

PROJECT LENGTH		
ENGTH OF ROADWAY TIP PROJECT BR–0046 ENGTH OF STRUCTURE TIP PROJECT BR–0046	= 0.103 = 0.030	MILE
OTAL LENGTH OF TIP PROJECT BR-0046	= 0.133	MILE

/						
Í	STATE	STATE	PROJECT REFERENCE	NO.	SHEET NO.	TOTAL SHEETS
	N.C.	B	R-0046)		
	STATE	PROJ. NO.	P. A. PROJ. NO.		DESCRIPT	ION
	670	046.1.1			<u>P.</u> E.	
	670	946.2.1		F	R/W &	UTIL
	670	946.3.1			CONS	ST.
				. 0011		
T BR-0046						
+00.00			8			
			JAL			
_						
TO INGOLD					-	
					_	
、						
×*						
The second secon						
	pared in th	he Office of				
			JUAVO			
SIRUCIUR 1000	LS MAN BIRCH	NAGEMEN RIDGE DR.				
<i>F</i>	RALEIGH,	N.C. 27610				
TANDARD SPECIFICATIONS						
		_	KRISTY W.	ALFORE	D <u>, P.E</u> .	_
G DATE :			PROJECT	ENGINEER		
CEMBER 19, 2023			P. KORFY		N, P.E.	
			PROJECT DES	SIGN ENGIN		_

I I	
26-	+00
(-)0.6353%	(-)0.4290%
PI = 26+ EL. 5 VC =	00.00 -L- 7.79' 186'
GRADE	DATA

END BENT 1

DRAWN BY : _		S. T. S	ANDOR		DATE	:	7/27/22
CHECKED BY :		D. SHAC	DATE	:	2/7/23		
DESIGN ENGI	NEER OF	RECORD: _	P.D. BRYANT		DATE	:	9/5/23
						-	

+

+

10/9/2023 R:\Structures\Plans\401_003_BR-0046_SMU_FL_S-2_810022.dgn pknewton BENT 1

BENT 2

FOUNDATION LAYOUT

DIMENSIONS LOCATING PILES ARE SHOWN TO THE PILE CENTERLINE.

NOTES

FOR PILES, SEE PILES PROVISION AND SECTION 450 OF STANDARD SPECIFICATIONS.

IT HAS BEEN ESTIMATED THAT A HAMMER WITH AN EQUIVALENT RATED ENERGY IN THE RANGE OF 43,000 - 60,000 FT-LBS. PER BLOW WILL BE REQUIRED TO DRIVE PILES AT BENT 1 AND BENT 2. THIS ESTMATED ENERGY RANGE DOES NOT RELEASE THE CONTRACTOR FROM PROVIDING DRIVING EQUIPEMENT IN ACCORDANCE WITH SUBARTICLE 450-3(D)(2) OF THE STANDARD SPECIFICATIONS.

END BENT 2

	PROJEC	CT NO. SAMP ON:	BR SON 24+30	-0046 CO .00 -	UNTY L-					
NOTESSION AND SEAL 26445	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATIO RALEIGH GENERAL DRAWING									
DocuSigned by: P. Korey, Newton 4FFE39D1431B407	FOR GREAT BET	BRIDG F COHAF WEEN S	E ON U RIE CRE R 1259	S 701 (EEK OVE & SR 1	OVER RFLOW L157					
10/09/2023		REVIS		DATE	SHEET NO. S-2					
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED	1 2	DATE:	ко. вт: З Д		TOTAL SHEETS 31					

SUMMARY OF PILE INFORMATION/INSTALLATION

(Blank entries indicate item is not applicable to structure)

End Bont/		Dile Cut Off	Pile Cut-Off				Driven Piles			Predrilling for Piles*		Ľ	Drilled-In Piles	
Bent No, Pile(s) #-# (e.g., "Bent 1, Piles 1-5")	Factored Resistance per Pile TONS	Pile Cut-Off (Top of Pile) Elevation FT	Estimated Pile Length per Pile FT	Scour Critical Elevation FT	Min Pile Tip (Tip No Higher Than) Elev FT	Required Driving Resistance (RDR)** per Pile TONS	Total Pile Redrives Quantity EACH	Predrilling Length per Pile Lin FT	Predrilling Elevation (Elev Not To Predrill Below) FT	Maximum Predrilling Dia INCHES	Pile Excavation (Bottom of Hole) Elev FT	Pile Exc Not In Soil per Pile Lin FT	Pile Exc In Soil per Pile Lin FT	
End Bent 1 (Piles 1-6)	100	52.19	60			170								
Bent 1 (Piles 1-6)	145	52.18	55	29	11	200	10							
Bent 2 (Piles 1-6)	145	52.09	55	29	11	200	12							
End Bent 2 (Piles 1-6)	100	51.96	55			170								

*Predrilling for Piles is required for end bents/bents with a predrilling length and at the Contractor's option for end bents/bents with predrilling information but no predrilling length. *Predrilling for Piles is required for end bents/bents with a predrilling length and at the contractor of provide the second action of provide the second action

Pile

Pi	le Driving Analyz	Pile Order Lengths					
End Bent/ Bent No	End Bent/ Bent No PDA Testing Required? YES or MAYBE PDA Test Pile Length FT		Total PDA Testing Quantity EACH	End Bent/ Bent No(s)	Pile Order Length Basis* EST or PDA		
End Bent 1 (Piles 1-6)	MAYBE	65					
Bent 1 (Piles 1-6)	YES	60	2				
Bent 2 (Piles 1-6)	YES	60	3				
End Bont 2 (Pilos 1-6)	MAVE	60					

 End Bent 2 (Piles 1-6)
 MAYBE
 DU

 *EST = Pile order lengths from estimated pile lengths; PDA = Pile order lengths based on PDA testing. For groups of end bents/bents with pile order lengths based on PDA testing, the first end bent/bent no. listed for each group is the representative end bent/bent with the PDA.
 t 2 (Piles 1-6)

PILE DESIGN INFORMATION

(Blank entries indicate item is not applicable to structure)

End Bent/ Bent No, Pile(s) #-# (e.g., "Bent 1, Piles 1-5")	Factored Axial Load per Pile TONS	Factored Downdrag Load per Pile TONS	Factored Dead Load* per Pile TONS	Dynamic Resistance Factor	Nominal Downdrag Resistance per Pile TONS	Nominal Scour Resistance per Pile TONS	Scour Resistance Factor (Default = 1.00)
End Bent 1 (Piles 1-6)	100			0.60			1.00
Bent 1 (Piles 1-6)	142.9			0.75		5	1.00
Bent 2 (Piles 1-6)	143.0			0.75		5	1.00
End Bent 2 (Piles 1-6)	100			0.60			1.00

*Factored Dead Load is factored weight of pile above the ground line.

NOTES:

1. The Pile Foundation Tables are based on the bridge substructure design and foundation recommendations sealed by a North Carolina Professional Engineer (Thein Tun Zan, PE Seal #030943) on 12-02-2021.

2. Total Pile Driving Equipment Setup quantity (not shown in Pile Foundation Tables) equals the number of driven piles, i.e., the number of piles with a Required Driving Resistance.

3. The Engineer will determine the need for PDA Testing and Pipe Pile Plates when PDAs or plates may be required.

10/09/202

SUMMARY OF PDA/PILE ORDER LENGTHS

(Blank entries indicate item is not applicable to structure)

	PRC		NO SAM	PSC	BF DN 24+30	R-0046	
23 P. Korey Newton		C	FO			rolina NSPORTA TION	ΓΙΟΝ
SAUNAE 302D1431B407ATE			REVI	SIONS	3		SHEET NO. S-3
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED	NO. 1 2	BY:	DATE:	NO. 3 4	BY:	DATE:	TOTAL SHEETS 31

	TOTAL BILL OF MATERIAL																						
	CONSTRUCTION, MAINTENANCE & REMOVAL OF TEMPORARY STRUCTURE	REMOVAL OF EXISTING STRUCTURE	ASBESTOS ASSESSMENT	PDA TESTING	UNCLASSIFIED STRUCTURE EXCAVATION	REINFORCED CONCRETE DECK SLAB	GROOVING BRIDGE FLOORS	CLASS A CONCRETE	BRIDGE APPROACH SLABS	REINFORCING STEEL	PRES COI GI	36" STRESSED NCRETE RDERS	PILE DRIVING EQUIPMENT SETUP FOR HP 12X53 STEEL PILES	PILE DRIVING EQUIPMENT SETUP FOR PP 18X0.50 GALVANIZED STEEL PILES	HP STEI	12X53 EL PILES	PP : GAL STE	18X0.50 VANIZED EL PILES	PILE REDRIVES	CONCRETE BARRIER RAIL	RIP RAP CLASS II (2'-0" THICK)	GEOTEXTILE FOR DRAINAGE	ELASTOMERIC BEARINGS
	LUMP SUM	LUMP SUM	LUMP SUM	EACH	LUMP SUM	SQ. FT.	SQ. FT.	CU. YDS.	LUMP SUM	LBS.	NO.	LIN. FT.	EACH	EACH	NO.	LIN. FT.	NO.	LIN. FT.	EACH	LIN. FT.	TONS	SQ. YDS.	LUMP SUM
SUPERSTRUCTURE						6996	7708				15	787.08								316.67			
END BENT 1								26.7		3875			6		6	360					265	295	
BENT 1								14.5		2569				6			6	330					
BENT 2								14.5		2569				6			6	330					
END BENT 2								26.7		3875			6		6	330					260	290	
TOTAL	LUMP SUM	LUMP SUM	LUMP SUM	3	LUMP SUM	6996	7708	82.4	LUMP SUM	12,888	15	787.08	12	12	12	690	12	660	12	316.67	525	585	LUMP SUM

NOTES

+

+

ASSUMED LIVE LOAD = HL-93 OR ALTERNATE LOADING.

THIS BRIDGE HAS BEEN DESIGNED IN ACCORDANCE WITH THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS.

THIS BRIDGE IS LOCATED IN SEISMIC ZONE 1.

FOR OTHER DESIGN DATA AND GENERAL NOTES, SEE SHEET SN.

FOR SUBMITTAL OF WORKING DRAWINGS, SEE SPECIAL PROVISIONS.

FOR FALSEWORK AND FORMWORK, SEE SPECIAL PROVISIONS.

FOR CRANE SAFETY, SEE SPECIAL PROVISIONS.

FOR GROUT FOR STRUCTURES, SEE SPECIAL PROVISIONS.

PRESTRESSED CONCRETE DECK PANELS MAY BE USED IN LIEU OF METAL STAY-IN-PLACE FORMS IN ACCORDANCE WITH ARTICLE 420-3 OF THE STANDARD SPECIFICATIONS.

REMOVABLE FORMS MAY BE USED IN LIEU OF METAL STAY-IN-PLACE FORMS IN ACCORDANCE WITH ARTICLE 420-3 OF THE STANDARD SPECIFICATIONS.

NEEDLE BEAMS WILL NOT BE ALLOWED UNLESS OTHERWISE CALLED FOR ON THE PLANS OR APPROVED BY THE ENGINEER.

INASMUCH AS THE PAINT SYSTEM ON THE EXISTING STRUCTURAL STEEL CONTAINS LEAD, THE CONTRACTOR'S ATTENTION IS DIRECTED TO ARTICLE 107-1 OF THE STANDARD SPECIFICATIONS. ANY COSTS RESULTING FROM COMPLIANCE WITH APPLICABLE STATE OR FEDERAL **REGULATIONS PERTAINING TO HANDLING OF MATERIALS CONTAINING** LEAD BASED PAINT SHALL BE INCLUDED IN THE BID PRICE FOR "REMOVAL OF EXISTING STRUCTURE AT STATION 24 + 30.00 -L-".

THE MATERIAL SHOWN IN THE CROSS-HATCHED AREA ON SHEET S-1 SHALL BE EXCAVATED FOR A DISTANCE OF 50'-0" EACH SIDE OF CENTERLINE ROADWAY AS DIRECTED BY THE ENGINEER. THIS WORK WILL BE PAID FOR AT THE CONTRACT LUMP SUM PRICE FOR UNCLASSIFIED STRUCTURE EXCAVATION. SEE SECTION 412 OF THE STANDARD SPECIFICATIONS.

THE CONTRACTOR WILL BE REQUIRED TO CONSTRUCT, MAINTAIN AND AFTERWARDS REMOVE A TEMPORARY STRUCTURE AT STATION 24 + 30.00 -L- FOR USE DURING CONSTRUCTION OF THE PROPOSED STRUCTURE. FOR CONSTRUCTION, MAINTENANCE AND REMOVAL OF TEMPORARY STRUCTURE, SEE SPECIAL PROVISIONS.

THE BRIDGE RAILS ON THE TEMPORARY STRUCTURE SHALL BE DESIGNED FOR THE AASHTO LRFD TEST LEVEL 3 (TL-3) CRASH TEST CRITERIA. FOR CONSTRUCTION, MAINTENANCE AND REMOVAL OF TEMPORARY STRUCTURE, SEE SPECIAL PROVISIONS.

THE EXISTING STRUCTURE CONSISTING OF 6 SPANS: 1 @ 20'-3", 4 @ 20'-0" AND 1 @ 20'-3", WITH A CLEAR ROADWAY WIDTH OF 28'-1" AND REINFORCED CONCRETE DECK ON W 16X40 STEEL BEAMS ON END BENTS AND BENTS CONSISTING OF REINFORCED CONCRETE CAPS ON TIMBER PILES AND STEEL CRUTCH BENTS SHALL BE REMOVED. THE EXISTING BRIDGE IS PRESENTLY NOT POSTED FOR LOAD LIMIT. SHOULD THE STRUCTURAL INTEGRITY OF THE BRIDGE DETERIORATE DURING CONSTRUCTION OF THE PROPOSED BRIDGE, A LOAD LIMIT MAY BE POSTED AND MAY BE REDUCED AS FOUND NECESSARY DURING THE LIFE OF THE PROJECT.

THE SUBSTRUCTURE OF THE EXISTING BRIDGE INDICATED ON THE PLANS IS FROM THE BEST INFORMATION AVAILABLE. SINCE THIS INFORMATION IS SHOWN FOR THE CONVENIENCE OF THE CONTRACTOR, THE CONTRACTOR SHALL HAVE NO CLAIM WHATSOEVER AGAINST THE DEPARTMENT OF TRANSPORTATION FOR ANY DELAYS OR ADDITIONAL COST INCURRED BASED ON DIFFERENCES BETWEEN THE EXISTING BRIDGE SUBSTRUCTURE SHOWN ON THE PLANS AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

REMOVAL OF THE EXISTING BRIDGE SHALL BE PERFORMED IN A MANNER THAT PREVENTS DEBRIS FROM FALLING INTO THE WATER THE CONTRACTOR SHALL SUBMIT DEMOLITION PLANS FOR REVIEW AND REMOVE THE BRIDGE IN ACCORDANCE WITH ARTICLE 402-2 OF THE STANDARD SPECIFICATIONS.

THIS STRUCTURE HAS BEEN DESIGNED IN ACCORDANCE WITH "HEC 18-EVALUATING SCOUR AT BRIDGES."

FOR INTERIOR BENTS, ONLY PARTIAL GALVANIZING OF THE PILES IS REQUIRED. SEE INTERIOR BENT SHEETS FOR REQUIRED GALVANIZED LENGTHS. PAYMENT FOR PARTIALLY GALVANIZED PILES WILL BE MADE UNDER THE CONTRACT UNIT PRICE FOR GALVANIZED STEEL PILES.

FOR EROSION CONTROL MEASURES, SEE EROSION CONTROL PLANS.

FOR ASBESTOS ASSESSMENT FOR BRIDGE DEMOLITION AND **RENOVATION ACTIVITIES, SEE SPECIAL PROVISIONS.**

DRAWN BY	М.К. В	EARD	DATE .	6/22/21		
CHECKED BY :	D. SHAC	D. SHACKELFORD				
DESIGN ENGINEE	R OF RECORD:	P.D. BRYANT	DATE :	9/5/23		

HYDRAULIC DATA

DESIGN DISCHARGE	= 10,720 CFS
FREQUENCY OF DESIGN FLOOD	= 50 YRS.
DESIGN HIGH WATER ELEVATION	= 55.5 FT.
DRAINAGE AREA	= 363 SQ.MI.
BASE DISCHARGE (Q100)	= 13,170 CFS.
BASE HIGH WATER ELEVATION	= 56.4 FT.

OVERTOPPING FLOOD DATA

OVERTOPPING DISCHARGE = 16,000 CFS. FREQUENCY OF OVERTOPPING FLOOD = < 500 YRS. = 56.8 FT. * OVERTOPPING FLOOD ELEVATION * LOCATION OF OVERTOPPING IS APPROXIMATELY STATION 15+00.00 -L-

	PROJECT STATIO	NO 5 AMPSOI N:24· 4	BR- N +30.0	-004(CO 00 -	6 UNTY L-
SEAL 26445 DocuSigned by: P. Korcy Newton	DEPAR G FOR GREAT BETW	STATE OF N TMENT OF RATE SRIDGE O COHARIE EEN SR 1	IORTH CAROLIN TRANS ALEIGH DN US CREEI L259 &	PORTAT WING 701 0 K OVER SR 1	VER RFLOW 157
4FFE39D1431B407 10/09/2023		REVISIONS	5		SHEET NO.
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED	NO. BY: 1 2	DATE: NO. 3 4	BY:	DATE:	5-4 total sheets 31

								STRENGTH I LIMIT STATE							SERVI	CE III	LIMIT	STATE	Ē				
										MOMENT					SHEAR				MOMENT				
LEVEL		VEHICLE	WEIGHT (W) (TONS)	CONTROLLING	MINIMUM RATING FACTORS (RF)	TONS = W X RF	LIVELOAD FACTORS (Y _{LL})	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)	LIVELOAD FACTORS (_Y LL)	DISTRIBUTION FACTORS (DF)	RATING FACTOR	SPAN	GIRDER LOCATION	DISTANCE FROM LEFT END OF SPAN (ft)
		HL93(Inv)	N/A		1.052		1.75	0.776	1.27	A	I	19.02	0.901	1.05	А	I	36.21	0.8	0.740	1.11	В	I	29.17
DESIGN LOAD	J	HL93(Opr)	N/A		1.364		1.35	0.776	1.65	А	I	19.02	0.901	1.36	А	I	36.21	N/A					
RATING	i –	HS20(Inv)	36.00	2	1.235	44.461	1.75	0.776	1.56	A	I	19.02	0.901	1.24	A	I	36.21	0.8	0.740	1.40	В	I	29.17
		HS20(Opr)	36.00		1.601	57.635	1.35	0.776	2.03	А	I	19.02	0.901	1.60	A	I	36.21	N/A					
		SNSH	13.50		2.860	38.607	1.4	0.776	4.01	A	I	19.02	0.901	3.29	A	I	36.21	0.8	0.776	2.86	A	I	23.77
		SNGARBS2	20.00		2.260	45.204	1.4	0.776	3.09	A	I	19.02	0.901	2.45	A	I	36.21	0.8	0.776	2.26	A	I	21.39
		SNAGRIS2	22.00		2.186	48.096	1.4	0.776	2.97	А	I	19.02	0.901	2.32	A	I	36.21	0.8	0.776	2.19	A	I	21.39
		SNCOTTS3	27.25		1.427	38.884	1.4	0.776	2.03	А	I	19.02	0.901	1.65	А	I	36.21	0.8	0.776	1.43	А	I	23.77
	S	SNAGGRS4	34.93		1.245	43.497	1.4	0.776	1.75	А	I	19.02	0.901	1.45	A	I	36.21	0.8	0.776	1.25	A	I	23.77
		SNS5A	35.55		1.214	43.164	1.4	0.776	1.74	А	I	19.02	0.901	1.52	A	I	36.21	0.8	0.776	1.21	A	I	23.77
		SNS6A	39.95		1.138	45.443	1.4	0.776	1.61	А	I	19.02	0.901	1.42	А	I	36.21	0.8	0.776	1.14	А	I	23.77
		SNS7B	42.00		1.084	45.534	1.4	0.776	1.54	А	I	19.02	0.901	1.45	А	I	36.21	0.8	0.776	1.08	А	I	23.77
RATING		TNAGRIT3	33.00		1.394	46.010	1.4	0.776	2.03	А	I	19.02	0.901	1.66	А	I	36.21	0.8	0.776	1.39	А	I	23.77
		TNT4A	33.08		1.407	46.538	1.4	0.776	1.96	А	I	19.02	0.901	1.58	А	I	36.21	0.8	0.776	1.41	А	I	23.77
		TNT6A	41.60		1.171	48.708	1.4	0.776	1.66	А	I	19.02	0.901	1.57	А	I	36.21	0.8	0.740	1.17	В	I	29.17
	ST	TNT7A	42.00		1.182	49.658	1.4	0.776	1.68	А	I	19.02	0.901	1.45	А	I	36.21	0.8	0.740	1.18	В	I	29.17
		TNT7B	42.00		1.235	51.864	1.4	0.776	1.70	А	I	19.02	0.901	1.38	А	I	36.21	0.8	0.740	1.23	В	Ι	29.17
		TNAGRIT4	43.00		1.167	50.160	1.4	0.776	1.62	А	I	19.02	0.901	1.32	А	I	36.21	0.8	0.740	1.17	В	I	29.17
	[TNAGT5A	45.00		1.095	49.276	1.4	0.776	1.56	А	Ι	19.02	0.901	1.37	А	Ι	36.21	0.8	0.740	1.10	В	Ι	29.17
		TNAGT5B	45.00	$\langle 3 \rangle$	1.078	48.488	1.4	0.776	1.51	А	Ι	19.02	0.901	1.25	А	Ι	36.21	0.8	0.740	1.08	В	Ι	29.17
EV LOA	D C	EV2	28.75		1.611	46.308	1.3	0.776	2.36	А	I	19.02	0.901	1.87	А	I	36.21	0.8	0.776	1.61	А	I	21.39
KAHNG		EV3	43.00	$ \langle 4 \rangle$	1.048	45.066	1.3	0.776	1.59	A	I	19.02	0.901	1.27	А	I	36.21	0.8	0.776	1.05	A	I	23.77

DESIGN ENGINEER OF RECOR	D :
P. D. BI	RYANT DATE : 8/2/23
ASSEMBLED BY : P. K. NEW CHECKED BY : P. D. BRYANT	ON DATE: 8/2/23 DATE: 8/2/23
DRAWN BY : MAA 1/08 CHECKED BY : GM/DI 2/08	REV. 11/12/08RR MAA / GM REV. 10/1/11 MAA / GM REV. 12/17 MAA / THC

+

LOAD FACTORS:

DESIGN LOAD RATING	LIMIT STATE	γ_{DC}	$\gamma_{\sf DW}$
	STRENGTH I	1.25	1.50
FACTORS	SERVICE III	1.00	1.00

NOTES:

NUMBER

ЧЕNT

8

MINIMUM RATING FACTORS ARE BASED ON THE STRENGTH I AND SERVICE III LIMIT STATES.

ALLOWABLE STRESSES FOR SERVICE III LIMIT STATE ARE AS REQUIRED FOR DESIGN.

COMMENTS:

GIRDER LOCATION

- I INTERIOR GIRDER
- EL EXTERIOR LEFT GIRDER
- ER EXTERIOR RIGHT GIRDER

STD.NO.LRFR1

+

	PROJEC	T NO. SAMPS DN:2	BI 50N 24+30	R-004 CO .00 -	6 UNTY L-
QROFESSION SEAL	DEPA	STATE RTMENT SUPE	OF NORTH CAR OF TRAI RALEIGH	NSPORTA	TION
26445 NCNEEP OPEY NEWTON DocuSigned by: P. Korey Newton		ΓΥΡΙር	AL SE		N
10/09/2023		REVIS	IONS		SHEET NO.
CUMENT NOT CONSIDERED	NO. BY:	DATE:	NO. BY:	DATE:	S-6
FINAL UNLESS ALL IGNATURES COMPLETED	1		<u>3</u> 4		SHEETS 31

+

* * THE TOP OF THE GIRDER IN THE REGION OF THE LINK SLAB SHALL BE SMOOTH AND FREE OF STIRRUPS, DECK FORMWORK AND OVERHANG FALSEWORK ATTACHMENTS.

+

TOTAL BRIDGE LENGTH = 160'-0" (FILL FACE TO FILL FACE)

DRAWN BY :		_ DATE :	1/25/23		
CHECKED BY :		D. R. SH	ACKELFORD	DATE :	2/7/23
DESIGN ENGINE	ER OF	RECORD:	P. D. BRYANT	DATE :	6/21/23

+

10/9/2023 R:\Structures\Plans\401_017_BR-0046_SMU_PS_S-9_810022.dgn pknewton

DRAWN BY :	M. K. E	BEARD	DATE :	2/15/23
CHECKED BY :	D. R. SHA	CKELFORD	DATE :	2/16/23
DESIGN ENGINEER	OF RECORD:	P. D. BRYANT	DATE :	9/6/23

+

DRAWN BY :		P. D.	BRYANT	DATE	:	12/22/22
CHECKED BY :		P. K.	NEWTON	DATE	:	12/28/22
DESIGN ENGINEEF	OF	RECORD:	P. D. BRYANT	DATE	:	6/20/23

+

+

10/9/2023 R:\Structures\Plans\401_025_BR-0046_SMU_Girder_S-12_810022.dgn pknewton

48'-10¹⁄2" 24'-5¹⁄4" 1'-2¹⁄4" 5 SPA. @ 1'-10" CTS. 8 SPA. @ 10" CTS. 10 SPA. @ 8" CTS. 5'-4" GIRDER

10/9/2023 R:\Structures\Plans\401_027_BR-0046_SMU_Girder_S-13_810022.dgn pknewton

+

+

STD. NO. PCG4 (SHT. 1)

DEAD LOAD DEFLECTION TABLE FOR GIRDERS																					
	SPANS A & C																				
0.0 Ø LUW KELAAATIUN									EXTE	RIOR	GIRD	ERS 🛛	1 & 5								
TWENTIETH POINTS	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	0
CAMBER (GIRDER ALONE IN PLACE)	0	0.012	0.024	0.034	0.044	0.053	0.061	0.067	0.071	0.074	0.075	0.074	0.071	0.067	0.061	0.053	0.044	0.034	0.024	0.012	0
* DEFLECTION DUE TO SUPERIMPOSED D. L.	0	0.007	0.014	0.020	0.026	0.031	0.035	0.039	0.042	0.043	0.044	0.043	0.042	0.039	0.035	0.031	0.026	0.0220	0.014	0.007	0
FINAL CAMBER	0	¹ ⁄16"	1⁄8"	³ ⁄16"	1⁄4"	1⁄4"	⁵ ⁄16"	⁵ ⁄16"	3⁄8"	3⁄8"	3⁄8"	3⁄8"	3⁄8"	⁵ ⁄16"	⁵ ⁄16"	1⁄4"	1⁄4"	³ ⁄ ₁₆ "	1⁄8"	¹ ⁄16"	0
										SPA	NS A	& C									
0.0 Ø LUW KELAAATIUN								IN	ITERI	OR GI	IRDER	S2,	3, &	4							
TWENTIETH POINTS	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	0
CAMBER (GIRDER ALONE IN PLACE)	0	0.012	0.024	0.034	0.044	0.053	0.061	0.067	0.071	0.074	0.075	0.074	0.071	0.067	0.061	0.053	0.044	0.034	0.024	0.012	0
* DEFLECTION DUE TO SUPERIMPOSED D. L.	0	0.008	0.016	0.023	0.030	0.036	0.041	0.045	0.048	0.049	0.050	0.049	0.048	0.045	0.041	0.036	0.030	0.023	0.016	800.0	0
FINAL CAMBER	0	¹ ⁄ ₁₆ "	1⁄8"	1⁄8"	3/16"	3⁄16"	1⁄4"	1⁄4"	⁵ ⁄16"	⁵ ⁄16"	⁵ ⁄16"	⁵ ⁄ ₁₆ "	⁵ ⁄ ₁₆ "	1⁄4"	1⁄4"	³ ⁄ ₁₆ "	³ ⁄ ₁₆ "	1⁄8"	1⁄8"	¹ ⁄ ₁₆ "	0

* INCLUDES FUTURE WEARING SURFACE ALL VALUES ARE SHOWN IN FEET (DECIMAL FORM), EXCEPT "FINAL CAMBER", WHICH IS GIVEN IN INCHES (FRACTION FORM)

DEAD LOAD DEFLECTION TABLE FOR GIRDERS																					
	SPAN B																				
0.0 Ø LUW RELAXATION		EXTERIOR GIRDERS 1 & 5																			
TWENTIETH POINTS	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	0
CAMBER (GIRDER ALONE IN PLACE)	0	0.018	0.036	0.052	0.068	0.081	0.093	0.102	0.108	0.113	0.114	0.113	0.108	0.102	0.093	0.081	0.068	0.052	0.036	0.018	0
* DEFLECTION DUE TO SUPERIMPOSED D. L.	0	0.014	0.028	0.041	0.053	0.064	0.073	0.080	0.086	0.089	0.090	0.089	0.086	0.080	0.073	0.064	0.053	0.041	0.028	0.014	0
FINAL CAMBER	0	¹ ⁄16"	¹ ⁄16"	¹ ⁄8"	³ ⁄16"	³ ⁄16"	¹ ⁄4"	¹ ⁄4"	⁵ ⁄16"	⁵ ⁄16"	⁵ ⁄16"	⁵ ⁄16"	⁵ ⁄16"	1⁄4"	1⁄4"	³ ⁄16"	³ ⁄16"	¹ ⁄8"	¹ ⁄ ₁₆ "	¹ ⁄16"	0
									_	S	PAN	В						_			
0.0 Ø LUW KELAAATION								IN	TERI	OR GI	RDER	S 2,	3, &	4							
TWENTIETH POINTS	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	0
CAMBER (GIRDER ALONE IN PLACE)	0	0.018	0.036	0.052	0.068	0.081	0.093	0.102	0.108	0.113	0.114	0.113	0.108	0.102	0.093	0.081	0.068	0.052	0.036	0.018	0
* DEFLECTION DUE TO SUPERIMPOSED D. L.	0	0.016	0.032	0.047	0.061	0.073	0.084	0.092	0.098	0.102	0.103	0.102	0.098	0.092	0.084	0.073	0.061	0.047	0.032	0.016	0
FINAL CAMBER	0	¹ ⁄ ₁₆ "	1/811	1⁄8"	³ ⁄ ₁₆ "	³ ⁄ ₁₆ "	1⁄4"	1⁄4"	⁵ ⁄ ₁₆ "	⁵ ⁄16"	⁵ ⁄16"	⁵ ⁄16"	⁵ ⁄16"	1⁄4"	1⁄4"	³ ⁄ ₁₆ "	³ ⁄ ₁₆ "	1⁄8"	1/8 m	1⁄16"	0

* INCLUDES FUTURE WEARING SURFACE

+

ALL VALUES ARE SHOWN IN FEET (DECIMAL FORM), EXCEPT "FINAL CAMBER", WHICH IS GIVEN IN INCHES (FRACTION FORM)

DESIGN ENGINEER OF RECORD	:		
P. D. BRYA	NT	DATE :	8/28/23
ASSEMBLED BY : P. K. NEWTO CHECKED BY : P. D. BRYANT	N	DATE : DATE :	2/7/23 8/28/23
DRAWN BY: ELR 11/91 CHECKED BY: GRP 11/91	REV. REV. REV.	1/15 2/15 12/17	MAA / TMG MAA / TMG MAA / THC

(2 REQ'D. PER GIRDER)

(SEE NOTES)

ALL REINFORCING STEEL SHALL BE GRADE 60.

ELEVATION VIEW.

EMBEDDED PLATE "B-1" SHALL BE GALVANIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

ANCHOR STUDS SHALL CONFORM TO AASHTO M169 GRADES 1010 THROUGH 1020 OR APPROVED EQUAL, AND SHALL MEET THE TYPE "B" REQUIREMENTS OF SUBSECTION 7.3 OF THE ANSI/AASHTO/AWS D1.5 BRIDGE WELDING CODE.

AT ENDS OF GIRDERS TO BE EMBEDDED IN CONCRETE DIAPHRAGMS OR END WALLS, PRESTRESSING STRANDS MAY EXTEND A MAXIMUM OF 2" BEYOND THE GIRDER ENDS. OTHERWISE, PRESTRESSING STRANDS SHALL BE CUT FLUSH WITH THE GIRDER ENDS.

DEPENDING ON THE TYPE OF SYSTEM USED TO SUPPORT THE DECK SLAB FORMS, PRESET ANCHORS MAY BE NECESSARY IN THE PRESTRESSED CONCRETE GIRDER.

NOTES

ALL PRESTRESSING STRANDS SHALL BE 7-WIRE LOW-RELAXATION GRADE 270 STRANDS AND SHALL CONFORM TO AASHTO M203 EXCEPT FOR SAMPLING REQUIREMENTS WHICH SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

APPLY EPOXY PROTECTIVE COATING TO END OF GIRDER SURFACES INDICATED IN

THE TRANSFER OF LOAD FROM THE ANCHORAGES TO THE GIRDER SHALL BE DONE WHEN CONCRETE HAS REACHED A COMPRESSIVE STRENGTH OF NOT LESS THAN 4,600 PSI FOR SPANS A & C AND NOT LESS THAN 6,400 PSI FOR SPAN B.

THE TOP SURFACE OF THE GIRDER, EXCLUDING THE OUTSIDE 4" AND THE LINK SLAB REGION, SHALL BE RAKED TO A DEPTH OF 1/4".

	PROJE STAT	ECT NO SAMP ION:) SON 24+3	BR- 80.0	004 CO 00 -	6 UNTY L-
SEAL 26445 SEAL 26445 DocuSigned by: P. Korey, Newton 4FFE39D1431B407	DEPAI PRE GIRI L	STRES STRES DER C IVE L	TE OF NORT OF TF RALEIG STAND SSEC ONT OAD	ARD	ORTAT	ION ETE FOR S
10/09/2023		REVIS	SIONS			SHEET NO.
CUMENT NOT CONSIDERED	NO. BY:	DATE:	NO. BY	:	DATE:	S-14
FINAL UNLESS ALL SIGNATURES COMPLETED	1		জ ব্রু			SHEETS 31

- FOR BOLT CONNECTION, SEE TYPICAL BOLT WITH DTI ASSEMBLY DETAIL

CONNECTOR PLATE DETAILS

PLATE DETAILS

STRUCTURAL STEEL NOTES

ALL INTERMEDIATE DIAPHRAGM STEEL AND CONNECTOR PLATES SHALL BE AASHTO M270 GRADE 50 OR APPROVED EQUAL.

TENSION ON THE ASTM A325 BOLTS THROUGH THE CHANNEL MEMBER SHALL BE CALIBRATED USING DIRECT TENSION INDICATOR WASHERS IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

TENSION ON THE ASTM A449 BOLTS THROUGH THE GIRDER WEB SHALL BE SNUG TIGHTENED FOLLOWED BY AN ADDITIONAL ¹/₄ TURN.

THE PLATES, BENT PLATES, CHANNELS, AND ANGLES SHALL BE GALVANIZED OR METALLIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS. FOR THERMAL SPRAYED COATINGS (METALLIZATION). SEE SPECIAL PROVISIONS.

FOR METALLIZATION, APPLY A THERMAL SPRAYED COATING WITH A SEAL COAT TO ALL STEEL DIAPHRAGM SURFACES IN ACCORDANCE WITH THE DEPARTMENTS THERMAL SPRAYED COATINGS (METALLIZATION) PROGRAM, THERMAL SPRAYED COATINGS SPECIAL PROVISION AND SECTION 442 OF THE STANDARD SPECIFICATIONS.

GALVANIZE THE HIGH STRENGTH BOLTS, NUTS, WASHERS AND DIRECT TENSION INDICATORS IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

USE AN ASTM F436 HARDENED WASHER WITH STANDARD AND SLOTTED HOLES UNDER EACH BOLT HEAD AND NUT.

FOR BOLTS THROUGH THE GIRDER WEB, PROVIDE SUFFICIENT LENGTH OF THREADS ON ALL BOLTS TO ACCOMMODATE WASHERS AND THE THICKNESS OF CONNECTING MEMBER PLUS AT LEAST 1/4" PROJECTION BEYOND THE NUT.

INTERMEDIATE DIAPHRAGM ASSEMBLY SHALL COMPLY WITH SECTION 1072 OF THE STANDARD SPECIFICATIONS.

SUBMIT TWO SETS OF WORKING DRAWINGS FOR THE INTERMEDIATE DIAPHRAGM ASSEMBLY FOR REVIEW, COMMENTS AND ACCEPTANCE. AFTER REVIEW, COMMENTS, AND ACCEPTANCE, SUBMIT SEVEN SETS FOR DISTRIBUTION.

IN THE EXTERIOR BAYS, PLACE TEMPORARY STRUTS BETWEEN PRESTRESSED GIRDERS ADJACENT TO THE STEEL DIAPHRAGMS. STRUTS SHALL REMAIN IN PLACE 3 DAYS AFTER CONCRETE IS PLACED.

THE COST OF THE STEEL DIAPHRAGMS AND ASSEMBLIES SHALL BE INCLUDED IN THE UNIT PRICE BID FOR PRESTRESSED CONCRETE GIRDERS.

GIRDER TYPE	CHANNEL SIZE	DIM. "A"	DIM. "B"	DIM. "L"
II	MC 12 × 31	1'-2 ¹ ⁄2"	10"	1'-2"

TABLE

	PROJECT	NOBF	<u> - 0046</u>	5
	SA	MPSON	CO	UNTY
	STATION:	24+30	.00 -	L
	DEPART	STATE OF NORTH CARG	NSPORTAI	ION
NOPESSION APPE		RALEIGH	D	
SEAL 26445	INTE	RMEDIAT	E STE	EL
HI TOREY NEW WINNING	TYPE		TRESS	ED
DocuSigned by: P. Korey Newton	CON	ICRETE G	IRDER	S
4FFE39D1431B407 10/09/2023		REVISIONS		SHEET NO.
DOCUMENT NOT CONSIDERED	NO. BY: D.	ATE: NO. BY:	DATE:	S-15 TOTAL
FINAL UNLESS ALL SIGNATURES COMPLETED	2	<u>৩</u> ধৃ		SHEETS 31
		STD.NO.	PCG10	(SHT 3)

TYPICAL PART PLAN

(SHOWING INTERIOR BENT)

₽<u></u> "B-1"-

ଦୁ GIRDER —

에 는 것'은 큰 (한)

*---

TYPICAL PART PLAN

NOTES

AT ALL FIXED POINTS OF SUPPORT, NUTS FOR ANCHOR BOLTS ARE TO BE TIGHTENED FINGER TIGHT AND THEN BACKED OFF ¹/₂ TURN. THE THREAD OF THE NUT AND BOLT SHALL THEN BE BURRED WITH A SHARP POINTED TOOL.

STEEL SOLE PLATES, ANCHOR BOLTS, NUTS, AND WASHERS SHALL BE GALVANIZED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

PRIOR TO WELDING, GRIND THE GALVANIZED SURFACE OF THE PORTION OF THE EMBEDDED PLATE AND SOLE PLATE THAT ARE TO BE WELDED. AFTER WELDING, DAMAGED GALVANIZED SURFACES SHALL BE REPAIRED IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

WHEN WELDING THE SOLE PLATE TO THE EMBEDDED PLATE IN THE GIRDER, USE TEMPERATURE INDICATING WAX PENS, OR OTHER SUITABLE MEANS, TO ENSURE THAT THE TEMPERATURE OF THE SOLE PLATE DOES NOT EXCEED 300°F. TEMPERATURES ABOVE THIS MAY DAMAGE THE ELASTOMER.

SOLE PLATE "P", BOLTS, NUTS, WASHERS, AND PIPE SLEEVE SHALL BE INCLUDED IN THE PAY ITEM FOR PRESTRESSED CONCRETE GIRDERS.

ANCHOR BOLTS SHALL MEET THE REQUIREMENTS OF ASTM A449. NUTS SHALL MEET THE REQUIREMENTS OF AASHTO M291-DH OR AASHTO M292-2H. WASHERS SHALL MEET THE REQUIREMENTS OF AASHTO M293. SHOP DRAWINGS ARE NOT REQUIRED FOR ANCHOR BOLT, NUTS AND WASHERS. SHOP INSPECTION IS REQUIRED.

ALL SURFACES OF BEARING PLATES SHALL BE SMOOTH AND STRAIGHT.

THE ELASTOMER IN THE STEEL REINFORCED BEARINGS SHALL HAVE A SHEAR MODULUS OF 0.160 KSI, IN ACCORDANCE WITH AASHTO M251.

FOR STEEL REINFORCED ELASTOMERIC BEARINGS, SEE SPECIAL PROVISIONS.

ALL SOLE PLATES SHALL BE AASHTO M270 GRADE 36.

MAXIMUM ALLOWABLE SERVICE LOADS				
D.L.+L.L. (NO IMPACT)				
TYPE II 145 k				
TYPE III	205 k			

	PROJEC STATIC	T NO. SAMPS DN:	BF 50N 24+30	R-004 CO .00 -	6 UNTY L-	
STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH SEAL 26445						
TOREY NEW MUMUUN	EL	as i om D	ERIC	BEAR. .S	LNG	
DocuSigned by: P. Korey Newton 4FFE39D1431B407	DocuSigned by: PRESTRESSED CONCRETE GIRDER SUPERSTRUCTURE PREVISIONS SHEET NO.					
10/09/2023						
DOCUMENT NOT CONSIDERED	NO. BY:	DATE:	NO. BY:	DATE:	S-16	
FINAL UNLESS ALL SIGNATURES COMPLETED	า 2		3 4		SHEETS 31	
	STD. NO. EB3					

- ELASTOMERIC

BEARING

+

10/9/2023 R:\Structures\Plans\401_037_BR-0046_SMU_GRA_S-18_810022.dgn pknewton

+

+

BOLTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM A307 AND NUTS SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M291. BOLTS, NUTS AND WASHERS SHALL BE GALVANIZED. (AT THE CONTRACTOR'S OPTION, STAINLESS STEEL BOLTS, NUTS AND WASHERS MAY BE USED AS AN ALTERNATE FOR THE 1810 GALVANIZED BOLTS, NUTS AND WASHERS. THEY SHALL CONFORM TO OR EXCEED THE MECHANICAL REQUIREMENTS OF ASTM A307. THE USE OF THIS ALTERNATE SHALL BE APPROVED BY THE ENGINEER.)

THE GUARDRAIL ANCHOR ASSEMBLY IS REQUIRED AT ALL POINTS WHERE APPROACH GUARDRAIL IS TO BE ATTACHED TO THE END OF BARRIER RAIL.FOR POINTS OF ATTACHMENT. SEE SKETCH.

AFTER INSTALLATION, THE EXPOSED THREAD OF THE BOLT SHALL BE BURRED WITH A SHARP POINTED TOOL.

THE COST OF THE GUARDRAIL ANCHOR ASSEMBLY SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR CONCRETE BARRIER RAIL.

THE $1 \frac{1}{4}$ " Ø HOLES SHALL BE FORMED OR DRILLED WITH A CORE BIT. IMPACT TOOLS WILL NOT BE PERMITTED. ANY CONCRETE DAMAGED BY THIS WORK SHALL BE REPAIRED TO THE SATISFACTION OF THE ENGINEER.

NOTES

THE GUARDRAIL ANCHOR ASSEMBLY SHALL CONSIST OF A $\frac{1}{4}$ " HOLD-DOWN PLATE AND 4 - $\frac{1}{8}$ " Ø BOLTS WITH NUTS AND WASHERS, RUBRAIL, AND ADHESIVELY ANCHORED BOLTS.

THE HOLD-DOWN PLATE SHALL CONFORM TO AASHTO M270 GRADE 36. AFTER FABRICATION, THE HOLD-DOWN PLATE SHALL BE HOT-DIP GALVANIZED IN ACCORDANCE WITH AASHTO M111.

THE C6 X 8.2 RUBRAIL IS TO BE ADHESIVELY ANCHORED TO THE RAIL USING THREE $\frac{3}{4}$ " Ø X 6" BOLTS WITH WASHERS. LEVEL ONE FIELD TESTING IS REQUIRED, AND THE YIELD LOAD OF THE 3/4" Ø BOLT IS 12 KIPS. FOR ADHESIVELY ANCHORED ANCHOR BOLTS OR DOWELS, SEE STANDARD SPECIFICATIONS. SEE ROADWAY STANDARD 862.03 FOR DETAILS AND LOCATION OF THE RUBRAIL.

10/9/2023 R:\Structures\Plans\401_039_BR-0046_SMU_B0M_S-19_810022.dgn pknewton

+

+

BAR	NO.	SIZE	TYPE	L	
* A1	317	#5	STR	4	
A2	317	#5	STR	4	
* B1	150	#5	STR		
* B2	118	#7	STR		
* B3	58	#5	STR		
* B4	112	#5	STR		
B5	224	#5	STR		
B6	100	#5	STR		
H1	48	#5	3		
K1	16	#4	STR		
K2	8	#4	STR		
K3	16	#4	STR		
K4	8	#4	STR		
K5	4	#4	STR		
K6	8	#4	STR		
K7	4	#4	STR		
K8	16	#4	STR		
K9	8	#4	STR		
* S1	72	#4	1		
* S2	72	#4	1		
U1	76	#4	2		
U2	8	#4	2		
REINFORCING STEEL					

* EPOXY COATED REINFORCING STEEL

#1	REACHES	Α	MINIMUM	OF	3,	000	PS

GROOVING	BRIDGE FL
APPROACH SLAB	S 1850
BRIDGE DECK	5858
TOTAL	_7708

SUPERSTRUCTURE LENGTHS ARE FOLLOWING MINIM					
BAR SIZE	SUPERST EXCEPT A SLABS, I AND BAR	RUCTURE APPROACH PARAPET, RIER RAIL			
	EPOXY COATED	UNCOATED			
#4	1'-11"	1'-7"			
#5	2'-5"	2'-0"			
#6	2'-10"	2'-5"			
#7	4'-2"	2'-9"			
#8	4'-9"	3'-2"			

+

STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR #4 "V" BARS.

THE TOP SURFACE OF THE END BENT CAP AND WINGS, EXCEPT THE BEARING

THE UPPER PORTION OF THE INTEGRAL CAP AND WINGS SHALL BE POURED WITH THE SUPERSTRUCTURE. SEE PLAN OF SPANS SHEETS FOR DETAILS.

	PROJE	CT NO. SAMPS	<u> </u>	R-004	6 DUNTY
	STAT:	ION:	24+30	.00 -	<u>L</u> -
WWWWWWWWWWWWWW	DEF	PARTMENT	OF NORTH CA	ROLINA NSPORTA	TION
SUBSTRUCTURE					
DocuSigned by: P. Korey Newton 4FFE39D1431B407		NTEGRA	L EN	D BEN	Γ1
10/09/2023		REVI	SIONS		SHEET NO.
OCUMENT NOT CONSIDERED	NO. BY:	DATE:	NO. BY:	DATE:	S-20 TOTAL
SIGNATURES COMPLETED	2		4		SHEETS 31

+

10/9/2023 R:\Structures\Plans\401_043_BR-0046_SMU_EB1_S-21_810022.dgn pknewton

3'-3"

+

10/9/2023 R:\Structures\Plans\401_045_BR-0046_SMU_EB1_S-22_810022.dgn pknewton

	PROJECT NO. <u>BR-0046</u> <u>SAMPSON</u> COUNTY STATION: <u>24+30.00 -L-</u>
	SHEET 3 OF 3
POPEY NEW THINK	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH SUBSTRUCTURE INTEGRAL END BENT 1
P. Korey, Newton 4FFE39D1431B407	
10/09/2023	REVISIONS SHEET NO.
DOCUMENT NOT CONSIDERED	NO. BY: DATE: NO. BY: DATE: S-22
FINAL UNLESS ALL	1 J TOTAL SHEETS

+

+

		BTI		F M/	ATERTA	
			FOR	ONE	BENT	
<u></u> 1'-3" Ι ΔΡ	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
	B1	4	#10	1	42'-10"	737
	B2	4	#10	STR	40'-2"	691
	B3	8	#4	STR	40'-0"	214
$\left(\bigcirc \right)$	B4	11	#4	STR	2'-11"	21
$\left(\begin{array}{c} (3) \end{array}\right)$	B5	4	#4	STR	2'-8"	7
	S1	64	#5	2	9'-1"	606
2'-4" Ø	S2	12	#4	3	8'-7"	69
	U1	30	#4	4	5'-11"	119
	U2	4	#4	4	5'-9"	15
2'-11" U1	U3	4	#4	4	5'-6"	15
2'-9" ∐2 ∐4 m.	U4	2	#9	4	10'-1"	69
	U5	2	#4	4	4'-8"	6
\rightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc						
	REINFORCING STEEL (FOR ONE BENT) 2569 LBS					
	CLASS A CONCRETE BREAKDOWN (FOR ONE BENT)					
- <u> </u>	TOTAL CLASS A CONCRETE					14.5 C.Y.
Γ ΤΟ ΟUΤ.						

+

NOTES

PIPE PILES SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS.

GALVANIZE STEEL PIPE PILES IN ACCORDANC 1076 OF THE STANDARD SPECIFICATIONS UNLI IS REQUIRED. GALVANIZING OR METALLIZING IS NOT REQUIRED.

PIPE PILE PLATES, IF REQUIRED, SHALL BE I SECTION 450 OF THE STANDARD SPECIFICAT

REMOVE AND REPLACE OR REPAIR TO THE SAT ENGINEER PILES THAT ARE DAMAGED, DEFORME DURING INSTALLATION OR DRIVING.

PILE SPLICES SHALL BE IN ACCORDANCE WIT SPECIFICATIONS AND AWS D1.1.

FOR CLOSED END PIPE PILES, REMOVE ALL SO INSIDE THE PILES JUST PRIOR TO PLACING AND CONCRETE FOR THE CONCRETE PLUG.

FOR OPEN END PIPE PILES, REMOVE ENOUGH FROM INSIDE THE PILES TO CONSTRUCT THE WITHOUT FOULING THE CONCRETE.

FORM THE CONCRETE PLUG SUCH THAT THE RE OR CONCRETE DOES NOT MOVE AND THE CLEAF REINFORCING STEEL TO THE INSIDE OF THE AFTER CONCRETE PLACEMENT. DO NOT PLACE BENT CAP UNTIL THE CONCRETE PLUG HAS AT COMPRESSIVE STRENGTH OF 1500 PSI.

THE REINFORCING STEEL, CLASS A CONCRETE, ARE CONSIDERED INCIDENTAL TO THE CONTRACT UNIT PRICE BID PER LINEAR FOOT FOR PP 18 X 0.50 GALVANIZED STEEL PILES.

	B PP 18	SILL X O	0F .50	MATEF GALVA	RIAL FOR NIZED SI	ONE EEL PILE
SECTION 1084 OF	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
	S1	6	#4	1	4'-5''	18
CE WITH SECTION						
ESS METALLIZING	V1	8	# 5	2	6'-8''	56
FIFE FILE FLATES					<u> </u>	
	ŀ	REINFO	DRCING	SIEEL	= (4 Ibs
IN ACCORDANCE WITH						
	CLASS A	CONC	RETE			
ED OR COLLAPSED	5'-O" MINIMUM PLUG 0.3 CY					0.3 CY
			В	AR TY	'PES	
TH THE STANDARD			4.4	7// 1 4 5		
)IL AND WATER FROM REINFORCING STEEL	Y			3'' LAP ,		
SOIL AND WATER CONCRETE PLUG				10,		2
EINFORCING STEEL RANCE FROM THE PILE IS MAINTAINED CONCRETE IN THE FTAINED A MINIMUM		1'-0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<mark>⊲</mark> 5	<u>′-10′′</u>
		ALL	BAR D	IMENSION	NS ARE OUT T	0 OUT.
AND GALVANIZING						

STD. NO. SPP3

10/9/2023 R:\Structures\Plans\401_053_BR-0046_SMU_EB2_S-26_810022.dgn pknewton

+

+

NOTES

STIRRUPS IN CAP MAY BE SHIFTED AS NECESSARY TO CLEAR #4 "V" BARS.

THE TOP SURFACE OF THE END BENT CAP WINGS, EXCEPT THE BEARING AREAS, SHALL BE RAKED TO A DEPTH OF 1/4".

THE UPPER PORTION OF THE INTEGRAL CAP AND WINGS SHALL BE POURED WITH THE SUPERSTRUCTURE. SEE PLAN OF SPANS SHEETS FOR DETAILS.

	PROJEC	CT NO. SAMPS ON:2	BF 50N 24+30	R-004 CO .00 -	6 UNTY L-
	SHEET 1 OF 3				
SEAL 26445	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH SUBSTRUCTURE				
DocuSigned by: P. Korey, Newton 4FFE39D1431B407	IN	TEGRA	L END	BEN	Г2
10/09/2023		REVIS	IONS		SHEET NO.
DOCUMENT NOT CONSIDERED	NO. BY:	DATE:	NO. BY:	DATE:	S-26
SIGNATURES COMPLETED	2		4 4		SHEETS 31

+

10/9/2023 R:\Structures\Plans\401_055_BR-0046_SMU_EB2_S-27_810022.dgn pknewton

^{10/9/2023} R:\Structures\Plans\401_057_BR-0046_SMU_EB2_S-28_810022.dgn pknewton

+

NO SEPARATE PAYMENT WILL BE MADE FOR THIS WORK AND THE ENTIRE COST OF THIS WORK SHALL BE INCLUDED IN THE UNIT CONTRACT PRICE BID FOR THE SEVERAL PAY ITEMS.

= S $= OUT TO OUT.$ $= S$ $= OUT TO OUT.$ $= S$ $= S$ $= S$ $= S$ $= HK.$ $= HK.$ $= S$ $= S$ $= HK.$ $= S$ $= S$ $= S$ $= S$ $= S$ $= HK.$ $= S$	BAR B1 B2 B3 B4 H1 S1 S1 S2 S3 U1 U1 V1	BI NO. 8 28 13 4 24 24 53 53 53 24 3	LL OF END SIZE #10 #4 #4 #4 #4 #4 #4	MAT BENT TYPE 1 STR STR STR 6 2 3	ERIAL 2 LENGTH 51'-8" 25'-9" 2'-11" 2'-8" 13'-0" 11'-1"	WEIGHT 1,779 482 25 7 325
$AP \qquad 2'-11" \qquad B \\ C \\$	BAR B1 B2 B3 B4 B4 H1 S1 S1 S2 S3 S3 U1 V1	NO. 8 28 13 4 24 24 53 53 53 24 3	END SIZE #10 #4 #4 #4 #4 #4	BENT TYPE 1 STR STR STR 6 2 2 3	2 LENGTH 51'-8" 25'-9" 2'-11" 2'-8" 13'-0" 13'-0"	WEIGHT 1,779 482 25 7 7 325
$AP \qquad \begin{array}{c} 2'-11'' \\ \hline 5 \\ \hline 5 \\ \hline 5 \\ \hline 7 \\ \hline $	BAR B1 B2 B3 B4 H1 S1 S2 S3 U1 U1 V1	NO. 8 28 13 4 24 24 53 53 53 24 3	SIZE #10 #4 #4 #4 #4 #4 #4	TYPE 1 STR STR STR 6 2 3	LENGTH 51'-8" 25'-9" 2'-11" 2'-8" 13'-0" 11'-1"	WEIGHT 1,779 482 25 7 325
$AP \qquad \begin{array}{c} 2'-11'' \\ \hline 5 \\ \hline 5 \\ \hline \\ \end{array} \\ \begin{array}{c} 5^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 5^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 2'-11'' \\ \hline \\ \hline \\ \end{array} \\ \begin{array}{c} 5^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 2'-11'' \\ \hline \\ \end{array} \\ \begin{array}{c} 5^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 2'-11'' \\ \hline \\ \end{array} \\ \begin{array}{c} 5^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 2'-11'' \\ \hline \\ \end{array} \\ \begin{array}{c} 5^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 2'-11'' \\ \hline \\ \end{array} \\ \begin{array}{c} 5^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 2'-11'' \\ \hline \\ \end{array} \\ \begin{array}{c} 5^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 2'-11'' \\ \hline \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \hline \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 7^{\frac{1}{2}} \\ \end{array} \\$	B1 B2 B3 B4 H1 S1 S2 S3 U1 U1 V1	8 28 13 4 24 53 53 53 24 3	#10 #4 #4 #4 #5 #4 #4 #4	1 STR STR STR 6 2 3	51'-8" 25'-9" 2'-11" 2'-8" 13'-0" 11'-1"	1,779 482 25 7 325
$AP \qquad \begin{array}{c} 2'-11'' \\ \hline \\ 5 \\ \hline \\ 5 \\ \hline \\ \hline \\ \hline \\ \hline \\ 5 \\ \hline \\ \hline$	B2 B3 B4 H1 S1 S2 S3 U1 V1	28 13 4 24 53 53 53 24 3	#4 #4 #5 #4 #4 #4	STR STR STR 6 2 3	25'-9" 2'-11" 2'-8" 13'-0" 11'-1"	482 25 7 325
$AP \qquad 2'-11" \qquad F \\ \hline 5 \qquad 5'' \qquad 7'' \qquad F \\ \hline 5 \qquad 5'' \qquad 7'' \qquad F \\ \hline 5 \qquad 7'' \qquad 7''' \qquad 7''' \qquad 7''' \qquad 7''' \qquad 7'''' \qquad 7''''''''$	B3 B4 H1 S1 S2 S3 U1 V1	13 4 24 53 53 24 3	#4 #4 #5 #4 #4 #4	STR STR 6 2 3	2'-11" 2'-8" 13'-0" 11'-1"	25 7 325
$AP \qquad 2'-11" \qquad F \\ \hline 5 \qquad 5''_2" \qquad 2'-11" \qquad 5''_2" \qquad F \\ \hline 5 \qquad 5''_2" \qquad 2'-11" \qquad 5''_2" \qquad F \\ \hline 6 \qquad 6'' \qquad 6''' \qquad 6''' \qquad 6''' \qquad 6'''' \qquad 6''''''''$	B4 H1 S1 S2 S3 U1 V1	4 24 53 53 24 3	#4 #5 #4 #4 #4	STR 6 2 3	2'-8" 13'-0" 11'-1"	7 325
$\frac{2^{-11}}{5}$	H1 S1 S2 S3 U1 V1	24 53 53 24 3	#5 #4 #4 #4	6 2 3	13'-0" 11'-1"	325
$\begin{bmatrix} 5 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ $	H1 S1 S2 S3 U1 V1	24 53 53 24 3	#5 #4 #4 #4	6 2 3	13'-0" 11'-1"	325
$ \begin{array}{c c} \hline 5 \\ \hline 5 \\ \hline 7 \\ \hline $	S1 S2 S3 U1 V1	53 53 24 3	#4 #4 #4	2 3	11'-1"	
$ \begin{array}{c} $	S1 S2 S3 U1 V1	53 53 24 3	#4 #4 #4	2 3	11'-1"	
$\frac{5^{\frac{1}{2}}}{4^{\frac{1}{2}}} \frac{2^{\frac{1}{2}}}{4^{\frac{1}{2}}} + \frac{5^{\frac{1}{2}}}{4^{\frac{1}{2}}} + \frac{1}{4^{\frac{1}{2}}} + \frac{1}{4^{\frac{1}{2}}$	S2 S3 U1 V1	53 24 3	#4 #4	3	<u> </u>	392
$ \begin{array}{c} 5^{\frac{1}{2}} \\ + \\ + \\ + \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	V1	24 3	#4		3'-10"	136
5 ¹ / ₂ " 2'-11" 5 ¹ / ₂ " HK. HK. HK. HK. HK. HK. HK. HK. HK. HK. HK. T	U1 V1	3		4	6'-6"	104
5 ^{1/2} " 2'-11" 5 ^{1/2} " 1 HK. HK. HK. N 3 HK. N 2" P E OUT TO OUT. T	V1	3			E1 111	10
нк. () нк. (V1		#4	5	211	12
нк. () (3) нк. () (3) нк. () (7) (7) (7) (7) (7) (7) (7) (7) (7) (70	#1	стр	51 71	205
) R R C 2" P E OUT TO OUT. T	\ <i>/ /</i>	79	#4 #1		כ =/ ייס יד	295
) R 2" P E OUT TO OUT. T	VZ	02	#4		/ -0	510
) 2" E OUT TO OUT. T			CTEEI		.	
2" P .E OUT TO OUT. T			DETE		٦,٠	575 LD5.
2" P E OUT TO OUT. T	LASS	A CONC	REIE			
E OUT TO OUT. T	OUR 1	L (CA	AP, COL		27	7.6 C.Y.
	ΟΤΑΙ				2.	7.6 C. Y.
C NE. JS 6" (MIN.) PIPE FOR DRAINAGE DRAIN TOE OF SLOPE						
AFTER COMPLETION OF END RUGATED STEEL, CORRUGATED D PIPE WILL NOT BE ALLOWED. NEER DIRECTS THAT IT BE SE OF SILT ACCUMULATIONS R. BAGS SHALL BE REMOVED						

END BENT	PROJECT NO. BR-0046 SAMPSON COUNTY STATION: 24+30.00 -L- SHEET 3 OF 3 SHEET 3 OF 3 SHEET 3 OF 3			
NUMBER CAROL	STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION RALEIGH			
SEAL 26445	SUBSTRUCTURE			
DocuSigned by:	INTEGRAL END BENT 2			
P. Korey Newton				
10/09/2023	REVISIONS SHEET NO.			
DOCUMENT NOT CONSIDERED	NO. BY: DATE: NO. BY: DATE: S-28			
FINAL UNLESS ALL SIGNATURES COMPLETED	U S SHEETS 2 4 31			

^{10/9/2023} R:\Structures\Plans\401_059_BR-0046_SMU_RR_S-29_810022.dgn pknewton

NOTES : For BERM WIDTH DIMENSIONS, SEE GENERAL DRAWING.

ESTIMATED QUANTITIES						
E @ 4+30.00-L-	RIP RAP CLASS II (2'-O" THICK)	GEOTEXTILE FOR DRAINAGE				
	TONS	SQUARE YARDS				
BENT 1	265	295				
BENT 2	260	290				

	PROJEC	T NO.	B	R-004	6
		SAMPS	ON	CO	UNTY
	STATIO	0N: 2	4+30	.00 -	<u>L-</u>
	DEPA	state RTMENT	OF NORTH CAR OF TRAN RALEIGH	OLINA NSPORTA	TION
SEAL 26445 CINEER OF WINNER	F	RIP RA	AP DE	TAILS	5
DocuSigned by: <i>P. Korey. Newton</i> 10/09/2023					
10/ 03/ 2023	NO. BY.			DATE	SHEET NO. S-29
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED	1		3 3		TOTAL SHEETS 31
	5	C	ν		

+

NO

FOR BRIDGE APPROACH FIL

APPROACH SLAB SHALL NOT COMPLETION OF THE BRIDGE

SELECT MATERIAL BACKFILI FACE OF BACKWALL FROM O APPROACH SLAB.

AREA BETWEEN THE WINGWA GRADED TO DRAIN THE WAT THE BRIDGE AND SHALL BE

THE JOINT OPENING AT TH SHALL BE SAWED NO MORE SLAB IS CAST. THE JOINT BEFORE THE SEALANT IS AF SHALL CONFORM TO THE REC THE STANDARD SPECIFICAT

AT THE CONTRACTORS OPTI FILL'' (ROADWAY PLAN 2C-6 ADDITIONAL COST TO THE DEPARTMENT IN LIEU OF "TYPE 1 -APPROACH FILL".

DETAIL ``A''

END OF CURB WITHOUT SHOULDER BERM GUTTER

TES		BIL	L OF	F MA	TERIAL	-
L, SEE ROADWAY PLANS.	FO	R OI	NE A (2	PPR(REQ'	DACH SI	LAB
SE DECK.	BAR	NO.	SIZE	TYPE	LENGTH	WEIGHT
	* A1	52	#4	STR	21'-6"	747
L IS TO BE CONTINUOUS ALONG FILL OUTSIDE EDGE TO OUTSIDE EDGE OF	A2	52	#4	STR	21'-6"	747
	★ B1	82	# 5	STR	24'-2"	2067
ALL AND APPROACH SLAB SHALL BE	B2	82	#6	STR	24'-8"	3038
PAVED. SEE ROADWAY PLANS.						
E APPROACH SLAB/DECK INTERFACE	REINFO	ORCINO	G STEE	L	LBS.	3785
THAN 12 HOURS AFTER THE APPROACH SHALL BE CLEANED OF ALL DEBRIS PRI TED THE JOINT SEALER MATERIAL	* EPOX REIN	(Y COA NFORCI	TED NG STI	EEL	LBS.	2814
QUIREMENTS OF SECTION 1028-3 OF						
LONS.						
ION. "TYPE 1A - ALTERNATE APPROACH						
6) MAY BE CONSTRUCTED AT NO	CLASS	AA CO	DNCRET	<u> </u>	C.Y.	45.0

SPL	ICE LE	NGTHS
BAR SIZE	EPOXY COATED	UNCOATED
#4	1'-11"	1'-7"
# 5	2′-5″	2'-0"
# 6	3'-7"	2'-5″

IRB	PROJECT	NO	BR-0040	ô
-	SA	AMPSON	CO	
	STATION	24+30	0.00-L-	
	SHEET 1 OF 2			
NUMBER CAROLAND	DEPART	STATE OF NORTH CA MENT OF TRA RALEIGH	NSPORTA	TION
		STANDAR)	
F24588 978 405 AUE F24588 978 405 MCINET FROM	BRIC FOR WITH	DGE APPRO INTEGRAL FLEXIBLE	ACH SL ABUTME PAVEM	AB ENT ENT
10/18/2023				
		REVISIONS		SHEET NO.
DOCUMENT NOT CONSIDERED FINAL UNLESS ALL STONATURES COMPLETED	NO. BY: D	ATE: NO. BY:	DATE:	TOTAL SHEETS 31
STONATONES CONTLETED				

SID. NO. BASS (SHT 1)

^{10/18/2023} R:\Structures\Plans\401_063_BR-0046_SMU_AS_S-31_810022.dgn ssandor

ASSEMBLED BY : S.T.SAND	DOR DATE :	9/15/23
CHECKED BY : P.D.BRYANT	DATE :	9/15/23
DRAWN BY : TLA 10/05 CHECKED BY : GM 5/06	REV. 12/21/11 REV. 6/13 REV. 12/17	MAA/GM MAA/GM MAA/THC

SECTION R-R

SECTION S-S

	PROJECT NO SAMF STATION: SHEET 2 OF 2	D. <u>BR-004</u> PSON CC 24+30.00 -	6 DUNTY • L -
SEAL 26445 DocuSigned by:	DEPARTMEN BRID	TATE OF NORTH CAROLINA IT OF TRANSPORTA RALEIGH STANDARD GE APPROACH AB DETAILS	TION
<i>P. Korey Newton</i> 4FFE39D1431B407 10/09/2023	RE	VISIONS	SHEET NO.
DOCUMENT NOT CONSIDERED	NO. BY: DATE:	NO. BY: DATE:	S-31
FINAL UNLESS ALL SIGNATURES COMPLETED	2	<u>৩</u> 4	SHEETS 31
		STD. NO. BASS	5 (SHT 1)

DESIGN DATA:

SPECIFICATIONS	A.A.S.H.T.O. (CURRENT)
LIVE LOAD	SEE PLANS
IMPACT ALLOWANCE	SEE A.A.S.H.T.O.
STRESS IN EXTREME FIBER OF STRUCTURAL STEEL - AASHTO M270 GRADE 36	20,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50W	27,000 LBS.PER SQ.IN.
- AASHTO M270 GRADE 50	27,000 LBS.PER SQ.IN.
REINFORCING STEEL IN TENSION - GRADE 60	24,000 LBS.PER SQ.IN.
CONCRETE IN COMPRESSION	1,200 LBS.PER SQ.IN.
CONCRETE IN SHEAR	SEE A.A.S.H.T.O.
STRUCTURAL TIMBER - TREATED OR UNTREATED EXTREME FIBER STRESS	1,800 LBS.PER SO.IN.
COMPRESSION PERPENDICULAR TO GRAIN OF TIMBER	375 LBS.PER SQ.IN.
EQUIVALENT FLUID PRESSURE OF EARTH	30 LBS.PER CU.FT. (MINIMUM)

MATERIAL AND WORKMANSHIP:

EXCEPT AS MAY OTHERWISE BE SPECIFIED ON PLANS OR IN THE SPECIAL PROVISIONS. ALL MATERIAL AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE 2018 "STANDARD SPECIFICATIONS FOR ROADS AND STRUCTURES" OF THE N. C. DEPARTMENT OF TRANSPORTATION.

STEEL SHEET PILING FOR PERMANENT OR TEMPORARY APPLICATIONS SHALL BE HOT ROLLED.

CONCRETE:

UNLESS OTHERWISE REQUIRED ON PLANS, CLASS A CONCRETE SHALL BE USED FOR ALL PORTIONS OF ALL STRUCTURES WITH THE EXCEPTION THAT: CLASS AA CONCRETE SHALL BE USED IN BRIDGE SUPERSTRUCTURES, ABUTMENT BACKWALLS, AND APPROACH SLABS; AND CLASS B CONCRETE SHALL BE USED FOR SLOPE PROTECTION AND RIP RAP.

CONCRETE CHAMFERS:

UNLESS OTHERWISE NOTED ON THE PLANS, ALL EXPOSED CORNERS ON STRUCTURES SHALL BE CHAMFERED 3/4" WITH THE FOLLOWING EXCEPTIONS: TOP CORNERS OF CURBS MAY BE ROUNDED TO $1\frac{1}{2}$ RADIUS WHICH IS BUILT INTO CURB FORMS; CORNERS OF TRANSVERSE FLOOR EXPANSION JOINTS SHALL BE ROUNDED WITH A 1/2" FINISHING TOOL UNLESS OTHERWISE REQUIRED ON PLANS; AND CORNERS OF EXPANSION JOINTS IN THE ROADWAY FACES AND TOPS OF CURBS AND SIDEWALKS SHALL BE ROUNDED TO A $\frac{1}{4}$ RADIUS WITH A FINISHING STONE OR TOOL UNLESS OTHERWISE REQUIRED ON PLANS.

DOWELS:

DOWELS WHEN INDICATED ON PLANS AS FOR CULVERT EXTENSIONS, SHALL BE EMBEDDED AT LEAST 12" INTO THE OLD CONCRETE AND GROUTED INTO PLACE WITH 1:2 CEMENT MORTAR.

STANDARD NOTES

ALLOWANCE FOR DEAD LOAD DEFLECTION, SETTLEMENT, ETC. IN CASTING SUPERSTRUCTURES:

BRIDGES SHALL BE BUILT ON THE GRADE OR VERTICAL CURVE SHOWN ON PLANS. SLABS, CURBS AND PARAPETS SHALL CONFORM TO THE GRADE OR CURVE.

ALL DIMENSIONS WHICH ARE GIVEN IN SECTION AND ARE AFFECTED BY DEAD LOAD DEFLECTIONS ARE DIMENSIONS AT CENTER LINE OF BEARING UNLESS OTHERWISE NOTED ON PLANS. IN SETTING FORMS FOR STEEL BEAM BRIDGES AND PRESTRESSED CONCRETE GIRDER BRIDGES, ADJUSTMENTS SHALL BE MADE DUE TO THE DEAD LOAD DEFLECTIONS FOR THE ELEVATIONS SHOWN. WHERE BLOCKS ARE SHOWN OVER BEAMS FOR BUILDING UP TO THE SLAB, THE VERTICAL DIMENSIONS OF THE BLOCKS SHALL BE ADJUSTED BETWEEN BEARINGS TO COMPENSATE FOR DEAD LOAD DEFLECTIONS, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER. WHERE BOTTOM OF SLAB IS IN LINE WITH BOTTOM OF TOP FLANGES, DEPTH OF SLAB BETWEEN BEARINGS SHALL BE ADJUSTED TO COMPENSATE FOR DEAD LOAD DEFLECTION, VERTICAL CURVE ORDINATE, AND ACTUAL BEAM CAMBER.

IN SETTING FALSEWORK AND FORMS FOR REINFORCED CONCRETE SPANS, AN ALLOWANCE SHALL BE MADE FOR DEAD LOAD DEFLECTIONS, SETTLEMENT OF FALSEWORK, AND PERMANENT CAMBER WHICH SHALL BE PROVIDED FOR IN ADDITION TO THE ELEVATIONS SHOWN. AFTER REMOVAL OF THE FALSEWORK, THE FINISHED STRUCTURES SHALL CONFORM TO THE PROFILE AND ELEVATIONS SHOWN ON THE PLANS AND CONSTRUCTION ELEVATIONS FURNISHED BY THE ENGINEER.

DETAILED DRAWINGS FOR FALSEWORK OR FORMS FOR BRIDGE SUPERSTRUCTURE AND ANY STRUCTURE OR PARTS OF A STRUCTURE AS NOTED ON THE PLANS SHALL BE SUBMITTED TO THE ENGINEER FOR APPROVAL BEFORE CONSTRUCTION OF THE FALSEWORK OR FORMS IS STARTED.

REINFORCING STEEL:

ALL REINFORCING STEEL SHALL BE DEFORMED. DIMENSIONS RELATIVE TO PLACEMENT OF REINFORCING ARE TO CENTERS OF BARS UNLESS OTHERWISE INDICATED IN THE PLANS. DIMENSIONS ON BAR DETAILS ARE TO CENTERS OF BARS OR ARE OUT TO OUT AS INDICATED ON PLANS.

WIRE BAR SUPPORTS SHALL BE PROVIDED FOR REINFORCING STEEL WHERE INDICATED ON THE PLANS. WHEN BAR SUPPORT PIECES ARE PLACED IN CONTINUOUS LINES, THEY SHALL BE SO PLACED THAT THE ENDS OF THE SUPPORTING WIRES SHALL BE LAPPED TO LOCK LEGS ON ADJOINING PIECES.

STRUCTURAL STEEL:

AT THE CONTRACTOR'S OPTION, HE MAY SUBSTITUTE $\frac{7}{8}$ " Ø SHEAR STUDS FOR THE ¾″Ø STUDS SPECIFIED ON THE PLANS. THIS SUBSTITUTION SHALL BE MADE AT THE RATE OF 3 - $\frac{1}{8}$ " Ø STUDS FOR 4 - $\frac{3}{4}$ " Ø STUDS, AND STUD SPACING CHANGES SHALL BE MADE AS NECESSARY TO PROVIDE THE SAME EQUIVALENT NUMBER OF $\frac{7}{8}$ " Ø STUDS ALONG THE BEAM AS SHOWN FOR $\frac{3}{4}$ " Ø STUDS BASED ON THE RATIO OF 3 - $\frac{7}{8}$ " Ø STUDS FOR 4 - $\frac{3}{4}$ " Ø STUDS. STUDS OF THE LENGTH SPECIFIED ON THE PLANS MUST BE PROVIDED. THE MAXIMUM SPACING SHALL BE 2'-O".

EXCEPT AT THE INTERIOR SUPPORTS OF CONTINUOUS BEAMS WHERE THE COVER PLATE IS IN CONTACT WITH BEARING PLATE. THE CONTRACTOR MAY, AT HIS OPTION. SUBSTITUTE FOR THE COVER PLATES DESIGNATED ON THE PLANS COVER PLATES OF THE EQUIVALENT AREA PROVIDED THESE PLATES ARE AT LEAST 5/16" IN THICKNESS AND DO NOT EXCEED A WIDTH EQUAL TO THE FLANGE WIDTH LESS 2"OR A THICKNESS EQUAL TO 2 TIMES THE FLANGE THICKNESS. THE SIZE OF FILLET WELDS SHALL CONFORM TO THE REQUIREMENTS OF THE CURRENT ANSI/AASHTO/AWS "BRIDGE WELDING CODE". ELECTROSLAG WELDING WILL NOT BE PERMITTED.

WITH THE SOLE EXCEPTION OF EDGES AT SURFACES WHICH BEAR ON OTHER SURFACES.ALL SHARP EDGES AND ENDS OF SHAPES AND PLATES SHALL BE SLIGHTLY ROUNDED BY SUITABLE MEANS TO A RADIUS OF APPROXIMATELY VIGINCH OR EQUIVALENT FLAT SURFACE AT A SUITABLE ANGLE PRIOR TO PAINTING, GALVANIZING, OR METALLIZING.

HANDRAILS AND POSTS:

METAL STANDARDS AND FACES OF THE CONCRETE END POSTS FOR THE METAL RAIL SHALL BE SET NORMAL TO THE GRADE OF THE CURB, UNLESS OTHERWISE SHOWN ON PLANS. THE METAL RAIL AND TOPS OF CONCRETE POSTS USED WITH THE ALUMINUM RAIL SHALL BE BUILT PARALLEL TO THE GRADE OF THE CURB.

METAL HANDRAILS SHALL BE IN ACCORDANCE WITH THE PLANS. RAILS SHALL BE AS MANUFACTURED FOR BRIDGE RAILING. CASTINGS SHALL BE OF A UNIFORM APPEARANCE. FINS AND OTHER DEFORMATIONS RESULTING FROM CASTING OR OTHERWISE SHALL BE REMOVED IN A MANNER SO THAT A UNIFORM COLORING OF THE COMPLETED CASTING SHALL BE OBTAINED. CASTINGS WITH DISCOLORATIONS OR OF NON-UNIFORM COLORING WILL NOT BE ACCEPTED. CERTIFIED MILL REPORTS ARE REQUIRED FOR METAL RAILS AND POSTS.

SPECIAL NOTES:

GENERALLY, IN CASE OF DISCREPANCY, THIS STANDARD SHEET OF NOTES SHALL GOVERN OVER THE SPECIFICATIONS, BUT THE REMAINDER OF THE PLANS SHALL GOVERN OVER NOTES HEREON. AND SPECIAL PROVISIONS SHALL GOVERN OVER ALL. SEE SPECIFICATIONS ARTICLE 105-4.

ENGLISH JANUARY, 1990