

North Carolina Department of Transportation

Century Center Complex, Building B 1020 Birch Ridge Drive Raleigh, North Carolina 27610

PRELIMINARY SITE ASSESSMENT NC 211 IN WEST END PARCEL 13 5349 NC HIGHWAY 211, MOORE COUNTY, WEST END, NORTH CAROLINA

WBS #: 50218.1.1 TIP#: R-5726

Prepared by

Geosyntec Consultants of NC, PC 2501 Blue Ridge Road, Suite 430 Raleigh, North Carolina 27607

Project Number GN7039

October 2019

Date:

October 21, 2019

WBS Number:

50218.1.1

TIP Number:

R-5726

County:

Moore County

Description:

Preliminary Site Assessment

Address:

5349 NC 211, West End, North Carolina 27376


Parcel ID:

Parcel 13 (McNeill Oil Co., Inc.)

Author:

R. Matthew Jenny, P.E.

I, <u>R. Matthew Jenny</u>, a Professional Engineer for <u>Geosyntec Consultants of NC, PC</u> do certify that the information in this report is correct and accurate to the best of my knowledge.

Not considered final until all signatures are completed

<u>Geosyntec Consultants of NC, PC</u> is licensed to practice engineering in North Carolina. The certification number (Firm's License Number) is <u>C-3500</u>.

<u>Geosyntec Consultants of NC, PC</u> is licensed to practice geology in North Carolina. The certification number (Firm's License Number) is C-295.

TABLE OF CONTENTS

1.	INT	FRODUCTION	1	
	1.1	Description	1	
	1.2	Site Background	1	
	1.3	Scope of Work	2	
2.	HIS'	STORY	3	
	2.1	Historical Aerial Photographs	3	
	2.2			
3.	METHODS			
	3.1	Geophysical Investigation	5	
	3.2	Sub-Surface Soil Investigation	5	
4.	RES	SULTS	7	
	4.1			
	4.2	Geophysical Investigation Results	7	
	4.3		7	
		4.3.1 Field Sampling Observations and PID Results		
		4.3.2 Soil Sampling Analytical Results	8	
5.	SUN	MMARY	9	

LIST OF TABLES

Table 1: Soil Boring Coordinates

Table 2: Soil Analytical Results – TPH by UVF

Table 3: Soil Analtyical Results – VOCs

LIST OF FIGURES

Figure 1: Site Location Figure 2: Site Layout

Figure 3: Soil Boring Locations (Roadway Design Base Map)

LIST OF APPENDICES

Appendix A: Geophysical Investigation Report

Appendix B: Photographic Log
Appendix C: Soil Boring Logs
Appendix D: Red Lab UVF Report

Appendix E: Prism Laboratories Analytical Report

1. INTRODUCTION

1.1 <u>Description</u>

Geosyntec Consultants of NC, PC (Geosyntec) presents this technical report (Report) to the North Carolina Department of Transportation (NCDOT) for the Preliminary Site Assessment (PSA) of 5349 NC 211 in West End, North Carolina (the Site). The Site is associated with NCDOT TIP number R-5726, Parcel 13, and owned by McNeill Oil Co., Inc. A Site location map is presented in **Figure 1**.

Geosyntec understands NCDOT would like to acquire right-of-way (ROW) and Public Utility Easements (PUEs) for road improvements along NC 211 in West End, North Carolina. The principal purpose of this PSA is to assess the possible presence of underground storage tanks (USTs) and/or above-ground storage tanks (ASTs), determine the likelihood of environmental impacts (i.e., soil and/or groundwater contamination), and make recommendations for regulatory compliance within the project study area.

This report discusses the Site history, investigative methodology, observations, sampling results, conclusions, and recommendations.

1.2 Site Background

NCDOT Parcel number 13 (Moore County Parcel number 00022929 [McNeill Oil Co., Inc.]) is located on NC HWY 211. **Figure 2** shows the general Site layout, including the locations of the soil borings advanced to investigate the subsurface of the Site. The Site is currently an auto garage and used tire shop with a physical address of 5349 NC 211. The Site is associated with UST Incident 11631, FA-633, which was closed in November 1995.

The property is approximately 0.25 acres and is associated with five historical USTs (three 4,000-gallon gasoline USTs; a 4,000-gallon diesel UST; and a 550-gallon kerosene UST), which were removed in October 1993. Three monitoring wells are associated with the historical UST incident; one of which is located beyond the Site and PUE boundary (**Figure 2**). The three monitoring wells extend approximately 60 feet below ground surface (ft bgs) and have not been abandoned. The monitoring well IDs are unknown; therefore, **Figure 2** provides arbitrary well IDs for simplicity.

The Site is bounded to the west by NC 211; to the north by Mode Rd; to the east and south by commercial and residential properties.

1.3 Scope of Work

The scope of work consisted of a historical Site desktop review, geophysical survey, and sub-surface soil investigation. The geophysical survey was performed to locate potential metallic USTs, UST-associated product lines, non-UST metallic anomalies, and private underground utility lines within the immediate vicinity of the proposed soil boring locations. Following the geophysical survey, soil borings were advanced and soil samples were collected from each location to determine if, and to what extent, contaminated soils are present within the study area.

2. HISTORY

Geosyntec reviewed publicly accessible online environmental databases (i.e., the North Carolina Department of Environmental Quality [NCDEQ] Laserfiche database, the NCDEQ Division of Waste Management Site Locator Tool, and the NCDEQ UST Section database) to research the Site history.

2.1 Historical Aerial Photographs

The following reviews the findings from the historical aerial photographs, as provided by Google Earth® imagery:

- The earliest aerial photographs date back to 1993, in which there appears to be one above-grade structure on the property. It is assumed to be the same building currently on the parcel.
- No significant deviations to the site were identified between 1993 and 2018.
- The Site surroundings (residential and commercial land) appear generally consistent from 1993 to 2018, except for the building to the north of the Site, which was demolished between 2009 and 2013.

2.2 **Subject Site Findings**

The McNeill Oil Co., Inc property is associated with UST Incident 11631, FA-633. A No Further Action (NFA) was filed by the NCDEQ in November 1995. Minimal information for the UST incident was found.

The property located to the southwest of the Site (5364 NC-211) is the former Stanley Furniture facility and is an abandoned wood-furniture manufacturing facility. Greenhorn & O'Mara, Inc. (G&O) performed a Phase I Environmental Site Assessment (ESA) at the former Stanley Furniture facility in 1990, which provided a fundamental history of the property. Geosyntec also performed a PSA at the former Stanley Furniture facility in February 2018 on behalf of the NCDOT. Pertinent details of G&O's 1990 Phase I ESA and Geosyntec's 2018 PSA are presented below.

The off-site property was in operation between 1924 until the early 2000's. The plant historically used stains, lacquer, and lacquer thinner to finish furniture product and

reportedly stored virgin solvents and fuel in USTs on the property. The former Stanley Furniture facility also owned land to the south of the Subject Site (i.e., south of McNeill Oil), which housed evaporation lagoons to treat wastewater from the furniture spray booths. Tetrachloroethylene (PCE), benzene, and methylene chloride have been detected in groundwater at concentrations in excess of their respective North Carolina Administrative Code (NCAC) Title 15A 2L Groundwater Standards (2L Standards) associated with former Stanley Furniture plant. In addition to the chlorinated solvent impacts to groundwater, UST incident 29880 is associated with the former Stanley Furniture property, following the identification of soil contamination during a UST closure event. An NFA was filed in 2002 for the UST incident associated with the former Stanley Furniture.

Based upon the understanding of the Subject Site and adjacent off-Site environmental history, Geosyntec conducted a Site investigation inclusive of a geophysical survey and intrusive activities to screen soil and evaluate if residual contamination exists within the Site study area.

3. METHODS

3.1 Geophysical Investigation

The geophysical investigation was performed at the Site by Pyramid Environmental and Engineering P.C. (Pyramid) from July 29 to July 31, 2019 to locate and mark buried USTs, buried metallic drums, and/or buried utility lines within the accessible portions of the ROW/PUE extent. Generally, the tasks consisted of an electromagnetic inductionmetal (EM) detection followed by ground penetrating radar (GPR) surveys.

The EM data was digitally collected at approximately 1-foot intervals along survey lines spaced approximately five feet apart. The EM unit can detect a metal drum down to a depth of approximately eight (8) to ten (10) feet. GPR scanning was conducted across selected EM metal detection anomalies, around the proposed boring locations, and across the entire ROW/PUE area along with a DitchWitch utility locator for buried utility line clearance. Additional details of the geophysical investigation methodology are provided in **Appendix A** of the report.

3.2 Sub-Surface Soil Investigation

The sub-surface investigation was conducted on August 12-15, 2019 using a direct push technology (DPT) drill rig. SAEDACCO provided the drilling services. North Carolina 811 was notified to mark utility lines within the existing ROW prior to drilling. A hand auger was used for the top three (3) to five (5) feet of each boring as an additional safety precaution.

Three (3) soil borings were completed during this investigation, extending 10 ft bgs. Soil sampling locations were selected in areas likely to be encountered during roadway construction. Specific priority was placed at locations proximal to historical UST locations and existing groundwater monitoring wells. The soil lithology was recorded, and the soil was screened using a photo-ionization detector (PID) with a 10.6 electron-Volt lamp at approximately 6-inch intervals. Soil samples were collected from each boring at an elevation corresponding to the highest PID reading. In instances where PID readings were null, field personnel used professional judgement (e.g., odors, staining, historical Site-use information) to determine the appropriate sampling depth.

Upon DPT completion, the soil cuttings were dispersed over the Site's natural areas and/or backfilled within the boring. Boring surface completions matched pre-existing

conditions to the extent practical. Boring locations were surveyed with a global position system (GPS) unit. DPT rods were decontaminated with a Liquinox[®] cleaning solution between borings. Free product was not encountered during soil sampling, nor was other investigative derived waste (IDW) accumulated. As such, IDW drums were unnecessary.

At least three unabandoned monitoring wells were identified within the subject Site property. No historical environmental records were identified indicating the number of monitoring wells associated with the Site.

Samples were sent off-site to Red Lab, LLC (Red Lab) and Prism Laboratories, Inc. (Prism). The samples sent to Red Lab were analyzed for Total Petroleum Hydrocarbon (TPH), gasoline-range organics (GRO), and diesel-range organics (DRO) by Ultra-Violet Fluorescence (UVF). The soil samples submitted to Prism were analyzed for volatile organic compounds (VOCs) by USEPA Method 8260B, reporting only benzene, toluene, ethylbenzene, and xylenes (BTEX). These analytical approaches are consistent with the UST Section Guidance. Samples were sent on ice under chain of custody procedures to the applicable laboratory.

4. RESULTS

4.1 Site Observations

On July 29, 2019 Geosyntec performed an initial Site walk with Pyramid prior to conducting work. The findings from the initial Site visit are briefly presented in this section and will be discussed throughout the remainder of this report. **Appendix B** provides a photographic log of observations.

4.2 Geophysical Investigation Results

The geophysical survey was performed to locate and mark buried USTs, buried metallic drums, and/or buried utility lines within the ROW/PUE extent using both EM and GPR approaches.

Pyramid identified six (6) EM anomalies, which were attributed to visible features at the ground surface. GPR was performed across areas suspected to contain reinforced concrete and around areas of metallic interference associated with vehicles, trailers and utilities. The geophysics results do not indicate evidence of metallic USTs at the Site. The geophysical report is provided in **Appendix A**.

4.3 Sub-Surface Investigation Results

4.3.1 Field Sampling Observations and PID Results

Following the geophysical survey, the sub-surface investigation was performed to determine if, and to what extent, contaminated soils are present within the study area. PID soil screening values were null throughout the entirety of each soil boring. Soil sampling locations are shown on **Figure 2** and GPS coordinates are recorded on **Table 1**. The boring logs are provided in **Appendix C**.

Three (3) soil borings were completed during this investigation, extending 10 ft bgs. The borings are located along the northern and western portion of the properties and within the ROW/PUE extent. The soil lithology generally consisted of top soil in the first three (3) ft bgs followed by sandy clay with some gravel. Groundwater was not encountered.

4.3.2 Soil Sampling Analytical Results

Three (3) soil samples were collected as part of the intrusive investigation and analyzed for TPH by UVF and VOCs by EPA Method 8260B. The TPH analytical data was screened against the TPH DRO and TPH GRO values established in the UST Section Guidance. The benzo(a)pyrene and BTEX analytical data were compared to the NCDEQ UST Section Maximum Soil Contaminant Concentrations (MSCCs).

The UVF fingerprinting data do not indicate soil screening level exceedances for the constituents analyzed. DRO was detected in the SB13-01 soil sample. No results exceeded the screening values. **Table 2** shows the TPH analytical results.

VOC analytical data was screened against the NCDEQ UST Section MSCCs. No detections were reported. The VOC analytical results are shown in **Table 3.**

The UVF analytical report, including the fingerprint matching data, is provided in **Appendix D**; the Prism analytical report is provided in **Appendix E** 1 . **Figure 3** displays the soil boring locations using a preliminary roadway design drawing base map.

¹The Prism Laboratory report includes analytical results for samples collected from other parcels associated with NCDOT project R-5726.

5. SUMMARY

From August 12-15, 2019 Geosyntec completed an environmental PSA to determine the likelihood of contamination within the proposed acquisition area on NCDOT Parcel 13, located at 5349 NC 211, West End, North Carolina. The property is owned by McNeil Oil Co., Inc. The following summarizes the findings of this PSA.

The Site is associated with UST Incident 11631 (FA-633), which was closed in November 1995. No other environmental records were identified for the subject property. The former Stanley Furniture facility, located to the west and south of the Subject Site, is associated with a UST incident and chlorinated solvent impacts to groundwater in the immediate vicinity.

As part of this scope of work, a geophysical survey and intrusive soil investigation were performed. No subsurface anomalies, including USTs, were identified within the study area as part of this scope of work. Three (3) soil borings were advanced within the existing ROW boundary to investigate the potential environmental impacts on the property. The work performed herein did not identify petroleum impacts in shallow soils within the Site study area. Geosyntec anticipates a low probability of encountering soil contamination during roadway construction, based upon the preliminary findings identified herein. Geosyntec recommends abandoning the two on-Site monitoring wells located within the proposed PUE extent, in accordance with the North Carolina Administrative Code (NCAC) 2C Well Construction Standards to facilitate the proposed roadway construction.

TABLES

Table 1 Soil Boring Coordinates 5349 NC 211, West End, North Carolina 27376

NCDOT Parcel 13

TIP: R-5726 WBS: 50218.1.1

Soil Boring ID	Longitude	Latitude
SB13-01-7.5-8.0	-79.566828	35.240007
SB13-02-7.0-7.5	-79.566969	35.239940
SB13-03-6.5-7.0	-79.567088	35.239885

Monitoring Well ID	Longitude	Latitude
MW-1	-79.566877	35.239995
MW-2	-79.567001	35.239946
MW-3	-79.566775	35.239701

Note:

- 1) Coordinate datum reference: WGS 1984.
- 2) Monitoring well tags were not identified; IDs are arbitrary.

Table 2

Soil Analytical Results - TPH by UVF

5349 NC 211, West End, North Carolina 27376

NCDOT Parcel 13 TIP: R-5726

WBS: 50218.1.1

Analyte			BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	Benzo[a]pyrene
		Units				mg/kg			
	UST ?	ГРН Guidance		50	100				
Soil-to-Water MSCCs									0.096
Residential Soil MSCCs									0.088
Commercial / Industrial MSCCs									0.78
Sample ID	Sample Depth (ft bgs)	Sample Date							
SB13-01-7.5-8.0	7.5-8.0	8/12/2019	< 0.66	< 0.66	0.66	0.66	0.47	< 0.21	< 0.027
SB13-02-7.0-7.5	7.0-7.5	8/12/2019	< 0.41	< 0.41	< 0.41	< 0.41	< 0.08	< 0.13	< 0.016
SB13-03-6.5-7.0	6.5-7.0	8/12/2019	< 0.32	< 0.32	< 0.32	< 0.32	< 0.06	< 0.1	< 0.013

Notes:

- (1) mg/kg indicates milligrams per kilogram.
- (2) NCDEQ UST Guidance references the 26 July 2016 Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH).
- (3) MSCC indicates North Carolina Department of Environmental Quality (NCDEQ) Underground Storage Tank (UST) Section Maximum Contaminant Concentration Levels, updated November 2016.
- (4) < indicates analyte was not detected above the laboratory method detection limit (MDL).
- (5) Detections are identified in bold.
- (6) --- indicates screening criteria not established.
- (7) UVF indicates ultraviolet fluorescence.
- (8) TPH indicates total petroleum hydrocarbons.
- (9) GRO indicates gasoline range organics.
- (10) DRO indicates diesel range organics.
- (11) PAH indicates polycyclic aromatic hydrocarbon.
- (12) BTEX indicates benzene, toluene, ethylbenzene, and xylenes
- (13) ft. bgs indicates feet below ground surface.

Table 3 Soil Sampling Analytical Summary - VOCs

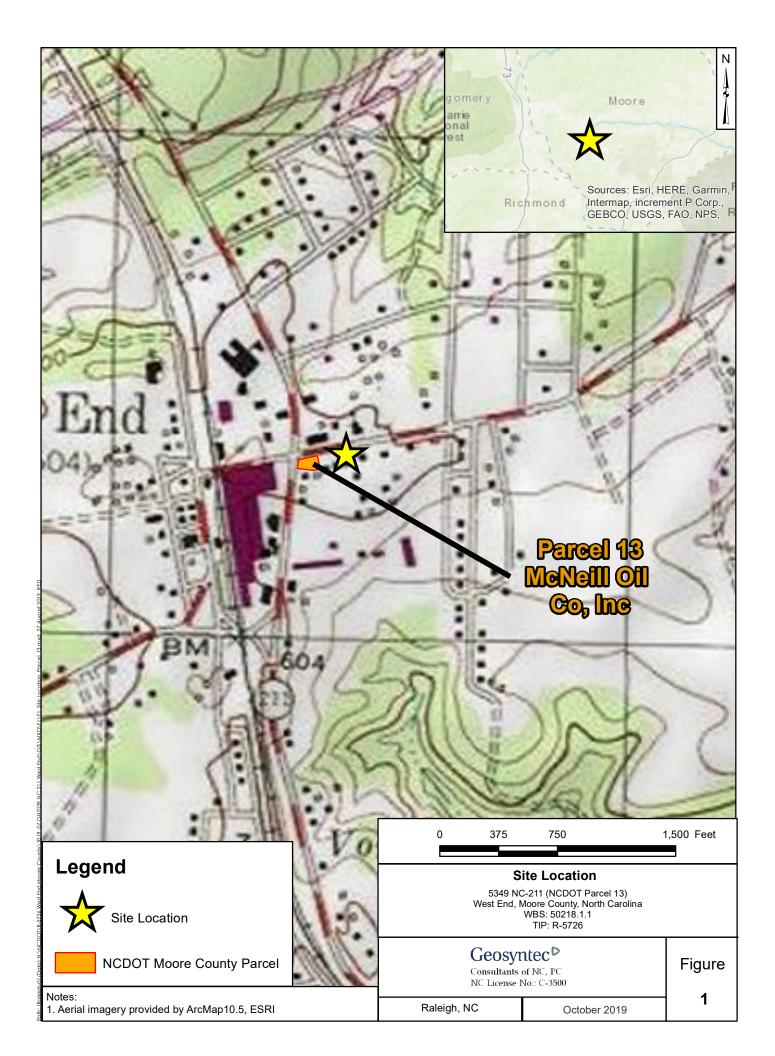
5349 NC 211, West End, North Carolina 27376

NCDOT Parcel 13 TIP: R-5726

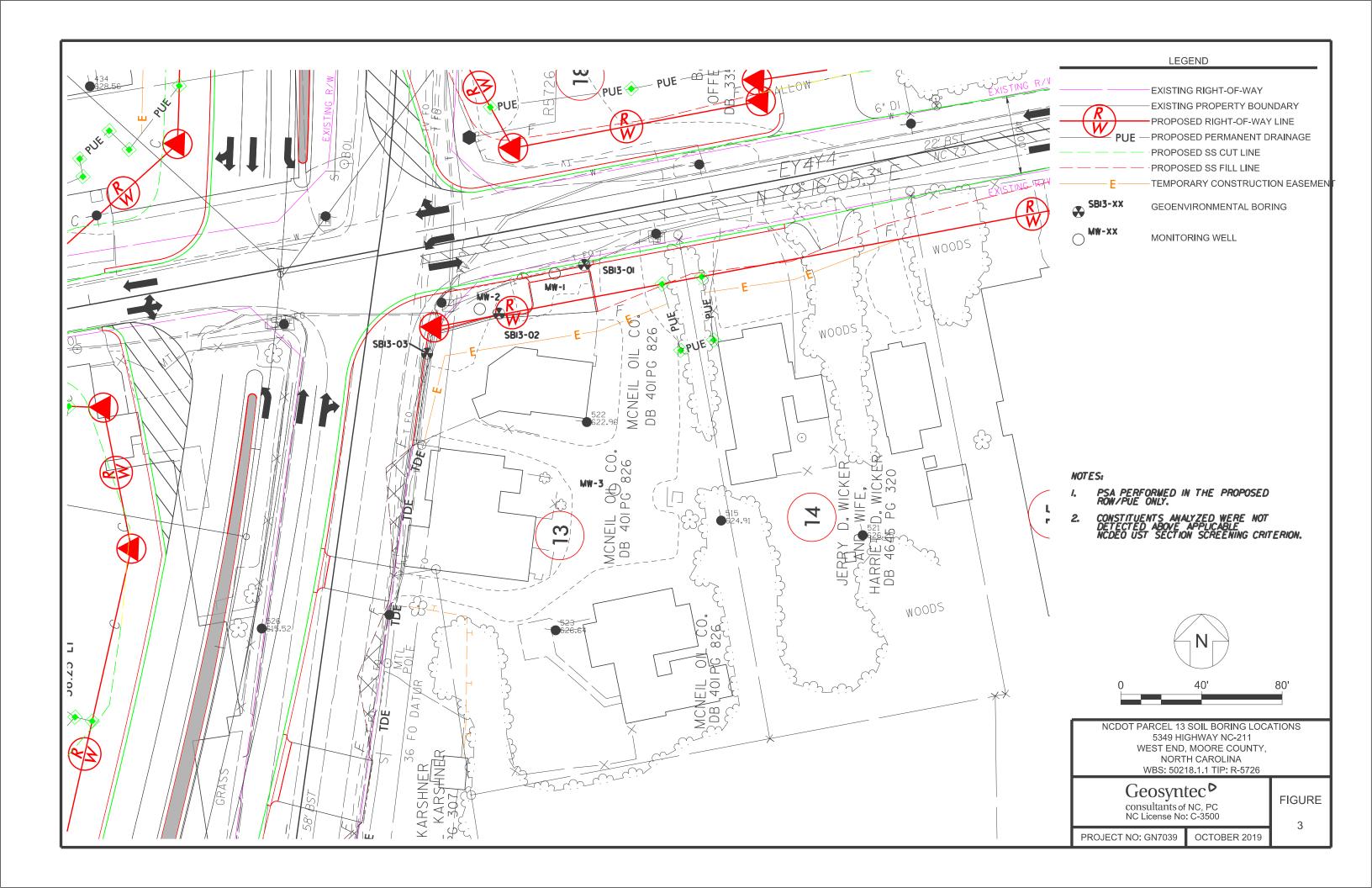
WBS: 50218.1.1

		NCDEQ NCDEQ Soil-	Sample ID	SB13-01	SB13-02	SB13-03	
	NCDEQ	Industrial/		Sample Date	8/12/2019	8/12/2019	8/12/2019
Analyte	Residential Soil Cleanup Levels	Commercial Soil Maximum S Cleanup Levels Contaminant	Maximum	Sample Depth (ft. bgs)	7.5-8.0	7.0-7.5	6.5-7.0
	MSCC		Sample Type	Grab			
	Misee	MSCC	MSCC	Units		mg/kg	
Volatile Organic Comp	Volatile Organic Compounds (VOCs) by EPA Method 8260B						
Benzene	18	164	0.0056	mg/kg	< 0.0071	< 0.0069	< 0.0051
Ethylbenzene	1,560	40,000	4.9	mg/kg	< 0.0071	< 0.0069	< 0.0051
m,p-Xylenes	3,129	81,760	4.6	mg/kg	< 0.014	< 0.014	< 0.010
o-Xylene	3,129	81,760	4.6	mg/kg	< 0.0071	< 0.0069	< 0.0051
Toluene	1,200	32,000	4.3	mg/kg	< 0.0071	< 0.0069	< 0.0051
Xylene (total)	3,129	81,760	4.6	mg/kg	< 0.021	< 0.021	< 0.015

Notes:


- (1) North Carolina Department of Environmental Quality (NCDEQ) Underground Storage Tank (UST) Section Maximum Soil Contaminant Concentrations (MSCCs) as indicated in the NCDEQ UST Section *Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases*, amended April 2012.
- (2) VOC indicates volatile organic compound.
- (3) mg/kg indicates milligrams per kilogram
- (4) Concentrations exceeding MSCCs are highlighted as shown:

Residential	Industrial	Soil-to-Water
-------------	------------	---------------


- (5) ft bgs indicated feet below ground surface
- (6) < indicates analyte was not detected above the laboratory reporting limit (RL).
- (7) Only benzene, toluene, ethylbenzene, and xylenes (BTEX) were reported.

FIGURES

APPENDIX A Geophysical Investigation Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-233)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 13 NCDOT PROJECT R-5726 (50218.1.1)

5349 NC-211, WEST END, NC August 23, 2019

Report prepared for: Mr. Matt Jenny, P.E.

> Geosyntec Consultants of NC, PC 2501 Blue Ridge Road, Suite 430

Raleigh, NC 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 13 - 5349 NC-211

West End, Moore County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	2
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 13 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 13 EM61 Results Contour Map
- Figure 3 Parcel 13 GPR Transect Location and Select Images
- Figure 4 Overlay of Metal Detection Results onto NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Geosyntec Consultants of NC, PC at Parcel 13, located approximately at 5349 NC-211 in West End, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-5726). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July29-31, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of six EM anomalies were identified. All of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across areas suspected to contain reinforced concrete and around areas of metallic interference associated with vehicles, trailers and utilities. No evidence of any significant buried structures was observed. Collectively, the geophysical data did not record any evidence of metallic USTs at Parcel 13.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Geosyntec Consultants of NC, PC at Parcel 13, located approximately at 5349 NC-211 in West End, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-5726). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 29-31, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a commercial building surrounded by asphalt and concrete surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on July 31, 2019, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 controller coupled to a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects							
High Confidence Intermediate Confidence Low Confidence No Confidence							
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch. etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.				

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Reinforced Concrete	✓
2	Utilities/Surface Metal	
3	Utility	✓
4	Vehicles	✓
5	Trailers	✓
6	Reinforced Concrete/Vehicles	√

All of the EM anomalies were directly attributed to visible cultural features at the ground surface, including reinforced concrete, utilities, surface metal, vehicles, and trailers. GPR was performed across areas suspected to contain reinforced concrete to verify that no structures such as USTs were present beneath the reinforcement. GPR was also performed around vehicles, trailers and utilities to verify that the metallic interference did not obscure the presence of USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the GPR images are included in **Appendix A**. A total of 26 formal GPR transects were performed. GPR verified the presence of metal reinforcement within the concrete on the west side of the property. No evidence of larger structures such as USTs was observed beneath the reinforcement or around the areas of metallic interference associated with the vehicles, trailers and utilities. **Figure 4** provides an overlay of the metal detection results onto the NCDOT Engineering plans.

Collectively, the geophysical data <u>did not record any evidence of metallic USTs at Parcel</u> 13.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 13 in West End, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- All of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across areas suspected to contain reinforced concrete and around areas of metallic interference associated with vehicles, trailers and utilities.
 No evidence of any significant buried structures was observed.
- Collectively, the geophysical data <u>did not record any evidence of metallic USTs at</u>
 Parcel 13.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Geosyntec Consultants of NC, PC in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately West)

View of Survey Area (Facing Approximately South)

ΝÎ

PROJECT

PARCEL 13 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

PARCEL 13 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS DATE 8/8/2019 CLIENT GEOSYNTEC

PYRAMID PROJECT #: 2019-233 FIGURE 1

EM61 METAL DETECTION RESULTS

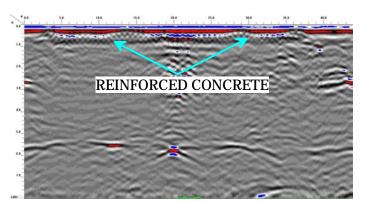
NO EVIDENCE OF METALLIC USTs WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on July 29, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 controller with a 350 MHz HS antenna on July 31, 2019.

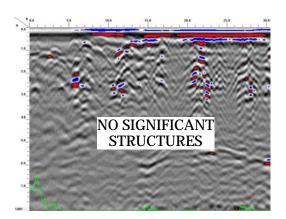
EM61 Metal Detection Response (millivolts)

N1

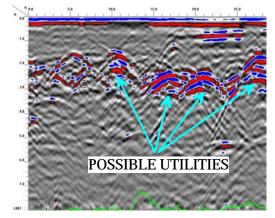
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT


PARCEL 13 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

PARCEL 13 -EM61 METAL DETECTION CONTOUR MAP


DATE	8/8/2019	CLIENT	GEOSYNTEC
PYRAMID PROJECT #:	2019-233		FIGURE 2

LOCATIONS OF GPR TRANSECTS

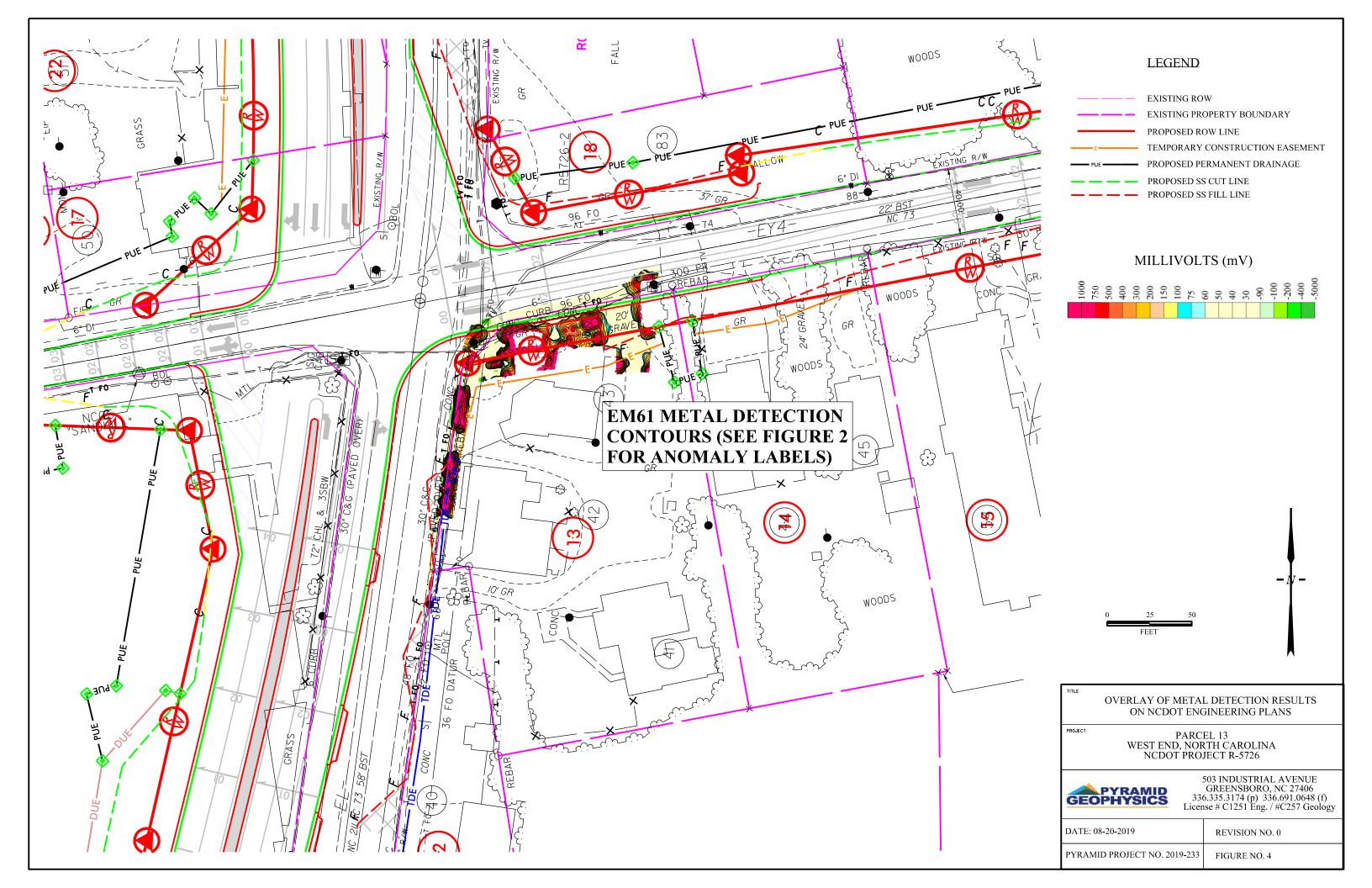


GPR TRANSECT 3 (T3)

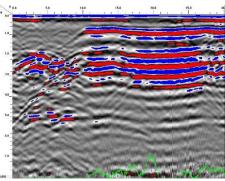
GPR TRANSECT 14 (T14)

GPR TRANSECT 24 (T24)

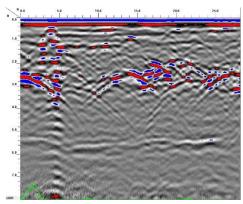
NÎ

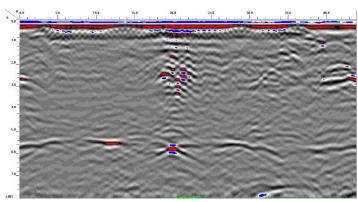

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

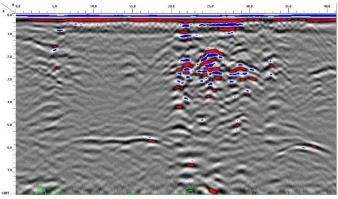
PARCEL 13 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

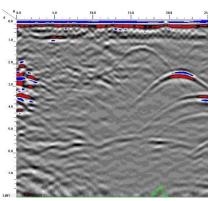

PARCEL 13 -GPR TRANSECT LOCATIONS AND SELECT IMAGES

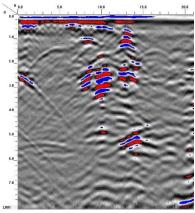
DATE 8/8/2019 CLIENT GEOSYNTEC

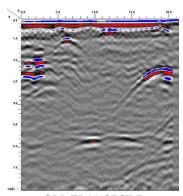

PYRAMID PROJECT #: 2019-233 FIGURE 3

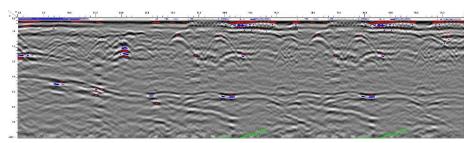


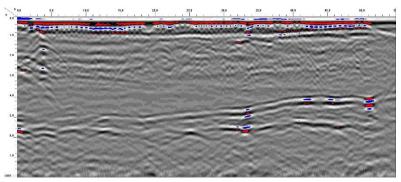

GPR TRANSECT 1

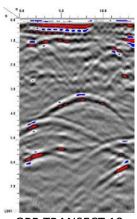

GPR TRANSECT 2

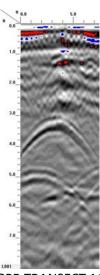

GPR TRANSECT 3

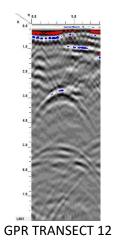

GPR TRANSECT 4

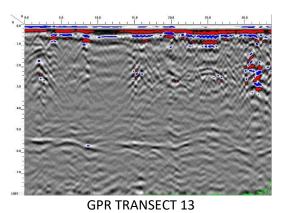

GPR TRANSECT 5

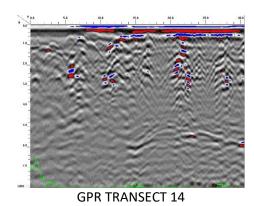

GPR TRANSECT 6

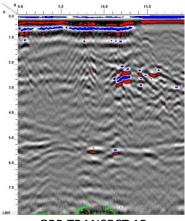

GPR TRANSECT 7


GPR TRANSECT 8

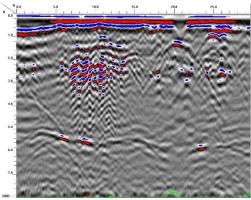

GPR TRANSECT 9

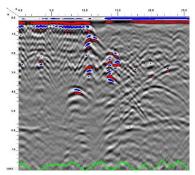


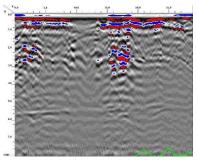

GPR TRANSECT 10

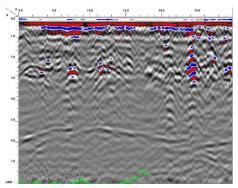


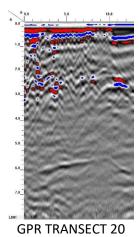
GPR TRANSECT 11

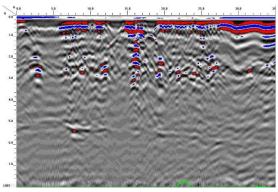


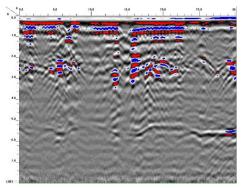


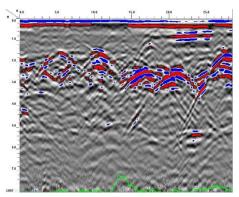

GPR TRANSECT 15

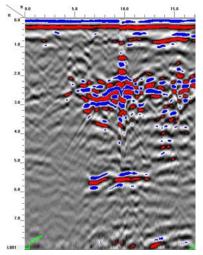

GPR TRANSECT 16

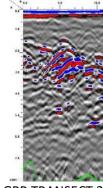

GPR TRANSECT 17


GPR TRANSECT 18


GPR TRANSECT 19


GPR TRANSECT 21


GPR TRANSECT 22


GPR TRANSECT 23

GPR TRANSECT 24

GPR TRANSECT 25

GPR TRANSECT 26

Preliminary Site Assessment (Parcel 13 - McNeill Oil Co., Inc.) TIP Number R-5726 5349 NC 211, West End, North Carolina October 2019

APPENDIX B Photographic Log

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039

Site Name: R-5726 - Parcel 13 Site Location: 5349 NC 211, West End, NC

Photograph 1

Date: 29 July 2019

Direction: S-SW

Comments: View of the north side of the Site

building.

Photograph 2

Date: 29 July 2019

Direction: S

Comments: View of the monitoring well (MW) in front of the Site building (1 of 3 MWs identified on the property; unknown well ID). Located within the ROW in the northern portion of the Site. Monitoring well is not abandoned.

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039

Site Name: R-5726 - Parcel 13 Site Location: 5349 NC 211, West End, NC

Photograph 3

Date: 29 July 2019

Direction: E-SE

Comments: View of the MW to the northwest of the Site building (2 of 3 MWs identified on the property; unknown well ID). Located within the ROW near the corner of HWY 73 and Mode Road.

Monitoring well is not abandoned.

Photograph 4

Date: 29 July 2019

Direction: E

Comments: View of the northwestern side of the Site building.

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039

Site Name: R-5726 - Parcel 13 Site Location: 5349 NC 211, West End, NC

Photograph 5

Date: 29 July 2019

Direction: S

Comments: View of the MW behind the Site building (3 of 3 MWs identified on the property; unknown well ID). Located beyond the proposed ROW. Monitoring well is not abandoned.

Preliminary Site Assessment (Parcel 13 - McNeill Oil Co., Inc.) TIP Number R-5726 5349 NC 211, West End, North Carolina October 2019

APPENDIX C Soil Boring Logs

BORING LOG

BORING NO. 3813-1 SHEET ______ OF ______

DRILLING CO.: Status:	SITE:	NOO	27 /	Wal	1 Tomas		Borehole Location Sketch Map
METHOD & TOOLS: Plugged & Abdnd	PROJE						
RIG: Geoprobe 78220T	N:		E:				
BIT DIAMETER: 2/4" DRILLER: Brian T	SUPER	VISOŘ:	N	10	llas	4	
GROUND ELEV.: Surveyed Estimated	DATE:	8	100	119	_		P.
Top (Depth) ☐ Feet Lithology Log	Graphic Log	Depth Scale		SPT ows/6*		Rec. (%)	Drilling Log
0-3 sand and gravel, silt , light-dork		*******				100	Hand Auger
pas promu , open							PID = 0
3-5 brown sand, Meding-corrse,						50	PID = 0
5-10 5-5.5 ft, dark brown sand.						70	P7D=0
- A							
\$.5-8.5th, brown sand,					, .		
)++1 <u>:</u>					
Mestro, morst							
Collect sample @ SB\$ -01-7.5-8	.0						
@ 1030							
1.7							A. W. Same Street, Str
1			1				
			1				_A
							•
						-	
						-	
						1	
					- /	m	N

BORING LOG

BORING NO. <<u>8 /3 - 2</u>
SHEET _____ OF /____

DRILLING CO.: Sacdaus Status:	SITE: NCDOT West End Borehole Location Sketch Map
METHOD & TOOLS: DPT Plugged & Abdnd.	PROJECT NO.: GIN 7039
RIG: Geoprobe 78220T	N: E:
BIT DIAMETER: 2/4 DRILLER: Brown 7	SUPERVISOR: M Wang
GROUND ELEV.: Surveyed Estimated	DATE: 8/12/19
Top (Depth) Feet Lithology Log	Graphic Log Depth Scale SPT Blows/6* Run Rec. (No.) Drilling Log
bys cause loose brown , dry	100 Hand Huger
bys cause, loose	1210 = 0
3-5 Brown soul selt moist.	2. 220-
3.5 Paroum soud, selt, moiet, mixed with some gravely	70 P70 zo
Medium, loose	
5-6.5 , brown , reddish color	02020
soudy clay, moist	
5.5-85, brown - Light brown	
sand, medium. convse	
samples collected @ 7-7.5 ft	
SB13-02-7-7.5@ 1100	
3313-02- 1-15 (2 1100	

BORING LOG

BORING NO. <u>\$\$ 13 - 3</u>
SHEET ____ OF ______

DRILLING CO.: Saedaco Status:	SITE: NODE	OT West En	Borehole Location Sketch Map
	PROJECT NO.:		West Fix
RIG: Geophole 7822DT	N:	E:	
BIT DIAMETER: 2 DRILLER: DATA T	SUPERVISOR:		
GROUND ELEV.: ☐ Surveyed ☐ Estimated	DATE: X/	12/19	
Top ☐ Feet		SPT Run Rec. Blows/6* (No.) (%)	Drilling Log
(Beptil) Mictels	Log Scale ≥	Blows/6* (No.) (%)	
0-83 Sand and some grand, brown wy		80	PZD=0 Hand Auger
4-5 ft no recover			Hand Huger
1-50 & brown sand / solt, month,		80 (00	770=0
0-15 Sand and some grand, brown wy moist, course loose 4-5th, no recovery The wedgen			
samples collected from			
6.5-7.0 # Lgs		J	
@ 1136			HAZIMANIA (ZAMI) ZAMI) AMAMINIA INI MANANIA NA
SB13-03-6.5-7.0			
7.5-8.0 to logs, sandy clay,			10-10-11-11-11-11-11-11-11-11-11-11-11-1
7.5-8.0 ft logs, sandy clay,			
			-000
			2/11/2 - 1-10/2 - 10/2/10-1-
	101		0.00
			H -HH -H -H -X -X -
	J J)		111
		/ 1	

Preliminary Site Assessment (Parcel 13 - McNeill Oil Co., Inc.) TIP Number R-5726 5349 NC 211, West End, North Carolina October 2019

APPENDIX D Red Lab UVF Report

Hydrocarbon Analysis Results

GEOSYNTEC Client:

Address: 2501 BLUE RIDGE RD

SUITE 430 RALEIGH, NC

Samples taken Samples extracted

Operator

Monday, August 12, 2019

Samples analysed

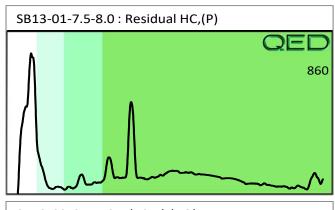
Monday, August 12, 2019 Friday, August 16, 2019

CAROLINE STEVENS

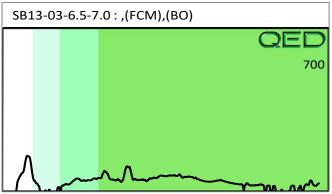
Contact: MICHAEL WANG

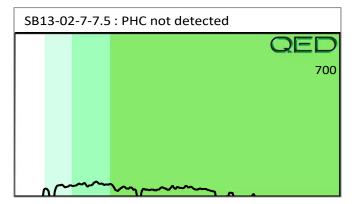
Project: R5726

Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР		% Ratios		HO93
										C5 - C10	C10 - C18	C18	
S	SB13-01-7.5-8.0	26.5	<0.66	<0.66	0.66	0.66	0.47	<0.21	<0.027	0	53.6	46.4	Residual HC,(P)
S	SB13-02-7-7.5	16.3	<0.41	<0.41	<0.41	<0.41	<0.08	<0.13	<0.016	0	100	0	PHC not detected
S	SB13-03-6.5-7.0	12.8	<0.32	<0.32	<0.32	<0.32	<0.06	<0.1	<0.013	0	74.9	25.1	,(FCM),(BO)
	Initial C	Calibrator	QC check	OK					Final FO	CM QC	Check	OK	95.7


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

Abbreviations: - FCM = Results calculated using Fundamental Calibration Mode: % = confidence of hydrocarbon identification: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

Friday, August 16, 2019

Project: R5726

Preliminary Site Assessment (Parcel 13 - McNeill Oil Co., Inc.) TIP Number R-5726 5349 NC 211, West End, North Carolina October 2019

APPENDIX E Prism Laboratories Analytical Report

NC Certification No. 402 NC Drinking Water Cert No. 37735 SC Certification No. 99012 **Case Narrative**

8/28/19 11:20

Geosyntec Consultants of NC, PC - Raleigh Michael Wang 2501 Blue Ridge Road, Ste 430 Raleigh, NC 27607 Project: NCDOT R-5726 West End

Project No.: GN7039

Lab Submittal Date: 08/16/2019 Prism Work Order: 9080260

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

Robbi A. Jones

President/Project Manager

Reviewed By Robbi A. Jones

Korti a.

President/Project Manager

Data Qualifiers Key Reference:

SR Surrogate recovery outside the QC limits.

BRL Below Reporting Limit
MDL Method Detection Limit
RPD Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and

reporting limit indicated with a J.

Sample Receipt Summary

08/28/2019

Prism Work Order: 9080260

Client Sample ID	Lab Sample ID	Matrix	Date/Time Sampled	Date/Time Received
SB13-01-7.5-8.0	9080260-01	Solid	08/12/19 10:30	08/16/19 9:15
SB13-02-7-7.5	9080260-02	Solid	08/12/19 11:00	08/16/19 9:15
SB13-03-6.5-7.0	9080260-03	Solid	08/12/19 11:30	08/16/19 9:15
SB43-01-4.5-5.0	9080260-04	Solid	08/13/19 13:40	08/16/19 9:15
SB43-02-6.5-7.0	9080260-05	Solid	08/13/19 14:00	08/16/19 9:15
SB43-03-7.0-7.5	9080260-06	Solid	08/13/19 14:30	08/16/19 9:15
SB43-04-7.5-8.0	9080260-07	Solid	08/13/19 14:45	08/16/19 9:15
SB66867-01-5-5.5	9080260-08	Solid	08/13/19 8:40	08/16/19 9:15
SB66867-02-4.0-4.5	9080260-09	Solid	08/13/19 9:10	08/16/19 9:15
SB66867-03-6.5-7	9080260-10	Solid	08/13/19 10:20	08/16/19 9:15
SB66867-04-5.5-6.0	9080260-11	Solid	08/13/19 9:45	08/16/19 9:15
SB66867-05-7-7.5	9080260-12	Solid	08/13/19 11:10	08/16/19 9:15
SB66867-06-7.5-8	9080260-13	Solid	08/13/19 12:20	08/16/19 9:15
SB69-01-6.0-6.5	9080260-14	Solid	08/12/19 13:00	08/16/19 9:15
SB69-02-4.0-4.5	9080260-15	Solid	08/12/19 13:30	08/16/19 9:15
SB69-03-5.0-5.5	9080260-16	Solid	08/12/19 14:00	08/16/19 9:15
SB69-04-5.0-5.5	9080260-17	Solid	08/12/19 14:45	08/16/19 9:15
SB69-05-9.5-10	9080260-18	Solid	08/12/19 15:25	08/16/19 9:15
SB69-06-9-9.5	9080260-19	Solid	08/12/19 16:15	08/16/19 9:15
SB69-07-5.0-5.5	9080260-20	Solid	08/12/19 16:45	08/16/19 9:15
SB69-08-6.0-6.5	9080260-21	Solid	08/13/19 13:00	08/16/19 9:15
SB78-01-7-7.5	9080260-22	Solid	08/13/19 15:50	08/16/19 9:15
SB78-02-5.5-6	9080260-23	Solid	08/14/19 8:25	08/16/19 9:15
SB78-03-6-6.5	9080260-24	Solid	08/14/19 9:00	08/16/19 9:15
SB78-04-6.5-7	9080260-25	Solid	08/14/19 9:30	08/16/19 9:15
SB89-01-5-5.5	9080260-26	Solid	08/15/19 9:00	08/16/19 9:15
SB89-02-5.5-6	9080260-27	Solid	08/15/19 9:40	08/16/19 9:15
SB89-03-6.5-7	9080260-28	Solid	08/15/19 10:30	08/16/19 9:15
SB89-04-7-7.5	9080260-29	Solid	08/15/19 11:30	08/16/19 9:15
SB102-01-2.5-3	9080260-30	Solid	08/14/19 10:50	08/16/19 9:15
SB102-02-5.5-6	9080260-31	Solid	08/14/19 11:35	08/16/19 9:15
SB102-03-7-7.5	9080260-32	Solid	08/14/19 13:00	08/16/19 9:15
SB102-04-7.5-8	9080260-33	Solid	08/14/19 13:30	08/16/19 9:15

SB102-05-4.5-5	9080260-34	Solid	08/14/19 14:00	08/16/19 9:15
SB102-06-0.5-1	9080260-35	Solid	08/14/19 14:50	08/16/19 9:15
SB102-07-7.5-8	9080260-36	Solid	08/14/19 15:35	08/16/19 9:15
SB102-08-8-8.5	9080260-37	Solid	08/14/19 16:05	08/16/19 9:15
SB102-09-8.5-9	9080260-38	Solid	08/14/19 16:45	08/16/19 9:15
SB102-10-9-9.5	9080260-39	Solid	08/14/19 17:20	08/16/19 9:15

Samples were received in good condition at 3.3 degrees C unless otherwise noted.

Summary of Detections

08/28/2019

Prism Work Order: 9080260

Prism ID Client ID Parameter Method Result Units

There were no detections reported.

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB13-01-7.5-8.0 Prism Sample ID: 9080260-01 Prism Work Order: 9080260 Time Collected: 08/12/19 10:30

Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	91.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:51	l JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:51	l JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/20/19 17:51	l JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0071	0.00075	1	8260D	8/20/19 17:51	l JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:51	l JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/20/19 17:51	l JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		112	2 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB13-02-7-7.5 Prism Sample ID: 9080260-02 Prism Work Order: 9080260 Time Collected: 08/12/19 11:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	86.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/20/19 18:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0069	0.0010	1	8260D	8/20/19 18:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/20/19 18:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0069	0.00074	1	8260D	8/20/19 18:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/20/19 18:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/20/19 18:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		98	%	70-130	
			Dibromoflu	oromethane		114	1 %	84-123	
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB13-03-6.5-7.0 Prism Sample ID: 9080260-03 Prism Work Order: 9080260

Time Collected: 08/12/19 11:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parame	ters								
% Solids	95.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compound	is by GC/MS								
Benzene	BRL	mg/kg dry	0.0051	0.00079	1	8260D	8/20/19 18:51	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0051	0.00077	1	8260D	8/20/19 18:51	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/20/19 18:51	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0051	0.00054	1	8260D	8/20/19 18:51	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0051	0.00081	1	8260D	8/20/19 18:51	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/20/19 18:51	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	2 %	70-130	
			Dibromoflu	oromethane		116	5 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB43-01-4.5-5.0 Prism Sample ID: 9080260-04 Prism Work Order: 9080260 Time Collected: 08/13/19 13:40

Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	97.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00083	1	8260D	8/20/19 19:2	l JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00080	1	8260D	8/20/19 19:21	l JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 19:2	l JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/20/19 19:2	l JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/20/19 19:2	l JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/20/19 19:2	l JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	2 %	70-130	
			Dibromoflu	oromethane		113	3 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB43-02-6.5-7.0 Prism Sample ID: 9080260-05 Prism Work Order: 9080260

Time Collected: 08/13/19 14:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	91.4	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0073	0.0011	1	8260D	8/22/19 15:18	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0073	0.0011	1	8260D	8/22/19 15:18	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19 15:18	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0073	0.00077	1	8260D	8/22/19 15:18	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0073	0.0012	1	8260D	8/22/19 15:18	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.022	0.0026	1	8260D	8/22/19 15:18	JLB	P9H0389
			Surrogate			Recov	ery	Control L	imits
			4-Bromoflu	orobenzene		103	3 %	70-130	
			Dibromoflu	oromethane		127	7 %	84-123	SR
			Toluene-d8			93	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB43-03-7.0-7.5

Prism Sample ID: 9080260-06 Prism Work Order: 9080260 Time Collected: 08/13/19 14:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	75.6	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0061	0.00095	1	8260D	8/20/19 20:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0061	0.00091	1	8260D	8/20/19 20:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/20/19 20:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0061	0.00065	1	8260D	8/20/19 20:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0061	0.00097	1	8260D	8/20/19 20:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 20:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	2 %	70-130	
			Dibromoflu	oromethane		120) %	84-123	
			Toluene-d8			96	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB43-04-7.5-8.0 Prism Sample ID: 9080260-07 Prism Work Order: 9080260

Time Collected: 08/13/19 14:45 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paramet	ers								
% Solids	84.1	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compounds	s by GC/MS								
Benzene	BRL	mg/kg dry	0.0054	0.00085	1	8260D	8/20/19 20:51	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0054	0.00082	1	8260D	8/20/19 20:51	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 20:51	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0054	0.00058	1	8260D	8/20/19 20:51	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0054	0.00086	1	8260D	8/20/19 20:51	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.016	0.0020	1	8260D	8/20/19 20:51	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		101	%	70-130	
			Dibromoflu	oromethane		119	1%	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB66867-01-5-5.5

Prism Sample ID: 9080260-08 Prism Work Order: 9080260 Time Collected: 08/13/19 08:40 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parame	eters								
% Solids	90.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compoun	ds by GC/MS								
Benzene	BRL	mg/kg dry	0.0050	0.00078	1	8260D	8/20/19 21:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0050	0.00075	1	8260D	8/20/19 21:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/20/19 21:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0050	0.00053	1	8260D	8/20/19 21:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0050	0.00080	1	8260D	8/20/19 21:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/20/19 21:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		122	2 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-02-4.0-4.5

Prism Sample ID: 9080260-09 Prism Work Order: 9080260 Time Collected: 08/13/19 09:10 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	86.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0061	0.00096	1	8260D	8/20/19 21:51	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0061	0.00092	1	8260D	8/20/19 21:51	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/20/19 21:51	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0061	0.00065	1	8260D	8/20/19 21:51	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0061	0.00098	1	8260D	8/20/19 21:51	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 21:51	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		118	3 %	84-123	
			Toluene-d8			97	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB66867-03-6.5-7

Prism Sample ID: 9080260-10 Prism Work Order: 9080260 Time Collected: 08/13/19 10:20 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	eters								
% Solids	90.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0059	0.00092	1	8260D	8/20/19 22:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0059	0.00088	1	8260D	8/20/19 22:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/20/19 22:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0059	0.00063	1	8260D	8/20/19 22:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0059	0.00094	1	8260D	8/20/19 22:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0021	1	8260D	8/20/19 22:20	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		120) %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-04-5.5-6.0

Prism Sample ID: 9080260-11 Prism Work Order: 9080260 Time Collected: 08/13/19 09:45 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	94.1	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/20/19 22:50) JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00085	1	8260D	8/20/19 22:50) JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 22:50) JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/20/19 22:50) JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0056	0.00090	1	8260D	8/20/19 22:50) JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/20/19 22:50) JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		97	%	70-130	
			Dibromofluoromethane		118 %		84-123		
			Toluene-d8			96	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB66867-05-7-7.5

Prism Sample ID: 9080260-12 Prism Work Order: 9080260 Time Collected: 08/13/19 11:10 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	89.3	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/20/19 23:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/20/19 23:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/20/19 23:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/20/19 23:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/20/19 23:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 23:20	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	? %	70-130	
			Dibromoflu	oromethane		119 %		84-123	
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-06-7.5-8

Prism Sample ID: 9080260-13 Prism Work Order: 9080260 Time Collected: 08/13/19 12:20 Time Submitted: 08/16/19 09:15

97 %

76-129

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parame	ters								
% Solids	89.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compound	ds by GC/MS								
Benzene	BRL	mg/kg dry	0.0049	0.00076	1	8260D	8/19/19 16:12	JLB	P9H0310
Ethylbenzene	BRL	mg/kg dry	0.0049	0.00074	1	8260D	8/19/19 16:12	JLB	P9H0310
m,p-Xylenes	BRL	mg/kg dry	0.0098	0.0013	1	8260D	8/19/19 16:12	JLB	P9H0310
o-Xylene	BRL	mg/kg dry	0.0049	0.00052	1	8260D	8/19/19 16:12	JLB	P9H0310
Toluene	BRL	mg/kg dry	0.0049	0.00078	1	8260D	8/19/19 16:12	JLB	P9H0310
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/19/19 16:12	JLB	P9H0310
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		100	1%	70-130	
			Dibromoflu	oromethane		110	%	84-123	

Toluene-d8

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-01-6.0-6.5 Prism Sample ID: 9080260-14 Prism Work Order: 9080260 Time Collected: 08/12/19 13:00

Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	90.5	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	2 EDV	P9H0353
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0052	0.00081	1	8260D	8/21/19 19:4	1 JLB	P9H0366
Ethylbenzene	BRL	mg/kg dry	0.0052	0.00078	1	8260D	8/21/19 19:4	1 JLB	P9H0366
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/21/19 19:4	1 JLB	P9H0366
o-Xylene	BRL	mg/kg dry	0.0052	0.00055	1	8260D	8/21/19 19:4	1 JLB	P9H0366
Toluene	BRL	mg/kg dry	0.0052	0.00082	1	8260D	8/21/19 19:4	1 JLB	P9H0366
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/21/19 19:4	1 JLB	P9H0366
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		103	3 %	70-130	
			Dibromoflu	oromethane		123	3 %	84-123	
			Toluene-d8			92	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-02-4.0-4.5 Prism Sample ID: 9080260-15

Prism Work Order: 9080260 Time Collected: 08/12/19 13:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	95.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0080	0.0012	1	8260D	8/21/19	0:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0080	0.0012	1	8260D	8/21/19	0:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.016	0.0020	1	8260D	8/21/19	0:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0080	0.00085	1	8260D	8/21/19	0:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0080	0.0013	1	8260D	8/21/19	0:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.024	0.0029	1	8260D	8/21/19	0:20	JLB	P9H0347
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		103	3 %		70-130	
			Dibromoflu	oromethane		122	2 %		84-123	
			Toluene-d8			95	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-03-5.0-5.5 Prism Sample ID: 9080260-16 Prism Work Order: 9080260 Time Collected: 08/12/19 14:00

Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	93.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/21/19	0:49	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00064	1	8260D	8/21/19	0:49	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/21/19	0:49	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/21/19	0:49	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0043	0.00068	1	8260D	8/21/19	0:49	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.013	0.0015	1	8260D	8/21/19	0:49	JLB	P9H0347
			Surrogate			Recov	ery		Control I	_imits
			4-Bromoflu	orobenzene		102	2 %		70-130	
			Dibromofluoromethan			121 %		84-123	84-123	
			Toluene-d8			96	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-04-5.0-5.5 Prism Sample ID: 9080260-17 Prism Work Order: 9080260 Time Collected: 08/12/19 14:45

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Param	neters									
% Solids	92.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0049	0.00076	1	8260D	8/21/19	1:19	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0049	0.00074	1	8260D	8/21/19	1:19	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.0098	0.0013	1	8260D	8/21/19	1:19	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0049	0.00052	1	8260D	8/21/19	1:19	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0049	0.00078	1	8260D	8/21/19	1:19	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/21/19	1:19	JLB	P9H0347
			Surrogate			Recov	ery		Control I	Limits
			4-Bromoflu	orobenzene		100	0 %		70-130	
			Dibromoflu	oromethane		123	3 %		84-123	
			Toluene-d8			94	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-05-9.5-10 Prism Sample ID: 9080260-18 Prism Work Order: 9080260 Time Collected: 08/12/19 15:25

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	91.0	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/21/19	1:50	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00084	1	8260D	8/21/19	1:50	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/21/19	1:50	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/21/19	1:50	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0056	0.00089	1	8260D	8/21/19	1:50	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/21/19	1:50	JLB	P9H0347
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		99	%		70-130	
			Dibromoflu	oromethane		119	%		84-123	
			Toluene-d8			94	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-06-9-9.5 Prism Sample ID: 9080260-19 Prism Work Order: 9080260 Time Collected: 08/12/19 16:15 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	87.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0046	0.00072	1	8260D	8/22/19 15:47	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0046	0.00069	1	8260D	8/22/19 15:47	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.0092	0.0012	1	8260D	8/22/19 15:47	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0046	0.00049	1	8260D	8/22/19 15:47	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0046	0.00073	1	8260D	8/22/19 15:47	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/22/19 15:47	JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		125	5 %	84-123	SR
			Toluene-d8			92	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-07-5.0-5.5 Prism Sample ID: 9080260-20

Prism Work Order: 9080260 Time Collected: 08/12/19 16:45 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysi Date/Tin		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	93.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0051	0.00080	1	8260D	8/22/19	16:17	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0051	0.00077	1	8260D	8/22/19	16:17	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/22/19	16:17	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0051	0.00055	1	8260D	8/22/19	16:17	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0051	0.00082	1	8260D	8/22/19	16:17	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19	16:17	JLB	P9H0389
			Surrogate			Recov	ery		Control L	imits
			4-Bromoflu	orobenzene		102	2 %		70-130	
			Dibromoflu	oromethane		127	7 %		84-123	SR
			Toluene-d8			94	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-08-6.0-6.5 Prism Sample ID: 9080260-21 Prism Work Order: 9080260 Time Collected: 08/13/19 13:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Tir		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.7	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/26/19	19:27	JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/26/19	19:27	JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/26/19	19:27	JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/26/19	19:27	JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/26/19	19:27	JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/26/19	19:27	JLB	P9H0434
			Surrogate			Recov	ery		Control L	imits
			4-Bromoflu	orobenzene		112	2 %		70-130	
			Dibromoflu	oromethane		96	%		84-123	
			Toluene-d8			101	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-01-7-7.5 Prism Sample ID: 9080260-22 Prism Work Order: 9080260 Time Collected: 08/13/19 15:50 Time Submitted: 08/16/19 09:15

96 %

76-129

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	Analyst	Batch ID
General Chemistry Param	eters								
% Solids	83.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/22/19 17:34	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/22/19 17:34	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0013	1	8260D	8/22/19 17:34	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/22/19 17:34	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/22/19 17:34	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/22/19 17:34	JLB	P9H0389
			Surrogate			Recov	ery	Control L	imits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		132	2 %	84-123	SR

Toluene-d8

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-02-5.5-6
Prism Sample ID: 9080260-23
Prism Work Order: 9080260
Time Collected: 08/14/19 08:25
Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Anal	yst Batch ID
General Chemistry Parameters	5								
% Solids	97.8	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:	10 E	DV P9H036
Volatile Organic Compounds b	y GC/MS								
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/19/19 16	42 JI	В Р9Н031
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00065	1	8260D	8/19/19 16	42 JI	_B P9H031
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0043	0.00050	1	8260D	8/19/19 16	42 JI	_B P9H031
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/19/19 16	42 JI	_B P9H031
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/19/19 16	42 JI	_B P9H031
Toluene	BRL	mg/kg dry	0.0043	0.00068	1	8260D	8/19/19 16	42 JI	_B P9H031
Xylenes, total	BRL	mg/kg dry	0.013	0.0015	1	8260D	8/19/19 16	42 JI	_B P9H031
			Surrogate			Recov	ery	Cor	ntrol Limits
			4-Bromoflu	orobenzene		102	2 %	70-	-130
			Dibromoflu	oromethane		109	9 %	84	-123
			Toluene-d8			96	%	76·	-129

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-03-6-6.5 Prism Sample ID: 9080260-24 Prism Work Order: 9080260 Time Collected: 08/14/19 09:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.2	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0068	0.0011	1	8260D	8/19/19	17:12	JLB	P9H0310
Ethylbenzene	BRL	mg/kg dry	0.0068	0.0010	1	8260D	8/19/19	17:12	JLB	P9H0310
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/19/19	17:12	JLB	P9H0310
o-Xylene	BRL	mg/kg dry	0.0068	0.00072	1	8260D	8/19/19	17:12	JLB	P9H0310
Toluene	BRL	mg/kg dry	0.0068	0.0011	1	8260D	8/19/19	17:12	JLB	P9H0310
Xylenes, total	BRL	mg/kg dry	0.020	0.0024	1	8260D	8/19/19	17:12	JLB	P9H0310
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		103	3 %		70-130	
			Dibromoflu	oromethane		110	%		84-123	
			Toluene-d8			96	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-04-6.5-7 Prism Sample ID: 9080260-25 Prism Work Order: 9080260 Time Collected: 08/14/19 09:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.1	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0062	0.00097	1	8260D	8/22/19	18:04	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0062	0.00093	1	8260D	8/22/19	18:04	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/22/19	18:04	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0062	0.00066	1	8260D	8/22/19	18:04	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0062	0.00099	1	8260D	8/22/19	18:04	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0022	1	8260D	8/22/19	18:04	JLB	P9H0389
			Surrogate			Recov	ery		Control I	Limits
			4-Bromoflu	orobenzene		98	%		70-130	
			Dibromoflu	oromethane		130	%		84-123	SR
			Toluene-d8			93	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB89-01-5-5.5 Prism Sample ID: 9080260-26 Prism Work Order: 9080260 Time Collected: 08/15/19 09:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	96.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/22/19 18:34	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00085	1	8260D	8/22/19 18:34	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/22/19 18:34	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/22/19 18:34	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0056	0.00090	1	8260D	8/22/19 18:34	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/22/19 18:34	JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromoflu	orobenzene		98	%	70-130	
			Dibromoflu	oromethane		127	' %	84-123	SR
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB89-02-5.5-6 Prism Sample ID: 9080260-27 Prism Work Order: 9080260 Time Collected: 08/15/19 09:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	96.6	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0066	0.0010	1	8260D	8/22/19	19:04	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0066	0.0010	1	8260D	8/22/19	19:04	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.013	0.0017	1	8260D	8/22/19	19:04	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0066	0.00070	1	8260D	8/22/19	19:04	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0066	0.0011	1	8260D	8/22/19	19:04	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.020	0.0024	1	8260D	8/22/19	19:04	JLB	P9H0389
			Surrogate			Recov	ery		Control L	imits
			4-Bromofluo	orobenzene		100) %		70-130	
			Dibromofluc	oromethane		135	5 %		84-123	SR
			Toluene-d8			93	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB89-03-6.5-7 Prism Sample ID: 9080260-28 Prism Work Order: 9080260 Time Collected: 08/15/19 10:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	92.2	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0065	0.0010	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0065	0.00098	1	8260D	8/22/19 19:3	4 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.013	0.0017	1	8260D	8/22/19 19:3	4 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0065	0.00069	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0065	0.0010	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0023	1	8260D	8/22/19 19:3	4 JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		102	? %	70-130	
			Dibromoflu	oromethane		128	3 %	84-123	SR
			Toluene-d8			90	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB89-04-7-7.5 Prism Sample ID: 9080260-29 Prism Work Order: 9080260 Time Collected: 08/15/19 11:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	93.9	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0062	0.00097	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0062	0.00094	1	8260D	8/22/19 20:0	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/22/19 20:0	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0062	0.00066	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0062	0.00099	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0022	1	8260D	8/22/19 20:0	3 JLB	P9H0389
			Surrogate			Recov	ery	Control	Limits
			4-Bromofluorobenzene			98 %		70-130	
			Dibromofluoromethane			136 %		84-123	SR
			Toluene-d8			91 %		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB102-01-2.5-3

Prism Sample ID: 9080260-30 Prism Work Order: 9080260 Time Collected: 08/14/19 10:50 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	89.8	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/22/19 20:33	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0069	0.0010	1	8260D	8/22/19 20:33	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/22/19 20:33	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0069	0.00073	1	8260D	8/22/19 20:33	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/22/19 20:33	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/22/19 20:33	JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		101	1 %	70-130	
			Dibromofluoromethane			134 %		84-123	SR
			Toluene-d8			92 %		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB102-02-5.5-6 Prism Sample ID: 9080260-31 Prism Work Order: 9080260 Time Collected: 08/14/19 11:35 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	96.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0059	0.00093	1	8260D	8/22/19 21:03	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0059	0.00089	1	8260D	8/22/19 21:03	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/22/19 21:03	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0059	0.00063	1	8260D	8/22/19 21:03	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0059	0.00095	1	8260D	8/22/19 21:03	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.018	0.0021	1	8260D	8/22/19 21:03	JLB	P9H0389
			Surrogate			Recov	ery	Control L	_imits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		133	3 %	84-123	SR
			Toluene-d8			91 %		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-03-7-7.5

Prism Sample ID: 9080260-32 Prism Work Order: 9080260 Time Collected: 08/14/19 13:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paramo	eters								
% Solids	94.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compoun	ds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/22/19 21:33	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/22/19 21:33	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/22/19 21:33	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/22/19 21:33	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/22/19 21:33	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/22/19 21:33	JLB	P9H0389
			Surrogate			Recov	ery	Control L	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		132	2 %	84-123	SR
			Toluene-d8			91	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-04-7.5-8 Prism Sample ID: 9080260-33 Prism Work Order: 9080260 Time Collected: 08/14/19 13:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	80.6	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/22/19 22:03	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/22/19 22:03	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/22/19 22:03	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/22/19 22:03	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/22/19 22:03	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/22/19 22:03	JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		97	%	70-130	
			Dibromofluoromethane			131 %		84-123	SR
			Toluene-d8			92 %		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-05-4.5-5 Prism Sample ID: 9080260-34 Prism Work Order: 9080260 Time Collected: 08/14/19 14:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analys	t Batch ID
General Chemistry Paran	neters								
% Solids	97.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:	10 ED	/ P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/22/19 22	:33 JLE	P9H0389
o-Xylene	BRL	mg/kg dry	0.0070	0.00075	1	8260D	8/22/19 22	:33 JLE	P9H0389
Toluene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/22/19 22	:33 JLE	P9H0389
			Surrogate			Recov	ery	Conti	ol Limits
			4-Bromoflu	orobenzene		103	3 %	70-1	30
			Dibromofluoromethane			138 %		84-1	23 SR
			Toluene-d8			96 %		76-1	29

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-06-0.5-1 Prism Sample ID: 9080260-35 Prism Work Order: 9080260 Time Collected: 08/14/19 14:50 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	88.1	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0075	0.0012	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0075	0.0011	1	8260D	8/22/19 23:02	2 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19 23:02	2 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0075	0.00080	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0075	0.0012	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.022	0.0027	1	8260D	8/22/19 23:02	2 JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		103	3 %	70-130	
			Dibromofluoromethane			143	3 %	84-123	SR
			Toluene-d8			89	76-129		

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-07-7.5-8 Prism Sample ID: 9080260-36 Prism Work Order: 9080260 Time Collected: 08/14/19 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	83.5	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00065	1	8260D	8/22/19 23:3	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/22/19 23:3	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0043	0.00069	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.013	0.0016	1	8260D	8/22/19 23:3	3 JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromoflu	orobenzene		102	2 %	70-130	
			Dibromofluoromethane			135	84-123	SR	
			Toluene-d8			91 %		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-08-8-8.5 Prism Sample ID: 9080260-37 Prism Work Order: 9080260 Time Collected: 08/14/19 16:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paramete	ers								
% Solids	87.9	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:	10 EDV	P9H0369
Volatile Organic Compounds	by GC/MS								
Benzene	BRL	mg/kg dry	0.0058	0.00090	1	8260D	8/26/19 18	:57 JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0058	0.00087	1	8260D	8/26/19 18	:57 JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/26/19 18	:57 JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0058	0.00061	1	8260D	8/26/19 18	:57 JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0058	0.00092	1	8260D	8/26/19 18	:57 JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.017	0.0021	1	8260D	8/26/19 18	:57 JLB	P9H0434
			Surrogate			Recov	ery	Contro	Limits
			4-Bromofluorobenzene			103 %		70-13)
			Dibromoflu	oromethane		93	%	84-12	3
			Toluene-d8			99 %		76-12	9

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB102-09-8.5-9 Prism Sample ID: 9080260-38 Prism Work Order: 9080260 Time Collected: 08/14/19 16:45

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	,	Analysis Analysis Analysis		. ,		. ,		Batch ID
General Chemistry Paran	neters													
% Solids	87.0	% by Weight	0.100	0.100	1	*SM2540 G	8/26/19	8:25	EDV	P9H0406				
Volatile Organic Compou	nds by GC/MS													
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/23/19	0:32	JLB	P9H0389				
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/23/19	0:32	JLB	P9H0389				
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/23/19	0:32	JLB	P9H0389				
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/23/19	0:32	JLB	P9H0389				
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/23/19	0:32	JLB	P9H0389				
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/23/19	0:32	JLB	P9H0389				
			Surrogate			Recov	ery		Control I	_imits				
			4-Bromoflu	orobenzene		98	%		70-130					
			Dibromofluoromethane			140 %			84-123	SR				
			Toluene-d8			95 %			76-129					

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-10-9-9.5 Prism Sample ID: 9080260-39 Prism Work Order: 9080260

Time Collected: 08/14/19 17:20 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti			Batch ID
General Chemistry Paramete	rs									
% Solids	89.4	% by Weight	0.100	0.100	1	*SM2540 G	8/26/19	8:25	EDV	P9H0406
Volatile Organic Compounds	by GC/MS									
Benzene	BRL	mg/kg dry	0.0048	0.00075	1	8260D	8/26/19	18:27	JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0048	0.00072	1	8260D	8/26/19	18:27	JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.0096	0.0012	1	8260D	8/26/19	18:27	JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0048	0.00051	1	8260D	8/26/19	18:27	JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0048	0.00077	1	8260D	8/26/19	18:27	JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/26/19	18:27	JLB	P9H0434
			Surrogate			Recov	ery		Control I	Limits
			4-Bromoflu	orobenzene		104	1 %		70-130	
			Dibromoflu	oromethane		95	%		84-123	
			Toluene-d8			98 %			76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project N

Raleigh, NC 27607

Project No: GN7039

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P9H0310 - 5035			
Blank (P9H0310-BLK1)			Prepared & Analyzed: 08/19/19
1,1,1,2-Tetrachloroethane	BRL	0.0050	mg/kg wet
1,1,1-Trichloroethane	BRL	0.0050	mg/kg wet
1,1,2,2-Tetrachloroethane	BRL	0.0050	mg/kg wet
1,1,2-Trichloroethane	BRL	0.0050	mg/kg wet
1,1-Dichloroethane	BRL	0.0050	mg/kg wet
1,1-Dichloroethylene	BRL	0.0050	mg/kg wet
1,1-Dichloropropylene	BRL	0.0050	mg/kg wet
1,2,3-Trichlorobenzene	BRL	0.010	mg/kg wet
1,2,3-Trichloropropane	BRL	0.0050	mg/kg wet
1,2,4-Trichlorobenzene	BRL	0.010	mg/kg wet
1,2,4-Trimethylbenzene	BRL	0.0050	mg/kg wet
1,2-Dibromoethane	BRL	0.0050	mg/kg wet
1,2-Dichlorobenzene	BRL	0.0050	mg/kg wet
1,2-Dichloroethane	BRL	0.0050	mg/kg wet
1,2-Dichloropropane	BRL	0.0050	mg/kg wet
1,3,5-Trimethylbenzene	BRL	0.0050	mg/kg wet
1,3-Dichlorobenzene	BRL	0.0050	mg/kg wet
1,3-Dichloropropane	BRL	0.0050	mg/kg wet
1,4-Dichlorobenzene	BRL	0.0050	mg/kg wet
2,2-Dichloropropane	BRL	0.0050	mg/kg wet
2-Chlorotoluene	BRL	0.0050	mg/kg wet
4-Chlorotoluene	BRL	0.0050	mg/kg wet
4-Isopropyltoluene	BRL	0.0050	mg/kg wet
Acetone	BRL	0.020	mg/kg wet
Benzene	BRL	0.0050	mg/kg wet
Bromobenzene	BRL	0.0050	mg/kg wet
Bromochloromethane	BRL	0.0050	mg/kg wet
Bromodichloromethane	BRL	0.0050	mg/kg wet
Bromoform	BRL	0.0050	mg/kg wet
Bromomethane	BRL	0.010	mg/kg wet
Carbon Tetrachloride	BRL	0.0050	mg/kg wet
Chlorobenzene	BRL	0.0050	mg/kg wet
Chloroform	BRL	0.010	mg/kg wet
Chloroform	BRL	0.0050	mg/kg wet
Chloromethane	BRL	0.010	mg/kg wet
cis-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet
cis-1,3-Dichloropropylene Dibromochloromethane	BRL BRL	0.0050 0.0050	mg/kg wet mg/kg wet
Dichlorodifluoromethane Ethylbenzene	BRL BRL	0.010 0.0050	mg/kg wet mg/kg wet
Isopropyl Ether	BRL	0.0050	
Isopropyl Etner Isopropylbenzene (Cumene)	BRL	0.0050	mg/kg wet
m,p-Xylenes	BRL	0.0050	mg/kg wet mg/kg wet
Methyl Butyl Ketone (2-Hexanone)	BRL	0.010	mg/kg wet
Methyl Ethyl Ketone (2-Butanone)	BRL	0.020	mg/kg wet
Methyl Isobutyl Ketone	BRL	0.020	mg/kg wet
monty toobacy rectorie	DIXL	0.020	mg/ng not

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

est End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P9H0310 - 5035							
Blank (P9H0310-BLK1)				Prepared & A	nalyzed: 08/19/19)	
Methylene Chloride	BRL	0.0050	mg/kg wet				
Methyl-tert-Butyl Ether	BRL	0.0050	mg/kg wet				
Naphthalene	BRL	0.010	mg/kg wet				
n-Butylbenzene	BRL	0.0050	mg/kg wet				
n-Propylbenzene	BRL	0.0050	mg/kg wet				
o-Xylene	BRL	0.0050	mg/kg wet				
sec-Butylbenzene	BRL	0.0050	mg/kg wet				
Styrene	BRL	0.0050	mg/kg wet				
ert-Butylbenzene	BRL	0.0050	mg/kg wet				
Tetrachloroethylene	BRL	0.0050	mg/kg wet				
oluene	BRL	0.0050	mg/kg wet				
rans-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet				
rans-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet				
Trichloroethylene	BRL	0.0050	mg/kg wet				
Frichlorofluoromethane	BRL	0.010	mg/kg wet				
/inyl acetate	BRL	0.010	mg/kg wet				
/inyl chloride	BRL	0.010	mg/kg wet				
(ylenes, total	BRL	0.015	mg/kg wet				
Surrogate: 4-Bromofluorobenzene	50.9		ug/L	50.00	102	70-130	
Surrogate: Dibromofluoromethane	53.9		ug/L	50.00	108	84-123	
Surrogate: Toluene-d8	49.2		ug/L	50.00	98	76-129	
LCS (P9H0310-BS1)				Prepared & A	nalyzed: 08/19/19)	
1,1,1,2-Tetrachloroethane	0.0442	0.0050	mg/kg wet	0.05000	88	72-115	
,1,1-Trichloroethane	0.0460	0.0050	mg/kg wet		92	67-131	
,1,2,2-Tetrachloroethane	0.0421	0.0050	mg/kg wet		84	56-126	
,1,2-Trichloroethane	0.0421	0.0050	mg/kg wet	0.05000	84	70-133	
,1-Dichloroethane	0.0432	0.0050	mg/kg wet	0.05000	86	74-127	
,1-Dichloroethylene	0.0394	0.0050	mg/kg wet	0.05000	79	67-149	
,1-Dichloropropylene	0.0453	0.0050	mg/kg wet	0.05000	91	71-130	
,2,3-Trichlorobenzene	0.0432	0.010	mg/kg wet	0.05000	86	68-130	
,2,3-Trichloropropane	0.0419	0.0050	mg/kg wet	0.05000	84	60-137	
,2,4-Trichlorobenzene	0.0450	0.010	mg/kg wet		90	66-125	
,2,4-Trimethylbenzene	0.0442	0.0050	mg/kg wet		88	69-129	
,2-Dibromoethane	0.0426	0.0050	mg/kg wet	0.05000	85	70-132	
,2-Dichlorobenzene	0.0425	0.0050	mg/kg wet		85	72-123	
,2-Dichloroethane	0.0446	0.0050	mg/kg wet	0.05000	89	68-128	
,2-Dichloropropane	0.0437	0.0050	mg/kg wet	0.05000	87	73-130	
,3,5-Trimethylbenzene	0.0440	0.0050	mg/kg wet	0.05000	88	69-128	
,3-Dichlorobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	71-120	
,3-Dichloropropane	0.0428	0.0050	mg/kg wet	0.05000	86	75-124	
,4-Dichlorobenzene	0.0428	0.0050	mg/kg wet	0.05000	86	71-123	
2,2-Dichloropropane	0.0463	0.0050	mg/kg wet	0.05000	93	50-142	
2-Chlorotoluene	0.0437	0.0050	mg/kg wet	0.05000	87	67-124	
l-Chlorotoluene	0.0438	0.0050	mg/kg wet	0.05000	88	71-126	
l-Isopropyltoluene	0.0451	0.0050	mg/kg wet	0.05000	90	68-129	
Acetone	0.120	0.020	mg/kg wet	0.1000	120	29-198	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project No: GN7039

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (P9H0310-BS1)				Prepared & Ana	lyzed: 08/19/	19
Benzene	0.0433	0.0050	mg/kg wet	-	87	74-127
Bromobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	73-125
Bromochloromethane	0.0422	0.0050	mg/kg wet	0.05000	84	72-134
Bromodichloromethane	0.0456	0.0050	mg/kg wet	0.05000	91	75-122
Bromoform	0.0467	0.0050	mg/kg wet	0.05000	93	66-135
Bromomethane	0.0437	0.010	mg/kg wet	0.05000	87	20-180
Carbon Tetrachloride	0.0464	0.0050	mg/kg wet	0.05000	93	64-143
Chlorobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	74-118
Chloroethane	0.0420	0.010	mg/kg wet	0.05000	84	33-149
Chloroform	0.0442	0.0050	mg/kg wet	0.05000	88	73-127
Chloromethane	0.0382	0.010	mg/kg wet	0.05000	76	45-143
cis-1,2-Dichloroethylene	0.0432	0.0050	mg/kg wet	0.05000	86	76-134
cis-1,3-Dichloropropylene	0.0444	0.0050	mg/kg wet	0.05000	89	71-125
Dibromochloromethane	0.0446	0.0050	mg/kg wet	0.05000	89	73-122
Dichlorodifluoromethane	0.0405	0.010	mg/kg wet	0.05000	81	26-146
Ethylbenzene	0.0435	0.0050	mg/kg wet	0.05000	87	74-128
Isopropyl Ether	0.0443	0.0050	mg/kg wet	0.05000	89	59-159
Isopropylbenzene (Cumene)	0.0440	0.0050	mg/kg wet	0.05000	88	68-126
m,p-Xylenes	0.0886	0.010	mg/kg wet	0.1000	89	75-124
Methyl Butyl Ketone (2-Hexanone)	0.0480	0.020	mg/kg wet	0.05000	96	61-157
Methyl Ethyl Ketone (2-Butanone)	0.0510	0.020	mg/kg wet	0.05000	102	63-149
Methyl Isobutyl Ketone	0.0451	0.020	mg/kg wet	0.05000	90	57-162
Methylene Chloride	0.0414	0.0050	mg/kg wet	0.05000	83	74-129
Methyl-tert-Butyl Ether	0.0432	0.0050	mg/kg wet	0.05000	86	70-130
Naphthalene	0.0428	0.010	mg/kg wet	0.05000	86	57-157
n-Butylbenzene	0.0460	0.0050	mg/kg wet	0.05000	92	65-135
n-Propylbenzene	0.0443	0.0050	mg/kg wet	0.05000	89	67-130
o-Xylene	0.0442	0.0050	mg/kg wet	0.05000	88	74-126
sec-Butylbenzene	0.0446	0.0050	mg/kg wet	0.05000	89	66-131
Styrene	0.0438	0.0050	mg/kg wet	0.05000	88	77-121
tert-Butylbenzene	0.0445	0.0050	mg/kg wet	0.05000	89	67-132
Tetrachloroethylene	0.0449	0.0050	mg/kg wet	0.05000	90	68-130
Toluene	0.0435	0.0050	mg/kg wet	0.05000	87	71-129
trans-1,2-Dichloroethylene	0.0444	0.0050	mg/kg wet	0.05000	89	73-132
trans-1,3-Dichloropropylene	0.0448	0.0050	mg/kg wet	0.05000	90	68-123
Trichloroethylene	0.0453	0.0050	mg/kg wet	0.05000	91	75-133
Trichlorofluoromethane	0.0452	0.010	mg/kg wet	0.05000	90	44-146
Vinyl acetate	0.0456	0.010	mg/kg wet	0.05000	91	85-161
Vinyl chloride	0.0430	0.010	mg/kg wet	0.05000	86	48-147
Xylenes, total	0.133	0.015	mg/kg wet	0.1500	89	74-126
Surrogate: 4-Bromofluorobenzene	49.3		ug/L	50.00	99	70-130
Surrogate: Dibromofluoromethane	50.5		ug/L	50.00	101	84-123
Surrogate: Toluene-d8	49.4		ug/L	50.00	99	76-129

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

1 10,000 110. 0111 00

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0310 - 5035										
LCS Dup (P9H0310-BSD1)				Prepared	& Analyze	d: 08/19/1	9			
1,1,1,2-Tetrachloroethane	0.0447	0.0050	mg/kg wet			89	72-115	1	20	
1,1,1-Trichloroethane	0.0444	0.0050	mg/kg wet			89	67-131	4	20	
1,1,2,2-Tetrachloroethane	0.0413	0.0050	mg/kg wet			83	56-126	2	20	
1,1,2-Trichloroethane	0.0422	0.0050	mg/kg wet			84	70-133	0.4	20	
1,1-Dichloroethane	0.0423	0.0050	mg/kg wet			85	74-127	2	20	
, 1,1-Dichloroethylene	0.0402	0.0050	mg/kg wet			80	67-149	2	20	
I,1-Dichloropropylene	0.0441	0.0050	mg/kg wet			88	71-130	3	20	
1,2,3-Trichlorobenzene	0.0433	0.010	mg/kg wet			87	68-130	0.1	20	
1,2,3-Trichloropropane	0.0413	0.0050	mg/kg wet			83	60-137	2	20	
1,2,4-Trichlorobenzene	0.0438	0.010	mg/kg wet			88	66-125	3	20	
I,2,4-Trimethylbenzene	0.0436	0.0050	mg/kg wet			87	69-129	1	20	
I,2-Dibromoethane	0.0434	0.0050	mg/kg wet			87	70-132	2	20	
1,2-Dichlorobenzene	0.0426	0.0050	mg/kg wet			85	72-123	0.1	20	
1,2-Dichloroethane	0.0446	0.0050	mg/kg wet			89	68-128	0.1	20	
1,2-Dichloropropane	0.0435	0.0050	mg/kg wet			87	73-130	0.4	20	
1,3,5-Trimethylbenzene	0.0430	0.0050	mg/kg wet			86	69-128	2	20	
1,3-Dichlorobenzene	0.0428	0.0050	mg/kg wet			86	71-120	0.1	20	
I,3-Dichloropropane	0.0437	0.0050	mg/kg wet			87	75-124	2	20	
,4-Dichlorobenzene	0.0424	0.0050	mg/kg wet			85	71-123	0.8	20	
2,2-Dichloropropane	0.0445	0.0050	mg/kg wet			89	50-142	4	20	
2-Chlorotoluene	0.0426	0.0050	mg/kg wet			85	67-124	3	20	
I-Chlorotoluene	0.0434	0.0050	mg/kg wet			87	71-126	1	20	
I-Isopropyltoluene	0.0442	0.0050	mg/kg wet			88	68-129	2	20	
Acetone	0.126	0.020	mg/kg wet	0.1000		126	29-198	5	20	
Benzene	0.0421	0.020	mg/kg wet			84	74-127	3	20	
Bromobenzene	0.0421	0.0050	mg/kg wet			86	73-125	0.4	20	
Bromochloromethane	0.0431	0.0050	mg/kg wet			85	73-123	0.4	20	
Bromodichloromethane							72-13 4 75-122			
	0.0450	0.0050	mg/kg wet			90		1 1	20	
Bromoform	0.0463	0.0050	mg/kg wet			93	66-135	-	20	
Bromomethane	0.0415	0.010	mg/kg wet			83	20-180	5	20	
Carbon Tetrachloride	0.0452	0.0050	mg/kg wet			90	64-143	3	20	
Chlorobenzene	0.0424	0.0050	mg/kg wet			85	74-118	1	20	
Chloroethane	0.0404	0.010	mg/kg wet			81	33-149	4	20	
Chloroform	0.0438	0.0050	mg/kg wet			88	73-127	1	20	
Chloromethane	0.0366	0.010	mg/kg wet			73	45-143	4	20	
sis-1,2-Dichloroethylene	0.0429	0.0050	mg/kg wet			86	76-134	0.7	20	
cis-1,3-Dichloropropylene	0.0441	0.0050	mg/kg wet			88	71-125	0.6	20	
Dibromochloromethane	0.0444	0.0050	mg/kg wet			89	73-122	0.5	20	
Dichlorodifluoromethane	0.0389	0.010	mg/kg wet			78 86	26-146	4	20	
Ethylbenzene	0.0430	0.0050	mg/kg wet			86	74-128	1	20	
sopropyl Ether	0.0437	0.0050	mg/kg wet			87	59-159	1	20	
sopropylbenzene (Cumene)	0.0430	0.0050	mg/kg wet			86	68-126	2	20	
n,p-Xylenes	0.0871	0.010	mg/kg wet			87	75-124	2	20	
Methyl Butyl Ketone (2-Hexanone)	0.0482	0.020	mg/kg wet			96	61-157	0.4	20	
Methyl Ethyl Ketone (2-Butanone)	0.0512	0.020	mg/kg wet			102	63-149	0.3	20	
Methyl Isobutyl Ketone	0.0442	0.020	mg/kg wet	0.05000		88	57-162	2	20	

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

roject: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0310 - 5035										
.CS Dup (P9H0310-BSD1)			I	Prepared a	& Analyze	d: 08/19/1	9			
Methylene Chloride	0.0412	0.0050	mg/kg wet	0.05000		82	74-129	0.2	20	
Methyl-tert-Butyl Ether	0.0434	0.0050	mg/kg wet	0.05000		87	70-130	0.6	20	
Naphthalene	0.0426	0.010	mg/kg wet	0.05000		85	57-157	0.4	20	
n-Butylbenzene	0.0448	0.0050	mg/kg wet	0.05000		90	65-135	3	20	
n-Propylbenzene	0.0432	0.0050	mg/kg wet	0.05000		86	67-130	2	20	
p-Xylene	0.0441	0.0050	mg/kg wet	0.05000		88	74-126	0.3	20	
sec-Butylbenzene	0.0439	0.0050	mg/kg wet	0.05000		88	66-131	2	20	
Styrene	0.0445	0.0050	mg/kg wet	0.05000		89	77-121	2	20	
ert-Butylbenzene	0.0432	0.0050	mg/kg wet	0.05000		86	67-132	3	20	
Tetrachloroethylene	0.0425	0.0050	mg/kg wet	0.05000		85	68-130	6	20	
Toluene	0.0426	0.0050	mg/kg wet	0.05000		85	71-129	2	20	
rans-1,2-Dichloroethylene	0.0430	0.0050	mg/kg wet	0.05000		86	73-132	3	20	
rans-1,3-Dichloropropylene	0.0444	0.0050	mg/kg wet	0.05000		89	68-123	0.9	20	
Trichloroethylene	0.0435	0.0050	mg/kg wet	0.05000		87	75-133	4	20	
Trichlorofluoromethane	0.0419	0.010	mg/kg wet	0.05000		84	44-146	8	20	
/inyl acetate	0.0467	0.010	mg/kg wet	0.05000		93	85-161	2	20	
/inyl chloride	0.0404	0.010	mg/kg wet	0.05000		81	48-147	6	20	
(ylenes, total	0.131	0.015	mg/kg wet	0.1500		87	74-126	1	20	
Surrogate: 4-Bromofluorobenzene	50.0		ug/L	50.00		100	70-130			
Surrogate: Dibromofluoromethane	50.3		ug/L	50.00		101	84-123			
Surrogate: Toluene-d8	49.6		ug/L	50.00		99	76-129			
Batch P9H0347 - 5035										
Blank (P9H0347-BLK1)			I	Prepared a	& Analyze	d: 08/20/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
n,p-Xylenes	BRL	0.010	mg/kg wet							
p-Xylene	BRL	0.0050	mg/kg wet							
l'oluene l'alle	BRL	0.0050	mg/kg wet							
Kylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	50.2		ug/L	50.00		100	70-130			
Surrogate: Dibromofluoromethane	53.2		ug/L	50.00		106	84-123			
Surrogate: Toluene-d8	48.9		ug/L	50.00		98	76-129			

47.2

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Surrogate: Toluene-d8

Time Submitted: 8/16/2019 9:15:00AM

Prism Work Order: 9080260

Volatile Organic Compounds by GC/MS - Quality Control

Prepared & Analyzed: 08/20/19 September Complete			Reporting		Spike	Source		%REC		RPD	
Prepared & Analyzed: 08/20/19 Prepared & Analyzed: 08/20/1	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Service 0.0533 0.0050 mg/kg wet 0.05000 107 74-127 74-128	Batch P9H0347 - 5035										
Carby Carb	LCS (P9H0347-BS1)				Prepared ·	& Analyze	d: 08/20/1	9			
1,	Benzene	0.0533	0.0050	mg/kg wet	0.05000		107	74-127			
National Column National C	Ethylbenzene	0.0547	0.0050	mg/kg wet	0.05000		109	74-128			
Column	m,p-Xylenes	0.111	0.010	mg/kg wet	0.1000		111	75-124			
Sylenes, total 0.167 0.015 mg/kg wet 0.1500 111 74-126 mg/kg wet 0.1500 111 74-126 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 104 74-127 2 20 mg/kg wet 0.0500 mg/kg wet 0.0500 104 74-127 2 20 20 20 20 20 20 2	o-Xylene	0.0558	0.0050	mg/kg wet	0.05000		112	74-126			
Surrogate: 4-Bromofluorobenzene 48.7 ug/L 50.00 97 70-130 Surrogate: Dibromofluoromethane 51.6 ug/L 50.00 103 84-123 Surrogate: Toluene-d8 48.6 ug/L 50.00 97 76-129 Surrogate: Toluene-d8 48.10 Surrogate: Toluene-d8 48.3 ug/L 50.00 100 109 75-124 2 20 Surrogate: Toluene-d8 49.0 Surrogate:	Toluene	0.0546	0.0050	mg/kg wet	0.05000		109	71-129			
Surrogate: Dibromofluoromethane S1.6 ug/L 50.00 103 84-123 surrogate: Toluene-d8 48.6 ug/L 50.00 97 76-129 surrogate: Toluene-d8 48.6 ug/L 50.000 104 74-127 2 20 surrogate: Toluene-d8 0.0520 0.0520 mg/kg wet 0.05000 104 74-127 2 20 surrogate: 4.9 surrogate: 4.8 surrogate: 4.8 surrogate: 4.9 surro	Xylenes, total	0.167	0.015	mg/kg wet	0.1500		111	74-126			
Surrogate: Toluene-d8	Surrogate: 4-Bromofluorobenzene	48.7		ug/L	50.00		97	70-130			
Prepared & Analyzed: 08/20/19 September Septembe	Surrogate: Dibromofluoromethane	51.6		ug/L	50.00		103	84-123			
Renzene 0.0520 0.0050 mg/kg wet 0.05000 104 74-127 2 20 20 20 20 20 20 20 20 20 20 20 20 2	Surrogate: Toluene-d8	48.6		ug/L	50.00		97	76-129			
Strict S	LCS Dup (P9H0347-BSD1)				Prepared	& Analyze	d: 08/20/1	9			
1.0.5. N.pXylenes	Benzene	0.0520	0.0050	mg/kg wet	0.05000		104	74-127	2	20	
110 74-126 2 20 20 20 20 20 20 2	Ethylbenzene	0.0536	0.0050	mg/kg wet	0.05000		107	74-128	2	20	
Coluene Colu	m,p-Xylenes	0.109	0.010	mg/kg wet	0.1000		109	75-124	2	20	
Kylenes, total 0.164 0.015 mg/kg wet 0.1500 109 74-126 2 20 Surrogate: 4-Bromofluorobenzene 48.3 ug/L 50.00 97 70-130 30-130 30-123 <th< td=""><td>o-Xylene</td><td>0.0549</td><td>0.0050</td><td>mg/kg wet</td><td>0.05000</td><td></td><td>110</td><td>74-126</td><td>2</td><td>20</td><td></td></th<>	o-Xylene	0.0549	0.0050	mg/kg wet	0.05000		110	74-126	2	20	
Surrogate: 4-Bromofluorobenzene 48.3	Toluene	0.0532	0.0050	mg/kg wet	0.05000		106	71-129	2	20	
Surrogate: Dibromofluoromethane 51.5 ug/L 50.00 103 84-123 Surrogate: Toluene-d8 49.0 ug/L 50.00 98 76-129 Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Senzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Sthylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n.p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Xylenes, total	0.164	0.015	mg/kg wet	0.1500		109	74-126	2	20	
Surrogate: Toluene-d8 49.0 ug/L 50.00 98 76-129 Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.1101 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 x-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		97	70-130			
Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: Dibromofluoromethane	51.5		ug/L	50.00		103	84-123			
Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0555 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: Toluene-d8	49.0		ug/L	50.00		98	76-129			
Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 I-Xylene 0.0546 0.0555 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Matrix Spike (P9H0347-MS1)	Sou	rce: 908026	0-01	Prepared:	08/20/19	Analyzed	08/21/19			
n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 1-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 (Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Benzene	0.0524	0.0055	mg/kg dry	0.05504	BRL	95	60-135			
N-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Toluene, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Ethylbenzene	0.0536	0.0055	mg/kg dry	0.05504	BRL	97	44-144			
Soluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	m,p-Xylenes	0.110	0.011	mg/kg dry	0.1101	BRL	100	36-148			
Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	o-Xylene	0.0546	0.0055	mg/kg dry	0.05504	BRL	99	43-143			
Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Toluene	0.0528	0.0055	mg/kg dry	0.05504	BRL	96	57-135			
	Xylenes, total	0.165	0.017	mg/kg dry	0.1651	BRL	100	36-148			
Surrogate: Dibromofluoromethane 51.8 ug/L 50.00 104 84-123	Surrogate: 4-Bromofluorobenzene	45.8		ug/L	50.00		92	70-130			
	Surrogate: Dibromofluoromethane	51.8		ug/L	50.00		104	84-123			

ug/L

50.00

94

76-129

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

0/ DEC

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0347 - 5035										
Matrix Spike Dup (P9H0347-MSD1)	So	urce: 908026	0-01	Prepared:	08/20/19	Analyzed	08/21/19			
Benzene	0.0486	0.0054	mg/kg dry	0.05417	BRL	90	60-135	8	20	
Ethylbenzene	0.0499	0.0054	mg/kg dry	0.05417	BRL	92	44-144	7	19	
m,p-Xylenes	0.103	0.011	mg/kg dry	0.1083	BRL	95	36-148	7	20	
o-Xylene	0.0519	0.0054	mg/kg dry	0.05417	BRL	96	43-143	5	17	
Toluene	0.0495	0.0054	mg/kg dry	0.05417	BRL	91	57-135	7	22	
Xylenes, total	0.154	0.016	mg/kg dry	0.1625	BRL	95	36-148	6	20	
Surrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		97	70-130			
Surrogate: Dibromofluoromethane	55.3		ug/L	50.00		111	84-123			
Surrogate: Toluene-d8	47.2		ug/L	50.00		94	76-129			
Batch P9H0366 - 5035										
Blank (P9H0366-BLK1)				Prepared	& Analyze	ed: 08/21/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	51.2		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	60.3		ug/L	50.00		121	84-123			
Surrogate: Toluene-d8	47.1		ug/L	50.00		94	76-129			
LCS (P9H0366-BS1)				Prepared	& Analyze	ed: 08/21/1	9			
Benzene	0.0531	0.0050	mg/kg wet	0.05000		106	74-127			
Ethylbenzene	0.0562	0.0050	mg/kg wet	0.05000		112	74-128			
m,p-Xylenes	0.115	0.010	mg/kg wet	0.1000		115	75-124			
o-Xylene	0.0575	0.0050	mg/kg wet	0.05000		115	74-126			
Toluene	0.0550	0.0050	mg/kg wet	0.05000		110	71-129			
Xylenes, total	0.173	0.015	mg/kg wet	0.1500		115	74-126			
Surrogate: 4-Bromofluorobenzene	48.7		ug/L	50.00		97	70-130			
Surrogate: Dibromofluoromethane	54.0		ug/L	50.00		108	84-123			
Surrogate: Toluene-d8	48.9		ug/L	50.00		98	76-129			

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9H0366 - 5035										
LCS Dup (P9H0366-BSD1)				Prepared ·	& Analyze	d: 08/21/1	9			
Benzene	0.0494	0.0050	mg/kg wet			99	74-127	7	20	
Ethylbenzene	0.0523	0.0050	mg/kg wet	0.05000		105	74-128	7	20	
m,p-Xylenes	0.107	0.010	mg/kg wet	0.1000		107	75-124	7	20	
o-Xylene	0.0540	0.0050	mg/kg wet	0.05000		108	74-126	6	20	
Toluene	0.0511	0.0050	mg/kg wet	0.05000		102	71-129	7	20	
Xylenes, total	0.161	0.015	mg/kg wet	0.1500		107	74-126	7	20	
Surrogate: 4-Bromofluorobenzene	48.8		ug/L	50.00		98	70-130			
Surrogate: Dibromofluoromethane	53.0		ug/L	50.00		106	84-123			
Surrogate: Toluene-d8	48.5		ug/L	50.00		97	76-129			
Batch P9H0389 - 5035										
Blank (P9H0389-BLK1)				Prepared ·	& Analyze	d: 08/22/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	50.8		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	61.1		ug/L	50.00		122	84-123			
Surrogate: Toluene-d8	47.1		ug/L	50.00		94	76-129			
LCS (P9H0389-BS1)				Prepared ·	& Analyze	d: 08/22/1	9			
Benzene	0.0502	0.0050	mg/kg wet	0.05000		100	74-127			
Ethylbenzene	0.0535	0.0050	mg/kg wet	0.05000		107	74-128			
m,p-Xylenes	0.111	0.010	mg/kg wet	0.1000		111	75-124			
o-Xylene	0.0542	0.0050	mg/kg wet	0.05000		108	74-126			
Toluene	0.0520	0.0050	mg/kg wet	0.05000		104	71-129			
Xylenes, total	0.165	0.015	mg/kg wet	0.1500		110	74-126			
Surrogate: 4-Bromofluorobenzene	47.1		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	55.3		ug/L	50.00		111	84-123			
Surrogate: Toluene-d8	44.9		ug/L	50.00		90	76-129			

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0389 - 5035										
LCS Dup (P9H0389-BSD1)				Prepared	& Analyze	d: 08/22/1	9			
Benzene	0.0473	0.0050	mg/kg wet	0.05000		95	74-127	6	20	
Ethylbenzene	0.0501	0.0050	mg/kg wet	0.05000		100	74-128	7	20	
m,p-Xylenes	0.104	0.010	mg/kg wet	0.1000		104	75-124	6	20	
o-Xylene	0.0514	0.0050	mg/kg wet	0.05000		103	74-126	5	20	
Toluene	0.0489	0.0050	mg/kg wet	0.05000		98	71-129	6	20	
Xylenes, total	0.155	0.015	mg/kg wet	0.1500		104	74-126	6	20	
Surrogate: 4-Bromofluorobenzene	47.0		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	53.8		ug/L	50.00		108	84-123			
Surrogate: Toluene-d8	48.6		ug/L	50.00		97	76-129			
Matrix Spike (P9H0389-MS1)	Sou	ırce: 908026	0-19	Prepared:	08/22/19	Analyzed	08/23/19			
Benzene	0.0476	0.0057	mg/kg dry	0.05685	BRL	84	60-135			
Ethylbenzene	0.0509	0.0057	mg/kg dry	0.05685	BRL	90	44-144			
m,p-Xylenes	0.107	0.011	mg/kg dry	0.1137	BRL	94	36-148			
o-Xylene	0.0492	0.0057	mg/kg dry	0.05685	BRL	87	43-143			
Toluene	0.0487	0.0057	mg/kg dry	0.05685	BRL	86	57-135			
Xylenes, total	0.156	0.017	mg/kg dry	0.1705	BRL	91	36-148			
Surrogate: 4-Bromofluorobenzene	46.8		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	60.8		ug/L	50.00		122	84-123			
Surrogate: Toluene-d8	46.1		ug/L	50.00		92	76-129			
Matrix Spike Dup (P9H0389-MSD1)	Sou	ırce: 908026	0-19	Prepared:	08/22/19	Analyzed	08/23/19			
Benzene	0.0501	0.0057	mg/kg dry	0.05696	BRL	88	60-135	5	20	
Ethylbenzene	0.0491	0.0057	mg/kg dry	0.05696	BRL	86	44-144	4	19	
m,p-Xylenes	0.104	0.011	mg/kg dry	0.1139	BRL	91	36-148	3	20	
o-Xylene	0.0490	0.0057	mg/kg dry	0.05696	BRL	86	43-143	0.5	17	
Toluene	0.0511	0.0057	mg/kg dry	0.05696	BRL	90	57-135	5	22	
Xylenes, total	0.153	0.017	mg/kg dry	0.1709	BRL	89	36-148	2	20	
Surrogate: 4-Bromofluorobenzene	45.0		ug/L	50.00		90	70-130			
Surrogate: Dibromofluoromethane	61.7		ug/L	50.00		123	84-123			
Surrogate: Toluene-d8	46.6		ug/L	50.00		93	76-129			

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Surrogate: Toluene-d8

ect: NCDOT R-5726 West End Prism Work Order: 9080260
Time Submitted: 8/16/2019

Time Submitted: 8/16/2019 9:15:00AM

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9H0434 - 5035										
Blank (P9H0434-BLK1)			ļ	Prepared	& Analyze	d: 08/26/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	51.0		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	46.7		ug/L	50.00		93	84-123			
Surrogate: Toluene-d8	49.6		ug/L	50.00		99	76-129			
LCS (P9H0434-BS1)			ı	Prepared	& Analyze	d: 08/26/1	9			
Benzene	0.0513	0.0050	mg/kg wet	0.05000		103	74-127			
Ethylbenzene	0.0516	0.0050	mg/kg wet	0.05000		103	74-128			
m,p-Xylenes	0.100	0.010	mg/kg wet	0.1000		100	75-124			
o-Xylene	0.0501	0.0050	mg/kg wet	0.05000		100	74-126			
Toluene	0.0516	0.0050	mg/kg wet	0.05000		103	71-129			
Xylenes, total	0.150	0.015	mg/kg wet	0.1500		100	74-126			
Surrogate: 4-Bromofluorobenzene	52.0		ug/L	50.00		104	70-130			
Surrogate: Dibromofluoromethane	44.7		ug/L	50.00		89	84-123			
Surrogate: Toluene-d8	51.0		ug/L	50.00		102	76-129			
LCS Dup (P9H0434-BSD1)			ı	Prepared	& Analyze	d: 08/26/1	9			
Benzene	0.0480	0.0050	mg/kg wet		-	96	74-127	7	20	
Ethylbenzene	0.0479	0.0050	mg/kg wet	0.05000		96	74-128	7	20	
m,p-Xylenes	0.0930	0.010	mg/kg wet	0.1000		93	75-124	7	20	
o-Xylene	0.0468	0.0050	mg/kg wet	0.05000		94	74-126	7	20	
Toluene	0.0481	0.0050	mg/kg wet	0.05000		96	71-129	7	20	
Xylenes, total	0.140	0.015	mg/kg wet	0.1500		93	74-126	7	20	
Surrogate: 4-Bromofluorobenzene	52.6		ug/L	50.00		105	70-130			
Surrogate: Dibromofluoromethane	43.7		ug/L	50.00		87	84-123			

ug/L

50.00

100

76-129

50.0

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Project No: GN7039

General Chemistry Parameters - Quality Control

	Reporting		Spike Source		%REC		RPD			
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0353 - Solids, Dry Weight										
Duplicate (P9H0353-DUP1)	Sou	rce: 9080260)-04	Prepared	: 08/21/19	Analyzed	08/22/19			
% Solids	91.4	0.100	% by Weigh	nt	97.8			7	20	
Duplicate (P9H0353-DUP2)	Sou	rce: 9080260)-14	Prepared	: 08/21/19	Analyzed	08/22/19			
% Solids	96.6	0.100	% by Weigh	nt	90.5			7	20	
Batch P9H0369 - Solids, Dry Weight										
Duplicate (P9H0369-DUP1)	Sou	rce: 9080260)-20	Prepared	: 08/22/19	Analyzed	: 08/23/19			
% Solids	93.3	0.100	% by Weigh	nt	93.3			0.02	20	
Duplicate (P9H0369-DUP2)	Sou	rce: 9080260)-23	Prepared	: 08/22/19	Analyzed	08/23/19			
% Solids	97.6	0.100	% by Weigh	nt	97.8			0.1	20	
Batch P9H0406 - Solids, Dry Weight										
Duplicate (P9H0406-DUP1)	Sou	rce: 9080260)-39	Prepared	: 08/23/19	Analyzed	: 08/26/19			
% Solids	88.6	0.100	% by Weigh	nt	89.4			0.9	20	

Sample Extraction Data

Prep Method: Solids, Dry Weight

Lab Number	Batch	Initial	Final	Date/Time	
9080260-01	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-02	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-03	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-04	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-05	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-06	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-07	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-08	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-09	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-10	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-11	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-12	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-13	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-14	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-15	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-16	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-17	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-18	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-19	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-20	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-21	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-22	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-23	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-24	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-25	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-26	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-27	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-28	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-29	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-30	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-31	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-32	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-33	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-34	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-35	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-36	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-37	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-38	P9H0406	30 g	30 g	08/23/19 12:00	
9080260-39	P9H0406	30 g	30 g	08/23/19 12:00	

Prep Method: 5035

Lab Number	Batch	Initial	Final	Date/Time	
9080260-01	P9H0347	3.89 g	5 mL	08/20/19 10:00	
9080260-02	P9H0347	4.18 g	5 mL	08/20/19 10:00	
9080260-03	P9H0347	5.17 g	5 mL	08/20/19 10:00	
9080260-04	P9H0347	4.83 g	5 mL	08/20/19 10:00	
9080260-05	P9H0389	3.77 g	5 mL	08/22/19 10:00	
9080260-06	P9H0347	5.45 g	5 mL	08/20/19 10:00	
9080260-07	P9H0347	5.48 g	5 mL	08/20/19 10:00	
9080260-08	P9H0347	5.5 g	5 mL	08/20/19 10:00	
9080260-09	P9H0347	4.69 g	5 mL	08/20/19 10:00	
9080260-10	P9H0347	4.68 g	5 mL	08/20/19 10:00	
9080260-11	P9H0347	4.72 g	5 mL	08/20/19 10:00	
9080260-12	P9H0347	4.64 g	5 mL	08/20/19 10:00	
9080260-13	P9H0310	5.74 g	5 mL	08/19/19 10:00	
9080260-14	P9H0366	5.34 g	5 mL	08/21/19 10:00	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Sample Extraction Data

Prep Method: 5035

Lab Number	Batch	Initial	Final	Date/Time
9080260-15	P9H0347	3.3 g	5 mL	08/20/19 10:00
9080260-16	P9H0347	6.27 g	5 mL	08/20/19 10:00
9080260-17	P9H0347	5.54 g	5 mL	08/20/19 10:00
9080260-18	P9H0347	4.89 g	5 mL	08/20/19 10:00
9080260-19	P9H0389	6.23 g	5 mL	08/22/19 10:00
9080260-20	P9H0389	5.21 g	5 mL	08/22/19 10:00
9080260-21	P9H0434	4.84 g	5 mL	08/26/19 11:00
9080260-22	P9H0389	5.69 g	5 mL	08/22/19 10:00
9080260-23	P9H0310	5.96 g	5 mL	08/19/19 10:00
9080260-24	P9H0310	4.34 g	5 mL	08/19/19 10:00
9080260-25	P9H0389	4.74 g	5 mL	08/22/19 10:00
9080260-26	P9H0389	4.6 g	5 mL	08/22/19 10:00
9080260-27	P9H0389	3.91 g	5 mL	08/22/19 10:00
9080260-28	P9H0389	4.18 g	5 mL	08/22/19 10:00
9080260-29	P9H0389	4.28 g	5 mL	08/22/19 10:00
9080260-30	P9H0389	4.06 g	5 mL	08/22/19 10:00
9080260-31	P9H0389	4.36 g	5 mL	08/22/19 10:00
9080260-32	P9H0389	5.01 g	5 mL	08/22/19 10:00
9080260-33	P9H0389	5.13 g	5 mL	08/22/19 10:00
9080260-34	P9H0389	3.66 g	5 mL	08/22/19 10:00
9080260-35	P9H0389	3.79 g	5 mL	08/22/19 10:00
9080260-36	P9H0389	6.93 g	5 mL	08/22/19 10:00
9080260-37	P9H0434	4.94 g	5 mL	08/26/19 11:00
9080260-38	P9H0389	5.45 g	5 mL	08/22/19 10:00
9080260-39	P9H0434	5.81 g	5 mL	08/26/19 11:00

Site Location Physical Address: 11/16/15 Phone: 474-551-5334 Fax (Yes) (No): Report To/Contact Name: 586 8 67-03651 11/21/3 55-10-19899B 85.7-40-5485 Site Location Name: EDD Type: PDF X Excel X Other Email Address: Reporting Address: Client Company Name: _ SB66867-00-40-55 8/13/19 5845-03-7-75 5B43-02-6:S-7 □Fed Ex □UPS □ Hand-delivered □ Prism Field Service Upon relinquishing, this Chain of Custody1s your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized. 5-54-10-8-52 S\$13-02-7-7.5 5813-01-75-80 8/12/H Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY. Sampler's Signature SR13-03-6.57.0 Relinquished By: (Signature) Relinquished By: (Signature) SAMPLE DESCRIPTION Relinquished By: (Signature) ste you CLIENT 449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409 muang & geostates. com NCD07 DATE COLLECTED 8/13/19 8/13/10 8/13/19 8/13/19 8/12/19 8/12/16 GROUNDWATER: 8/13/19 NC Ruce 2760 COLLECTED MILITARY HOURS 09 10 1430 0840 1400 2.4 25.4.1 1340 1130 1030 1020 1100 DRINKING WATER: Other Sampled By (Print Name) WATER 100 SLUDO MATR (SOII Received By: (Signature) Received For Prism Laboratories By: SOLID WASTE:

اندا						-		7	×	×	Require Samp	Add	*Plea	Proje	0
<u> </u>	1		ermo	la SI			11	γοA	TYPE	SAMPL	ested Due I king Days' les receive round time (SEE REVER RENDEREL	ress:	ase ATTA	or oct Name	HAI
*	Hall	Ы	The state of				-11.	7	NO.	E CONTAL	BY S af af		CH any p	4 QUOT	0
	Sf ji								SIZE	NER	Day 2 Day 3 Si Days 1 Si D		roject spe Requirema	LOCON BILL	FCU
<							n/l	Minds	TIVE	PRESE	ys 3 Day tandard 10 d tandard next becased next ays, excludi tays, excludi tays, excludi tays, excludi		cific repoi	We PROPE	CHAIN OF CUSTODY RECORD
	ru:	un_	E I	10			Eg re	ple	i.	R A	ys □ 4 Da ys □ Ru lays □ Ru t business ing weeker arping se client)		rting (QC	St En	PY
-	(<	7	7	1	1	7	7	SE	5	393 □ 5 D: sh Work M a-Approved day. nds and ho res references	. Y uit	Ject: (Y	- 1	REC
			10.				in all	7	/	1	ays ust Be lidays.	err in 14	es) (NO)	7039	ORD
	u Talf	1						ute,	\	YSIS REC	TO BE Certific Water Sample		VO Re	dh.	
n Un	en			h-E		10.7	W.	t-		DESTED	FILLED sation: Chloring load U	MP: Them	Ceived WIT	nples INTA	
	:1:			100 100 100		-	- Turus	Soci TYU		\	IN BY C NELAC SC ated: YE pon Col	n ID:	HIN HOLE	WET ICE?	
CIIII	11 X	o Cla	e ne	in In				BT	20	nt o	CLIENT/S Do OTHE S N N N N N N N N N N N N		OING TIME CT?	arrival?	LAB USE ONLY
(7						I/F	EX ON	EMARKS		SAMPLI DI RI YES	bserved:	ES? PACE?		EONLY
								421	il d		NG PER	12	1119		
00	08	07	06	20	04	02	02	0	ID NO	PRISA	NC	соп: 3,3	10	N N	
	00 A A A A								BTEX ONLY	SEE BELOW NO. SIZE TIVES ON THE REMARKS III TO THE	SAMPLE CONTAINER TYPE SEE BELOW NO. SIZE MACHIPLE MA	Purchase Order No./Billing Reference	Address: Purchase Order No./Billing Reference 2017 7039 Purchase Order No./Billing Reference 2017 7039 Requested Due Date © 1 Day © 2 Days © 3 Days © 4 Days © 5 Days © 5 Days © 7 Bays Must Be Samples received after 14.00 will be processed next business day. Ser ERVERSE FOR TERMS & CONDITIONS REGARDING SERVICES SEE BELOW NO. SIZE TYPE 170A 44 Mustapla 1 Must	Please ATTACH any project specific reporting (QC LEVEL II III IV) Provisions and/or QC Requirements Invoice To: Address: Purchase Order No./Billing Reference Provisions and/or QC Requirements Requested Due Date © 1 Day © 2 Days © 3 Days © 4 Days © 5 Days Requested Due Date © 1 Day © 2 Days © 3 Days © 4 Days © 5 Days Requested Due Date © 1 Day © 2 Days © 3 Days © 4 Days © 5 Days Repuested Due Date © 1 Day © 2 Days © 3 Days © 4 Days © 5 Days To BE FILLED IN BY CLIENT/SAMPLING IN TO CLIENT/ Samples received aftr 4:00 will be processed nead business days, excluding weekends and holidays. SEE BELOW NO. SIZE PRESERVA- TYPE NO. SIZE PRESERVA- TYPE AMAUBLE AMAUBLE AMAUBLE PRESERVA- TYPE AMAUBLE AMAUBLE AMAUBLE AMAUBLE AMAUBLE PRESERVA- TYPE AMAUBLE AMAU	Project Name: WADT WAL End Short Hold Analysis: (Yes) (NO) UST Project: (Yes) (NO) UST PROPER PRESERVATIVES indicated? PROPER PROPER CONTAINERS year? CUSTODY SEALS INTACT? CUST

SEE REVERSE FOR TERMS & CONDITIONS

ONCOSC ONCOSC

ONC OSC

CONTAINER TYPE CODES:

A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

RCRA:

CERCLA ONC OSC

LANDFILL OTHER:

N0807

St-16-19

0915

Mileage:

Field Tech Fee: Site Departure Time p

Additional Comments:

Site Arrival Time:

PRISM USE ONLY

Affiliation

LABORATORIES, INC.	PRISM
	Full-Service Analytical & Environmental Solutions

449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

Site Location Physical Address: Site Location Name: NCDOT WEST THE Email Address: Mwang & g EDD Type: PDF X Excel X Other Report To/Contact Name: Client Company Name: 4869-05956 Phone: 979-551-5334 Fax (Yes) (No): Reporting Address: 5869-07-5.DSS 5869-06-99.5 5869-04-5-50 5869-63-5-55 5869-02-40-45 5869-01-60-65 5866867-06-75-8 □ NC □ SC Upon relinquishing, this CMain of Cust6dy is your authorization for Prism to proceed submitted in writing to the Prism Project Manager. There will be charges for any cha SB6167-04-55-60 8/13/19 ☐ Fed Ex ☐ UPS ☐ Hand-delivered ☐ Prism Field Service Sampler's Signature Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY. Relinquished By: (Signature) Relinquished By: (Signature) 5.5-F-20-1989985 Relinquished By: (Signature SAMPLE DESCRIPTION Ste 430, Kelokh, CLIENT ONC OSC mwang & geosynter wan COLLECTED 8/12/19 8/13/19 8/12/19 W/cy8 8/12/19 8/13/19 2/12/18 8/12/19 8/12/19 ONC OSC DATE GROUNDWATER: NC. 2/607 NUMBER Rlive Mars Bre TIME COLLECTED MILITARY HOURS 845 24 1400 1220 11/10 83 1300 645 1615 522 10 DRINKING WATER: Other_ Sampled By (Print Name) WATER OR SLUDGE) Sorl Soil 7:65 MATRIX (SOIL, 701C Received For Prism Laborate Received By: (Signature) Received By: (Signature) Samples received a Turnaround time is "Working Days" Requested Due Da Purchase Order provisions and/ Address: Invoice To: *Please ATTACH SEE BELOW VOA VOA *TYPE (SEE REVERSE RENDERED B SAMPLE SOLID WASTE:

*CONTAINER TYPE CODES:

A = Amber C = Clear G = Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

RCRA:

CERCLA ONC OSC

LANDFILL

□ sc

ONC OSC OTHER:

SEE REVERSE FOR TERMS & CONDITIONS

ORIGINAL

COC Group No

MO &

0
4 9
D
\mathbf{z}
0
77
20
ດ
_
(I)
0
Ě
9
-
1
П
0
0
10

Ved For Prism Laboratories By	ived by: (Signature	ived by: (Signature)	orism to proc orges for any	(Print Name)	VOA	<							L II	VOA	*TYPE	SAMP	Purchase Order No./Billing Reference Requested Due Date □ 1 Day □ 2 Days "Working Days" □ 6-9 Days □ Standard Samples received after 14:00 will be processed Turnaround time is based on business days, e: (SEE REVERSE FOR TERMS & CONDITIONS RENDERED BY PRISM LABORATORIES, INI	Address:	Project Name: // CDBT // Short Hold Analysis: (Yes) (No) Short Hold Analysis: (Yes) (No) *Please ATTACH any project specific provisions and/or QC Requirements Invoice To: // ABY INVOICE	PAGE 2 OF	CHA
boratories By			changes	M	t	*							7	1	NO.	SAMPLE CONTAINER	Cder No./E Date 1 1 Date 1 6 S" 6 Ped after 14 Ped after 14 Ped se based of THE PERSE FOR THE PERSE FOR THE		e: All Inalysis: ACH any Indior QC	4 aua	Z
1			he analyse after analys	chael	100	101	nia Maria	100	1111	aR)				M pa	SIZE	INER	Day 2 D: Day 2 D: Day 3 S Day 5 S Day 6 S Days 7 S Days 7 D D Days 7 D D D D D D D D D D D D D D D D D D D	12 1	alysis: (Yes) (No H any project speci Hor QC Requiremen	TE # TO EN	FCC
P		er d	Prism to proceed with the analyses as requested above. Any changes must be arges for any changes after analyses have been initialized.	Wang	multiple	(31	igul igul inls	uli 12				protople	TIVES	PRESERVA-	3 Days C 3 Days C 4 10 days C d next busing coluding we regarbing c. TO CLIEN		геро	2 OF 4 QUOTE # TO ENSURE PROPER BILLING:	CHAIN OF CUSTODY RECORD
			bove. An tialized.	Affiliation	×	X	×	×	×	×	×	×	×	×	S. Sales	\	4 Days 4 Days 4 Days 4 Days 4 Pre-Appropers day. Bess day. Bekends and Services 3 Services	150	UST Project:	LING:	70
S160 b1-91-12	Date	9	y change	on			03.	U LU	34.E						Ser.	1	5 Days Vork Must Be proved and holidays.		(Yes)	6N 7039	CO
10		B	s must	-X		emil:		I.A				я	H			ANALY	ezittiöini (-)	liom his	NO.	089	
>100		Military/Flours	be	mr.	AL.					ď		7(U	1		1	ANALYSIS REQUESTED	O BE certific water sample	TE OF		Sa	
		(p)				jour	шп	eni i	120			(124	ď		1	NESTE	FILLE ation Chlor cled	MP: Th	ceived (OPER F Ceived V ISTODY	mples II	
		Additio	in the same		alli en	75 Y	ranA extTi	fnN	E			,,,,	X III			- 6	TO BE FILLED IN BY CLI Certification: NELAC SC Water Chlorinated: YES Sample Iced Upon Colley	em ID:	Received ON WET ICE? PROPER PRESERVATIV Received WITHIN HOLD CUSTODY SEALS INTAK VOLATILES rec'd W/OUT	VTACT u	
		Additional Comments:		PRES	878	LIST			T.V	in ca			7	RT	\	-	BY CLIE	TEMP: Therm ID: 17-19	Received ON WET ICE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE BEOGREP CONTAINEDS word?	Samples INTACT upon arrival?	LAB
			mi ta	S DOWN	BIEX ONLY	~		LOIN	-CA-			VIII		X DNLY	REMARKS		TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NELACDoDFLNC_X SCOTHERN/A Water Chlorinated: YESNO Sample Iced Upon Collection: YES_X NO	Observed: 3	Received ON WET ICE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE?	7	LAB USE ONLY
Milesons.	Sie Departure Tille	Site Arrival Time:	PRISM L	FIRMLY .	K							anh	Ē	Y	S	r Izan	FLN/A	3,2 °C/Com	4/196	₹ €	Ī
Ö	o Inne.	me:	PRISM USE ONLY	PRESS DOWN FIRMLY - 3 COPIES	20	<u> </u>	18	-	16	15	_	13	17	=	ID NO.	PRISM	SONNEL	Corr. 3.3 °C	Page 58 (NO N/A	

449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

Short Hold Analysis: (Yes) ((No)

Project Name: _

N.CART

West Fre

UST Project:

10%

EDD Type: PDF X Excel Phone: 079 551-534 Fax (Yes) (No): Client Company Name: 5889 036.5-7 Site Location Physical Address: Site Location Name: Email Address: Reporting Address: Report To/Contact Name: SB89-02-5.5-5889-61-55. S878-036-6.5 □ NC □ SC □ Fed Ex □ UPS □ Hand-delivered □ Prism Field Service Upon relinquishing, this Cham of Custody is your authorization for Prism to proceed with the analyses as requested above. Any change submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized. 5B102-01-2.52 J889-4-7-7. SB78 72-55-6 5867-08-6-5 8/13/19 Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY. Relinguished By: Sampler's Signature Relinquished By: (Signature) 58-18-04-65-SAMPLE DESCRIPTION 48-8-01-7-7.5 te uso ONC OSC (Signature) minimales DATE 8/13/19 11/8 8/15/19 1030 8/14/19 11/4/18 8/15/19 046061/51/8 8/15/19 01/41/8 NC007 ONC OSC GROUNDWATER: X other NC 2760 TIME COLLECTED MILITARY HOURS geosynter. com 1130 0900 0930 1050 1550 1300 0900 6825 DRINKING WATER: 70 D Other Sampled By (Print Name) WATER OR 2000 SLUDGE) Z Z MATRIX (SOIL, Received For Prism Laboratories By: Received By: (Signature) Received By: (Signature) Purchase Order No./Billing Reference "Working Days" © 6-9 Days of Standard 10 days Pre-Approved
Samples received after 14:00 will be processed next business day. Requested Due Date 🗆 1 Day 🗀 2 Days 🗀 3 Days 🗀 4 Days 🗀 5 Days *Please ATTACH any project specific reporting (QC LEVEL I II III Turnaround time is based on business days, excluding weekends and holidays. Invoice To: provisions and/or QC Requirements Address: SEE BELOW VOA VOA TYPE (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRISM LABORATORIES, INC. TO CLIENT SAMPLE CONTAINER SOLID WASTE: 8 NO. Mahar 2

Mitological

Affiliation

Date M

Site Departure Time: Field Tech Fee:

Villeage:

Date

CHAIN OF CUSTODY RECORD

PAGE 3 OF 4 QUOTE # TO ENSURE PROPER BILLING: 6W70; (Yes) LAB USE ONLY

B		s must be	75.6		341/ - F.			Hac			l lui	ATT	1	NALY	(0	TOUR S			40	1
相	Military/Hours	t be	mil.	tari igais iya	C III	1.51	irmi irmi	2110			Turi Tu	persy person		MALYSIS REQUESTED	sample I		TO BE FILLE Certification:	PROPE TEMP:	Recei CUST	Samp
		n ba	Jeg 1	n las ulm	ista Se :	(1117) (21)	iud (iii)	300	THT O'F			41		ESTED	Sample Iced Upon Colle	SC	0	PROPER CONTAINE	PROPER PRESERVATIVES Received WITHIN HOLDING CUSTODY SEALS INTACT?	Samples INTACT upon arrival? Received ON WET ICE?
1/25	Additional Comments:	1011 1011 1011 1011 1011	PRESS DOWN FIRMLY	BTEX			in tu	117				2/1	BIEX (REMARKS	Collection: YES	~ 월	IN BY CLIENT/SAMPLING PERSONNEL NELAC DoD FL NC X	vers used? Observed:	PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT?	pon arrival?
	Site Arrival Time:	PRISM USE		ovey								di s	SMEY	RKS	SX NO	N/A	IPLING PERSO	red: 3, 2°C / Corr. 3	1140	
	×	SE ONLY	3 COPIES	30	25	28	27	26	25	24	22	8	رج	PRISM LAB ID NO.	His xi Slam His S	1	SONNEL	™3.3°c	Page 5	

SIZE

PRESERVA-TIVES

erios.

SEE REVERSE FOR TERMS & CONDITIONS

*CONTAINER TYPE CODES:

A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

RCRA: □ NC □ SC

ONC OSC CERCLA

ONC OSC ONC OSC

LANDFILL

OTHER:

COC Group No かたろ

9080

ı	U
3	刀
LABORATORIES, INC.	7
TORIES	
NC.	\leq
	92

/ironmental Solutions -Service Analytical &

Client Company Name: 449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

Reporting Address: Report To/Contact Name:

Invoice To:

EDD Type: PDF_ Email Address: Phone: Excel Fax (Yes) (No):

Site Location Physical Address: Site Location Name:

CHAIN OF CUSTODY RECORD

PAGE 4 OF 4 QUOTE # TO ENSURE PROPER BILLING: 647037 provisions and/or QC Requirements *Please ATTACH any project specific reporting (QC LEVEL I II III IV) Short Hold Analysis: Project Name: (Yes) (No) NICODI West UST Project: (Yes)

PROPER PRESERVATIVES indicated?

Received ON WET ICE? Samples INTACT upon arrival?

LAB USE ONLY

NO

PROPER CONTAINERS used? VOLATILES rec'd W/OUT HEADSPACE?

°C/Corr. S.J

CUSTODY SEALS INTACT? Received WITHIN HOLDING TIMES?

Page

60 of

Address:

Purchase Order No./Billing Reference Turnaround time is based on business days, excluding weekends and holidays. Samples received after 14:00 will be processed next business day "Working Days" (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES ☐ 6-9 Days A Standard 10 days ☐ Rush Work Must Be

Sample Iced Upon Collection: YES X NO. Certification: NELAC TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Water Chlorinated: YES OTHER _ DoD_ NO 7 N

				RENDERE	BY PRISM	LABORATOR	RENDERED BY PRISM LABORATORIES, INC. TO CLIENT)	Ų-	Sample Ice	Upon C	Sample Iced Upon Collection: YES	NO	
CLIENT	DATE	TIME	MATRIX	SAMPL	SAMPLE CONTAINER	NER		011	ANALYSIS REQUESTED	B) (1 0) (2) (2)		PRISM
SAMPLE DESCRIPTION	COLLECTED	MILITARY	WATER OR SLUDGE)	*TYPE	NO.	SIZE	TIVES	828	/	/	REM	REMARKS	ID NO.
58102-02-5.5-B 8/14/19	8/14/19	1135	2105	Vo4	4	- 1 -	Mustale	×		540	BTEX ONLY	LINO	ω –
58602-03-7-7.5 8/14/19	8/14/19	1300	_					×		- AT	d le	III	32
8/14/18 8-21-40-2018	8/14/19	1330		= 3			201	×	The Delta	ıe	OST		33
8860-05-45-5 8/14/19	8/14/19	1400						×					34
SB102-06-05-18/14/19	8/14/19	1450				15	Hi-	×			ury		35,
58102-077.5-8 8/W/19	8/4/19	1535	Tax	eita Aven	Tal	115-1	100	×	11,71		701		36
6/11/8 588-80-0085	6/41/8	1605		i i i		JACES JACES	Hint Le PRE-	X		(A.).	o de la contra		37
SB102-09-8.5-9 8/14/19	18/4/19	2491	<u> </u>	\	<	H L	<u> </u>	X		71x 511	•		38
SB141/8 2.12-10-10-10488	61/41/8	1720	21,95	UOA	t		Miltiple	X		i de	BIEX ONLY	MCX	28
Sampler's Signature	Myhne	y,	Sampled By	Sampled By (Print Name)		chael	Michael (Rang	Affiliation		1=X1 B 1 Y2	PRESS DOV	PRESS DOWN FIRMLY - 3 COPIE	3 COPIE
Upon relinquishing, this Chain of Custody & your authorization for Prism to proceed with the analyses as requested above. A submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	Chain of Custoc he Prism Project	ly ts your auth Manager. The	orization for F er will be cha	rism to proce rges for any c	ed with the	ne analyses fter analyse	as requested abo	ove. Any chan alized.	. Any changes must be ed.	nt in		PRISM USE ONLY	SE ONLY
Relinquished By: (Signature)	Mille	,	Receiv	Received By: (Signature)	uen m HX		Tak	Date	Military/Hours	Addition	Additional Comments:	Site Arrival Time:	ne:
Relinquished By: (Signature) Relinquished By: (Signature)	lea U		Receiv	Received By: (Signature) Received For Prism Laboratories By	oratories By:			Date				Site Departure Time: Field Tech Fee:	Time:
Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.	LL SAMPLE COOLER	S SHOULD BE TA	VED SHUT WITH	CUSTODY SEAL	S FOR TRA	USPORTATION	TO THE LABORATO		2-16-19 OAD			Mileage:	
Meniod of Shipment. NOTE: A	LL SAMPLE COOLET	משטטעבט פב וא	VED SHOT WITH	CUSTODY SEAL	S FOR IRA	VSPORIATION	I O THE LABORATO	KY. COC Group No.	oup No.				

SEE REVERSE FOR TERMS & CONDITIONS

□NC□SC □NC□SC

ONC OSC GROUNDWATER:

□NC □SC DRINKING WATER:

□ NC SOLID WASTE: □ SC

RCRA: □ NC □ SC

ONC OSC CERCLA

ONC OSC LANDFILL

ONC OSC OTHER:

CONTAINER TYPE CODES:

A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

NPDES:

UST:

□ Fed Ex □ UPS

☐ Hand-delivered ☐ Prism Field Service

O Other

Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY, SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.

North Carolina Department of Transportation

Century Center Complex, Building B 1020 Birch Ridge Drive Raleigh, North Carolina 27610

PRELIMINARY SITE ASSESSMENT NC 211 IN WEST END PARCEL 43 5114 NC HIGHWAY 211, MOORE COUNTY WEST END, NORTH CAROLINA

WBS #: 50218.1.1

TIP#: R-5726

Prepared by

Geosyntec Consultants of NC, PC 2501 Blue Ridge Road, Suite 430 Raleigh, North Carolina 27607

Project Number GN7039

October 2019

Date:

October 21, 2019

WBS Number:

50218.1.1

TIP Number:

R-5726

County:

Moore County

Description:

Preliminary Site Assessment

Address:

5114 NC 211, West End, North Carolina 27376 Parcel 43 (Susan McCaskill Morgan and Others)

Parcel ID:

Author:

R. Matthew Jenny, P.E.

I, <u>R. Matthew Jenny</u>, a Professional Engineer for <u>Geosyntec Consultants of NC, PC</u> do certify that the information in this report is correct and accurate to the best of my knowledge.

Not considered final until all signatures are completed

<u>Geosyntec Consultants of NC, PC</u> is licensed to practice engineering in North Carolina. The certification number (Firm's License Number) is <u>C-3500</u>.

<u>Geosyntec Consultants of NC, PC</u> is licensed to practice geology in North Carolina. The certification number (Firm's License Number) is <u>C-295</u>.

TABLE OF CONTENTS

1.	INT	FRODUCTION	1
	1.1	Description	1
	1.2	Site Background	1
	1.3	Scope of Work	1
2.	HIS	STORY	3
	2.1	Historical Aerial Photographs	3
	2.2		
3.	ME	ETHODS	4
	3.1	Geophysical Investigation	4
	3.2	Sub-Surface Soil Investigation	4
4.	RES	SULTS	6
	4.1	Site Observations	
	4.2	Geophysical Investigation Results	6
	4.3	Sub-Surface Investigation Results	6
		4.3.1 Field Sampling Observations and PID Results	6
		4.3.2 Soil Sampling Analytical Results	7
5.	SUN	MMARY	8

LIST OF TABLES

Table 1: Soil Boring Coordinates

Table 2: Soil Analytical Results – TPH by UVF

Table 3: Soil Analtyical Results – VOCs

LIST OF FIGURES

Figure 1: Site Location Figure 2: Site Layout

Figure 3: Soil Boring Locations (Roadway Design Base Map)

LIST OF APPENDICES

Appendix A: Geophysical Investigation Report

Appendix B: Photographic Log Appendix C: Soil Boring Logs Red Lab UVF Report Appendix D:

Prism Laboratories Analytical Report Appendix E:

1. INTRODUCTION

1.1 <u>Description</u>

Geosyntec Consultants of NC, PC (Geosyntec) presents this technical report (Report) to the North Carolina Department of Transportation (NCDOT) for the Preliminary Site Assessment (PSA) of 5114 NC 211 in West End, North Carolina (the Site). The Site is associated with NCDOT TIP number R-5726, Parcel 43, and owned by Susan McCaskill Morgan and Others. A Site location map is presented in **Figure 1**.

Geosyntec understands NCDOT would like to acquire right-of-way (ROW) and Public Utility Easements (PUEs) for road improvements along NC 211 in West End, North Carolina. The principal purpose of this PSA is to assess the possible presence of underground storage tanks (USTs) and/or above-ground storage tanks (ASTs), determine the likelihood of environmental impacts (i.e., soil and/or groundwater contamination), and make recommendations for regulatory compliance within the project study area.

This report discusses the Site history, investigative methodology, observations, sampling results, conclusions, and recommendations.

1.2 Site Background

NCDOT Parcel 43 (Moore County Parcel number 00022508 [Susan McCaskill Morgan and Others]) is located on 5114 NC HWY 211 in West End. **Figure 2** shows the general Site layout, including the locations of the soil borings advanced to investigate the subsurface of the Site. According to NCDOT, the Site is a former gas station and auto garage. Currently, the Site has a vacant building. No known UST incidents are associated with the Site.

The property is approximately 1.5 acres and is bounded to the immediate east by NC 211 and to the north, west and south by forest and grassland. Approximately two-thirds of the southern half of the property is covered by a dense tree line and was inaccessible. No investigative activities were performed in this inaccessible portion of the property.

1.3 Scope of Work

The scope of work consisted of a historical Site desktop review, geophysical survey, and sub-surface soil investigation. The geophysical survey was performed to locate potential

GN7039 1 10/21/19

metallic USTs, UST-associated product lines, non-UST metallic anomalies, and private underground utility lines within the immediate vicinity of the proposed soil boring locations. Following the geophysical survey, soil borings were advanced and soil samples were collected from each location to determine if, and to what extent, contaminated soils are present within the study area.

2. HISTORY

Geosyntec reviewed publicly accessible online environmental databases (i.e., the North Carolina Department of Environmental Quality [NCDEQ] Laserfiche database, the NCDEQ Division of Waste Management Site Locator Tool, and the NCDEQ UST Section database) to research the Site history.

2.1 <u>Historical Aerial Photographs</u>

The following reviews the findings from the historical aerial photographs, as provided by Google Earth® imagery:

- The earliest aerial photographs date back to 1993, which shows one above-grade structure on the property. The structure identified in the 1993 aerial photograph appears consistent with the present-day building.
- No significant deviations to the site were identified between 1993 and 2018.
- The Site surroundings (residential and commercial land) appear generally consistent from 1993 to 2018.

2.2 Subject Site Findings

There were no UST incidents associated with the property identified in the initial Site historical review. Further, other (i.e., non-UST) environmental incidents were not identified as part of a cursory desktop review.

Based upon the limited environmental history information, Geosyntec conducted a Site investigation inclusive of a geophysical survey and intrusive activities to screen soil and evaluate if there is contamination within the Site study area.

3. METHODS

3.1 Geophysical Investigation

The geophysical investigation was performed at the Site by Pyramid Environmental and Engineering P.C. (Pyramid) from July 29 to July 31, 2019 to locate and mark buried USTs, buried metallic drums, and/or buried utility lines within the accessible portions of the ROW/PUE extent. Generally, the tasks consisted of an electromagnetic inductionmetal (EM) detection followed by ground penetrating radar (GPR) surveys.

The EM data was digitally collected at approximately 1-foot intervals along survey lines spaced approximately five feet apart. The EM unit can detect a metal drum down to a depth of approximately eight (8) to ten (10) feet. GPR scanning was conducted across selected EM metal detection anomalies, around the proposed boring locations, and across the entire ROW/PUE area along with a DitchWitch utility locator for buried utility line clearance. Additional details of the geophysical investigation methodology are provided in **Appendix A** of the report.

3.2 **Sub-Surface Soil Investigation**

The sub-surface investigation was conducted on August 12-15, 2019 using a direct push technology (DPT) drill rig. SAEDACCO provided the drilling services. North Carolina 811 was notified to mark utility lines within the existing ROW prior to drilling. A hand auger was used for the top three (3) to five (5) feet of each boring as an additional safety precaution.

Four (4) soil borings were completed during this investigation, each extending 10 feet below ground surface (ft bgs). Soil sampling locations were selected in areas likely to be encountered during roadway construction. Specific priority was placed at locations proximal to the identified "No Confidence anomaly" (discussed in more detail in the Results section of the report). The soil lithology was recorded, and the soil was screened using a photo-ionization detector (PID) with a 10.6 electron-Volt lamp at approximately 6-inch intervals. Soil samples were collected from each boring at an elevation corresponding to the highest PID reading. In instances where PID readings were null, field personnel used professional judgement (e.g., odors, staining, historical Site-use information) to determine the appropriate sampling depth.

Upon DPT completion, the soil cuttings were dispersed over the Site's natural areas and/or backfilled within the boring. Boring surface completions matched pre-existing conditions to the extent practical. Boring locations were surveyed with a global position system (GPS) unit. DPT rods were decontaminated with a Liquinox[®] cleaning solution between borings. Free product was not encountered during soil sampling, nor was other investigative derived waste (IDW) accumulated. As such, IDW drums were unnecessary.

Samples were sent off-site to Red Lab, LLC (Red Lab) and Prism Laboratories, Inc. (Prism). The samples sent to Red Lab were analyzed for Total Petroleum Hydrocarbon (TPH), gasoline-range organics (GRO), and diesel-range organics (DRO) by Ultra-Violet Fluorescence (UVF). Soil samples submitted to Prism were analyzed for volatile organic compounds (VOCs) by USEPA Method 8260B, reporting only benzene, toluene, ethylbenzene, and xylenes (BTEX). The analytical approaches are consistent with the UST Section Guidance. Samples were sent on ice under chain of custody procedures to the applicable laboratory.

4. **RESULTS**

4.1 Site Observations

On July 29, 2019 Geosyntec performed an initial Site walk with Pyramid prior to conducting work. The Site is vacant and assumed to operate as a former fuel station and auto-maintenance shop. Most of the southern half of the property is covered by a dense tree line. **Appendix B** provides a photographic log of observations.

4.2 Geophysical Investigation Results

The geophysical survey was performed to locate and mark buried USTs, buried metallic drums, and/or buried utility lines within the ROW/PUE extent using both EM and GPR approaches.

Pyramid identified four (4) EM anomalies. The majority of the EM anomalies were directly attributed to visible features at the ground surface. One metallic anomaly was associated with unknown buried metal and was investigated by GPR. GPR recorded evidence of a possible buried metallic structure or debris; however, the feature was not consistent with what would be expected for an UST. The anomaly was approximately 13 feet long and 6.5 feet wide and is classified by Pyramid as a "No Confidence anomaly". The finding is buried approximately 4 ft bgs. Pyramid's geophysical report is provided in **Appendix A**.

4.3 Sub-Surface Investigation Results

4.3.1 Field Sampling Observations and PID Results

Following the geophysical survey, the sub-surface investigation was performed to determine if, and to what extent, contaminated soils are present within the study area. Four (4) soil borings were completed during this investigation, each extending 10 ft bgs. PID soil screening values were minimal (less than 1 part per million [ppm]) throughout the entirety of each soil boring. The soil lithology generally consisted of top soil in the first three (3) ft bgs followed by sandy clay with some gravel. Groundwater was not encountered. Soil sampling locations are shown on **Figure 2** and GPS coordinates are recorded on **Table 1**. The boring logs are provided in **Appendix C**.

4.3.2 Soil Sampling Analytical Results

Four (4) soil samples were collected as part of the intrusive investigation and analyzed for TPH by UVF and VOCs by EPA Method 8260B. The TPH analytical data was screened against the TPH DRO and TPH GRO values established in the UST Section Guidance. The benzo(a)pyrene and BTEX analytical data were compared to the NCDEQ UST Section Maximum Soil Contaminant Concentrations (MSCCs).

The UVF fingerprinting data do not indicate soil screening level exceedances for the constituents analyzed. DRO was detected in the SB43-01 soil sample. No results exceeded the screening values. **Table 2** shows the TPH analytical results.

VOC analytical data was screened against the NCDEQ UST Section MSCCs. No detections were reported. The VOC analytical results are shown in **Table 3.**

The UVF analytical report, including the fingerprint matching data, is provided in **Appendix D**; the Prism analytical report is provided in **Appendix E** 1 . **Figure 3** displays the soil boring locations using a preliminary roadway design drawing base map.

_

¹The Prism Laboratory report includes analytical results for samples collected from other parcels associated with NCDOT project R-5726

5. SUMMARY

From August 12-15, 2019 Geosyntec completed an environmental PSA to determine the likelihood of contamination within the proposed acquisition area on the property located at 5114 NC 211, West End, North Carolina (NCDOT Parcel 43). The property is owned by Susan McCaskill Morgan and Others. The following summarizes the findings of this PSA.

Following a cursory desktop Site review, no environmental incidents associated with the Site were identified. A geophysical survey and intrusive soil investigation were performed as part of this scope of work. Pyramid identified one metallic "No Confidence" anomaly believed to be associated with an unknown buried structure or debris. The anomaly is approximately 13 feet long and 6.5 feet wide and is located approximately 50 feet southeast of the former service station. The finding is located within the proposed PUE and is buried approximately 4 ft bgs. Four (4) soil borings were advanced within the PUE boundary to investigate the environmental impacts on the property, including two (2) soil borings within the immediate vicinity of the underground anomaly. Petroleum impacts to Site soils were not identified during field screening or as part of analytical testing. Groundwater was not encountered.

The work performed herein did not identify petroleum impacts in shallow soils within the Site study area. Geosyntec anticipates a low likelihood of encountering shallow soil impacts within the proposed PUE extent. Geosyntec recommends test pitting to clarify the No Confidence anomaly identified as part of this investigation.

TABLES

Table 1 Soil Boring Coordinates 5114 NC 211, West End, North Carolina 27376 NCDOT Parcel 43

TIP: R-5726 WBS: 50218.1.1

Soil Boring ID	Longitude	Latitude
SB43-01-4.5-5.0	-79.570211	35.245440
SB43-02-6.5-7.0	-79.570258	35.245467
SB43-03-7.0-7.5	-79.570310	35.245576
SB43-04-7.5-8.0	-79.570347	35.245677

Note:

1) Coordinate datum reference: WGS 1984.

Table 2

Soil Analytical Results - TPH by UVF

5114 NC 211, West End, North Carolina 27376 NCDOT Parcel 43

TIP: R-5726

WBS: 50218.1.1

		Analyte	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	Benzo[a]pyrene
		Units				mg/kg			
	UST 1	ГРН Guidance		50	100				
	Soil-to-	Water MSCCs							0.096
	Residenti	ial Soil MSCCs							0.088
	Commercial / Ind	ustrial MSCCs							0.78
Sample ID	Sample Depth (ft bgs)	Sample Date							
SB43-01-4.5-5.0	4.5-5.0	8/13/2019	< 0.3	< 0.3	0.98	0.98	0.55	< 0.1	< 0.012
SB43-02-6.5-7.0	6.5-7.0	8/13/2019	< 0.32	< 0.32	< 0.32	< 0.32	< 0.06	< 0.1	< 0.013
SB43-03-7.0-7.5	7.0-7.5	8/13/2019	< 0.25	< 0.25	< 0.25	< 0.25	< 0.05	< 0.08	< 0.01
SB43-04-7.5-8.0	7.5-8.0	8/13/2019	< 0.28	< 0.28	< 0.28	< 0.28	< 0.06	< 0.09	< 0.011

Notes:

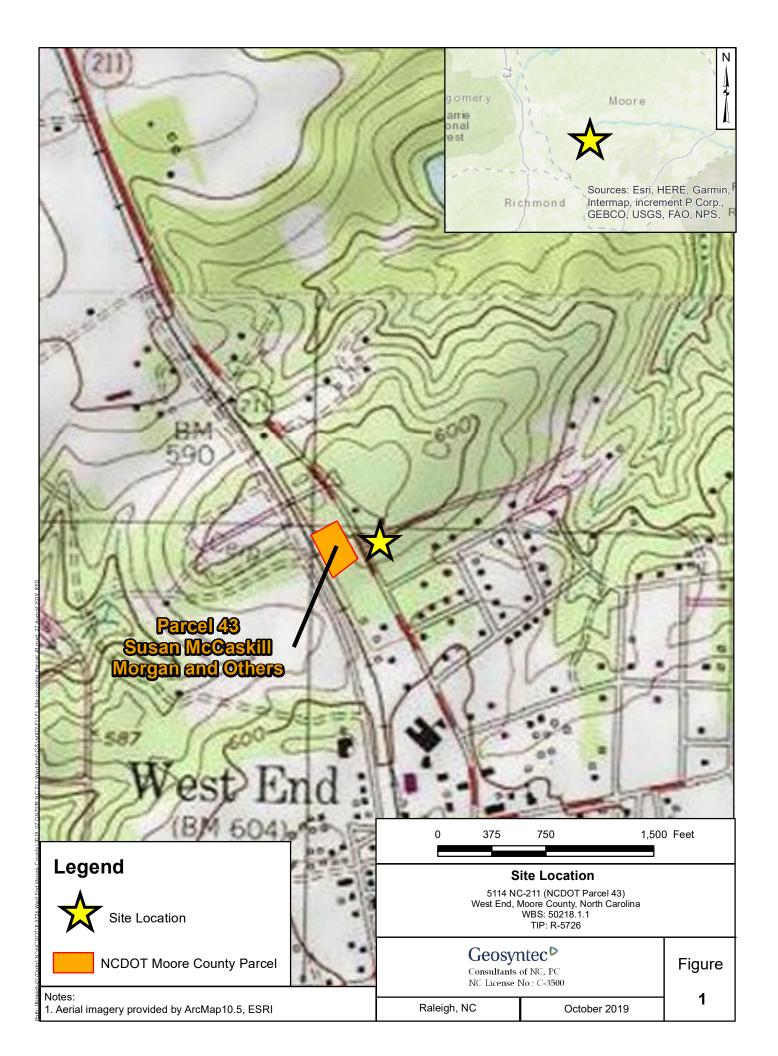
- (1) mg/kg indicates milligrams per kilogram.
- (2) NCDEQ UST Guidance references the 26 July 2016 Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH).
- (3) MSCC indicates North Carolina Department of Environmental Quality (NCDEQ) Underground Storage Tank (UST) Section Maximum Contaminant Concentration Levels, updated November 2016.
- (4) < indicates analyte was not detected above the laboratory method detection limit (MDL).
- (5) Detections are identified in bold.
- (6) --- indicates screening criteria not established.
- (7) UVF indicates ultraviolet fluorescence.
- (8) TPH indicates total petroleum hydrocarbons.
- (9) GRO indicates gasoline range organics.
- (10) DRO indicates diesel range organics.
- (11) PAH indicates polycyclic aromatic hydrocarbon.
- (12) BTEX indicates benzene, toluene, ethylbenzene, and xylenes.
- (13) ft. bgs indicates feet below ground surface.

Table 3 Soil Sampling Analytical Summary - VOCs 5114 NC 211, West End, North Carolina 27376 NCDOT Parcel 43

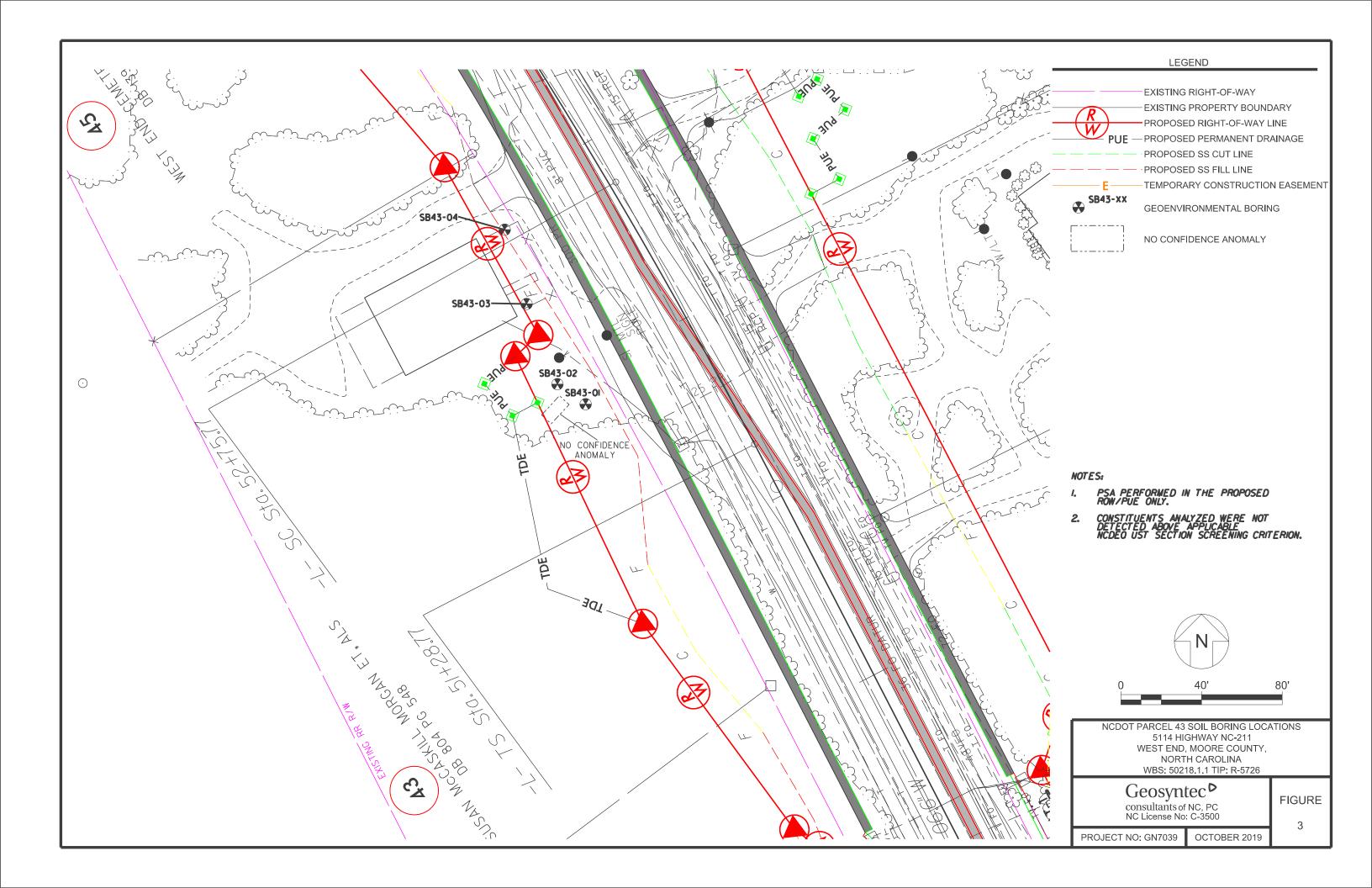
TIP: R-5726 WBS: 50218.1.1

		NCDEQ	NCDEQ Soil-	Sample ID	SB43-01	SB43-02	SB43-03	SB43-04
	NCDEQ	Industrial/	to-Water	Sample Date	8/13/2019	8/13/2019	8/13/2019	8/13/2019
Analyte	Residential Soil Cleanup Levels	Commercial Soil	Maximum	Sample Depth (ft. bgs)	4.5-5.0	6.5-7.0	7.0-7.5	7.5-8.0
	MSCC	Cleanup Levels	Contaminant	Sample Type		Gr	ab	
	Misce	MSCC	MSCC	Units		mg	/kg	
Volatile Organic Comp	ounds (VOCs) by E	EPA Method 8260B						
Benzene	18	164	0.0056	mg/kg	< 0.0053	< 0.0073	< 0.0061	< 0.0054
Ethylbenzene	1,560	40,000	4.9	mg/kg	< 0.0053	< 0.0073	< 0.0061	< 0.0054
m,p-Xylenes	3,129	81,760	4.6	mg/kg	< 0.011	< 0.015	< 0.012	< 0.011
o-Xylene	3,129	81,760	4.6	mg/kg	< 0.0053	< 0.0073	< 0.0061	< 0.0054
Toluene	1,200	32,000	4.3	mg/kg	< 0.0053	< 0.0073	< 0.0061	< 0.0054
Xylene (total)	3,129	81,760	4.6	mg/kg	< 0.016	< 0.022	< 0.018	< 0.016

Notes:


- (1) North Carolina Department of Environmental Quality (NCDEQ) Underground Storage Tank (UST) Section Maximum Soil Contaminant Concentrations (MSCCs) as indicated in the NCDEQ UST Section *Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases*, amended April 2012.
- (2) VOC indicates volatile organic compound.
- $(3) \ mg/kg \ indicates \ milligrams \ per \ kilogram$
- (4) Concentrations exceeding MSCCs are highlighted as shown:

Residential	Industrial	Soil-to-Water


- (5) ft bgs indicated feet below ground surface
- $(6) < indicates \ analyte \ was \ not \ detected \ above \ the \ laboratory \ reporting \ limit \ (RL).$
- (7) Only benzene, toluene, ethylbenzene, and xylenes (BTEX) were reported.

FIGURES

APPENDIX A Geophysical Investigation Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-233)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 43 NCDOT PROJECT R-5726 (50218.1.1)

5114 N.C. 211, WEST END, NC August 23, 2019

Report prepared for: Mr. Matt Jenny, P.E.

> Geosyntec Consultants of NC, PC 2501 Blue Ridge Road, Suite 430

Raleigh, NC 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 43 - 5114 N.C. 211

West End, Moore County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 43 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 43 EM61 Results Contour Map
- Figure 3 Parcel 43 GPR Transect Locations and Images
- Figure 4 Parcel 43 Location and Size of One No Confidence Anomaly
- Figure 5 Overlay of Metal Detection Results and One No Confidence Anomaly onto NCDOT Engineering Plans

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Geosyntec Consultants of NC, PC at Parcel 43, located at 5114 N.C. 211 in West End, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-5726). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 29-31, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of four EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. One metallic anomaly was associated with unknown buried metal and was investigated by GPR. GPR recorded evidence of a possible buried metallic structure or debris; however, the feature was not consistent with what would be expected for a UST. This anomaly was approximately 13 feet long and 6.5 feet wide and was classified as a No Confidence anomaly. No evidence of any additional buried structures was observed. Collectively, the geophysical data recorded evidence of one No Confidence anomaly at Parcel 43.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Geosyntec Consultants of NC, PC at Parcel 43, located at 5114 N.C. 211 in West End, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-5726). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from July 29-31, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a commercial building surrounded by grass, dirt and asphalt surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on May 10, 2019, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 controller coupled to a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects				
High Confidence Intermediate Confidence Low Confidence No Confidence Known UST Probable UST Possible UST Anomaly noted but not				
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.	

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Building	✓
2	Metal Poles	
3	Sign/Light	
4	No Confidence Anomaly	✓

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including the building, metal poles, a sign and a light. EM Anomaly 4 was associated with unknown buried metal and was investigated by GPR. GPR was also performed along the east side of the building to verify that the metallic interference observed in this area did not obscure any significant buried structures such as USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as the transect images. A total of three GPR transects were performed at the property. GPR Transects 1 and 2 were performed across the known buried metal associated with EM Anomaly 4. These transects recorded minor isolated hyperbolic reflectors in both directions that were suggestive of a buried metal structure or debris. The size and shape of the possible structure was inconsistent with what would be expected for a UST. For this reason, the feature has been classified as a No Confidence anomaly. The No Confidence anomaly was approximately 13 feet long and 6.5 feet wide. Figure 4 provides the location and size of the No Confidence anomaly overlain on an aerial photograph as well as ground-level photographs. Figure 5 provides an overlay of the metal detection results and the No Confidence anomaly onto the NCDOT Engineering plans.

GPR Transect 3 was performed along the east side of the building, and did not record any evidence of buried structures.

Collectively, the geophysical data <u>recorded evidence of one No Confidence anomaly at</u> Parcel 43.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 43 in West End, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- One metallic anomaly was associated with unknown buried metal and was investigated by GPR.
- GPR recorded evidence of a possible buried metallic structure or debris; however, the feature was not consistent with what would be expected for a UST. This anomaly was approximately 13 feet long and 6.5 feet wide and was classified as a No Confidence anomaly.
- No evidence of any additional buried structures was observed.
- Collectively, the geophysical data <u>recorded evidence of one No Confidence</u> anomaly at Parcel 43.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Geosyntec Consultants of NC, PC in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately South)

PROJECT PARCEL 43 WEST END, NORTH CAROLINA

NCDOT PROJECT R-5726

TITLE

PARCEL 43 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	8/8/2019	CLIENT	GEOSYNTE
PYRAMID PROJECT #:	2019-233		FIGURE 1

EM61 METAL DETECTION RESULTS

EVIDENCE OF ONE NO CONFIDENCE ANOMALY OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on July 29, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 controller with a 350 MHz HS antenna on July 31, 2019.

> **EM61 Metal Detection Response** (millivolts)

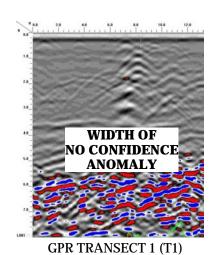
PROJECT (336) 335-3174 (p) (336) 691-0648 (f)

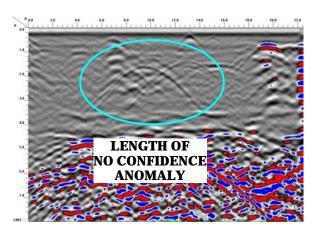
503 INDUSTRIAL AVENUE

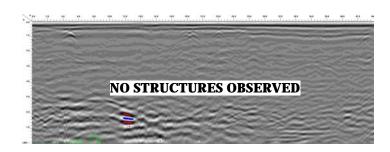
GREENSBORO, NC 27406

License # C1251 Eng. / License # C257 Geology

PARCEL 43 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726


TITLE


PARCEL 43 -EM61 METAL DETECTION CONTOUR MAP


DATE	8/8/2019	CLIENT GEOSYNTEC
PYRAMID PROJECT #:	2019-233	FIGURE 2

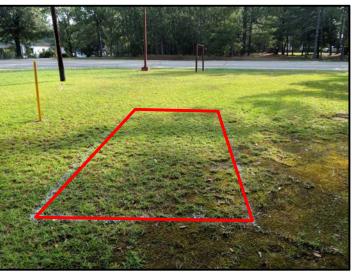
LOCATIONS OF GPR TRANSECTS

GPR TRANSECT 2 (T2)

GPR TRANSECT 3 (T3)

N

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT


PARCEL 43 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

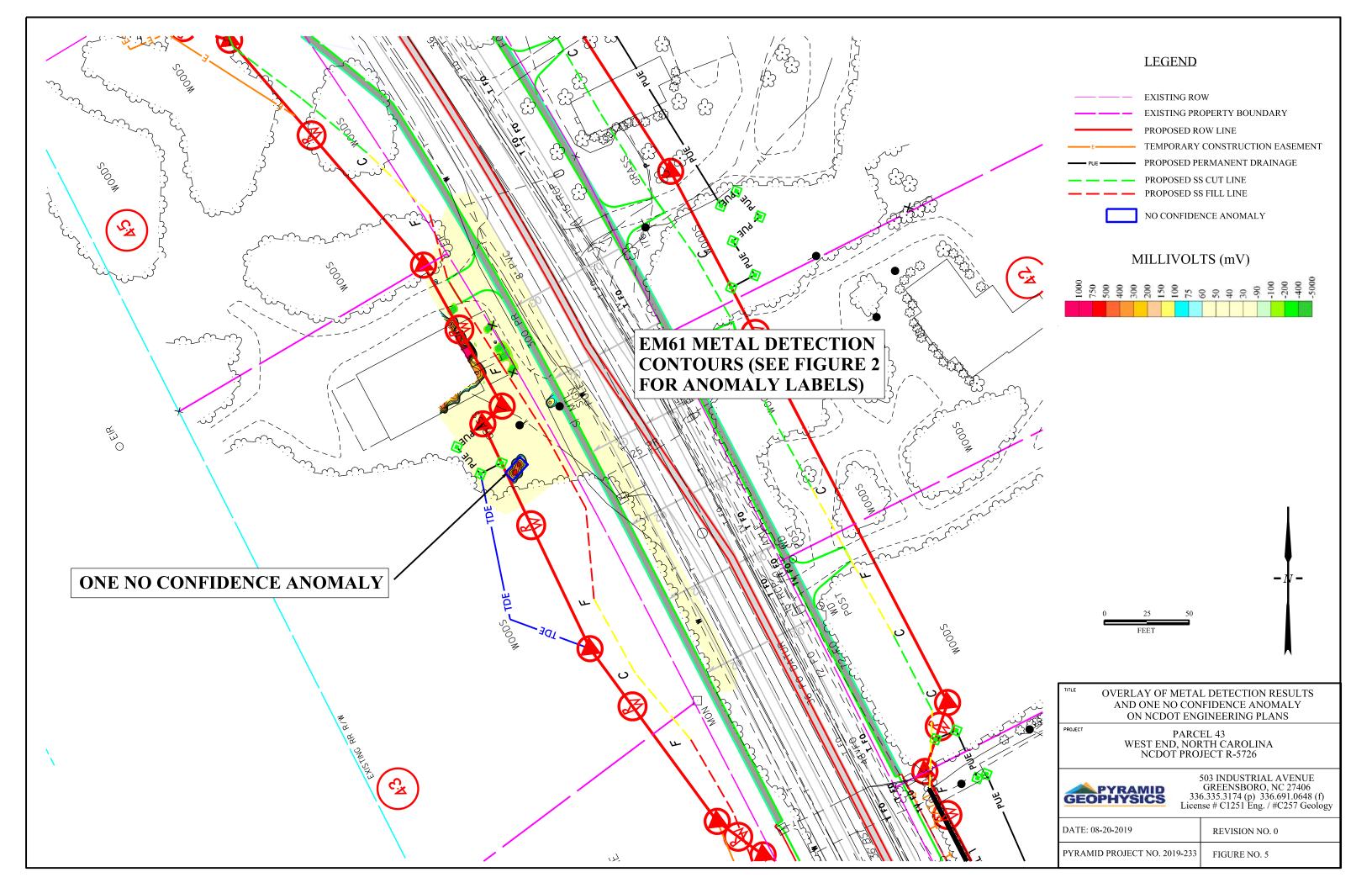
PARCEL 43 -GPR TRANSECT LOCATIONS AND IMAGES

DATE	8/8/2019	CLIENT	GEOSYNTEC
PYRAMID PROJECT #:	2019-233		FIGURE 3

LOCATIONS OF ONE NO CONFIDENCE ANOMALY

View of One No Confidence Anomaly Facing Approximately East

View of One No Confidence Anomaly Facing Approximately North



503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

PARCEL 43 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

PARCEL 43 - LOCATION AND SIZE OF ONE NO CONFIDENCE ANOMALY

DATE	8/8/2019	CLIENT GEOSYNTEC
PYRAMID PROJECT #:	2019-233	FIGURE 4

Preliminary Site Assessment (Parcel 43 – Susan McCaskill Morgan and Others) TIP Number R-5726 5114 NC 211, West End, North Carolina October 2019

APPENDIX B Photographic Log

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039

Site Name: R-5726 - Parcel 43 Site Location: 5114 NC 211, West End, NC

Photograph 1

Date: 29 July 2019

Direction: SW

Comments: View of the northeastern side of the Site building.

Photograph 2

Date: 29 July 2019

Direction: W

Comments: View of the northeastern NCDOT boundary poles within the ROW and the inaccessible forest area to the south of the Site building.

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039

Site Name: R-5726 - Parcel 43 Site Location: 5114 NC 211, West End, NC

Photograph 3

Date: 29 July 2019

Direction: E

Comments: View of the back (western) side of the Site building. Located beyond the proposed ROW.

Photograph 4

Date: 29 July 2019

Direction: W

Comments: View of the southeastern side of the Site building with overhead powerlines.

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039

Site Name: R-5726 - Parcel 43 Site Location: 5114 NC 211, West End, NC

Photograph 5

Date: 29 July 2019

Direction: NW

Comments: View of the western side of the Site building.

Photograph 6

Date: 29 July 2019

Direction: E

Comments: Inside view of the Site building from the northern side window.

Preliminary Site Assessment (Parcel 43 – Susan McCaskill Morgan and Others) TIP Number R-5726 5114 NC 211, West End, North Carolina October 2019

APPENDIX C Soil Boring Logs

BORING LOG

DRILLING CO.: Sedacio	Status:	SITE:	1/10	1	you	1		Borehole Location Sketch Map
METHOD & TOOLS: DPT	☐ Well Installed ☐ Plugged & Abdnd.	PROJEC			945	1.71	9	
RIG: Geoprobe 7822DT	Ц	N:			• •			
BIT DIAMETER: 2/4' DRILLER:	mhu T	SUPER\	/ISOR:			heel		
GROUND ELEV.: Surveyed] Estimated	DATE:		-	13/1			
Top Feet Lithology Meters	16 fine sol	Graphic Log	Depth Scale	Mell	SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
0-5 0-0.5 ft, gray silt.	dry, love						100	Hand Auger
0.5 - 2ft, gray 5164	· My-moist							P20=0.9 Ppm
loose	-01100-11-1-1111-1111-1111							@ 0.5 tt
2-3-to, brown sand	the med man							PZD=0.3 13 ppm
dry, Loose, poor s								@ 1.5 tt
3-5-Ct, brown sond,		<i>y</i>						
dry-moist, loss				73				
5-10 6.5-8th, sand 8						•	70	PID=0
Some plastre, ce	molst,							
8-10th, saprol	se, teddah							
color, low-nedm	n plustic.							
Gamples are colle	ested from							
Gamples are colle 4.5-5 ft @ 13	,40							
SB43-0(-4.5-	5	-1,00						
				-				
							_	

MW

BORING LOG

BORING NO. 5843-03
SHEET _____ OF _____

DRILLIN	IG CO.: 5	aldoci O	Status:	SITE:	the	est	Frel	/ **		Borehole Location Sketch Map
	D & TOOLS:	DPT	Plugged & Abdnd.	PROJEC	T NO.	: 6	aN7	039		
RIG:	Greoprobe	782201		N:			E:	,		
BIT DIA	METER: 2/	DRILLER:	Briles J	SUPER\	/ISOR:	1	n W	ang		
-	ID ELEV.:	☐ Surveyed ☐	Estimated	DATE:	8	11	3/19		-	
Top (Depth)	☐ Feet ☐ Meters	Lithology	Log	Graphic Log	Depth Scale	Well	SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
	0-1-51	et. Usht or	ey brown						les	PW = 0 Hand Auger
to	soul,	fine, dry	Loose							Mond Buyer
	1.5/5	itt, brown	sand,							mi wie en een monen een en
	fne-	medan, 1	louse.							
	portly	sorted								
5-10	5-6.	st. notr	peorered			-00			70	P20=0
	6.5-	1 A brown	n sand,					:::!!		
	fre .	to medium	, loose,							
		H. sapn								
		h sand, m								
		lay & grane								
	lon	lastic, ch	14-nost			-				
	Sarple	y are coller	ted from	7						
	6.5-7	tt @ 10	400							
	SB 4	3-02-6.5-	.)							
			11 -11							
1	I.			dia v	1	1:	1		1	

m

BORING LOG

BORING NO. 3843 - 03 SHEET _____ OF ___ __ __ ____

DRILLING CO.: S		Status:	SITE:	11/	10-	1. 7	1		Borehole Location Sketch Map
	15 A	Well Installed ☐ Plugged & Abdnd	II .						
METHOD & TOOLS:	2000	Ē	PROJEC	JI NO.			257		
RIG: Greeprobe		- T	N:	"225		E:			
	DRILLER: A		SUPER	/ISOR:	1	mu	any		
GROUND ELEV.:	☐ Surveyed ☐	_ Estimated	DATE:		1 1	3/1		Date	
Top Feet Meters	Lithology		Graphic Log	Depth Scale	≸	SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
0-5 0-16	s, light grey	sand, fine,						00	Hand Anger
to dry,	to light grey loose								170 = 0
	t, brown son				II.				
	in, dry-not								
L	sorted	,, ,,,,,		 =					
20	1.6								2.2
	lefe, brown sa							100	pr0=0
read	sh clay & grown	els,							11-11-111-1111-1-110
Dry-	morst, hard								
5-10tt 5	S. Stt no ru	covery	711-11-11-11-11-11-11-11-11-11-11-11-11-						
5.5	-S. 5tt no re -10th, same	periode 1							
		os poperos c							
3-5	(b .		,						
Sample	y one collecte	ed from							
	15A Q 1430	•			-				HB 20 - 24200 - 2 0 2 - 2 000 - 000 -
									H = H = H = - H =
5343	-03-7-75	Ø				9			
					-				ii
			\						
					-				
							\		
			S					1	
· · · · · · · · · · · · · · · · · · ·									
				-					
							11	1	

BORING LOG

BORING NO. 5843-04 SHEET OF ____

DRILLII	NG CO.: Saved	2100	Status:	SITE:	W	es-	f End			Borehole Location Sketch Map
		DPT	☐ Well Installed ☐ Plugged & Abdnd.	PROJEC				039		
RIG:	Geophore.	1822 DT		N:			E:			
BIT DIA	METER: 2/4"	DRILLER:	Brian T	SUPER	/ISOR:	1	nu	my		
GROUN	ID ELEV.:	Surveyed	Estimated	DATE:		2/	13/19)		
	Feet Meters	Lithology		Graphic Log	Depth Scale	Well	SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
0-5 H	0-14,	light gray	sand, files						(a)	Hard Auger
TC	day, los	e								PID=P
	1=3115	4 1	1	1======						
	10 mods.	cc. brown	sond, fine							
	Dark.	-10 y - 200	sist, love							
	,	1911								
	4.5-5A	, from s	and, person							
	with some	grey day	. Fine-medi	im						######################################
	dry- 100	ist, loose	<u>L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	7						
T-10			l, mixed with						100	P20=0
5-10 tt	suppliente	t clay & g	Xough						100	(20)-0
	V1 9 - 1007 S	t, hard, 1	on plastic			-				
		ire 40 Mada			-					
	7.5-8	tt @ 14	+45							
	SB43-	04. 7.5-8	***************************************							
					7-1-					
			ii = 11: -11: -11:			+				- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			Harris III							
										<u> </u>
	72									
									1	
										6- HH
-										

Preliminary Site Assessment (Parcel 43 – Susan McCaskill Morgan and Others) TIP Number R-5726 5114 NC 211, West End, North Carolina October 2019

APPENDIX D Red Lab UVF Report

Hydrocarbon Analysis Results

Client: GEOSYNTEC

Address: 2501 BLUE RIDGE RD

SUITE 430 RALEIGH, NC

Samples taken

Monday, August 12, 2019

Samples extracted Samples analysed

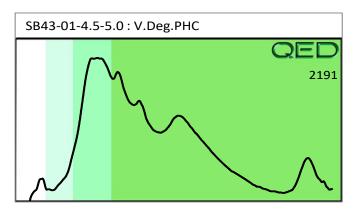
Monday, August 12, 2019

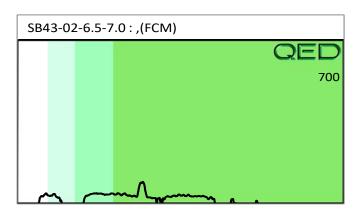
Friday, August 16, 2019

Contact: MICHAEL WANG Operator CAROLINE STEVENS

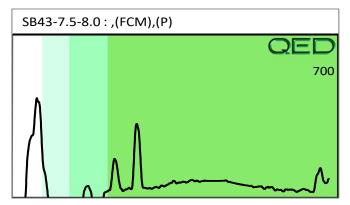
Project: R5726

Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios		% Ratios			HO938
										C5 - C10	C10 - C18	C18																									
S	SB43-01-4.5-5.0	12.2	<0.3	<0.3	0.98	0.98	0.55	<0.1	<0.012	0	63.9	36.1	V.Deg.PHC 91.8%,(FCM),(BO),(P)																								
S	SB43-02-6.5-7.0	12.7	<0.32	<0.32	<0.32	< 0.32	<0.06	<0.1	<0.013	0	100	0	,(FCM)																								
S	SB43-03-7-7.5	10.1	<0.25	<0.25	<0.25	<0.25	<0.05	<0.08	<0.01	0	100	0	Residual HC,(BO)																								
S	SB43-04-7.5-8.0	11.0	<0.28	<0.28	<0.28	<0.28	<0.06	<0.09	<0.011	0	100	0	,(FCM),(P)																								
													95.7																								


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift: (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result: (BO) = Background Organics detected: (OCR) = Outside cal range: (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

Project: R5726

Preliminary Site Assessment (Parcel 43 – Susan McCaskill Morgan and Others) TIP Number R-5726 5114 NC 211, West End, North Carolina October 2019

APPENDIX E Prism Laboratories Analytical Report

NC Certification No. 402 NC Drinking Water Cert No. 37735 SC Certification No. 99012 **Case Narrative**

8/28/19 11:20

Geosyntec Consultants of NC, PC - Raleigh Michael Wang 2501 Blue Ridge Road, Ste 430 Raleigh, NC 27607 Project: NCDOT R-5726 West End

Project No.: GN7039

Lab Submittal Date: 08/16/2019 Prism Work Order: 9080260

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

Robbi A. Jones

President/Project Manager

Reviewed By Robbi A. Jones

Korti a.

President/Project Manager

Data Qualifiers Key Reference:

SR Surrogate recovery outside the QC limits.

BRL Below Reporting Limit
MDL Method Detection Limit
RPD Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and

reporting limit indicated with a J.

Sample Receipt Summary

08/28/2019

Prism Work Order: 9080260

Client Sample ID	Lab Sample ID	Matrix	Date/Time Sampled	Date/Time Received
SB13-01-7.5-8.0	9080260-01	Solid	08/12/19 10:30	08/16/19 9:15
SB13-02-7-7.5	9080260-02	Solid	08/12/19 11:00	08/16/19 9:15
SB13-03-6.5-7.0	9080260-03	Solid	08/12/19 11:30	08/16/19 9:15
SB43-01-4.5-5.0	9080260-04	Solid	08/13/19 13:40	08/16/19 9:15
SB43-02-6.5-7.0	9080260-05	Solid	08/13/19 14:00	08/16/19 9:15
SB43-03-7.0-7.5	9080260-06	Solid	08/13/19 14:30	08/16/19 9:15
SB43-04-7.5-8.0	9080260-07	Solid	08/13/19 14:45	08/16/19 9:15
SB66867-01-5-5.5	9080260-08	Solid	08/13/19 8:40	08/16/19 9:15
SB66867-02-4.0-4.5	9080260-09	Solid	08/13/19 9:10	08/16/19 9:15
SB66867-03-6.5-7	9080260-10	Solid	08/13/19 10:20	08/16/19 9:15
SB66867-04-5.5-6.0	9080260-11	Solid	08/13/19 9:45	08/16/19 9:15
SB66867-05-7-7.5	9080260-12	Solid	08/13/19 11:10	08/16/19 9:15
SB66867-06-7.5-8	9080260-13	Solid	08/13/19 12:20	08/16/19 9:15
SB69-01-6.0-6.5	9080260-14	Solid	08/12/19 13:00	08/16/19 9:15
SB69-02-4.0-4.5	9080260-15	Solid	08/12/19 13:30	08/16/19 9:15
SB69-03-5.0-5.5	9080260-16	Solid	08/12/19 14:00	08/16/19 9:15
SB69-04-5.0-5.5	9080260-17	Solid	08/12/19 14:45	08/16/19 9:15
SB69-05-9.5-10	9080260-18	Solid	08/12/19 15:25	08/16/19 9:15
SB69-06-9-9.5	9080260-19	Solid	08/12/19 16:15	08/16/19 9:15
SB69-07-5.0-5.5	9080260-20	Solid	08/12/19 16:45	08/16/19 9:15
SB69-08-6.0-6.5	9080260-21	Solid	08/13/19 13:00	08/16/19 9:15
SB78-01-7-7.5	9080260-22	Solid	08/13/19 15:50	08/16/19 9:15
SB78-02-5.5-6	9080260-23	Solid	08/14/19 8:25	08/16/19 9:15
SB78-03-6-6.5	9080260-24	Solid	08/14/19 9:00	08/16/19 9:15
SB78-04-6.5-7	9080260-25	Solid	08/14/19 9:30	08/16/19 9:15
SB89-01-5-5.5	9080260-26	Solid	08/15/19 9:00	08/16/19 9:15
SB89-02-5.5-6	9080260-27	Solid	08/15/19 9:40	08/16/19 9:15
SB89-03-6.5-7	9080260-28	Solid	08/15/19 10:30	08/16/19 9:15
SB89-04-7-7.5	9080260-29	Solid	08/15/19 11:30	08/16/19 9:15
SB102-01-2.5-3	9080260-30	Solid	08/14/19 10:50	08/16/19 9:15
SB102-02-5.5-6	9080260-31	Solid	08/14/19 11:35	08/16/19 9:15
SB102-03-7-7.5	9080260-32	Solid	08/14/19 13:00	08/16/19 9:15
SB102-04-7.5-8	9080260-33	Solid	08/14/19 13:30	08/16/19 9:15

SB102-05-4.5-5	9080260-34	Solid	08/14/19 14:00	08/16/19 9:15
SB102-06-0.5-1	9080260-35	Solid	08/14/19 14:50	08/16/19 9:15
SB102-07-7.5-8	9080260-36	Solid	08/14/19 15:35	08/16/19 9:15
SB102-08-8-8.5	9080260-37	Solid	08/14/19 16:05	08/16/19 9:15
SB102-09-8.5-9	9080260-38	Solid	08/14/19 16:45	08/16/19 9:15
SB102-10-9-9.5	9080260-39	Solid	08/14/19 17:20	08/16/19 9:15

Samples were received in good condition at 3.3 degrees C unless otherwise noted.

Summary of Detections

08/28/2019

Prism Work Order: 9080260

Prism ID	Client ID	Parameter	Method	Result	Units

There were no detections reported.

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB13-01-7.5-8.0 Prism Sample ID: 9080260-01 Prism Work Order: 9080260

Time Collected: 08/12/19 10:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parame	eters								
% Solids	91.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	2 EDV	P9H0353
Volatile Organic Compoun	ds by GC/MS								
Benzene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:5	1 JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:5	1 JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/20/19 17:5	1 JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0071	0.00075	1	8260D	8/20/19 17:5	1 JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:5	1 JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/20/19 17:5	1 JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromofluo	oromethane		112	2 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB13-02-7-7.5 Prism Sample ID: 9080260-02 Prism Work Order: 9080260 Time Collected: 08/12/19 11:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	86.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/20/19 18:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0069	0.0010	1	8260D	8/20/19 18:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/20/19 18:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0069	0.00074	1	8260D	8/20/19 18:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/20/19 18:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/20/19 18:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		98	%	70-130	
			Dibromoflu	oromethane		114	1 %	84-123	
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB13-03-6.5-7.0 Prism Sample ID: 9080260-03 Prism Work Order: 9080260 Time Collected: 08/12/19 11:30

Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	95.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	. EDV	P9H0353
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0051	0.00079	1	8260D	8/20/19 18:51	l JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0051	0.00077	1	8260D	8/20/19 18:51	I JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/20/19 18:51	I JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0051	0.00054	1	8260D	8/20/19 18:51	I JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0051	0.00081	1	8260D	8/20/19 18:51	I JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/20/19 18:5	l JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	2 %	70-130	
			Dibromoflu	oromethane		116	5 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB43-01-4.5-5.0 Prism Sample ID: 9080260-04 Prism Work Order: 9080260

Time Collected: 08/13/19 13:40 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	97.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:2	2 EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00083	1	8260D	8/20/19 19:2	1 JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00080	1	8260D	8/20/19 19:2	1 JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 19:2	1 JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/20/19 19:2	1 JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/20/19 19:2	1 JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/20/19 19:2	1 JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	2 %	70-130	
			Dibromoflu	oromethane		113 %		84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB43-02-6.5-7.0 Prism Sample ID: 9080260-05 Prism Work Order: 9080260

Time Collected: 08/13/19 14:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								_
% Solids	91.4	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	. EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0073	0.0011	1	8260D	8/22/19 15:1	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0073	0.0011	1	8260D	8/22/19 15:1	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19 15:1	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0073	0.00077	1	8260D	8/22/19 15:1	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0073	0.0012	1	8260D	8/22/19 15:1	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.022	0.0026	1	8260D	8/22/19 15:1	3 JLB	P9H0389
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		103	3 %	70-130	
			Dibromoflu	oromethane		127	7 %	84-123	SR
			Toluene-d8			93	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB43-03-7.0-7.5 Prism Sample ID: 9080260-06 Prism Work Order: 9080260

Time Collected: 08/13/19 14:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	75.6	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0061	0.00095	1	8260D	8/20/19 20:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0061	0.00091	1	8260D	8/20/19 20:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/20/19 20:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0061	0.00065	1	8260D	8/20/19 20:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0061	0.00097	1	8260D	8/20/19 20:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 20:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	2 %	70-130	
			Dibromoflu	oromethane	nethane		120 %	84-123	
			Toluene-d8			96	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB43-04-7.5-8.0 Prism Sample ID: 9080260-07 Prism Work Order: 9080260 Time Collected: 08/13/19 14:45

Time Submitted: 08/13/19 14:45

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	84.1	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0054	0.00085	1	8260D	8/20/19 20:51	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0054	0.00082	1	8260D	8/20/19 20:51	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 20:51	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0054	0.00058	1	8260D	8/20/19 20:51	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0054	0.00086	1	8260D	8/20/19 20:51	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.016	0.0020	1	8260D	8/20/19 20:51	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		101	1 %	70-130	
			Dibromoflu	oromethane		119	9 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-01-5-5.5

Prism Sample ID: 9080260-08 Prism Work Order: 9080260 Time Collected: 08/13/19 08:40 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	90.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0050	0.00078	1	8260D	8/20/19 21:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0050	0.00075	1	8260D	8/20/19 21:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/20/19 21:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0050	0.00053	1	8260D	8/20/19 21:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0050	0.00080	1	8260D	8/20/19 21:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/20/19 21:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromofluoromethane			122 %		84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-02-4.0-4.5

Prism Sample ID: 9080260-09 Prism Work Order: 9080260 Time Collected: 08/13/19 09:10 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paramet	ters								
% Solids	86.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compound	s by GC/MS								
Benzene	BRL	mg/kg dry	0.0061	0.00096	1	8260D	8/20/19 21:51	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0061	0.00092	1	8260D	8/20/19 21:51	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/20/19 21:51	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0061	0.00065	1	8260D	8/20/19 21:51	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0061	0.00098	1	8260D	8/20/19 21:51	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 21:51	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		118	3 %	84-123	
			Toluene-d8			97	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-03-6.5-7

Prism Sample ID: 9080260-10 Prism Work Order: 9080260 Time Collected: 08/13/19 10:20 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parame	eters								
% Solids	90.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compoun	ds by GC/MS								
Benzene	BRL	mg/kg dry	0.0059	0.00092	1	8260D	8/20/19 22:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0059	0.00088	1	8260D	8/20/19 22:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/20/19 22:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0059	0.00063	1	8260D	8/20/19 22:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0059	0.00094	1	8260D	8/20/19 22:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0021	1	8260D	8/20/19 22:20	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		120	0 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-04-5.5-6.0

Prism Sample ID: 9080260-11 Prism Work Order: 9080260 Time Collected: 08/13/19 09:45 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	94.1	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/20/19 22:50	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00085	1	8260D	8/20/19 22:50	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 22:50	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/20/19 22:50	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0056	0.00090	1	8260D	8/20/19 22:50	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/20/19 22:50	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		97	%	70-130	
			Dibromoflu	oromethane		118	3 %	84-123	
			Toluene-d8			96	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-05-7-7.5

Prism Sample ID: 9080260-12 Prism Work Order: 9080260 Time Collected: 08/13/19 11:10 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	89.3	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/20/19 23:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/20/19 23:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/20/19 23:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/20/19 23:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/20/19 23:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 23:20	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	? %	70-130	
			Dibromoflu	oromethane		119	9%	84-123	
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-06-7.5-8

Prism Sample ID: 9080260-13 Prism Work Order: 9080260 Time Collected: 08/13/19 12:20 Time Submitted: 08/16/19 09:15

97 %

76-129

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	89.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0049	0.00076	1	8260D	8/19/19 16:12	JLB	P9H0310
Ethylbenzene	BRL	mg/kg dry	0.0049	0.00074	1	8260D	8/19/19 16:12	JLB	P9H0310
m,p-Xylenes	BRL	mg/kg dry	0.0098	0.0013	1	8260D	8/19/19 16:12	JLB	P9H0310
o-Xylene	BRL	mg/kg dry	0.0049	0.00052	1	8260D	8/19/19 16:12	JLB	P9H0310
Toluene	BRL	mg/kg dry	0.0049	0.00078	1	8260D	8/19/19 16:12	JLB	P9H0310
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/19/19 16:12	JLB	P9H0310
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		110) %	84-123	

Toluene-d8

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-01-6.0-6.5 Prism Sample ID: 9080260-14 Prism Work Order: 9080260 Time Collected: 08/12/19 13:00

Time Submitted: 08/16/19 09:15

92 %

76-129

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paramete	ers								
% Solids	90.5	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compounds	by GC/MS								
Benzene	BRL	mg/kg dry	0.0052	0.00081	1	8260D	8/21/19 19:41	JLB	P9H0366
Ethylbenzene	BRL	mg/kg dry	0.0052	0.00078	1	8260D	8/21/19 19:41	JLB	P9H0366
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/21/19 19:41	JLB	P9H0366
o-Xylene	BRL	mg/kg dry	0.0052	0.00055	1	8260D	8/21/19 19:41	JLB	P9H0366
Toluene	BRL	mg/kg dry	0.0052	0.00082	1	8260D	8/21/19 19:41	JLB	P9H0366
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/21/19 19:41	JLB	P9H0366
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		103	1 %	70-130	
			Dibromoflu	oromethane		123	1 %	84-123	

Toluene-d8

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-02-4.0-4.5

Prism Sample ID: 9080260-15 Prism Work Order: 9080260 Time Collected: 08/12/19 13:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	95.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0080	0.0012	1	8260D	8/21/19	0:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0080	0.0012	1	8260D	8/21/19	0:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.016	0.0020	1	8260D	8/21/19	0:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0080	0.00085	1	8260D	8/21/19	0:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0080	0.0013	1	8260D	8/21/19	0:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.024	0.0029	1	8260D	8/21/19	0:20	JLB	P9H0347
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		103	3 %		70-130	
			Dibromofluoromethane			122 %		84-123		
			Toluene-d8			95	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-03-5.0-5.5 Prism Sample ID: 9080260-16 Prism Work Order: 9080260

Time Collected: 08/12/19 14:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Param	neters									
% Solids	93.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compour	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/21/19	0:49	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00064	1	8260D	8/21/19	0:49	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/21/19	0:49	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/21/19	0:49	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0043	0.00068	1	8260D	8/21/19	0:49	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.013	0.0015	1	8260D	8/21/19	0:49	JLB	P9H0347
			Surrogate			Recovery			Control Limits	
			4-Bromofluorobenzene			102 %			70-130	
			Dibromofluoromethane			121 %			84-123	
			Toluene-d8			96 %			76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-04-5.0-5.5 Prism Sample ID: 9080260-17 Prism Work Order: 9080260

Time Collected: 08/12/19 14:45 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	92.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0049	0.00076	1	8260D	8/21/19	1:19	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0049	0.00074	1	8260D	8/21/19	1:19	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.0098	0.0013	1	8260D	8/21/19	1:19	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0049	0.00052	1	8260D	8/21/19	1:19	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0049	0.00078	1	8260D	8/21/19	1:19	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/21/19	1:19	JLB	P9H0347
			Surrogate			Recovery			Control Limits	
	4-Bromofluor		orobenzene		100 %			70-130		
			Dibromofluoromethane			123 %			84-123	
			Toluene-d8			94 %			76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-05-9.5-10 Prism Sample ID: 9080260-18 Prism Work Order: 9080260 Time Collected: 08/12/19 15:25

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	91.0	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/21/19	1:50	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00084	1	8260D	8/21/19	1:50	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/21/19	1:50	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/21/19	1:50	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0056	0.00089	1	8260D	8/21/19	1:50	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/21/19	1:50	JLB	P9H0347
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		99	%		70-130	
			Dibromoflu	oromethane		119	%		84-123	
			Toluene-d8			94	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-06-9-9.5 Prism Sample ID: 9080260-19 Prism Work Order: 9080260 Time Collected: 08/12/19 16:15 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	87.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0046	0.00072	1	8260D	8/22/19 15:47	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0046	0.00069	1	8260D	8/22/19 15:47	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.0092	0.0012	1	8260D	8/22/19 15:47	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0046	0.00049	1	8260D	8/22/19 15:47	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0046	0.00073	1	8260D	8/22/19 15:47	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/22/19 15:47	JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		125	5 %	84-123	SR
			Toluene-d8			92	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-07-5.0-5.5 Prism Sample ID: 9080260-20

Prism Work Order: 9080260 Time Collected: 08/12/19 16:45 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysi Date/Tin		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	93.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0051	0.00080	1	8260D	8/22/19	16:17	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0051	0.00077	1	8260D	8/22/19	16:17	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/22/19	16:17	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0051	0.00055	1	8260D	8/22/19	16:17	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0051	0.00082	1	8260D	8/22/19	16:17	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19	16:17	JLB	P9H0389
			Surrogate			Recov	ery		Control L	imits
			4-Bromoflu	orobenzene		102	2 %		70-130	
			Dibromoflu	oromethane		127	7 %		84-123	SR
			Toluene-d8			94	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-08-6.0-6.5 Prism Sample ID: 9080260-21 Prism Work Order: 9080260 Time Collected: 08/13/19 13:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Tir		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.7	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/26/19	19:27	JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/26/19	19:27	JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/26/19	19:27	JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/26/19	19:27	JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/26/19	19:27	JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/26/19	19:27	JLB	P9H0434
			Surrogate			Recov	ery		Control L	imits
			4-Bromoflu	orobenzene		112	2 %		70-130	
			Dibromoflu	oromethane		96	%		84-123	
			Toluene-d8			101	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-01-7-7.5 Prism Sample ID: 9080260-22 Prism Work Order: 9080260 Time Collected: 08/13/19 15:50 Time Submitted: 08/16/19 09:15

96 %

76-129

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	Analyst	Batch ID
General Chemistry Param	eters								
% Solids	83.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/22/19 17:34	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/22/19 17:34	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0013	1	8260D	8/22/19 17:34	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/22/19 17:34	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/22/19 17:34	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/22/19 17:34	JLB	P9H0389
			Surrogate			Recov	ery	Control L	imits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		132	2 %	84-123	SR

Toluene-d8

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-02-5.5-6
Prism Sample ID: 9080260-23
Prism Work Order: 9080260
Time Collected: 08/14/19 08:25
Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Anal	yst Batch ID
General Chemistry Parameters	3								
% Solids	97.8	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:	10 E	DV P9H036
Volatile Organic Compounds b	y GC/MS								
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/19/19 16	42 JI	В Р9Н031
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00065	1	8260D	8/19/19 16	42 JI	_B P9H031
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0043	0.00050	1	8260D	8/19/19 16	42 JI	_B P9H031
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/19/19 16	42 JI	_B P9H031
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/19/19 16	42 JI	_B P9H031
Toluene	BRL	mg/kg dry	0.0043	0.00068	1	8260D	8/19/19 16	42 JI	_B P9H031
Xylenes, total	BRL	mg/kg dry	0.013	0.0015	1	8260D	8/19/19 16	42 JI	_B P9H031
			Surrogate			Recov	ery	Cor	ntrol Limits
			4-Bromoflu	orobenzene		102	2 %	70-	-130
			Dibromoflu	oromethane		109	9 %	84	-123
			Toluene-d8			96	%	76·	-129

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-03-6-6.5 Prism Sample ID: 9080260-24 Prism Work Order: 9080260 Time Collected: 08/14/19 09:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.2	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0068	0.0011	1	8260D	8/19/19	17:12	JLB	P9H0310
Ethylbenzene	BRL	mg/kg dry	0.0068	0.0010	1	8260D	8/19/19	17:12	JLB	P9H0310
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/19/19	17:12	JLB	P9H0310
o-Xylene	BRL	mg/kg dry	0.0068	0.00072	1	8260D	8/19/19	17:12	JLB	P9H0310
Toluene	BRL	mg/kg dry	0.0068	0.0011	1	8260D	8/19/19	17:12	JLB	P9H0310
Xylenes, total	BRL	mg/kg dry	0.020	0.0024	1	8260D	8/19/19	17:12	JLB	P9H0310
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		103	3 %		70-130	
			Dibromoflu	oromethane		110	%		84-123	
			Toluene-d8			96	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-04-6.5-7 Prism Sample ID: 9080260-25 Prism Work Order: 9080260 Time Collected: 08/14/19 09:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.1	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0062	0.00097	1	8260D	8/22/19	18:04	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0062	0.00093	1	8260D	8/22/19	18:04	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/22/19	18:04	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0062	0.00066	1	8260D	8/22/19	18:04	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0062	0.00099	1	8260D	8/22/19	18:04	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0022	1	8260D	8/22/19	18:04	JLB	P9H0389
			Surrogate			Recov	ery		Control I	Limits
			4-Bromoflu	orobenzene		98	%		70-130	
			Dibromoflu	oromethane		130	%		84-123	SR
			Toluene-d8			93	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB89-01-5-5.5 Prism Sample ID: 9080260-26 Prism Work Order: 9080260 Time Collected: 08/15/19 09:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	96.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/22/19 18:34	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00085	1	8260D	8/22/19 18:34	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/22/19 18:34	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/22/19 18:34	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0056	0.00090	1	8260D	8/22/19 18:34	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/22/19 18:34	JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromoflu	orobenzene		98	%	70-130	
			Dibromoflu	oromethane		127	' %	84-123	SR
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB89-02-5.5-6 Prism Sample ID: 9080260-27 Prism Work Order: 9080260 Time Collected: 08/15/19 09:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	96.6	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0066	0.0010	1	8260D	8/22/19	19:04	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0066	0.0010	1	8260D	8/22/19	19:04	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.013	0.0017	1	8260D	8/22/19	19:04	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0066	0.00070	1	8260D	8/22/19	19:04	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0066	0.0011	1	8260D	8/22/19	19:04	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.020	0.0024	1	8260D	8/22/19	19:04	JLB	P9H0389
			Surrogate			Recov	ery		Control L	imits
			4-Bromofluo	orobenzene		100) %		70-130	
			Dibromofluc	oromethane		135	5 %		84-123	SR
			Toluene-d8			93	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB89-03-6.5-7 Prism Sample ID: 9080260-28 Prism Work Order: 9080260 Time Collected: 08/15/19 10:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	92.2	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0065	0.0010	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0065	0.00098	1	8260D	8/22/19 19:3	4 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.013	0.0017	1	8260D	8/22/19 19:3	4 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0065	0.00069	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0065	0.0010	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0023	1	8260D	8/22/19 19:3	4 JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		102	? %	70-130	
			Dibromoflu	oromethane		128	3 %	84-123	SR
			Toluene-d8			90	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB89-04-7-7.5 Prism Sample ID: 9080260-29 Prism Work Order: 9080260 Time Collected: 08/15/19 11:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	93.9	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0062	0.00097	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0062	0.00094	1	8260D	8/22/19 20:0	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/22/19 20:0	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0062	0.00066	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0062	0.00099	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0022	1	8260D	8/22/19 20:0	3 JLB	P9H0389
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		98	%	70-130	
			Dibromofluo	oromethane		136	5 %	84-123	SR
			Toluene-d8			91	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB102-01-2.5-3

Prism Sample ID: 9080260-30 Prism Work Order: 9080260 Time Collected: 08/14/19 10:50 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	89.8	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/22/19 20:33	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0069	0.0010	1	8260D	8/22/19 20:33	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/22/19 20:33	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0069	0.00073	1	8260D	8/22/19 20:33	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/22/19 20:33	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/22/19 20:33	JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		101	1 %	70-130	
			Dibromoflu	oromethane		134	1 %	84-123	SR
Toluene-d8			92	%	76-129				

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB102-02-5.5-6 Prism Sample ID: 9080260-31 Prism Work Order: 9080260 Time Collected: 08/14/19 11:35 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	96.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0059	0.00093	1	8260D	8/22/19 21:03	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0059	0.00089	1	8260D	8/22/19 21:03	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/22/19 21:03	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0059	0.00063	1	8260D	8/22/19 21:03	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0059	0.00095	1	8260D	8/22/19 21:03	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.018	0.0021	1	8260D	8/22/19 21:03	JLB	P9H0389
			Surrogate			Recov	ery	Control L	_imits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		133	3 %	84-123	SR
			Toluene-d8			91	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-03-7-7.5

Prism Sample ID: 9080260-32 Prism Work Order: 9080260 Time Collected: 08/14/19 13:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paramo	eters								
% Solids	94.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compoun	ds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/22/19 21:33	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/22/19 21:33	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/22/19 21:33	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/22/19 21:33	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/22/19 21:33	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/22/19 21:33	JLB	P9H0389
			Surrogate			Recov	ery	Control L	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		132	2 %	84-123	SR
			Toluene-d8			91	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-04-7.5-8 Prism Sample ID: 9080260-33 Prism Work Order: 9080260 Time Collected: 08/14/19 13:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	80.6	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/22/19 22:03	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/22/19 22:03	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/22/19 22:03	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/22/19 22:03	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/22/19 22:03	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/22/19 22:03	JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		97	%	70-130	
			Dibromoflu	oromethane		131	%	84-123	SR
			Toluene-d8			92	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-05-4.5-5 Prism Sample ID: 9080260-34 Prism Work Order: 9080260 Time Collected: 08/14/19 14:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analys	t Batch ID
General Chemistry Paran	neters								
% Solids	97.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:	10 ED	/ P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/22/19 22	:33 JLE	P9H0389
o-Xylene	BRL	mg/kg dry	0.0070	0.00075	1	8260D	8/22/19 22	:33 JLE	P9H0389
Toluene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/22/19 22	:33 JLE	P9H0389
			Surrogate			Recov	ery	Conti	ol Limits
			4-Bromoflu	orobenzene		103	3 %	70-1	30
			Dibromoflu	oromethane		138	3 %	84-1	23 SR
			Toluene-d8			96	%	76-1	29

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-06-0.5-1 Prism Sample ID: 9080260-35 Prism Work Order: 9080260 Time Collected: 08/14/19 14:50 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	88.1	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0075	0.0012	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0075	0.0011	1	8260D	8/22/19 23:02	2 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19 23:02	2 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0075	0.00080	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0075	0.0012	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.022	0.0027	1	8260D	8/22/19 23:02	2 JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		103	3 %	70-130	
			Dibromoflu	oromethane		143	3 %	84-123	SR
			Toluene-d8			89	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-07-7.5-8 Prism Sample ID: 9080260-36 Prism Work Order: 9080260 Time Collected: 08/14/19 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	83.5	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00065	1	8260D	8/22/19 23:3	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/22/19 23:3	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0043	0.00069	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.013	0.0016	1	8260D	8/22/19 23:3	3 JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromoflu	orobenzene		102	2 %	70-130	
			Dibromoflu	oromethane		135	5 %	84-123	SR
			Toluene-d8			91	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB102-08-8-8.5 Prism Sample ID: 9080260-37 Prism Work Order: 9080260 Time Collected: 08/14/19 16:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	87.9	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0058	0.00090	1	8260D	8/26/19 18:57	7 JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0058	0.00087	1	8260D	8/26/19 18:57	7 JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/26/19 18:57	7 JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0058	0.00061	1	8260D	8/26/19 18:57	7 JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0058	0.00092	1	8260D	8/26/19 18:57	7 JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.017	0.0021	1	8260D	8/26/19 18:57	7 JLB	P9H0434
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		103	3 %	70-130	
			Dibromoflu	oromethane		93	%	84-123	
			Toluene-d8			99	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB102-09-8.5-9 Prism Sample ID: 9080260-38 Prism Work Order: 9080260 Time Collected: 08/14/19 16:45

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	87.0	% by Weight	0.100	0.100	1	*SM2540 G	8/26/19	8:25	EDV	P9H0406
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/23/19	0:32	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/23/19	0:32	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/23/19	0:32	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/23/19	0:32	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/23/19	0:32	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/23/19	0:32	JLB	P9H0389
			Surrogate			Recov	ery		Control I	_imits
			4-Bromoflu	orobenzene		98	%		70-130	
			Dibromoflu	oromethane		140	%		84-123	SR
			Toluene-d8			95	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-10-9-9.5 Prism Sample ID: 9080260-39 Prism Work Order: 9080260

Time Collected: 08/14/19 17:20 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paramete	rs									
% Solids	89.4	% by Weight	0.100	0.100	1	*SM2540 G	8/26/19	8:25	EDV	P9H0406
Volatile Organic Compounds	by GC/MS									
Benzene	BRL	mg/kg dry	0.0048	0.00075	1	8260D	8/26/19	18:27	JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0048	0.00072	1	8260D	8/26/19	18:27	JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.0096	0.0012	1	8260D	8/26/19	18:27	JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0048	0.00051	1	8260D	8/26/19	18:27	JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0048	0.00077	1	8260D	8/26/19	18:27	JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/26/19	18:27	JLB	P9H0434
			Surrogate			Recov	ery		Control I	Limits
			4-Bromoflu	orobenzene		104	1 %		70-130	
			Dibromoflu	oromethane		95	%		84-123	
			Toluene-d8			98	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project N

Raleigh, NC 27607

Project No: GN7039

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P9H0310 - 5035			
Blank (P9H0310-BLK1)			Prepared & Analyzed: 08/19/19
1,1,1,2-Tetrachloroethane	BRL	0.0050	mg/kg wet
1,1,1-Trichloroethane	BRL	0.0050	mg/kg wet
1,1,2,2-Tetrachloroethane	BRL	0.0050	mg/kg wet
1,1,2-Trichloroethane	BRL	0.0050	mg/kg wet
1,1-Dichloroethane	BRL	0.0050	mg/kg wet
1,1-Dichloroethylene	BRL	0.0050	mg/kg wet
1,1-Dichloropropylene	BRL	0.0050	mg/kg wet
1,2,3-Trichlorobenzene	BRL	0.010	mg/kg wet
1,2,3-Trichloropropane	BRL	0.0050	mg/kg wet
1,2,4-Trichlorobenzene	BRL	0.010	mg/kg wet
1,2,4-Trimethylbenzene	BRL	0.0050	mg/kg wet
1,2-Dibromoethane	BRL	0.0050	mg/kg wet
1,2-Dichlorobenzene	BRL	0.0050	mg/kg wet
1,2-Dichloroethane	BRL	0.0050	mg/kg wet
1,2-Dichloropropane	BRL	0.0050	mg/kg wet
1,3,5-Trimethylbenzene	BRL	0.0050	mg/kg wet
1,3-Dichlorobenzene	BRL	0.0050	mg/kg wet
1,3-Dichloropropane	BRL	0.0050	mg/kg wet
1,4-Dichlorobenzene	BRL	0.0050	mg/kg wet
2,2-Dichloropropane	BRL	0.0050	mg/kg wet
2-Chlorotoluene	BRL	0.0050	mg/kg wet
4-Chlorotoluene	BRL	0.0050	mg/kg wet
4-Isopropyltoluene	BRL	0.0050	mg/kg wet
Acetone	BRL	0.020	mg/kg wet
Benzene	BRL	0.0050	mg/kg wet
Bromobenzene	BRL	0.0050	mg/kg wet
Bromochloromethane	BRL	0.0050	mg/kg wet
Bromodichloromethane	BRL	0.0050	mg/kg wet
Bromoform	BRL	0.0050	mg/kg wet
Bromomethane	BRL	0.010	mg/kg wet
Carbon Tetrachloride	BRL	0.0050	mg/kg wet
Chlorobenzene	BRL	0.0050	mg/kg wet
Chloroform	BRL	0.010	mg/kg wet
Chloroform	BRL	0.0050	mg/kg wet
Chloromethane	BRL	0.010	mg/kg wet
cis-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet
cis-1,3-Dichloropropylene Dibromochloromethane	BRL BRL	0.0050 0.0050	mg/kg wet mg/kg wet
Dichlorodifluoromethane Ethylbenzene	BRL BRL	0.010 0.0050	mg/kg wet mg/kg wet
Isopropyl Ether	BRL	0.0050	
Isopropyl Etner Isopropylbenzene (Cumene)	BRL	0.0050	mg/kg wet
m,p-Xylenes	BRL	0.0050	mg/kg wet mg/kg wet
Methyl Butyl Ketone (2-Hexanone)	BRL	0.010	mg/kg wet
Methyl Ethyl Ketone (2-Butanone)	BRL	0.020	mg/kg wet
Methyl Isobutyl Ketone	BRL	0.020	mg/kg wet
monty toobacy rectorie	DIXL	0.020	mg/ng not

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

est End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P9H0310 - 5035							
Blank (P9H0310-BLK1)				Prepared & A	nalyzed: 08/19/19)	
Methylene Chloride	BRL	0.0050	mg/kg wet				
Methyl-tert-Butyl Ether	BRL	0.0050	mg/kg wet				
Naphthalene	BRL	0.010	mg/kg wet				
n-Butylbenzene	BRL	0.0050	mg/kg wet				
n-Propylbenzene	BRL	0.0050	mg/kg wet				
o-Xylene	BRL	0.0050	mg/kg wet				
sec-Butylbenzene	BRL	0.0050	mg/kg wet				
Styrene	BRL	0.0050	mg/kg wet				
ert-Butylbenzene	BRL	0.0050	mg/kg wet				
Tetrachloroethylene	BRL	0.0050	mg/kg wet				
oluene	BRL	0.0050	mg/kg wet				
rans-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet				
rans-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet				
Trichloroethylene	BRL	0.0050	mg/kg wet				
Frichlorofluoromethane	BRL	0.010	mg/kg wet				
/inyl acetate	BRL	0.010	mg/kg wet				
/inyl chloride	BRL	0.010	mg/kg wet				
(ylenes, total	BRL	0.015	mg/kg wet				
Surrogate: 4-Bromofluorobenzene	50.9		ug/L	50.00	102	70-130	
Surrogate: Dibromofluoromethane	53.9		ug/L	50.00	108	84-123	
Surrogate: Toluene-d8	49.2		ug/L	50.00	98	76-129	
LCS (P9H0310-BS1)				Prepared & A	nalyzed: 08/19/19)	
1,1,1,2-Tetrachloroethane	0.0442	0.0050	mg/kg wet	0.05000	88	72-115	
,1,1-Trichloroethane	0.0460	0.0050	mg/kg wet		92	67-131	
,1,2,2-Tetrachloroethane	0.0421	0.0050	mg/kg wet		84	56-126	
,1,2-Trichloroethane	0.0421	0.0050	mg/kg wet	0.05000	84	70-133	
,1-Dichloroethane	0.0432	0.0050	mg/kg wet	0.05000	86	74-127	
,1-Dichloroethylene	0.0394	0.0050	mg/kg wet	0.05000	79	67-149	
,1-Dichloropropylene	0.0453	0.0050	mg/kg wet	0.05000	91	71-130	
,2,3-Trichlorobenzene	0.0432	0.010	mg/kg wet	0.05000	86	68-130	
,2,3-Trichloropropane	0.0419	0.0050	mg/kg wet	0.05000	84	60-137	
,2,4-Trichlorobenzene	0.0450	0.010	mg/kg wet		90	66-125	
,2,4-Trimethylbenzene	0.0442	0.0050	mg/kg wet		88	69-129	
,2-Dibromoethane	0.0426	0.0050	mg/kg wet	0.05000	85	70-132	
,2-Dichlorobenzene	0.0425	0.0050	mg/kg wet		85	72-123	
,2-Dichloroethane	0.0446	0.0050	mg/kg wet	0.05000	89	68-128	
,2-Dichloropropane	0.0437	0.0050	mg/kg wet	0.05000	87	73-130	
,3,5-Trimethylbenzene	0.0440	0.0050	mg/kg wet	0.05000	88	69-128	
,3-Dichlorobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	71-120	
,3-Dichloropropane	0.0428	0.0050	mg/kg wet	0.05000	86	75-124	
,4-Dichlorobenzene	0.0428	0.0050	mg/kg wet	0.05000	86	71-123	
2,2-Dichloropropane	0.0463	0.0050	mg/kg wet	0.05000	93	50-142	
2-Chlorotoluene	0.0437	0.0050	mg/kg wet	0.05000	87	67-124	
l-Chlorotoluene	0.0438	0.0050	mg/kg wet	0.05000	88	71-126	
l-Isopropyltoluene	0.0451	0.0050	mg/kg wet	0.05000	90	68-129	
Acetone	0.120	0.020	mg/kg wet	0.1000	120	29-198	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project No: GN7039

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (P9H0310-BS1)				Prepared & Ana	lyzed: 08/19/	19
Benzene	0.0433	0.0050	mg/kg wet	-	87	74-127
Bromobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	73-125
Bromochloromethane	0.0422	0.0050	mg/kg wet	0.05000	84	72-134
Bromodichloromethane	0.0456	0.0050	mg/kg wet	0.05000	91	75-122
Bromoform	0.0467	0.0050	mg/kg wet	0.05000	93	66-135
Bromomethane	0.0437	0.010	mg/kg wet	0.05000	87	20-180
Carbon Tetrachloride	0.0464	0.0050	mg/kg wet	0.05000	93	64-143
Chlorobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	74-118
Chloroethane	0.0420	0.010	mg/kg wet	0.05000	84	33-149
Chloroform	0.0442	0.0050	mg/kg wet	0.05000	88	73-127
Chloromethane	0.0382	0.010	mg/kg wet	0.05000	76	45-143
cis-1,2-Dichloroethylene	0.0432	0.0050	mg/kg wet	0.05000	86	76-134
cis-1,3-Dichloropropylene	0.0444	0.0050	mg/kg wet	0.05000	89	71-125
Dibromochloromethane	0.0446	0.0050	mg/kg wet	0.05000	89	73-122
Dichlorodifluoromethane	0.0405	0.010	mg/kg wet	0.05000	81	26-146
Ethylbenzene	0.0435	0.0050	mg/kg wet	0.05000	87	74-128
Isopropyl Ether	0.0443	0.0050	mg/kg wet	0.05000	89	59-159
Isopropylbenzene (Cumene)	0.0440	0.0050	mg/kg wet	0.05000	88	68-126
m,p-Xylenes	0.0886	0.010	mg/kg wet	0.1000	89	75-124
Methyl Butyl Ketone (2-Hexanone)	0.0480	0.020	mg/kg wet	0.05000	96	61-157
Methyl Ethyl Ketone (2-Butanone)	0.0510	0.020	mg/kg wet	0.05000	102	63-149
Methyl Isobutyl Ketone	0.0451	0.020	mg/kg wet	0.05000	90	57-162
Methylene Chloride	0.0414	0.0050	mg/kg wet	0.05000	83	74-129
Methyl-tert-Butyl Ether	0.0432	0.0050	mg/kg wet	0.05000	86	70-130
Naphthalene	0.0428	0.010	mg/kg wet	0.05000	86	57-157
n-Butylbenzene	0.0460	0.0050	mg/kg wet	0.05000	92	65-135
n-Propylbenzene	0.0443	0.0050	mg/kg wet	0.05000	89	67-130
o-Xylene	0.0442	0.0050	mg/kg wet	0.05000	88	74-126
sec-Butylbenzene	0.0446	0.0050	mg/kg wet	0.05000	89	66-131
Styrene	0.0438	0.0050	mg/kg wet	0.05000	88	77-121
tert-Butylbenzene	0.0445	0.0050	mg/kg wet	0.05000	89	67-132
Tetrachloroethylene	0.0449	0.0050	mg/kg wet	0.05000	90	68-130
Toluene	0.0435	0.0050	mg/kg wet	0.05000	87	71-129
trans-1,2-Dichloroethylene	0.0444	0.0050	mg/kg wet	0.05000	89	73-132
trans-1,3-Dichloropropylene	0.0448	0.0050	mg/kg wet	0.05000	90	68-123
Trichloroethylene	0.0453	0.0050	mg/kg wet	0.05000	91	75-133
Trichlorofluoromethane	0.0452	0.010	mg/kg wet	0.05000	90	44-146
Vinyl acetate	0.0456	0.010	mg/kg wet	0.05000	91	85-161
Vinyl chloride	0.0430	0.010	mg/kg wet	0.05000	86	48-147
Xylenes, total	0.133	0.015	mg/kg wet	0.1500	89	74-126
Surrogate: 4-Bromofluorobenzene	49.3		ug/L	50.00	99	70-130
Surrogate: Dibromofluoromethane	50.5		ug/L	50.00	101	84-123
Surrogate: Toluene-d8	49.4		ug/L	50.00	99	76-129

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

1 10,000 110. 0111 00

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0310 - 5035										
LCS Dup (P9H0310-BSD1)				Prepared	& Analyze	d: 08/19/1	9			
1,1,1,2-Tetrachloroethane	0.0447	0.0050	mg/kg wet			89	72-115	1	20	
1,1,1-Trichloroethane	0.0444	0.0050	mg/kg wet			89	67-131	4	20	
1,1,2,2-Tetrachloroethane	0.0413	0.0050	mg/kg wet			83	56-126	2	20	
1,1,2-Trichloroethane	0.0422	0.0050	mg/kg wet			84	70-133	0.4	20	
1,1-Dichloroethane	0.0423	0.0050	mg/kg wet			85	74-127	2	20	
, 1,1-Dichloroethylene	0.0402	0.0050	mg/kg wet			80	67-149	2	20	
I,1-Dichloropropylene	0.0441	0.0050	mg/kg wet			88	71-130	3	20	
1,2,3-Trichlorobenzene	0.0433	0.010	mg/kg wet			87	68-130	0.1	20	
1,2,3-Trichloropropane	0.0413	0.0050	mg/kg wet			83	60-137	2	20	
1,2,4-Trichlorobenzene	0.0438	0.010	mg/kg wet			88	66-125	3	20	
I,2,4-Trimethylbenzene	0.0436	0.0050	mg/kg wet			87	69-129	1	20	
I,2-Dibromoethane	0.0434	0.0050	mg/kg wet			87	70-132	2	20	
1,2-Dichlorobenzene	0.0426	0.0050	mg/kg wet			85	72-123	0.1	20	
1,2-Dichloroethane	0.0446	0.0050	mg/kg wet			89	68-128	0.1	20	
1,2-Dichloropropane	0.0435	0.0050	mg/kg wet			87	73-130	0.4	20	
1,3,5-Trimethylbenzene	0.0430	0.0050	mg/kg wet			86	69-128	2	20	
1,3-Dichlorobenzene	0.0428	0.0050	mg/kg wet			86	71-120	0.1	20	
I,3-Dichloropropane	0.0437	0.0050	mg/kg wet			87	75-124	2	20	
,4-Dichlorobenzene	0.0424	0.0050	mg/kg wet			85	71-123	0.8	20	
2,2-Dichloropropane	0.0445	0.0050	mg/kg wet			89	50-142	4	20	
2-Chlorotoluene	0.0426	0.0050	mg/kg wet			85	67-124	3	20	
I-Chlorotoluene	0.0434	0.0050	mg/kg wet			87	71-126	1	20	
I-Isopropyltoluene	0.0442	0.0050	mg/kg wet			88	68-129	2	20	
Acetone	0.126	0.020	mg/kg wet	0.1000		126	29-198	5	20	
Benzene	0.0421	0.020	mg/kg wet			84	74-127	3	20	
Bromobenzene	0.0421	0.0050	mg/kg wet			86	73-125	0.4	20	
Bromochloromethane	0.0431	0.0050	mg/kg wet			85	73-123	0.4	20	
Bromodichloromethane							72-13 4 75-122			
	0.0450	0.0050	mg/kg wet			90		1 1	20	
Bromoform Bromomothana	0.0463	0.0050	mg/kg wet			93	66-135	-	20	
Bromomethane	0.0415	0.010	mg/kg wet			83	20-180	5	20	
Carbon Tetrachloride	0.0452	0.0050	mg/kg wet			90	64-143	3	20	
Chlorobenzene	0.0424	0.0050	mg/kg wet			85	74-118	1	20	
Chloroethane	0.0404	0.010	mg/kg wet			81	33-149	4	20	
Chloroform	0.0438	0.0050	mg/kg wet			88	73-127	1	20	
Chloromethane	0.0366	0.010	mg/kg wet			73	45-143	4	20	
sis-1,2-Dichloroethylene	0.0429	0.0050	mg/kg wet			86	76-134	0.7	20	
cis-1,3-Dichloropropylene	0.0441	0.0050	mg/kg wet			88	71-125	0.6	20	
Dibromochloromethane	0.0444	0.0050	mg/kg wet			89	73-122	0.5	20	
Dichlorodifluoromethane	0.0389	0.010	mg/kg wet			78 86	26-146	4	20	
Ethylbenzene	0.0430	0.0050	mg/kg wet			86	74-128	1	20	
sopropyl Ether	0.0437	0.0050	mg/kg wet			87	59-159	1	20	
sopropylbenzene (Cumene)	0.0430	0.0050	mg/kg wet			86	68-126	2	20	
n,p-Xylenes	0.0871	0.010	mg/kg wet			87	75-124	2	20	
Methyl Butyl Ketone (2-Hexanone)	0.0482	0.020	mg/kg wet			96	61-157	0.4	20	
Methyl Ethyl Ketone (2-Butanone)	0.0512	0.020	mg/kg wet			102	63-149	0.3	20	
Methyl Isobutyl Ketone	0.0442	0.020	mg/kg wet	0.05000		88	57-162	2	20	

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

roject: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0310 - 5035										
.CS Dup (P9H0310-BSD1)			I	Prepared a	& Analyze	d: 08/19/1	9			
Methylene Chloride	0.0412	0.0050	mg/kg wet	0.05000		82	74-129	0.2	20	
Methyl-tert-Butyl Ether	0.0434	0.0050	mg/kg wet	0.05000		87	70-130	0.6	20	
Naphthalene	0.0426	0.010	mg/kg wet	0.05000		85	57-157	0.4	20	
n-Butylbenzene	0.0448	0.0050	mg/kg wet	0.05000		90	65-135	3	20	
n-Propylbenzene	0.0432	0.0050	mg/kg wet	0.05000		86	67-130	2	20	
p-Xylene	0.0441	0.0050	mg/kg wet	0.05000		88	74-126	0.3	20	
sec-Butylbenzene	0.0439	0.0050	mg/kg wet	0.05000		88	66-131	2	20	
Styrene	0.0445	0.0050	mg/kg wet	0.05000		89	77-121	2	20	
ert-Butylbenzene	0.0432	0.0050	mg/kg wet	0.05000		86	67-132	3	20	
Tetrachloroethylene	0.0425	0.0050	mg/kg wet	0.05000		85	68-130	6	20	
Toluene	0.0426	0.0050	mg/kg wet	0.05000		85	71-129	2	20	
rans-1,2-Dichloroethylene	0.0430	0.0050	mg/kg wet	0.05000		86	73-132	3	20	
rans-1,3-Dichloropropylene	0.0444	0.0050	mg/kg wet	0.05000		89	68-123	0.9	20	
Trichloroethylene	0.0435	0.0050	mg/kg wet	0.05000		87	75-133	4	20	
Trichlorofluoromethane	0.0419	0.010	mg/kg wet	0.05000		84	44-146	8	20	
/inyl acetate	0.0467	0.010	mg/kg wet	0.05000		93	85-161	2	20	
/inyl chloride	0.0404	0.010	mg/kg wet	0.05000		81	48-147	6	20	
(ylenes, total	0.131	0.015	mg/kg wet	0.1500		87	74-126	1	20	
Surrogate: 4-Bromofluorobenzene	50.0		ug/L	50.00		100	70-130			
Surrogate: Dibromofluoromethane	50.3		ug/L	50.00		101	84-123			
Surrogate: Toluene-d8	49.6		ug/L	50.00		99	76-129			
Batch P9H0347 - 5035										
Blank (P9H0347-BLK1)			I	Prepared a	& Analyze	d: 08/20/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
n,p-Xylenes	BRL	0.010	mg/kg wet							
p-Xylene	BRL	0.0050	mg/kg wet							
l'oluene l'alle	BRL	0.0050	mg/kg wet							
Kylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	50.2		ug/L	50.00		100	70-130			
Surrogate: Dibromofluoromethane	53.2		ug/L	50.00		106	84-123			
Surrogate: Toluene-d8	48.9		ug/L	50.00		98	76-129			

47.2

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Surrogate: Toluene-d8

Time Submitted: 8/16/2019 9:15:00AM

Prism Work Order: 9080260

Volatile Organic Compounds by GC/MS - Quality Control

Prepared & Analyzed: 08/20/19 September Complete			Reporting		Spike	Source		%REC		RPD	
Prepared & Analyzed: 08/20/19 Prepared & Analyzed: 08/20/1	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Service 0.0533 0.0050 mg/kg wet 0.05000 107 74-127 74-128	Batch P9H0347 - 5035										
Carby Carb	LCS (P9H0347-BS1)				Prepared	& Analyze	d: 08/20/1	9			
1,	Benzene	0.0533	0.0050	mg/kg wet	0.05000		107	74-127			
National Column National C	Ethylbenzene	0.0547	0.0050	mg/kg wet	0.05000		109	74-128			
Column	m,p-Xylenes	0.111	0.010	mg/kg wet	0.1000		111	75-124			
Sylenes, total 0.167 0.015 mg/kg wet 0.1500 111 74-126 mg/kg wet 0.1500 111 74-126 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 104 74-127 2 20 mg/kg wet 0.0500 mg/kg wet 0.0500 104 74-127 2 20 20 20 20 20 20 2	o-Xylene	0.0558	0.0050	mg/kg wet	0.05000		112	74-126			
Surrogate: 4-Bromofluorobenzene 48.7 ug/L 50.00 97 70-130 Surrogate: Dibromofluoromethane 51.6 ug/L 50.00 103 84-123 Surrogate: Toluene-d8 48.6 ug/L 50.00 97 76-129 Surrogate: Toluene-d8 48.10 Surrogate: Toluene-d8 48.3 ug/L 50.00 100 109 76-124 2 20 Surrogate: Toluene-d8 49.0 Surrogate:	Toluene	0.0546	0.0050	mg/kg wet	0.05000		109	71-129			
Surrogate: Dibromofluoromethane S1.6 ug/L 50.00 103 84-123 surrogate: Toluene-d8 48.6 ug/L 50.00 97 76-129 surrogate: Toluene-d8 48.6 ug/L 50.000 104 74-127 2 20 surrogate: Toluene-d8 0.0520 0.0520 mg/kg wet 0.05000 104 74-127 2 20 surrogate: 4.9 surrogate: 4.8 surrogate: 4.8 surrogate: 4.9 surro	Xylenes, total	0.167	0.015	mg/kg wet	0.1500		111	74-126			
Surrogate: Toluene-d8	Surrogate: 4-Bromofluorobenzene	48.7		ug/L	50.00		97	70-130			
Prepared & Analyzed: 08/20/19 September Septembe	Surrogate: Dibromofluoromethane	51.6		ug/L	50.00		103	84-123			
Renzene 0.0520 0.0050 mg/kg wet 0.05000 104 74-127 2 20 20 20 20 20 20 20 20 20 20 20 20 2	Surrogate: Toluene-d8	48.6		ug/L	50.00		97	76-129			
Strict S	LCS Dup (P9H0347-BSD1)				Prepared	& Analyze	d: 08/20/1	9			
1.0.5. N.pXylenes	Benzene	0.0520	0.0050	mg/kg wet	0.05000		104	74-127	2	20	
110 74-126 2 20 20 20 20 20 20 2	Ethylbenzene	0.0536	0.0050	mg/kg wet	0.05000		107	74-128	2	20	
Coluene Colu	m,p-Xylenes	0.109	0.010	mg/kg wet	0.1000		109	75-124	2	20	
Kylenes, total 0.164 0.015 mg/kg wet 0.1500 109 74-126 2 20 Surrogate: 4-Bromofluorobenzene 48.3 ug/L 50.00 97 70-130 30-130 30-123 <th< td=""><td>o-Xylene</td><td>0.0549</td><td>0.0050</td><td>mg/kg wet</td><td>0.05000</td><td></td><td>110</td><td>74-126</td><td>2</td><td>20</td><td></td></th<>	o-Xylene	0.0549	0.0050	mg/kg wet	0.05000		110	74-126	2	20	
Surrogate: 4-Bromofluorobenzene 48.3	Toluene	0.0532	0.0050	mg/kg wet	0.05000		106	71-129	2	20	
Surrogate: Dibromofluoromethane 51.5 ug/L 50.00 103 84-123 Surrogate: Toluene-d8 49.0 ug/L 50.00 98 76-129 Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Senzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Sthylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n.p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Xylenes, total	0.164	0.015	mg/kg wet	0.1500		109	74-126	2	20	
Surrogate: Toluene-d8 49.0 ug/L 50.00 98 76-129 Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.1101 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 x-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		97	70-130			
Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: Dibromofluoromethane	51.5		ug/L	50.00		103	84-123			
Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0555 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: Toluene-d8	49.0		ug/L	50.00		98	76-129			
Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 I-Xylene 0.0546 0.0555 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Matrix Spike (P9H0347-MS1)	Sou	rce: 908026	0-01	Prepared:	08/20/19	Analyzed	08/21/19			
n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 1-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 (Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Benzene	0.0524	0.0055	mg/kg dry	0.05504	BRL	95	60-135			
N-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Toluene, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Ethylbenzene	0.0536	0.0055	mg/kg dry	0.05504	BRL	97	44-144			
Soluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	m,p-Xylenes	0.110	0.011	mg/kg dry	0.1101	BRL	100	36-148			
Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	o-Xylene	0.0546	0.0055	mg/kg dry	0.05504	BRL	99	43-143			
Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Toluene	0.0528	0.0055	mg/kg dry	0.05504	BRL	96	57-135			
	Xylenes, total	0.165	0.017	mg/kg dry	0.1651	BRL	100	36-148			
Surrogate: Dibromofluoromethane 51.8 ug/L 50.00 104 84-123	Surrogate: 4-Bromofluorobenzene	45.8		ug/L	50.00		92	70-130			
	Surrogate: Dibromofluoromethane	51.8		ug/L	50.00		104	84-123			

ug/L

50.00

94

76-129

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

0/ DEC

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0347 - 5035										
Matrix Spike Dup (P9H0347-MSD1)	So	urce: 908026	0-01	Prepared:	08/20/19	Analyzed	08/21/19			
Benzene	0.0486	0.0054	mg/kg dry	0.05417	BRL	90	60-135	8	20	
Ethylbenzene	0.0499	0.0054	mg/kg dry	0.05417	BRL	92	44-144	7	19	
m,p-Xylenes	0.103	0.011	mg/kg dry	0.1083	BRL	95	36-148	7	20	
o-Xylene	0.0519	0.0054	mg/kg dry	0.05417	BRL	96	43-143	5	17	
Toluene	0.0495	0.0054	mg/kg dry	0.05417	BRL	91	57-135	7	22	
Xylenes, total	0.154	0.016	mg/kg dry	0.1625	BRL	95	36-148	6	20	
Surrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		97	70-130			
Surrogate: Dibromofluoromethane	55.3		ug/L	50.00		111	84-123			
Surrogate: Toluene-d8	47.2		ug/L	50.00		94	76-129			
Batch P9H0366 - 5035										
Blank (P9H0366-BLK1)				Prepared	& Analyze	ed: 08/21/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	51.2		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	60.3		ug/L	50.00		121	84-123			
Surrogate: Toluene-d8	47.1		ug/L	50.00		94	76-129			
LCS (P9H0366-BS1)				Prepared	& Analyze	ed: 08/21/1	9			
Benzene	0.0531	0.0050	mg/kg wet	0.05000		106	74-127			
Ethylbenzene	0.0562	0.0050	mg/kg wet	0.05000		112	74-128			
m,p-Xylenes	0.115	0.010	mg/kg wet	0.1000		115	75-124			
o-Xylene	0.0575	0.0050	mg/kg wet	0.05000		115	74-126			
Toluene	0.0550	0.0050	mg/kg wet	0.05000		110	71-129			
Xylenes, total	0.173	0.015	mg/kg wet	0.1500		115	74-126			
Surrogate: 4-Bromofluorobenzene	48.7		ug/L	50.00		97	70-130			
Surrogate: Dibromofluoromethane	54.0		ug/L	50.00		108	84-123			
Surrogate: Toluene-d8	48.9		ug/L	50.00		98	76-129			

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9H0366 - 5035										
LCS Dup (P9H0366-BSD1)				Prepared ·	& Analyze	d: 08/21/1	9			
Benzene	0.0494	0.0050	mg/kg wet			99	74-127	7	20	
Ethylbenzene	0.0523	0.0050	mg/kg wet	0.05000		105	74-128	7	20	
m,p-Xylenes	0.107	0.010	mg/kg wet	0.1000		107	75-124	7	20	
o-Xylene	0.0540	0.0050	mg/kg wet	0.05000		108	74-126	6	20	
Toluene	0.0511	0.0050	mg/kg wet	0.05000		102	71-129	7	20	
Xylenes, total	0.161	0.015	mg/kg wet	0.1500		107	74-126	7	20	
Surrogate: 4-Bromofluorobenzene	48.8		ug/L	50.00		98	70-130			
Surrogate: Dibromofluoromethane	53.0		ug/L	50.00		106	84-123			
Surrogate: Toluene-d8	48.5		ug/L	50.00		97	76-129			
Batch P9H0389 - 5035										
Blank (P9H0389-BLK1)				Prepared ·	& Analyze	d: 08/22/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	50.8		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	61.1		ug/L	50.00		122	84-123			
Surrogate: Toluene-d8	47.1		ug/L	50.00		94	76-129			
LCS (P9H0389-BS1)				Prepared	& Analyze	d: 08/22/1	9			
Benzene	0.0502	0.0050	mg/kg wet	0.05000		100	74-127			
Ethylbenzene	0.0535	0.0050	mg/kg wet	0.05000		107	74-128			
m,p-Xylenes	0.111	0.010	mg/kg wet	0.1000		111	75-124			
o-Xylene	0.0542	0.0050	mg/kg wet	0.05000		108	74-126			
Toluene	0.0520	0.0050	mg/kg wet	0.05000		104	71-129			
Xylenes, total	0.165	0.015	mg/kg wet	0.1500		110	74-126			
Surrogate: 4-Bromofluorobenzene	47.1		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	55.3		ug/L	50.00		111	84-123			
Surrogate: Toluene-d8	44.9		ug/L	50.00		90	76-129			

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0389 - 5035										
LCS Dup (P9H0389-BSD1)				Prepared	& Analyze	d: 08/22/1	9			
Benzene	0.0473	0.0050	mg/kg wet	0.05000		95	74-127	6	20	
Ethylbenzene	0.0501	0.0050	mg/kg wet	0.05000		100	74-128	7	20	
m,p-Xylenes	0.104	0.010	mg/kg wet	0.1000		104	75-124	6	20	
o-Xylene	0.0514	0.0050	mg/kg wet	0.05000		103	74-126	5	20	
Toluene	0.0489	0.0050	mg/kg wet	0.05000		98	71-129	6	20	
Xylenes, total	0.155	0.015	mg/kg wet	0.1500		104	74-126	6	20	
Surrogate: 4-Bromofluorobenzene	47.0		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	53.8		ug/L	50.00		108	84-123			
Surrogate: Toluene-d8	48.6		ug/L	50.00		97	76-129			
Matrix Spike (P9H0389-MS1)	Sou	ırce: 908026	0-19	Prepared:	08/22/19	Analyzed	08/23/19			
Benzene	0.0476	0.0057	mg/kg dry	0.05685	BRL	84	60-135			
Ethylbenzene	0.0509	0.0057	mg/kg dry	0.05685	BRL	90	44-144			
m,p-Xylenes	0.107	0.011	mg/kg dry	0.1137	BRL	94	36-148			
o-Xylene	0.0492	0.0057	mg/kg dry	0.05685	BRL	87	43-143			
Toluene	0.0487	0.0057	mg/kg dry	0.05685	BRL	86	57-135			
Xylenes, total	0.156	0.017	mg/kg dry	0.1705	BRL	91	36-148			
Surrogate: 4-Bromofluorobenzene	46.8		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	60.8		ug/L	50.00		122	84-123			
Surrogate: Toluene-d8	46.1		ug/L	50.00		92	76-129			
Matrix Spike Dup (P9H0389-MSD1)	Sou	ırce: 908026	0-19	Prepared:	08/22/19	Analyzed	08/23/19			
Benzene	0.0501	0.0057	mg/kg dry	0.05696	BRL	88	60-135	5	20	
Ethylbenzene	0.0491	0.0057	mg/kg dry	0.05696	BRL	86	44-144	4	19	
m,p-Xylenes	0.104	0.011	mg/kg dry	0.1139	BRL	91	36-148	3	20	
o-Xylene	0.0490	0.0057	mg/kg dry	0.05696	BRL	86	43-143	0.5	17	
Toluene	0.0511	0.0057	mg/kg dry	0.05696	BRL	90	57-135	5	22	
Xylenes, total	0.153	0.017	mg/kg dry	0.1709	BRL	89	36-148	2	20	
Surrogate: 4-Bromofluorobenzene	45.0		ug/L	50.00		90	70-130			
Surrogate: Dibromofluoromethane	61.7		ug/L	50.00		123	84-123			
Surrogate: Toluene-d8	46.6		ug/L	50.00		93	76-129			

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Surrogate: Toluene-d8

ect: NCDOT R-5726 West End Prism Work Order: 9080260
Time Submitted: 8/16/2019

Time Submitted: 8/16/2019 9:15:00AM

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9H0434 - 5035										
Blank (P9H0434-BLK1)			ļ	Prepared	& Analyze	d: 08/26/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	51.0		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	46.7		ug/L	50.00		93	84-123			
Surrogate: Toluene-d8	49.6		ug/L	50.00		99	76-129			
LCS (P9H0434-BS1)			ı	Prepared	& Analyze	d: 08/26/1	9			
Benzene	0.0513	0.0050	mg/kg wet	0.05000		103	74-127			
Ethylbenzene	0.0516	0.0050	mg/kg wet	0.05000		103	74-128			
m,p-Xylenes	0.100	0.010	mg/kg wet	0.1000		100	75-124			
o-Xylene	0.0501	0.0050	mg/kg wet	0.05000		100	74-126			
Toluene	0.0516	0.0050	mg/kg wet	0.05000		103	71-129			
Xylenes, total	0.150	0.015	mg/kg wet	0.1500		100	74-126			
Surrogate: 4-Bromofluorobenzene	52.0		ug/L	50.00		104	70-130			
Surrogate: Dibromofluoromethane	44.7		ug/L	50.00		89	84-123			
Surrogate: Toluene-d8	51.0		ug/L	50.00		102	76-129			
LCS Dup (P9H0434-BSD1)			ı	Prepared	& Analyze	d: 08/26/1	9			
Benzene	0.0480	0.0050	mg/kg wet		-	96	74-127	7	20	
Ethylbenzene	0.0479	0.0050	mg/kg wet	0.05000		96	74-128	7	20	
m,p-Xylenes	0.0930	0.010	mg/kg wet	0.1000		93	75-124	7	20	
o-Xylene	0.0468	0.0050	mg/kg wet	0.05000		94	74-126	7	20	
Toluene	0.0481	0.0050	mg/kg wet	0.05000		96	71-129	7	20	
Xylenes, total	0.140	0.015	mg/kg wet	0.1500		93	74-126	7	20	
Surrogate: 4-Bromofluorobenzene	52.6		ug/L	50.00		105	70-130			
Surrogate: Dibromofluoromethane	43.7		ug/L	50.00		87	84-123			

ug/L

50.00

100

76-129

50.0

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Project No: GN7039

General Chemistry Parameters - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0353 - Solids, Dry Weight										
Duplicate (P9H0353-DUP1)	Sou	rce: 9080260)-04	Prepared	: 08/21/19	Analyzed	08/22/19			
% Solids	91.4	0.100	% by Weigh	nt	97.8			7	20	
Duplicate (P9H0353-DUP2)	Sou	rce: 9080260)-14	Prepared	: 08/21/19	Analyzed	08/22/19			
% Solids	96.6	0.100	% by Weigh	nt	90.5			7	20	
Batch P9H0369 - Solids, Dry Weight										
Duplicate (P9H0369-DUP1)	Sou	rce: 9080260)-20	Prepared	: 08/22/19	Analyzed:	: 08/23/19			
% Solids	93.3	0.100	% by Weigh	nt	93.3			0.02	20	
Duplicate (P9H0369-DUP2)	Sou	rce: 9080260)-23	Prepared	: 08/22/19	Analyzed	08/23/19			
% Solids	97.6	0.100	% by Weigh	nt	97.8			0.1	20	
Batch P9H0406 - Solids, Dry Weight										
Duplicate (P9H0406-DUP1)	Sou	rce: 9080260)-39	Prepared	: 08/23/19	Analyzed:	: 08/26/19			
% Solids	88.6	0.100	% by Weigh	nt	89.4			0.9	20	

Sample Extraction Data

Prep Method: Solids, Dry Weight

Lab Number	Batch	Initial	Final	Date/Time	
9080260-01	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-02	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-03	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-04	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-05	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-06	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-07	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-08	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-09	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-10	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-11	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-12	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-13	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-14	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-15	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-16	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-17	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-18	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-19	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-20	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-21	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-22	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-23	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-24	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-25	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-26	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-27	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-28	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-29	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-30	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-31	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-32	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-33	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-34	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-35	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-36	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-37	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-38	P9H0406	30 g	30 g	08/23/19 12:00	
9080260-39	P9H0406	30 g	30 g	08/23/19 12:00	

Prep Method: 5035

Lab Number	Batch	Initial	Final	Date/Time	
9080260-01	P9H0347	3.89 g	5 mL	08/20/19 10:00	
9080260-02	P9H0347	4.18 g	5 mL	08/20/19 10:00	
9080260-03	P9H0347	5.17 g	5 mL	08/20/19 10:00	
9080260-04	P9H0347	4.83 g	5 mL	08/20/19 10:00	
9080260-05	P9H0389	3.77 g	5 mL	08/22/19 10:00	
9080260-06	P9H0347	5.45 g	5 mL	08/20/19 10:00	
9080260-07	P9H0347	5.48 g	5 mL	08/20/19 10:00	
9080260-08	P9H0347	5.5 g	5 mL	08/20/19 10:00	
9080260-09	P9H0347	4.69 g	5 mL	08/20/19 10:00	
9080260-10	P9H0347	4.68 g	5 mL	08/20/19 10:00	
9080260-11	P9H0347	4.72 g	5 mL	08/20/19 10:00	
9080260-12	P9H0347	4.64 g	5 mL	08/20/19 10:00	
9080260-13	P9H0310	5.74 g	5 mL	08/19/19 10:00	
9080260-14	P9H0366	5.34 g	5 mL	08/21/19 10:00	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Sample Extraction Data

Prep Method: 5035

Lab Number	Batch	Initial	Final	Date/Time
9080260-15	P9H0347	3.3 g	5 mL	08/20/19 10:00
9080260-16	P9H0347	6.27 g	5 mL	08/20/19 10:00
9080260-17	P9H0347	5.54 g	5 mL	08/20/19 10:00
9080260-18	P9H0347	4.89 g	5 mL	08/20/19 10:00
9080260-19	P9H0389	6.23 g	5 mL	08/22/19 10:00
9080260-20	P9H0389	5.21 g	5 mL	08/22/19 10:00
9080260-21	P9H0434	4.84 g	5 mL	08/26/19 11:00
9080260-22	P9H0389	5.69 g	5 mL	08/22/19 10:00
9080260-23	P9H0310	5.96 g	5 mL	08/19/19 10:00
9080260-24	P9H0310	4.34 g	5 mL	08/19/19 10:00
9080260-25	P9H0389	4.74 g	5 mL	08/22/19 10:00
9080260-26	P9H0389	4.6 g	5 mL	08/22/19 10:00
9080260-27	P9H0389	3.91 g	5 mL	08/22/19 10:00
9080260-28	P9H0389	4.18 g	5 mL	08/22/19 10:00
9080260-29	P9H0389	4.28 g	5 mL	08/22/19 10:00
9080260-30	P9H0389	4.06 g	5 mL	08/22/19 10:00
9080260-31	P9H0389	4.36 g	5 mL	08/22/19 10:00
9080260-32	P9H0389	5.01 g	5 mL	08/22/19 10:00
9080260-33	P9H0389	5.13 g	5 mL	08/22/19 10:00
9080260-34	P9H0389	3.66 g	5 mL	08/22/19 10:00
9080260-35	P9H0389	3.79 g	5 mL	08/22/19 10:00
9080260-36	P9H0389	6.93 g	5 mL	08/22/19 10:00
9080260-37	P9H0434	4.94 g	5 mL	08/26/19 11:00
9080260-38	P9H0389	5.45 g	5 mL	08/22/19 10:00
9080260-39	P9H0434	5.81 g	5 mL	08/26/19 11:00

449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

EDD Type: PDF Report To/Conta Client Company Na **Email Address:** Phone: 979-5 Reporting Addre Ste 430

	-	
1	16.	2
	-	9
		Ye.
		Ę
-		
	-	-
i i		a
:	200	-
		_
~		짱
1	-	
-	1	_
	-	9
	H.	.)
•	. 40	₽
	-	ast
i	\neg	п
		•
	- 45	ъ
i	- 80	1
	4	P
	4	
	RC.	
	45	æ
i	K.A	n
i	-	18
		_8
		=
ŧ	-	4
1	æ	₹
1		-1
i		_
i .	E	=
3		_
	-	-
	-	ø
Ē.	_	4
:		
	_	
ķ.		P
	-	м
		=
	B	я
-		П
100		
4		٦
~	4	ø
-	-	ś
	A.	٦
1	-	ø
	-	=
3	15	۳
	6	벙
	100	ř
3	1	٦
		≝

LAB USE ONLY

8

*Please ATTACH any project specific reporting (QC LEVEL I II III IV) Short Hold Analysis: Project Name: PAGE QUOTE # TO ENSURE PROPER BILLING: (Yes) (No) MODE Nest En UST Project: 2/10 (Yes) (NO 1457 Received WITHIN HOLDING TIMES? Samples INTACT upon arrival? PROPER PRESERVATIVES indicated? Received ON WET ICE?

Page 57 of 60

3 COPIES	PRESS DOWN FIRMLY - 3 COPIES		2	M. 1 -1 119	1		-	"Maria	Mah	
10	RTEX OUL	>	mutiple		4	VOA	Soil	1020	7 8/13/19	486867-03657 8/13/19 1020
00	•	(<		*	¥	~	0910	EL 8/13/19	5866 \$ 67 EN 58 CAN TO 18 8 8988
80	THE STATE OF THE S	(Cold:	NI Jo	THE S			0480	8/12/19	266867-01-5-5.8 8/13/19
07		<	ypë un					541	8/13/19	5843-04-758 8/13/19
06		7	MIN					1480	8/13/19	5845-03-7-15 8/13/19
20	en e	7				in Si		1400	8/13/19	5B43-02-6:5-7
04		(1340	8/13/19	5843-01-455 8/13/19
03		7					Soil	1130	8/12/19	Se13-03-6.57.0 8/12/19
02		7	nd nd uni	14 24 15 16	17		Soil	1100	61/21/8	\$ 13-02-7-7.5
01	BTEX ONLY	7	printiple		7	VOA	Soil	1030	ME1/8 0	5513-01-75-800 8/12/M
ID NO.	REMARKS	CAN	TIVES	SIZE	NO.	*TYPE	WATER OR SLUDGE)	MILITARY	COLLECTED	SAMPLE DESCRIPTION
PRISM	ANALYSIS REQUESTED	1	PRESERVA-	VINER	SAMPLE CONTAINER	SAMP	MATRIX (SOIL,	TIME	DATE	CLIENT
SONNEL NC X	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NELACDoDFLNC_X_ SCOTHERN/A_ Water Chlorinated: YESNO_X_ Sample Iced Upon Collection: YESNO	5 Days Work Must Be pproved y. and holidays. ices	3 Days □ 4 I 3 Days □ 4 I d 10 days □ 5 d next busines xcluding week xcluding week REGARDING S C. TO CLIENT)	Day 2 Day Str. -9 Days M Str. -9 Days M Str. -00 will be pro on business d. ERMS & CONDI W LABORATORI	der No./E Date 1 0 1 1 1 1 1 1 1 1 1 1 1	Purchase Order No./Billing Reference Requested Due Date 1 Day 2 Days 1 Requested Duys 1 Standar "Working Days" 6-9 Days 1 Standar Samples received after 14:00 will be processe Turnaround time is based on business days, e (SEE REVERSE FOR TERMS & CONDITIONS RENDERED BY PRISM LABORATORIES, IN		Sestinae.	Excel X Other WOOD T Wast Fud cal Address: Mast End	Phone: 479-551-5334 Fax (Yes) (No): Email Address: mwa.ng & glesyleDD Type: PDF X Excel X Other Site Location Name: 11/10/207 11/14/36
°С/Соп: 3.3°С	d:2,2		TE IN	1 3		Address:	4.	Pidee R	1501 Rue River 160	Reporting Address: 15
Pa	CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE?		ments	Requireme	nd/or QC	provisions and/or QC Requirements	any	had Ma	MILLE	Report To/Contact Name:

Additional Comments: Site Arrival Time: Mileage: Field Tech Fee: Site Departure Time PRISM USE ONLY Sampler's Signature

Upon relinquishing, this Chain of Custody's your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.

Sampled By (Print Name)

Affiliation

SEE REVERSE FOR TERMS & CONDITIONS

ONCOSC ONCOSC

ONC OSC GROUNDWATER:

DRINKING WATER:

□ NC

SOLID WASTE:

RCRA:

CERCLA ONC OSC

DNC DSC DNC DSC

108076

Other

CONTAINER TYPE CODES:

A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

□Fed Ex □ UPS □ Hand-delivered □ Prism Field Service

Relinquished By: (Signature)

Relinquished By: (Signature)

Relinquished By: (Signature)

Method of Shipment. NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.

Received For Prism Laboratories By:

St-16-19

0915

LABORATORIES, INC.	PRISM
	Full-Service Analytical & Environmental Solutions

449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

Site Location Physical Address: Site Location Name: NCDOT WEST THE Email Address: Mwang & g EDD Type: PDF X Excel X Other Report To/Contact Name: Client Company Name: 4869-05956 Phone: 979-551-5334 Fax (Yes) (No): Reporting Address: 5869-07-5.DSS 5869-06-99.5 5869-04-5-5° 5869-63-5-55 5869-02-40-45 5869-01-60-65 5866867-06-75-8 □ NC □ SC Upon relinquishing, this CMain of Cust6dy is your authorization for Prism to proceed submitted in writing to the Prism Project Manager. There will be charges for any cha SB6167-04-55-60 8/13/19 ☐ Fed Ex ☐ UPS ☐ Hand-delivered ☐ Prism Field Service Sampler's Signature Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY. Relinquished By: (Signature) Relinquished By: (Signature) 5.5-F-20-1989985 Relinquished By: (Signature SAMPLE DESCRIPTION Ste 430, Kelokh, CLIENT ONC OSC mwang & geosynter wan COLLECTED 8/12/19 8/13/19 8/12/19 W/cy8 8/12/19 8/13/19 2/12/18 8/12/19 8/12/19 ONC OSC DATE GROUNDWATER: NC. 2/607 NUMBER Rlive West Fre TIME COLLECTED MILITARY HOURS 845 24 1400 1220 11/10 83 1300 645 1615 522 10 DRINKING WATER: Other_ Sampled By (Print Name) WATER OR SLUDGE) Sorl Soil 7:65 MATRIX (SOIL, 701C Received For Prism Laborate Received By: (Signature) Received By: (Signature) Samples received a Turnaround time is "Working Days" Requested Due Da Purchase Order provisions and/ Address: Invoice To: *Please ATTACH SEE BELOW VOA VOA *TYPE (SEE REVERSE RENDERED B SAMPLE SOLID WASTE:

*CONTAINER TYPE CODES:

A = Amber C = Clear G = Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

RCRA:

CERCLA ONC OSC

LANDFILL

□ sc

ONC OSC OTHER:

SEE REVERSE FOR TERMS & CONDITIONS

ORIGINAL

COC Group No

MO &

0
4 9
D
\mathbf{z}
0
77
20
ດ
_
(I)
0
Ě
9
-
1
П
0
0
10

Ved For Prism Laboratories By	ived by: (Signature	ived by: (Signature)	orism to proc orges for any	(Print Name)	VOA	<							L II	VOA	*TYPE	SAMP	Purchase Order No./Billing Reference Requested Due Date □ 1 Day □ 2 Days "Working Days" □ 6-9 Days □ Standard Samples received after 14:00 will be processed Turnaround time is based on business days, e: (SEE REVERSE FOR TERMS & CONDITIONS RENDERED BY PRISM LABORATORIES, INI	Address:	Project Name: // CDBT // Short Hold Analysis: (Yes) (No) Short Hold Analysis: (Yes) (No) *Please ATTACH any project specific provisions and/or QC Requirements Invoice To: // ABY INVOICE	PAGE 2 OF	CHA
boratories By			changes	M	t	*							7	1	NO.	SAMPLE CONTAINER	Cder No./E Date 1 1 Date 1 6 S" 6 Ped after 14 Ped after 14 Ped se based of THE PERSE FOR THE PERSE FOR THE		e: All Inalysis: ACH any Indior QC	4 aua	Z
1			he analyse after analys	chael	100	101	M.	100	1111	aR)				M pa	SIZE	INER	Day 2 D: Day 2 D: Day 3 S Day 5 S Days 6 S Days 7 S Days 7 S Days 7 D D Days 7 D D D D D D D D D D D D D D D D D D D	12 1	alysis: (Yes) (No H any project speci Hor QC Requiremen	TE # TO EN	FCC
P		er d	Prism to proceed with the analyses as requested above. Any changes must be arges for any changes after analyses have been initialized.	Wang	multiple	(31	igul igul ints	uli 12				protople	TIVES	PRESERVA-	3 Days C 3 Days C 4 10 days C d next busing coluding we regarbing c. TO CLIEN		геро	2 OF 4 QUOTE # TO ENSURE PROPER BILLING:	CHAIN OF CUSTODY RECORD
			bove. An tialized.	Affiliation	×	X	×	×	×	×	×	×	×	×	S. Sales	\ o	4 Days 4 Days 4 Days 4 Days 4 Pre-Appropers day. Bess day. Bekends and Services 3 Services	150	UST Project:	LING:	70
S160 61-91-12	Date	9	y change	on			03.	U LU	34.E						Ser.	1	5 Days Vork Must Be proved and holidays.		(Yes)	6N 7039	CO
10		B	s must	-X		emil:		Į.				я	H			ANALY	ezittiöini (-)	liom his	NO.	089	
>100		Military/Flours	be	m/s	AL.					ar T		7(L)	1		1	ANALYSIS REQUESTED	O BE certific water sample	TE OF		Sa	
		(p)				jour	шп	eni i	120			(124	ď		1	NESTE	FILLE ation Chlor cled	MP: Th	ceived (OPER F Ceived V ISTODY	mples II	
		Additio	in the same		alli en	75 Y	ranA extTi	fnN	E			,,,,	X III			- 6	TO BE FILLED IN BY CLI Certification: NELAC SC Water Chlorinated: YES Sample Iced Upon Colley	em ID:	Received ON WET ICE? PROPER PRESERVATIV Received WITHIN HOLD CUSTODY SEALS INTAK VOLATILES rec'd W/OUT	VTACT u	
		Additional Comments:		PRES	878	LIST			T.V	61			7	RT	\	-	BY CLIE	TEMP: Therm ID: 17	Received ON WET ICE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE BEOGREP CONTAINEDS word?	Samples INTACT upon arrival?	LAB
			mi ta	S DOWN	BIEX ONLY	~		Lon	-CA-			VIII		X DNLY	REMARKS		TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NELACDoDFLNC_X SCOTHERN/A Water Chlorinated: YESNO Sample Iced Upon Collection: YES_X NO	Observed: 3	Received ON WET ICE? PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE?	7	LAB USE ONLY
Milesons.	Sie Departure Tille	Site Arrival Time:	PRISM L	FIRMLY .	K							anh	Ē	Y	S	r Izan	FLN/A	3,2 °C/Com	4/196	₹ €	Ī
Ö	o Inne.	me:	PRISM USE ONLY	PRESS DOWN FIRMLY - 3 COPIES	20	<u> </u>	18	-	16	15	_	13	17	=	ID NO.	PRISM	SONNEL	Corr. 3.3 °C	Page 58 (NO N/A	

449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

Short Hold Analysis: (Yes) ((No)

Project Name: _

N.CART

West Fre

UST Project:

10%

EDD Type: PDF X Excel Phone: 079 551-534 Fax (Yes) (No): Client Company Name: 5889 036.5-7 Site Location Physical Address: Site Location Name: Email Address: Reporting Address: Report To/Contact Name: SB89-02-5.5-5889-61-55. SB18-036-6.5 □ NC □ SC □ Fed Ex □ UPS □ Hand-delivered □ Prism Field Service Upon relinquishing, this Cham of Custody is your authorization for Prism to proceed with the analyses as requested above. Any change submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized. 5B102-01-2.52 J889-4-7-7. SB78 72-55-6 5867-08-6-5 8/13/19 Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY. Relinguished By: Sampler's Signature Relinquished By: (Signature) 58-18-04-65-SAMPLE DESCRIPTION 48-8-01-7-7.5 te uso ONC OSC (Signature) minimales DATE 8/13/19 11/8 8/15/19 1030 8/14/19 11/4/18 8/15/19 046061/51/8 8/15/19 01/41/8 NC007 ONC OSC GROUNDWATER: X other NC 2760 TIME COLLECTED MILITARY HOURS geosynter. com 1130 0900 0930 1050 1550 1300 0900 0825 DRINKING WATER: 70 D Other Sampled By (Print Name) WATER OR 2000 SLUDGE) Z Z MATRIX (SOIL, Received For Prism Laboratories By: Received By: (Signature) Received By: (Signature) Purchase Order No./Billing Reference "Working Days" © 6-9 Days of Standard 10 days Pre-Approved
Samples received after 14:00 will be processed next business day. Requested Due Date 🗆 1 Day 🗀 2 Days 🗀 3 Days 🗀 4 Days 🗀 5 Days *Please ATTACH any project specific reporting (QC LEVEL I II III Turnaround time is based on business days, excluding weekends and holidays. Invoice To: provisions and/or QC Requirements Address: SEE BELOW VOA VOA TYPE (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES RENDERED BY PRISM LABORATORIES, INC. TO CLIENT SAMPLE CONTAINER SOLID WASTE: 8 NO. Mahar 2

Mitological

Affiliation

Date M

Site Departure Time: Field Tech Fee:

Villeage:

Date

CHAIN OF CUSTODY RECORD

PAGE 3 OF 4 QUOTE # TO ENSURE PROPER BILLING: 6W70; (Yes) LAB USE ONLY

B		s must be	75.6		341/ - F.			Hac			l lui	ATT	1	NALY	(0	TOUR S			40	1
相	Military/Hours	t be	mil.	tari igais iya	C III	1.51	irmi irmi	2110			Turi Tu	ery and		MALYSIS REQUESTED	sample I		TO BE FILLE Certification:	PROPE TEMP:	Recei CUST	Samp
		n ba	Jeg 1	n las ulm	ista Se :	(1117) (21)	iud (iii)	300	THT O'F			41		ESTED	Sample Iced Upon Colle	SC	0	PROPER CONTAINE	PROPER PRESERVATIVES Received WITHIN HOLDING CUSTODY SEALS INTACT?	Samples INTACT upon arrival? Received ON WET ICE?
1/25	Additional Comments:	1011 1011 1011 1011 1011	PRESS DOWN FIRMLY	BTEX			in tu	117				2/1	BIEX (REMARKS	Collection: YES	~ 월	IN BY CLIENT/SAMPLING PERSONNEL NELAC DoD FL NC X	vers used? Observed:	PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT?	pon arrival?
	Site Arrival Time:	PRISM USE		ovey								di s	SMEY	RKS	SX NO	N/A	IPLING PERSO	red: 3, 2°C / Corr. 3	114	
	×	SE ONLY	3 COPIES	30	25	28	27	26	25	24	22	8	رج	PRISM LAB ID NO.	His xi Slam His S	1	SONNEL	™3.3°c	Page 5	

SIZE

PRESERVA-TIVES

erios.

SEE REVERSE FOR TERMS & CONDITIONS

*CONTAINER TYPE CODES:

A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

RCRA: □ NC □ SC

ONC OSC CERCLA

ONC OSC ONC OSC

LANDFILL

OTHER:

COC Group No かたろ

9080

ı	U
3	J
LABORATORIES, INC.	7
TORIES	
NC.	\leq
	92

/ironmental Solutions -Service Analytical &

Client Company Name: 449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

Reporting Address: Report To/Contact Name:

Invoice To:

EDD Type: PDF_ Email Address: Phone: Excel Fax (Yes) (No):

Site Location Physical Address: Site Location Name:

CHAIN OF CUSTODY RECORD

PAGE 4 OF 4 QUOTE # TO ENSURE PROPER BILLING: 647037 provisions and/or QC Requirements *Please ATTACH any project specific reporting (QC LEVEL I II III IV) Short Hold Analysis: Project Name: (Yes) (No) NICODI West UST Project: (Yes)

PROPER PRESERVATIVES indicated?

Received ON WET ICE? Samples INTACT upon arrival?

LAB USE ONLY

NO

PROPER CONTAINERS used? VOLATILES rec'd W/OUT HEADSPACE?

°C/Corr. S. J

CUSTODY SEALS INTACT? Received WITHIN HOLDING TIMES?

Page

60 of

Address:

Purchase Order No./Billing Reference Turnaround time is based on business days, excluding weekends and holidays. Samples received after 14:00 will be processed next business day "Working Days" (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES ☐ 6-9 Days A Standard 10 days ☐ Rush Work Must Be

Sample Iced Upon Collection: YES X NO. Certification: NELAC TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Water Chlorinated: YES OTHER _ DoD_ NO 7 N

				RENDERE	BY PRISM	LABORATOR	RENDERED BY PRISM LABORATORIES, INC. TO CLIENT)	Ų-	Sample Ice	Upon C	Sample Iced Upon Collection: YES	NO	
CLIENT	DATE	TIME	MATRIX	SAMPL	SAMPLE CONTAINER	NER	DDESEBVA_	011	ANALYSIS REQUESTED	B) (1 0) (2)		PRISM
SAMPLE DESCRIPTION	COLLECTED	MILITARY	WATER OR SLUDGE)	*TYPE	NO.	SIZE	TIVES	828	/	/	REM	REMARKS	ID NO.
58102-02-5.5-B 8/14/19	8/14/19	1135	2105	Vo4	4	- 1 -	Mustale	×		540	BTEX ONLY	LINO	ω –
58602-03-7-7.5 8/14/19	8/14/19	1300	_					×		- AT	d le	III	32
8/14/18 8-21-40-2018	8/14/19	1330		= 3			201	×	The Delta	ıe	OST		33
8860-05-45-5 8/14/19	8/14/19	1400						×					34
SB102-06-05-18/14/19	8/14/19	1450				15	Hi-	×			ury		35,
58102-077.5-8 R/W/19	8/4/19	1535	Tax	eita Aven	Tal	115-1	100	×	11,71		701		36
6/11/8 588-80-0085	6/41/8	1605		i i i		JACES JACES	Hint Le PRE-	X		(A.).	o de la contra		37
SB102-09-8.5-9 8/14/19	18/4/19	2491	<u> </u>	\	<	H L	<u> </u>	X		71x 511	•		38
SB141/8 2.12-10-10-10488	61/41/8	1720	21,95	UOA	t		Miltiple	X		i de	BIEX ONLY	MCX	28
Sampler's Signature	Myhne	y,	Sampled By	Sampled By (Print Name)		chael	Michael (Rang	Affiliation		1=X1 B 1 Y2	PRESS DOV	PRESS DOWN FIRMLY - 3 COPIE	3 COPIE
Upon relinquishing, this Chain of Custody & your authorization for Prism to proceed with the analyses as requested above. A submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.	Chain of Custoc he Prism Project	ly ts your auth Manager. The	orization for F er will be cha	rism to proce rges for any c	ed with the	ne analyses fter analyse	as requested abo	ove. Any chan alized.	. Any changes must be ed.	int in		PRISM USE ONLY	SE ONLY
Relinquished By: (Signature)	Mille	,	Receiv	Received By: (Signature)	uen m HX		Tak	Date	Military/Hours	Addition	Additional Comments:	Site Arrival Time:	ne:
Relinquished By: (Signature) Relinquished By: (Signature)	lea U		Receiv	Received By: (Signature) Received For Prism Laboratories By	oratories By:			Date				Site Departure Time: Field Tech Fee:	Time:
Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.	LL SAMPLE COOLER	S SHOULD BE TA	VED SHUT WITH	CUSTODY SEAL	S FOR TRA	USPORTATION	TO THE LABORATO		2-16-19 OAD			Mileage:	
Meniod of Shipment. NOTE: A	LL SAMPLE COOLET	משטטעבט פב וא	VED SHOT WITH	CUSTODY SEAL	S FOR IRA	VSPORIATION	I O THE LABORATO	KY. COC Group No.	oup No.				

SEE REVERSE FOR TERMS & CONDITIONS

□NC□SC □NC□SC

ONC OSC GROUNDWATER:

□NC □SC DRINKING WATER:

□ NC SOLID WASTE: □ SC

RCRA: □ NC □ SC

ONC OSC CERCLA

ONC OSC LANDFILL

ONC OSC OTHER:

CONTAINER TYPE CODES:

A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

NPDES:

UST:

□ Fed Ex □ UPS

☐ Hand-delivered ☐ Prism Field Service

O Other

Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY, SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.

North Carolina Department of Transportation

WEST END, NORTH CAROLINA

Century Center Complex, Building B 1020 Birch Ridge Drive Raleigh, North Carolina 27610

PRELIMINARY SITE ASSESSMENT PARCEL 69 NC 211 IN WEST END 4331 NC HIGHWAY 211, MOORE COUNTY,

WBS #: 50218.1.1 TIP#: R-5726

Prepared by

Geosyntec Consultants of NC, PC 2501 Blue Ridge Road, Suite 430 Raleigh, North Carolina 27607

Project Number GN7039

October 2019

Date:

October 21, 2019

WBS Number:

50218.1.1

TIP Number:

R-5726

County:

Moore County

Description:

Preliminary Site Assessment

Address:

4331 NC 211, West End, North Carolina 27376 Parcel 69; (Brian K. Neal and Karen P. Neal)

Parcel ID: Author:

R. Matthew Jenny, P.E.

I, <u>R. Matthew Jenny</u>, a Professional Engineer for <u>Geosyntec Consultants of NC, PC</u> do certify that the information in this report is correct and accurate to the best of my knowledge.

Not considered final until all signatures are completed

<u>Geosyntec Consultants of NC, PC</u> is licensed to practice engineering in North Carolina. The certification number (Firm's License Number) is <u>C-3500</u>.

<u>Geosyntec Consultants of NC, PC</u> is licensed to practice geology in North Carolina. The certification number (Firm's License Number) is C-295.

TABLE OF CONTENTS

1.	INT	FRODUCTION	1
	1.1	Description	1
	1.2	Site Background	1
	1.3	Scope of Work	2
2.	HIS'	STORY	3
	2.1	Historical Aerial Photographs	3
	2.2		
3.	ME	ETHODS	5
	3.1	Geophysical Investigation	5
	3.2	Sub-Surface Soil Investigation	5
4.	RES	SULTS	7
	4.1		
	4.2	Geophysical Investigation Results	7
	4.3		7
		4.3.1 Field Sampling Observations and PID Results	
		4.3.2 Soil Sampling Analytical Results	8
5.	SUN	MMARY	9

LIST OF TABLES

Table 1: Soil Boring Coordinates

Table 2: Soil Analytical Results – TPH by UVF

Table 3: Soil Analtyical Results – VOCs

LIST OF FIGURES

Figure 1: Site Location Figure 2: Site Layout

Figure 3: Soil Boring Locations (Roadway Design Base Map)

LIST OF APPENDICES

Appendix A: Geophysical Investigation Report

Appendix B: Photographic Log
Appendix C: Soil Boring Logs
Appendix D: Red Lab UVF Report

Appendix E: Prism Laboratories Analytical Report

1. INTRODUCTION

1.1 Description

Geosyntec Consultants of NC, PC (Geosyntec) presents this technical report (Report) to the North Carolina Department of Transportation (NCDOT) for the Preliminary Site Assessment (PSA) of 4331 NC 211 in West End, North Carolina (the Site). The Site is associated with NCDOT TIP number R-5726, Parcel 69, and owned by Brian K. Neal and Karen P. Neal. A Site location map is presented in **Figure 1**.

Geosyntec understands NCDOT would like to acquire right-of-way (ROW) and Public Utility Easements (PUEs) for road improvements along NC 211 in West End, North Carolina. The principal purpose of this PSA is to assess the possible presence of underground storage tanks (USTs) and/or above-ground storage tanks (ASTs), determine the likelihood of environmental impacts (i.e., soil and/or groundwater contamination), and make recommendations for regulatory compliance within the project study area.

This report discusses the Site history, investigative methodology, observations, sampling results, conclusions, and recommendations.

1.2 Site Background

NCDOT Parcel number 69 (Moore County Parcel number 00023865 [owned by Brian K. Neal and Karen P. Neal]) is located on 4331 NC HWY 211 in West End. **Figure 2** shows the general Site layout, including the locations of the soil borings advanced to investigate the subsurface of the Site. The Site is currently a gas station and is associated with UST Incident 29042, FA-1733. The North Carolina Department of Environmental Quality (NCDEQ) provided a No Further Action (NFA) for the incident in January 2012.

The property is approximately 0.45 acres and operates as a convenience store. The NCDEQ UST Section registry indicates there are three active USTs (a 10,000-gallon gasoline tank, an 8,000-gallon gasoline tank, and a 6,000-gallon gasoline tank) servicing the property (facility ID: 0-020850). The Site is bounded to the southwest by NC 211 and to the north and east by commercial properties and Seven Lakes Drive.

1.3 Scope of Work

The scope of work consisted of a historical Site desktop review, geophysical survey, and sub-surface soil investigation within the entirety of the subject property. The geophysical survey was performed to locate potential metallic USTs, UST-associated product lines, non-UST metallic anomalies, and private underground utility lines within the immediate vicinity of the proposed soil boring locations. Following the geophysical survey, soil borings were advanced and soil samples were collected from each location to determine if, and to what extent, contaminated soils are present within the study area.

2. HISTORY

Geosyntec reviewed publicly accessible online environmental databases (i.e., the North Carolina Department of Environmental Quality [NCDEQ] Laserfiche database, the NCDEQ Division of Waste Management Site Locator Tool, and the NCDEQ UST Section database) to research the Site history.

2.1 Historical Aerial Photographs

The following reviews the findings from the historical aerial photographs, as provided by Google Earth® imagery:

- The earliest aerial photographs date back to 1993. The existing refueling station can be identified in the historical photos. No significant deviations at the Site were identified between 1993 and 2018.
- The Site surroundings (residential and commercial land) appear generally consistent between 2005 and 2018. Some minor land development occurred at eastern off-Site properties between 1999 and 2005.

2.2 <u>Subject Site Findings</u>

The Brian K. Neal and Karen P. Neal property is associated with UST Incident 29042, FA-1733. According to CATLIN Engineers and Scientists (CATLIN), approximately 2,500 gallons of gasoline were released to the environment in 2003 due to a gasket failure on one of the on-Site USTs. Following initial abatement activities, a Soil Vapor Extraction (SVE) unit was installed in March 2004 as an interim remedial effort until March 2007. A Corrective Action Plan (CAP) was completed in August 2007, which involved the use of an SVE and air sparge system. The most recent groundwater monitoring report was submitted by CATLIN in August 2010, indicating benzene, xylenes, and methyl-tert-butyl ether (MTBE) detections above their respective North Carolina Administrative Code (NCAC) 2L Groundwater Standards (2L Standards) in select on-Site monitoring wells. Nonetheless, NCDEQ issued an NFA for the incident in January 2012.

Based upon the understanding of the Subject Site and adjacent off-Site environmental history, Geosyntec conducted a Site investigation inclusive of a geophysical survey and intrusive activities to screen soil and evaluate if residual contamination exists within the Site study area.

3. METHODS

3.1 Geophysical Investigation

The geophysical investigation was performed at the Site by Pyramid Environmental and Engineering P.C. (Pyramid) from July 29 to July 31, 2019 to locate and mark buried USTs, buried metallic drums, and/or buried utility lines within the entire property. Generally, the tasks consisted of an electromagnetic induction-metal (EM) detection followed by ground penetrating radar (GPR) surveys.

The EM data was digitally collected at approximately 1-foot intervals along survey lines spaced approximately five feet apart. The EM unit can detect a metal drum down to a depth of approximately eight (8) to ten (10) feet. GPR scanning was conducted across selected EM metal detection anomalies, around the proposed boring locations, and across the entire ROW/PUE area along with a DitchWitch utility locator for buried utility line clearance. Additional details of the geophysical investigation methodology are provided in **Appendix A** of the report.

3.2 Sub-Surface Soil Investigation

The sub-surface investigation was conducted on August 12-15, 2019 using a direct push technology (DPT) drill rig. SAEDACCO provided the drilling services. North Carolina 811 was notified to mark utility lines within the existing ROW prior to drilling. A hand auger was used for the top three (3) to five (5) feet of each boring as an additional safety precaution.

Eight (8) soil borings were completed during this investigation, each extending 10 feet below ground surface (ft bgs). Soil sampling locations were selected in areas likely to be encountered during roadway construction. Specific priority was placed at locations proximal to the existing USTs, SVE system, and groundwater monitoring wells. The soil lithology was recorded, and the soil was screened using a photo-ionization detector (PID) with a 10.6 electron-Volt lamp at approximately 6-inch intervals. Soil samples were collected from each boring at an elevation corresponding to the highest PID reading. In instances where PID readings were null, field personnel used professional judgement (e.g., odors, staining, historical Site-use information) to determine the appropriate sampling depth.

Upon DPT completion, the soil cuttings were dispersed over the Site's natural areas and/or backfilled within the boring. Boring surface completions matched pre-existing conditions to the extent practical. Boring locations were surveyed with a global position system (GPS) unit. DPT rods were decontaminated with a Liquinox[®] cleaning solution between borings. Free product was not encountered during soil sampling, nor was other investigative derived waste (IDW) accumulated. As such, IDW drums were unnecessary.

Samples were sent off-site to Red Lab, LLC (Red Lab) and Prism Laboratories, Inc. (Prism). The samples sent to Red Lab were analyzed for Total Petroleum Hydrocarbon (TPH), gasoline-range organics (GRO), and diesel-range organics (DRO) by Ultra-Violet Fluorescence (UVF). The soil samples submitted to Prism were analyzed for volatile organic compounds (VOCs) by USEPA Method 8260B, reporting only benzene, toluene, ethylbenzene, and xylenes (BTEX). These analytical approaches are consistent with the UST Section Guidance. Samples were sent on ice under chain of custody procedures to the applicable laboratory.

4. **RESULTS**

4.1 Site Observations

On July 29, 2019 Geosyntec performed an initial Site walk with Pyramid prior to conducting work. An SVE system was identified throughout the property, along with six unabandoned (i.e., viable) monitoring wells. The historical CATLIN reports indicate twelve (12) monitoring wells are associated with the Site; it is unclear if some of the wells were abandoned or were unable to be located in the field. Geosyntec was unable to locate well abandonment records for the UST incident and NFA notice. **Appendix B** provides a photographic log of the field observations.

4.2 <u>Geophysical Investigation Results</u>

The geophysical survey was performed to locate and mark buried USTs, buried metallic drums, and/or buried utility lines within the ROW/PUE extent using both EM and GPR approaches.

Pyramid identified three existing USTs and one septic tank. A total of eleven EM anomalies were identified. Several of the EM anomalies were directly attributed to visible features at the ground surface. GPR was performed across the three USTs and the septic tank to verify their properties (the UST numbers were arbitrarily labeled, see more details in **Appendix A**).

- UST #1 is approximately 26.5 feet long and 8 feet wide.
- UST #2 is approximately 23 feet long and 8 feet wide.
- UST #3 is approximately 27.5 feet long and 10 feet wide.
- The septic tank is approximately 12.5 feet long and 7.5 feet wide.

Collectively, the geophysical data recorded evidence of three known metallic USTs and one septic tank at the Site. Pyramid's geophysical report is provided in **Appendix A**.

4.3 <u>Sub-Surface Investigation Results</u>

4.3.1 Field Sampling Observations and PID Results

Following the geophysical survey, the sub-surface investigation was performed to determine if, and to what extent, contaminated soils are present within the study area.

Eight (8) soil borings were completed during the investigation, each extending 10 ft bgs. PID soil screening values were minimal (less than 1 part per million [ppm]) throughout the entirety of each soil boring. The soil lithology generally consisted of top soil in the first three (3) ft bgs followed by sandy clay with some gravel. Groundwater was not encountered. Soil sampling locations are shown on **Figure 2** and GPS coordinates are recorded on **Table 1**. The boring logs are provided in **Appendix C**.

4.3.2 Soil Sampling Analytical Results

Eight (8) soil samples were collected as part of the intrusive investigation and analyzed for TPH by UVF and VOCs by EPA Method 8260B. The TPH analytical data was screened against the TPH DRO and TPH GRO values established in the UST Section Guidance. The benzo(a)pyrene and BTEX analytical data were compared to the NCDEQ UST Section Maximum Soil Contaminant Concentrations (MSCCs).

The UVF fingerprinting data do not indicate soil screening level exceedances for the constituents analyzed. DRO was detected in the SB69-02, SB69-06 and SB69-08 soil samples. GRO was detected in the SB69-02 and SB69-07 soil samples. No results exceeded the screening values. **Table 2** shows the TPH analytical results.

VOC analytical data was screened against the NCDEQ UST Section MSCCs. No detections were reported. The VOC analytical results are shown in **Table 3.**

The UVF analytical report, including the fingerprint matching data, is provided in **Appendix D**; the Prism analytical report is provided in **Appendix E**¹. **Figure 3** displays the soil boring locations using a preliminary roadway design drawing base map.

¹The Prism Laboratory report includes analytical results for samples collected from other parcels associated with NCDOT project R-5726.

5. SUMMARY

From August 12-15, 2019 Geosyntec completed an environmental PSA to determine the likelihood of contamination within the proposed acquisition area at 4331 NC 211 in West End (NCDOT Parcel 69). The property is owned by Brian K. Neal and Karen P. Neal; the entire parcel was included as part of this investigation. The following summarizes the findings of this PSA.

UST Incident 29042, FA-1733 is associated with the Site. An NFA was issued by the UST Section in January 2012; however, petroleum-based constituents (benzene, MTBE, xylenes) were detected in excess of their respective 2L Groundwater Standards during the most recent sampling event in 2010. Six viable groundwater monitoring wells were located within the property boundary; historical reports suggest 12 monitoring wells are on the property.

A geophysical survey and intrusive soil investigation were performed as part of this scope of work. Three known USTs were identified at the northern side of the property and one septic tank south of the building footprint. The USTs range from approximately 23 to 28-feet in length and 8 to 10 feet in width; the top of the tanks is located approximately 2 ft bgs. The septic tank is approximately 12.5 feet long, 7.5 feet wide, and the top of the septic tank is located approximately 2-ft bgs. Eight (8) soil borings were advanced to investigate the environmental impacts on the property. Petroleum impacts to shallow Site soils were not identified during field screening or as part of the analytical testing. Groundwater was not encountered.

The work performed herein did not identify petroleum impacts in shallow soils within the Site study area. Geosyntec anticipates a low likelihood of encountering shallow soil impacts within the study area. Given the historical exceedances of petroleum-based constituents in Site groundwater, Geosyntec offers that if groundwater is encountered during roadway construction, there is a reasonable likelihood that the groundwater will be impacted. As such, Geosyntec recommends handling contaminated matrices in accordance with State and Federal regulations. Further, Geosyntec recommends abandoning the monitoring wells identified on the property and decommissioning/removing the USTs and septic tank to facilitate roadway construction.

TABLES

Table 1 Soil Boring Coordinates 4331 NC 211, West End, North Carolina 27376 NCDOT Parcel 69

TIP: R-5726 WBS: 50218.1.1

Soil Boring ID	Longitude	Latitude
SB69-01-6.0-6.5	-79.584612	35.263033
SB69-02-4.0-4.5	-79.584671	35.263000
SB69-03-5.0-5.5	-79.584915	35.263194
SB69-04-5.0-5.5	-79.584821	35.263283
SB69-05-9.5-10	-79.584738	35.263361
SB69-06-9.0-9.5	-79.584650	35.263347
SB69-07-5.0-5.5	-79.584710	35.263171
SB69-08-6.0-6.5	-79.584446	35.263211

Monitoring Well ID	Longitude	Latitude
MW-2	-79.584817	35.263314
MW-4	-79.584710	35.263204
MW-5	-79.584835	35.263233
MW-7	-79.584410	35.263187
MW-8	-79.584864	35.263114
TMW-5	-79.584742	35.263113

¹⁾ Coordinate datum reference: WGS 1984.

Table 2

Soil Analytical Results - TPH by UVF

4331 NC 211, West End, North Carolina 27376 NCDOT Parcel 69

TIP: R-5726

WBS: 50218.1.1

		Analyte	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	Benzo[a]pyrene
		Units				mg/kg			
	UST	ΓPH Guidance		50	100				
	Soil-to-	Water MSCCs							0.096
	Resident	ial Soil MSCCs							0.088
	Commercial / Ind	ustrial MSCCs							0.78
Sample ID	Sample Depth (ft bgs)	Sample Date							
SB69-01-6.0-6.5	6.0-6.5	8/12/2019	< 0.32	< 0.32	< 0.32	< 0.32	< 0.06	< 0.1	< 0.013
SB69-02-4.0-4.5	4.0-4.5	8/12/2019	< 0.36	0.52	1.4	1.9	0.71	< 0.11	< 0.014
SB69-03-5.0-5.5	5.0-5.5	8/12/2019	< 0.29	< 0.29	< 0.29	< 0.29	< 0.06	< 0.09	< 0.012
SB69-04-5.0-5.5	5.0-5.5	8/12/2019	< 0.32	< 0.32	< 0.32	< 0.32	< 0.06	< 0.1	< 0.013
SB69-05-9.5-10	9.5-10.0	8/12/2019	< 0.33	< 0.33	< 0.33	< 0.33	< 0.07	< 0.11	< 0.013
SB69-06-9.0-9.5	9.0-9.5	8/12/2019	< 0.28	< 0.28	0.28	0.28	0.22	< 0.09	< 0.011
SB69-07-5.0-5.5	5.0-5.5	8/12/2019	< 0.36	0.74	< 0.36	0.74	< 0.07	< 0.12	< 0.015
SB69-08-6.0-6.5	6.0-6.5	8/13/2019	< 0.55	< 0.55	10.4	10.4	5.2	0.23	< 0.022

Notes:

- (1) mg/kg indicates milligrams per kilogram.
- (2) NCDEQ UST Guidance references the 26 July 2016 Guidelines for North Carolina Action Limits for Total Petroleum Hydrocarbons (TPH).
- (3) MSCC indicates North Carolina Department of Environmental Quality (NCDEQ) Underground Storage Tank (UST) Section Maximum Contaminant Concentration Levels, updated November 2016.
- (4) < indicates analyte was not detected above the laboratory method detection limit (MDL).
- (5) Detections are identified in bold.
- (6) --- indicates screening criteria not established.
- (7) UVF indicates ultraviolet fluorescence.
- (8) TPH indicates total petroleum hydrocarbons.
- (9) GRO indicates gasoline range organics.
- (10) DRO indicates diesel range organics.
- (11) PAH indicates polycyclic aromatic hydrocarbon.
- (12) BTEX indicates benzene, toluene, ethylbenzene, and xylenes.
- (13) ft. bgs indicates feet below ground surface.

Table 3

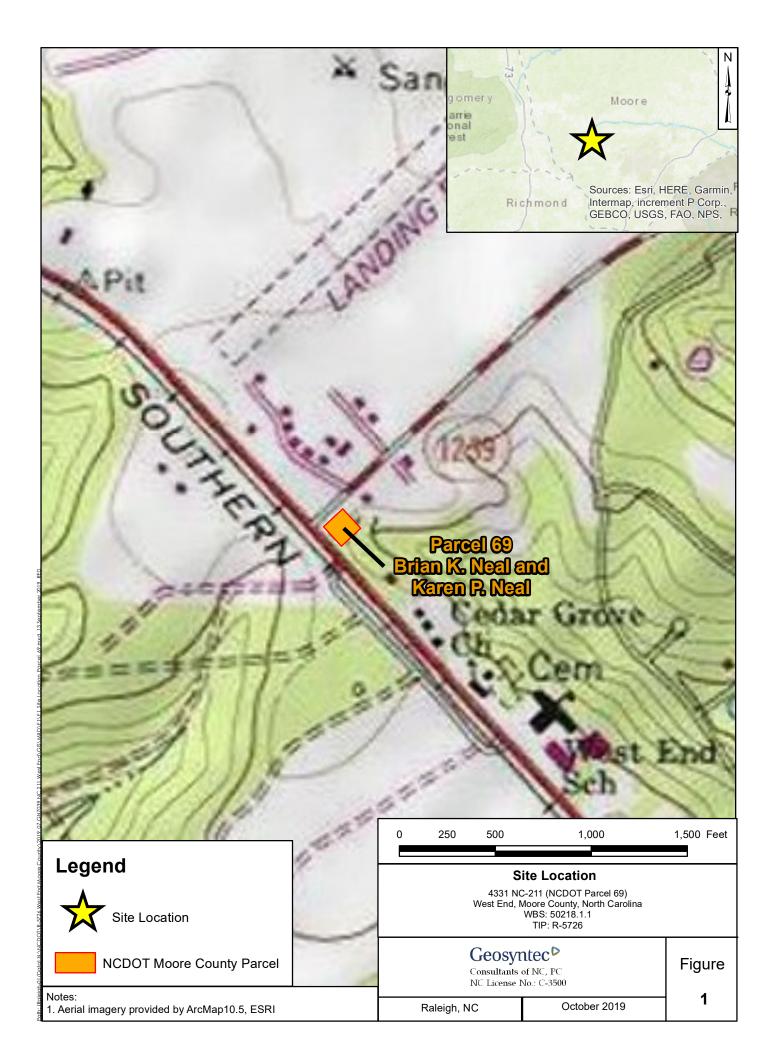
Soil Sampling Analytical Summary - VOCs 4331 NC 211, West End, North Carolina 27376

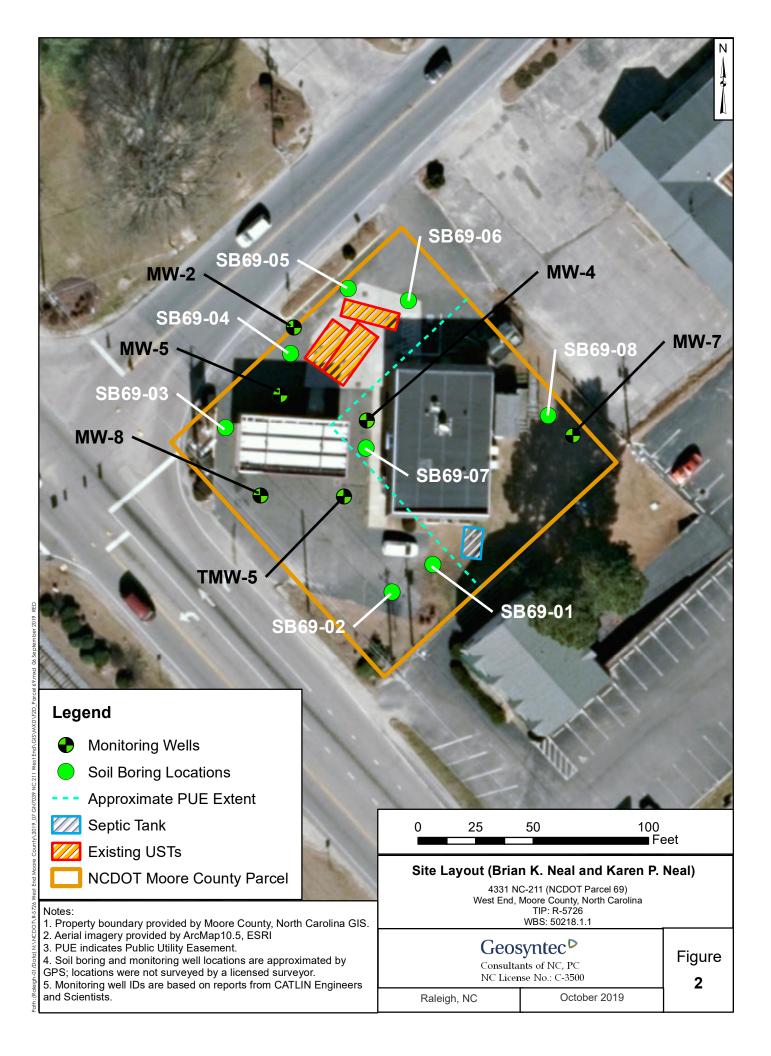
NCDOT Parcel 69 TIP: R-5726

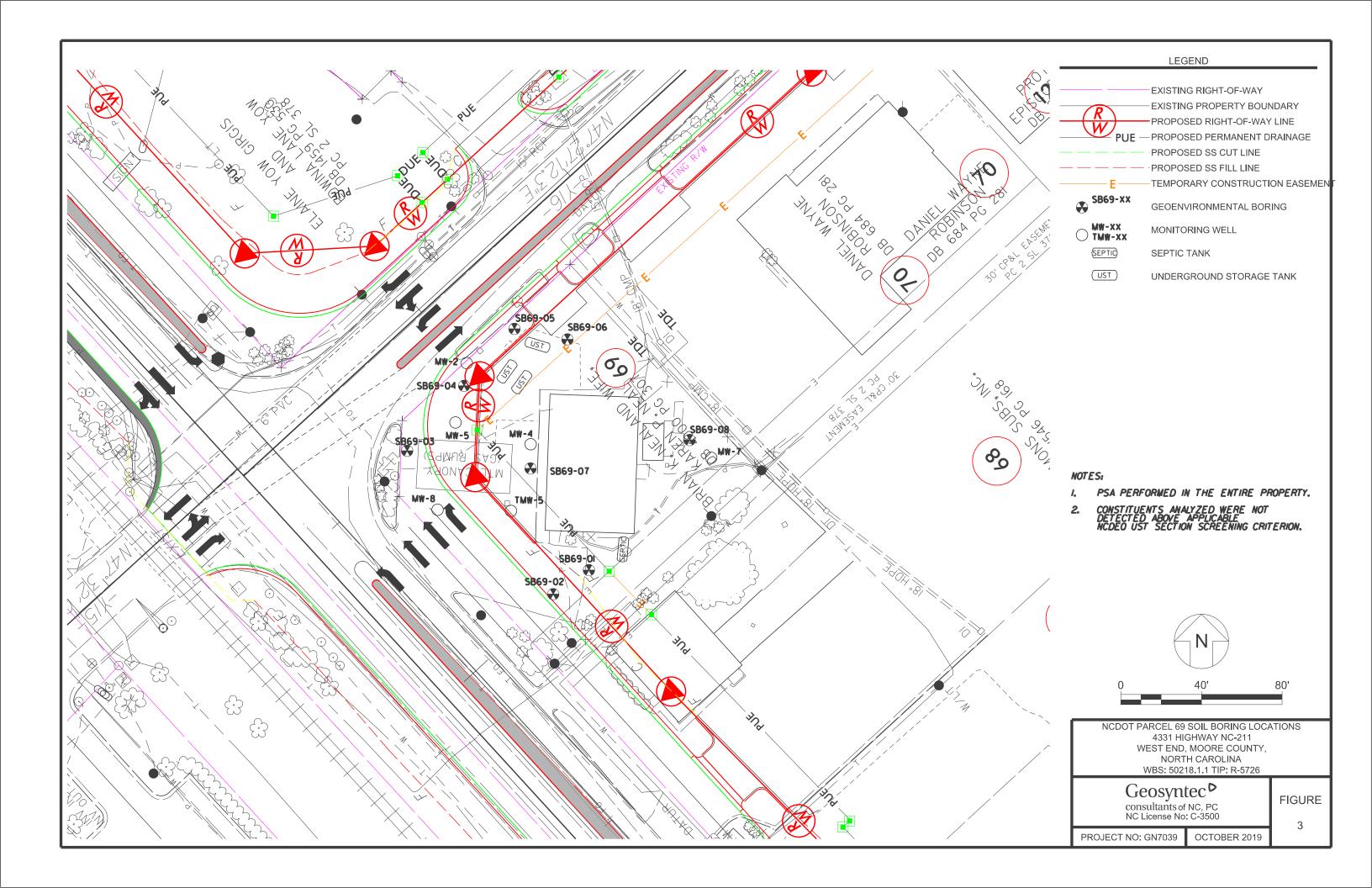
WBS: 50218.1.1

		NCDEO	NCDEQ Soil-	Sample ID	SB69-01	SB69-02	SB69-03	SB69-04	SB69-05	SB69-06	SB69-07	SB69-08
	NCDEQ	Industrial/	to-Water	Sample Date	8/12/2019	8/12/2019	8/12/2019	8/12/2019	8/12/2019	8/12/2019	8/12/2019	8/13/2019
Analyte	Residential Soil Cleanup Levels	Commercial Soil	Maximum	Sample Depth (ft. bgs)	6.0-6.5	4.0-4.5	5.0-5.5	5.0-5.5	9.5-10.0	9.0-9.5	5.0-5.5	6.0-6.5
	MSCC	Cleanup Levels	Contaminant	Sample Type				Gı	ab			
	1,1500	MSCC	MSCC	Units				mg	/kg			
Volatile Organic Comp	ounds (VOCs) by E	EPA Method 8260B										
Benzene	18	164	0.0056	mg/kg	< 0.0052	< 0.0080	< 0.0043	< 0.0049	< 0.0056	< 0.0046	< 0.0051	< 0.0060
Ethylbenzene	1,560	40,000	4.9	mg/kg	< 0.0052	< 0.0080	< 0.0043	< 0.0049	< 0.0056	< 0.0046	< 0.0051	< 0.0060
m,p-Xylenes	3,129	81,760	4.6	mg/kg	< 0.010	< 0.016	< 0.0086	< 0.0098	< 0.011	< 0.0092	< 0.010	< 0.012
o-Xylene	3,129	81,760	4.6	mg/kg	< 0.0052	< 0.0080	< 0.0043	< 0.0049	< 0.0056	< 0.0046	< 0.0051	< 0.0060
Toluene	1,200	32,000	4.3	mg/kg	< 0.0052	< 0.0080	< 0.0043	< 0.0049	< 0.0056	< 0.0046	< 0.0051	< 0.0060
Xylene (total)	3,129	81,760	4.6	mg/kg	< 0.016	< 0.024	< 0.013	< 0.015	< 0.017	< 0.014	< 0.015	< 0.018

Notes:


- (1) North Carolina Department of Environmental Quality (NCDEQ) Underground Storage Tank (UST) Section Maximum Soil Contaminant Concentrations (MSCCs) as indicated in the NCDEQ UST Section *Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases*, amended April 2012.
- (2) VOC indicates volatile organic compound.
- (3) mg/kg indicates milligrams per kilogram.
- (4) Concentrations exceeding MSCCs are highlighted as shown:


Residential	Industrial	Soil-to-Water
-------------	------------	---------------


- (5) ft bgs indicated feet below ground surface.
- (6) < indicates analyte was not detected above the laboratory reporting limit (RL).
- (7) Only benzene, toluene, ethylbenzene, and xylenes (BTEX) were reported.

FIGURES

APPENDIX A Geophysical Investigation Report

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-233)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 69 NCDOT PROJECT R-5726 (50218.1.1)

4331 N.C. 211, WEST END, NC August 23, 2019

Report prepared for: Mr. Matt Jenny, P.E.

> Geosyntec Consultants of NC, PC 2501 Blue Ridge Road, Suite 430

Raleigh, NC 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 69 - 4331 N.C. 211

West End, Moore County, North Carolina

Table of Contents

Executive Summary	1
Introduction	2
Field Methodology	2
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 69 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 69 EM61 Results Contour Map
- Figure 3 Parcel 69 GPR Transect Locations and Images
- Figure 4 Parcel 69 Locations and Sizes of Three Known USTs and One Septic Tank
- Figure 5 Overlay of Metal Detection Results, Three Known USTs and One Septic Tank onto NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Geosyntec Consultants of NC, PC at Parcel 69, located at 4331 N.C. 211 in West End, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-5726). The survey was designed to include all accessible portions of the property. Conducted from July 29-31, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Three known USTs and one septic tank were observed at the property. A total of eleven EM anomalies were identified. Several of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across the three known USTs and the septic tank to verify their sizes and orientations.

- UST #1 was approximately 26.5 feet long and 8 feet wide.
- UST #2 was approximately 23 feet long and 8 feet wide.
- UST #3 was approximately 27.5 feet long and 10 feet wide.
- The septic tank was approximately 12.5 feet long and 7.5 feet wide.

The remaining GPR performed at the property verified isolated areas of reinforced concrete and did not record any evidence of additional buried structures such as USTs. Collectively, the geophysical data recorded evidence of three known metallic USTs and one septic tank at Parcel 69.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Geosyntec Consultants of NC, PC at Parcel 69, located at 4331 N.C. 211 in West End, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-5726). The survey was designed to include all accessible portions of the property. Conducted from July 29-31, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included an active service station and pump island/canopy surrounded by grass and asphalt surfaces. Three known USTs were evidenced by visible fill ports and concrete on the north side of the property. Evidence of a septic tank was also observed on the south side of the building. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending,

generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on July 31, 2019, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 controller coupled to a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

	Geophysical Surveys for Underground Storage Tanks on NCDOT Projects		
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Signs/Utilities	
2	Metal Hatch	✓
3	Suspected Metallic Debris	✓
4	Three Known USTs	✓
5	Vehicles/Surface Metal	✓
6	Dumpsters	✓
7	Fence	
8	Building	
9	Septic Tank	✓
10	Vehicles/Utilities	✓
11	Pump Islands/Vehicles/Reinforced Concrete	✓

Several of the EM anomalies were directly attributed to visible cultural features at the ground surface, including signs, utilities, a metal hatch, surface metal, dumpsters, a fence, the building, the pump islands, and suspected reinforced concrete. EM Anomaly 4 was associated with the three known USTs, and EM Anomaly 9 was associated with the septic tank. Additionally, EM Anomaly 3 was suspected to be associated with buried metallic debris. GPR was performed across the three known USTs and the septic tank to verify their sizes and orientations. GPR was also performed across the suspected buried metallic debris and around features that resulted in metallic interference to verify that they were not obscuring any buried structures such as USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are presented in **Appendix A**. A total of eleven GPR transects were performed at the property. GPR Transects 2 and 3 were performed across the septic tank on the south side of the property. The septic tank was evidenced by discreet, isolated lateral reflectors in all directions consistent with a flat, vault septic tank cover. The septic tank was approximately 12.5 feet long and 7.5 feet wide.

GPR Transects 8 and 9 were performed across the three known USTs supplying fuel to the pump islands. These transects verified the sizes of the three known tanks at the property.

Figure 4 provides the locations and sizes of the three known USTs and the septic tank overlain on an aerial photograph as well as a ground-level photograph. UST #1 was approximately 26.5 feet long and 8 feet wide. UST #2 was approximately 23 feet long and 8 feet wide. UST #3 was approximately 27.5 feet long and 10 feet wide.

The remaining GPR transects verified the presence of reinforced concrete on the west side of the property. No evidence of any additional buried structures such as USTs was observed.

Figure 5 provides an overlay of the metal detection results, the three known USTs and the septic tank onto the NCDOT Engineering plans.

Collectively, the geophysical data <u>recorded evidence of three known metallic USTs and</u> <u>one septic tank at Parcel 69</u>.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 69 in West End, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- Three known USTs and one septic tank were observed at the property.
- Several of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across the three known USTs and the septic tank to verify their sizes and orientations.
 - o UST #1 was approximately 26.5 feet long and 8 feet wide.
 - o UST #2 was approximately 23 feet long and 8 feet wide.
 - o UST #3 was approximately 27.5 feet long and 10 feet wide.

- o The septic tank was approximately 12.5 feet long and 7.5 feet wide.
- The remaining GPR performed at the property verified isolated areas of reinforced concrete and did not record any evidence of additional buried structures such as USTs.
- Collectively, the geophysical data <u>recorded evidence of three known metallic USTs</u> and one septic tank at Parcel 69.

LIMITATIONS

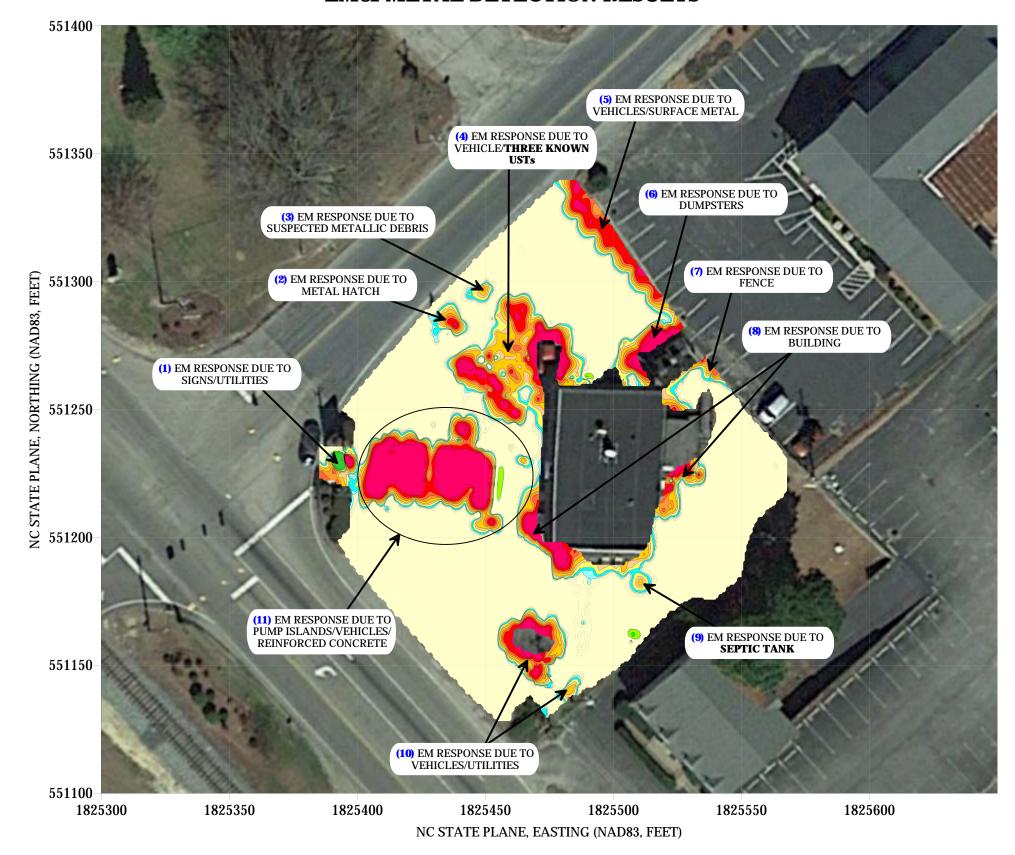
Geophysical surveys have been performed and this report was prepared for Geosyntec Consultants of NC, PC in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately North)

NÎ


PROJECT

PARCEL 69 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

PARCEL 69 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

DATE	8/8/2019	CLIENT	GEOSYNTE
PYRAMID PROJECT #:	2019-233		FIGURE 1

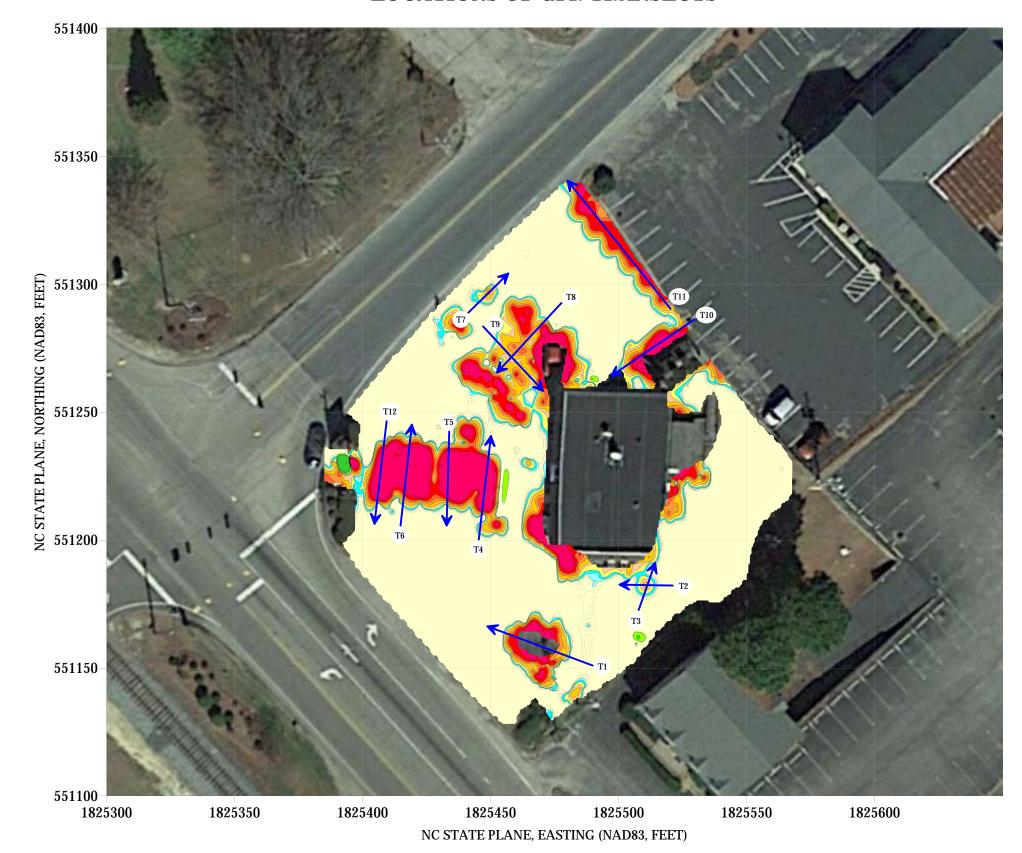
EM61 METAL DETECTION RESULTS

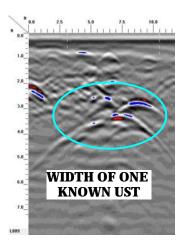
EVIDENCE OF THREE KNOWN USTs AND ONE SEPTIC TANK WAS OBSERVED. NO EVIDENCE OF UNKOWN METALLIC USTs WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on July 29, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 controller with a 350 MHz HS antenna on July 31, 2019.

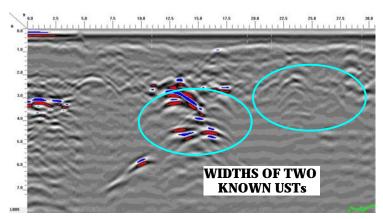
EM61 Metal Detection Response (millivolts)

NÎ

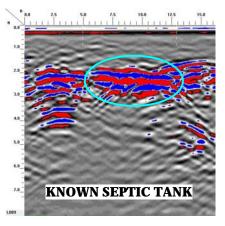

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT


PARCEL 69 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

PARCEL 69 -EM61 METAL DETECTION CONTOUR MAP


DATE	8/8/2019	CLIENT GEOSYNTEO
PYRAMID PROJECT #:	2019-233	FIGURE 2

LOCATIONS OF GPR TRANSECTS



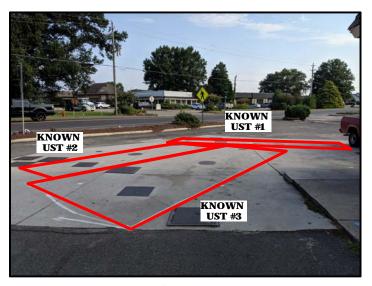
GPR TRANSECT 8 (T8)

GPR TRANSECT 9 (T9)

GPR TRANSECT 2 (T2)

N₁1

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT


PARCEL 69 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

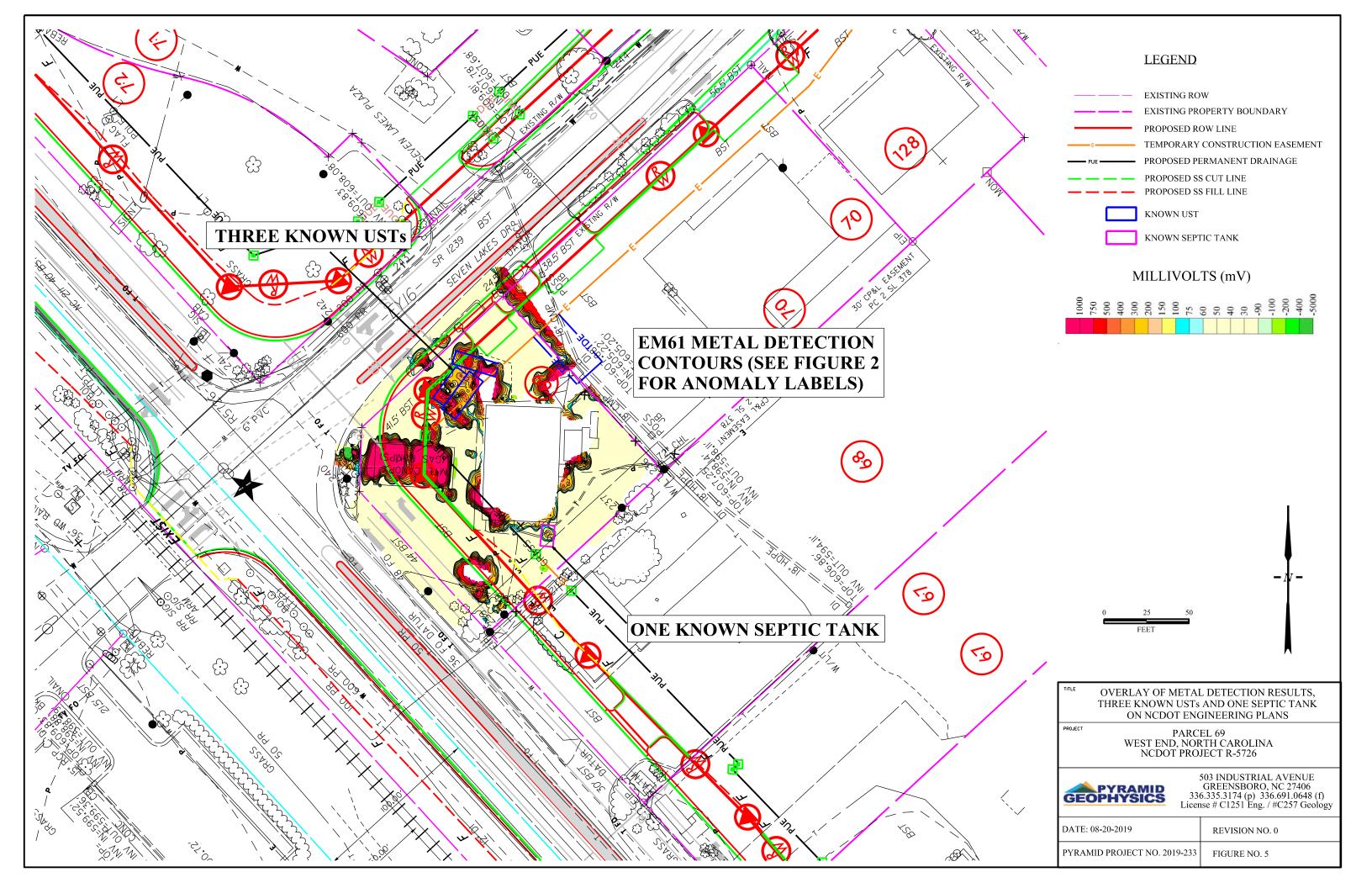
PARCEL 69 -GPR TRANSECT LOCATIONS AND SELECT IMAGES

DATE	8/8/2019	CLIENT	GEOSYNTEC
YRAMID PROJECT #:	2019-233		FIGURE 3

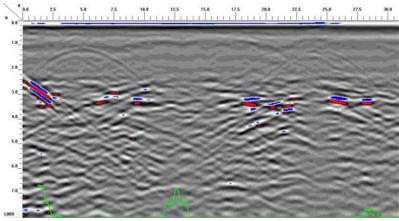
LOCATIONS OF THREE KNOWN USTs AND ONE SEPTIC TANK

View of Three Known USTs Facing Approximately North

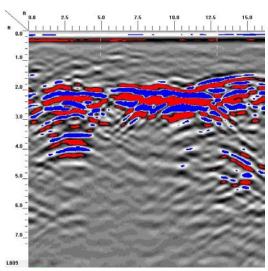
View of One Septic Tank Facing Approximately North

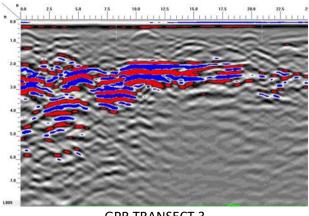

PYRAMID GEOPHYSICS

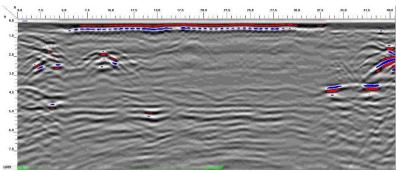
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

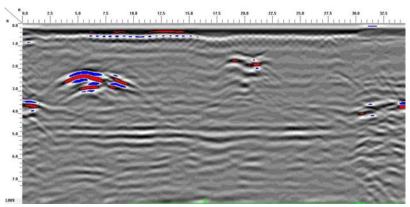

PARCEL 69 WEST END, NORTH CAROLINA NCDOT PROJECT R-5726 TITLE

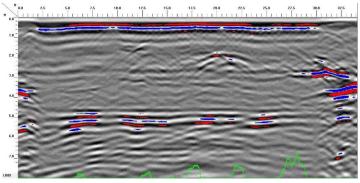
PARCEL 69 - LOCATIONS AND SIZES OF THREE KNOWN USTs AND ONE SEPTIC TANK

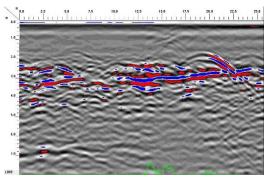

DATE	8/8/2019	CLIENT GEOSYNTEC
PYRAMID PROJECT #:	2019-233	FIGURE 4

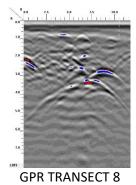


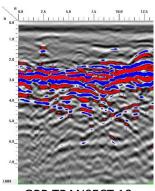

GPR TRANSECT 1

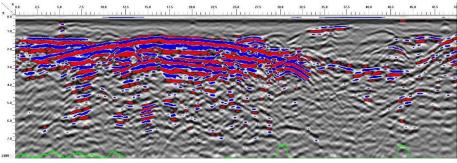

GPR TRANSECT 2

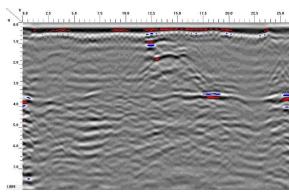

GPR TRANSECT 3


GPR TRANSECT 4


GPR TRANSECT 5


GPR TRANSECT 6


GPR TRANSECT 7


GPR TRANSECT 9

GPR TRANSECT 10

GPR TRANSECT 11

GPR TRANSECT 12

Preliminary Site Assessment (Parcel 69 – Brian K. Neal and Karen P. Neal) TIP Number R-5726 4331 NC 211, West End, North Carolina October 2019

APPENDIX B Photographic Log

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039

Site Name: R-5726 - Parcel 69 Site Location: 4331 NC 211, West End, NC

Photograph 1

Date: 29 July 2019

Direction: NW

Comments: View of the southern side of the Site and the fuel island.

Photograph 2

Date: 29 July 2019

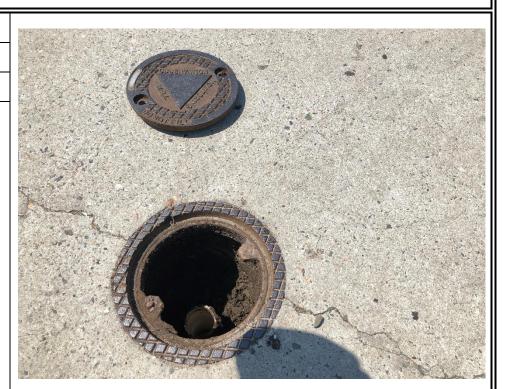
Direction: E

Comments: View of the monitoring well on the northwestern side of the convenience store building. Monitoring well vault was filled with soil but is not abandoned.

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039


Site Name: R-5726 - Parcel 69 Site Location: 4331 NC 211, West End, NC

Photograph 3

Date: 29 July 2019

Direction: E

Comments: View of the monitoring well on the southwestern side of the convenience store building. Monitoring well is not abandoned.

Photograph 4

Date: 29 July 2019

Direction: S

Comments: View of the Soil Vapor Extraction (SVE) system in front of the convenience store.

GEOSYNTEC CONSULTANTS Photographic Record

Geosyntec Consultants of NC, PC

Client: NCDOT Project Number: GN7039

Site Name: R-5726 - Parcel 69 Site Location: 4331 NC 211, West End, NC

Photograph 5

Date: 29 July 2019

Direction: N

Comments: View of the eastern side of the convenience store building. Assumed SVE shed behind the gas station.

Photograph 6

Date: 29 July 2019

Direction: NE

Comments: View of the southern side of the convenience store

building.

Preliminary Site Assessment (Parcel 69 – Brian K. Neal and Karen P. Neal) TIP Number R-5726 4331 NC 211, West End, North Carolina October 2019

APPENDIX C Soil Boring Logs

BORING LOG

BORING NO. <u>\$869~0</u>]
SHEET 1 OF 1

DRILLI	NG CO.: Saedacco Status:	SITE:	NO	0(T M	est i	Envl	Borehole Location Sketch Map	
	DD & TOOLS: DPT Well Installed Plugged & Abdnd.	PROJEC			^		* * · · · · · · · · · · · · · · · · · ·		
RIG:	Geophobe 7822 DT	N:			E:	•			
	AMETER: 2/4" DRILLER: Briss T	SUPER	VISOR:	:	mu	Sang	9		
	ND ELEV.: Surveyed Estimated	DATE:	2	3/	12/19				
	☐ Feet ☐ Meters Lithology Log	Graphic Log	Depth Scale	Well	SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log	
0-1	black to dak brown who						100	thad Auger	
	1-4 dark brown sand, moist-u	uet,			·÷-00			PZD=0	
	medium								
45	medium - course	74 11-11-1					75	PID=0	
5-16	5-7.5-4. brown silty clay,					ı	los	PTD=6	
	moret, compert, low plastic								
	7.5-10th. red stitly clay,					- 30		H 11- 11-12 - 11	
	mixed with some gray color,								
	moist, low plectic,								
	Samples collected from 6.0-63.	66,							
	SB69-01-6.0-6.5								
	@ 1300								
							- >+		
			***********		1				
						- 11::		2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
			I,	1_	I	1	no	\mathcal{N}	

BORING LOG

BORING NO. 5869-02

SHEET 1 OF 1

DRILLI	NG CO .: Saed	acco	Statu	s: Well Installed	SITE:	NC	De	OT U	lest	En	Borehole Location Sketch Map
METHO	OD & TOOLS: D	PT		Plugged & Abdnd	PROJE						
RIG:	Greeprobe -	7822DT			N:			E:			12 m
BIT DIA	AMETER: 2/6	DRILLER:	Pric	u T	SUPER	VISOR:	. /	nu	any	/	
GROU	ND ELEV.;	Surveye	ed 🗌 Est	imated	DATE:	8/1			0		
	Feet Meters		ology Log	- A. A.	Graphic Log	Depth Scale	Well	SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
**********	light brown	edtum,	- 1		t				lei Comment	100	Hard Auger PID= 0
35	clark brown loose, mi	sand)	Coars	e, moist,						30	PID: 0.8 @ 4.5 tc
	gravels.	1					= 1-1		1300000		P2D=0 from 45-57
	4.5-5 ft b	th red	color	mohy clay							
5-10	redulsh in ixed, a	ay, with	h some	gravels 1 color				+41		40	P7D=0
	Only port	stally my	e cove	red,	een.						
	Samples are	collect	ed from	- 1							
	\$B69-0	is fl	bgs.	*****							
	SB69-0	2-4.	0-4,	5							
	@ 1330										
									=)-()-		***************************************
							-				
				- X-111							

BORING LOG

BORING NO. \$869-03 SHEET _____ OF _____

1 1							Borehole Location Sketch Map
DRILLING CO.: Saldacco Status: Well Installed	SITE:	NCD	OT	we	st E	nd	Borefiole Education Greater Map
METHOD & TOOLS: Plugged & Abdnd.	PROJEC	CT NO.	:	GN7	039		
RIG: Geographe 782207	N:			E:			
BIT DIAMETER: 21/4" DRILLER: Porlan	SUPER	VISOR:		NWa	ng		
GROUND ELEV.: ☐ Surveyed ☐ Estimated	DATE:	8	17	2/19			
Top ☐ Feet ☐ Lithology Log ☐ Meters	Graphic Log	Depth Scale	Well	SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
0-5 or It light brown soul, dry,						100	Hand Angen
Losse				+00=-0-++		1	PZD bedground = 0.8 p
						1225777	
medium, chy-moist, loose							SB69-03 relat in from
				**********			of a fuel dispense
to medium, dry-most,							
to medium, dry-most,							
Losse.							
						100	11
5-10 5-6th, light brown souly day,						Y	6=028
low plesoic, chy-noist.							·······
the first fair							
6-8 ft, Reddish brown sandy			v=		-100	,	
clay mixed with gravels. low			22.0				
The state of the s							
playthe, dry-moss, hard						27	
8 - to red sandy day, mixed			-				
8 the feet states of the periods			1	==		one :	3
with some grey color . dry , hard ,		*			*		
law plastic.		•					-1111 V -111 1 -11Wiress
a de allewed from total		S			.,,		f
Souple collected from 5-5.5 ft			-		T 1		
SB69-03-5-5.5							
(A) 11,106			-				
as 1406	~ -						
					_		m
					-		
			L				

MW

BORING LOG

BORING NO. SB69-04 SHEET ____ OF ___

DRILLI	NG CO.: 👡	daces	Status: Well Installed	SITE: /	VaDo	T	Ment	Ba	1	Boreh	ole Location Ske	tch Map
	OD & TOOLS:		Plugged & Abdnd	PROJE	CT NO.		GN	7026	}	1		
RIG:	Geomobe -	182207		N:			E:	100		1		
BIT DIA	AMETER: 2/4	DRILLER:	Bolan 7	SUPER	VISOR	:	MU	lans				
		☐ Surveyed ☐	Estimated	DATE:			/12/10			-		
	Feet Meters	Lithology		Graphic Log	Depth Scale			Run (No _t)	Rec. (%)		Drilling Log	
0-5	0-1, logs	of brown on	d silt, dry		-				100	· Hand	Auger	
	loose										= 0.5 p	pm @
	1-4.5 1	moun sand,	motst, losse								oft	
		medium		**								
	4.5-5.0	brown son	dy clay		***********							+×
	prixed a	with some n	ed color									
5-10	5-6H s	comby day,	grey maxed							P71)=0.1	ppm @	5.546
	with red	color;	+							P20=0./		
	100000	More, li								10=029		
	6 8 H Se	endy clay, go	cey color						13,	Prozo	(a) 7	4
	throughout	only clay, go day - to me	4th some									
										***		•••
	8-10 ft	red south co	lay, con			ŀ						
	pusac	. dry - mo	st			1						
	Samples	collected of	rom									***************************************
	5-5.5-	(C										- I - I
	SB 69-	034-5-5.	5			-						
(9 14 4	,5										011 — — i
	2 11-11-11-11-1					-						
(3)												
			k						-			40.00111

m

BORING LOG

DRILLI	NG CO .: Saed	wo	Status: Well Installed	SITE:	NW	DT	Wes	1- Ba	ud	Borehole Location Sketch Map
METHO	DD & TOOLS: D	PT	Plugged & Abdnd				GN.			
	Gregorobe -			N:			E:			
	AMETER: > 1/4	DRILLER:	Bran T	SUPER	VISOR	- (M War	y		
	ND ELEV.:	☐ Surveyed ☐] Estimated	DATE:	1	-	12/19			
	Feet Meters	Lithology		Graphic Log	Depth Scale		SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
0-5	0-1 Light	honn sil	. dry love						po	
	1-5 Wht.	-deck brown	n sand,							PD=0.1 ppm @ 0.5 th by
	medium.	- coarse,	chy - morst						(e	171)=0.1ppm@ 1 ft 85
		4 , 4								PTO = 0.1 ppm @ 1.5 ft gg
8			111111111111111111111111111111111111111							PW 20 from 2-5 th by
5-10	5-8 tt,	sandy day	, grey mined							- 1,011
	with red	color.			LOTELET IN					PID background
	Dry - ma	t, low	- plastoc							= 0.1 ppm
			it the and		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	A the is									
	chate 1	the semmy	' clay, low							
	plastic, oh	7- MOUST								
								-,-		
	somples col	leveled for	m 9.5-10th	5						PID=0.8@ 9tt bgs
	SB 98 - 05	9.5-1		-				1112211		
******	_	7.3-7.								P717=0.3@ 9.5 to bys
	@ 1525									
						-				
						Ì				
			- 142 A							
			and the same of th		- 44	i i'i				
	110					-				
									_	
									-	
									111	1
					1			1	010	

BORING LOG

BORING NO. **5**B69-06 SHEET ______ OF _____

DRILLING CO.: Status:	SITE:	NO	OT U	INA	Tona	Borehole Location Sketch Map
METHOD & TOOLS: DP7 Well Installed Plugged & Abduc			6W			* 17/
RIG: Geomobe 7822 DT	N:		E:	300		
BIT DIAMETER: 2 DRILLER: BYAN T	SUPER\	/ISOR:	MUL	my		
GROUND ELEV.: Surveyed Sestimated	DATE:		12/19	0	12	*
Top Feet Lithology Log	Graphic Log		SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
0-5 0-3 ft, light brown sand,	/sitt				(∞)	Hond Auger
dry, Gose						PD book ground reading
						= 0.5 ppm, passiblely
3-5 ft, brown screl, mediu	w.		vitare vivi			because borning cocoobing
dy-notet, Loose						is next so a idle
, as						
				1	20	bruk. C Had some
5-10 10 10 10					No.	prv 20
5-6 ft, don't brown sandy						pr0 =0
clay, dry most, low						
plastic						
			-			
6-86. Uzho brown ganon	h					
clay, dry-moise, low pla	2016	-		- 3		H H H H H H H H H H H H H H H H H H H
with some grounds mored,	,					F
8-10 brown sendy day, with som	1 1					PZD=018 ppm @ 9th
black stains vitxed, posses	ible					bys
petroleum related product.	•					P2D=0.3@ 9.3 bgs
samples idental from 9.09.5	tt					
8869-08-99.5						
@ 1615						× 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					-	

MW

BORING LOG

BORING NO. <u>\$869-07</u> SHEET _____ OF ____

DRILLING CO. S. Andrews Status:	TOITE.	14	DOT U	In.A.	1 I	Borehole Location Sketch Map
DRILLING CO.: Status: Well Installed Plugged & Abdnd.			TA 73		2200	2
RIG: Geophe 182207	N:	OT NO.	: 6/N E:	פען	1—	
BIT DIAMETER: 24 DRILLER: Brian T		VISOR:	MU	1/4	1	
GROUND ELEV.: ☐ Surveyed ☐ Estimated	DATE:	8	12/19	l	j	(4) (1)
Top	Graphic Log		■ SPT Blows/6	Run S* (No.)	Rec. (%)	Drilling Log
0-5 0-1 last boun sand/silt.					100	Hand Horger
ft phy, boose hours sand/xilt						P20 beckground reachy
medium - waspe, mixed with						= 0.1 ppm
medium - was nixed with						PRD=alppm@ 1ttby
some black debn's, no odor.		(1)-(1()				P20= 0. 2ppm@ 1.5 ttb
3-5 ft alek brown sand,						
						pro=0.31pm@ 2 febs
Moist. medhum, loose						PZD: 0.1 ppm @ 2.5-5+
		1 (4444		4.194.4.4.4.4.4		2.5-5
5-10 3-7-8t, light brown sandy						683
the clay day makes broadest			-		190	P7D=0
the clay, dry-morst, but platte						[-11]-0
7.10 andolila xander alar	i		0.51-5	-		
2-10, reddish sandy elay, My-mosse, low-medrum						
1 (ou - medium						
plantic,	1110-1111		17			
Langellage wall and Gom				-		
samples collected from	111111111111111111111111111111111111111					AT 1110 - 311 - 1111 - 1111 - 0
5.0-3.5 ft bys @ 1645						
SB 69-07-3,0-3,5						
	2000					
				-		
				100	N	A
				1 VV	4	

BORING LOG

BORING NO. \$869 - 0 \$

SHEET ____ OF ____

DRILLII	NG CO .: Sachero	Status: Well Installed	SITE:	West	4	End			Borehole Location Sketch Map
метно	DD & TOOLS: DP7	☐ Plugged & Abdnd.	PROJEC				39		
RIG:	Geoprobe 78720T		N:			E:	17		
BIT DIA	METER: 24" DRILLER: B	rlan T	SUPER	/ISOR:		Mu	any		C
GROUN	ND ELEV.: Surveyed	Estimated	DATE:	8	1	3/19	-/		
` ' '	☐ Feet Lithology Meters		Graphic Log	Depth Scale	Well	SPT Blows/6*	Run (No.)	Rec. (%)	Drilling Log
4-5 Et	0-0.5 ft light to go loose, 0.5-2 ft, brown s chry-morst, loose 2-4 ft, brown se loose, poorly sorbe brown send, medium, mixed with some b	silt/sand, and, ony-no, d. oby-most						100	Proco
510	redum de moist	- dark sand, to met.						50)70-22
	5.5-6.5 ft devle/b								20=0.8 ppm Q 676
	Sand, black stein Septic tenk obsinge	·							6 mus moite.
- 1	6.5 - 75th, dark /bla to known color saw moist.	ok color							
	Sorples are collected 6-6.5 tt . @ 13 SB 69-08-6-6.5	1							

MW

Preliminary Site Assessment (Parcel 69 – Brian K. Neal and Karen P. Neal) TIP Number R-5726 4331 NC 211, West End, North Carolina October 2019

APPENDIX D Red Lab UVF Report

Hydrocarbon Analysis Results

GEOSYNTEC Client:

Address: 2501 BLUE RIDGE RD

SUITE 430 RALEIGH, NC

Samples taken Samples extracted Monday, August 12, 2019

Monday, August 12, 2019 Samples analysed

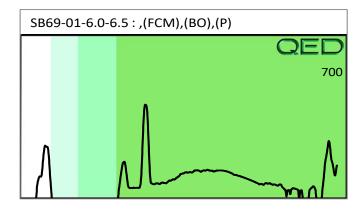
Friday, August 16, 2019

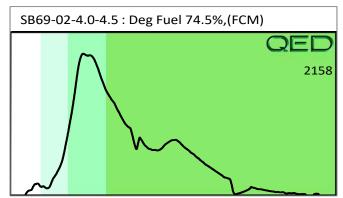
Contact: MICHAEL WANG Operator **CAROLINE STEVENS**

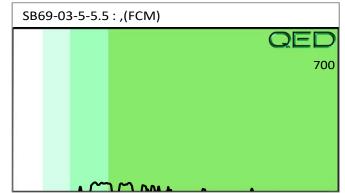
Project: R5726

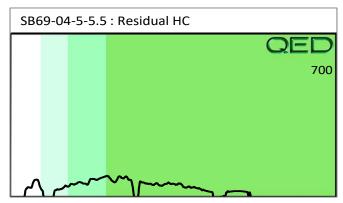
													H09382
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Q.	% Ratios	•	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	SB69-01-6.0-6.5	12.6	<0.32	<0.32	< 0.32	< 0.32	<0.06	<0.1	<0.013	0	41.6	58.4	,(FCM),(BO),(P)
S	SB69-02-4.0-4.5	14.3	<0.36	0.52	1.4	1.9	0.71	<0.11	<0.014	59.9	28.4	11.7	Deg Fuel 74.5%,(FCM)
S	SB69-03-5-5.5	11.6	<0.29	<0.29	<0.29	<0.29	<0.06	<0.09	<0.012	0	100	0	,(FCM)
S	SB69-04-5-5.5	12.6	<0.32	<0.32	<0.32	< 0.32	<0.06	<0.1	<0.013	0	67.2	32.8	Residual HC
S	SB69-05-9.5-10	13.3	<0.33	<0.33	<0.33	<0.33	<0.07	<0.11	<0.013	0	100	0	,(FCM),(BO),(P)
S	SB69-06-9-9.5	11.2	<0.28	<0.28	0.28	0.28	0.22	<0.09	<0.011	0	67.4	32.6	No Match found
S	SB69-07-5-5.5	14.6	<0.36	0.74	<0.36	0.74	<0.07	<0.12	<0.015	94.8	4.1	1.1	Deg.PHC 77.1%,(FCM)
S	SB69-08-6-6.5	21.8	<0.55	<0.55	10.4	10.4	5.2	0.23	<0.022	0	68.6	31.4	Deg.PHC 79.9%,(FCM),(BO)

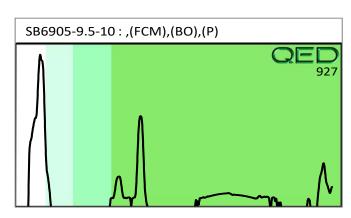
Initial Calibrator QC check OK Final FCM QC Check OK

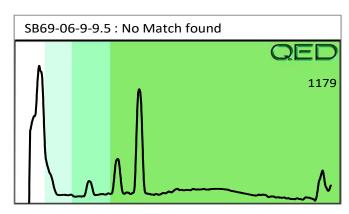

93.6 %

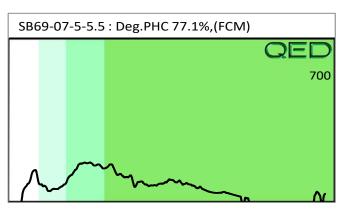

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.

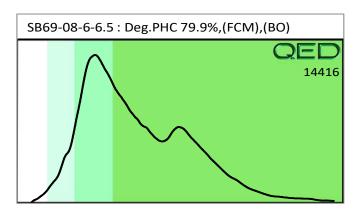

Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected


B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.


% Ratios estimated aromatic carbon number proportions : HC = Hydrocarbon : PHC = Petroleum HC : FP = Fingerprint only. Data generated by HC-1 Analyser Project: R5726







Preliminary Site Assessment (Parcel 69 – Brian K. Neal and Karen P. Neal) TIP Number R-5726 4331 NC 211, West End, North Carolina October 2019

APPENDIX E Prism Laboratories Analytical Report

NC Certification No. 402 NC Drinking Water Cert No. 37735 SC Certification No. 99012 **Case Narrative**

8/28/19 11:20

Geosyntec Consultants of NC, PC - Raleigh Michael Wang 2501 Blue Ridge Road, Ste 430 Raleigh, NC 27607 Project: NCDOT R-5726 West End

Project No.: GN7039

Lab Submittal Date: 08/16/2019 Prism Work Order: 9080260

This data package contains the analytical results for the project identified above and includes a Case Narrative, Sample Results and Chain of Custody. Unless otherwise noted, all samples were received in acceptable condition and processed according to the referenced methods.

Data qualifiers are flagged individually on each sample. A key reference for the data qualifiers appears at the end of this case narrative.

Please call if you have any questions relating to this analytical report.

Respectfully,

PRISM LABORATORIES, INC.

Robbi A. Jones

President/Project Manager

Reviewed By Robbi A. Jones

Korti a.

President/Project Manager

Data Qualifiers Key Reference:

SR Surrogate recovery outside the QC limits.

BRL Below Reporting Limit
MDL Method Detection Limit
RPD Relative Percent Difference

* Results reported to the reporting limit. All other results are reported to the MDL with values between MDL and

reporting limit indicated with a J.

Sample Receipt Summary

08/28/2019

Prism Work Order: 9080260

Client Sample ID	Lab Sample ID	Matrix	Date/Time Sampled	Date/Time Received
SB13-01-7.5-8.0	9080260-01	Solid	08/12/19 10:30	08/16/19 9:15
SB13-02-7-7.5	9080260-02	Solid	08/12/19 11:00	08/16/19 9:15
SB13-03-6.5-7.0	9080260-03	Solid	08/12/19 11:30	08/16/19 9:15
SB43-01-4.5-5.0	9080260-04	Solid	08/13/19 13:40	08/16/19 9:15
SB43-02-6.5-7.0	9080260-05	Solid	08/13/19 14:00	08/16/19 9:15
SB43-03-7.0-7.5	9080260-06	Solid	08/13/19 14:30	08/16/19 9:15
SB43-04-7.5-8.0	9080260-07	Solid	08/13/19 14:45	08/16/19 9:15
SB66867-01-5-5.5	9080260-08	Solid	08/13/19 8:40	08/16/19 9:15
SB66867-02-4.0-4.5	9080260-09	Solid	08/13/19 9:10	08/16/19 9:15
SB66867-03-6.5-7	9080260-10	Solid	08/13/19 10:20	08/16/19 9:15
SB66867-04-5.5-6.0	9080260-11	Solid	08/13/19 9:45	08/16/19 9:15
SB66867-05-7-7.5	9080260-12	Solid	08/13/19 11:10	08/16/19 9:15
SB66867-06-7.5-8	9080260-13	Solid	08/13/19 12:20	08/16/19 9:15
SB69-01-6.0-6.5	9080260-14	Solid	08/12/19 13:00	08/16/19 9:15
SB69-02-4.0-4.5	9080260-15	Solid	08/12/19 13:30	08/16/19 9:15
SB69-03-5.0-5.5	9080260-16	Solid	08/12/19 14:00	08/16/19 9:15
SB69-04-5.0-5.5	9080260-17	Solid	08/12/19 14:45	08/16/19 9:15
SB69-05-9.5-10	9080260-18	Solid	08/12/19 15:25	08/16/19 9:15
SB69-06-9-9.5	9080260-19	Solid	08/12/19 16:15	08/16/19 9:15
SB69-07-5.0-5.5	9080260-20	Solid	08/12/19 16:45	08/16/19 9:15
SB69-08-6.0-6.5	9080260-21	Solid	08/13/19 13:00	08/16/19 9:15
SB78-01-7-7.5	9080260-22	Solid	08/13/19 15:50	08/16/19 9:15
SB78-02-5.5-6	9080260-23	Solid	08/14/19 8:25	08/16/19 9:15
SB78-03-6-6.5	9080260-24	Solid	08/14/19 9:00	08/16/19 9:15
SB78-04-6.5-7	9080260-25	Solid	08/14/19 9:30	08/16/19 9:15
SB89-01-5-5.5	9080260-26	Solid	08/15/19 9:00	08/16/19 9:15
SB89-02-5.5-6	9080260-27	Solid	08/15/19 9:40	08/16/19 9:15
SB89-03-6.5-7	9080260-28	Solid	08/15/19 10:30	08/16/19 9:15
SB89-04-7-7.5	9080260-29	Solid	08/15/19 11:30	08/16/19 9:15
SB102-01-2.5-3	9080260-30	Solid	08/14/19 10:50	08/16/19 9:15
SB102-02-5.5-6	9080260-31	Solid	08/14/19 11:35	08/16/19 9:15
SB102-03-7-7.5	9080260-32	Solid	08/14/19 13:00	08/16/19 9:15
SB102-04-7.5-8	9080260-33	Solid	08/14/19 13:30	08/16/19 9:15

SB102-05-4.5-5	9080260-34	Solid	08/14/19 14:00	08/16/19 9:15
SB102-06-0.5-1	9080260-35	Solid	08/14/19 14:50	08/16/19 9:15
SB102-07-7.5-8	9080260-36	Solid	08/14/19 15:35	08/16/19 9:15
SB102-08-8-8.5	9080260-37	Solid	08/14/19 16:05	08/16/19 9:15
SB102-09-8.5-9	9080260-38	Solid	08/14/19 16:45	08/16/19 9:15
SB102-10-9-9.5	9080260-39	Solid	08/14/19 17:20	08/16/19 9:15

Samples were received in good condition at 3.3 degrees C unless otherwise noted.

Summary of Detections

08/28/2019

Prism Work Order: 9080260

Prism ID	Client ID	Parameter	Method	Result	Units

There were no detections reported.

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB13-01-7.5-8.0 Prism Sample ID: 9080260-01 Prism Work Order: 9080260

Time Collected: 08/12/19 10:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parame	eters								
% Solids	91.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	2 EDV	P9H0353
Volatile Organic Compound	ds by GC/MS								
Benzene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:5	1 JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:5	1 JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/20/19 17:5	1 JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0071	0.00075	1	8260D	8/20/19 17:5	1 JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0071	0.0011	1	8260D	8/20/19 17:5	1 JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/20/19 17:5	1 JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromofluorobenzene		99 %		70-130		
			Dibromofluo	ofluoromethane 112 %		84-123			
			Toluene-d8			95	95 %		

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB13-02-7-7.5 Prism Sample ID: 9080260-02 Prism Work Order: 9080260 Time Collected: 08/12/19 11:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	86.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/20/19 18:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0069	0.0010	1	8260D	8/20/19 18:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/20/19 18:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0069	0.00074	1	8260D	8/20/19 18:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/20/19 18:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/20/19 18:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromofluorobenzene		98 %		70-130		
			Dibromofluoromethane			114 %		84-123	
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB13-03-6.5-7.0 Prism Sample ID: 9080260-03 Prism Work Order: 9080260 Time Collected: 08/12/19 11:30

Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	eters								
% Solids	95.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	. EDV	P9H0353
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0051	0.00079	1	8260D	8/20/19 18:5	l JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0051	0.00077	1	8260D	8/20/19 18:5	I JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/20/19 18:5	I JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0051	0.00054	1	8260D	8/20/19 18:5	I JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0051	0.00081	1	8260D	8/20/19 18:5	I JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/20/19 18:5	l JLB	P9H0347
			Surrogate			Recovery C		Control	Limits
			4-Bromofluorobenzene		102 %		70-130		
			Dibromofluoromethane 116 %		5 %	84-123			
		Toluene-d8 95 %		%	76-129				

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB43-01-4.5-5.0 Prism Sample ID: 9080260-04 Prism Work Order: 9080260

Time Collected: 08/13/19 13:40 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	97.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:2	2 EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00083	1	8260D	8/20/19 19:2	1 JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00080	1	8260D	8/20/19 19:2	1 JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 19:2	1 JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/20/19 19:2	1 JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/20/19 19:2	1 JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/20/19 19:2	1 JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromofluorobenzene		102 %		70-130		
			Dibromoflu	fluoromethane 113 %		84-123			
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB43-02-6.5-7.0 Prism Sample ID: 9080260-05 Prism Work Order: 9080260

Time Collected: 08/13/19 14:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								_
% Solids	91.4	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:2	2 EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0073	0.0011	1	8260D	8/22/19 15:1	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0073	0.0011	1	8260D	8/22/19 15:1	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19 15:1	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0073	0.00077	1	8260D	8/22/19 15:1	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0073	0.0012	1	8260D	8/22/19 15:1	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.022	0.0026	1	8260D	8/22/19 15:1	3 JLB	P9H0389
			Surrogate			Recov	ery	Control	Limits
			4-Bromofluorobenzene		103 %		70-130		
			Dibromofluoromethane 127 %		84-123	SR			
			Toluene-d8			93	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB43-03-7.0-7.5 Prism Sample ID: 9080260-06 Prism Work Order: 9080260

Time Collected: 08/13/19 14:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	75.6	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0061	0.00095	1	8260D	8/20/19 20:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0061	0.00091	1	8260D	8/20/19 20:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/20/19 20:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0061	0.00065	1	8260D	8/20/19 20:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0061	0.00097	1	8260D	8/20/19 20:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 20:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromofluorobenzene		102 %		70-130		
			Dibromoflu	ofluoromethane 120 %		84-123			
			Toluene-d8			96	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB43-04-7.5-8.0 Prism Sample ID: 9080260-07 Prism Work Order: 9080260 Time Collected: 08/13/19 14:45

Time Submitted: 08/13/19 14:45

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	84.1	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0054	0.00085	1	8260D	8/20/19 20:51	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0054	0.00082	1	8260D	8/20/19 20:51	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 20:51	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0054	0.00058	1	8260D	8/20/19 20:51	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0054	0.00086	1	8260D	8/20/19 20:51	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.016	0.0020	1	8260D	8/20/19 20:51	JLB	P9H0347
			Surrogate			Recov	ery	Control	_imits
			4-Bromofluorobenzene		101 %		70-130		
			Dibromofluoromethane 119 %		9 %	84-123			
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB66867-01-5-5.5

Prism Sample ID: 9080260-08 Prism Work Order: 9080260 Time Collected: 08/13/19 08:40 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	90.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0050	0.00078	1	8260D	8/20/19 21:21	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0050	0.00075	1	8260D	8/20/19 21:21	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/20/19 21:21	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0050	0.00053	1	8260D	8/20/19 21:21	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0050	0.00080	1	8260D	8/20/19 21:21	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/20/19 21:21	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromofluorobenzene		99 %		70-130		
			Dibromoflu	oromethane		122	2 %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-02-4.0-4.5

Prism Sample ID: 9080260-09 Prism Work Order: 9080260 Time Collected: 08/13/19 09:10 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	86.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0061	0.00096	1	8260D	8/20/19 21:51	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0061	0.00092	1	8260D	8/20/19 21:51	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/20/19 21:51	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0061	0.00065	1	8260D	8/20/19 21:51	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0061	0.00098	1	8260D	8/20/19 21:51	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 21:51	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		118	3 %	84-123	
			Toluene-d8			97	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-03-6.5-7

Prism Sample ID: 9080260-10 Prism Work Order: 9080260 Time Collected: 08/13/19 10:20 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	eters								
% Solids	90.8	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0059	0.00092	1	8260D	8/20/19 22:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0059	0.00088	1	8260D	8/20/19 22:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/20/19 22:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0059	0.00063	1	8260D	8/20/19 22:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0059	0.00094	1	8260D	8/20/19 22:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0021	1	8260D	8/20/19 22:20	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		120) %	84-123	
			Toluene-d8			95	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-04-5.5-6.0

Prism Sample ID: 9080260-11 Prism Work Order: 9080260 Time Collected: 08/13/19 09:45 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	94.1	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/20/19 22:50) JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00085	1	8260D	8/20/19 22:50) JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/20/19 22:50) JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/20/19 22:50) JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0056	0.00090	1	8260D	8/20/19 22:50) JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/20/19 22:50) JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		97	%	70-130	
			Dibromoflu	oromethane		118	3 %	84-123	
			Toluene-d8			96	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-05-7-7.5

Prism Sample ID: 9080260-12 Prism Work Order: 9080260 Time Collected: 08/13/19 11:10 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	89.3	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/20/19 23:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/20/19 23:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/20/19 23:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/20/19 23:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/20/19 23:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/20/19 23:20	JLB	P9H0347
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		102	? %	70-130	
			Dibromoflu	oromethane		119	9%	84-123	
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB66867-06-7.5-8

Prism Sample ID: 9080260-13 Prism Work Order: 9080260 Time Collected: 08/13/19 12:20 Time Submitted: 08/16/19 09:15

97 %

76-129

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Parame	ters								
% Solids	89.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	EDV	P9H0353
Volatile Organic Compound	ds by GC/MS								
Benzene	BRL	mg/kg dry	0.0049	0.00076	1	8260D	8/19/19 16:12	JLB	P9H0310
Ethylbenzene	BRL	mg/kg dry	0.0049	0.00074	1	8260D	8/19/19 16:12	JLB	P9H0310
m,p-Xylenes	BRL	mg/kg dry	0.0098	0.0013	1	8260D	8/19/19 16:12	JLB	P9H0310
o-Xylene	BRL	mg/kg dry	0.0049	0.00052	1	8260D	8/19/19 16:12	JLB	P9H0310
Toluene	BRL	mg/kg dry	0.0049	0.00078	1	8260D	8/19/19 16:12	JLB	P9H0310
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/19/19 16:12	JLB	P9H0310
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		100	1%	70-130	
			Dibromoflu	oromethane		110	%	84-123	

Toluene-d8

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-01-6.0-6.5 Prism Sample ID: 9080260-14 Prism Work Order: 9080260

Time Collected: 08/12/19 13:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	90.5	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19 10:22	. EDV	P9H0353
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0052	0.00081	1	8260D	8/21/19 19:4	l JLB	P9H0366
Ethylbenzene	BRL	mg/kg dry	0.0052	0.00078	1	8260D	8/21/19 19:4	I JLB	P9H0366
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/21/19 19:4	I JLB	P9H0366
o-Xylene	BRL	mg/kg dry	0.0052	0.00055	1	8260D	8/21/19 19:4	I JLB	P9H0366
Toluene	BRL	mg/kg dry	0.0052	0.00082	1	8260D	8/21/19 19:4	I JLB	P9H0366
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/21/19 19:4	l JLB	P9H0366
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		103	3 %	70-130	
			Dibromoflu	oromethane		123	3 %	84-123	
			Toluene-d8			92	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-02-4.0-4.5 Prism Sample ID: 9080260-15

Prism Work Order: 9080260 Time Collected: 08/12/19 13:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	95.0	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0080	0.0012	1	8260D	8/21/19	0:20	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0080	0.0012	1	8260D	8/21/19	0:20	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.016	0.0020	1	8260D	8/21/19	0:20	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0080	0.00085	1	8260D	8/21/19	0:20	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0080	0.0013	1	8260D	8/21/19	0:20	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.024	0.0029	1	8260D	8/21/19	0:20	JLB	P9H0347
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		103	3 %		70-130	
			Dibromoflu	oromethane		122	2 %		84-123	
			Toluene-d8			95	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-03-5.0-5.5 Prism Sample ID: 9080260-16 Prism Work Order: 9080260 Time Collected: 08/12/19 14:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	93.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/21/19	0:49	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00064	1	8260D	8/21/19	0:49	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/21/19	0:49	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/21/19	0:49	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0043	0.00068	1	8260D	8/21/19	0:49	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.013	0.0015	1	8260D	8/21/19	0:49	JLB	P9H0347
			Surrogate			Recov	ery		Control I	_imits
			4-Bromoflu	orobenzene		102	2 %		70-130	
			Dibromoflu	oromethane		121	1 %		84-123	
			Toluene-d8			96	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-04-5.0-5.5 Prism Sample ID: 9080260-17 Prism Work Order: 9080260 Time Collected: 08/12/19 14:45

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Param	neters									
% Solids	92.2	% by Weight	0.100	0.100	1	*SM2540 G	8/22/19	10:22	EDV	P9H0353
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0049	0.00076	1	8260D	8/21/19	1:19	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0049	0.00074	1	8260D	8/21/19	1:19	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.0098	0.0013	1	8260D	8/21/19	1:19	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0049	0.00052	1	8260D	8/21/19	1:19	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0049	0.00078	1	8260D	8/21/19	1:19	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.015	0.0018	1	8260D	8/21/19	1:19	JLB	P9H0347
			Surrogate			Recov	ery		Control I	Limits
			4-Bromoflu	orobenzene		100	0 %		70-130	
			Dibromoflu	oromethane		123	3 %		84-123	
			Toluene-d8			94	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-05-9.5-10 Prism Sample ID: 9080260-18 Prism Work Order: 9080260 Time Collected: 08/12/19 15:25

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	•	Analysis Date/Time		Batch ID
General Chemistry Paran	neters									
% Solids	91.0	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/21/19	1:50	JLB	P9H0347
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00084	1	8260D	8/21/19	1:50	JLB	P9H0347
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/21/19	1:50	JLB	P9H0347
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/21/19	1:50	JLB	P9H0347
Toluene	BRL	mg/kg dry	0.0056	0.00089	1	8260D	8/21/19	1:50	JLB	P9H0347
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/21/19	1:50	JLB	P9H0347
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		99	%		70-130	
			Dibromoflu	oromethane		119	%		84-123	
			Toluene-d8			94	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB69-06-9-9.5 Prism Sample ID: 9080260-19 Prism Work Order: 9080260 Time Collected: 08/12/19 16:15 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	87.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0046	0.00072	1	8260D	8/22/19 15:47	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0046	0.00069	1	8260D	8/22/19 15:47	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.0092	0.0012	1	8260D	8/22/19 15:47	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0046	0.00049	1	8260D	8/22/19 15:47	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0046	0.00073	1	8260D	8/22/19 15:47	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/22/19 15:47	JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		125	5 %	84-123	SR
			Toluene-d8			92	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-07-5.0-5.5 Prism Sample ID: 9080260-20

Prism Work Order: 9080260 Time Collected: 08/12/19 16:45 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysi Date/Tin		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	93.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0051	0.00080	1	8260D	8/22/19	16:17	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0051	0.00077	1	8260D	8/22/19	16:17	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.010	0.0013	1	8260D	8/22/19	16:17	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0051	0.00055	1	8260D	8/22/19	16:17	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0051	0.00082	1	8260D	8/22/19	16:17	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19	16:17	JLB	P9H0389
			Surrogate			Recov	ery		Control L	imits
			4-Bromoflu	orobenzene		102	2 %		70-130	
			Dibromoflu	oromethane		127	7 %		84-123	SR
			Toluene-d8			94	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB69-08-6.0-6.5 Prism Sample ID: 9080260-21 Prism Work Order: 9080260 Time Collected: 08/13/19 13:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Tir		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.7	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/26/19	19:27	JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/26/19	19:27	JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/26/19	19:27	JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/26/19	19:27	JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/26/19	19:27	JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/26/19	19:27	JLB	P9H0434
			Surrogate			Recov	ery		Control L	imits
			4-Bromoflu	orobenzene		112	2 %		70-130	
			Dibromoflu	oromethane		96	%		84-123	
			Toluene-d8			101	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB78-01-7-7.5 Prism Sample ID: 9080260-22 Prism Work Order: 9080260 Time Collected: 08/13/19 15:50 Time Submitted: 08/16/19 09:15

96 %

76-129

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis / Date/Time	Analyst	Batch ID
General Chemistry Param	eters								
% Solids	83.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compour	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/22/19 17:34	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/22/19 17:34	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0013	1	8260D	8/22/19 17:34	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/22/19 17:34	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/22/19 17:34	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/22/19 17:34	JLB	P9H0389
			Surrogate			Recov	ery	Control L	imits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		132	2 %	84-123	SR

Toluene-d8

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid

Client Sample ID: SB78-02-5.5-6
Prism Sample ID: 9080260-23
Prism Work Order: 9080260
Time Collected: 08/14/19 08:25
Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Anal	yst Batch ID
General Chemistry Parameters	3								
% Solids	97.8	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:	10 E	DV P9H036
Volatile Organic Compounds b	y GC/MS								
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/19/19 16	42 JI	В Р9Н031
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00065	1	8260D	8/19/19 16	42 JI	_B P9H031
Isopropylbenzene (Cumene)	BRL	mg/kg dry	0.0043	0.00050	1	8260D	8/19/19 16	42 JI	_B P9H031
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/19/19 16	42 JI	_B P9H031
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/19/19 16	42 JI	_B P9H031
Toluene	BRL	mg/kg dry	0.0043	0.00068	1	8260D	8/19/19 16	42 JI	_B P9H031
Xylenes, total	BRL	mg/kg dry	0.013	0.0015	1	8260D	8/19/19 16	42 JI	_B P9H031
			Surrogate			Recov	ery	Cor	ntrol Limits
			4-Bromoflu	orobenzene		102	2 %	70-	-130
			Dibromoflu	oromethane		109	9 %	84	-123
			Toluene-d8			96	%	76·	-129

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB78-03-6-6.5 Prism Sample ID: 9080260-24 Prism Work Order: 9080260 Time Collected: 08/14/19 09:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.2	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0068	0.0011	1	8260D	8/19/19	17:12	JLB	P9H0310
Ethylbenzene	BRL	mg/kg dry	0.0068	0.0010	1	8260D	8/19/19	17:12	JLB	P9H0310
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/19/19	17:12	JLB	P9H0310
o-Xylene	BRL	mg/kg dry	0.0068	0.00072	1	8260D	8/19/19	17:12	JLB	P9H0310
Toluene	BRL	mg/kg dry	0.0068	0.0011	1	8260D	8/19/19	17:12	JLB	P9H0310
Xylenes, total	BRL	mg/kg dry	0.020	0.0024	1	8260D	8/19/19	17:12	JLB	P9H0310
			Surrogate			Recov	ery		Control	Limits
			4-Bromoflu	orobenzene		103	3 %		70-130	
			Dibromoflu	oromethane		110	%		84-123	
			Toluene-d8			96	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB78-04-6.5-7 Prism Sample ID: 9080260-25 Prism Work Order: 9080260 Time Collected: 08/14/19 09:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	85.1	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0062	0.00097	1	8260D	8/22/19	18:04	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0062	0.00093	1	8260D	8/22/19	18:04	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/22/19	18:04	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0062	0.00066	1	8260D	8/22/19	18:04	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0062	0.00099	1	8260D	8/22/19	18:04	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0022	1	8260D	8/22/19	18:04	JLB	P9H0389
			Surrogate			Recov	ery		Control I	Limits
			4-Bromoflu	orobenzene		98	%		70-130	
			Dibromoflu	oromethane		130	%		84-123	SR
			Toluene-d8			93	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB89-01-5-5.5 Prism Sample ID: 9080260-26 Prism Work Order: 9080260 Time Collected: 08/15/19 09:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	96.3	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0056	0.00088	1	8260D	8/22/19 18:34	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0056	0.00085	1	8260D	8/22/19 18:34	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/22/19 18:34	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0056	0.00060	1	8260D	8/22/19 18:34	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0056	0.00090	1	8260D	8/22/19 18:34	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.017	0.0020	1	8260D	8/22/19 18:34	JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromoflu	orobenzene		98	%	70-130	
			Dibromoflu	oromethane		127	' %	84-123	SR
			Toluene-d8			94	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB89-02-5.5-6 Prism Sample ID: 9080260-27 Prism Work Order: 9080260 Time Collected: 08/15/19 09:40

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analys Date/Ti		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	96.6	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19	8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0066	0.0010	1	8260D	8/22/19	19:04	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0066	0.0010	1	8260D	8/22/19	19:04	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.013	0.0017	1	8260D	8/22/19	19:04	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0066	0.00070	1	8260D	8/22/19	19:04	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0066	0.0011	1	8260D	8/22/19	19:04	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.020	0.0024	1	8260D	8/22/19	19:04	JLB	P9H0389
			Surrogate			Recov	ery		Control L	imits
			4-Bromofluo	orobenzene		100) %		70-130	
			Dibromofluc	oromethane		135	5 %		84-123	SR
			Toluene-d8			93	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB89-03-6.5-7 Prism Sample ID: 9080260-28 Prism Work Order: 9080260 Time Collected: 08/15/19 10:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	92.2	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0065	0.0010	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0065	0.00098	1	8260D	8/22/19 19:3	4 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.013	0.0017	1	8260D	8/22/19 19:3	4 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0065	0.00069	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0065	0.0010	1	8260D	8/22/19 19:3	4 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0023	1	8260D	8/22/19 19:3	4 JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		102	? %	70-130	
			Dibromoflu	oromethane		128	3 %	84-123	SR
			Toluene-d8			90	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB89-04-7-7.5 Prism Sample ID: 9080260-29 Prism Work Order: 9080260 Time Collected: 08/15/19 11:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	93.9	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0062	0.00097	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0062	0.00094	1	8260D	8/22/19 20:0	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0016	1	8260D	8/22/19 20:0	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0062	0.00066	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0062	0.00099	1	8260D	8/22/19 20:0	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.019	0.0022	1	8260D	8/22/19 20:0	3 JLB	P9H0389
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		98	%	70-130	
			Dibromofluo	oromethane		136	5 %	84-123	SR
			Toluene-d8			91	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-01-2.5-3

Prism Sample ID: 9080260-30 Prism Work Order: 9080260 Time Collected: 08/14/19 10:50 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	89.8	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/22/19 20:33	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0069	0.0010	1	8260D	8/22/19 20:33	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/22/19 20:33	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0069	0.00073	1	8260D	8/22/19 20:33	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0069	0.0011	1	8260D	8/22/19 20:33	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/22/19 20:33	JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		101	1 %	70-130	
			Dibromoflu	oromethane		134	1 %	84-123	SR
			Toluene-d8			92	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-02-5.5-6 Prism Sample ID: 9080260-31 Prism Work Order: 9080260 Time Collected: 08/14/19 11:35 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	96.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0059	0.00093	1	8260D	8/22/19 21:03	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0059	0.00089	1	8260D	8/22/19 21:03	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/22/19 21:03	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0059	0.00063	1	8260D	8/22/19 21:03	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0059	0.00095	1	8260D	8/22/19 21:03	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.018	0.0021	1	8260D	8/22/19 21:03	JLB	P9H0389
			Surrogate			Recov	ery	Control L	_imits
			4-Bromoflu	orobenzene		100) %	70-130	
			Dibromoflu	oromethane		133	3 %	84-123	SR
			Toluene-d8			91	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-03-7-7.5 Prism Sample ID: 9080260-32

Prism Work Order: 9080260 Time Collected: 08/14/19 13:00 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	94.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:1) EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/22/19 21:3	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/22/19 21:3	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/22/19 21:3	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/22/19 21:3	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/22/19 21:3	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/22/19 21:3	3 JLB	P9H0389
			Surrogate			Recov	ery	Control	Limits
			4-Bromoflu	orobenzene		99	%	70-130	
			Dibromoflu	oromethane		132	2 %	84-123	SR
			Toluene-d8			91	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-04-7.5-8 Prism Sample ID: 9080260-33 Prism Work Order: 9080260 Time Collected: 08/14/19 13:30 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	80.6	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0060	0.00094	1	8260D	8/22/19 22:03	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0060	0.00091	1	8260D	8/22/19 22:03	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/22/19 22:03	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0060	0.00064	1	8260D	8/22/19 22:03	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0060	0.00096	1	8260D	8/22/19 22:03	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.018	0.0022	1	8260D	8/22/19 22:03	JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
		4-Bromofluorobenzene			97 %		70-130		
		Dibromofluoromethane			131	84-123	SR		
			Toluene-d8			92	76-129		

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-05-4.5-5 Prism Sample ID: 9080260-34 Prism Work Order: 9080260 Time Collected: 08/14/19 14:00

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method Analysis Date/Time		Analys	t Batch ID
General Chemistry Paran	neters								
% Solids	97.4	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:	10 ED	/ P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.014	0.0018	1	8260D	8/22/19 22	:33 JLE	P9H0389
o-Xylene	BRL	mg/kg dry	0.0070	0.00075	1	8260D	8/22/19 22	:33 JLE	P9H0389
Toluene	BRL	mg/kg dry	0.0070	0.0011	1	8260D	8/22/19 22	:33 JLE	P9H0389
Xylenes, total	BRL	mg/kg dry	0.021	0.0025	1	8260D	8/22/19 22	:33 JLE	P9H0389
			Surrogate			Recov	ery	Conti	ol Limits
			4-Bromofluorobenzene			103	3 %	70-1	30
			Dibromoflu	oromethane		138	3 %	84-1	23 SR
			Toluene-d8		96 %			29	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-06-0.5-1 Prism Sample ID: 9080260-35 Prism Work Order: 9080260 Time Collected: 08/14/19 14:50 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	88.1	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0075	0.0012	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0075	0.0011	1	8260D	8/22/19 23:02	2 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.015	0.0019	1	8260D	8/22/19 23:02	2 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0075	0.00080	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0075	0.0012	1	8260D	8/22/19 23:02	2 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.022	0.0027	1	8260D	8/22/19 23:02	2 JLB	P9H0389
			Surrogate			Recov	ery	Control I	_imits
			4-Bromoflu	orobenzene		103	3 %	70-130	
			Dibromoflu	oromethane		143	3 %	84-123	SR
			Toluene-d8			89	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-07-7.5-8 Prism Sample ID: 9080260-36 Prism Work Order: 9080260 Time Collected: 08/14/19 15:35

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method Analysis Date/Time		Analyst	Batch ID
General Chemistry Paran	neters								
% Solids	83.5	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0043	0.00067	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0043	0.00065	1	8260D	8/22/19 23:3	3 JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.0086	0.0011	1	8260D	8/22/19 23:3	3 JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0043	0.00046	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0043	0.00069	1	8260D	8/22/19 23:3	3 JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.013	0.0016	1	8260D	8/22/19 23:3	3 JLB	P9H0389
			Surrogate			Recov	ery	Control I	Limits
			4-Bromofluorobenzene			102	2 %	70-130	
			Dibromoflu	oromethane		135	5 %	84-123	SR
			Toluene-d8			91	76-129		

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-08-8-8.5 Prism Sample ID: 9080260-37 Prism Work Order: 9080260 Time Collected: 08/14/19 16:05

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time	Analyst	Batch ID
General Chemistry Param	neters								
% Solids	87.9	% by Weight	0.100	0.100	1	*SM2540 G	8/23/19 8:10	EDV	P9H0369
Volatile Organic Compou	nds by GC/MS								
Benzene	BRL	mg/kg dry	0.0058	0.00090	1	8260D	8/26/19 18:57	7 JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0058	0.00087	1	8260D	8/26/19 18:57	7 JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.012	0.0015	1	8260D	8/26/19 18:57	7 JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0058	0.00061	1	8260D	8/26/19 18:57	7 JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0058	0.00092	1	8260D	8/26/19 18:57	7 JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.017	0.0021	1	8260D	8/26/19 18:57	7 JLB	P9H0434
			Surrogate			Recov	ery	Control	Limits
			4-Bromofluorobenzene			103	3 %	70-130	
			Dibromofluoromethane			93	%	84-123	
			Toluene-d8			99	%	76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-09-8.5-9 Prism Sample ID: 9080260-38 Prism Work Order: 9080260 Time Collected: 08/14/19 16:45

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis Date/Time		Analyst	Batch ID
General Chemistry Paran	neters									
% Solids	87.0	% by Weight	0.100	0.100	1	*SM2540 G	8/26/19	8:25	EDV	P9H0406
Volatile Organic Compou	nds by GC/MS									
Benzene	BRL	mg/kg dry	0.0053	0.00082	1	8260D	8/23/19	0:32	JLB	P9H0389
Ethylbenzene	BRL	mg/kg dry	0.0053	0.00079	1	8260D	8/23/19	0:32	JLB	P9H0389
m,p-Xylenes	BRL	mg/kg dry	0.011	0.0014	1	8260D	8/23/19	0:32	JLB	P9H0389
o-Xylene	BRL	mg/kg dry	0.0053	0.00056	1	8260D	8/23/19	0:32	JLB	P9H0389
Toluene	BRL	mg/kg dry	0.0053	0.00084	1	8260D	8/23/19	0:32	JLB	P9H0389
Xylenes, total	BRL	mg/kg dry	0.016	0.0019	1	8260D	8/23/19	0:32	JLB	P9H0389
			Surrogate			Recov	ery		Control I	_imits
			4-Bromoflu	orobenzene		98	%		70-130	
			Dibromoflu	oromethane	140 %			84-123	SR	
			Toluene-d8		95 %			76-129		

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End

Project No.: GN7039 Sample Matrix: Solid Client Sample ID: SB102-10-9-9.5 Prism Sample ID: 9080260-39 Prism Work Order: 9080260

Time Collected: 08/14/19 17:20 Time Submitted: 08/16/19 09:15

Parameter	Result	Units	Report Limit	MDL	Dilution Factor	Method	Analysis A Date/Time		Analyst	Batch ID
General Chemistry Paramete	rs									
% Solids	89.4	% by Weight	0.100	0.100	1	*SM2540 G	8/26/19	8:25	EDV	P9H0406
Volatile Organic Compounds	by GC/MS									
Benzene	BRL	mg/kg dry	0.0048	0.00075	1	8260D	8/26/19	18:27	JLB	P9H0434
Ethylbenzene	BRL	mg/kg dry	0.0048	0.00072	1	8260D	8/26/19	18:27	JLB	P9H0434
m,p-Xylenes	BRL	mg/kg dry	0.0096	0.0012	1	8260D	8/26/19	18:27	JLB	P9H0434
o-Xylene	BRL	mg/kg dry	0.0048	0.00051	1	8260D	8/26/19	18:27	JLB	P9H0434
Toluene	BRL	mg/kg dry	0.0048	0.00077	1	8260D	8/26/19	18:27	JLB	P9H0434
Xylenes, total	BRL	mg/kg dry	0.014	0.0017	1	8260D	8/26/19	18:27	JLB	P9H0434
			Surrogate			Recov	ery		Control I	Limits
			4-Bromoflu	orobenzene		104 %			70-130	
			Dibromofluoromethane			95 %			84-123	
			Toluene-d8			98	%		76-129	

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project N

Raleigh, NC 27607

Project No: GN7039

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P9H0310 - 5035			
Blank (P9H0310-BLK1)			Prepared & Analyzed: 08/19/19
1,1,1,2-Tetrachloroethane	BRL	0.0050	mg/kg wet
1,1,1-Trichloroethane	BRL	0.0050	mg/kg wet
1,1,2,2-Tetrachloroethane	BRL	0.0050	mg/kg wet
1,1,2-Trichloroethane	BRL	0.0050	mg/kg wet
1,1-Dichloroethane	BRL	0.0050	mg/kg wet
1,1-Dichloroethylene	BRL	0.0050	mg/kg wet
1,1-Dichloropropylene	BRL	0.0050	mg/kg wet
1,2,3-Trichlorobenzene	BRL	0.010	mg/kg wet
1,2,3-Trichloropropane	BRL	0.0050	mg/kg wet
1,2,4-Trichlorobenzene	BRL	0.010	mg/kg wet
1,2,4-Trimethylbenzene	BRL	0.0050	mg/kg wet
1,2-Dibromoethane	BRL	0.0050	mg/kg wet
1,2-Dichlorobenzene	BRL	0.0050	mg/kg wet
1,2-Dichloroethane	BRL	0.0050	mg/kg wet
1,2-Dichloropropane	BRL	0.0050	mg/kg wet
1,3,5-Trimethylbenzene	BRL	0.0050	mg/kg wet
1,3-Dichlorobenzene	BRL	0.0050	mg/kg wet
1,3-Dichloropropane	BRL	0.0050	mg/kg wet
1,4-Dichlorobenzene	BRL	0.0050	mg/kg wet
2,2-Dichloropropane	BRL	0.0050	mg/kg wet
2-Chlorotoluene	BRL	0.0050	mg/kg wet
4-Chlorotoluene	BRL	0.0050	mg/kg wet
4-Isopropyltoluene	BRL	0.0050	mg/kg wet
Acetone	BRL	0.020	mg/kg wet
Benzene	BRL	0.0050	mg/kg wet
Bromobenzene	BRL	0.0050	mg/kg wet
Bromochloromethane	BRL	0.0050	mg/kg wet
Bromodichloromethane	BRL	0.0050	mg/kg wet
Bromoform	BRL	0.0050	mg/kg wet
Bromomethane	BRL	0.010	mg/kg wet
Carbon Tetrachloride	BRL	0.0050	mg/kg wet
Chlorobenzene	BRL	0.0050	mg/kg wet
Chloroform	BRL	0.010	mg/kg wet
Chloroform	BRL	0.0050	mg/kg wet
Chloromethane	BRL	0.010	mg/kg wet
cis-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet
cis-1,3-Dichloropropylene Dibromochloromethane	BRL BRL	0.0050 0.0050	mg/kg wet mg/kg wet
Dichlorodifluoromethane Ethylbenzene	BRL BRL	0.010 0.0050	mg/kg wet mg/kg wet
Isopropyl Ether	BRL	0.0050	
Isopropyl Errier Isopropylbenzene (Cumene)	BRL	0.0050	mg/kg wet
m,p-Xylenes	BRL	0.0050	mg/kg wet mg/kg wet
Methyl Butyl Ketone (2-Hexanone)	BRL	0.010	mg/kg wet
Methyl Ethyl Ketone (2-Butanone)	BRL	0.020	mg/kg wet
Methyl Isobutyl Ketone	BRL	0.020	mg/kg wet
monty toobacy rectorie	DIXL	0.020	mg/ng not

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

est End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P9H0310 - 5035							
Blank (P9H0310-BLK1)				Prepared & A	nalyzed: 08/19/19)	
Methylene Chloride	BRL	0.0050	mg/kg wet				
Methyl-tert-Butyl Ether	BRL	0.0050	mg/kg wet				
Naphthalene	BRL	0.010	mg/kg wet				
n-Butylbenzene	BRL	0.0050	mg/kg wet				
n-Propylbenzene	BRL	0.0050	mg/kg wet				
o-Xylene	BRL	0.0050	mg/kg wet				
sec-Butylbenzene	BRL	0.0050	mg/kg wet				
Styrene	BRL	0.0050	mg/kg wet				
ert-Butylbenzene	BRL	0.0050	mg/kg wet				
Tetrachloroethylene	BRL	0.0050	mg/kg wet				
oluene	BRL	0.0050	mg/kg wet				
rans-1,2-Dichloroethylene	BRL	0.0050	mg/kg wet				
rans-1,3-Dichloropropylene	BRL	0.0050	mg/kg wet				
Trichloroethylene	BRL	0.0050	mg/kg wet				
Frichlorofluoromethane	BRL	0.010	mg/kg wet				
/inyl acetate	BRL	0.010	mg/kg wet				
/inyl chloride	BRL	0.010	mg/kg wet				
(ylenes, total	BRL	0.015	mg/kg wet				
Surrogate: 4-Bromofluorobenzene	50.9		ug/L	50.00	102	70-130	
Surrogate: Dibromofluoromethane	53.9		ug/L	50.00	108	84-123	
Surrogate: Toluene-d8	49.2		ug/L	50.00	98	76-129	
LCS (P9H0310-BS1)				Prepared & A	nalyzed: 08/19/19)	
1,1,1,2-Tetrachloroethane	0.0442	0.0050	mg/kg wet	0.05000	88	72-115	
,1,1-Trichloroethane	0.0460	0.0050	mg/kg wet		92	67-131	
,1,2,2-Tetrachloroethane	0.0421	0.0050	mg/kg wet		84	56-126	
,1,2-Trichloroethane	0.0421	0.0050	mg/kg wet	0.05000	84	70-133	
,1-Dichloroethane	0.0432	0.0050	mg/kg wet	0.05000	86	74-127	
,1-Dichloroethylene	0.0394	0.0050	mg/kg wet	0.05000	79	67-149	
,1-Dichloropropylene	0.0453	0.0050	mg/kg wet	0.05000	91	71-130	
,2,3-Trichlorobenzene	0.0432	0.010	mg/kg wet	0.05000	86	68-130	
,2,3-Trichloropropane	0.0419	0.0050	mg/kg wet	0.05000	84	60-137	
,2,4-Trichlorobenzene	0.0450	0.010	mg/kg wet		90	66-125	
,2,4-Trimethylbenzene	0.0442	0.0050	mg/kg wet		88	69-129	
,2-Dibromoethane	0.0426	0.0050	mg/kg wet	0.05000	85	70-132	
,2-Dichlorobenzene	0.0425	0.0050	mg/kg wet		85	72-123	
,2-Dichloroethane	0.0446	0.0050	mg/kg wet	0.05000	89	68-128	
,2-Dichloropropane	0.0437	0.0050	mg/kg wet	0.05000	87	73-130	
,3,5-Trimethylbenzene	0.0440	0.0050	mg/kg wet	0.05000	88	69-128	
,3-Dichlorobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	71-120	
,3-Dichloropropane	0.0428	0.0050	mg/kg wet	0.05000	86	75-124	
,4-Dichlorobenzene	0.0428	0.0050	mg/kg wet	0.05000	86	71-123	
2,2-Dichloropropane	0.0463	0.0050	mg/kg wet	0.05000	93	50-142	
2-Chlorotoluene	0.0437	0.0050	mg/kg wet	0.05000	87	67-124	
l-Chlorotoluene	0.0438	0.0050	mg/kg wet	0.05000	88	71-126	
l-Isopropyltoluene	0.0451	0.0050	mg/kg wet	0.05000	90	68-129	
Acetone	0.120	0.020	mg/kg wet	0.1000	120	29-198	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project No: GN7039

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

LCS (P9H0310-BS1)				Prepared & Ana	alyzed: 08/19/1	19
Benzene	0.0433	0.0050	mg/kg wet	0.05000	87	74-127
Bromobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	73-125
Bromochloromethane	0.0422	0.0050	mg/kg wet	0.05000	84	72-134
Bromodichloromethane	0.0456	0.0050	mg/kg wet	0.05000	91	75-122
Bromoform	0.0467	0.0050	mg/kg wet	0.05000	93	66-135
Bromomethane	0.0437	0.010	mg/kg wet	0.05000	87	20-180
Carbon Tetrachloride	0.0464	0.0050	mg/kg wet	0.05000	93	64-143
Chlorobenzene	0.0429	0.0050	mg/kg wet	0.05000	86	74-118
Chloroethane	0.0420	0.010	mg/kg wet	0.05000	84	33-149
Chloroform	0.0442	0.0050	mg/kg wet	0.05000	88	73-127
Chloromethane	0.0382	0.010	mg/kg wet	0.05000	76	45-143
cis-1,2-Dichloroethylene	0.0432	0.0050	mg/kg wet	0.05000	86	76-134
cis-1,3-Dichloropropylene	0.0444	0.0050	mg/kg wet	0.05000	89	71-125
Dibromochloromethane	0.0446	0.0050	mg/kg wet	0.05000	89	73-122
Dichlorodifluoromethane	0.0405	0.010	mg/kg wet	0.05000	81	26-146
Ethylbenzene	0.0435	0.0050	mg/kg wet	0.05000	87	74-128
Isopropyl Ether	0.0443	0.0050	mg/kg wet	0.05000	89	59-159
Isopropylbenzene (Cumene)	0.0440	0.0050	mg/kg wet	0.05000	88	68-126
m,p-Xylenes	0.0886	0.010	mg/kg wet	0.1000	89	75-124
Methyl Butyl Ketone (2-Hexanone)	0.0480	0.020	mg/kg wet	0.05000	96	61-157
Methyl Ethyl Ketone (2-Butanone)	0.0510	0.020	mg/kg wet	0.05000	102	63-149
Methyl Isobutyl Ketone	0.0451	0.020	mg/kg wet	0.05000	90	57-162
Methylene Chloride	0.0414	0.0050	mg/kg wet	0.05000	83	74-129
Methyl-tert-Butyl Ether	0.0432	0.0050	mg/kg wet	0.05000	86	70-130
Naphthalene	0.0428	0.010	mg/kg wet	0.05000	86	57-157
n-Butylbenzene	0.0460	0.0050	mg/kg wet	0.05000	92	65-135
n-Propylbenzene	0.0443	0.0050	mg/kg wet	0.05000	89	67-130
o-Xylene	0.0442	0.0050	mg/kg wet	0.05000	88	74-126
sec-Butylbenzene	0.0446	0.0050	mg/kg wet	0.05000	89	66-131
Styrene	0.0438	0.0050	mg/kg wet	0.05000	88	77-121
tert-Butylbenzene	0.0445	0.0050	mg/kg wet	0.05000	89	67-132
Tetrachloroethylene	0.0449	0.0050	mg/kg wet	0.05000	90	68-130
Toluene	0.0435	0.0050	mg/kg wet	0.05000	87	71-129
trans-1,2-Dichloroethylene	0.0444	0.0050	mg/kg wet	0.05000	89	73-132
trans-1,3-Dichloropropylene	0.0448	0.0050	mg/kg wet	0.05000	90	68-123
Trichloroethylene	0.0453	0.0050	mg/kg wet	0.05000	91	75-133
Trichlorofluoromethane	0.0452	0.010	mg/kg wet	0.05000	90	44-146
Vinyl acetate	0.0456	0.010	mg/kg wet	0.05000	91	85-161
Vinyl chloride	0.0430	0.010	mg/kg wet	0.05000	86	48-147
Xylenes, total	0.133	0.015	mg/kg wet	0.1500	89	74-126
Surrogate: 4-Bromofluorobenzene	49.3		ug/L	50.00	99	70-130
Surrogate: Dibromofluoromethane	50.5		ug/L	50.00	101	84-123
Surrogate: Toluene-d8	49.4		ug/L	50.00	99	76-129

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

1 10,000 110. 0111 00

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0310 - 5035										
LCS Dup (P9H0310-BSD1)				Prepared	& Analyze	d: 08/19/1	9			
1,1,1,2-Tetrachloroethane	0.0447	0.0050	mg/kg wet	•		89	72-115	1	20	
1,1,1-Trichloroethane	0.0444	0.0050	mg/kg wet			89	67-131	4	20	
1,1,2,2-Tetrachloroethane	0.0413	0.0050	mg/kg wet			83	56-126	2	20	
1,1,2-Trichloroethane	0.0422	0.0050	mg/kg wet			84	70-133	0.4	20	
1,1-Dichloroethane	0.0423	0.0050	mg/kg wet			85	74-127	2	20	
, 1,1-Dichloroethylene	0.0402	0.0050	mg/kg wet			80	67-149	2	20	
I,1-Dichloropropylene	0.0441	0.0050	mg/kg wet			88	71-130	3	20	
1,2,3-Trichlorobenzene	0.0433	0.010	mg/kg wet			87	68-130	0.1	20	
1,2,3-Trichloropropane	0.0413	0.0050	mg/kg wet			83	60-137	2	20	
1,2,4-Trichlorobenzene	0.0438	0.010	mg/kg wet			88	66-125	3	20	
I,2,4-Trimethylbenzene	0.0436	0.0050	mg/kg wet			87	69-129	1	20	
I,2-Dibromoethane	0.0434	0.0050	mg/kg wet			87	70-132	2	20	
1,2-Dichlorobenzene	0.0426	0.0050	mg/kg wet			85	72-123	0.1	20	
1,2-Dichloroethane	0.0446	0.0050	mg/kg wet			89	68-128	0.1	20	
1,2-Dichloropropane	0.0435	0.0050	mg/kg wet			87	73-130	0.4	20	
1,3,5-Trimethylbenzene	0.0430	0.0050	mg/kg wet			86	69-128	2	20	
1,3-Dichlorobenzene	0.0428	0.0050	mg/kg wet			86	71-120	0.1	20	
I,3-Dichloropropane	0.0437	0.0050	mg/kg wet			87	75-124	2	20	
,4-Dichlorobenzene	0.0424	0.0050	mg/kg wet			85	71-123	0.8	20	
2,2-Dichloropropane	0.0445	0.0050	mg/kg wet			89	50-142	4	20	
2-Chlorotoluene	0.0426	0.0050	mg/kg wet			85	67-124	3	20	
I-Chlorotoluene	0.0434	0.0050	mg/kg wet			87	71-126	1	20	
I-Isopropyltoluene	0.0442	0.0050	mg/kg wet			88	68-129	2	20	
Acetone	0.126	0.020	mg/kg wet			126	29-198	5	20	
Benzene	0.0421	0.020	mg/kg wet			84	74-127	3	20	
Bromobenzene	0.0421	0.0050	mg/kg wet			86	73-125	0.4	20	
Bromochloromethane	0.0431	0.0050	mg/kg wet			85	73-123	0.4	20	
Bromodichloromethane							72-13 4 75-122			
	0.0450	0.0050	mg/kg wet			90		1 1	20	
Bromoform Bromomothana	0.0463	0.0050	mg/kg wet			93	66-135	-	20	
Bromomethane	0.0415	0.010	mg/kg wet			83	20-180	5	20	
Carbon Tetrachloride	0.0452	0.0050	mg/kg wet			90	64-143	3	20	
Chlorobenzene	0.0424	0.0050	mg/kg wet			85	74-118	1	20	
Chloroethane	0.0404	0.010	mg/kg wet			81	33-149	4	20	
Chloroform	0.0438	0.0050	mg/kg wet			88	73-127	1	20	
Chloromethane	0.0366	0.010	mg/kg wet			73	45-143	4	20	
sis-1,2-Dichloroethylene	0.0429	0.0050	mg/kg wet			86	76-134	0.7	20	
cis-1,3-Dichloropropylene	0.0441	0.0050	mg/kg wet			88	71-125	0.6	20	
Dibromochloromethane	0.0444	0.0050	mg/kg wet			89	73-122	0.5	20	
Dichlorodifluoromethane	0.0389	0.010	mg/kg wet			78	26-146	4	20	
Ethylbenzene	0.0430	0.0050	mg/kg wet			86	74-128	1	20	
sopropyl Ether	0.0437	0.0050	mg/kg wet			87	59-159	1	20	
sopropylbenzene (Cumene)	0.0430	0.0050	mg/kg wet			86	68-126	2	20	
n,p-Xylenes	0.0871	0.010	mg/kg wet			87	75-124	2	20	
Methyl Butyl Ketone (2-Hexanone)	0.0482	0.020	mg/kg wet			96	61-157	0.4	20	
Methyl Ethyl Ketone (2-Butanone)	0.0512	0.020	mg/kg wet			102	63-149	0.3	20	
Methyl Isobutyl Ketone	0.0442	0.020	mg/kg wet	0.05000		88	57-162	2	20	

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

roject: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Satch P9H0310 - 5035										
.CS Dup (P9H0310-BSD1)	Prepared & Analyzed: 08/19/19									
Methylene Chloride	0.0412	0.0050	mg/kg wet	0.05000		82	74-129	0.2	20	
Methyl-tert-Butyl Ether	0.0434	0.0050	mg/kg wet	0.05000		87	70-130	0.6	20	
Naphthalene	0.0426	0.010	mg/kg wet	0.05000		85	57-157	0.4	20	
n-Butylbenzene	0.0448	0.0050	mg/kg wet	0.05000		90	65-135	3	20	
n-Propylbenzene	0.0432	0.0050	mg/kg wet	0.05000		86	67-130	2	20	
p-Xylene	0.0441	0.0050	mg/kg wet	0.05000		88	74-126	0.3	20	
sec-Butylbenzene	0.0439	0.0050	mg/kg wet	0.05000		88	66-131	2	20	
Styrene	0.0445	0.0050	mg/kg wet	0.05000		89	77-121	2	20	
ert-Butylbenzene	0.0432	0.0050	mg/kg wet	0.05000		86	67-132	3	20	
Tetrachloroethylene	0.0425	0.0050	mg/kg wet	0.05000		85	68-130	6	20	
Toluene	0.0426	0.0050	mg/kg wet	0.05000		85	71-129	2	20	
rans-1,2-Dichloroethylene	0.0430	0.0050	mg/kg wet	0.05000		86	73-132	3	20	
rans-1,3-Dichloropropylene	0.0444	0.0050	mg/kg wet	0.05000		89	68-123	0.9	20	
Trichloroethylene	0.0435	0.0050	mg/kg wet	0.05000		87	75-133	4	20	
Trichlorofluoromethane	0.0419	0.010	mg/kg wet	0.05000		84	44-146	8	20	
/inyl acetate	0.0467	0.010	mg/kg wet	0.05000		93	85-161	2	20	
/inyl chloride	0.0404	0.010	mg/kg wet	0.05000		81	48-147	6	20	
(ylenes, total	0.131	0.015	mg/kg wet	0.1500		87	74-126	1	20	
Surrogate: 4-Bromofluorobenzene	50.0		ug/L	50.00		100	70-130			
Surrogate: Dibromofluoromethane	50.3		ug/L	50.00		101	84-123			
Surrogate: Toluene-d8	49.6		ug/L	50.00		99	76-129			
Batch P9H0347 - 5035										
Blank (P9H0347-BLK1)	Prepared & Analyzed: 08/20/19									
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
n,p-Xylenes	BRL	0.010	mg/kg wet							
p-Xylene	BRL	0.0050	mg/kg wet							
l'oluene	BRL	0.0050	mg/kg wet							
Kylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	50.2		ug/L	50.00		100	70-130			
Surrogate: Dibromofluoromethane	53.2		ug/L	50.00		106	84-123			
Surrogate: Toluene-d8	48.9		ug/L	50.00		98	76-129			

47.2

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Surrogate: Toluene-d8

Time Submitted: 8/16/2019 9:15:00AM

Prism Work Order: 9080260

Volatile Organic Compounds by GC/MS - Quality Control

Prepared & Analyzed: 08/20/19 September Complete			Reporting		Spike	Source		%REC		RPD	
Prepared & Analyzed: 08/20/19 Prepared & Analyzed: 08/20/1	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Service 0.0533 0.0050 mg/kg wet 0.05000 107 74-127 74-128	Batch P9H0347 - 5035										
Carby Carb	LCS (P9H0347-BS1)				Prepared	& Analyze	d: 08/20/1	9			
1,	Benzene	0.0533	0.0050	mg/kg wet	0.05000		107	74-127			
National Column National C	Ethylbenzene	0.0547	0.0050	mg/kg wet	0.05000		109	74-128			
Column	m,p-Xylenes	0.111	0.010	mg/kg wet	0.1000		111	75-124			
Sylenes, total 0.167 0.015 mg/kg wet 0.1500 111 74-126 mg/kg wet 0.1500 111 74-126 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 103 84-123 mg/kg wet 0.1500 104 74-127 2 20 mg/kg wet 0.0500 mg/kg wet 0.0500 104 74-127 2 20 20 20 20 20 20 2	o-Xylene	0.0558	0.0050	mg/kg wet	0.05000		112	74-126			
Surrogate: 4-Bromofluorobenzene 48.7 ug/L 50.00 97 70-130 Surrogate: Dibromofluoromethane 51.6 ug/L 50.00 103 84-123 Surrogate: Toluene-d8 48.6 ug/L 50.00 97 76-129 Surrogate: Toluene-d8 48.10 Surrogate: Toluene-d8 48.3 ug/L 50.00 100 109 76-124 2 20 Surrogate: Toluene-d8 49.0 Surrogate:	Toluene	0.0546	0.0050	mg/kg wet	0.05000		109	71-129			
Surrogate: Dibromofluoromethane S1.6 ug/L 50.00 103 84-123 surrogate: Toluene-d8 48.6 ug/L 50.00 97 76-129 surrogate: Toluene-d8 48.6 ug/L 50.000 104 74-127 2 20 surrogate: Toluene-d8 0.0520 0.0520 mg/kg wet 0.05000 104 74-127 2 20 surrogate: 4.9 surrogate: 4.8 surrogate: 4.8 surrogate: 4.9 surro	Xylenes, total	0.167	0.015	mg/kg wet	0.1500		111	74-126			
Surrogate: Toluene-d8	Surrogate: 4-Bromofluorobenzene	48.7		ug/L	50.00		97	70-130			
Prepared & Analyzed: 08/20/19 September Septembe	Surrogate: Dibromofluoromethane	51.6		ug/L	50.00		103	84-123			
Renzene 0.0520 0.0050 mg/kg wet 0.05000 104 74-127 2 20 20 20 20 20 20 20 20 20 20 20 20 2	Surrogate: Toluene-d8	48.6		ug/L	50.00		97	76-129			
Strict S	LCS Dup (P9H0347-BSD1)				Prepared	& Analyze	d: 08/20/1	9			
1.0.5. N.pXylenes	Benzene	0.0520	0.0050	mg/kg wet	0.05000		104	74-127	2	20	
110 74-126 2 20 20 20 20 20 20 2	Ethylbenzene	0.0536	0.0050	mg/kg wet	0.05000		107	74-128	2	20	
Coluene Colu	m,p-Xylenes	0.109	0.010	mg/kg wet	0.1000		109	75-124	2	20	
Kylenes, total 0.164 0.015 mg/kg wet 0.1500 109 74-126 2 20 Surrogate: 4-Bromofluorobenzene 48.3 ug/L 50.00 97 70-130 30-123 <th< td=""><td>o-Xylene</td><td>0.0549</td><td>0.0050</td><td>mg/kg wet</td><td>0.05000</td><td></td><td>110</td><td>74-126</td><td>2</td><td>20</td><td></td></th<>	o-Xylene	0.0549	0.0050	mg/kg wet	0.05000		110	74-126	2	20	
Surrogate: 4-Bromofluorobenzene 48.3	Toluene	0.0532	0.0050	mg/kg wet	0.05000		106	71-129	2	20	
Surrogate: Dibromofluoromethane 51.5 ug/L 50.00 103 84-123 Surrogate: Toluene-d8 49.0 ug/L 50.00 98 76-129 Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Senzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Sthylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n.p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Xylenes, total	0.164	0.015	mg/kg wet	0.1500		109	74-126	2	20	
Surrogate: Toluene-d8 49.0 ug/L 50.00 98 76-129 Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.1101 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 x-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		97	70-130			
Matrix Spike (P9H0347-MS1) Source: 9080260-01 Prepared: 08/20/19 Analyzed: 08/21/19 Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: Dibromofluoromethane	51.5		ug/L	50.00		103	84-123			
Benzene 0.0524 0.0055 mg/kg dry 0.05504 BRL 95 60-135 Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 Xylene 0.0546 0.0555 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Surrogate: Toluene-d8	49.0		ug/L	50.00		98	76-129			
Ethylbenzene 0.0536 0.0055 mg/kg dry 0.05504 BRL 97 44-144 n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 I-Xylene 0.0546 0.0555 mg/kg dry 0.05504 BRL 99 43-143 Foluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Matrix Spike (P9H0347-MS1)	Sou	rce: 908026	0-01	Prepared:	08/20/19	Analyzed	08/21/19			
n,p-Xylenes 0.110 0.011 mg/kg dry 0.1101 BRL 100 36-148 1-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 (Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Benzene	0.0524	0.0055	mg/kg dry	0.05504	BRL	95	60-135			
N-Xylene 0.0546 0.0055 mg/kg dry 0.05504 BRL 99 43-143 Toluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Toluene, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Ethylbenzene	0.0536	0.0055	mg/kg dry	0.05504	BRL	97	44-144			
Soluene 0.0528 0.0055 mg/kg dry 0.05504 BRL 96 57-135 Sylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	m,p-Xylenes	0.110	0.011	mg/kg dry	0.1101	BRL	100	36-148			
Kylenes, total 0.165 0.017 mg/kg dry 0.1651 BRL 100 36-148 Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	o-Xylene	0.0546	0.0055	mg/kg dry	0.05504	BRL	99	43-143			
Surrogate: 4-Bromofluorobenzene 45.8 ug/L 50.00 92 70-130	Toluene	0.0528	0.0055	mg/kg dry	0.05504	BRL	96	57-135			
	Xylenes, total	0.165	0.017	mg/kg dry	0.1651	BRL	100	36-148			
Surrogate: Dibromofluoromethane 51.8 ug/L 50.00 104 84-123	Surrogate: 4-Bromofluorobenzene	45.8		ug/L	50.00		92	70-130			
	Surrogate: Dibromofluoromethane	51.8		ug/L	50.00		104	84-123			

ug/L

50.00

94

76-129

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

0/ DEC

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0347 - 5035										
Matrix Spike Dup (P9H0347-MSD1)	So	urce: 908026	0-01	Prepared:	08/20/19	Analyzed	08/21/19			
Benzene	0.0486	0.0054	mg/kg dry	0.05417	BRL	90	60-135	8	20	
Ethylbenzene	0.0499	0.0054	mg/kg dry	0.05417	BRL	92	44-144	7	19	
m,p-Xylenes	0.103	0.011	mg/kg dry	0.1083	BRL	95	36-148	7	20	
o-Xylene	0.0519	0.0054	mg/kg dry	0.05417	BRL	96	43-143	5	17	
Toluene	0.0495	0.0054	mg/kg dry	0.05417	BRL	91	57-135	7	22	
Xylenes, total	0.154	0.016	mg/kg dry	0.1625	BRL	95	36-148	6	20	
Surrogate: 4-Bromofluorobenzene	48.3		ug/L	50.00		97	70-130			
Surrogate: Dibromofluoromethane	55.3		ug/L	50.00		111	84-123			
Surrogate: Toluene-d8	47.2		ug/L	50.00		94	76-129			
Batch P9H0366 - 5035										
Blank (P9H0366-BLK1)				Prepared	& Analyze	ed: 08/21/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	51.2		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	60.3		ug/L	50.00		121	84-123			
Surrogate: Toluene-d8	47.1		ug/L	50.00		94	76-129			
LCS (P9H0366-BS1)				Prepared	& Analyze	ed: 08/21/1	9			
Benzene	0.0531	0.0050	mg/kg wet	0.05000		106	74-127			
Ethylbenzene	0.0562	0.0050	mg/kg wet	0.05000		112	74-128			
m,p-Xylenes	0.115	0.010	mg/kg wet	0.1000		115	75-124			
o-Xylene	0.0575	0.0050	mg/kg wet	0.05000		115	74-126			
Toluene	0.0550	0.0050	mg/kg wet	0.05000		110	71-129			
Xylenes, total	0.173	0.015	mg/kg wet	0.1500		115	74-126			
Surrogate: 4-Bromofluorobenzene	48.7		ug/L	50.00		97	70-130			
Surrogate: Dibromofluoromethane	54.0		ug/L	50.00		108	84-123			
Surrogate: Toluene-d8	48.9		ug/L	50.00		98	76-129			

Project No: GN7039

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Project: NCDOT R-5726 West End Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9H0366 - 5035										
LCS Dup (P9H0366-BSD1)				Prepared ·	& Analyze	d: 08/21/1	9			
Benzene	0.0494	0.0050	mg/kg wet			99	74-127	7	20	
Ethylbenzene	0.0523	0.0050	mg/kg wet	0.05000		105	74-128	7	20	
m,p-Xylenes	0.107	0.010	mg/kg wet	0.1000		107	75-124	7	20	
o-Xylene	0.0540	0.0050	mg/kg wet	0.05000		108	74-126	6	20	
Toluene	0.0511	0.0050	mg/kg wet	0.05000		102	71-129	7	20	
Xylenes, total	0.161	0.015	mg/kg wet	0.1500		107	74-126	7	20	
Surrogate: 4-Bromofluorobenzene	48.8		ug/L	50.00		98	70-130			
Surrogate: Dibromofluoromethane	53.0		ug/L	50.00		106	84-123			
Surrogate: Toluene-d8	48.5		ug/L	50.00		97	76-129			
Batch P9H0389 - 5035										
Blank (P9H0389-BLK1)				Prepared ·	& Analyze	d: 08/22/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	50.8		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	61.1		ug/L	50.00		122	84-123			
Surrogate: Toluene-d8	47.1		ug/L	50.00		94	76-129			
LCS (P9H0389-BS1)				Prepared	& Analyze	d: 08/22/1	9			
Benzene	0.0502	0.0050	mg/kg wet	0.05000		100	74-127			
Ethylbenzene	0.0535	0.0050	mg/kg wet	0.05000		107	74-128			
m,p-Xylenes	0.111	0.010	mg/kg wet	0.1000		111	75-124			
o-Xylene	0.0542	0.0050	mg/kg wet	0.05000		108	74-126			
Toluene	0.0520	0.0050	mg/kg wet	0.05000		104	71-129			
Xylenes, total	0.165	0.015	mg/kg wet	0.1500		110	74-126			
Surrogate: 4-Bromofluorobenzene	47.1		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	55.3		ug/L	50.00		111	84-123			
Surrogate: Toluene-d8	44.9		ug/L	50.00		90	76-129			

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0389 - 5035										
LCS Dup (P9H0389-BSD1)				Prepared	& Analyze	d: 08/22/1	9			
Benzene	0.0473	0.0050	mg/kg wet	0.05000		95	74-127	6	20	
Ethylbenzene	0.0501	0.0050	mg/kg wet	0.05000		100	74-128	7	20	
m,p-Xylenes	0.104	0.010	mg/kg wet	0.1000		104	75-124	6	20	
o-Xylene	0.0514	0.0050	mg/kg wet	0.05000		103	74-126	5	20	
Toluene	0.0489	0.0050	mg/kg wet	0.05000		98	71-129	6	20	
Xylenes, total	0.155	0.015	mg/kg wet	0.1500		104	74-126	6	20	
Surrogate: 4-Bromofluorobenzene	47.0		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	53.8		ug/L	50.00		108	84-123			
Surrogate: Toluene-d8	48.6		ug/L	50.00		97	76-129			
Matrix Spike (P9H0389-MS1)	Sou	ırce: 908026	0-19	Prepared:	08/22/19	Analyzed	08/23/19			
Benzene	0.0476	0.0057	mg/kg dry	0.05685	BRL	84	60-135			
Ethylbenzene	0.0509	0.0057	mg/kg dry	0.05685	BRL	90	44-144			
m,p-Xylenes	0.107	0.011	mg/kg dry	0.1137	BRL	94	36-148			
o-Xylene	0.0492	0.0057	mg/kg dry	0.05685	BRL	87	43-143			
Toluene	0.0487	0.0057	mg/kg dry	0.05685	BRL	86	57-135			
Xylenes, total	0.156	0.017	mg/kg dry	0.1705	BRL	91	36-148			
Surrogate: 4-Bromofluorobenzene	46.8		ug/L	50.00		94	70-130			
Surrogate: Dibromofluoromethane	60.8		ug/L	50.00		122	84-123			
Surrogate: Toluene-d8	46.1		ug/L	50.00		92	76-129			
Matrix Spike Dup (P9H0389-MSD1)	Sou	ırce: 908026	0-19	Prepared:	08/22/19	Analyzed	08/23/19			
Benzene	0.0501	0.0057	mg/kg dry	0.05696	BRL	88	60-135	5	20	
Ethylbenzene	0.0491	0.0057	mg/kg dry	0.05696	BRL	86	44-144	4	19	
m,p-Xylenes	0.104	0.011	mg/kg dry	0.1139	BRL	91	36-148	3	20	
o-Xylene	0.0490	0.0057	mg/kg dry	0.05696	BRL	86	43-143	0.5	17	
Toluene	0.0511	0.0057	mg/kg dry	0.05696	BRL	90	57-135	5	22	
Xylenes, total	0.153	0.017	mg/kg dry	0.1709	BRL	89	36-148	2	20	
Surrogate: 4-Bromofluorobenzene	45.0		ug/L	50.00		90	70-130			
Surrogate: Dibromofluoromethane	61.7		ug/L	50.00		123	84-123			
Surrogate: Toluene-d8	46.6		ug/L	50.00		93	76-129			

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430 Project No: GN7039

Raleigh, NC 27607

Surrogate: Toluene-d8

ect: NCDOT R-5726 West End Prism Work Order: 9080260
Time Submitted: 8/16/2019

Time Submitted: 8/16/2019 9:15:00AM

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P9H0434 - 5035										
Blank (P9H0434-BLK1)			ļ	Prepared	& Analyze	d: 08/26/1	9			
Benzene	BRL	0.0050	mg/kg wet							
Ethylbenzene	BRL	0.0050	mg/kg wet							
m,p-Xylenes	BRL	0.010	mg/kg wet							
o-Xylene	BRL	0.0050	mg/kg wet							
Toluene	BRL	0.0050	mg/kg wet							
Xylenes, total	BRL	0.015	mg/kg wet							
Surrogate: 4-Bromofluorobenzene	51.0		ug/L	50.00		102	70-130			
Surrogate: Dibromofluoromethane	46.7		ug/L	50.00		93	84-123			
Surrogate: Toluene-d8	49.6		ug/L	50.00		99	76-129			
LCS (P9H0434-BS1)			ı	Prepared	& Analyze	d: 08/26/1	9			
Benzene	0.0513	0.0050	mg/kg wet	0.05000		103	74-127			
Ethylbenzene	0.0516	0.0050	mg/kg wet	0.05000		103	74-128			
m,p-Xylenes	0.100	0.010	mg/kg wet	0.1000		100	75-124			
o-Xylene	0.0501	0.0050	mg/kg wet	0.05000		100	74-126			
Toluene	0.0516	0.0050	mg/kg wet	0.05000		103	71-129			
Xylenes, total	0.150	0.015	mg/kg wet	0.1500		100	74-126			
Surrogate: 4-Bromofluorobenzene	52.0		ug/L	50.00		104	70-130			
Surrogate: Dibromofluoromethane	44.7		ug/L	50.00		89	84-123			
Surrogate: Toluene-d8	51.0		ug/L	50.00		102	76-129			
LCS Dup (P9H0434-BSD1)			ı	Prepared	& Analyze	d: 08/26/1	9			
Benzene	0.0480	0.0050	mg/kg wet		-	96	74-127	7	20	
Ethylbenzene	0.0479	0.0050	mg/kg wet	0.05000		96	74-128	7	20	
m,p-Xylenes	0.0930	0.010	mg/kg wet	0.1000		93	75-124	7	20	
o-Xylene	0.0468	0.0050	mg/kg wet	0.05000		94	74-126	7	20	
Toluene	0.0481	0.0050	mg/kg wet	0.05000		96	71-129	7	20	
Xylenes, total	0.140	0.015	mg/kg wet	0.1500		93	74-126	7	20	
Surrogate: 4-Bromofluorobenzene	52.6		ug/L	50.00		105	70-130			
Surrogate: Dibromofluoromethane	43.7		ug/L	50.00		87	84-123			

ug/L

50.00

100

76-129

50.0

Attn: Michael Wang

2501 Blue Ridge Road, Ste 430

Raleigh, NC 27607

Prism Work Order: 9080260

Time Submitted: 8/16/2019 9:15:00AM

Project No: GN7039

General Chemistry Parameters - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P9H0353 - Solids, Dry Weight										
Duplicate (P9H0353-DUP1)	Sou	rce: 9080260)-04	Prepared	: 08/21/19	Analyzed	08/22/19			
% Solids	91.4	0.100	% by Weigh	nt	97.8			7	20	
Duplicate (P9H0353-DUP2)	Sou	rce: 9080260)-14	Prepared	: 08/21/19	Analyzed	08/22/19			
% Solids	96.6	0.100	% by Weigh	nt	90.5			7	20	
Batch P9H0369 - Solids, Dry Weight										
Duplicate (P9H0369-DUP1)	Sou	rce: 9080260)-20	Prepared	: 08/22/19	Analyzed:	: 08/23/19			
% Solids	93.3	0.100	% by Weigh	nt	93.3			0.02	20	
Duplicate (P9H0369-DUP2)	Sou	rce: 9080260)-23	Prepared	: 08/22/19	Analyzed	08/23/19			
% Solids	97.6	0.100	% by Weigh	nt	97.8			0.1	20	
Batch P9H0406 - Solids, Dry Weight										
Duplicate (P9H0406-DUP1)	Sou	rce: 9080260)-39	Prepared	: 08/23/19	Analyzed:	: 08/26/19			
% Solids	88.6	0.100	% by Weigh	nt	89.4			0.9	20	

Sample Extraction Data

Prep Method: Solids, Dry Weight

Lab Number	Batch	Initial	Final	Date/Time	
9080260-01	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-02	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-03	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-04	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-05	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-06	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-07	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-08	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-09	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-10	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-11	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-12	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-13	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-14	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-15	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-16	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-17	P9H0353	30 g	30 g	08/21/19 10:40	
9080260-18	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-19	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-20	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-21	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-22	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-23	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-24	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-25	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-26	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-27	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-28	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-29	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-30	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-31	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-32	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-33	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-34	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-35	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-36	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-37	P9H0369	30 g	30 g	08/22/19 11:13	
9080260-38	P9H0406	30 g	30 g	08/23/19 12:00	
9080260-39	P9H0406	30 g	30 g	08/23/19 12:00	

Prep Method: 5035

Lab Number	Batch	Initial	Final	Date/Time	
9080260-01	P9H0347	3.89 g	5 mL	08/20/19 10:00	
9080260-02	P9H0347	4.18 g	5 mL	08/20/19 10:00	
9080260-03	P9H0347	5.17 g	5 mL	08/20/19 10:00	
9080260-04	P9H0347	4.83 g	5 mL	08/20/19 10:00	
9080260-05	P9H0389	3.77 g	5 mL	08/22/19 10:00	
9080260-06	P9H0347	5.45 g	5 mL	08/20/19 10:00	
9080260-07	P9H0347	5.48 g	5 mL	08/20/19 10:00	
9080260-08	P9H0347	5.5 g	5 mL	08/20/19 10:00	
9080260-09	P9H0347	4.69 g	5 mL	08/20/19 10:00	
9080260-10	P9H0347	4.68 g	5 mL	08/20/19 10:00	
9080260-11	P9H0347	4.72 g	5 mL	08/20/19 10:00	
9080260-12	P9H0347	4.64 g	5 mL	08/20/19 10:00	
9080260-13	P9H0310	5.74 g	5 mL	08/19/19 10:00	
9080260-14	P9H0366	5.34 g	5 mL	08/21/19 10:00	

This report should not be reproduced, except in its entirety, without the written consent of Prism Laboratories, Inc.

Sample Extraction Data

Prep Method: 5035

Lab Number	Batch	Initial	Final	Date/Time
9080260-15	P9H0347	3.3 g	5 mL	08/20/19 10:00
9080260-16	P9H0347	6.27 g	5 mL	08/20/19 10:00
9080260-17	P9H0347	5.54 g	5 mL	08/20/19 10:00
9080260-18	P9H0347	4.89 g	5 mL	08/20/19 10:00
9080260-19	P9H0389	6.23 g	5 mL	08/22/19 10:00
9080260-20	P9H0389	5.21 g	5 mL	08/22/19 10:00
9080260-21	P9H0434	4.84 g	5 mL	08/26/19 11:00
9080260-22	P9H0389	5.69 g	5 mL	08/22/19 10:00
9080260-23	P9H0310	5.96 g	5 mL	08/19/19 10:00
9080260-24	P9H0310	4.34 g	5 mL	08/19/19 10:00
9080260-25	P9H0389	4.74 g	5 mL	08/22/19 10:00
9080260-26	P9H0389	4.6 g	5 mL	08/22/19 10:00
9080260-27	P9H0389	3.91 g	5 mL	08/22/19 10:00
9080260-28	P9H0389	4.18 g	5 mL	08/22/19 10:00
9080260-29	P9H0389	4.28 g	5 mL	08/22/19 10:00
9080260-30	P9H0389	4.06 g	5 mL	08/22/19 10:00
9080260-31	P9H0389	4.36 g	5 mL	08/22/19 10:00
9080260-32	P9H0389	5.01 g	5 mL	08/22/19 10:00
9080260-33	P9H0389	5.13 g	5 mL	08/22/19 10:00
9080260-34	P9H0389	3.66 g	5 mL	08/22/19 10:00
9080260-35	P9H0389	3.79 g	5 mL	08/22/19 10:00
9080260-36	P9H0389	6.93 g	5 mL	08/22/19 10:00
9080260-37	P9H0434	4.94 g	5 mL	08/26/19 11:00
9080260-38	P9H0389	5.45 g	5 mL	08/22/19 10:00
9080260-39	P9H0434	5.81 g	5 mL	08/26/19 11:00

449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

EDD Type: PDF Report To/Conta Client Company Na **Email Address:** Phone: 979-5 Reporting Addre Ste 430

	-	
1	16.	2
	-	9
		72
		L
-		
	-	
i i		a
	200	-
		=
~		짱
1	-	-
-	1	_
	-	9
	H.	_)
•	. 40	9
	-	100
i	_	п
		-
5		
	100	
i	BC.	а
	4	9
	4	п
	100	
		=
	45	æ
i	K.A	n
ì	-	1
	-	_1
		=
ŧ	-	4
1	æ	₹
1		4
į.	-	-
i .	E	۳,
3		4
	-	7
	_	ø
í.		ŧ
		-
		2
	-	u
		9
	B	я
		Ц
150		
4		٦
~		ø
-	-	ś
	-	٦
		ø
	-	=
3		н
	6	넌
4	9	=
3	1	۹
		4

LAB USE ONLY

8

*Please ATTACH any project specific reporting (QC LEVEL I II III IV) Short Hold Analysis: Project Name: PAGE QUOTE # TO ENSURE PROPER BILLING: (Yes) (No) MODE Nest En UST Project: 2/10 (Yes) (NO 1457 Received WITHIN HOLDING TIMES? Samples INTACT upon arrival? PROPER PRESERVATIVES indicated? Received ON WET ICE?

Page 57 of 60

3 COPIES	PRESS DOWN FIRMLY - 3 COPIES		2	M. 1 -1 119	1		-	Ol .	Mah	
10	RTEX OUL	>	mutiple		4	VOA	Soil	1020	7 8/13/19	486867-03657 8/13/19 1020
00	•	(<		*	¥	~	0910	EL 8/13/19	5866 \$ 67 EN STONE OF 18 18 8688
80	THE STATE OF THE S	(Cold:	NI Jo	THE S			0480	8/12/19	266867-01-5-5.8 8/13/19
07		<	ypë un					541	8/13/19	5843-04-758 8/13/19
06		7	MIN					1480	8/13/19	5845-03-7-15 8/13/19
20	en e	7				1,8		1400	8/13/19	5B43-02-6:5-7
04		(1340	8/13/19	5843-01-455 8/13/19
03		7					Soil	1130	8/12/19	Se13-03-6.57.0 8/12/19
02		7	nd nd uni	14 24 15 16	17		Soil	1100	61/21/8	\$ 13-02-7-7.5
01	BTEX ONLY	7	printiple		7	VOA	Soil	1030	ME1/8 0	5513-01-75-800 8/12/M
ID NO.	REMARKS	CAN	TIVES	SIZE	NO.	*TYPE	WATER OR SLUDGE)	MILITARY	COLLECTED	SAMPLE DESCRIPTION
PRISM	ANALYSIS REQUESTED	1	PRESERVA-	VINER	SAMPLE CONTAINER	SAMP	MATRIX (SOIL,	TIME	DATE	CLIENT
SONNEL NC X	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NELACDoDFLNC_X_ SCOTHERN/A_ Water Chlorinated: YESNO_X_ Sample Iced Upon Collection: YESNO	5 Days Work Must Be pproved y. and holidays. ices	3 Days □ 4 I 3 Days □ 4 I d 10 days □ 5 d next busines xcluding week xcluding week REGARDING S C. TO CLIENT)	Day 2 Day Str. -9 Days M Str. -9 Days M Str. -00 will be pro on business d. ERMS & CONDI W LABORATORI	der No./E Date 1 0 1 1 1 1 1 1 1 1 1 1 1	Purchase Order No./Billing Reference Requested Due Date 1 Day 2 Days 1 Requested Duys 1 Standar "Working Days" 6-9 Days 1 Standar Samples received after 14:00 will be processe Turnaround time is based on business days, e (SEE REVERSE FOR TERMS & CONDITIONS RENDERED BY PRISM LABORATORIES, IN		Sestinae.	Excel X Other WOOD T Wast Fud cal Address: Mast End	Phone: 479-551-5334 Fax (Yes) (No): Email Address: mwa.ng & glesyleDD Type: PDF X Excel X Other Site Location Name: 11/10/207 11/14/36
°С/Соп: 3.3°С	adi Vit		TE IN I	1 1		Address:	1	Pidge R	1501 Rue Riv	Reporting Address: 15
Pa	CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE?		ments	Requireme	nd/or QC	provisions and/or QC Requirements	any	had Ma	MILLE	Report To/Contact Name:

Additional Comments: Site Arrival Time: Mileage: Field Tech Fee: Site Departure Time PRISM USE ONLY Sampler's Signature

Upon relinquishing, this Chain of Custody's your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.

Sampled By (Print Name)

Affiliation

SEE REVERSE FOR TERMS & CONDITIONS

ONCOSC ONCOSC

ONC OSC GROUNDWATER:

DRINKING WATER:

□ NC

SOLID WASTE:

RCRA:

CERCLA ONC OSC

DNC DSC DNC DSC

108076

Other

CONTAINER TYPE CODES:

A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

□Fed Ex □UPS □ Hand-delivered □ Prism Field Service

Relinquished By: (Signature)

Relinquished By: (Signature)

Relinquished By: (Signature)

Method of Shipment. NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.

Received For Prism Laboratories By:

St-16-19

0915

LABORATORIES, INC.	PRISM
	Full-Service Analytical & Environmental Solutions

449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

Short Hold Analysis: Project Name: _ PAGE 2 OF 4 QU

Site Location Name: NCDOT WEST THE Email Address: Mwang & g EDD Type: PDF X Excel X Other Report To/Contact Name: Client Company Name: 4869-05956 Site Location Physical Address: Phone: 979-551-5334 Fax (Yes) (No): Reporting Address: 5869-07-5.DSS Upon relinquishing, this Chain of Custody is your authorization for Prism to proceed with submitted in writing to the Prism Project Manager. There will be charges for any changes 5869-06-99.5 5869-04-5-50 5869-63-5-55 5869-02-40-45 5869-01-60-65 5866867-06-75-8 □ NC □ SC Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY. SB6167-04-55-60 8/13/19 ☐ Fed Ex ☐ UPS ☐ Hand-delivered ☐ Prism Field Service Sampler's Signature Relinquished By: (Signature) Relinquished By: (Signature) 5.5-F-20-1989985 Relinquished By: (Signature SAMPLE DESCRIPTION Stetio, Kalokh, CLIENT ONC OSC mwang & geosynter wan COLLECTED 8/12/19 8/13/19 121/8 W/cy8 8/12/19 8/13/19 2/12/18 8/12/19 8/12/19 ONC OSC DATE GROUNDWATER: NC. 2/607 NUMBER Plue Piche West Fre TIME COLLECTED MILITARY HOURS 845 24 1400 1220 11/10 83 1300 645 1615 522 10 DRINKING WATER: Other_ WATER OR SLUDGE) Sampled By (Print Name) Soil Soil 7:65 MATRIX (SOIL, 701C Received For Prism Laboratories E Received By: (Signature) Received By: (Signature) Samples received after 1 Turnaround time is based "Working Days" Requested Due Date Purchase Order No./ provisions and/or Qu Address: Invoice To: *Please ATTACH any SEE BELOW 10A VOA TYPE (SEE REVERSE FOR RENDERED BY PRIS SOLID WASTE: SAMPLE CONT Ö

*CONTAINER TYPE CODES:

A = Amber C = Clear G = Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

RCRA:

CERCLA ONC O □ SC

ONC OSC LANDFILL

ONC OSC OTHER:

SEE REVERSE FOR TERMS & CONDITIONS

ORIGINAL

202

G
I
D
7
0
2
_
cn
ď
$\underline{\circ}$
O
\prec
mau.
W
П
n
0
$\tilde{}$
U

N. A.		the analyses as requested above. Any changes must be after analyses have been initialized.	Whall Wang	multiple	•	Man Man Man Man Man Man Man Man Man Man	1000 -000 1000 1000 1000 1000 1000 1000		aR qu uh uh				prubtiple	AINER PRESERVA-	Billing Reference AV7089 1 Day		(Yes) (No) oject specific repoil equirements	OTE # TO ENSURE PROPER BILLING:	F CUSTODY RECORD
Date / A	Date Date	ove. Any changes mu ialized.	Affiliation	×	X	×.	×	×	×	×	×	×	×	ANAI ANAI	4 Days 5 Days 4 Days 5 Days 2 Rush Work Must Be 2 Pre-Approved 1 ness day. 2 sekends and holidays. 3 G SERVICES 1)		UST Project: (Yes) (NO)	ING: 6N 7039	RECORD
091<	Military/Hours Addi	ist be				auri ranti	eni e	ju Tari			UE UE			ANALYSIS REQUESTED	TO BE FILLED IN BY CLIENT/SAMI Certification: NELACDoD SCOTHER Water Chlorinated: YESNO_X Sample Iced Upon Collection: YES	TEMP: Therm ID:		Samples INTACT upon arrival?	
	Additional Comments:		PRESS DOW	BIEXONLY	V		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				WE I		BTEX DNG	REMARKS	IN BY CLIENT/SAM NELAC DoD SC OTHER ated: YES NO > pon Collection: YES		PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE?	upon arrival?	LAB USE ONLY
Field Tech Fee:	Site Arrival Time: Site Departure Time:	PRISM USE ONLY	PRESS DOWN FIRMLY - 3 COPIES	70 V	(9)	81	[]	16	51	14	13	7	11	PRISM LAB ID NO.	TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Certification: NELACDoDFLNC_X_ SCOTHERN/A Water Chlorinated: YESNO_X Sample Iced Upon Collection: YES_X NO	Observed: 3, 2 °C/ Com 3 3 °C	Page 58	YES NO NA	LY

CHAIN OF CUSTODY RECORD

Project Name: PAGE 3 OF 4 QUOTE # TO ENSURE PROPER BILLING: 6W7039 NICHOT West Eng

Samples INTACT upon arrival? Received ON WET ICE? Ě 8 Page 59 of 60

LAB USE ONLY

- 3 COF	PRESS DOWN FIRMLY - 3 COP		Affiliation		Mahael Wang	Mas	Sampled By (Print Name)	Sampled By	M	Blacks	Sampler's Signature
သင	BTEX OVLY	o pas o pas o r lo o r lo o r lo		Multiple Y	W.	7	VOA	7105	8/14/19 1050	1	48102-01-2.53
22	V	i Cu i cin o ista i Se i idu	^	\ \	S THE	. 8	+	<	1130	8/15/19	5889-04-7-7.5
28				×			l e		8/15/19 1030	8/15/1	5889 036.5-7
27	10	364 364 364		\ \ \				10	04606115118		5889-02-5.5-b
23			X		LLES LU TU		H Qu		8/15/19 0900		5889-01-55.S
23	T in	ui ui mm	×	>					4 0930	1/41/8	5878-04-65-7
23			×						1 0900	8/14/19	5878-036-6.5
24		lim Tu	×				8	T	6825	8/14/19	5878 72-55-6
2		Personal Personal	×						1550	8/13/9	4878-01-7-75 8/13/19
رح،	BTEX ONLY		×	Mustale)		2	ACU	Sort	1300	8/13/19	586708-6-65 8/13/19
ID NO	NEMPANIA	///	Drage /	TIVES	SIZE	NO.	*TYPE	WATER OR SLUDGE)	MILITARY	COLLECTED	SAMPLE DESCRIPTION
PRIS	BEWARKS	ANALYSIS REQUESTED	1	PRESERVA-	5 <u>31</u> 1	SAMPLE CONTAINER	SAMPL	MATRIX (SOIL,	TIME	DATE	CLIENT
NC	FL NO NO	TO BE FILLED IN BY CLIENT/SAMP Certification: NELACDoD SCOTHER Water Chlorinated: YESNO_X Sample Iced Upon Collection: YES_	35,bays fork Must Be proved and holidays.	3 Days	sted Due Date 1 Day 2 Days 3 Days 4 sted Due Date 1 Day 2 Days 3 Days 4 Standard 10 days 5 ing Days 6 feer 14:00 will be processed next busine ound time is based on business days, excluding wee see REVERSE FOR TERMS & CONDITIONS REGARDING RENDERED BY PRISM LABORATORIES, INC. TO CLIENT)	er No./Billi Date □ 1 Da Date □ 1-9 C Date	Purchase Order No./Billing Reference Requested Due Date 1 Day 2 Days 1 "Working Days" 6 9 Days 2 Standare Samples received after 14:00 will be processe Turnaround time is based on business days, e (SEE REVERSE FOR TERMS & CONDITIONS RENDERED BY PRISM LABORATORIES, IN	1	geosynthe	Fax (Yes) Turang & Cel X Other WOOT Address:	Phone: 19-5512334Fax (Yes) (No): Email Address: 17-14244 Accept Address: 17-14244 Accept Address: 17-1424 Site Location Physical Address: 14-24 Site Location Physical Address: 14-24
от:3,3	ATIVES indicated? OLDING TIMES? UTACT? JOUT HEADSPACE? ERS used? Observed: 3, 2°C / Corr. 3.	PROPER PRESERVATIVES indicated? Received WITHIN HOLDING TIMES? CUSTODY SEALS INTACT? VOLATILES rec'd W/OUT HEADSPACE? PROPER CONTAINERS used? TEMP: Therm ID: 101 1 Observe	EVEL I II III V	Short Hold Analysis: (Yes) (No) UST Project: (Yes) (No **Please ATTACH any project specific reporting (QC LEVEL I II III No provisions and/or QC Requirements Invoice To: (TICKY WALL) Address:	risis: (Yes) ((No)) any project specific r r QC Requirements	alysis: (CH any prodlor QC Re	Short Hold Analysis: (Yes) (No) *Please ATTACH any project specific provisions and/or QC Requirements Invoice To: Treesymbec Address:	Ped	1. Charlotte, NC 28217 Fax: 704/525-0409 Persyntee Multiple Way Mc, 276047	449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409 Dany Name: Gresynstec Ontact Name: Mking W ddress: 76 Blue Pille ddress: 76 Blue Pille	A49 Springbrook Road Phone 704/529-6364 Slient Company Name: Report To/Contact Name: Reporting Address:

□ NC □ SC □ Fed Ex □ UPS □ Hand-delivered □ Prism Field Service Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY.

SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY. *CONTAINER TYPE CODES: Relinquished By: (Signature) (Signature) ONC OSC ONC OSC GROUNDWATER: A = Amber C = Clear G= Glass P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space) DRINKING WATER: D Other Received For Prism Laboratories By: Received By: (Signature) SOLID WASTE: RCRA: □ NC □ SC ONC OSC CERCLA ONC OSC LANDFILL COC Group No いまっこ ONC OSC OTHER: Additional Comments:

Upon relinquishing, this Cham of Custody is your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.

Site Arrival Time: Field Tech Fee: Site Departure Time **PRISM USE ONLY**

IES

Wileage:

SEE REVERSE FOR TERMS & CONDITIONS

ı	U
1	刀
LABORATORIES, INC.	7
TORIES	
NC.	
	92

/ironmental Solutions -Service Analytical &

Client Company Name: 449 Springbrook Road • Charlotte, NC 28217 Phone 704/529-6364 • Fax: 704/525-0409

Reporting Address: Report To/Contact Name:

Email Address: Phone: Fax (Yes) (No):

Site Location Physical Address: Site Location Name:

EDD Type: PDF_ Excel Other

CHAIN OF CUSTODY RECORD

PAGE 4 OF 4 QUOTE # TO ENSURE PROPER BILLING: 6477039 provisions and/or QC Requirements *Please ATTACH any project specific reporting (QC LEVEL I II III IV) Short Hold Analysis: Project Name: (Yes) (No) NGOT WEST UST Project: (Yes)

Purchase Order No./Billing Reference

Address: Invoice To:

Requested Due Date 1 Day 2 Days 3 Days 4 Days Turnaround time is based on business days, excluding weekends and holidays. Samples received after 14:00 will be processed next business day "Working Days" (SEE REVERSE FOR TERMS & CONDITIONS REGARDING SERVICES ☐ 6-9 Days A Standard 10 days ☐ Rush Work Must Be □ 5 Days

> PROPER PRESERVATIVES indicated? PROPER CONTAINERS used? VOLATILES rec'd W/OUT HEADSPACE? CUSTODY SEALS INTACT? Received WITHIN HOLDING TIMES? Received ON WET ICE? Samples INTACT upon arrival? Œ °C/Corr. S. 3 NO Page 60 of

LAB USE ONLY

Sample Iced Upon Collection: YES XNO Certification: NELAC TO BE FILLED IN BY CLIENT/SAMPLING PERSONNEL Water Chlorinated: YES OTHER DoD_ o 끋 Z

CLIENT CLIENT	DATE	TIME COLLECTED MILITARY	MATRIX (SOIL,	SAMPL	SAMPLE CONTAINER	INER	SAMPLE CONTAINER PRESERVA- TIVES	100	ANALYSIS REQUESTED	VSIS REQUESTED REMARKS	PRISM
SAMPLE DESCRIPTION	COLLECTED	MILITARY HOURS	WATER OR SLUDGE)	*TYPE	NO.	SIZE	TIVES	826	/	REMARKS	ID NO.
58102-02-55-6 8/14/19 1135	8/14/19	1135	2105	Soil 1004 4	4		Mulstole	×		BTEX ONLY	ω –
B62-03-77.5 8/14/9 1300	8/14/19	1300						×		I let	32
102-04-715-8 8/114/A 1350	8/14/19	1330		1 2			91	×		OST I	33
800-05-45-5 B/14/19 1400	8/14/19	1400						×			34
05+1 6/4/8 1-50-90-cold	8/14/19	1450		-1	l el	15	HE L	×		and	35,
365-67-15-8 8/4/19 1535	8/4/19	1535	Tax	eits Tym	Tut	115-1	HATE U, T	×	11.37	707	36
61/41/8 588-80-1018	6/41/8	1605					Maria La Maria Jilla	X		fa 7-	37
5491 61/41/8 6-5/8-60-COVER	8/41/19	1645	<u></u>	\	<	Ki	<u></u>	X			38
305 OCC 1 61/41/8 56-601-2018	61/41/8	1720	2011	10A 4	t		Milhip X	X		BIEX ONLY	22
Sampler's Signature	Mahh	y,	Sampled Bv	(Print Name)	1	chael	Sampled By (Print Name) Michael I Care	Affiliation		PRESS DOWN FIRMLY - 3 COPIES	3 COPIES
The state of the s	1	-	C = =	() -		4 4 4 4	-	, anniagon			

DRINKING WATER: □ NC SOLID WASTE: RCRA: □ NC □ SC O NC CERCLA ONC OSC LANDFILL ONC OSC OTHER:

P = Plastic; TL = Teflon-Lined Cap VOA = Volatile Organics Analysis (Zero Head Space)

Upon relinquishing, this Chain of Custody & your authorization for Prism to proceed with the analyses as requested above. Any changes must be submitted in writing to the Prism Project Manager. There will be charges for any changes after analyses have been initialized.

Received By: (Signature)

Additional Comments:

PRISM USE ONLY

Site Departure Time: Site Arrival Time

Field Tech Fee:

Received By: (Signature)

□ NC □ SC NPDES:

ONC OSC UST:

ONC OSC GROUNDWATER:

ONC OSC

CONTAINER TYPE CODES:

A = Amber C = Clear

G= Glass

□ Fed Ex □ UPS

☐ Hand-delivered ☐ Prism Field Service

Other

Relinquished By: (Signature)

Method of Shipment: NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT

NOTE: ALL SAMPLE COOLERS SHOULD BE TAPED SHUT WITH CUSTODY SEALS FOR TRANSPORTATION TO THE LABORATORY. SAMPLES ARE NOT ACCEPTED AND VERIFIED AGAINST COC UNTIL RECEIVED AT THE LABORATORY.

18-16-1d

COC Group No

107

Relinquished By: (Signature

Relinquished By: (Sign

SEE REVERSE FOR CONDITIONS

ORIGINAL