600			

\longrightarrow

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
8711	8715	10611	10439	
8683	8686	10570	10399	
8906	8921	10897	10722	
9044	9070	11101	10929	
9183	9222	11306	11139	
9322	9377	11510	11354	

[^26]

HISTORIC DATA			STATISTICAL RESULTS		
Year	AADT	AVG ANN INC:	-44		
1991	4500	AVG ANN RATE:	-1.1%		
1993	5000	LINEAR REG:	10		
1995	5700	EXPONENTIAL REG:	-0.3%		
1997	5500				
1999	6000	R-SQUARED	0.0008		
2001	9400	LINEAR:	0.0024		
2003	10000	EXPONENTIAL:			
2005	5400				
2007	4300				
2009	3700	NUMBER OF DATA POINTS:			

10

[^27]

[^28]

[^29]

[^30]

STATISTICAL RESULTS

Year	AADT	AVG ANN INC:	244
1991	2100	AVG ANN RATE:	6.5%
1993	2200	LINEAR REG:	289
1995	2500	EXPONENTIAL REG:	7.5%
1998	4000		
2001	5900	R-SQUARED	
2003	5300	LINEAR:	0.9280
2005	6200	EXPONENTIAL:	0.9087
2007	6600		
2009	6500		

NUMBER OF DATA POINTS:
\square

SHOW HISTORIC DATA:	SHOW FUTURE DATA:		SHOW STATION \# :	
AVG ANN INC		AVG ANN INC	32- LAKE WHEELER RD (SR 1375) N OF OPTIMIST F	
AVG ANN RATE	\checkmark	avg ann Rate	FUT YRS:	2013
LINEAR REGRESSION	\checkmark	LINEAR REGRESSION	\#1	2012
EXPONENTIAL REGRESSION	\checkmark	EXPONENTIAL REGRESSION	\#2	2020
		USER-DEFINED (FUT PROJ)	\#3	2025
\checkmark HISTORIC DATA		USER-DEFINED (A.G.R.)	\#4	2030
NORTH CAROLINA DEPARTMENT OF	TAT	/ TRANSP. PLANNING BRANCH	\#5	2035

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
7478	8355	8282	10578	
7233	7847	7993	9835	
9189	12965	10306	17605	
10411	17745	11751	25333	
11633	24288	13196	36452	
12856	33242	14641	52452	

[^31]
AADT TREND ANALYSIS

\#33 -- SUNSET LAKE RD (SR 1301) E OF NC 55 BUS

[^32]

HISTORIC			
DATA	STATISTICAL RESULTS		
Year	AADT	AVG ANN INC:	356
1991	5600	AVG ANN RATE:	4.3%
1993	7200	LINEAR REG:	364
1995	8000	EXPONENTIAL REG:	4.2%
1998	9000		
2000	9200	R-SQUARED	
2001	11000	LINEAR:	0.9335
2003	11000	EXPONENTIAL:	0.8996
2005	12000		
2007	12000		
2009	12000	NUMBER OF DATA POINTS:	

10

[^33]

[^34]

[^35]
AADT TREND ANALYSIS

\#37 -- US 64 BYP FROM EXIT 423 TO EXIT 425

[^36]
AADT TREND ANALYSIS

\#38 -- US 64/264 FROM EXIT 420 TO EXIT 422

[^37]
AADT TREND ANALYSIS

\#39 -- US 64/264 FROM EXIT 422 TO EXIT 423

[^38]AADT TREND ANALYSIS
\#40 -- US 70 BYP E OF CORNWALLIS RD (SR 1525)

[^39]

[^40]AADT TREND ANALYSIS
\#42 -- US 70 E OF GREENFIELD PKWY (SR 4142)

HISTORIC			
DATA			
Year	AADT	AVG ANN INC:	111
1991	32000	AVG ANN RATE:	0.3%
1993	33000	LINEAR REG:	674
1995	38000	EXPONENTIAL REG:	1.7%
1998	42000		
2001	46000	R-SQUARED	
2003	49000	LINEAR:	0.3371
2005	49000	EXPONENTIAL:	0.3307
2007	50000		
2009	34000		

$\square 9$
\square
\qquad \longrightarrow
\square

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
34444	34461	50058	50424	
34333	34345	49384	49599	
35222	35283	54777	56593	
35778	35882	58147	61456	
36333	36492	61518	66737	
36889	37112	64888	72471	

[^41]

[^42]

[^43]

HISTORIC			DATA
Year	AADT	STATISTICAL RESULTS	
1991	160	AVG ANN INC:	152
1993	280	LINEAR REG:	17.5%
1995	450	EXPONENTIAL REG:	161
1997	520		17.5%
1999	920	R-SQUARED	
2001	1700	LINEAR:	0.9458
2003	1500	EXPONENTIAL:	0.9519
2005	2000		
2007	2700		
2009	2900	NUMBER OF DATA POINTS:	

[^44]

HISTORIC			DATA
STATISTICAL RESULTS			
Year	AADT	AVG ANN INC:	59
1992	300	AVG ANN RATE:	9.0%
1994	190	LINEAR REG:	69
1996	270	EXPONENTIAL REG:	12.1%
1998	270		
2001	340	R-SQUARED	0.8024
2003	540	LINEAR:	0.8477
2005	980	EXPONENTIAL:	
2007	1300		
2009	1300		

\longrightarrow

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
1535	1836	1468	1982	
1476	1684	1399	1767	
1947	3357	1950	4419	
2241	5168	2295	7835	
2535	7954	2639	13893	
2829	12244	2984	24635	

[^45]

[^46]

[^47]

HISTORIC			DATA
STATISTICAL RESULTS			
Year	AADT	AVG ANN INC:	294
1991	6700	AVG ANN RATE:	3.3%
1993	6700	LINEAR REG:	359
1995	8800	EXPONENTIAL REG:	3.8%
1998	10000		
2001	9600	R-SQUARED	0.8484
2003	13000	LINEAR:	0.8484
2005	12000	EXPONENTIAL:	
2007	13000		
2009	12000		

[^48]

HISTORIC			DATA
STATISTICAL RESULTS			
Year	AADT	AVG ANN INC:	444
1991	8000	AVG ANN RATE:	3.9%
1993	9300	LINEAR REG:	487
1995	10000	EXPONENTIAL REG:	4.1%
1998	12000		
2001	15000	R-SQUARED	0.8483
2003	17000	LINEAR:	0.8561
2005	16000	EXPONENTIAL:	
2007	15000		
2009	16000		

\longrightarrow

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
17778	18664	19369	21333	
17333	17959	18882	20488	
20889	24439	22779	28314	
23111	29628	25214	34660	
25333	35919	27650	42427	
27556	43545	30085	51936	

[^49]

HISTORIC			DATA
STATISTICAL RESULTS			
Year	AADT	AVG ANN INC:	328
1991	7100	AVG ANN RATE:	3.4%
1993	8200	LINEAR REG:	378
1995	9600	EXPONENTIAL REG:	3.7%
1998	11000		
2001	14000	R-SQUARED	0.7332
2003	15000	LINEAR:	0.7552
2005	14000	EXPONENTIAL:	
2007	13000		
2009	13000		

\longrightarrow
\square
\square
\square
\square
\square

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
14311	14870	16489	17949	
13983	14379	16111	17313	
16606	18814	19137	23104	
18244	22256	21028	27670	
19883	26327	22919	33138	
21522	31144	24811	39687	

[^50]AADT TREND ANALYSIS
\#53 -- SR 1010 (TEN TEN RD) E of US 401

HISTORIC			DATA
STATISTICAL RESULTS			
Year	AADT	AVG ANN INC:	522
1991	5600	AVG ANN RATE:	5.6%
1993	6600	LINEAR REG:	590
1995	8000	EXPONENTIAL REG:	6.0%
1998	9600		
2000	11000	R-SQUARED	
2001	13000	LINEAR:	
2003	13000	EXPONENTIAL:	0.9607
2005	14000		0.9393
2007	16000		
2009	15000	NUMBER OF DATA POINTS:	

10

[^51]

[^52]

[^53]

[^54]

HISTORIC			DATA
STATISTICAL RESULTS			
Year	AADT	AVG ANN INC:	233
1991	3700	AVG ANN RATE:	4.3%
1993	3800	LINEAR REG:	291
1995	4100	EXPONENTIAL REG:	5.3%
1998	5300		
2001	6000	R-SQUARED	0.9455
2003	7500	LINEAR:	0.9485
2005	7800	EXPONENTIAL:	
2007	8400		
2009	7900		

\square
\square
\square
\longrightarrow

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
8833	9350	9779	11115	
8600	8965	9488	10559	
10467	12559	11819	15914	
11633	15504	13276	20564	
12800	19141	14733	26574	
13967	23630	16190	34339	

[^55]

[^56]

[^57]

l HISTORIC DATA STATISTICAL RESULTS Year			
$\mathbf{A A D T}$	AVG ANN INC:	667	
1991	21000	AVG ANN RATE:	2.5%
1993	22000	LINEAR REG:	784
1995	25000	EXPONENTIAL REG:	2.9%
1998	22000		
2000	24000	R-SQUARED	
2001	26000	LINEAR:	0.8092
2003	33000	EXPONENTIAL:	0.8173
2005	32000		
2007	34000		
2009	33000	NUMBER OF DATA POINTS:	

10

FUTURE PROJECTIONS:				
Avg Ann Inc	Avg Ann Rate	Linear Reg	Exp Reg	
35667	36487	37231	38713	
35000	35582	36447	37612	
40333	43498	42717	47383	
43667	49317	46635	54740	
47000	55914	50554	63240	
50333	63394	54472	73059	

[^58]
AADT TREND ANALYSI S

\#61A -- US 70 E OF GUY RD (SR 2558) / E of ROCK QUARRY ROAD EXTENSI ON

[^59]| 10000 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9000 | | | | | | |
| 8000 | | | | | | |
| 7000 | | | | | | |
| 6000 | | | | | | |
| 5000 | | | | | | |
| | | | | | | |
| | | | | | | |
| 2000 | | | | | | |
| 1000 | | | | | | |
| 0 - 0 - | | | | | | |
| 19902000 | | 2010 | | 2020 | 20302040 | |
| | | | | | | |
| SHOW HISTORIC DATA: SHOW FUTURE DATA: | | | | | SHOW STATION \#: | |
| AVG ANN INC | | AVG ANN INC | | | 62-SR 1006 (Old Stage Road) N of NC 42 (S of S Wak | |
| \square AVG | ANN RATE | \checkmark AVG ANN RATE | | | FUT YRS: | 2013 |
| \square LIN | EAR REGRESSION | \checkmark LINEAR REGRESSION | | | \#1 | 2012 |
| \square EXPONENTIAL REGRESSION | | ($)$ EXPONENTIAL REGRESSION | | | \#2 | 2020 |
| | | USER-DEFINED (FUT PROJ) | | | \#3 | 2025 |
| \checkmark HISTORIC DATA | | USER-DEFINED (A.G.R.) | | | \#4 | 2030 |
| NORTH CAROLINA DEPARTMENT OF TRANSPORTATION / TRANSP. PLANNING BRANCH | | | | | \#5 | 2035 |

[^60]

[^61]
Appendix D - Toll Diversion Model

Triangle Regional Toll Diversion Model Development

Technical Memorandum

December 2010

Background

The proposed Southeast Extension in the Triangle area is one of several candidate toll facility projects under consideration by the North Carolina Turnpike Authority (NCTA). The Southeast Extension will extend the Triangle Expressway and complete the Raleigh Outer Loop. It will link the towns of Clayton, Garner, Fuquay-Varina, Holly Springs, Apex, Cary and Raleigh. It will also connect major roadways in southern Raleigh and ease congestion on the Raleigh Beltine ($1-440$), I-40, NC 42, NC 55, and Ten Ten Road. According to the NCTA, the project would increase the overall capacity of the existing roadway network and divert traffic from secondary roads in an area that is experiencing substantial growth.

The primary objection of this task is to develop a new toll diversion modeling procedure for the Triangle Regional TransCAD Travel Demand Model to help better estimate the traffic and revenue of the proposed tolled Southeast Extension.

MPO toll modeling procedures range from simple time penalties applied in the assignment process to a complex set of interactions between multiple model components including auto ownership, mode choice (toll / non-toll nests), distribution (logsum composite impedance) and time-of-day choice.

Currently, toll facilities in the Triangle regional model are evaluated using simple time penalties based on the charged toll rates and Value of Time (VOT). The VOT for Single Occupancy Vehicle (SOV) was assumed to be $\$ 12 /$ hour; the VOT for High Occupancy Vehicle (HOV) and Commercial Vehicle (CV) was assumed to be $\$ 18 /$ hour. The new procedure applies the toll diversion modeling in the traffic assignment for the Triangle Regional model. It calculates the toll diversion for each origin-destination pair based on Willingness-To-Pay (WTP) diversion curves and travel time savings that a toll facility can provide. It then estimates toll diversion within traffic assignments by assuming trips (autos, commercial vehicles and external-external trips) that can use either a toll or a non-toll path during each iteration of the assignment, with final toll volumes being the equilibrium weighted average of the iterations. With WTP diversion curves, trips are split into toll and non-toll trips prior to being assigned permitting the trips to be assigned to appropriate toll or non-toll paths for each iteration. This new toll diversion modeling process has been designed to provide a greater degree of user flexibility. It provides an improved level of evaluation of the intermediate results. This should result in improved estimation of traffic and revenue by time of day and by vehicle type (auto vs. commercial vehicles).

Recommended Methodology

The Willingness-To-Pay methodology was chosen and applied in the Toll Diversion Modeling process to assess the traffic and toll revenue for the following reasons:

- It is relatively easy to understand and apply
- The value of time and WTP curve can be developed from the stated preference surveys conducted in North Carolina
- It allows the flexibility to apply different WTP curves to individual trip type (autos, commercial vehicles and external-external trips)
- It produces meaningful and intuitive traffic and revenue results ranging from low per mile toll rates to high per mile toll rates

Toll Diversion Curve Development

As part of the development of the auto and truck toll diversion curves for use in the Triangle Regional travel demand model, HNTB reviewed a number of surveys conducted within North Carolina and in other states. These stated preference surveys provided information on drivers' value of time through systematic evaluation of their willingness to pay for travel time savings. Raw data from three studies within North Carolina was analyzed to develop example willingness to pay curves for comparison purposes. These studies included the Metrolina Region Stated Preference Travel Study (2010), the Monroe Connector/Bypass Stated Preference Travel Study (2009), and the Triangle Expressway Stated Preference Travel Study (2008). In addition, summary information was gathered from a number of studies conducted in other states in order to gain national perspective and establish a range with which to compare the results from the North Carolina studies. A more detailed review of each study is contained in the Appendix.

After a thorough review, three sets of auto and commercial vehicle willingness to pay curves were developed to be incorporated into the Triangle Regional's toll diversion travel demand model set.

Toll Diversion Curve Set \#1

The auto WTP diversion curve in the first set was developed based on the Triangle Expressway Stated Preference (SP) Survey, which was conducted in January and February 2007. This was the most extensive of the three North Carolina surveys reviewed as part of this study, with 4,725 respondents. The relatively large number of responses led to the most complete picture of willingness to pay and smoothest diversion curve from the North Carolina surveys. Each of the respondents in the SP survey was presented with several scenarios designed to understand willingness to pay. The approach involved a series of detailed trade-offs between travel time and tolls, and respondents would state whether they would take the tolled or free route for each scenario. This survey provided the detailed information to allow an analysis of toll sensitivity by trip type in the route diversion modeling. Average values of time (VOT) were also calculated (in \$2010) for the respondents from the Triangle Expressway SP Survey. The calculations took into account only those who responded that they would be willing to pay under at least one of the scenarios presented to them. The average VOT for Triangle Expressway is $\$ 10.72 / \mathrm{hr}$, which is well within the range of comparable studies across the country (the majority of estimates for value of time nationwide fall within a range of $\$ 10-\$ 15$ per hour).

The three North Carolina studies did not address the value of time for trucks, however there is an extensive body of national research available for use in truck VOT estimation. Truck usage is often a key determinant in the total revenue generation of a new toll facility, so it is crucial to establish an accurate estimate for use in traffic forecasting tools, like the Triangle Regional travel demand model. A national literature review shows a broad range for truck value of time from \$14 per hour up to \$200 per hour or higher. Despite this broad range, it appears that in surveys including analysis of both auto and truck drivers, the value of time for trucks is approximately three times that of autos. Using the typical range for autos, $\$ 10-\$ 15$ per hour, this equates to an average truck value of time of $\$ 30-\$ 45$ per hour.

As part of this analysis, a truck diversion curve was developed based on a ratio of 2.5 times the auto diversion curve. Trucks and autos generally have different responses to toll rates and toll rate increases, and this curve reflects these facts. The primary assumptions used to develop this curve were that a larger share of trucks are willing to pay a toll to save time and that those trucks that are willing to pay a toll are less sensitive to toll rate increases.

Figure 1 displays the first set of willingness to pay curves for autos and trucks. As the cost of travel time savings increases from zero, there is a significant drop-off of auto users willing to pay. Only about 20% of these users would be willing to pay $\$ 15$ or more per hour of time savings. Trucks are generally less sensitive to price, and subsequently the drop-off in the curve for trucks is less drastic than that for autos. 30% of trucks are willing to pay $\$ 30$ or more per hour of time savings. Relative to national averages, these curves are toward the low end of the willingness to pay spectrum. In addition, the shape of the curves is not precisely in line with national norms, because they begin to fall quickly at even small changes in value of time. For these reasons, additional curves were developed to test the sensitivity of the toll diversion model and the subsequent impact on forecast revenues.

Figure 1 - WTP Diversion Curves (Auto and Commercial Vehicle)

Toll Diversion Curve Set \#2

The second set of toll diversion curves was developed to reflect a higher value of time and willingness to pay for both cars and commercial vehicles. Under this set of curves, approximately 50% of autos would be willing to pay $\$ 15$ or more for an hour of travel time savings, and over 70% of trucks would be willing to pay $\$ 30$ or more. This reflects an average value of time for autos of between $\$ 20-25$ per hour, and an average value for trucks of over $\$ 45$ per hour. In addition, the shapes of these curves are different from the previous set. The curves in this set indicate that a large percentage of users are willing to pay small amounts for travel time savings. Then as the price for travel time savings increases beyond a nominal amount, willingness to pay begins to rapidly decline, as seen in the previous curve set.

Figure 2 - WTP Diversion Curves \#2 (Auto and Commercial Vehicle)

Toll Diversion Curve Set \#3

The third set of toll diversion curves was developed to reflect an aggressive assumption of willingness to pay. Under this set of curves, approximately 50% of autos would be willing to pay $\$ 22$ or more for an hour of travel time savings, and over 70% of trucks would be willing to pay $\$ 45$ or more. This set of curves was helpful for evaluation and comparison purposes, as the subsequent revenue estimates serve as an upper bound on the forecasts and provide improved understanding regarding the sensitivity of the toll diversion model incorporated into the MPO's
travel demand model stream. However, it should be noted that these curves are associated with high levels of willingness to pay that are outside of the range determined through a nationwide literature review.

Figure 3 - WTP Diversion Curves \#3 (Auto and Commercial Vehicle)

Process Overview

It should be noted that the model execution process requires user intervention. Users must set up folders and input files for subsequent steps in the process. The following is a summary of the recommended toll diversion modeling process:

1. Set up a toll assignment folder for the specific horizon year
2. Prepare data inputs
i) Required network input file
ii) Required input trip tables
iii) Required toll rate DBF table
3. Run script to perform toll sensitivity assignments
i) Multi-Modal Multi-Class Assignment (MMA) Assignment
ii) Summarize sensitivity assignment results (traffic and revenue by time-of-day and by vehicle type)

The following section describes the details of each step.

Step 1: Set up a toll assignment folder for the specific horizon year

Specific file structures are recommended for the toll diversion modeling. A new folder is recommended for addition to the standard Triangle Regional travel demand model folder system. This special application can be placed in a new folder named "Toll Diversion Model" under the project main folder and specific horizon year. Within the "Toll Diversion Model" folder, subfolders for different toll diversion curve can be created.

```
C:\TRM Model\2035\
C:\TRM Model\2035\Toll Diversion Model\
C:\TRM Model\2035\Toll Diversion Model\Toll Diversion Curve 1\
C:\TRM Model\2035\Toll Diversion Model\Toll Diversion Curve 2\
C:\TRM Model\2035\Toll Diversion Model\Toll Diversion Curve 3\
```


Step 2: Prepare data inputs

- Required network input file

Since TollID and additional special coding are required for the tolled facility, it is expected that the input network will be manually edited and placed in the Toll Diversion Curve folder. A network with special coding, speed and capacities is required for input to the toll diversion model assignment GISDK codes. It recommended that the user copy the "Highway_Line.dbd" file under \Input\Highway\ folder to the Toll Diversion Model\and edits the network named for toll diversion assignment.

To prepare the input network for the toll diversion assignment process, Tollid for the tolled facility corridor must be added. In TransCAD, a new attribute (TollID) can be added to a network using the Dataview-Modify Table... menu option as shown in Figure 4 on the next page.

For this study, ten unique ID were assignment to the study corridor/segments. Table 1 on the next page lists the Toll ID and associated segments.

Toll ID	Description	Direction
11	Segment 1: Toll Route 147 from I-40 to Toll Route 540	Counterclockwise (SB)
12		Clockwise (NB)
21	Segment 2: Toll Route 540 from Toll Route 540 to Bypass 55	Counterclockwise (SB)
22		Clockwise (NB)
31	Segment 3: Toll Route 540 (proposed Southern Wake Expressway) from Bypass 55 to I-40	Counterclockwise (SB/EB)
32		Clockwise (NB/WB)
41	Segment 4: Toll Route 540 (proposed Eastern Wake Expressway) from I-40 to US 264/US 64	Counterclockwise (NB)
42		Clockwise (SB)
51	Existing l-540 from US 264/US 64 to I-40	Counterclockwise (NB/WB)
52		Clockwise (SB/EB)

To prepare the input network for the toll diversion assignment process, special code for the tolled facility corridor must be updated. The following table lists the existing special codes utilized in the Triangle Regional model and four additional special codes included as part of toll diversion model. The additional special coding will allow the toll diversion model to estimate traffic and revenue for HOT lanes (HOV Free, SOV pay, Trucks prohibited), Toll Lanes (Trucks prohibited), Truck Only Lanes and Truck Only Toll Lanes.

Table 1 -Special Code List

Special Code	Transit	SOVs	HOVs	Trucks	Note
1	\emptyset	\checkmark	V	\checkmark	Interstate/Freeway
2	\emptyset	\checkmark	\checkmark	\checkmark	Suburban Freeway
3	\emptyset	\checkmark	\checkmark	\checkmark	Urban Freeway
4	\emptyset	\checkmark	V	\checkmark	Rural Highway
5	\emptyset	\checkmark	V	\checkmark	Suburban Freeway / Expressway
6	\varnothing	\checkmark	\checkmark	\checkmark	Collector / Distributor
21	\varnothing	\checkmark	\checkmark	\checkmark	Freeway to freeway ramps
22	\emptyset	\checkmark	\checkmark	\checkmark	Freeway to freeway loop ramp with weave
23	\emptyset	\checkmark	\checkmark	\checkmark	Freeway to freeway loop ramp
24	\emptyset	\checkmark	\checkmark	\checkmark	Freeway to arterial ramp/loop
25	\emptyset	\checkmark	V	\checkmark	Arterial to freeway ramp/loop
26	\varnothing	V	V	V	Arterial to arterial ramp/loop
31	\emptyset	\checkmark	V	\checkmark	Centroid connector
41	\emptyset	\emptyset	\checkmark	\emptyset	Hov Lanes
42	\varnothing	\$	V	\$	HOT Lanes (HOV Free, SOV pay, Trucks pay)
43	\emptyset	\$	\$	\$	Mixed Toll Lanes (for all vehicles)
44*	\emptyset	\$	\checkmark	\varnothing	HOT Lanes (HOV Free, SOV pay, Trucks prohibited)
45*	\emptyset	\$	\$	\emptyset	Toll Lanes (Trucks prohibited)
46*	\varnothing	\varnothing	\emptyset	\checkmark	Truck Only Lanes
47*	\emptyset	\emptyset	\emptyset	\$	Truck Only Toll Lanes
55	\checkmark	\emptyset	\emptyset	\emptyset	Transit Only Links

*: Additional special coding included in Toll Diversion Model
v: Allowed \quad : Prohibited \$: Priced

- Required input trip tables

The following three trip tables are required inputs for the toll diversion model process.

- TOTAM_OD.mtx
- Total AM vehicle trips matrix
- TOTPM_OD.mtx
- Total PM trips matrix
- TOTOP_OD.mtx
- Total Off-Peak trips matrix

The Time-of-day AM, PM and Off-peak are defined as follows:

- Four hour AM peak period: 6:00 am to 10:00 am
- Four hour PM peak period: 3:30 pm to 7:30 pm
- Off-peak (the remaining time of the day)

These three trip tables can be found in the "Trip Distribution" folder under different horizon years. The user will need to copy and paste these trip tables into the in the \Toll Diversion Model \backslash folder under different horizon years. No other special preparations are required for the trip tables. Under each original trip TOD matrix, there are three matrices (SOV, HOV and CV) and six additional trip matrices will be generated automatically by the resource file:

【TotalAM.mtx, TotalMD.mtx, TotalPM.mtx, TotalOP.mtx	
Matrix Name(s)	Description
SOV	Total Single Occupancy Vehicle (SOV) Trip Matrix (by TOD)
HOV	Total High Occupancy Vehicle (HOV) Matrix (by TOD)
CV	Total Commercial Vehicle (CV) Trip Matrix (by TOD)
SOV_T*	Total Tolled SOV Trip Matrix (by TOD)
HOV_T* $^{\text {CV_T* }}$	Total Tolled HOV Trip Matrix (by TOD)
SOV_NT*	Total Tolled CV Trip Matrix (by TOD)
HOV_NT* $^{\text {CV_NT* }}$	Total Non-Tolled SOV Trip Matrix (by TOD)
Total Non-Tolled HOV Trip Matrix (by TOD)	

*: these matrices will be generated automatically by the resource file.

- Required Toll Rate DBF Table

For the toll diversion assignment process, a toll rate dbf table is required. Table 2 lists the range of toll rate by vehicle type (SOV, HOV, and CV) and by Tollid used in this study. This allows the toll diversion model to estimate traffic and revenue by different toll rates by vehicle type and corridor segments.

Table 2 -Toll Rate DBF Table

Tollid	Single Occupancy Vehicle (SOV)/ High Occupancy Vehicle (HOV)					Commercial Vehicle (CV)				
	Toll Rate 1	Toll Rate 2	Toll Rate 3	Toll Rate 4	Toll Rate 5	Toll Rate 1	Toll Rate 2	Toll Rate 3	Toll Rate 4	Toll Rate 5
11	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
12	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
21	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
22	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
31	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
32	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
41	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
42	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
51	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60
52	0.05	0.08	0.10	0.15	0.20	0.15	0.24	0.30	0.45	0.60

Step 3: Run RSC file to perform toll sensitivity assignments

Once the highway network, time-of-day trips tables and toll rate dbf table have been saved and modified in the toll diversion folder, toll assignments can be performed by running the RSC file called "TOLLDiversionModel_TDnumber.rsc". It needs to be noted that all trips tables, revised network of "Highway_Line.dbd" with coding of special and TollID attributes, toll rate DBF table and "TOLLDiversionModel_TDnumber.rsc" need to be saved under the same project folder.

The "TOLLDiversionModel_TDnumber.rsc" automatically calculates link capacity (AB direction and BA direction) and free-flow travel time (AB direction and BA direction) for different time-ofday (AM, PM and OP) and consists of three time-of-day assignments using the same per mile toll for every tolled link/facility. A step-by-step description of how this approach will be applied within the model framework is presented below:

- Travel time skims are run for SOV, HOV and commercial vehicles with and without use of the tolled facilities
- The appropriate willingness-to-pay curves are then used to determine the percentage of travelers who are willing to pay to use the tolled facilities for the predetermined price. This percent willing to pay is determine by: value of time, per mile toll rate, and the travel time saving offered by the tolled facilities.
- A combined auto willingness-to-pay curve that reflects the composition of the trip purpose in the study area are applied to the total SOV and HOV trip table
- A Commercial vehicle willingness-to-pay curve are applied to CV trip tables
- Once the fraction of travelers who are willing to pay is determined, the corresponding trip tables (SOV, HOV and CV) are separated resulting in two trip tables for each vehicle/trip type - those willing to pay (SOV_T, HOV_T, CV_T), and those not willing to pay (SOV_NT, HOV_NT, CV_NT).
- A Multi-Modal Multi-Class Assignment (MMA) with stochastic user equilibrium process is then applied with eligibility restrictions lifted on the tolled facilities for the "willing to pay" travelers. The willing to pay trip table represents the universe of those eligible to use the tolled facilities for a price and does not reflect actual usage. Actual usage is determined through the MMA assignment process.
- The entire process is performed iteratively for each analysis period until the prescribed equilibrium tolerance ($<1 \%$) is achieved.

A screenshot of "TOLLDiversionModel_TDnumber.rsc" is provided as follows:

In the "TOLLDiversionModel_TDnumber.rsc", the user will only need to revise the folder path to reflect the right folder location. Once "TOLLDiversionModel_TDnumber.rsc" runs successfully, the following bin files will be generated under each toll rate scenario:

\MMA_LinkFlow_T1AM.bin; \MMA_LinkFlow_T1PM.bin; \MMA_LinkFlow_T1OP.bin	
\MMA_LinkFlow_T2AM.bin; \MMA_LinkFlow_T1PM.bin; \MMA_LinkFlow_T1OP.bin	
\MMA_LinkFlow_T3AM.bin; \MMA_LinkFlow_T1PM.bin; \MMA_LinkFlow_T1OP.bin	
\MMA_LinkFlow_T4AM.bin; \MMA_LinkFlow_T1PM.bin; \MMA_LinkFlow_T1OP.bin	
\MMA_LinkFlow_T5AM.bin; \MMA_LinkFlow_T1PM.bin; \ MMA_LinkFlow_T1OP.bin	
Field Name(s)	Description
AB_Time	Congested Travel Time in TOD (AM/PM/OP): AB Direction
BA_Time	Congested Travel Time in TOD (AM/PM/OP): BA Direction
Max_Time	Maximum Value of Congested Travel Time in TOD: Total AB + BA
AB_voc	Volume Capacity Ratio in TOD (AM/PM/OP): AB Direction
BA_voc	Volume Capacity Ratio in TOD (AM/PM/OP): BA Direction
MAX_voc	Maximum Value of Volume Capacity Ratio in TOD: Total AB + BA
AB_vmt	Vehicle Miles Traveled in TOD (AM/PM/OP): AB Direction
BA_vmt	Vehicle Miles Traveled in TOD (AM/PM/OP): BA Direction
TOT_vmt	Total Vehicle Miles Traveled in TOD: Total AB + BA
AB_vht	Vehicle Hours Traveled in TOD (AM/PM/OP): AB Direction
BA_vht	Vehicle Hours Traveled in TOD (AM/PM/OP): BA Direction
TOT_vht	Total Vehicle Hours Traveled in TOD: Total AB + BA
AB_speed	Vehicle Speed in TOD (AM/PM/OP): AB Direction
BA_speed	Vehicle Speed in TOD (AM/PM/OP): BA Direction
AB_VDF	Volume Delay Function in TOD (AM/PM/OP): AB Direction
BA_VDF	Volume Delay Function in TOD (AM/PM/OP): BA Direction
MAX_VDF	Maximum Value of Volume Delay Function in TOD: Total AB+BA
AB_Flow_SOV_T	Volume of Tolled Single Occupancy Vehicles in TOD: AB Direction
BA_Flow_SOV_T	Volume of Tolled Single Occupancy Vehicles in TOD: BA Direction
AB_Flow_HOV_T	Volume of Tolled High Occupancy Vehicles in TOD: AB Direction
BA_Flow_HOV_T	Volume of Tolled High Occupancy Vehicles in TOD: BA Direction
AB_Flow_CV_T	Volume of Tolled Commercial Vehicles in TOD: AB Direction
BA_Flow_CV_T	Volume of Tolled Commercial Vehicles in TOD: BA Direction
AB_Flow_SOV_NT	Volume of Non-Tolled Single Occupancy Vehicles in TOD: AB Direction
BA_Flow_SOV_NT	Volume of Non-Tolled Single Occupancy Vehicles in TOD: BA Direction
AB_Flow_HOV_NT	Volume of Non-Tolled High Occupancy Vehicles in TOD: AB Direction
BA_Flow_HOV_NT	Volume of Non-Tolled High Occupancy Vehicles in TOD: BA Direction
AB_Flow_CV_NT	Volume of Non-Tolled Commercial Vehicles in TOD: AB Direction
BA_Flow_CV_NT	Volume of Non-Tolled Commercial Vehicles in TOD: BA Direction
AB_Flow	All Vehicle Volume in TOD: AB Direction
BA_Flow	All Vehicle Volume in TOD: AB Direction
Tot_Flow	Total Vehicle Volumes in TOD: Total AB + BA

The resource file will also generate new loaded network files under each toll rates under the same project folder. The fields included in those loaded network files are summarized as follows:

\Highway_Line_T1_loaded.dbd
\Highway_Line_T2_loaded.dbd
\Highway_Line_T3_loaded.dbd
\Highway_Line_T4_loaded.dbd
\Highway_Line_T5_loaded.dbd SOVTRate Toll Rate for Single Occupancy Vehicle (\$/mile) HOVTRate Toll Rate for High Occupancy Vehicle (\$/mile) CVTRate Toll Rate for Commercial Vehicle (\$/mile) SOVToll Tolls for Single Occupancy Vehicles (\$): SOVTRate*Length HOVToll Tolls for High Occupancy Vehicles (\$): HOVTRate*Length CVToll Tolls for Commercial Vehicles (\$): CVTRate*Length AB_Flow_AM All Vehicle Volume during AM Peak Period: AB Direction BA_Flow_AM All Vehicle Volume during AM Peak Period: BA Direction Tot_Flow_AM All Vehicle Volume during AM Peak Period: Total AB+BA AB_Flow_OP All Vehicle Volume during Off-Peak Period: AB Direction BA_Flow_OP All Vehicle Volume during Off-Peak Period: BA Direction Tot_Flow_OP All Vehicle Volume during Off-Peak Period: Total AB+BA AB_Flow_PM All Vehicle Volume during PM Peak Period: AB Direction BA_Flow_PM All Vehicle Volume during PM Peak Period: BA Direction Tot_Flow_PM All Vehicle Volume during PM Peak Period: Total AB+BA AB_Flow_Daily All Vehicle Daily Volume: AB Direction BA_Flow_Daily All Vehicle Daily Volume: BA Direction Tot_Flow_Daily All Vehicle Daily Volume: Total AB+BA AB_Rev_AM Revenue During AM Peak Period: AB Direction BA_Rev_AM Revenue During AM Peak Period: BA Direction Tot_Rev_AM Revenue During AM Peak Period: Total AB+BA AB_Rev_OP Revenue During Off-Peak Period: AB Direction BA_Rev_OP Revenue During Off-Peak Period: BA Direction Tot_Rev_OP Revenue During Off-Peak Period: Total AB +BA AB_Rev_PM Revenue During PM Peak Period: AB Direction BA_Rev_PM Revenue During PM Peak Period: BA Direction Tot_Rev_PM Revenue During PM Peak Period: Total AB+BA AB_Rev_Daily All Daily Revenue: AB direction BA_Rev_Daily All Daily Revenue: BA direction Tot_Rev_Daily All Daily Revenue: Total AB+BA

Appendix E - Detailed TAZ Information

TAZ_2002XP_SE_2012

TAZ	ATYPE	HH	HH_STUD		MEANINC	DWELLUN UBEDS			RET	HWY	OFF	SER	SPUNIV	SPSC		SPAIR		SPHOSP	INDPERC	RETPERC	RC	C	ERC
1507		3884	0	1085	63977	402	0	17	43	0	47	115	0		0		0	0	0	0	0	0	0
1508		2599	14	1696	73351	652	0	36	210	94	15	376	0		0		0	0	0	0	0	0	0
1737		21661	0	4715	63727	1751	0	1502	363	164	520	1060	0		0		0	0	0	0	0	0	0
1818		2761	1	2161	63110	802	0	309	48	17	104	135	0		0		0	0	0	0	0	0	0
1538		21045	1	2958	63784	1106	0	602	69	38	393	236	0		0		0	0	0	0	0	0	0
1817		2290	10	821	65998	315	0	2	0	0	1	13	0		0		0	0	0	0	0	0	0
1509		21008	21	2813	70324	1111	0	7	70	13	1	71	0		0		0	0	0	0	0	0	0
1510		2876	8	2445	63964	955	0	11	92	59	66	130	0		0		0	0	0	0	0	0	0
1739		2394	9	1116	66879	464	0	3	29	25	0	49	0		0		0	0	0	0	0	0	0
1741		2242	3	673	65149	264	0	0	157	16	10	107	0		0		0	0	0	0	0	0	0
1389		259	0	165	84683	64	0	0	33	0	4	2	0		0		0	0	0	0	0	0	0
1390		2224	6	626	148453	249	0	0	3	0	2	20	0		0		0	0	0	0	0	0	0
1382		2538	0	1502	64010	586	0	0	3	0	185	495	0		0		0	0	0	0	0	0	0
1736		2414	4	1154	82133	452	0	27	46	0	52	565	0		0		0	0	0	0	0	0	0
1512		2427	17	1190	88034	475	0	59	30	0	1	69	0		0		0	0	0	0	0	0	0
1383		2482	15	1363	110091	522	0	1	26	21	12	180	0		0		0	0	0	0	0	0	0
1511		2461	1	1305	78813	488	0	0	8	0	13	8	0		0		0	0	0	0	0	0	0
959		2394	23	1157	114759	430	0	21	10	1	4	55	0		0		0	0	0	0	0	0	0
1436		2382	14	1093	116217	432	0	38	358	15	1	37	0		0		0	0	0	0	0	0	0
1735		2173	2	491	86808	184	0	20	22	8	0	33	0		0		0	0	0	0	0	0	0
1731		2336	8	988	103674	358	0	0	0	0	31	46	0		0		0	0	0	0	0	0	0
1729		2394	11	1158	113252	421	0	34	5	15	0	19	0		0		0	0	0	0	0	0	0
1727		2319	19	796	108197	356	0	51	1	1	8	35	0		0		0	0	0	0	0	0	0
1733		2175	3	495	69018	201	0	29	10	3	0	16	0		0		0	0	0	0	0	0	0
1506		2339	4	961	72351	389	0	6	0	4	0	31	0		0		0	0	0	0	0	0	0
1332		2645	24	1826	71554	751	0	14	5	0	5	113	0		0		0	0	0	0	0	0	0
1331		2474	10	1324	74334	523	0	15	0	0	21	23	0		0		0	0	0	0	0	0	0
957		3204	6	512	100573	223	0	3	19	16	4	41	0		0		0	0	0	0	0	0	0
1313		2316	9	791	64380	367	0	29	126	118	27	90	0		0		0	0	0	0	0	0	0
1716		266	1	186	65822	77	0	0	53	11	0	65	0		0		0	0	0	0	0	0	0
1732		2105	4	297	118020	123	0	10	34	6	10	160	0		0		0	0	0	0	0	0	0
1715		2444	8	1255	65692	510	0	106	60	9	75	184	0		0		0	0	0	0	0	0	0
1717		221	1	61	65536	26	0	69	58	14	48	165	423		0		0	0	0	0	0	0	100
1719		2649	15	1837	62887	748	0	518	13	2	4	66	0		0		0	0	0	0	0	0	0
1503		2138	0	391	62504	156	0	1	27	6	7	137	0		0		0	0	0	0	0	0	0
1315		2266	5	667	72048	288	0	22	0	0	4	3	0		0		0	0	0	0	0	0	0
1499		2724	14	2049	71242	780	0	8	8	3	8	27	0		0		0	0	0	0	0	0	0
1698		2217	2	614	60799	249	0	0	2	8	0	16	0		0		0	0	0	0	0	0	0
1314		2361	10	902	56024	415	0	17	11	1	5	93	0		0		0	0	0	0	0	0	0
1316		2305	7	863	74113	330	0	1	20	0	2	37	0		0		0	0	0	0	0	0	0
1318		2791	8	2239	65247	865	0	27	16	18	6	78	0		0		0	0	0	0	0	0	0
1498		2361	7	1020	64090	409	0	23	11	7	0	41	0		0		0	0	0	0	0	0	0
1695		2428	7	1210	73835	491	0	11	18	6	8	38	0		0		0	0	0	0	0	0	0
1696		2292	5	827	60001	313	0	5	0	2	0	9	0		0		0	0	0	0	0	0	0
1697		2412	4	1166	64596	442	0	12	28	0	4	24	0		0		0	0	0	0	0	0	0
1320		$3 \quad 97$	5	274	64562	106	0	0	0	0	0	2	0		0		0	0	0	0	0	0	0
1319		253	0	149	149194	56	0	7	0	3	0	0	0		0		0	0	0	0	0	0	0
1502		3108	9	307	64884	118	0	4	10	0	0	12	0		0		0	0	0	0	0	0	0
1711		3392	0	1069	63243	404	0	106	0	24	0	30	0		0		0	0	0	0	0	0	0
2184		2390	4	1004	65154	408	0	43	101	61	22	117	0		0		0	0	0	0	0	0	0
		325	0		55370	26	0	1	2	1	0	2	0		0		0	0	0	0	0	0	0

2174	2	160	0	428	55193	161	0	790	226	364	88	267	0	0	0	0	0	0	0	0	0
2183	3	199	0	551	61843	208	0	14	62	38	11	75	0	0	0	0	0	0	0	0	0
1710	3	738	1	1999	63588	772	0	21	1	9	0	42	0	0	0	0	0	0	0	0	0
2251	2	267	1	729	76355	292	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0
1709	3	112	9	304	63294	118	0	0	1	3	0	4	0	0	0	0	0	0	0	0	0
1501	2	294	1	795	58290	308	0	25	24	19	0	55	0	0	0	0	0	0	0	0	0
1707	3	95	2	257	60922	101	0	45	4	39	27	3	0	0	0	0	0	0	0	0	0
2164	3	403	1	1082	57015	426	0	10	25	9	4	20	0	0	0	0	0	0	0	0	0
2204	3	156	9	418	59445	170	0	5	35	7	3	30	0	0	0	0	0	0	0	0	0
2217	2	222	4	610	57290	236	0	0	376	96	24	77	0	0	0	0	0	0	0	0	0
2218	2	19	0	54	60791	20	0	20	57	143	3	110	0	0	0	0	0	0	0	0	0
2160	2	453	6	1081	63233	510	0	116	15	2	8	31	0	0	0	0	0	0	0	0	0
871	3	637	14	1664	67255	687	0	5	13	3	7	56	0	0	0	0	0	0	0	0	0
1708	2	83	0	216	61002	90	0	29	55	7	2	48	0	0	0	0	0	0	0	0	0
873	3	10	0	26	27778	11	0	0	27	10	0	27	0	0	0	0	0	0	0	0	0
872	2	29	0	79	57695	31	0	11	8	4	11	6	0	0	0	0	0	0	0	0	0
1704	3	51	2	134	80863	57	0	151	0	0	694	14	0	0	0	0	0	0	0	0	0
1705	3	34	7	90	64646	39	0	5	7	0	143	463	0	0	0	0	0	0	0	0	0
1677	3	243	12	653	65004	261	0	1	1	0	4	1	0	0	0	0	0	0	0	0	0
1676	3	146	3	390	63051	156	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
1491	3	467	19	1251	63309	498	0	20	66	5	18	67	0	0	0	0	0	0	0	0	0
868	3	201	18	521	63973	217	0	0	61	70	12	4	0	0	0	0	0	0	0	0	0
867	2	1430	12	3732	61191	1581	0	8	3	1	5	93	0	0	0	0	0	0	0	0	0
1679	3	480	0	1309	63391	523	0	9	45	28	8	30	0	0	0	0	0	0	0	0	0
1492	2	604	6	1648	61086	647	0	6	73	40	51	155	0	0	0	0	0	0	0	0	0
1678	3	714	20	1948	63066	769	0	29	23	7	18	67	0	0	0	0	0	0	0	0	0
1496	3	299	7	803	64152	319	0	7	12	0	5	90	0	0	0	0	0	0	0	0	0
1687	3	263	8	706	62770	281	0	5	5	0	111	41	0	0	0	0	0	0	0	0	0

TAZ_2002XP_SE_2035

2174	2	620	0	1655	55193	620	0	806	297	410	102	350	0	0	0	0	0	0	0	0	0
2183	2	480	0	1349	61843	505	0	58	254	161	49	297	0	0	0	0	0	0	0	0	0
1710	2	1999	0	5417	63588	2089	0	21	5	38	0	53	0	0	0	0	0	0	0	0	0
2251	2	372	0	1019	76355	443	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0
1709	2	403	32	1096	63294	419	0	0	6	12	0	16	0	0	0	0	0	0	0	0	0
1501	2	391	0	1059	58290	409	0	70	53	81	0	137	0	0	0	0	0	0	0	0	0
1707	2	146	3	397	60922	153	0	172	4	86	115	3	0	0	0	0	0	0	0	0	0
2164	2	996	0	2629	57015	1060	0	24	108	38	10	80	0	0	0	0	0	0	0	0	0
2204	2	320	17	851	59445	326	0	16	94	31	12	88	0	0	0	0	0	0	0	0	0
2217	2	370	7	1093	57290	377	0	0	493	163	35	110	0	0	0	0	0	0	0	0	0
2218	2	31	0	104	60791	34	0	20	104	148	3	151	0	0	0	0	0	0	0	0	0
2160	2	826	9	1710	63233	972	0	121	43	10	10	50	0	0	0	0	0	0	0	0	0
871	2	1807	36	4718	67255	1932	0	5	18	3	7	56	0	0	0	0	0	0	0	0	0
1708	2	236	0	612	61002	255	0	125	90	28	9	87	0	0	0	0	0	0	0	0	0
873	2	10	0	26	27778	11	0	0	116	43	0	117	0	0	0	0	0	0	0	0	0
872	2	79	0	214	57695	85	0	15	9	18	49	6	0	0	0	0	0	0	0	0	0
1704	2	55	2	144	80863	59	0	619	0	0	2707	14	0	0	0	0	0	0	0	0	0
1705	1	121	24	315	64646	133	0	6	7	0	614	1923	0	0	0	0	0	0	0	0	0
1677	2	722	36	1939	65004	765	0	1	1	0	4	1	0	0	0	0	0	0	0	0	0
1676	2	429	9	1146	63051	457	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
1491	2	1681	67	4499	63309	1780	0	25	246	23	62	231	0	0	0	0	0	0	0	0	0
868	2	718	65	1864	63973	764	0	0	258	301	52	4	0	0	0	0	0	0	0	0	0
867	2	2351	24	6135	61191	2588	0	8	3	5	5	166	0	0	0	0	0	0	0	0	0
1679	2	1984	0	5411	63391	2164	0	27	192	119	31	90	0	0	0	0	0	0	0	0	0
1492	2	1581	16	4318	61086	1688	0	6	247	173	217	355	0	0	0	0	0	0	0	0	0
1678	2	1918	58	5237	63066	2047	0	56	41	29	79	149	0	0	0	0	0	0	0	0	0
1496	2	879	18	2358	64152	928	0	7	51	0	5	348	0	0	0	0	0	0	0	0	0
1687	2	806	24	2163	62770	854	0	5	5	0	474	54	0	0	0	0	0	0	0	0	0

Appendix F - Forecasting Summary Data

Southeast Extension 2012 Build DSA Forecast Volumes

Facility	Location	DSA 1-2,13-14	DSA 3-4, 15-16	DSA 5, 17	DSA 6-7	DSA 8-9	DSA 10-11	DSA 12
Southeast Extension	from NC 55 to SR 1152 (Holly Springs Road)	17,600	17,600	17,600	15,200	23,600	23,600	23,600
	from SR 1152 (Holly Springs Road) to SR 1386 (Bells Lake Road)	21,800	21,800	21,800	19,800	29,000	29,000	29,000
	from SR 1386 (Bells Lake Road) to US 401	30,500	30,500	30,500	22,500	28,100	28,100	28,100
	from US 401 to SR 1006 (Old Stage Road)	33,300	33,300	33,300	22,100	20,400	20,400	20,400
	from SR 1006 (Old Stage Road) to NC 50	26,100	26,100	26,100	21,800	17,100	17,100	17,100
	from NC 50 to I-40 / US 70 Bypass	24,200	24,200	24,200	25,300	21,200	21,200	21,200
	from l-40 / US 70 Bypass to (SR 2700) White Oak Road	20,900	18,900	20,900	23,000	18,800	17,000	18,800
	from (SR 2700) White Oak Road to US 70	27,200	20,600	25,800	23,000	25,700	19,500	24,400
	from US 70 to SR 2542 (Rock Quarry Road)	34,700	37,800	27,500	23,000	34,000	37,000	26,900
	from SR 2542 (Rock Quarry Road) to SR 2555 (Auburn Knightdale Road)	37,800	37,000	33,000	33,400	37,900	37,100	33,100
	from SR 2555 (Auburn Knightdale Road) to SR 1007 (Poole Road)	37,700	41,100	35,300	34,100	37,600	41,000	35,200
	from SR 1007 (Poole Road) to US 64/264	48,600	51,800	46,000	43,800	48,500	51,700	45,900

Southeast Extension 2035 Build DSA Forecast Volumes

Facility	Location	DSA 1-2,13-14	DSA 3-4, 15-16	DSA 5, 17	DSA 6-7	DSA 8-9	DSA 10-11	DSA 12
Southeast Extension	from NC 55 to SR 1152 (Holly Springs Road)	47,400	47,400	47,400	42,800	51,100	51,100	51,100
	from SR 1152 (Holly Springs Road) to SR 1386 (Bells Lake Road)	57,800	57,800	57,800	57,500	67,500	67,500	67,500
	from SR 1386 (Bells Lake Road) to US 401	70,300	70,300	70,300	61,300	68,300	68,300	68,300
	from US 401 to SR 1006 (Old Stage Road)	71,600	71,600	71,600	59,100	50,800	50,800	50,800
	from SR 1006 (Old Stage Road) to NC 50	57,300	57,300	57,300	64,800	42,000	42,000	42,000
	from NC 50 to l-40 / US 70 Bypass	51,800	51,800	51,800	58,200	49,300	49,300	49,300
	from I-40 / US 70 Bypass to (SR 2700) White Oak Road	45,900	43,900	44,300	64,800	42,900	41,000	41,400
	from (SR 2700) White Oak Road to US 70	54,000	46,700	50,200	64,800	51,500	44,500	47,900
	from US 70 to SR 2542 (Rock Quarry Road)	64,000	66,400	56,100	64,800	62,500	64,800	54,800
	from SR 2542 (Rock Quarry Road) to SR 2555 (Auburn Knightdale Road)	69,400	67,200	63,700	73,700	69,400	67,300	63,800
	from SR 2555 (Auburn Knightdale Road) to SR 1007 (Poole Road)	72,200	75,800	69,800	75,500	72,000	75,600	69,600
	from SR 1007 (Poole Road) to US 64/264	91,900	95,300	89,100	94,000	91,400	94,800	88,600

$\begin{array}{llllll}0 & 0.6 & 1.2 & 1.8 & 2.4 & 3 \\ & & & & & \\ \text { *For representative purposes, only DSA } 1 \text { (Orange), DSA } 6 \text { (Red), }\end{array}$ and DSA 8 (Purple) to Green mainline volumes are shown. HNTB, North Carolina, PC
343 East Six Forks Road, Suite 200 Raleigh, NC 27609

				No－Build														Build 1 －Orange to Green					
				M Raw Moce				Rate	Rate	Rate	final			TRM Factors			Rate	Raw Model		Rate	FiNaL		Rate
	HNTB ID	Facility	Location	2009	2012	2035	2010	$\begin{gathered} \text { 2035 } \\ \text { on } \\ \text { folt } \end{gathered}$	$\underset{\substack{2010.2012 \\ \text { Modol } \\ \text { Gorwth } \\ \text { Fate }}}{\substack{\text { Pate }}}$		2010	2012	2035		$\begin{gathered} 2012 \text { TRM } \\ \text { Factor } \end{gathered}$	$\begin{aligned} & 2035 \text { TRM } \\ & \text { Factor } \end{aligned}$		$\begin{array}{\|c} 2012 \\ 2222021 \\ \text { nodel } \end{array}$	$\left\|\begin{array}{c} 2035 \\ \text { Nowe } \\ \text { Nouel } \\ 1132011 \end{array}\right\|$		2012	2035	$\begin{gathered} \text { Final } \\ \substack{\text { Annual } \\ \text { Grouth } \\ \text { Rate }} \end{gathered}$
		Easem Waxe Exprossay							4．38\％	2．25\％				1.00	1.00	1.00		20．900					
	$\frac{2}{3}$	Easem Wexe Expessway								${ }^{2.25}$				0	1.00	＋1．00		27，200 $3+7,00$	54．4000 64.000	${ }^{\frac{3}{3.03 \%}} \mathbf{2 . 7 0 \%}$	27，200 34,700	54，000 64,000	年．03\％
Res	${ }_{1}^{1.3}$	Easem Wate Exposessway							${ }_{4}^{4.88 \%}$	${ }^{2.25 \%}$				1.00	$\stackrel{1}{1.00}$	1.00							
	4	Eastern Waxte Expossway							4．38\％	225\％				1.00	1.00	1.00		37，800	0，300	2．67\％	37，800	69，300	2．67\％
	5	Easeen Waxe Expossway							38\％	2．25\％				．00	1.00	．00		37，700	200	7\％	700	20	2．87\％
	$\frac{6}{7}$	${ }^{\text {Easter Wate Expossway }}$							${ }^{4.38^{4}}$	${ }_{1.45}$					（1．00	－1.00 0.83		${ }^{48.600}$	${ }_{\text {91，900 }}^{154,600}$	${ }_{\text {2，}}^{2.818 \%}$		${ }^{911,900}$	${ }^{1.54}$
Reod	8a	${ }^{1.140}$					${ }^{1224,500}$	${ }_{\text {，}}^{1.46}$	${ }_{\text {0，}}^{0.55 \%}$	${ }_{\text {a }}^{1.496 \%}$			${ }^{12449900} 1$	－0．819	0．80	0.83 0.7	${ }_{\text {1．5620 }}^{1.5020}$	${ }^{111,700}$					
	${ }^{\frac{88}{88}}$	${ }^{1+40}$		$\begin{array}{r}\text { 94，900 } \\ \hline 94.90 \\ \hline\end{array}$	${ }_{\text {95，000 }}^{95000}$	${ }_{\substack{138,600 \\ 138.60}}$	949900 94,900	${ }^{1.46} 1.4$	0．05\％ 0	${ }^{1.66 \%}$	${ }_{\text {75，000 }}^{75.000}$	$\xrightarrow{75,7700}$	108，900 108,90	0.79 0.79	0.80 0.80	0.79 0.79		$\frac{0}{87,300}$			69.600		
	$\stackrel{9}{9}$	${ }^{120}$	（tas	\％6．500		${ }_{\text {101，000 }}^{69000}$	66.400 48700	${ }_{1}^{1.52}$	${ }^{0.75 \%}$	${ }_{\text {l }}^{1.777^{2}} 1$	56，300	${ }_{\text {56，700 }}^{50.400}$	$\frac{82.000}{72,000}$	0.85 ${ }_{\text {O }}^{1.05}$	－0.84 1.02	0.81 1.06	${ }_{\text {1．6220 }} 1.6$	${ }_{\text {72，}}^{\substack{7200}}$	100．600 $\substack{70100}$	${ }_{1}^{1.4489}$		${ }_{81,700}$	
	${ }^{10} 12$	${ }^{1.590}$		$\begin{array}{r}48,400 \\ 24,700 \\ \hline\end{array}$	${ }^{4.85,50}$	${ }^{\text {80，300 }}$		${ }_{2}{ }^{2.74}$		${ }^{1.425 \%}$	${ }_{\text {50，}}^{59,700}$			$\stackrel{\text { 1．03 }}{1.70}$	${ }^{1.027}$	$\stackrel{1.09}{1.09}$					${ }_{\text {ci．50 }}$		
	${ }^{11}$	S	tom US 64286410 US 68 Businss	－15，600	${ }^{25,700}$	57，900		${ }^{3.05}$	16．30\％	2．25\％		43.000	－71，000	2.16	${ }_{1.37}$	1.09	${ }^{2,2}$	40.300	${ }^{86,50}$		55，200	94，700	
	${ }^{138}{ }^{138}$	${ }^{\text {NNC } 42}$		19.800 34.00	22，700 36.00	${ }_{\text {26，}}^{42,100}$	${ }^{20.8 .800} 35$	${ }_{1}^{1.26}$	${ }^{4.4796 \%}$	${ }^{0.648 \%}$	${ }_{\text {25，900 }}^{37,100}$	${ }_{\substack{26,400 \\ 37.800}}$	${ }^{30.900} 4$	${ }_{\text {\％}}^{1.25}$	${ }_{1}^{1.05}$	${ }_{1}^{1.05}$	${ }^{0.698} 0$	16.900 30.800	${ }_{\text {23，}}^{23,40}$	${ }_{\text {c，}}^{\substack{1.48 \\ 0.73}}$	${ }_{\substack{19,700}}^{19,00}$	${ }^{38,2}$	
	${ }^{15}$	${ }^{\text {NC } 42}$	Not US70 5ppass			${ }_{\text {l }}^{19.500}$			${ }_{\text {3，}}^{4.43^{\circ}}$					－0．91		09							
	${ }_{\text {new }}$	，		19，200	${ }_{\text {24，400 }}^{\text {2，}}$	－	¢	${ }_{1.15}^{1.5}$		${ }_{\text {c }}^{1.53 \%}$	13,700 19.500 190	$\xrightarrow{15,000} 2$		－0.61 0.98	－${ }_{0}^{0.61}$	－0．62	1.544	${ }^{17,700}$	${ }^{29,100}$	2．19\％	13，50	22，200	
Rea	new	No 50	${ }^{\text {Sors Wate Eppuy }}$	（19，200 $\begin{gathered}1300 \\ 1.300\end{gathered}$	${ }^{21,100}$	29，100	19.800 13,700	，${ }_{\text {li．4，}}^{1.29}$		${ }^{1.419 \%}$	19.50 1400 140	$\frac{20.800}{1.500}$	28，700	－ 0.98	${ }_{0}^{0.98}$	0．99		$\stackrel{0}{12300}$					
	－new	NC 50		18.500 18.00		25，400	lig．200	${ }_{1.32}^{1.2}$			${ }_{\text {ckis．}}^{\substack{14.500}}$	${ }_{\text {l }}$		－1．79	－1．79	－1．79	0.77%	${ }_{12.500}^{12.500}$	${ }_{\text {che }}^{18.60}$	${ }^{0.7696}$	1．2．400	14．700	0.748
	－${ }^{18}$	Na 50		－ 18.000	${ }_{\text {21，}}^{\text {21，000 }}$	${ }_{\substack{25.400 \\ 13.800}}$	${ }^{\frac{19,200}{10,100}}$	1.32 1.37	㐌．078\％	${ }^{0.790^{\circ}} 0$	15,20 8.00 8	${ }_{\text {l }}^{17,100}$	20，100	0．79	0.79 0.79	0.79 0.9	0．791920	${ }^{23.000} 1$	34，200 19.800	${ }_{\text {c }}^{1.748 \%}$	18,200 10,900 1	27， 1.100 15.60	
	${ }^{20}$	NC 5 Stypass		27，20	${ }_{\text {4，}}^{40,700}$	${ }^{50.600}$	${ }^{31,700}$	1.60	${ }_{\text {13，}}^{1336}$	0．95\％	${ }^{29,70}$		47.400	0．94	0.94	0.94	0.9				${ }_{\substack{38.1 \\ 38.1}}$	47,400	
	${ }_{22}^{22}$	NC 55 preass	lom	$\stackrel{\substack{27,200}}{ }$		${ }^{50,00}$	$\xrightarrow{31,760}$	${ }_{1.29}^{1.60}$	4．95\％	${ }^{0.968 \%}$	${ }^{29,900}$	${ }^{38,400}$	${ }^{\text {4，}} 38.000$	0.94	${ }_{1}^{0.04}$	0.94 1.04	0．967\％	${ }^{40,300} 3$	${ }_{\text {4，} 4 \text { 4，300 }}$	0．656\％	－	${ }_{46,20}^{46,00}$	
	${ }_{23}^{23}$	Southen Whake Eppossway	tom						4．38\％	${ }_{2}$				$\stackrel{1.00}{1.00}$	1.00	1.00		${ }^{17,600}$	41，400	${ }^{\text {3．7．9\％}}$	${ }^{\text {ci，600 }}$	441．40	（e．ta\％
Orange	24	Sounter Wake Eppossway							38\％	2．25\％				1.00	1.00	1.00		${ }^{21.800}$	57，800	4．33\％	21，800	57，80	4．33\％
Puppl	24a	Sounter Waxe Eppessway							4．38\％	2．25\％				1.00	1.00	1.00							
	25	Soutem Ware Exprossway							4．38\％	2．25\％				1.00	1.00	1.00		30.500	70.300	3．70\％	30.500	70，300	3．70\％
		Sounem W							4．38\％	2．25\％				1.00	1.00	1.00							
upp	${ }^{26}$	Southen Wate Eprossuay							${ }_{4}^{4.388 \%}$	2．25\％				1.00	1.00	1.00 1.00		${ }_{\substack{33,300 \\ 26,100}}$	${ }_{71}^{77}$	${ }_{\substack{3.38 \% \\ 3.482}}$	（ 38.30	${ }_{\text {71，}}^{77.6}$	${ }_{\substack{3.388 \% \\ 3880}}$
	${ }_{28}^{28}$	Semen	Home						－					${ }^{1.00}$	－ 1.00	$\stackrel{1}{1.00}$		$\stackrel{\text { 24，200 }}{ }$	${ }^{55.800}$	${ }^{\frac{3.56 \%}{}}$	$\stackrel{20,20}{24.20}$	${ }_{51,80}$	${ }^{\text {c．3．36\％}}$
${ }_{\text {Reed }}^{\text {Reed }}$		${ }^{\text {Sh }}$		${ }_{\substack{9.500 \\ 14.700}}$	${ }_{\text {coser }}^{\substack{10.200 \\ 16.200}}$	${ }^{36,800} 48$	${ }_{\substack{9.700 \\ 15.200}}$	${ }^{3.780}$	${ }_{\substack{2.548 \\ 3,246}}$	${ }^{5.748 \%} 4$	${ }^{\text {9，7．800 }}$		${ }^{36,800} 4$	${ }^{1.00} 0$	1.08 0.98	${ }^{1.00} 0$	${ }^{5.749 \%}$	0					
Reor			Nor st 1010 （Tent Ten Rod	$\begin{array}{r}14,700 \\ 10.40 \\ 1000 \\ \hline\end{array}$	${ }_{\text {16，200 }}^{11.800}$	${ }_{\text {42，500 }}$	${ }^{\frac{15}{15.200}} 1$	2．280		$\frac{4.28 \%}{3,35 \%}$	14，800	（15．800	41.500 18.200	－0．97	0．988	0．988	${ }^{4.239 \%}$	$\frac{0}{15,100}$		${ }^{3.16 \%}$	10．900	${ }^{22,30}$	
drang	30			10.4	${ }^{11.800}$	${ }^{25,200}$			${ }_{\text {L }}^{4.05 \%}$	${ }^{3.355 \%}$			${ }^{18,200}$	${ }_{0}^{0.72}$	0．72	0.72	3．37\％				${ }_{10,10}$	${ }_{19,0}$	
Luac			${ }^{\text {Somor }}$		¢，${ }_{\text {9，200 }}$	${ }^{22,900}$		${ }_{\text {2．48 }}$	，	${ }^{4.894 \%}$	8．900	${ }_{\text {9．100 }}^{\text {9．100 }}$	$\xrightarrow{20.7800}$	1.06	1.15	． 1.90			$\xrightarrow{23,200}$	${ }^{3.89 \%}$	${ }_{\text {c，}}^{\substack{12,40 \\ 5,10}}$	${ }_{\substack{21.0 \\ 10.8}}^{\text {2，}}$	
${ }_{\text {cose }}^{\text {Bue }}$				${ }_{6}^{6.000}$	${ }_{6}^{6.600}$	${ }_{\substack{13.900 \\ 13.900}}$		${ }^{2.24}$	${ }_{\text {cher }}^{3.188 \%}$	${ }^{\frac{3}{3} 299 \%}$	4.4000	4.4 .300	$\xrightarrow{9,700}$	－0．69	${ }^{0.705}$	0．70	${ }_{\substack{3.30 \% \\ 3.36 \%}}$	${ }^{6.200} 4$	${ }_{\substack{13.100}}^{13.100}$	${ }^{\frac{3}{4.36 \%}} 4$			
${ }_{81}^{81}$				－${ }_{\text {4，800 }}^{12}$	${ }^{4} 4.900$	10，200	${ }_{\text {4，}}^{4.800}$	${ }_{\substack{2,13 \\ 343}}$	${ }^{1.049 \%}$	$\frac{3.248}{490 \%}$	良．8000	3．900	${ }^{8.100}$	－0．73	${ }_{0}^{0.80}$	0.95	${ }^{3.23}$	${ }^{4.400}$	9，40	${ }^{\frac{3}{5} .36 \%}$			
	${ }^{32}$	SR 1007 P Pooid haod			${ }^{1.5,500}$	46.600	${ }_{\text {13，600 }}^{11000}$		6．786\％	${ }^{4.909 \%}$				${ }^{0.58}$	0.58	0.58	4.919	${ }^{14.8500}$	39，60			${ }_{23,000}^{2300}$	
Prange	－${ }^{33}$		Worsh 316		$\frac{13,200}{10.800}$	39,200 13,00	${ }_{\text {IT，}}^{1,500}$	3．3． 1.3	${ }^{9.0 .65 \%} 6$	${ }^{4.85 \%}$	${ }_{\text {c }}^{6.500}$		22．900	0．592	0．98	0．98	${ }^{4.855^{\circ}}$	${ }_{\text {col }}^{\substack{17.500 \\ 8.300}}$		$\frac{4.122^{2}}{1.836}$	7，900	${ }_{\text {20，000 }}^{10.40}$	
	${ }_{35}^{35}$			${ }_{6,700}$	10.100 1.200	$\xrightarrow{19,200}$	7，800	${ }^{2.46}$	${ }^{13,799 \%}$	${ }^{2.883 \%}$	13.300 15700		${ }^{327700}$	$\frac{1.71}{1.73}$	${ }_{1}^{1.72}$	${ }_{1}^{1.70}$	${ }^{2,888 \%}$	2.300 10300 1	$\stackrel{6}{6200}$	$\frac{4.4196}{4710}$	${ }_{1}^{13,400}$	${ }_{\text {25，600 }}^{28000}$	
Reof		SR 1010 （Tron．Ten foad	Eofus 401	${ }_{17} 17.300$	${ }^{21,500}$	${ }_{\text {27，700 }}$	18，700	${ }_{1.48}$	${ }^{7} 7.236$	1．12\％	12.800	14，700	18，900	0.68	0.68	0.68		$\xrightarrow{\text { 9．000 }}$	${ }_{\text {L }}^{15.400}$	238\％\％	6，200	${ }^{20.000}$	${ }^{2.32 \%}$
Ree			Woivsal	（17．600	${ }_{\text {20，600 }}^{12500}$	${ }^{277,100}$	（18．600	${ }^{1.468}$		1．20\％	－$\frac{14.100}{6.700}$	（5．600	（20．500	0．760	${ }_{0}^{0.76}$	0．76		11.800 5.800	（17，000	， 1.60%	8，900	12．900	
	37	SR 1152（Holly Perings Roas）		10，500	10，800	28，300	10，600	2.67	0．94\％	4．28\％	8.900	9.100	23，800	0.84	${ }^{0.84}$	0.84	4．27\％	11，000	27，400	4．05\％	9，300		22\％
	1	SR 1152 HHOlly Spings Road）	Noi Soutem Waxe Eppossway	10．500	10，800	28,300	10.600	2.67	0．94\％	4．28\％	8.900	9.100	23，800	0.84	0.84	0.84	4.278	25．300	27，400	0．35\％	21.300		${ }^{0.33}$
	39	SR 1152 （Hally Spings Road）		23，40	23，800	47，100	23，500	2.00	0.64%	3．01\％	19，000	19，20	38，00	0．81	0.81	0.81	3．01\％	27，200	60，300	3．52\％	21，900	48，60	\％
	40		Not Trangle Eprossway NC 5 540］	$\xrightarrow{10,20}$	$\xrightarrow{10,100}$	29.800	$\frac{10,200}{1+300}$	${ }_{2.92}^{2.92}$	－0．49\％	4．82\％	${ }_{1}^{1.90}$	10．100	${ }^{29,800}$	${ }^{0.19}$	1.00	1.00	${ }_{4}^{4.820}$	${ }^{10.600}$	32.900 4300	${ }_{5}^{5.050}$	$\xrightarrow{10.60}$	${ }_{32,900}^{3.300}$	
	${ }_{4}^{41}$			10，200	15.000	41.600	11，800							0.16	1.00	1.00		14.500	43.00		（14，50	${ }_{\text {43，000 }}^{1.800}$	
	${ }^{43}$								$\frac{4388 \%}{4386}$				${ }_{\text {2，} 2.000}^{1.00}$				${ }^{2.302 \%}$				$\xrightarrow{1.500}$		
Pum	44		WoisR 1152 2 Holly Spring S Road）	12.900	13.100	25.900	13.000	1.99	${ }^{4.358 \%}$	${ }^{2.050 \%}$			${ }^{\text {L，} 1,200}$	0.82	0.82	0.82	3．02\％	${ }^{15.200}$	34，600	3．64\％	${ }_{\text {12，40 }}^{12.4}$		
	${ }_{46}^{45}$		Soith		9，200	30，400		${ }^{3.58}$	$\frac{4.046}{4046}$	${ }_{5}^{5.33 \%}$	${ }_{4}^{4.500}$	4．900	13,200 13.300	－0．53	${ }_{0}^{0.53}$	0.43			38，20	${ }^{3.794}$		${ }_{\substack{21,6 \\ 12 \\ 12}}$	
	${ }^{47}$			${ }_{4}^{4,700}$		12.300	5.00	${ }^{2.46}$	5．83\％		6，900	7，700	${ }^{16,900}$	${ }^{1.3}$	$\stackrel{1.38}{1.54}$	${ }_{\text {l }}^{1.35}$	${ }^{34889}$	${ }^{8.5000}$	${ }^{13,9}$	126	${ }^{\text {11，70 }}$	${ }_{19,10}$	${ }^{2.15 \%}$
Puple		${ }^{\text {SR }}$		${ }_{6}^{6,100}$	${ }_{7}^{7,400}$	$\underset{\substack{13,800 \\ 13,800}}{ }$	${ }_{6}^{6.550}$	${ }_{2,12}^{2,12}$	$\frac{6.70 \%}{6.70 \%}$	${ }^{2.75 \%}$	3,500 3.50	$\xrightarrow{4.000} 3$	${ }^{7.300} 7$	0.54 0.54	0.54 0.53	${ }^{0.54}$	${ }^{2.776 \%}$	${ }^{6.6 .600}$	11，00 11.00	${ }^{2.255}$			
${ }^{\text {Puppe }}$		SR 1333 Hutuo Neodmere Ro）		${ }_{6,10}$	7.400	13，800	${ }_{6}^{6.5}$	2.12	${ }^{6.708}$	${ }^{2,75 \%}$	${ }^{3.5}$	3，900	7．300	0.5	－ 0.53	0.53	${ }_{2,7}^{2,7}$	6，600		${ }^{2.25}$			
	48		Wotustol	7.80	10,400	21，500	8，700	${ }^{2.47}$	${ }_{9}^{4.38 \%}$	3．21\％	3.000	3.600	${ }^{7,400}$	${ }_{0} 0.34$	0.35	0.34	${ }_{\text {3．1882 }}$	${ }^{7,900}$	${ }^{13,900}$	2．49\％	2，700	4．800	\％
													${ }_{\text {22，700 }}^{26,800}$										
	51	SR 2316 Hedogo Read）	Notolid faiso Rd	4，100	5.600	${ }^{13,800}$		${ }_{3} .00$	10.34%	4．00\％	${ }^{6,200}$	7.500	${ }^{12,500}$	1．3	${ }_{1}^{1.34}$	0.91	${ }^{2.259}$	4.100	${ }^{11,40}$			${ }^{10,30}$	
		Ss 216 Hedideg Roal			$\frac{18,100}{11,900}$								$\xrightarrow{23,700}$			${ }^{0.71}$	${ }^{2.6}$						
	${ }_{54}$	SR 342 （ Roco Oouary foad			11.880	30.800	${ }_{0}^{6.900}$	${ }_{3.11}$	9．88\％	4．26\％	4.40			0.44	0.44	0.44	4.27%	9，400			4.10		
	565		Eor							${ }_{\text {3，73\％}}^{\text {3，}}$													
	57	SR 2 St2 R Rock ouary Road		8.600					${ }_{7}^{7,76}$		${ }_{3,20}$	${ }^{4.700}$	6，900	$\stackrel{0.34}{ }$	${ }_{0.34}$	${ }_{0}^{0.35}$		${ }^{9.500}$	＋19，30	${ }^{3.13^{\circ}}$	${ }^{\text {i．30 }}$	${ }_{6,70}$	3．13\％
Reo			Eot hack Ouary foade exesion		（10．800	20.000 28000		${ }_{2}^{281}$	（7，6\％	352													
	${ }_{5}^{58}$			${ }_{5}^{8.300}$	$\xrightarrow{12,600}$	${ }_{\substack{28,000}}^{22,10}$	${ }_{\text {9，900 }}$	${ }_{\substack{2.82 \\ 3,20}}$	${ }^{15.477 \%}$	${ }^{3.588 \%}$	${ }_{\text {2，}}^{2.600} 3$	${ }^{\frac{3}{4,400}} 4$	${ }^{7,8000}$	${ }_{0}^{0.24} 0$	${ }_{0}^{0.45}$	${ }_{0}^{0.44}$	${ }^{3.568 \%}$	${ }^{\frac{3}{2,600}}$	$\xrightarrow{13,700} 10.500$	${ }^{5.928 \%}$	${ }^{1 ., 000} 1$	${ }^{3,7700} 4$	${ }^{5.855^{2} 2}$
	60	SR 2555 （Aubum Knightale Roas）	Sois	${ }_{8} 8.00$	13，200	29，500	，00	${ }^{3.04}$	16．65\％	3．56\％	2，600	50	7．800	0.27	0.65	0.43	3．55\％	500	100	4．99\％	3．800	．800	
	61	SR 2 S5s（ habum K Kightalal Road）	Wot Esasem Wate Epressway	8．000	13.200	29.500	9，700	${ }^{3.04}$	${ }^{16.55 \%}$	${ }^{3.56 \%}$	2．600	3.500	7.800	${ }_{0}^{0.27}$	0.65	0.43	${ }^{3.55 \%}$	5.400	${ }^{19,700}$	5．79\％	3.500	8.500	
	62 63				${ }^{\frac{10.000}{15,700}}$	${ }_{\text {a }}^{\text {27，1．400 }}$	${ }_{\substack{7.900 \\ 13.900}}^{\text {cose }}$	${ }_{2}^{2.16}$	－${ }_{\text {12．25\％}}^{6.28 \%}$		退，		（7，900	${ }^{0.46} 0$	0．46	${ }_{0}^{0.45}$	${ }^{2.388}$	${ }^{3.000} 15$		${ }^{3.462}$	${ }_{8,3}$	18.2	
	${ }_{6}^{64}$																				7.50 7 7		
	－	SR 2711 Nandoras Springs Roax）		${ }_{8}^{8.000}$	9，300	${ }^{27,400}$					6．900				0.85			， 0					
Llac		2274 Banks foad		8.300	10，200	18，700	8.900	${ }^{2.10}$	${ }^{7.05 \%}$	2.67%	${ }^{3,10}$	3.600	6.600	0.35	0.35	0.35		5．900	9，900	228\％	${ }_{3.800}$	6.400	
Lilac			Eots	4.800	6.200	15.600	5.300	2.94	8．3．16\％	${ }_{\text {L }}^{4.295 \%}$	${ }_{\text {4，800 }}^{1.100}$		$\xrightarrow{14,100}$	0.91	0.90	0.90	${ }_{2,16}$	5.600	${ }^{11,800}$	3．29\％	5.100	10，700	
вие		SR2750（Nomman Blaco R Ro）	Eois R 1008 （Oid Stage Road）						$4.38{ }^{4}$				1.000										
Eane			Soius 400	${ }^{1.600}$	1.900	${ }^{9.300}$	1.700	${ }_{5.40}$	${ }^{5.72 \%}$	$\frac{7.159}{6,260}$	$\frac{.2 .700}{4.20}$	3，000	${ }^{14.700}$	1．59	${ }_{1.58}^{1.58}$	${ }^{1.58}$	${ }_{\text {7．1．2 }}^{6}$	1.900	10，228	7．59\％			
	${ }^{66}$			$\stackrel{3}{3} 700$	${ }^{6.500}$	${ }_{15,300}$	3.000	${ }_{5.1}^{60.1}$	8．019		$\stackrel{4}{4}$	6.0	${ }_{\text {2，} 4.800}$	＋0．30	0．31	${ }_{0.31}$					${ }^{6.1 .300}$	${ }_{4.50}$	
	${ }^{68}$	us 1	Not Trangle Expossway Mo ${ }^{\text {540）}}$	${ }^{30,60}$	37.300	66.600	32.800	${ }_{2}^{2}, 03$	6.644^{6}	${ }^{2} 2.55$	${ }^{21,70}$	${ }^{24,70}$	44，100	0.66	0.66	0.66	${ }^{2.55 \%}$	36，100	65.800	2.649	${ }^{23,900}$	${ }_{4}^{43.60}$	
	69	us	Sot Trange Eprosway（ NC 500	${ }^{30.60}$	36．200	${ }^{78,700}$		${ }_{2}^{2.42}$	${ }_{\text {5 }}^{5} 5$			${ }^{24.200}$		0．67	0.67	0.67	3．43\％	${ }^{36,300}$	${ }^{78.60}$	3，42\％	${ }^{24,30}$		
${ }_{\text {Rea }}^{\text {Rea }}$		US401		34，00 34， 100	${ }^{\text {37，}}$ 3700	${ }_{62,300}$		，															
		Us 401	Sois SR 1000 （Ten Ten Rod		38，500	64，30			${ }^{4.58}$		${ }_{32,6}$		${ }^{60,3}$										
ange	${ }_{7} 7$	US491			38,100 38,100		${ }_{\text {34，80 }}^{3480}$	${ }_{1.88}^{1.88}$	${ }_{4.63^{3}}$						${ }_{0}^{0.95}$	0.05		35.400 45900	${ }_{\text {co，}}^{6070}$	${ }_{2}^{23}$	${ }^{33,50}$	${ }_{7}^{74.50}$	
range	72	US491		${ }^{\text {O2，} 2700}$		${ }^{56,2000}$	${ }^{28,8,80}$		4．75\％	${ }_{2}$						$\xrightarrow{1.02}$		${ }^{\text {3．5．500 }}$					
${ }_{\text {Bue }}^{\text {Bue }}$		${ }^{\text {Us } 501}$		${ }^{22,3,30}$	－ 29.200	54．500 45.200	27，900	${ }_{1.98}^{10}$	${ }^{2} 2389$	${ }^{2.07 \%}$	${ }_{\text {23，}}^{23,200}$	${ }_{\text {24，000 }}^{22.300}$	${ }^{448,800}$	$\stackrel{0.8}{0.7}$	0.82	0．82	${ }^{2,7}$	31,900 30700	57，800 47600	${ }^{2.629}$			
${ }_{\text {Bue }}^{\text {Bue }}$		5401	Of Easem Pa	26，30	28，200	45，200	26，900	1.68	2．39\％	2．07\％	21,20	${ }^{22,300}$		0.79	0.79	0.79							
			Sois Wake Epwy	${ }^{26,300}$	${ }^{28.200}$	45，200	${ }_{\text {26，900 }}^{26200}$		${ }^{23939}$	${ }^{2.07 \%}$	${ }^{21,20}$	${ }^{22,300}$		0．79		－ 0.79	2.0	30.468	${ }^{30.0}$				
	${ }^{73}$	US64 Usiness		${ }^{3}+1,100$		${ }^{48,900}$	${ }^{32}$						${ }^{56,000}$			1．15		${ }^{37,600}$			39，700	${ }_{5}^{57,000}$	${ }_{\text {1．59\％}}^{1.56 \%}$
	75	US647294	Wois 2 2516 H Hode Road）	89，400	${ }_{\text {20，9800 }}$	${ }^{\text {147．000 }}$	${ }_{\text {2，}}^{\text {2，2，000 }}$	${ }_{1.58}$	${ }_{\text {3，}}^{3.56 \%}$	${ }_{\text {1．94\％}}^{1.989}$	${ }^{\frac{3}{60,50}}$	357400 6,40	${ }^{\text {502，90 }}$	${ }_{0}^{1.465}$	${ }_{0}^{1.68}$	$\stackrel{1.72}{0.72}$		26，400 100,100	${ }_{\text {P4 }}$	${ }^{1.55}$	${ }_{\substack{38,000 \\ 67.600}}$	${ }^{\text {S }} 1024.400$	${ }^{1.682 \%}$
	76	Us 64		77，400	88.500	130，700	81，100	1.61	4．46\％	1．71\％	59．000	65，700	100，100	0.73	0.74	0.77	1.85%	87.900	126.300	1.59%	65．300	96，700	1．72\％
	77	us 64264		74，200	88，600	137，400	79，000	1.74	5．90\％	1．93\％	68，300	76，100	116，000	0.86	${ }^{0.86}$	0.84	1．85\％	86，000	133，800	1．94\％	73，900	113，000	1.86
	78	US 847284			70.200 36.600	${ }_{\text {116，400 }}^{19.200}$	${ }_{\substack{60,100 \\ 35300}}$	${ }_{\text {1．999 }}^{1.39}$		${ }_{1}^{2.22 \%}$				0.92	0.88	0.81	${ }^{1.85 \%}$	69，500	114.500	2．19\％	61，200	92.700	${ }^{1.82 \%}$
Reo	79	Us70	Eot Easem Wake Epwy	${ }^{34,8,80}$	${ }^{36,000}$	50，200	${ }^{355.500}$	${ }_{1}^{1.41}$	1．95\％	${ }^{1.355^{\circ}}$	30，800 3 3,000	${ }^{322000}$	${ }_{4}^{43.550}$	0.87	0.87	0.87	1．34\％	${ }_{4}^{41,900}$	${ }^{56,600}$	${ }^{1.32}$	${ }^{36,30}$	49.050	
	${ }^{80}$	Us70	Wor tasem waxe Expuy	${ }_{4}^{4.68 .6}$	－		${ }^{42,60}$	${ }_{1.27}^{1.27}$		${ }_{\text {l }}^{1.585}$			${ }_{53,500}$	${ }_{0}^{0.80}$		${ }_{0}^{0.6}$							
	82	us 0_{0}	Wot 40	${ }^{28,40}$	33,100	49，100	${ }^{30,00}$	1.64	$5.04{ }^{\text {c }}$	${ }^{1.73 \%}$	${ }^{29,000}$		47，500	0.97	0.97	0.97	1．73\％	29.000	${ }^{41,70}$			${ }_{40,3}$	
	${ }^{83}$	US 7 frpass	Othe	（29，100	¢ 28.800		${ }^{29.000}$	${ }_{\text {1．5．}}^{1.5}$	4．3．39\％	${ }^{2.0220}$	${ }^{23,000}$	25．100	39，700	0.79	0.87	0.87	${ }^{2} \mathbf{2} 010$	${ }^{37,700}$			${ }_{\substack{32,90 \\ 323}}$	48.800	
	${ }^{85}$	Trando Eprosswar－NC 540	tiom Olo hall spinins ionc 55		$\xrightarrow{19.800}$	34，800	18．500	${ }^{1.88}$	3．45\％	${ }_{2}$	${ }^{18.5000}$	${ }^{19,800}$	${ }_{34,800}$	1.0	1.00	1.00	${ }^{2.488}$	${ }^{\text {23，200 }}$	${ }_{5}^{51,90}$	${ }_{3.56}$			
	${ }^{86}$		trom Oid hall Springs ious 1		－ $\begin{array}{r}32.300 \\ 33.600\end{array}$	${ }^{5959.900}$	${ }^{29.900}$	${ }_{2}^{2.00}$	－${ }_{\text {3，44\％}}^{4.45 \%}$	${ }_{2}^{2.929 \%}$	$\xrightarrow{29,900} 3$	${ }_{\substack{32300 \\ 33.600}}$	${ }^{565,900}$	1.00 1.00	1.00 1.00	1.00 1.00	${ }_{2}^{2,77^{2}}$	34.400 34.700	$\frac{72,400}{71,100}$	－$\frac{3.29 \%}{3.17 \%}$	－34,400 34,700	72,400 7,1100	
range	${ }^{88}$			2.100	2．500	¢ 5.500	${ }_{2}^{2,200}$	${ }^{2.50}$	${ }^{6.60 \%}$			${ }^{800}$		0.32	0.32	0.33	${ }^{3.59}$				${ }^{800}$	${ }^{1.300}$	
rioms	${ }_{80}^{89}$	${ }^{\text {Wablefectech Oivive }}$	Eotusiot	4.10	4．800	1．9．300	3.000 4.300	${ }_{2}^{5,28}$	${ }^{8.655 \%}$	${ }^{6.152 \%}$	${ }_{3,400}$	${ }^{\text {3，800 }}$	${ }_{\text {4，800 }}$	0．79	0.79	0.80	－6．28\％	4.850	9.800	3．15\％	${ }_{\substack{1.400 \\ 3.800}}$	4，8800	${ }^{3.18}$
Orang	91	Chander Papatmens	Wotus 401												1.00								
		SSR 2 Sti 1 （OOd Faison Ra）	Sot Wave Tech bive	${ }_{\text {26，800 }}^{6,700}$		55，000	${ }^{28,100} 7$	${ }_{2}^{1.98}$			3.700		${ }^{15.400}$	${ }_{0}^{0.51}$	${ }_{0}^{0.54}$	$\stackrel{0.91}{0.91}$		c．i．900	${ }^{6.5 .000}$	${ }^{2.342 \%}$	6，100		
									${ }^{4.388 \%}$	${ }^{2.255 \%}$								4，200	6.100	1．64\％	1，900	1，900	
							2，623，000					${ }^{2,426,500}$											2．35\％

				Build 5 －Orange－Purple－Blue－Lilac－Green						DSA 10.11 FINAL		DSA 12 FINAL	
				Raw Model		${ }_{\substack{\text { suide } \\ \text { Moldel } \\ \text { Gorumb } \\ \text { Rate }}}^{\substack{\text { fate }}}$	FINAL		$\begin{array}{\|c\|c\|} \hline \text { Rate } \\ \hline \begin{array}{c} \text { final } \\ \text { Aplied } \\ \text { Anowal } \\ \text { Growter } \\ \text { Rate } \end{array} \\ \hline \end{array}$				
	HNTB ID	Facility	Location	${ }_{\substack{2012 \\ \text { Model }}}^{2}$	（inct		2012	2035		2012	2035	2012	2035
		Easten Waxe Exposssay		18.800	37，900	10\％		42，900	3．65\％	17，000	41.000	18，800	${ }^{41,400}$
Rees	${ }_{3}^{2}$				51.50 66.900	3．07\％	$\xrightarrow{25,700} 3$	${ }_{51500}^{52.500}$	${ }^{3.076 \%}$	${ }_{\substack{19.500 \\ 37.000}}$	${ }_{4}^{44.500} 6$	${ }^{24.400}$	47，900 54.800
	$\stackrel{\|c\|}{1.3}$	Easemem wate Expossway											
	4	Easien Waze Exprossway		7，900	${ }^{73,800}$	2.949	37，900	69.400	2.67%	37，100	7，300	00	${ }^{63,800}$
	5	Eastern waxe Expessway		37，600	76，400					41，000	75，60	35，200	${ }^{69,600}$
	${ }^{6}$			${ }^{\text {47，300 }}$		${ }_{\text {chen }}^{3.158}$	－ $\begin{aligned} & \text { 48，500 } \\ & 88,900\end{aligned}$		2．7．9\％	${ }_{\text {S1，700 }}^{88,900}$	¢ $\begin{aligned} & \text { 94，800 } \\ & \text { 30．600 }\end{aligned}$	45,900 88,90	
${ }_{\text {Reed }}^{\text {Ree }}$	$8{ }^{89}$	140	何										
	${ }_{8}^{86}$	${ }_{1}^{140}$	隹	86,300	126,10	1．66\％	68，800	99，100	1．60\％	68.800	99，100	68，800	${ }^{99,100}$
	$\stackrel{9}{10}$	${ }_{1}^{1200}$	trom	70,800 49.900	（101，40	1．57\％${ }^{1.46 \%}$	${ }_{\substack{59.900 \\ 51.00}}$	${ }^{823.300}$	l．1．40\％	${ }_{\text {59，600 }}^{51,000}$	${ }_{\substack{82,30 \\ 73,60}}$		
	12	1.540	Notus 64 Usism	${ }^{46,600}$	${ }_{94,700}$	${ }^{3.13 \%}$	${ }^{65.800}$	${ }^{103,700}$	${ }_{2}^{2000}$	${ }^{655.800}$	${ }^{103}$	${ }^{65.5800}$	
	13	1.540						${ }^{925200}$	${ }_{\text {L }}^{1.58 \%}$		${ }_{\text {cke }}$	5，	
		N（ Na_{42}	Eortho	16.100 30.400	${ }_{\text {cker }}^{\text {22，700 }}$	$\xrightarrow{\text { l．} 270 \%}$		${ }^{277,500}$	，	${ }^{131,900}$	${ }^{26.8 .500}$	${ }^{18,7.900}$	
	${ }^{15}$	NC 42	Notus 70 Eppass	${ }^{13,100}$	${ }_{\text {18，800 }}$	${ }^{1.588^{\circ}}$	${ }^{10.000}$	17100	2．36\％		17，100		
	${ }^{16}$	${ }^{\text {No } 42}$	Sols	${ }^{18,100}$	30.20	${ }^{2.25 \%}$	13.80	21.20	${ }^{1.88 \%}$	13.800	21.200	${ }^{13.800}$	21.200
Reo	new	NC 50	$\frac{\text { Sor }}{}$ W wate Exply										
	${ }^{\text {new }} 1$	N（ N 50			${ }_{\text {a }}^{16.600}$	${ }^{0.986 \%}$	${ }_{\text {14，000 }}^{17,100}$	${ }^{\text {1，30，800 }}$	${ }^{0.926 \%}$	${ }_{\text {l }}$	${ }^{\frac{1}{20.500}}$	${ }^{14,000} 1$	${ }^{17,300}$
	18	NC 50		20.000	${ }^{\text {361，50 }}$	${ }^{\text {i，}} 1.992$	15.800	24，900	2.00%	15.800	${ }^{24,90}$	15.800	${ }^{24,9}$
		${ }^{\text {NCC } 5658 . p e a s s}$		33，900	49.700	${ }^{1.68 \%}$	31，500	45，400			45.400		
	${ }^{21}$	NC 56 bpass		33，900	${ }_{49,70}$	${ }^{1.689}$	33，800	49，500	${ }^{1.67 \%}$	${ }^{33,880}$	${ }^{49.50}$	${ }^{3} 3.800$	${ }^{4.5900}$
	${ }^{22}{ }^{23}$	Nsosbern Wase Epprossway		${ }^{\frac{36,000}{16500}}$	${ }^{47,900} 4$	${ }_{\text {L }}^{1.47 \%}$	${ }^{33,900}$	${ }^{47,400} 5$	${ }^{1.229} \times$	${ }^{33,500}$	${ }^{47,400} 5$	－	${ }^{4,4,400}$
arase	24	Suutem Wake Eppessuay											
Pupple	24a	Sounter Wake Eppessuay		29，000	67，500	3．74\％	29，00	67，500	3．74\％	29，000	67，500	，000	
	25	Souther Wake Eprossway											
upple		Southen Wate Epprossway	Trom SR 1393 （Hillop Needmoter foas） IOS 401	28，100	6，300	948		68，30					
		Southen Wate Eprossway		20，400 17.7100		${ }_{\text {cose }}^{4.95 \%}$	20，400	50．800 42000	4．05\％	${ }_{\text {20，400 }}^{17.100}$		${ }_{\text {20，400 }}^{17.100}$	
	${ }^{28}$		隹	${ }^{21,200}$	${ }^{429.300}$	3．74\％	${ }^{2,1,200}$	${ }^{42,3,30}$	3．74\％	${ }^{21,200}$	49，300	$\xrightarrow{\text { 2，} 2,200}$	${ }^{49,300}$
${ }_{\text {Reo }}^{\substack{\text { Rea }}}$													
		SR 1006 Ofld Shage	Volsp 1010 （Tent Ton Ral										
Cange	－ 39		Sor										
		SR 1006 Olol Stage											
Llue			Not Tomemen Blacock Rede										
${ }_{\text {Bue }}$ Bue				¢．9．90	${ }^{1,1,900}$	${ }^{3.10 \%}$	－${ }^{\text {4，600 }}$	${ }_{\text {c，}}^{7,800}$	5．06\％	${ }^{\text {4．100 }}$	${ }^{\text {c，}} 1.800$	${ }^{\text {4．000 }}$	
	${ }^{31}$	SR 1007（Poolie feanal		10,200 1.400		5．65\％	9，600	${ }^{33,700}$		${ }^{0.600}$	${ }_{\substack{15.80 \\ 33,70}}$		
	${ }^{32}$			－14.300 13,300	${ }_{35,300}^{40.00}$	${ }_{4}^{4.544^{2}}$	$\xrightarrow{8.300} 7$	$\stackrel{23,300}{20,600}$	${ }^{4.599 \%}$	$\xrightarrow{8,300}$	－23，300 20.600	${ }_{7}^{7,800}$	${ }^{20,60}$
Orange	${ }^{34}$	SR 1010（ Cieveland sthol Poad）	Eoric 50	8.100									
	${ }_{35}^{36}$	SR 1010 TTen－Te R Raod）		年，	${ }^{13,300}$								
			Eotus 401										
$\begin{aligned} & \text { Read } \\ & \text { Reat } \\ & \text { Lilace } \end{aligned}$			Wors 50	11.000	14.400	188	6.600	8.600	1，16\％	6．600	8，600	6.600	8.600
	${ }^{37}$	SR 1152 （Holy Spings Foad）	Not SR 1300 （Kidatare Fam Road Comection）	16,400	40,100								
	1	SR 1152 HHOly Spinios Road）	Nor Southen Wake Eprose	25．500	68.60	5．408\％	${ }_{\text {li，}}$	27，400	${ }_{3.27}^{3.03}$	${ }^{13,800}$	${ }^{27,4500} 4$	${ }^{\frac{1}{2}, 500}$	${ }^{27,400} 4{ }^{\text {a }} 100$
	39	SR 1152（Holly Spings Roas）	${ }_{\text {Soad }}^{\text {Somol }}$	20，800	800								
	40 41 1		Not Trando Eprossuzy（NC560）	¢，9800	${ }_{\text {cke }}^{43.300}$	${ }_{\text {cose }}^{6.678}$	－9，800	32,900 43,000	5.419	${ }_{\text {¢ }}^{\substack{\text { ¢ } \\ 13.80}}$	2900	－ 9.800	
							2，900	5，400					
	43		Wornc 5 S Bpass				${ }_{1,70}$	2，900	${ }^{2.35}$	1.700	2.900	1，700	
Pum	${ }_{4}^{44}$	SR 1300 （kladidie famm foad	Worsh 1152 H（Holy Soines Road）	${ }^{17,900}$	${ }^{43,20}$	${ }^{3.90 \%}$	14，500	23，100	2．05\％	14.50	23，100	14.500	23.100
	${ }_{4}^{46}$		Sol Sol	5.900 5.900		${ }_{4}^{4.97 \%}$							
	${ }^{47}$		Votsf 1010		${ }_{8,80}$								
Puple		Sf 13938 HHillop Neodmore			200		6．500	${ }^{11,400}$	${ }^{2.479 \%}$	6.500	${ }^{11,400}$	6．500	$\frac{11,400}{1400}$
${ }^{\text {Pupple }}$ Puple		Sill			${ }^{16.300}$	2．988\％	－ 4.400	（1，		${ }_{\text {c．}}^{6.40}$			
			5 Sos S 13939 （Hilliop Noedmore Po ）				${ }^{4} 40$	700	2.46	${ }^{40}$	700	400	70
	${ }^{48}$			6,6	${ }^{13,400}$	${ }_{\text {c }}^{4.139}$							
	59 50	SR2233（smmitifed R Poad	Sotus crarct	$\stackrel{\text { 21，400 }}{21}$		${ }^{\text {2，09\％}}$	$\stackrel{\text { F．900 }}{ }$	21，800	${ }_{\text {20，} 207 \%}$	${ }_{\text {T，9，600 }}^{13.0}$	${ }^{\text {21，} 1,80}$	${ }^{7}{ }^{7.600}$	2，1，800
	51 52 5	SR256 Hedeye Raal	No Oid faiso Hd		${ }_{\text {coide }}^{10.90}$	4．69\％	5．100	$\frac{9.900}{11.400}$	${ }_{\text {2，}}^{\substack{\text { 2．939 }}}$	${ }_{\substack{5.100 \\ 3.000}}$	${ }^{\frac{9}{9.900}} 11.400$	${ }_{5}^{5.100}$	
	${ }^{52}$		Sois 5 1 107 P Poole R Ro）	${ }_{5}^{4.200}$	${ }^{17,900}$	${ }_{5}^{5.52 \%}$	900	3，100	5．520	${ }^{900}$	${ }_{3,1}$	${ }^{900}$	
	54	SR 2442 IRock Oiarry Foad）		${ }^{9.7700}$	${ }^{24}$	$4.11{ }^{4}$	4.30	10.800		${ }^{\text {or }}$		${ }^{4,10}$	
	${ }_{5}^{55}$	Ss 3424 Reod Oaury foal		${ }_{\text {12，100 }}$	30，10		4.00	9，4					
	${ }_{5}^{56}$				－	${ }_{2.038}$	${ }^{\frac{5}{3.100}}$	${ }_{6.3}^{9.30}$	$\frac{2.47 \%}{2.10}$	1，700	${ }_{3,30}$	4.000	6．200
Reo			Eot cok Ouary faad Exersion										
	\％ 58				$\frac{12,700}{11400}$	${ }^{6.18 \%}$	${ }^{1.20}$	${ }_{\substack{3.400 \\ 5.000}}$	${ }_{\text {5．4．9\％}}^{6.4}$	2，100	${ }^{\frac{5}{1.140}}$	${ }^{1.400}$	
			Soispr 5111 （Garsstapoperer foo										
	${ }^{60}$	SR 2555 Aluburn Knigndade Reaa）	Expossway	5．800	18,300	5．12\％	3.800	7.900	3．23\％	3.800	7.900	3.800	7.900
	61 62		Wof Easem Wake Epprasway		${ }^{20.40} 0$	${ }_{\text {cose }}^{6.048}$			${ }_{3}^{4.04}$	7.500 3.500	${ }^{12}$	5．500	
	${ }^{63}$	SR 2700 （ Whlio Oax Roas）		${ }^{15,200}$	${ }^{33,40}$	${ }^{3.48 \%}$	${ }_{8,30}$	18.300		${ }_{10,30}$	20.90	${ }^{\text {o．}}$	
	64			14，200	${ }^{30,40}$	${ }^{3.36 \%}$	${ }_{7}^{7,4}$	15.700		${ }^{7,400}$	${ }_{16,10}^{160}$	${ }_{7}^{7,40}$	
	65	Stater	Eot asem Wate Eppossmay	${ }^{14.000}$	\％		7.600	18.70		${ }^{7}, 200$		${ }^{7,500}$	18,40
Lilac		Ss 2224 （Banks foad		$\stackrel{7}{7,500}$	${ }_{\text {13，70 }}$	${ }^{2.65 \%}$							
		SR 2 236（ Foork Sovico Staion Road）	Eor Sh Toobe（Oid Stage Road）	4.900	${ }^{11,30}$	3．70\％							
${ }_{\text {Ble }}^{\text {Bue }}$							1,100 600 6	${ }_{\text {，}}^{1,800}$	${ }^{2,16}$	${ }_{\text {1，100 }}^{600}$	（1．800	${ }_{\substack{1,100 \\ 600}}$	1．800
${ }^{\text {Brane }}$ Ofe			US407	2.800	8.300	$4.84{ }^{2}$	4，400	13,100	${ }^{4.86}$	4.400	${ }^{13,10}$	4.400	${ }^{13,100}$
	66 67	SR 5254 （locid Buaumem Road）	Eoish 2342 （Rock Kalary ha）						5．31\％		5.000	3.400	5.200
	\％68	Us，			70,400 77,400		$\xrightarrow{24,200} \mathbf{2 3 , 7 0 0}$	${ }_{\text {4，}}^{46,600}$	2．8．9\％	${ }_{\text {24，}}^{24,200}$	${ }_{\text {4，}}^{41,600}$	${ }_{\substack{24,200 \\ 23,700}}$	51，70
${ }^{\text {Reos }}$		Us401											
${ }_{\text {Red }}$		US401											
aras	70	Us 401	Not Southen Wake Epprossmay	30，800	50，600	2.188							
	${ }^{71}$	us 401	Notish 1503 OOmy	${ }^{30,80}$									
Orange	${ }^{72}$	US401		$\xrightarrow{26,000} 2$	${ }_{45,500}^{45,0^{4}}$	${ }_{2}^{2.268 \%}$	0，60	37，600	2．65\％	20.60	37.600	${ }^{20.600}$	${ }^{37,600}$
${ }^{\text {Bue }}$		US 401		25．800	${ }^{37,40}$	1．63\％	20，400		99，72\％	20，400		20.40	
${ }_{80}^{810}$		US401	Sot asiee Paxway		${ }^{43,40}$			34，300			${ }^{34,300}$		${ }^{34,300}$
	${ }^{-73}$	Stal	Sersme		51．900	． 1376	34，500	4， 5 5，00	0．75\％	${ }^{34,500}$	${ }^{5}$	${ }^{34,500}$	
	${ }^{74}$	Us 64 Eusinmess	Wot 5 So										
	75	US 64284	Wois 23516 （Hodge Road）	100.200	145.600	${ }_{1}^{1.64 \%}$	67，700			67，700	00．500	67,700	${ }^{105.50}$
	76	US 84264	Hom SR 2516 （Hadge Read） t （－540／Eastern Wake Eppossway	87,600	129.900	1.73%	65.000	99.500	1.87%	65．000	99.50	55．00	99．500
	77	US 64284		86，100	132.500								
	78	US 64724	Eoish reas（Smitheod Road	69,200	112,700		${ }^{74.000}$	91，200	${ }^{1.7776}$	${ }^{74.000}$	91，200	${ }^{740,00}$	${ }^{11,900}$
Reod		Us70											
	79 80 80	Us70	Eot Easeor Wate Eppy	40，400	${ }_{\substack{57,00 \\ 50.90}}$	${ }^{1.55 \%}$	${ }_{\substack{35.000 \\ 31,100}}$	$\frac{49,700}{44,100}$	${ }^{1.55 \%}{ }^{1.53 \%}$	${ }^{335.500}$	${ }_{42,900}^{4200}$	${ }_{\substack{33,800 \\ 33,700}}$	${ }^{\frac{49}{47,1000}}$
	${ }^{81}$	Us70	$\frac{\text { Eor }}{\text { Wed }}$	36.800 $\substack{36,500}$ 2.50	${ }_{44,802}^{480}$	${ }^{1.198 \%}$	${ }_{\text {29，500 }}^{27.500}$	${ }_{4}^{47.300}$	${ }^{2.079 \%}$	${ }^{28,100}$	${ }_{4}^{45,10}$	${ }^{29,500}$	
	${ }_{8}^{83}$	Us708．ppass	Eortho	28.500 32.400	${ }^{47,700}$	${ }^{1.70 \%}$	28，200	46.600	2.21	${ }^{25,400}$	${ }^{45,3}$	${ }^{28,600}$	
	${ }^{84}$	Us70 Pspass	Eolnc 42	${ }^{35,400}$	${ }^{56.900}$	2．08\％	30．800	50，100	2.14%	${ }^{28,200}$		${ }^{31,400}$	
	\％${ }_{8}^{86}$	Triande Eppossuay Nc 540	tion Oid haly Spings inc 55	18,300 28000 2	${ }_{\text {che }}^{57,100}$	－ 5.8 .88	${ }_{35,600}$	$\xrightarrow{52,000}$	${ }^{\frac{3}{3.180}}$	${ }_{35,500}^{32.500}$			
	－87	Tranale Expossmy－－ Cc 540	from US 1 lo old US	27，100	${ }^{73,50}$	4．43\％	34，500	71，800	${ }^{3.24 \%}$	${ }^{34,50}$	${ }^{71,8}$	34，500	71.800
Brome	${ }^{-89}$		Eot Easem Waze Epowy	4.60	14.600	15\％				2.00	4.700	3.600	6．400
Orarage	－90	Watereer Diove	Eter										
Orange	${ }^{92}$	US 401	Sot Wake Teen Dive										
				${ }_{7}, 200$	${ }_{14.50}$	3．09\％	6．500	12.700	2.55%	6.500	12,700	6.500	${ }^{12,700}$
$\begin{aligned} & \text { Read } \begin{array}{l} \text { Liad } \\ \text { Liac } \end{array} \end{aligned}$			NC 50				1，900	1，900	0．0\％	．900	1.900	，900	1.900
									2.418				

Triangle Expressway Southeast Extension Crossing Locations						Model Data					Historical NCDOT AADT				48-Hr Field Data Counts \& Selected Design Data							No-Build Forecast AADT			Build Forecast AADT	
						No-Build			Build																	
	DSA	$\begin{array}{\|l\|} \hline \text { State } \\ \text { Route } \end{array}$ No.	Y Line	Crossing Type	Location	2009	2012	2035	2012	2035	2003	2005	2007	2009	Year	AADT	$\begin{aligned} & \text { DHV } \\ & (\%) \end{aligned}$	$\left\|\begin{array}{c} \mathrm{D} \\ (\%) \end{array}\right\|$	$\begin{gathered} \mathrm{D} \\ \text { Dir } \end{gathered}$	$\begin{gathered} \text { Duals } \\ (\%) \end{gathered}$	$\left\|\begin{array}{c} \text { TTST } \\ (\%) \end{array}\right\|$	2010	2012	2035	2012	2035
	〒	-	Old NC 55	UNDERPASS	NC $55-\mathrm{N}$ of Felder Ave	20300	25600	43300	21900	33800	11,000	14,000	17,000	15,000	-	-	10\%	65\%	SB	4\%	1\%	17,300	20,000	33,900	17,100	26,500
		1301	Sunset Lake Rd	OVERPASS	Sunset Lake Rd - W of Family Circle Rd	8700	13200	23900	8500	17600	-	-	-	5,400	-	-	10\%	65\%	SB	2\%	1\%	10,200	13,200	23,900	8,500	17,500
		1301	Sunset Lake Rd	OVERPASS	Sunset Lake Rd - E of Stephenson Rd (SR 1302)	8400	12500	28000	8300	19500	5,800	6,900	8,900	6,600	-	-	10\%	65\%	SB	2\%	1\%	7,900	10,200	22,900	6,800	15,900
		1389	Pierce-Olive Rd	OVERPASS	Pierce-Olive Rd - N of Optimist Farm Rd (SR 1390)	3200	4300	13400	4300	13400	1,500	2,000	2,700	2,900	-	-	10\%	60\%	SB	2\%	1\%	3,300	3,600	9,400	3,600	9,400
	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{\omega}} \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$	1387	West Lake Rd	OVERPASS	West Lake Rd - N of Langston Cir (SR 4758)	6100	7200	15000	7200	15000	4,900	6,800	7,600	7,600	2011	7,300	10\%	55\%	SB	5\%	1\%	7,300	8,000	16,800	8,000	16,800
		1405	Rhodes Rd	OVERPASS	Rhodes Rd - N of Deerborn Dr (SR 1568)	900	1100	2200	1200	2100	-	-	-	-	2011	1,000	11\%	60\%	SB	7\%	1\%	1,000	1,100	2,200	1,200	2,200
		1578	Deer Meadow Rd	OVERPASS	Southern Wake Freeway	2000	2100	2600	2000	2600						-	10\%	60\%	SB	2\%	1\%	1100^{*}	1,100	1,400	1,100	1,400
		1404	Johnson Pond Rd	OVERPASS	S of Ten-Ten Rd (SR 1010)	7000	8400	12900	6300	9100	2,600	2,300	2,400	2,600		-	10\%	65\%	SB	2\%	1\%	2,500	2,800	4,300	2,100	3,100
		1371	Lake Wheeler Rd	UNDERPASS	N of Optimist Farm Rd (SR 1390)	5200	6700	12100	5300	9000	5,300	6,200	6,600	6,500	-	-	10\%	65\%	SB	2\%	1\%	7,000	8,200	14,800	6,500	11,000
	$\stackrel{\sim}{\infty}$	1390	Optimist Farm Rd	OVERPASS	E of Pierce Olive Rd (SR 1389)	5500	8500	14900	5000	10200	3,400	6,100	6,400	6,100	-	-	10\%	65\%	EB	2\%	1\%	7,200	9,400	16,500	5,500	11,300
		1404	Johnson Pond Rd	OVERPASS	S of Hilltop Needmore Rd (SR 1404)	2900	3100	15300	1700	9200	2,800	3,200	3,600	3,500	-	-	10\%	65\%	SB	2\%	1\%	3,800	3,900	19,200	2,100	11,500
		2751	Hilltop Rd	OVERPASS	N of NC 42	7900	9900	17300	6100	10500	3,400	3,700	4,200	3,900			10\%	65\%	SB	2\%	1\%	4,200	4,800	8,400	3,000	5,100
		2750	Norman Blalock Rd	OVERPASS	W of Bridgemont Ln (SR 5309)										2013	1,200	10\%	65\%	WB	3\%	2\%	1,100	1,100	1,800	1,100	1,800
		2739	Barber Bridge Rd	OVERPASS	N of NC 42						650	720	700	690			10%	65\%	SB	2\%	1\%	700	800	1,300	800	1,300
		2736	Rock Service Station Rd	OVERPASS	N of NC 42	2000	2700	8400	1800	5800	3,100	2,800	2,800	2,800	-	-	10\%	65\%	SB	3\%	1\%	2,700	3,300	10,300	2,200	7,100
		2738	Mal Weathers Rd	OVERPASS	S of Southern Meadows Dr (SR 5902)	-	-	-	-	-	560	640	710	790	-	-	10\%	65\%	SB	2\%	1\%	800	900	1,500	900	1,500
		2727	Sauls Rd	OVERPASS	S of Pagan Rd (SR 2737)	1900	2200	4500	1700	4800	1,700	1,600	1,700	1,700			10\%	65\%	SB	5\%	1\%	1,700	1,900	3,900	1,500	4,200
	'	1010	Ten-Ten Rd	UNDERPASS	W of US 401	17600	20600	27100	13600	19400	-	15,000	15,000	15,000	2012	15,600	9\%	55\%	EB	3\%	2\%	15,000	15,600	20,500	10,300	14,700
		2711	Buffaloe Rd	OVERPASS	S of Vandora Springs Rd (SR 2713)	3200	3400	7700	3300	6100	3,200	2,100	3,100	3,300	-	.	11\%	65\%	EB	3\%	1\%	3,200	3,300	7,500	3,200	5,900
		2712	Thompson Rd	OVERPASS	S of Timber Dr (SR 2812)	1300	1300	1700	1300	1700							10\%	65\%	SB	2\%	1\%	1,300	1,300	1,700	1,300	1,700
		2710	Aversboro Rd	OVERPASS	S of Timber Dr (SR 2812)	6600	7800	12700	8000	13500	5,900	6,200	6,700	6,900	2009	8,600	10\%	60\%	SB	3\%	1\%	7,300	8,100	13,200	8,300	14,000
		2707	Bryan Rd	OVERPASS	S of Tallowwood Dr / S of Southern Wake Freeway	-	-	-	-	-	-	-	-	940		-	10\%	65\%	SB	2\%	1\%	1,000	1,100	1,800	1,100	1,800
		2547	White Oak Rd	OVERPASS	S of Bryan Rd (SR 2707)	10400	12100	27700	11300	25800				-		-	12\%	65\%	SB	2\%	1\%	10,400	12,100	27,700	11,300	25,800
	N	2722	Old McCullers Rd	UNDERPASS	Southern Wake Freeway	1200	1600	4400	160	4400							10\%	65\%	SB	2\%	1\%	1100**	1,200	1,900	1,200	1,900
		2723	Fanny Brown Rd	OVERPASS	S of Ten-Ten Rd (SR 1010)	8000	8400	12800	6600	12900	4,100	4,100	4,900	4,400	-	-	10\%	65\%	SB	2\%	1\%	4,700	4,900	7,500	3,900	7,500
		2725	Holland Church Rd	OVERPASS	S of Ten-Ten Rd (SR 1010)	1800	2000	3800	2000	3800	-	-	-	-	2009	3,300	10\%	70\%	SB	6\%	1\%	3,300	3,500	6,500	3,500	6,500
		2727	Sauls Rd	OVERPASS	S of Contender Dr (SR 5396)	4400	4800	9000	5000	12100					2011	3,400	10\%	65\%	SB	5\%	1\%	3,400	3,600	6,800	3,800	9,200
	$\stackrel{\substack{\text { ¢ }}}{\stackrel{\sim}{\omega}}$	2731	Jordan Rd	OVERPASS	S of Ten-Ten Rd (SR 1010)	8000	8400	12800	6600	12900	2,100	2,100	2,300	1,900		-	10\%	65\%	SB	2\%	1\%	2,000	2,200	4,800	2,200	4,800
	$\stackrel{\stackrel{\rightharpoonup}{\dot{\omega}}}{ }$	2703	New Bethel Church Rd	OVERPASS	E of l-40	4200	6100	11100	3200	7100	-	-	-	300		-	10\%	65\%	EB	2\%	1\%	400	500	900	300	600
등.	¢	-	Waterfield Dr	UNDERPASS	$\begin{aligned} & \text { E of S Greenfield Parkway } \\ & \text { (SR 4142) } \end{aligned}$	2800	3300	6500	3500	6500	-	-	-	-		-	10\%	65\%	EB	3\%	1\%	3,000	3,300	6,500	3,500	6,50
		2555	Raynor Rd	UNDERPASS	S of US 70 Business	10000	13600	23200	12200	21500	5,500	5,300	5,800	5,700			12\%	65\%	SB	2\%	1\%	5,900	7,200	12,300	6,500	11,400
		1004	E. Garner Rd	UNDERPASS	E of Auburn-Knightdale Rd (SR 2555)	3000	4100	23800	3500	21700	5,300	5,000	4,600	3,500	2009	3,400	16\%	75\%	EB	2\%	1\%	3,100	3,700	21,800	3,200	19,900
		2558	Guy Rd	OVERPASS	S of US 70 Business	8900	11100	21900	12100	24200	7,300	7,100	7,800	6,600	2010	7,500	8\%	55\%	SB	2\%	1\%	7,500	8,700	17,200	9,500	19,000
		1004	E. Garner Rd	UNDERPASS	$\begin{array}{\|l} \hline \text { E of Rock Quarry Rd } \\ \text { (SR 2542) } \\ \hline \end{array}$	6400	8100	26200	8100	27600	9,100	7,600	7,700	5,900	2012	6,000	15\%	75\%	EB	3\%	1\%	6,400	6,000	19,400	6,000	20,400
	$\stackrel{\text { 「 }}{\dagger}$	2552	Battle Bridge Rd	OVERPASS	E of Auburn-Knightdale Rd (SR 2555)	1500	2600	6700	2400	8300	540	980	1,300	1,300	2011	1,100	15\%	55\%	EB	12\%	4\%	1,100	1,500	3,900	1,400	4,800

* 2010 No-Build AADT for Deer Meadow Rd determined using ITE Trip Generation rates. The 2010 No-Build AADT forecast was then grown at model rates.
** Old McCullers Rd AADT (near the underpass location) calculated as 25% of Old McCullers Rd forecasted AADT at intersection with US 401 .

[^0]: "-" - Data not available.

[^1]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^2]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^3]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^4]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^5]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^6]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^7]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^8]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^9]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^10]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^11]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^12]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^13]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^14]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^15]: Compl ete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^16]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^17]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^18]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^19]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina
 NCDOT STIP Project Number R-2721, R-2828 \& R- 2829

[^20]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina
 NCDOT STI P Project Number R-2721, R-2828 \& R- 2829

[^21]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^22]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^23]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^24]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^25]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^26]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^27]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^28]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^29]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^30]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^31]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^32]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^33]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^34]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^35]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^36]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^37]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^38]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^39]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^40]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^41]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^42]: Compl ete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^43]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^44]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^45]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^46]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^47]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^48]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^49]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^50]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^51]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^52]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^53]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^54]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^55]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^56]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^57]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^58]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^59]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina
 NCDOT STI P Project Number R-2721, R-2828 \& R-2829

[^60]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

[^61]: Complete 540 - Triangle Expressway Southeast Extension - Wake and Johnston Counties, North Carolina NCDOT STIP Project Number R-2721, R-2828 \& R-2829

