PROJECT SPECIAL PROVISIONS GEOENVIRONMENTAL

CONTAMINATED SOIL AND GROUNDWATER (4/4/2023)

The Contractor's attention is directed to the fact that soil and groundwater contaminated with petroleum hydrocarbon compounds exist within the project area. The known areas of contamination are indicated on corresponding plans sheets. Information relating to these contaminated areas, sample locations, and investigation reports will be available at the following web address by navigating to the correct letting year and month then selecting, "Plans and Proposals", "I-5972", "Individual Sheets/520 GeoEnvironmental":

http://dotw-xfer01.dot.state.nc.us/dsplan/

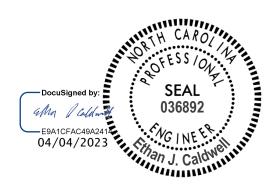
Petroleum contaminated soil may be encountered during any earthwork activities on the project. The Contractor shall only excavate those soils that the Engineer designates necessary to complete a particular task. The Engineer shall determine if soil is contaminated based on petroleum odors and unusual soil staining. Contaminated soil not required to be excavated is to remain in place and undisturbed. Undisturbed soil shall remain in place, whether contaminated or not. The Contractor shall transport all contaminated soil excavated from the project to a facility licensed to accept contaminated soil.

In the event that a stockpile is needed, the stockpile shall be created within the property boundaries of the source material and in accordance with the Diagram for Temporary Containment and Treatment of Petroleum-Contaminated Soil per North Carolina Department of Environmental Quality's Division of Waste Management UST Section GUIDELINES FOR EX SITU PETROLEUM CONTAMINATED SOIL REMEDIATION. If the volume of contaminated material exceeds available space on site, the Contractor shall obtain a permit from the NCDEQ UST Section's Regional Office for off-site temporary storage. The Contractor shall provide copies of disposal manifests completed per the disposal facilities requirements and weigh tickets to the Engineer.

If groundwater is encountered and dewatering is required in areas of known contamination, then the contractor shall containerize the groundwater in vessels provided by the Department. The Department will be responsible for the sampling and disposal of the water. Handling contaminated ground water will be incidental to the project.

Measurement and Payment:

The quantity of contaminated soil hauled and disposed of shall be the actual number of tons of material, which has been acceptably transported and weighed with certified scales as documented by disposal manifests and weigh tickets. The quantity of contaminated soil, measured as provided above, shall be paid for at the contract unit price per ton for "Hauling and Disposal of Petroleum Contaminated Soil".


The above price and payment shall be full compensation for all work covered by this section, including, but not limited to stockpiling, loading, transportation, weighing, laboratory testing, disposal, equipment, decontamination of equipment, labor, and personal protective equipment.

Payment shall be made under:

Pay Item

Hauling and Disposal of Petroleum Contaminated Soil

Pay Unit Ton

Preliminary Site Assessment Report

Parcel 3
Old Brogden Farms II, LLC
I-95 and US 70 Business (East Market Street) Exit 95 interchange from Outlet Center Drive to west of Yelverton Grove Road
Southeast Quadrant of East Market Street and the I-95 North Exit Ramp
Johnston County, North Carolina
TIP Number I-5972
WBS Number 44989.1.1
NCDOT Parcel No. 3
Johnston County PIN 260306-28-7599

Prepared for

North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section Raleigh, North Carolina

Prepared by

Duncklee & Dunham, P.C. Cary, North Carolina

August 22, 2019

ENVIRONMENTAL GEOLOGISTS & ENGINEERS

511 KEISLER DRIVE – SUITE 102 CARY, NORTH CAROLINA 27518 OFFICE: (919) 858–9898 WWW.DUNCKLEEDUNHAM.COM

VIA EMAIL TO: <u>cehaden@ncdot.gov</u>

August 22, 2019

Mr. Craig E. Haden North Carolina Department of Transportation Geotechnical Engineering Unit GeoEnvironmental Section 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Reference: Preliminary Site Assessment Report

Parcel 3

Old Brogden Farms II, LLC

I-95 and US 70 Business (East Market Street) Exit 95 interchange from Outlet Center Drive to west of Yelverton Grove Road

Southeast Quadrant of East Market Street and the I-95 North Exit Ramp

Johnston County, North Carolina

TIP Number I-5972 WBS Number 44989.1.1 NCDOT Parcel No. 3

Johnston County PIN 260306-28-7599

Dear Mr. Haden:

Duncklee & Dunham, P.C. (Duncklee & Dunham) is pleased to submit this *Preliminary Site Assessment Report* for the referenced site. The objective of our services was to assist the North Carolina Department of Transportation (NCDOT) – Geotechnical Engineering Unit with identifying potential environmental concerns within the rights-of-way and/or easements of the above-referenced site. This work is consistent with the NCDOT's Request for Technical and Cost Proposal dated June 7, 2019 and our *Revised Technical and Cost Proposal* dated June 19, 2019. Based on the findings from this work, Duncklee & Dunham recommends submitting this report to the Raleigh Regional Office of the North Carolina Department of Environmental Quality.

Preliminary Site Assessment Report
Parcel 3
Old Brogden Farms II, LLC
I-95 and US 70 Business (East Market Street) Exit 95 interchange from
Outlet Center Drive to west of Yelverton Grove Road
Southeast Quadrant of East Market Street and the I-95 North Exit Ramp
Johnston County, North Carolina
TIP Number I-5972
WBS Number 44989.1.1
NCDOT Parcel No. 3
Johnston County, North Carolina
August 22, 2019
Page ii of ii

Please contact Rick Kolb at <u>rkolb@dunckleedunham.com</u> or (919) 858-9898, ext. 111 if you have any questions or require additional information.

Sincerely,

Duncklee & Dunham, P.C.

Alec N. Dziwanowski, G.I.T.

Staff Geologist II

Richard A. Kolb, L.G.

Senior Geologist

8/29/2019

North Carolina License No. 1153

Senior Peer Review

Thomas S. Dunham, P.G.

Vice President / Senior Geologist North Carolina License No. 1924

Attachment: Preliminary Site Assessment Report

P:\NCDOT-GeoEnv\2019127 - Johnston Co. Phase II\Report\PSA, Parcel 3, I-5972 - 19554.docx

Table of Contents

1	Introduction1				
2	Hist	ory1			
3		hods			
	3.1	Geophysics			
	3.2	Soil Borings2			
	3.3	Groundwater			
4	Resu	ults			
	4.1	Geophysics			
	4.2	Soil Borings			
	4.3	Groundwater			
5	Con	clusions5			
	5.1	Geophysics			
	5.2	Soil Samples			
	5.3	Groundwater Samples			
6	Reco	ommendations5			
		Tables			
	1	Coordinates of Soil Borings			
	2	Summary of Soil Screening and Soil Test Results			
	3	Summary of Groundwater Test Results			
		Figures			
	1	Site Topographic Map			
	2	Site Map			
	3	Site Map with Test Results			
		Appendices			
	A	Photographic Log			
	В	Boring Logs			
	C D	Geophysical Survey Report Laboratory Reports			
	D	Zaostaory Reports			

Preliminary Site Assessment Report Parcel 3

Old Brogden Farms II, LLC

I-95 and US 70 Business (East Market Street) Exit 95 interchange from Outlet Center Drive to west of Yelverton Grove Road

Southeast Quadrant of East Market Street and the I-95 North Exit Ramp

drant of East Market Street and the I-95 North Exit Ram Johnston County, North Carolina TIP Number I-5972 WBS Number 44989.1.1 NCDOT Parcel No. 3 Johnston County PIN 260306-28-7599 August 22, 2019

1 Introduction

Duncklee & Dunham, P.C. (Duncklee & Dunham) conducted a Preliminary Site Assessment of the referenced site in the southeast quadrant at the intersection of U.S. Highway 70 Business (East Market Street) and the I-95 North exit Ramp, east of Smithfield in Johnston County, North Carolina (Figures 1 and 2). The North Carolina Department of Transportation (NCDOT) plans to make changes to the I-95 North exit ramp at East Market Street. Our work is consistent with the NCDOT's *Request for Technical and Cost Proposal* dated June 7, 2019, and our *Revised Technical and Cost Proposal* dated June 19, 2019. The objective of our services was to assist NCDOT – Geotechnical Engineering Unit with identifying potential environmental concerns within the rights-of-way and/or easements of the above-referenced site. Our services included a geophysical survey to identify subsurface metallic features such as underground storage tank (UST) systems, and the advancement of 11 borings to test for the presence of contaminants in the areas where the new roadway will be constructed, along rights-of-way for NCDOT, and at new utility easements.

2 History

The NCDOT prepared a GeoEnvironmental Phase I Report dated December 6, 2018, that identified the site as a former B&S Texaco gasoline station, now a vacant parcel. NCDOT determined that six USTs were reported to have been removed from the site in 1994. After review of the incident list of the UST Section of the North Carolina Department of Environment and Natural Resources (NCDENR, now the North Carolina Department of Environmental Quality – NCDEQ), the NCDOT determined NCDENR closed a leaking UST incident file for the site in 2012.

3 Methods

Duncklee & Dunham called NC811 on July 17, 2019 and requested utilities to be marked in the areas of investigation. NC811 notified Johnston County Public Utilities, Duke Energy, CenturyLink, Conterra Ultra Broadband, Time Warner Cable-Charter, and the Town of Smithfield. The clearance was valid through August 7, 2019. Duncklee & Dunham notified the property owner of when we would conduct field work at the site and then again before the field work began.

Preliminary Site Assessment Report
I-5972 Parcel 3
Old Brogden Farms II, LLC
I-95 and US 70 Business (East Market Street) Exit 95 interchange
from Outlet Center Drive to west of Yelverton Grove Road
Johnston County, North Carolina
August 22, 2019
Page 2 of 5

Duncklee & Dunham reviewed regulatory records on NCDEQ's Laserfiche website and found documentation of a leaking UST system (Incident No. 11797) that was discovered on the site in 1993. NCDENR classified the site as low-risk and closed the incident file in 2012 with a Notice of Residual Petroleum because contaminants in groundwater were at concentrations that exceeded the North Carolina groundwater quality standards promulgated in Title 15A, Subchapter 2L, Section .0202 of the North Carolina Administrative Code (15A NCAC 2L .0202; the "2L standards"). The last groundwater monitoring report on Laserfiche was prepared by Science Applications International Corporation (SAIC) in 2008. This report showed contaminated groundwater beneath a majority of the site. SAIC recommended the installation of an additional well to delineate the southern extent of contaminant plume in groundwater but we did not find records in the file that the southern extent of the plume had been delineated. SAIC abandoned the monitoring wells at the site in 2011. We observed the former locations of some of these monitoring wells during our field work.

The last soil assessment report on Laserfiche was prepared by SAIC in 2006, in which they collected 18 soil samples in a gridded pattern throughout the site. A majority of these samples exhibited petroleum constituents at concentrations that exceeded the Soil to Water Maximum Soil Contaminant Concentrations, even in the samples collected where the UST system had not been located.

Duncklee & Dunham contacted Johnston County Emergency Management to inquire about additional records of releases and did not find such records.

3.1 Geophysics

Pyramid Geophysical Services (Pyramid), under contract to Duncklee & Dunham, conducted a geophysical survey at the site on July 22, 2019. Pyramid used a Geonics EM61 MK2® metal detector with an integrated Geode External GPS/GLONASS receiver to locate buried metal objects, and then used a Geophysical Survey Systems, Inc. SIR 4000 GPR instrument with a 350-megahertz antenna to image selected anomalies.

3.2 Soil Borings

Troxler Geologic Services, Inc. (Troxler), under contract to Duncklee & Dunham, used a Geoprobe® equipped with direct-push technology to advance 11 soil borings, nos. B-1 through B-11 (Photograph No. 1, Appendix A) on July 26, 2019. As shown on Figure 2, Troxler advanced B-1, -4, -5, -6, -8, and -11 along the proposed NCDOT right of way and control access line (Photograph No. 2), B-2 near the proposed slope stake cut line, B-3 near the former location of a dispensing island (Photograph No. 3), B-7 near the proposed drainage outlet in the southwestern corner of the site (Photograph No. 4), and B-9 and -10 near the proposed drainage outlet near the northwestern corner of the subject site (Photograph No. 5). We observed up to 8 inches of standing water in the area west of borings B-3 and -4 and between B-3 and -4, thus limiting our boring locations.

Preliminary Site Assessment Report
I-5972 Parcel 3
Old Brogden Farms II, LLC
I-95 and US 70 Business (East Market Street) Exit 95 interchange
from Outlet Center Drive to west of Yelverton Grove Road
Johnston County, North Carolina
August 22, 2019
Page 3 of 5

The boring depths and depths to water below land surface (bls) for each boring are shown in the following table:

Boring	Boring Depth	Depth to Water
ID	(feet bls)	(feet bls)
B-1	8.0	5.5
B-2	8.0	5.0
B-3	8.0	5.87
B-4	4.0	2.0
B-5	12.0	8.5
B-6	8.0	7.5
B-7	8.0	6.5
B-8	6.5	2.0
B-9	4.0	3.0
B-10	4.0	2.0
B-11	8.0	7.5

Duncklee & Dunham used a Trimble Geo $7x^{\otimes}$ handheld GPS unit to determine the locations of each boring. Table 1 shows the Northings and Eastings for these borings.

Troxler collected soil samples in new acetate sleeves, each 4 feet long. A majority of the soil samples were comprised of light brown, silty sand with clay and light gray silt. Boring logs are in Appendix B. Duncklee & Dunham collected representative samples of native material at selected intervals in each soil boring and stored the samples in twin Ziploc® bags, except for B-4, which encountered the water table just below a 2-foot-thick layer of asphalt. After allowing one of the bags to sit untouched in the sun and the other in a cooler for approximately 15 minutes, we used a photoionization detector (PID) to screen the headspace in each bag left in the sun for volatile organic compounds (VOCs). We recorded the soil-screening results in the field log. Table 2 summarizes the screening results. The soil samples collected above the water table were not stained and did not exhibit petroleum odors except for the samples from B-2 and B-3, which exhibited petroleum odors with increasing concentration from 2 to 4 feet bls. These two borings are in locations near SAIC borings that exhibited contamination. As shown on Table 2, the PID readings of the soil samples from B-2 and B-3 ranged from 6.4 to 142 parts per million (ppm) in B-2 and 32.2 to 97.9 ppm in B-3. The PID readings of the remaining samples did not exceed 0.2 ppm, and we did not detect a petroleum odor in these samples.

Duncklee & Dunham collected a soil sample from each boring except B-4 to be tested in the laboratory. We placed the soil samples from the Ziploc® bags from the cooler into laboratory-supplied containers, placed the containers in a cooler with ice, and shipped the cooler under chain-of-custody to RED Lab, LLC (RED Lab) in Wilmington, North Carolina. RED Lab tested the samples for total petroleum hydrocarbons (TPH)-diesel range organics (DRO) and TPH-gasoline range organics (GRO) using Ultraviolet Fluorescence methodology.

Preliminary Site Assessment Report
I-5972 Parcel 3
Old Brogden Farms II, LLC
I-95 and US 70 Business (East Market Street) Exit 95 interchange
from Outlet Center Drive to west of Yelverton Grove Road
Johnston County, North Carolina
August 22, 2019
Page 4 of 5

3.3 Groundwater

Troxler constructed temporary monitoring well TW-1 in boring B-3 to a depth of 10 feet bls using 1-inch diameter PVC and placed the well screen from 5 to 10 feet bls. Duncklee & Dunham purged groundwater from the well using a peristaltic pump with a new length of low-density polyethylene tubing and silicon tubing for the pump head. Once the purge water appeared clear, Duncklee & Dunham sampled TW-1. We discharged groundwater directly from the peristaltic pump tubing into laboratory-supplied containers, placed the containers in a cooler with ice, and delivered the cooler under chain-of-custody to Environmental Conservation Laboratories (ENCO) in Cary, North Carolina. ENCO laboratory tested the groundwater samples for VOCs according to EPA Method 8260D and semivolatile organic compounds according to EPA Method 8270E. In accordance with NCDEQ guidance, Duncklee & Dunham discharged the purge water on the ground around TW-1 once we had collected the groundwater sample. Troxler abandoned TW-1 by filling the borehole with bentonite pellets in accordance with well abandonment procedures promogulated in Title 15A, Subchapter 2C, Section .0113 of the North Carolina Administrative Code (15A NCAC 2C .0113).

4 Results

4.1 Geophysics

Pyramid's *Geophysical Survey* report, dated August 5, 2019, is in Appendix C. Pyramid identified 11 electromagnetic anomalies that they attributed to visible cultural features on the ground surface or buried, metallic debris and/or utilities. The ground penetrating radar survey confirmed three of the electromagnetic anomalies were associated with unknown buried metallic features. Pyramid did not identify anomalies indicative of abandoned USTs or buried metal drums.

4.2 Soil Borings

Table 2 and Figure 3 summarize the laboratory results for the soil samples collected from each soil boring. The laboratory reports are in Appendix D. RED Lab detected TPH-GRO and/or -DRO in each of the soil samples, except for the samples from B-9 and B-11. RED Lab did not detect TPH at concentrations that exceeded NCDEQ's action levels of 100 mg/kg for TPH-GRO or 50 mg/kg for TPH-DRO except in the sample collected from B-2. RED Lab detected TPH-GRO at a concentration of 65.7 mg/kg in B-2. RED Lab identified the hydrocarbon fingerprint of the TPH-DRO in B-2 as "degraded gas."

4.3 Groundwater

Table 3 and Figure 3 summarize the laboratory results for the sample collected from TW-1. ENCO detected 17 petroleum constituents in this groundwater sample; the concentrations of 14 analytes exceeded the respective 2L Standards. The concentrations did not exceed the respective Gross Contamination Levels.

Preliminary Site Assessment Report
I-5972 Parcel 3
Old Brogden Farms II, LLC
I-95 and US 70 Business (East Market Street) Exit 95 interchange
from Outlet Center Drive to west of Yelverton Grove Road
Johnston County, North Carolina
August 22, 2019
Page 5 of 5

5 Conclusions

5.1 Geophysics

Pyramid identified 11 magnetic anomalies on the site that they attributed to cultural features on the ground surface or buried, metallic debris and/or utilities. Pyramid did not identify anomalies indicative of abandoned USTs or buried metal drums.

5.2 Soil Samples

The soil sample from B-2 exhibited TPH-GRO at a concentration that exceeded NCDEQ's action level. The extent of contamination shown in Figure 3 reflects what we estimate is 100 cubic yards of contaminated soil above the water table based on the data collected during our assessment. However, SAIC reported soil contamination throughout the site during their assessment in 2006, including locations where the former UST system was not located. Duncklee & Dunham detected petroleum odors from 2 to 8 feet bls in the soil samples from B-2 and B-3, but we did not observe stains in these soil samples. Duncklee & Dunham did not detect petroleum odors or observe stains in the other soil samples collected above the water table.

5.3 Groundwater Samples

ENCO detected 14 analytes at concentrations that exceeded the respective 2L Standards in the groundwater sample collected from TW-1. Most of the exceedances were VOCs, which suggests that a majority of the contaminants were derived from a low boiling point fuel such as gasoline that had been stored in the USTs formerly at the site. The estimated extent of contamination is shown on Figure 3. The bounds of the plume reflect the extent of groundwater contamination from the data collected during this assessment. However, the SAIC's 2008 Groundwater Monitoring Report shows groundwater contamination beneath a majority of the subject site. Figure 3 shows the extent of the plume shown in SAIC's monitoring report.

6 Recommendations

Duncklee & Dunham recommends submitting this report to the Raleigh Regional Office of the NCDEQ.

Tables

Table 1 Coordinates of Soil Borings Parcel 3

Johnston County, North Carolina TIP Number I-5972; WBS Number 44989.1.1

Boring	Northing	Easting
Identification	(feet)	(feet)
B-1	638619.82	2202888.76
B-2	638647.58	2202882.74
B-3	638671.89	2202865.07
B-4	638642.02	2202815.59
B-5	638664.57	2202742.00
B-6	638635.35	2202629.52
B-7	638588.46	2202566.32
B-8	638691.93	2202690.88
B-9	638694.94	2202728.27
B-10	638741.14	2202722.90
B-11	638572.90	2202981.56

Notes:

Coordinate system NAD83 NC State Plane - Survey Feet GPS data collected using a Trimble Geo 7x handheld unit

Table 2 Summary of Soil Screening and Soil Test Results Parcel 3

Johnston County, North Carolina TIP Number I-5972; WBS Number 44989.1.1

	Soil Screening Results						
Boring Identification	Depth (feet bls)	PID Reading (ppm)					
B-1	2	0.0					
D-1	4*	0.0					
B-2	2	6.4					
D-2	4*	142					
B-3	2	32.2					
D -3	4*	97.9					
B-4	Sample No	ot Collected					
	2	0.0					
B-5	4	0.0					
D -3	6*	0.0					
	7.5	0.0					
	2*	0.0					
B-6	4	0.0					
	6	0.2					
B-7	2*	0.0					
D- /	4	0.0					
B-8	1*	0.0					
B-9	2*	0.0					
B-10	1*	0.0					
	2	0.0					
B-11	4*	0.0					
	6	0.0					
	Soil Test Results						
Sample Identification	TPH-GRO (mg/kg)	TPH-DRO (mg/kg)					
B-1	< 0.51	0.51					
B-2	65.7	10.7					
B-3	2	0.49					
B-4	Sample No	ot Collected					
B-5	< 0.68	0.68					
B-6	1.8	0.86					
B-7	1.5	3.9					
B-8	< 0.27	0.8					
B-9	< 0.28	< 0.28					
B-10	2.1	0.3					
D 11	<0.26	<0.26					

Notes:

B-11

Soil sample and PID data collected on July 26, 2019

* - Sample selected from this interval for laboratory testing

Sample not collected from B-4 because we did not observe soil above the water table in this boring

< 0.26

< 0.26

TPH-GRO - Total Petroleum Hydrocarbons-Gasoline Range Organics

TPH-DRO - Total Petroleum Hydrocarbons-Diesel Range Organics

NCDEQ Action Level for TPH-GRO - 50 mg/kg

NCDEQ Action Level for TPH-DRO - 100 mg/kg

mg/kg - Milligrams per kilogram

bls - Feet below land surface ppm - Parts per million

PID - Photoionization detector

Result in bold exceeds the reporting limit

Result in bold and shaded cell exceeds the repective action levels

<# - Analyte not detected at a concentration that exceeds the reporting limit shown

Table 3 Summary of Groundwater Test Results Parcel 3

Johnston County, North Carolina TIP Number I-5972; WBS Number 44989.1.1

	Sample Identification $\; o \;$							
Analyte	2L Standard	GCL	Value	Q				
Volatile O	Volatile Organic Compounds by EPA Method 6200B							
1,2,4-Trimethylbenzene	400	28,500	2,800	D				
1,3,5-Trimethylbenzene	400	25,000	680	D				
Benzene	1	5,000	440	D				
Ethylbenzene	600	84,500	2,200	D				
Isopropylbenzene	70	25,000	97	D				
m,p-Xylenes	500	85,500	6,700	D				
Methyl tert-butyl ether	20	20,000	24	J, D				
Naphthalene	6	6,000	480	D				
n-Butylbenzene	70	6,900	200	D				
n-Propylbenzene	70	30,000	390	D				
o-Xylene	500	85,500	24	J, D				
Toluene	600	260,000	360	D				
Xylenes, total	500	85,500	6,700	D				
Semivolatile	organic Compo	unds by EPA Me	thod 625.1					
1-Methylnaphthalene	1	1,000	78	D				
2-Methylnaphthalene	30	12,500	150	D				
Diethylphthalate	6,000	NE	15	J, D				
Naphthalene	6	6,000	310	D				

Notes:

Units are μ g/L

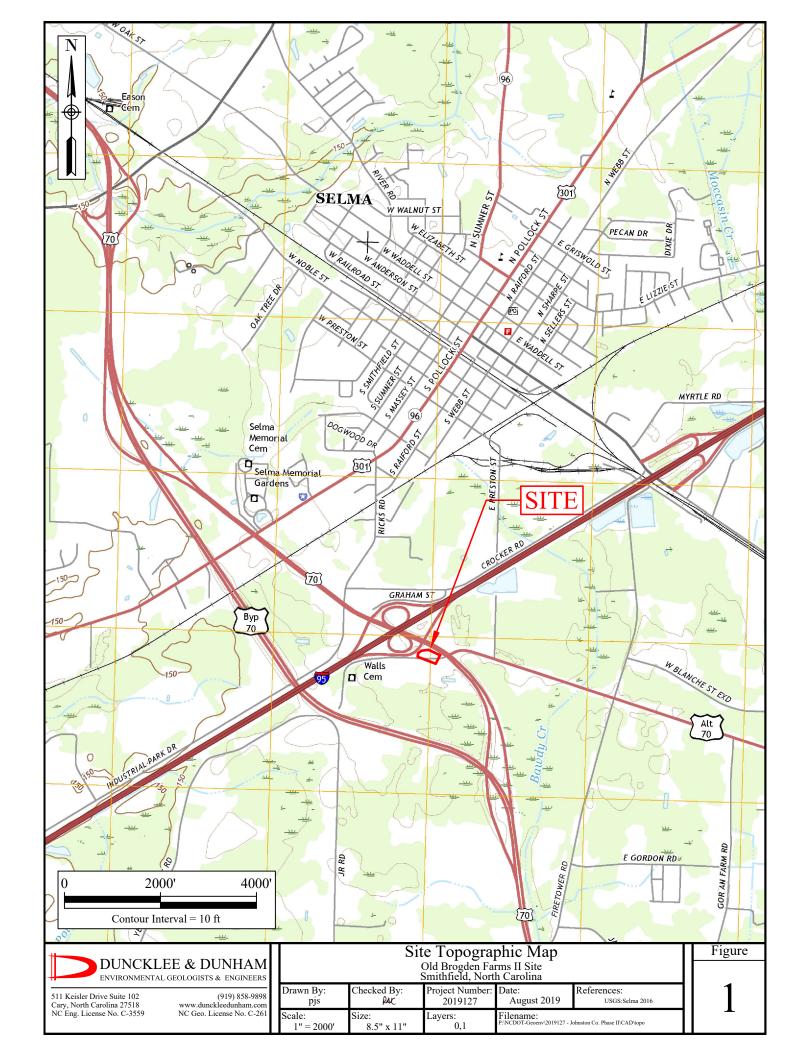
Sample collected on July 26, 2019

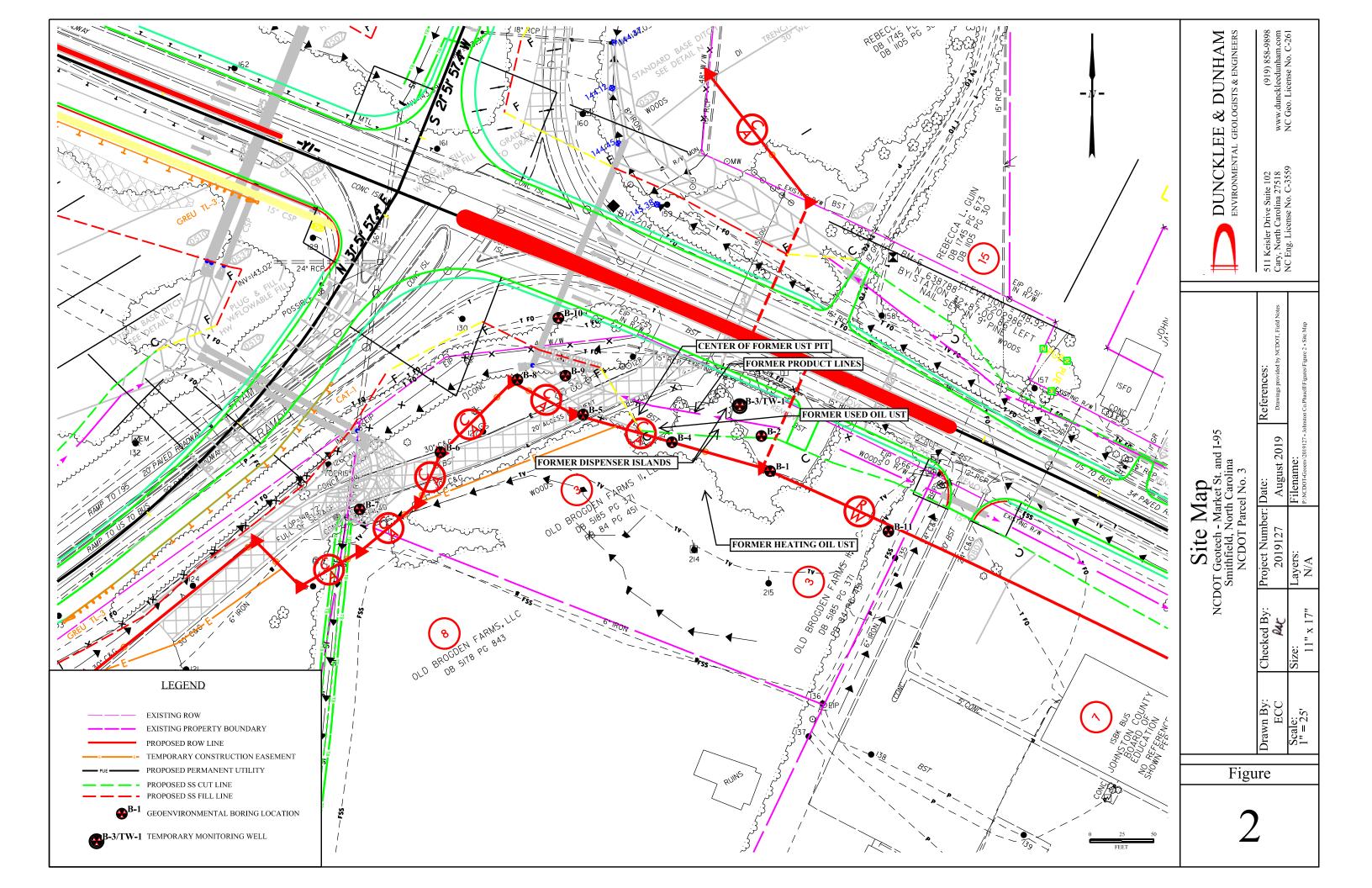
2L Standard - North Carolina Groundwater Quality Standard (15A NCAC 2L .0202)

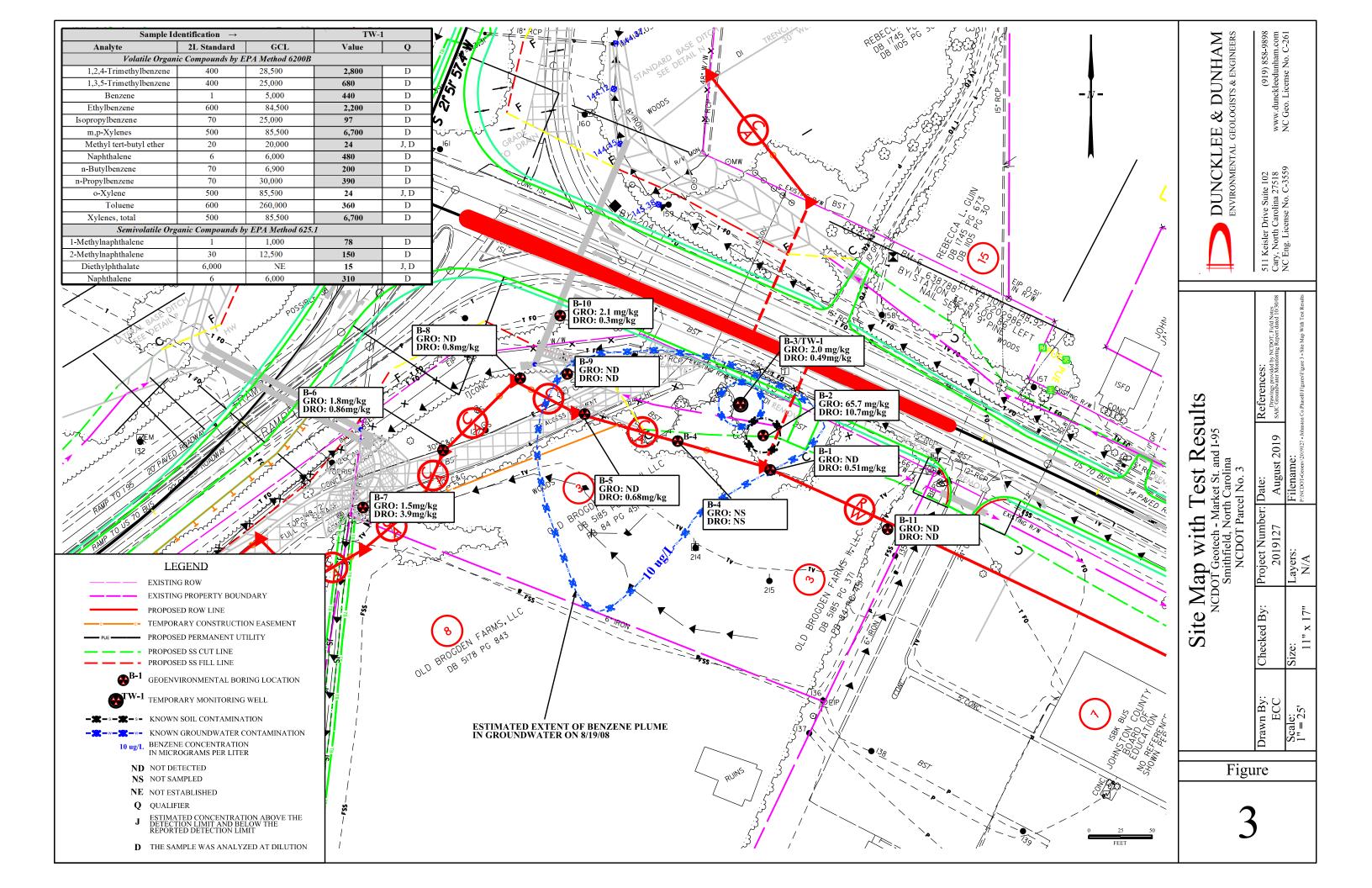
GCL - North Carolina Gross Contamination Levels for groundwater

Result in bold exceeds the reported detection limit

Result with shaded cell exceeds the 2L Standard


NE - Not Established


Q - Qualifier


 $J\,$ - Estimated concentration above the method detection limit and below the reported detection limit

D - The sample was analyzed at dilution

Figures

Appendix A

PHOTOGRAPHIC LOG

Client Name:

NCDOT-GeoEnvironmental

Site Location:

Parcel 3; Johnston County, North Carolina

Project No.

2019127

Photo No.

Date: 7/26/2019

Direction of Photo:

East

Description:

Troxler Geologic using a Geoprobe® to advance B-5.

Photo No.

Date: 7/26/2019

Direction of Photo:

West

Description:

The location of B-1, which Troxler advanced along the proposed NCDOT right of way. The photograph is taken looking down the length of the proposed right of way.

PHOTOGRAPHIC LOG

Client Name:

NCDOT-GeoEnvironmental

Site Location:

Parcel 3; Johnston County, North Carolina

Project No.

Photo No.

Date: 7/26/2019

Direction of Photo:

West

Description:

Soil boring B-3 and temporary monitoring well TW-1

Photo No.

Date: 7/26/2019

Direction of Photo:

Northwest

Description:

Soil boring B-7 advanced along the proposed NCDOT right of way

PHOTOGRAPHIC LOG

Client Name:

NCDOT-GeoEnvironmental

Site Location:

Parcel 3; Johnston County, North Carolina

Project No.

2019127

Photo No.

Date: 7/26/2019

Direction of Photo:

Northwest

Description:

Soil boring B-10 advanced along the proposed drainage outlet near the northwestern corner of the site

Appendix B

I. D. Number	B-1			Purpose	Soil Boring	
Project Name	Old Brogden Fa	rms II Site		Contractor	Troxler Geologic	
Project No.	2019127			Registration No.	2511	
Geologist	Alec N. Dziwano	wski, G.I.T.	40	Driller	Ben Troxler	
Start Date	7/23/2019	Complete Date	7/23/2019	Equipment	Geoprobe	
	25		26			

Drilling Method

Direct-push method

Comments

Water-table observed at 5.5 015

Petroleum staining? NO

Sample time / depth : 1030 & 4 bls

				FID / PID	Petroleum	
Well Co	onstruction	Depth		(ppm)	Odor?	
Info	rmation	From - To (ft.)	Lithology	@ Depth (ft.)		
Information Borehole Diameter		0-05	dark brown sandy SIF w/ organics	NA	NO	
Riser Type		0.5-1	asphalt and gravel	NA	NO	
Diameter		1-3	Sifty, SAND of Clay (light brown)	0.0 @ 21	NO	
Diameter Screen Type Diameter Riser Interval Screen Interval Slot Size Grout Type Interval		3-4.5	Orange, light brown SAND we clay	0.0 @ 41	NO K	Sampled
Diameter		4.5-5.5 5.5-8	brown, sandy sitty cuty	NA	NO Yes	
Riser Interval			dark to light gray, SILT	NA	Yes	
Screen Interval			1 0 1			
Slot Size						
Grout Type						
Interval						
Bentonite Type						
Interval						
Filter Pack						
Interval						
Total Depth						
R.P. Elevation						
Datum						. A
Water Lev	el Information	*				
Date	W.L. Below R.P.		V.			
		-				
		-				

R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

I. D. Number	B-2			Purpose	Soil Boring	
Project Name	Old Brogden Fai	rms II Site		Contractor	Troxler Geologic	
Project No.	2019127			Registration No.	2511	
Geologist	Alec N. Dziwano	wski, G.I.T.	_	Driller	Ben Troxler	
Start Date	7/25/2019	Complete Date	7/23/2019	Equipment	Geoprobe	
	26		2			

Drilling Method	Direct-push method
Comments	Water-table observed at 5' b15
	Petroleum staining? NO
	Sample time 1 depth: 1130 @41 bis

	nstruction rmation	Depth From - To (ft.)	Lithology	FID / PID (ppm) @ Depth (ft.)	Petroleum Odor?
Borehole Diameter		0-1	asphalt and gravel	NA	NO
Riser Type		1-3	Silty, SAND W/ Clay (light brown)	6465,	yes
Diameter		3-4.5	light brown SAND W/ Clay	142@4"	Yes &
Screen Type		4.5-5.5	brain, sardy, Sitty CLAT	NA	Yes
Diameter Riser Interval		5.5 -8	dark to light gray SILT	NA	Yes
Riser Interval			5 0 1		
Screen Interval					
Slot Size					
Grout Type					
Interval					
Bentonite Type					
Interval					
Filter Pack					
Interval					
Total Depth					
R.P. Elevation	*				
Datum					
Water Leve	el Information				
Date	W.L. Below R.P.				
				-	
	2				

R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

I. D. Number	B-3/TW	-1		Purpose	Soil Boring	
Project Name	Old Brogden Fa	rms II Site		Contractor	Troxler Geologic	
Project No.	2019127			Registration No.	2511	
Geologist	Alec N. Dziwanowski, G.I.T.			Driller	Ben Troxler	
Start Date	7/23/2019	Complete Date	7/28/2019	Equipment	Geoprobe	
	26		24			

Drilling Method

Direct-push method

Comments

Water-table observed at ; 5.87' bls

Petroleum staining? NO

Sample hime I depth; 12W C 4' bls

Well Cons		Depth From - To (ft.)	Lithology	FID / PID (ppm) @ Depth (ft.)	Petroleum Odor?	
Borehole Diameter	2.25"	0-0.5	dark brown, sundy silt u) organics	NA	NO	
Riser Type	PVC	0.5-1	asphalt and gravel	NA	NO	
Diameter	111	1-3	light brown sand w/ clay	32.2 @ 21	yes	
Screen Type	PVC	3-4.5	tight brown sitty SAND W/ clay	97.9 841	yes +	Sampled
Diameter	,),,	4.5-5.5	brown, sundy, sity CLAY	NA	yes	
Riser Interval	0-51	5.5-7.5	dank to light gray SILT	NA	Yes	
Screen Interval	5-10'	7.5-8	Yellow, Silty SAND W/ gravel	NA	yes	
Slot Size	0.010"					
Grout Type	NA					
Interval	NA					
Bentonite Type	NA					
Interval	NA					
Filter Pack	SAND-#2					
Interval	5-101					
Total Depth	10,					
R.P. Elevation	land surface	,				
Datum	IO,					
Water Level	Information					
Date	W.L. Below R.P.					
7/20/19	5,87					
]

I. D. Number	B-4			Purpose	Soil Boring				
Project Name		a II Cita			Troxler Geolog	nio.			
	Old Brogden Farm 2019127	s II site					ogic		
Project No. Geologist	Alec N. Dziwanows	di CIT		Registration No. Driller	Ben Troxler				
Start Date	- 111	Complete Date	7/23/2019	Equipment	Geoprobe				
Start Date	26	Complete Date	26	Equipment	Сеоргоос				
Drilling Method	Direct-push method	d							
Comments	Water-table observ	ed at Z'B	LS						
	Patrolaum staining	2 4 2							
	No sample	collected	- asphalt and a	smul present	to 2'615,	Soil is but	bu wt		
	,		,	, ,		From 2'-4	ı		
						FID / PID	Petroleum		
Well Co	nstruction	Depth				(ppm)	Odor?		
Infor	rmation	From - To (ft.)	From - To (ft.)		Lithology				
Borehole Diameter		0.5-2	Dark brown.	Sary SELT w/o Savel SAND u/ yay	Manis	NA	NO		
Riser Type		0.5-2	Asphult and	some!	0	NA	NO		
Diameter		2-4	Light brown S	AND w/ yay		BelowWT	10		
Screen Type			0	- 1					
Diameter									
Riser Interval									
Screen Interval									
Slot Size									
Grout Type									
Interval									
Bentonite Type									
Interval									
Filter Pack									
Interval									
Total Depth									
R.P. Elevation									
Datum									
Water Leve	el Information								
Date	W.L. Below R.P.								
1									

I. D. Number	B-5	Purpose	Soil Boring
Project Name	Old Brogden Farms II Site	Contractor	Troxler Geologic
Project No.	2019127	Registration No.	2511
Geologist	Alec N. Dziwanowski, G.I.T.	Driller	Ben Troxler
Start Date	7/25/2019 Complete Date 7/25/201	9 Equipment	Geoprobe
	26 26		
Drilling Method	Direct-push method		
Comments	Water-table observed at 8.5 bis		
	Petroleum staining? NO		
	Sample time / depth : 1245 @ U	o bis	

				FID / PID	Petroleum	
Well Co	nstruction	Depth	781	(ppm)	Odor?	
Info	rmation	From - To (ft.)	Lithology	@ Depth (ft.)		
Borehole Diameter	•	0-6.5	Park brown guly SILT w/ organis	NA	NO	
Riser Type		0.5-1	Aspendt and a run	NA	No	
Diameter		1-4.5	brange brown, SAND w/ sit and gravel	0.002 0.000	I' NO	
Screen Type		4.5-7	Park brain small STET worganics Aspirult and grawl brainge brown SAND w/ sit and gravel orange brown, SAND v/ gravel	0.0 6 7.3	NO 4	- Sampled
Diameter		7-8	SITY CLAT (gray)	0.0 0 1.0	No	
Riser Interval		8-12	dark gray, Sitty CLAY	NA	Yes from	9-12
Screen Interval			J 11			
Slot Size						
Grout Type						
Interval						
Bentonite Type						
Interval						
Filter Pack						
Interval						
Total Depth						
R.P. Elevation						
Datum						
Water Leve	el Information					
Date	W.L. Below R.P.					
		1				
]

FID / PID

I. D. Number	B-6		Purpose	Soil Boring	
Project Name	Old Brogden Farms II Site		Contractor	Troxler Geologic	
Project No.	2019127		Registration No.	2511	
Geologist	Alec N. Dziwanowski, G.I.T.		Driller	Ben Troxler	
Start Date	7/3/2019 Complete Date	7/33/2019	Equipment	Geoprobe	
	26	26			

Drilling Method

Comments

Water-table observed at 7.5' 615

Petroleum staining? NO

Sample time depth: 1300 @ 2' 615

Well Construction	Depth		(ppm)	Petroleum Odor?	
Information	From - To (ft.)	Lithology	@ Depth (ft.)	410	
Borehole Diameter	0-1	asphalt and gravel orange brown SAND w/ Silt and gravel Drange brown SAND w/ gravel	NA 21 0.28 41	No	- Sampled
Riser Type	1-4.5	orange brown SAND w/ Silt and gra	4 0.004	100	
Diameter	4.5-7	orange brown SAND W/ gravel	0.200	No	
Screen Type	7-8	gray Sity CLAY	NA	NO	
Diameter		0 , 1			
Riser Interval					
Screen Interval					
Slot Size					
Grout Type					
Interval					
Bentonite Type					
Interval					
Filter Pack					
Interval					
Total Depth					
R.P. Elevation					
Datum					
Water Level Information					
Date W.L. Below R.	.Р.				

R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

I. D. Number	B-7			Purpose	Soil Boring	
Project Name	Old Brogden Fai	rms II Site		Contractor	Troxler Geologic	
Project No.	2019127			Registration No.	2511	
Geologist	Alec N. Dziwano	wski, G.I.T.	40	Driller	Ben Troxler	
Start Date	7/25/2019	Complete Date	7/23/2019	Equipment	Geoprobe	
	26		24			

Drilling Method	Direct-push method
Comments	Water-table observed at 6.5'BiS
	Petroleum staining? No
	Sample time /depth: 1330 @ 21 bls

	nstruction rmation	Depth From - To (ft.)	Lithology	FID / PID (ppm) @ Depth (ft.)	Petroleum Odor?	
Borehole Diameter		0-1	Darte brown Sandy STLT and organics Light brown Silly SAND w/smuch Light group to yellow Sandy CLAY Light brown sity SAND with smuch	NA	No	,
Riser Type		1-4	Light brown Silly SAND w/ smul	0.002' 0.009' NA	No 4	-Samp
Diameter		7-8	Light group to yellow Sandy CLAY	0.009"	No	
Screen Type		7-8	Lightbraun sity SAND with some	NA	No	
Diameter			,			
Riser Interval						
Screen Interval						
Slot Size						
Grout Type						
Interval						
Bentonite Type						
Interval						
Filter Pack						
Interval						
Total Depth						
R.P. Elevation						
Datum						
Water Lev	el Information					
Date	W.L. Below R.P.					

R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

. D. Number Project Name Project No. Geologist Start Date	B-8 Old Brogden Farm 2019127 Alec N. Dziwanow. 7/28/2019		7/28/2019 ZC	Purpose Contractor Registration No. Driller Equipment	Soil Boring Troxler Geolog 2511 Ben Troxler Geoprobe	gic	
Orilling Method Comments	Direct-push metho Water-table observer Petroleum staining	ved at 2 BLS	1345 @ 1'	bls			
	nstruction rmation	Depth From - To (ft.)		Lithology		FID / PID (ppm) (a) Depth (ft.)	Petroleum Odor?
Borehole Diameter		0-0.5	Park brain	Sandy SILTW/01	zerics	NA.	No
Riser Type		0,5-5	Lightgray S	Sandy SITulor ILT w/ clay AND w/ clay	7	0.001	100 6
Diameter		5-6.5	gray silty S	AND w/ clay		NA	100
Screen Type		1		/			
Diameter							
Riser Interval						+	
Screen Interval Slot Size		1					
Grout Type							
Interval							
Bentonite Type							
Interval							
Filter Pack							
Interval							
Total Depth							
R.P. Elevation							
Datum							
Water Leve	el Information						
Date	W.L. Below R.P.						

R.P. = Reference Point

 $W.L. = Water\ Level$

TBM = Temporary Benchmark

I. D. Number	B-9			Purpose	Soil Boring	
Project Name	Old Brogden Fa	rms II Site		Contractor	Troxler Geologic	
Project No.	2019127			Registration No.	2511	
Geologist	Alec N. Dziwano	owski, G.I.T.		Driller	Ben Troxler	
Start Date	7/23/2019	Complete Date	7/25/2019	Equipment	Geoprobe	
	26		26			

Drilling Method

Direct-push method

Comments

Water-table observed at 3'BLS

Petroleum staining? MO

Sample time depth: 1400 C2 bls

	onstruction rmation	Depth From - To (ft.)		FID / PID (ppm) @ Depth (ft.)	Petroleum Odor?	
Borehole Diameter		0-3	dry, gray, SILT with gravel and clay moist, gray, Sitty SAND w/ clay	0.0 @ 2'	no ←	-Sampled
Riser Type		3-4	Moist gray Sitty SAND W/ Clay	NA	no	
Diameter						
Screen Type						
Diameter						
Riser Interval						
Screen Interval						
Slot Size						
Grout Type						
Interval						
Bentonite Type						
Interval						
Filter Pack						
Interval						
Total Depth						
R.P. Elevation						
Datum						
Water Lev	el Information					
Date	W.L. Below R.P					
		1				
						_

Drilling Method	Direct-push meti		26			
Start Date	2/33/2019	Complete Date	7/23/2019	Registration No. Driller Equipment	Geoprobe	
Geologist	Alec N. Dziwano	wski, G.I.T.			Ben Troxler	
Project No.	2019127				2511	
Project Name	Old Brogden Fai	rms II Site		Contractor	Troxler Geologic	
I. D. Number	B-10			Purpose	Soil Boring	

Petroleum staining? NO
Sampk how depth; 1430 C 11 bis

Well Construction Information		Depth From - To (ft.)		FID / PID (ppm) @ Depth (ft.)	Petroleum Odor?	
Borehole Diameter		0-0.5	dark brown sandy silt w/ organics	NA	no	
Riser Type		0.5-1.5	dark brown sandy BILT w/ organics sandy SILF W/ clay (gray	0.08 11	no &	- Sampled
Diameter		0.5-1.5	orange brown silty sAND	ΝA	no	
Screen Type		3-4	gray Slit w/ clay	NA	no	
Diameter			J			
Riser Interval						
Screen Interval						
Slot Size						
Grout Type						
Interval						
Bentonite Type						
Interval						
Filter Pack						
Interval						
Total Depth						
R.P. Elevation						
Datum						
Water Lev	el Information					
Date	W.L. Below R.P.					

R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

I. D. Number	B-11			Purpose	Soil Boring		
Project Name	Old Brogden Fa	rms II Site		Contractor	Troxler Geologic		
Project No.	2019127			Registration No. Driller	2511		
Geologist	Alec N. Dziwano	wski, G.I.T.	10		Ben Troxler		
Start Date	7/25/2019	Complete Date	7/25/2019	Equipment	Geoprobe		
*	26		26				

Drilling Method

Direct-push method

Comments

Water-table observed at 7.5' bb

Petroleum staining? NO

Soump +mc/depth: 1445 C 4' bis

	onstruction	Depth From - To (ft.)	Lithology	FID / PID (ppm) (a) Depth (ft.)	Petroleum Odor?	
Borehole Diameter		0-1	dark brown, sandy SILT w/ organics		no	
Riser Type		1-3	light brown count. Sur wil day	0.0001	no -	Sampled
Diameter		3-6	gray, Sandy SILT W/ Clay	0.00 4	no `	acompact.
Screen Type		4-8	brange, Silty SAND	NA	no	
Diameter						
Riser Interval						
Screen Interval						
Slot Size						
Grout Type						
Interval						
Bentonite Type						
Interval						
Filter Pack						
Interval						
Total Depth)			
R.P. Elevation			*			
Datum						
Water Level Information						
Date	W.L. Below R.P.					
			х.			
						-
						4

R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

Appendix C

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-217)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 3 NCDOT PROJECT I-5972 (44989.1.1)

SOUTHEAST QUADRANT OF EAST MARKET STREET AND THE I-95 NORTH EXIT RAMP, SMITHFIELD, NC

August 5, 2019

Report prepared for: Don Malone, PE

Duncklee & Dunham 511 Keisler Drive Cary, NC 27518

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G.

NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 3 - Southeast Quadrant of East Market Street and the I-95 North Exit Ramp Smithfield, Johnston County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	2
Discussion of Results	
Discussion of EM Results	3
Discussion of GPR Results	
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 3 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 3 EM61 Results Contour Map
- Figure 3 Parcel 3 GPR Transect Locations and Select Images
- Figure 4 Overlay of Metal Detection Results onto the NCDOT Engineering Plans

Appendices

Appendix A – GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	_
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Duncklee & Dunham at Parcel 3 located at the Southeast Quadrant of East Market Street and the I-95 North Exit Ramp in Smithfield, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project I-5972). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted on July 22, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of eleven EM anomalies were identified. The majority of the EM responses were directly attributed to visible cultural features. Three locations containing minor unknown buried metal were investigated with GPR. GPR identified the presence of potential minor buried metallic debris at the site. No evidence of larger structures such as USTs was observed. Collectively, the geophysical data did not record any evidence of unknown metallic USTs at Parcel 3.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Duncklee & Dunham at

Parcel 3 located at the Southeast Quadrant of East Market Street and the I-95 North Exit

Ramp in Smithfield, NC. The survey was part of an NCDOT Right-of-Way (ROW)

investigation (NCDOT Project I-5972). The survey was designed to extend from the

existing edge of pavement into the proposed ROW and/or easements, whichever distance

was greater. Conducted on July 22, 2019, the geophysical investigation was performed to

determine if unknown, metallic underground storage tanks (USTs) were present beneath

the survey area.

The site included one lot consisting of grass, asphalt, and concrete surfaces. An aerial

photograph showing the survey area boundaries and ground-level photographs are shown

in Figure 1.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal

detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data

using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External

GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument

to be recorded in real-time during data collection, resulting in an EM data set that is geo-

referenced and can be overlain on aerial photographs and CADD drawings. A boundary

grid was established around the perimeter of the site with marks every 10 feet to maintain

orientation of the instrument throughout the survey and assure complete coverage of the

area.

According to the instrument specifications, the EM61 can detect a metal drum down to a

maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be

detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at

approximately 0.8-foot intervals along north-south trending or east-west trending,

2 | Page

Parcel 3 - Southeast Quadrant of East Market Street and the

I-95 North Exit Ramp (NCDOT Project I-5972)

Smithfield, North Carolina

generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on July 22, 2019, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 controller using a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tanks on NCDOT Projects									
High Confidence Known UST	Intermediate Confidence Probable UST	Low Confidence Possible UST	No Confidence Anomaly noted but not						
Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.						

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Signs	
2	Suspected Buried Metallic Debris	✓
3	Utility	
4	Reinforced Concrete Pipe	
5	Utilities	
6	Suspected Buried Metallic Debris	✓
7	Light	
8	Fence/Suspected Utility	
9	Suspected Buried Metallic Debris	✓
10	Reinforced Concrete Pipe	
11	Utility/Fence	

The majority of the EM responses were directly attributed to visible cultural features including signs, utilities, reinforced concrete pipes, a light, and fences. GPR was performed across EM Anomalies 2, 6, and 9 to investigate for the presence of unknown buried metal.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All formal GPR transect images can be found in **Appendix A**. A total of six formal GPR transects were performed at the parcel. GPR Transects 1-6 recorded evidence of minor, discrete hyperbolic reflectors consistent with buried metallic debris. No evidence of larger structures such as USTs was observed.

Collectively, the geophysical data <u>did not record any evidence of unknown metallic USTs</u> <u>at Parcel 3</u>. **Figure 4** provides an overlay of the metal detection results on the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 3 in Smithfield, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM responses were directly attributed to visible cultural features. Three locations containing minor unknown buried metal were investigated with GPR.
- GPR identified the presence of potential minor buried metallic debris at the site. No evidence of larger structures such as USTs was observed.
- Collectively, the geophysical data did not record any evidence of unknown metallic USTs at Parcel 3.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Duncklee & Dunham in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

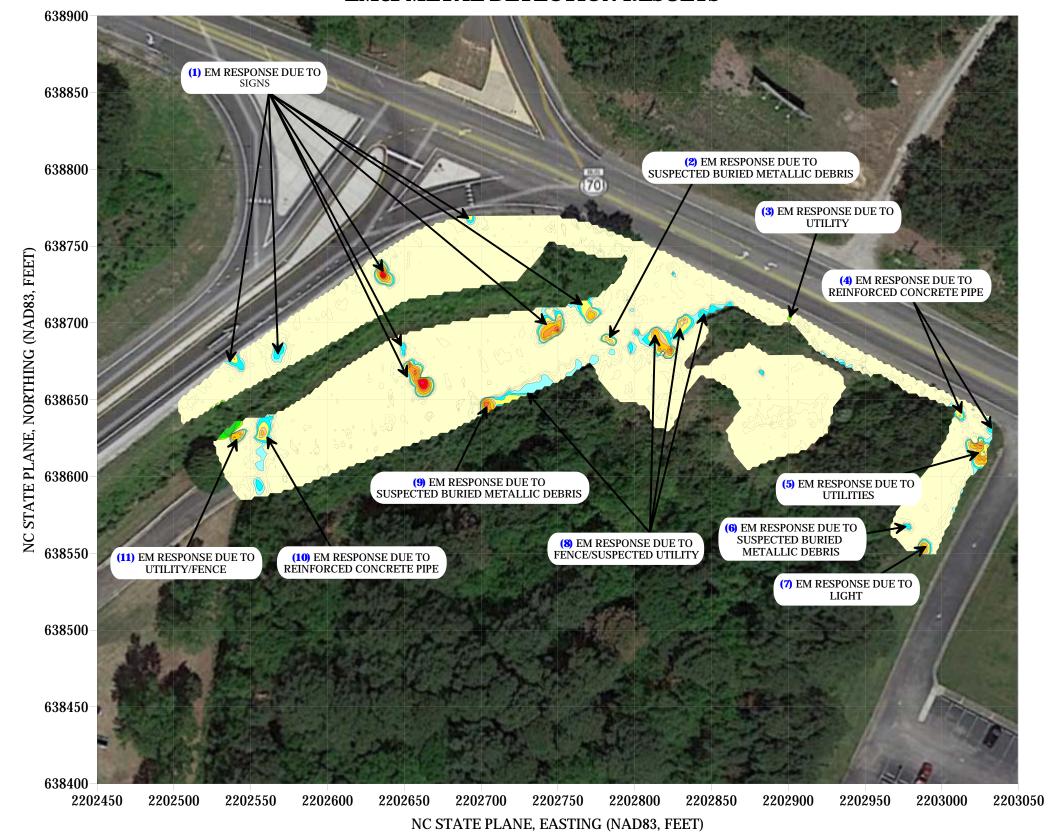
View of Survey Area (Facing Approximately North)

View of Survey Area (Facing Approximately East)

NC STATE PLANE, EASTING (NAD83, FEET)

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PROJECT


PARCEL 3 SMITHFIELD, NORTH CAROLINA NCDOT PROJECT I-5972

TITLE

PARCEL 3 - GEOPHYSICAL SURVEY **BOUNDARIES AND SITE PHOTOGRAPHS**

DATE	7/25/2019	CLIENT	DUNCKLEE & DUNHAM
YRAMID PROJECT #:	2019-217		FIGURE 1

EM61 METAL DETECTION RESULTS

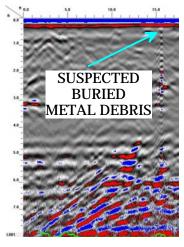
NO EVIDENCE OF METALLIC USTS WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on July 22, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 instrument with a 350 MHz HS antenna on July 22, 2019.

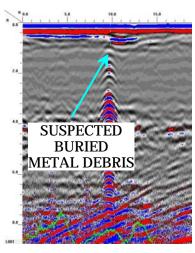
EM61 Metal Detection Response (millivolts)

N

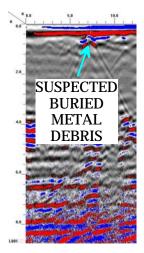

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology **PROJECT**


PARCEL 3 SMITHFIELD, NORTH CAROLINA NCDOT PROJECT I-5972 TITLE

PARCEL 3 - EM61 METAL DETECTION CONTOUR MAP


DATE	7/25/2019	CLIENT	DUNCKLEE DUNHAM
PYRAMID PROJECT #:	2019-217		FIGURE 2

LOCATIONS OF GPR TRANSECTS

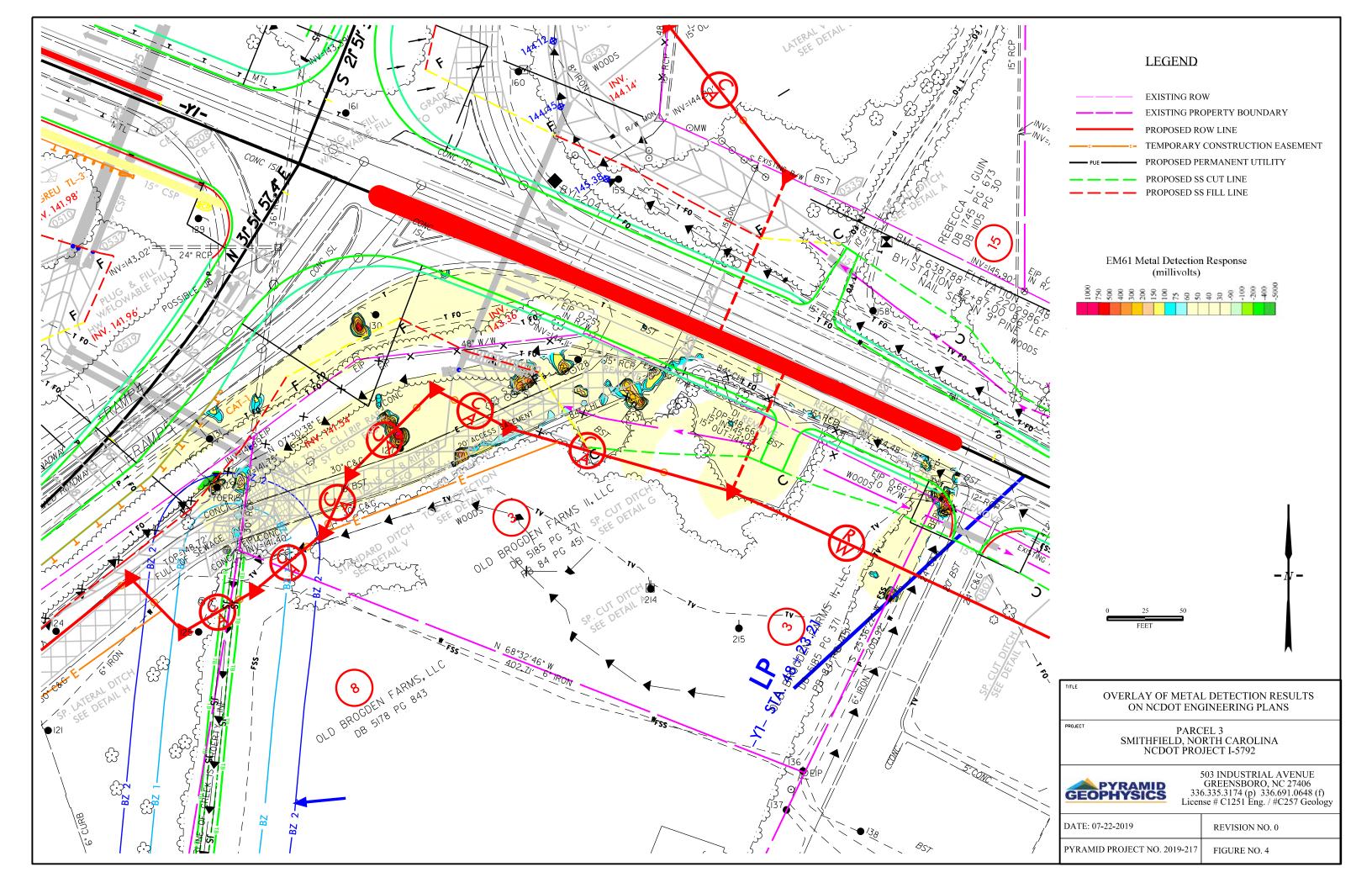


GPR TRANSECT 1 (T1)

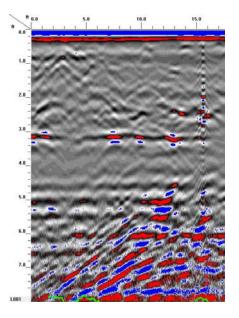
GPR TRANSECT 5 (T5)

GPR TRANSECT 6 (T6)

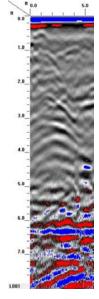
503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PROJECT

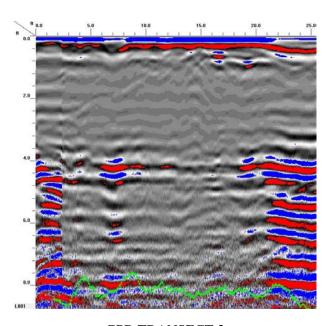

PARCEL 3 SMITHFIELD, NORTH CAROLINA NCDOT PROJECT I-5972 TITLE

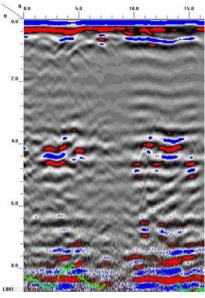
PARCEL 3 - GPR TRANSECT LOCATIONS AND SELECT IMAGES

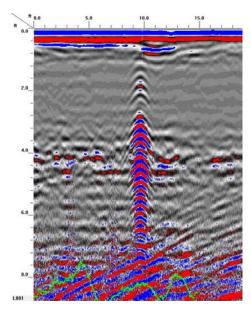

DATE	7/25/2019	CLIENT
PYRAMID PROJECT #:	2019-217	

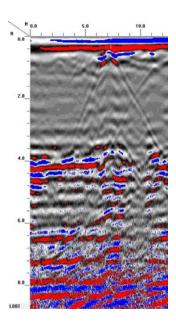
DUNCKLEE & DUNHAM


FIGURE 3




GPR TRANSECT 1


GPR TRANSECT 2 GPR


GPR TRANSECT 3

GPR TRANSECT 4

GPR TRANSECT 5

GPR TRANSECT 6

Appendix D

Hydrocarbon Analysis Results

Client: DUNCKLEE & DUNHAM

Address: 511 KEISLER DR SUITE 102

CARY, NC 27518

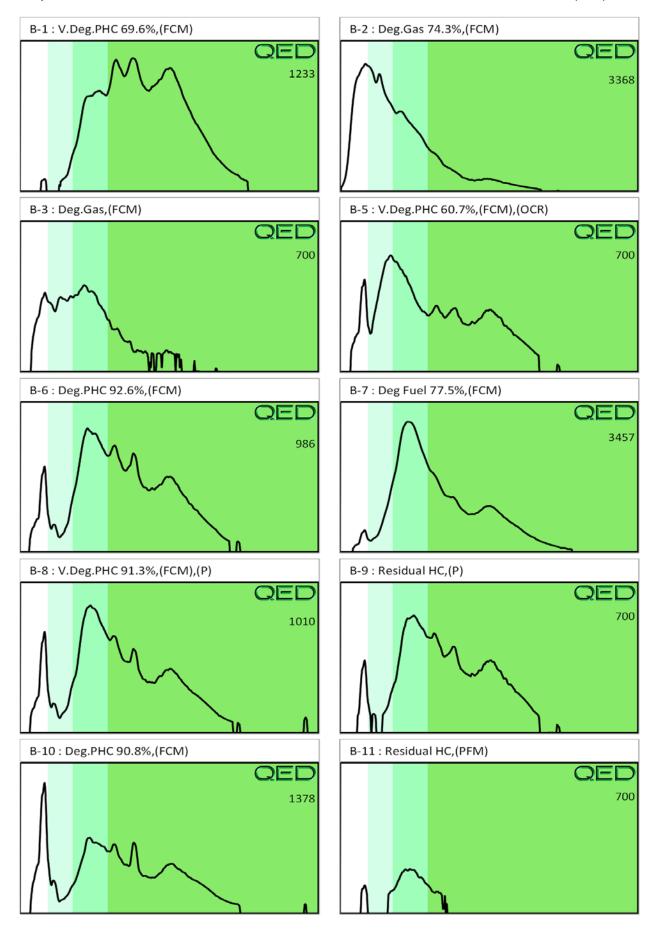
Samples taken
Samples extracted

Friday, July 26, 2019 Friday, July 26, 2019

Samples analysed Monday, July 29, 2019

Contact: ALEC DZIWANOWSKI Operator CAROLINE STEVENS

Project: 2019127


													U04049
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	Ratios		Ratios HC Fingerprint Match	
										% light	% mid	% heavy	
S	B-1	20.5	<0.51	<0.51	0.51	0.51	0.42	<0.16	<0.02	0	46.9	53.1	V.Deg.PHC 69.6%,(FCM)
S	B-2	20.3	29.5	65.7	10.7	76.4	10.4	0.41	<0.02	99.5	0.4	0.1	Deg.Gas 74.3%,(FCM)
S	B-3	19.5	<0.49	2	0.49	2.49	0.27	<0.16	<0.02	97.7	1.9	0.3	Deg.Gas,(FCM)
S	B-5	27.4	<0.68	<0.68	0.68	0.68	0.54	< 0.22	< 0.027	0	41.6	58.4	V.Deg.PHC 60.7%,(FCM),(OCR)
S	B-6	25.7	< 0.64	1.8	0.86	2.66	0.42	<0.21	<0.026	86.2	8.4	5.4	Deg.PHC 92.6%,(FCM)
S	B-7	22.6	<0.57	1.5	3.9	5.4	2	<0.18	<0.023	67.1	23	9.9	Deg Fuel 77.5%,(FCM)
S	B-8	10.9	<0.27	<0.27	0.8	0.8	0.39	<0.09	<0.011	0	67.9	32.1	V.Deg.PHC 91.3%,(FCM),(P)
S	B-9	11.2	<0.28	<0.28	<0.28	0.22	0.22	< 0.09	<0.011	0	58.2	41.8	Residual HC,(P)
S	B-10	12.1	<0.3	2.1	0.3	2.4	0.15	<0.1	<0.012	94.2	3.6	2.1	Deg.PHC 90.8%,(FCM)
S	B-11	10.4	<0.26	<0.26	<0.26	<0.26	<0.05	<0.08	<0.01	0	100	0	Residual HC,(PFM)
	Initial Co	librator (OC check	OK					Final F		Chack	OK	101.7 %

Results generated by a QED HC-1 analyser. Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values are not corrected for moisture or stone content

Fingerprints provide a tentative hydrocarbon identification. The abbreviations are:- FCM = Results calculated using Fundamental Calibration Mode: % = confidence for sample fingerprint match to library

(SBS) or (LBS) = Site Specific or Library Background Subtraction applied to result: (PFM) = Poor Fingerprint Match: (T) = Turbid: (P) = Particulate present

Project: 2019127

Divider Page

102-A Woodwinds Industrial Court Cary NC, 27511

Phone: 919.467.3090 FAX: 919.467.3515

Monday, August 5, 2019 Duncklee & Dunham, PC (DU009)

Attn: Alec Dziwanowski 511 Keisler Drive, Suite 102

Cary, NC 27518

RE: Laboratory Results for

Project Number: 2019127, Project Name/Desc: Old Brogden Farms II Site

ENCO Workorder(s): CC12467

Dear Alec Dziwanowski,

Enclosed is a copy of your laboratory report for test samples received by our laboratory on Friday, July 26, 2019.

Unless otherwise noted in an attached project narrative, all samples were received in acceptable condition and processed in accordance with the referenced methods/procedures. Results for these procedures apply only to the samples as submitted.

The analytical results contained in this report are in compliance with NELAC standards, except as noted in the project narrative if applicable. This report shall not be reproduced except in full, without the written approval of the Laboratory.

This report contains only those analyses performed by Environmental Conservation Laboratories. Unless otherwise noted, all analyses were performed at ENCO Cary. Data from outside organizations will be reported under separate cover.

If you have any questions or require further information, please do not hesitate to contact me.

Sincerely,

Chuck Smith

Project Manager

Enclosure(s)

SAMPLE SUMMARY/LABORATORY CHRONICLE

Client ID: TW-1		Lab ID: CC12467-01	Sampled: 07/26/19 11:45	Received: 07/26/19 16:05		
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)		
EPA 8270E	EPA 3510C_MS	08/02/19 09/07/19	07/29/19 09:40	07/30/19 14:46		
Client ID: TW-1 Lab ID: CC12467-01RE1		Sampled: 07/26/19 11:45	Received: 07/26/19 16:05			
			Sumplea: 07/20/13 11:43	Received: 07/20/13 10:03		
<u>Parameter</u>	<u>Preparation</u>	Hold Date/Time(s)	Prep Date/Time(s)	Analysis Date/Time(s)		

SAMPLE DETECTION SUMMARY

Client ID: TW-1			Lab ID:	CC12467-01			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
1-Methylnaphthalene	78	D	14	50	ug/L	EPA 8270E	
2-Methylnaphthalene	150	D	14	50	ug/L	EPA 8270E	
Diethylphthalate	15	JD	12	50	ug/L	EPA 8270E	
Naphthalene	310	D	14	50	ug/L	EPA 8270E	
Client ID: TW-1			Lab ID:	CC12467-01RE1			
<u>Analyte</u>	<u>Results</u>	<u>Flag</u>	<u>MDL</u>	<u>PQL</u>	<u>Units</u>	<u>Method</u>	<u>Notes</u>
1,2,4-Trimethylbenzene	2800	D	5.0	50	ug/L	EPA 8260D	
1,3,5-Trimethylbenzene	680	D	15	50	ug/L	EPA 8260D	
Benzene	440	D	7.5	50	ug/L	EPA 8260D	
Ethylbenzene	2200	D	6.5	50	ug/L	EPA 8260D	
Isopropylbenzene	97	D	7.0	50	ug/L	EPA 8260D	
m,p-Xylenes	6700	D	8.5	100	ug/L	EPA 8260D	
Methyl-tert-Butyl Ether	24	JD	8.0	50	ug/L	EPA 8260D	
Naphthalene	480	D	5.5	50	ug/L	EPA 8260D	
n-Butyl Benzene	200	D	2.9	50	ug/L	EPA 8260D	
n-Propyl Benzene	390	D	6.0	50	ug/L	EPA 8260D	
o-Xylene	24	JD	3.2	50	ug/L	EPA 8260D	
Toluene	360	D	7.0	50	ug/L	EPA 8260D	
Xylenes (Total)	6700	D	22	150	ug/L	EPA 8260D	

ANALYTICAL RESULTS

Description: TW-1 **Lab Sample ID:** CC12467-01 **Received:** 07/26/19 16:05

Matrix:Ground WaterSampled: 07/26/19 11:45Work Order: CC12467

Project: Old Brogden Farms II Site Sampled By: Alec Dziwanowski

Volatile Organic Compounds by GCMS

^ - ENCO Cary certified analyte [NC 591]											
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
1,1,1,2-Tetrachloroethane [630-20-6]^	8.5	UD	ug/L	50	8.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,1,1-Trichloroethane [71-55-6]^	6.0	UD	ug/L	50	6.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,1,2,2-Tetrachloroethane [79-34-5]^	14	UD	ug/L	50	14	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,1,2-Trichloroethane [79-00-5]^	7.0	UD	ug/L	50	7.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,1-Dichloroethane [75-34-3]^	6.5	UD	ug/L	50	6.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,1-Dichloroethene [75-35-4]^	10	UD	ug/L	50	10	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,1-Dichloropropene [563-58-6]^	7.5	UD	ug/L	50	7.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2,3-Trichlorobenzene [87-61-6]^	0.60	UD	ug/L	50	0.60	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2,3-Trichloropropane [96-18-4]^	12	UD	ug/L	50	12	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2,4-Trichlorobenzene [120-82-1]^	7.0	UD	ug/L	50	7.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2,4-Trimethylbenzene [95-63-6]^	2800	D	ug/L	50	5.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2-Dibromo-3-chloropropane [96-12-8]^	24	UD	ug/L	50	24	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2-Dibromoethane [106-93-4]^	33	UD	ug/L	50	33	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2-Dichlorobenzene [95-50-1]^	9.5	UD	ug/L	50	9.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2-Dichloroethane [107-06-2]^	10	UD	ug/L	50	10	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,2-Dichloropropane [78-87-5]^	5.0	UD	ug/L	50	5.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,3,5-Trimethylbenzene [108-67-8]^	680	D	ug/L	50	15	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,3-Dichlorobenzene [541-73-1]^	7.5	UD	ug/L	50	7.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,3-Dichloropropane [142-28-9]^	8.0	UD	ug/L	50	8.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
1,4-Dichlorobenzene [106-46-7]^	9.5	UD	ug/L	50	9.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
2,2-Dichloropropane [594-20-7]^	14	UD	ug/L	50	14	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
2-Butanone [78-93-3]^	65	UD	ug/L	50	65	250	9G31037	EPA 8260D	07/31/19 21:39	REF	
2-Chloroethyl Vinyl Ether [110-75-8]^	55	UD	ug/L	50	55	250	9G31037	EPA 8260D	07/31/19 21:39	REF	
2-Chlorotoluene [95-49-8]^	4.0	UD	ug/L	50	4.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
2-Hexanone [591-78-6]^	44	UD	ug/L	50	44	250	9G31037	EPA 8260D	07/31/19 21:39	REF	
4-Chlorotoluene [106-43-4]^	3.4	UD	ug/L	50	3.4	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
4-Isopropyltoluene [99-87-6]^	4.2	UD	ug/L	50	4.2	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
4-Methyl-2-pentanone [108-10-1]^	55	UD	ug/L	50	55	250	9G31037	EPA 8260D	07/31/19 21:39	REF	
Acetone [67-64-1]^	500	UD	ug/L	50	500	1000	9G31037	EPA 8260D	07/31/19 21:39	REF	
Benzene [71-43-2]^	440	D	ug/L	50	7.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Bromobenzene [108-86-1]^	8.0	UD	ug/L	50	8.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Bromochloromethane [74-97-5]^	24	UD	ug/L	50	24	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Bromodichloromethane [75-27-4]^	8.5	UD	ug/L	50	8.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Bromoform [75-25-2]^	11	UD	ug/L	50	11	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Bromomethane [74-83-9]^	7.0	UD	ug/L	50	7.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Carbon disulfide [75-15-0]^	75	UD	ug/L	50	75	250	9G31037	EPA 8260D	07/31/19 21:39	REF	
Carbon tetrachloride [56-23-5]^	8.5	UD	ug/L	50	8.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Chlorobenzene [108-90-7]^	8.5	UD	ug/L	50	8.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Chloroethane [75-00-3]^	12	UD	ug/L	50	12	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Chloroform [67-66-3]^	9.0	UD	ug/L	50	9.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Chloromethane [74-87-3]^	6.5	UD	ug/L	50	6.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
cis-1,2-Dichloroethene [156-59-2]^	7.5	UD	ug/L	50	7.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
cis-1,3-Dichloropropene [10061-01-5]^	10	UD	ug/L	50	10	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Dibromochloromethane [124-48-1]^	8.5	UD	ug/L	50	8.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Dibromomethane [74-95-3]^	14	UD	ug/L	50	14	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Dichlorodifluoromethane [75-71-8]^	10	UD	ug/L	50	10	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Ethylbenzene [100-41-4]^	2200	D	ug/L	50	6.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	

Work Order: CC12467

ANALYTICAL RESULTS

Description: TW-1 **Lab Sample ID:** CC12467-01 **Received:** 07/26/19 16:05

Matrix: Ground Water Sampled: 07/26/19 11:45

Project: Old Brogden Farms II Site Sampled By: Alec Dziwanowski

Volatile Organic Compounds by GCMS

^ - ENCO Cary certified analyte [NC 591]

- LIVEO Cary Certified affailyte [IVC 331]											
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
Hexachlorobutadiene [87-68-3]^	11	UD	ug/L	50	11	50	9G31037	EPA 8260D	07/31/19 21:39	REF	QL-02
Isopropylbenzene [98-82-8]^	97	D	ug/L	50	7.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
m,p-Xylenes [108-38-3/106-42-3]^	6700	D	ug/L	50	8.5	100	9G31037	EPA 8260D	07/31/19 21:39	REF	
Methylene chloride [75-09-2]^	12	UD	ug/L	50	12	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Methyl-tert-Butyl Ether [1634-04-4]^	24	JD	ug/L	50	8.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Naphthalene [91-20-3]^	480	D	ug/L	50	5.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
n-Butyl Benzene [104-51-8]^	200	D	ug/L	50	2.9	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
n-Propyl Benzene [103-65-1]^	390	D	ug/L	50	6.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
o-Xylene [95-47-6]^	24	JD	ug/L	50	3.2	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
sec-Butylbenzene [135-98-8]^	5.0	UD	ug/L	50	5.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Styrene [100-42-5]^	5.5	UD	ug/L	50	5.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
tert-Butylbenzene [98-06-6]^	8.5	UD	ug/L	50	8.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Tetrachloroethene [127-18-4]^	8.5	UD	ug/L	50	8.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Toluene [108-88-3]^	360	D	ug/L	50	7.0	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
trans-1,2-Dichloroethene [156-60-5]^	10	UD	ug/L	50	10	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
trans-1,3-Dichloropropene [10061-02-6]^	7.5	UD	ug/L	50	7.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Trichloroethene [79-01-6]^	7.5	UD	ug/L	50	7.5	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Trichlorofluoromethane [75-69-4]^	12	UD	ug/L	50	12	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Vinyl chloride [75-01-4]^	16	UD	ug/L	50	16	50	9G31037	EPA 8260D	07/31/19 21:39	REF	
Xylenes (Total) [1330-20-7]^	6700	D	ug/L	50	22	150	9G31037	EPA 8260D	07/31/19 21:39	REF	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	% Rec	% Re	<u>c Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
4-Bromofluorobenzene	50	1	50.0	101 %	53	136	9G31037	EPA 8260D	07/31/19 21:39	REF	
Dibromofluoromethane	49	1	50.0	97 %	<i>67-</i> .	129	9G31037	EPA 8260D	07/31/19 21:39	REF	
Toluene-d8	<i>55</i>	1	50.0	111 %	59-	134	9G31037	EPA 8260D	07/31/19 21:39	REF	

Semivolatile Organic Compounds by GCMS

Analyte [CAS Number]	Results	<u>Flag</u>	<u>Units</u>	DF	<u>MDL</u>	<u>PQL</u>	Batch	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
1,2,4-Trichlorobenzene [120-82-1]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
1,2-Dichlorobenzene [95-50-1]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
1,3-Dichlorobenzene [541-73-1]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
1,4-Dichlorobenzene [106-46-7]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
1-Methylnaphthalene [90-12-0]^	78	D	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2,4,5-Trichlorophenol [95-95-4]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2,4,6-Trichlorophenol [88-06-2]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2,4-Dichlorophenol [120-83-2]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2,4-Dimethylphenol [105-67-9]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2,4-Dinitrophenol [51-28-5]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2,4-Dinitrotoluene [121-14-2]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2,6-Dinitrotoluene [606-20-2]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Chloronaphthalene [91-58-7]^	14	UD	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Chlorophenol [95-57-8]^	11	UD	ug/L	5	11	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Methyl-4,6-dinitrophenol [534-52-1]^	16	UD	ug/L	5	16	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Methylnaphthalene [91-57-6]^	150	D	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Methylphenol [95-48-7]^	10	UD	ug/L	5	10	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Nitroaniline [88-74-4]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Nitrophenol [88-75-5]^	5.5	UD	ug/L	5	5.5	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	

Work Order: CC12467

ANALYTICAL RESULTS

Description: TW-1 **Lab Sample ID:** CC12467-01 **Received:** 07/26/19 16:05

Matrix: Ground Water **Sampled:** 07/26/19 11:45

Project: Old Brogden Farms II Site Sampled By: Alec Dziwanowski

Semivolatile Organic Compounds by GCMS

^ - ENCO Cary certified analyte [NC 591]											
Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
3 & 4-Methylphenol [108-39-4/106-44-5]^	10	UD	ug/L	5	10	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
3,3'-Dichlorobenzidine [91-94-1]^	18	UD	ug/L	5	18	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
3-Nitroaniline [99-09-2]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
4-Bromophenyl-phenylether [101-55-3]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
4-Chloro-3-methylphenol [59-50-7]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
4-Chloroaniline [106-47-8]^	10	UD	ug/L	5	10	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
4-Chlorophenyl-phenylether [7005-72-3]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
4-Nitroaniline [100-01-6]^	16	UD	ug/L	5	16	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
4-Nitrophenol [100-02-7]^	14	UD	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	QV-01
Acenaphthene [83-32-9]^	14	UD	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Acenaphthylene [208-96-8]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Anthracene [120-12-7]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Benzidine [92-87-5]^	8.0	UD	ug/L	5	8.0	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Benzo(a)anthracene [56-55-3]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Benzo(a)pyrene [50-32-8]^	11	UD	ug/L	5	11	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Benzo(b)fluoranthene [205-99-2]^	14	UD	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Benzo(g,h,i)perylene [191-24-2]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Benzo(k)fluoranthene [207-08-9]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Benzoic acid [65-85-0]^	5.0	UD	ug/L	5	5.0	250	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Benzyl alcohol [100-51-6]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Bis(2-chloroethoxy)methane [111-91-1]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Bis(2-chloroethyl)ether [111-44-4]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Bis(2-chloroisopropyl)ether [108-60-1]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Bis(2-ethylhexyl)phthalate [117-81-7]^	9.5	UD	ug/L	5	9.5	25	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Butylbenzylphthalate [85-68-7]^	19	UD	ug/L	5	19	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Chrysene [218-01-9]^	11	UD	ug/L	5	11	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Dibenzo(a,h)anthracene [53-70-3]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Dibenzofuran [132-64-9]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Diethylphthalate [84-66-2]^	15	JD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Dimethylphthalate [131-11-3]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Di-n-butylphthalate [84-74-2]^	14	UD	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Di-n-octylphthalate [117-84-0]^	16	UD	ug/L	5	16	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Fluoranthene [206-44-0]^	16	UD	ug/L	5	16	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Fluorene [86-73-7]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Hexachlorobenzene [118-74-1]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Hexachlorobutadiene [87-68-3]^	14	UD	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Hexachlorocyclopentadiene [77-47-4]^	14	UD	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Hexachloroethane [67-72-1]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Indeno(1,2,3-cd)pyrene [193-39-5]^	11	UD	ug/L	5	11	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Isophorone [78-59-1]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Naphthalene [91-20-3]^	310	D	ug/L	5	14	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Nitrobenzene [98-95-3]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
N-Nitrosodimethylamine [62-75-9]^	9.5	UD	ug/L	5	9.5	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
N-Nitroso-di-n-propylamine [621-64-7]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
N-nitrosodiphenylamine/Diphenylamine [86-30-6/122-39-4]^	12	UD	ug/L	5	12	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Pentachlorophenol [87-86-5]^	10	UD	ug/L	5	10	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Phenanthrene [85-01-8]^	13	UD	ug/L	5	13	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	

Work Order: CC12467

ANALYTICAL RESULTS

Description: TW-1 **Lab Sample ID:** CC12467-01 **Received:** 07/26/19 16:05

Matrix:Ground WaterSampled: 07/26/19 11:45

Project: Old Brogden Farms II Site Sampled By: Alec Dziwanowski

Semivolatile Organic Compounds by GCMS

Analyte [CAS Number]	<u>Results</u>	<u>Flag</u>	<u>Units</u>	<u>DF</u>	MDL	<u>PQL</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	By	<u>Notes</u>
Phenol [108-95-2]^	8.5	UD	ug/L	5	8.5	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Pyrene [129-00-0]^	18	UD	ug/L	5	18	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Pyridine [110-86-1]^	11	UD	ug/L	5	11	50	9G29005	EPA 8270E	07/30/19 14:46	DFM	
<u>Surrogates</u>	<u>Results</u>	<u>DF</u>	Spike Lvl	<u>% Rec</u>	% Rec	<u>: Limits</u>	<u>Batch</u>	<u>Method</u>	<u>Analyzed</u>	<u>By</u>	<u>Notes</u>
2,4,6-Tribromophenol	61	5	100	61 %	10-1	179	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Fluorobiphenyl	34	5	50.0	69 %	10-1	149	9G29005	EPA 8270E	07/30/19 14:46	DFM	
2-Fluorophenol	59	5	100	<i>59 %</i>	10-1	110	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Nitrobenzene-d5	34	5	50.0	67 %	10-1	149	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Phenol-d5	40	5	100	40 %	10-	88	9G29005	EPA 8270E	07/30/19 14:46	DFM	
Terphenyl-d14	35	5	50.0	71 %	10-1	188	9G29005	EPA 8270E	07/30/19 14:46	DFM	

Volatile Organic Compounds by GCMS - Quality Control

Batch 9G31037 - EPA 5030B_MS

Blank (9G31037-BLK1) Prepared: 07/31/2019 14:09 Analyzed: 07/31/2019 18:37

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,1,1,2-Tetrachloroethane	0.17	U	1.0	ug/L							
1,1,1-Trichloroethane	0.12	U	1.0	ug/L							
1,1,2,2-Tetrachloroethane	0.28	U	1.0	ug/L							
1,1,2-Trichloroethane	0.14	U	1.0	ug/L							
1,1-Dichloroethane	0.13	U	1.0	ug/L							
1,1-Dichloroethene	0.21	U	1.0	ug/L							
1,1-Dichloropropene	0.15	U	1.0	ug/L							
1,2,3-Trichlorobenzene	0.41	J	1.0	ug/L							
1,2,3-Trichloropropane	0.23	U	1.0	ug/L							
1,2,4-Trichlorobenzene	0.14	U	1.0	ug/L							
1,2,4-Trimethylbenzene	0.10	U	1.0	ug/L							
1,2-Dibromo-3-chloropropane	0.48	U	1.0	ug/L							
1,2-Dibromoethane	0.66	U	1.0	ug/L							
1,2-Dichlorobenzene	0.19	U	1.0	ug/L							
1,2-Dichloroethane	0.21	U	1.0	ug/L							
1,2-Dichloropropane	0.10	U	1.0	ug/L							
1,3,5-Trimethylbenzene	0.30	U	1.0	ug/L							
1,3-Dichlorobenzene	0.15	U	1.0	ug/L							
1,3-Dichloropropane	0.16	U	1.0	ug/L							
1,4-Dichlorobenzene	0.19	U	1.0	ug/L							
2,2-Dichloropropane	0.28	U	1.0	ug/L							
2-Butanone	1.3	U	5.0	ug/L							
2-Chloroethyl Vinyl Ether	1.1	U	5.0	ug/L							
2-Chlorotoluene	0.081	U	1.0	ug/L							
2-Hexanone	0.88	U	5.0	ug/L							
4-Chlorotoluene	0.068	U	1.0	ug/L							
4-Isopropyltoluene	0.085	U	1.0	ug/L							
4-Methyl-2-pentanone	1.1	U	5.0	ug/L							
Acetone	10	U	20	ug/L							
Benzene	0.15	U	1.0	ug/L							
Bromobenzene	0.16	U	1.0	ug/L							
Bromochloromethane	0.48	U	1.0	ug/L							
Bromodichloromethane	0.17	U	1.0	ug/L							
Bromoform	0.22	U	1.0	ug/L							
Bromomethane	0.14	U	1.0	ug/L							
Carbon disulfide	1.5	U	5.0	ug/L							
Carbon tetrachloride	0.17	U	1.0	ug/L							
Chlorobenzene	0.17	U	1.0	ug/L							
Chloroethane	0.23	U	1.0	ug/L							
Chloroform	0.18	U	1.0	ug/L							
Chloromethane	0.13	U	1.0	ug/L							
cis-1,2-Dichloroethene	0.15	U	1.0	ug/L							
cis-1,3-Dichloropropene	0.20	U	1.0	ug/L							
Dibromochloromethane	0.17	U	1.0	ug/L							
Dibromomethane	0.27	U	1.0	ug/L							
Dichlorodifluoromethane	0.20	U	1.0	ug/L							
Ethylbenzene	0.13	U	1.0	ug/L							
Hexachlorobutadiene	1.0	-	1.0	ug/L							
	0.14	U	1.0	ug/L							

Volatile Organic Compounds by GCMS - Quality Control

Batch 9G31037 - EPA 5030B_MS - Continued

Blank (9G31037-BLK1) Continued Prepared: 07/31/2019 14:09 Analyzed: 07/31/2019 18:37

<u>Analyte</u>	Result	<u>Flaq</u>	POL	<u>Units</u>	Spike Level	Source	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
	0.17	U	2.0		Level	Result	/UKLC	Lillics	RFD	Lillie	Hotes
m,p-Xylenes				ug/L							
Methylene chloride	0.23	U	1.0	ug/L							
Methyl-tert-Butyl Ether	0.16	U	1.0	ug/L							
Naphthalene	0.11	U	1.0	ug/L							
n-Butyl Benzene	0.058	U	1.0	ug/L							
n-Propyl Benzene	0.12	U	1.0	ug/L							
o-Xylene	0.065	U	1.0	ug/L							
sec-Butylbenzene	0.10	U	1.0	ug/L							
Styrene	0.11	U	1.0	ug/L							
tert-Butylbenzene	0.17	U	1.0	ug/L							
Tetrachloroethene	0.17	U	1.0	ug/L							
Toluene	0.14	U	1.0	ug/L							
trans-1,2-Dichloroethene	0.21	U	1.0	ug/L							
trans-1,3-Dichloropropene	0.15	U	1.0	ug/L							
Trichloroethene	0.15	U	1.0	ug/L							
Trichlorofluoromethane	0.24	U	1.0	ug/L							
Vinyl chloride	0.32	U	1.0	ug/L							
Xylenes (Total)	0.45	U	3.0	ug/L							
4-Bromofluorobenzene	50			ug/L	50.0		100	53-136			
Dibromofluoromethane	50			ug/L	50.0		101	67-129			
Toluene-d8	55			ug/L	50.0		109	59-134			

Analyte	Result	Flag	PQL	Units	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,1-Dichloroethene	21		1.0	ug/L	20.0		107	75-133			
Benzene	22		1.0	ug/L	20.0		108	80-134			
Chlorobenzene	20		1.0	ug/L	20.0		99	80-120			
Toluene	21		1.0	ug/L	20.0		105	71-120			
Trichloroethene	20		1.0	ug/L	20.0		102	74-120			
4-Bromofluorobenzene	48			ug/L	50.0		95	53-136			
Dibromofluoromethane	49			ug/L	50.0		97	67-129			
Toluene-d8	55			ug/L	50.0		109	<i>59-134</i>			

Prepared: 07/31/2019 14:09 Analyzed: 07/31/2019 17:06

Matrix Spike (9G31037-MS1) Prepared: 07/31/2019 14:09 Analyzed: 07/31/2019 17:37

Source: CC12017-02

LCS (9G31037-BS1)

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,1-Dichloroethene	22		1.0	ug/L	20.0	0.21 U	108	75-133			
Benzene	21		1.0	ug/L	20.0	0.15 U	106	80-134			
Chlorobenzene	19		1.0	ug/L	20.0	0.17 U	95	80-120			
Toluene	21		1.0	ug/L	20.0	0.14 U	104	71-120			
Trichloroethene	19		1.0	ug/L	20.0	0.15 U	97	74-120			
4-Bromofluorobenzene	48			ug/L	50.0		96	53-136			
Dibromofluoromethane	49			ug/L	50.0		98	67-129			
Toluene-d8	<i>55</i>			ug/L	50.0		109	<i>59-134</i>			

Volatile Organic Compounds by GCMS - Quality Control

Batch 9G31037 - EPA 5030B_MS - Continued

Matrix Spike Dup (9G31037-MSD1)

Prepared: 07/31/2019 14:09 Analyzed: 07/31/2019 18:07

Source: CC12017-02

Analyte	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,1-Dichloroethene	22		1.0	ug/L	20.0	0.21 U	112	75-133	4	20	
Benzene	21		1.0	ug/L	20.0	0.15 U	106	80-134	0.5	17	
Chlorobenzene	20		1.0	ug/L	20.0	0.17 U	98	80-120	3	16	
Toluene	20		1.0	ug/L	20.0	0.14 U	102	71-120	2	17	
Trichloroethene	19		1.0	ug/L	20.0	0.15 U	97	74-120	0.5	22	
4-Bromofluorobenzene	48			ug/L	50.0		96	53-136			
Dibromofluoromethane	49			ug/L	50.0		99	67-129			
Toluene-d8	55			ug/L	50.0		110	<i>59-134</i>			

Semivolatile Organic Compounds by GCMS - Quality Control

Batch 9G29005 - EPA 3510C_MS

Blank (9G29005-BLK1) Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 15:41

					Spike	Source		%REC		RPD	
Analyte	Result	Flag	PQL	Units	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	Notes
1,2,4-Trichlorobenzene	2.5	U	10	ug/L							
1,2-Dichlorobenzene	2.5	U	10	ug/L							
1,3-Dichlorobenzene	2.5	U	10	ug/L							
1,4-Dichlorobenzene	2.4	U	10	ug/L							
1-Methylnaphthalene	2.7	U	10	ug/L							
2,4,5-Trichlorophenol	2.5	U	10	ug/L							
2,4,6-Trichlorophenol	2.6	U	10	ug/L							
2,4-Dichlorophenol	2.6	U	10	ug/L							
2,4-Dimethylphenol	2.3	U	10	ug/L							
2,4-Dinitrophenol	2.6	U	10	ug/L							
2,4-Dinitrotoluene	2.6	U	10	ug/L							
2,6-Dinitrotoluene	2.5	U	10	ug/L							
2-Chloronaphthalene	2.8	U	10	ug/L							
2-Chlorophenol	2.2	U	10	ug/L							
2-Methyl-4,6-dinitrophenol	3.3	U	10	ug/L							
2-Methylnaphthalene	2.8	U	10	ug/L							
2-Methylphenol	2.0	U	10	ug/L							
2-Nitroaniline	2.5	U	10	ug/L							
2-Nitrophenol	1.1	U	10	ug/L							
3 & 4-Methylphenol	2.1	U	10	ug/L							
3,3'-Dichlorobenzidine	3.5	U	10	ug/L							
3-Nitroaniline	2.6	U	10	ug/L							
4-Bromophenyl-phenylether	2.4	U	10	ug/L							
4-Chloro-3-methylphenol	2.4	U	10	ug/L							
4-Chloroaniline	2.0	U	10	ug/L							
4-Chlorophenyl-phenylether	2.6	U	10	ug/L							
4-Nitroaniline	3.2	U	10	ug/L							
4-Nitrophenol	2.8	U	10	ug/L							QV-01
Acenaphthene	2.7	U	10	ug/L							
Acenaphthylene	2.6	U	10	ug/L							
Anthracene	2.4	U	10	ug/L							
Benzidine	1.6	U	10	ug/L							
Benzo(a)anthracene	2.4	U	10	ug/L							

Semivolatile Organic Compounds by GCMS - Quality Control

Batch 9G29005 - EPA 3510C_MS - Continued

Blank (9G29005-BLK1) Continued

Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 15:41

Analyte	<u>Result</u>	<u>Flaq</u>	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
Benzo(a)pyrene	2.2	U	10	ug/L							
Benzo(b)fluoranthene	2.8	U	10	ug/L							
Benzo(g,h,i)perylene	2.4	U	10	ug/L							
Benzo(k)fluoranthene	2.4	U	10	ug/L							
Benzoic acid	1.0	U	50	ug/L							
Benzyl alcohol	2.4	U	10	ug/L							
Bis(2-chloroethoxy)methane	2.4	U	10	ug/L							
Bis(2-chloroethyl)ether	2.6	U	10	ug/L							
Bis(2-chloroisopropyl)ether	2.5	U	10	ug/L							
Bis(2-ethylhexyl)phthalate	1.9	U	5.0	ug/L							
Butylbenzylphthalate	3.8	U	10	ug/L							
Chrysene	2.2	U	10	ug/L							
Dibenzo(a,h)anthracene	2.3	U	10	ug/L							
Dibenzofuran	2.6	U	10	ug/L							
Diethylphthalate	2.4	U	10	ug/L							
Dimethylphthalate	2.5	U	10	ug/L							
Di-n-butylphthalate	2.8	U	10	ug/L							
Di-n-octylphthalate	3.1	U	10	ug/L							
Fluoranthene	3.1	U	10	ug/L							
Fluorene	2.5	U	10	ug/L							
Hexachlorobenzene	2.3	U	10	ug/L							
Hexachlorobutadiene	2.8	U	10	ug/L							
Hexachlorocyclopentadiene	2.7	U	10	ug/L							
Hexachloroethane	2.6	U	10	ug/L							
Indeno(1,2,3-cd)pyrene	2.2	U	10	ug/L							
Isophorone	2.5	U	10	ug/L							
Naphthalene	2.8	U	10	ug/L							
Nitrobenzene	2.5	U	10	ug/L							
N-Nitrosodimethylamine	1.9	U	10	ug/L							
N-Nitroso-di-n-propylamine	2.3	U	10	ug/L							
N-nitrosodiphenylamine/Diphenylamine	2.5	U	10	ug/L							
Pentachlorophenol	2.1	U	10	ug/L							
Phenanthrene	2.6	U	10	ug/L							
Phenol	1.7	U	10	ug/L							
Pyrene	3.5	U	10	ug/L							
Pyridine	2.2	U	10	ug/L							
2,4,6-Tribromophenol	91			ug/L	100		91	10-179			
2-Fluorobiphenyl	43			ug/L	50.0		86	10-149			
2-Fluorophenol	58			ug/L	100		58	10-110			
Nitrobenzene-d5	42			ug/L	50.0		83	10-149			
Phenol-d5	48			ug/L	100		48	10-88			
Terphenyl-d14	47			ug/L	50.0		93	10-188			

LCS (9G29005-BS1) Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 16:10

					Spike	Source		%REC		RPD	
<u>Analyte</u>	Result	<u>Flaq</u>	PQL	<u>Units</u>	Level	Result	%REC	<u>Limits</u>	RPD	<u>Limit</u>	<u>Notes</u>
1,2,4-Trichlorobenzene	41		10	ug/L	50.0		83	27-90			
1,2-Dichlorobenzene	39		10	ug/L	50.0		77	26-88			
1,3-Dichlorobenzene	37		10	ug/L	50.0		73	22-81			

Semivolatile Organic Compounds by GCMS - Quality Control

Batch 9G29005 - EPA 3510C_MS - Continued

LCS (9G29005-BS1) Continued

Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 16:10

<u>Analyte</u>	<u>Result</u>	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,4-Dichlorobenzene	38		10	ug/L	50.0		76	23-84			
1-Methylnaphthalene	46		10	ug/L	50.0		93	33-121			
2,4,5-Trichlorophenol	47		10	ug/L	50.0		95	59-121			
2,4,6-Trichlorophenol	48		10	ug/L	50.0		96	61-119			
2,4-Dichlorophenol	48		10	ug/L	50.0		96	49-118			
2,4-Dimethylphenol	45		10	ug/L	50.0		89	42-111			
2,4-Dinitrophenol	46		10	ug/L	50.0		92	1-149			
2,4-Dinitrotoluene	52		10	ug/L	50.0		104	67-132			
2,6-Dinitrotoluene	48		10	ug/L	50.0		96	59-125			
2-Chloronaphthalene	44		10	ug/L	50.0		88	27-116			
2-Chlorophenol	41		10	ug/L	50.0		82	40-109			
2-Methyl-4,6-dinitrophenol	57		10	ug/L	50.0		114	33-160			
2-Methylnaphthalene	46		10	ug/L	50.0		91	32-120			
2-Methylphenol	42		10	ug/L	50.0		84	38-112			
2-Nitroaniline	46		10	ug/L	50.0		91	63-117			
2-Nitrophenol	45		10	ug/L	50.0		90	36-113			
3 & 4-Methylphenol	42		10	ug/L	50.0		83	49-103			
3,3'-Dichlorobenzidine	43		10	ug/L	50.0		85	50-150			
3-Nitroaniline	44		10	ug/L	50.0		87	50-150			
4-Bromophenyl-phenylether	46		10	ug/L	50.0		92	49-105			
4-Chloro-3-methylphenol	47		10	ug/L	50.0		94	58-121			
4-Chloroaniline	42		10	ug/L	50.0		84	50-150			
4-Chlorophenyl-phenylether	50		10	ug/L	50.0		100	44-130			
4-Nitroaniline	50		10	ug/L	50.0		99	50-150			
4-Nitrophenol	36		10	ug/L	50.0		71	33-105			
Acenaphthene	48		10	ug/L	50.0		96	39-125			
Acenaphthylene	47		10	ug/L	50.0		93	42-133			
Anthracene	52		10	ug/L	50.0		105	41-144			
Benzidine	31		10	ug/L	50.0		62	14-24			
Benzo(a)anthracene	49		10	ug/L	50.0		97	44-139			
Benzo(a)pyrene	48		10	ug/L	50.0		95	39-141			
Benzo(b)fluoranthene	50		10	ug/L	50.0		99	38-142			
Benzo(g,h,i)perylene	46		10	ug/L	50.0		92	30-143			
Benzo(k)fluoranthene	51		10	ug/L	50.0		101	27-154			
Benzoic acid	17	J	50	ug/L	50.0		34	10-120			
Benzyl alcohol	42		10	ug/L	50.0		84	41-141			
Bis(2-chloroethoxy)methane	45		10	ug/L	50.0		91	45-136			
Bis(2-chloroethyl)ether	43		10	ug/L	50.0		86	32-114			
Bis(2-chloroisopropyl)ether	38		10	ug/L	50.0		77	29-120			
Bis(2-ethylhexyl)phthalate	49		5.0	ug/L	50.0		99	72-126			
Butylbenzylphthalate	50		10	ug/L	50.0		100	64-150			
Chrysene	48		10	ug/L	50.0		96	47-134			
Dibenzo(a,h)anthracene	48		10	ug/L	50.0		96	24-147			
Dibenzofuran	49		10	ug/L	50.0		97	48-125			
Diethylphthalate	54		10	ug/L	50.0		107	62-127			
Dimethylphthalate	50		10	ug/L	50.0		100	60-124			
Di-n-butylphthalate	54		10	ug/L	50.0		108	64-128			
Di-n-octylphthalate	49		10	ug/L	50.0		98	70-133			
Fluoranthene	52		10	ug/L	50.0		104	43-146			

Semivolatile Organic Compounds by GCMS - Quality Control

Batch 9G29005 - EPA 3510C_MS - Continued

LCS (9G29005-BS1) Continued

Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 16:10

Analyte	Result	Flag	<u>POL</u>	Units	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD Limit	Notes
Fluorene	51		10	ug/L	50.0	Kesuit	102	42-132		<u> </u>	HOLOS
Hexachlorobenzene	50		10	ug/L	50.0		99	62-114			
Hexachlorobutadiene	42		10	ug/L	50.0		84	11-99			
Hexachlorocyclopentadiene	28		10	ug/L	50.0		56	10-99			
Hexachloroethane	36		10	ug/L	50.0		73	12-82			
Indeno(1,2,3-cd)pyrene	47		10	ug/L	50.0		95	31-142			
Isophorone	47		10	ug/L	50.0		93	49-117			
Naphthalene	44		10	ug/L	50.0		89	30-131			
Nitrobenzene	45		10	ug/L	50.0		90	44-115			
N-Nitrosodimethylamine	35		10	ug/L	50.0		70	24-94			
N-Nitroso-di-n-propylamine	43		10	ug/L	50.0		86	48-126			
Pentachlorophenol	41		10	ug/L	50.0		81	51-135			
Phenanthrene	52		10	ug/L	50.0		103	42-130			
Phenol	28		10	ug/L	50.0		56	19-78			
Pyrene	52		10	ug/L	50.0		104	44-137			
Pyridine	29		10	ug/L	50.0		57	34-54			
2,4,6-Tribromophenol	110			ug/L	100		112	10-179			
2-Fluorobiphenyl	45			ug/L	50.0		91	10-149			
2-Fluorophenol	65			ug/L	100		65	10-110			
Nitrobenzene-d5	45			ug/L	50.0		91	10-149			
Phenol-d5	52			ug/L	100		52	10-88			
Terphenyl-d14	52			ug/L	50.0		104	10-188			

Matrix Spike (9G29005-MS1)

Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 16:39

Analyte	Result	Flag	<u>PQL</u>	<u>Units</u>	Spike Level	Source Result	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
1,2,4-Trichlorobenzene	33		10	ug/L	50.0	2.5 U	67	<u>27-90</u>	14. 5	<u> </u>	HOLOS
1,2-Dichlorobenzene	33		10	ug/L ug/L	50.0	2.5 U	66	26-88			
,				-							
1,3-Dichlorobenzene	32		10	ug/L	50.0	2.5 U	63	22-81			
1,4-Dichlorobenzene	33		10	ug/L	50.0	2.4 U	65	23-84			
1-Methylnaphthalene	40		10	ug/L	50.0	2.7 U	80	33-121			
2,4,5-Trichlorophenol	44		10	ug/L	50.0	2.5 U	88	59-121			
2,4,6-Trichlorophenol	43		10	ug/L	50.0	2.6 U	85	61-119			
2,4-Dichlorophenol	43		10	ug/L	50.0	2.6 U	87	49-118			
2,4-Dimethylphenol	21		10	ug/L	50.0	2.3 U	43	42-111			
2,4-Dinitrophenol	47		10	ug/L	50.0	2.6 U	95	11-149			
2,4-Dinitrotoluene	48		10	ug/L	50.0	2.6 U	96	67-132			
2,6-Dinitrotoluene	41		10	ug/L	50.0	2.5 U	83	59-125			
2-Chloronaphthalene	37		10	ug/L	50.0	2.8 U	74	27-116			
2-Chlorophenol	38		10	ug/L	50.0	2.2 U	77	40-109			
2-Methyl-4,6-dinitrophenol	55		10	ug/L	50.0	3.3 U	110	33-160			
2-Methylnaphthalene	39		10	ug/L	50.0	2.8 U	78	32-120			
2-Methylphenol	38		10	ug/L	50.0	2.0 U	76	38-112			
2-Nitroaniline	40		10	ug/L	50.0	2.5 U	80	63-117			
2-Nitrophenol	39		10	ug/L	50.0	1.1 U	79	36-113			
3 & 4-Methylphenol	37		10	ug/L	50.0	2.1 U	75	49-103			
3,3'-Dichlorobenzidine	20		10	ug/L	50.0	3.5 U	40	50-150			
3-Nitroaniline	5.5	J	10	ug/L	50.0	2.6 U	11	50-150			
4-Bromophenyl-phenylether	40		10	ug/L	50.0	2.4 U	80	49-105			

Semivolatile Organic Compounds by GCMS - Quality Control

Batch 9G29005 - EPA 3510C_MS - Continued

Matrix Spike (9G29005-MS1) Continued Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 16:39

Source: CC12631-02

Source: CC12631-02											
<u>Analyte</u>	Result	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes
4-Chloro-3-methylphenol	45		10	ug/L	50.0	2.4 U	90	58-121			
4-Chloroaniline	2.2	J	10	ug/L	50.0	2.0 U	4	50-150			
4-Chlorophenyl-phenylether	44		10	ug/L	50.0	2.6 U	89	44-130			
4-Nitroaniline	20		10	ug/L	50.0	3.2 U	41	50-150			
4-Nitrophenol	52		10	ug/L	50.0	2.8 U	103	33-105			
Acenaphthene	40		10	ug/L	50.0	2.7 U	79	39-125			
Acenaphthylene	33		10	ug/L	50.0	2.6 U	66	42-133			
Anthracene	44		10	ug/L	50.0	2.4 U	89	41-144			
Benzidine	1.6	U	10	ug/L	50.0	1.6 U		14-24			QM-07
Benzo(a)anthracene	44		10	ug/L	50.0	2.4 U	89	44-139			
Benzo(a)pyrene	37		10	ug/L	50.0	2.2 U	74	39-141			
Benzo(b)fluoranthene	49		10	ug/L	50.0	2.8 U	99	38-142			
Benzo(g,h,i)perylene	36		10	ug/L	50.0	2.4 U	72	30-143			
Benzo(k)fluoranthene	51		10	ug/L	50.0	2.4 U	102	27-154			
Benzoic acid	26	J	50	ug/L	50.0	1.0 U	52	10-120			
Benzyl alcohol	39		10	ug/L	50.0	2.4 U	78	41-141			
Bis(2-chloroethoxy)methane	40		10	ug/L	50.0	2.4 U	81	45-136			
Bis(2-chloroethyl)ether	37		10	ug/L	50.0	2.6 U	75	32-114			
Bis(2-chloroisopropyl)ether	35		10	ug/L	50.0	2.5 U	70	29-120			
Bis(2-ethylhexyl)phthalate	47		5.0	ug/L	50.0	1.9 U	93	72-126			
Butylbenzylphthalate	47		10	ug/L	50.0	3.8 U	94	64-150			
Chrysene	44		10	ug/L	50.0	2.2 U	88	47-134			
Dibenzo(a,h)anthracene	39		10	ug/L	50.0	2.3 U	79	24-147			
Dibenzofuran	42		10	ug/L	50.0	2.6 U	85	48-125			
Diethylphthalate	46		10	ug/L	50.0	2.4 U	93	62-127			
Dimethylphthalate	44		10	ug/L	50.0	2.5 U	87	60-124			
Di-n-butylphthalate	49		10	ug/L	50.0	2.8 U	98	64-128			
Di-n-octylphthalate	43		10	ug/L	50.0	3.1 U	85	70-133			
Fluoranthene	48		10	ug/L	50.0	3.1 U	95	43-146			
Fluorene	45		10	ug/L	50.0	2.5 U	89	42-132			
Hexachlorobenzene	43		10	ug/L	50.0	2.3 U	86	62-114			
Hexachlorobutadiene	34		10	ug/L	50.0	2.8 U	67	11-99			
Hexachlorocyclopentadiene	35		10	ug/L	50.0	2.7 U	71	10-99			
Hexachloroethane	32		10	ug/L	50.0	2.6 U	63 77	12-82			
Indeno(1,2,3-cd)pyrene	39 42		10 10	ug/L	50.0 50.0	2.2 U 2.5 U	85	31-142 49-117			
Isophorone Naphthalono	37			ug/L							
Naphthalene Nitrobenzene	39		10 10	ug/L ug/L	50.0 50.0	2.8 U 2.5 U	73 77	30-131 44-115			
N-Nitrosodimethylamine	28		10	ug/L ug/L	50.0	1.9 U	56	24-94			
N-Nitroso-di-n-propylamine	42		10	ug/L	50.0	2.3 U	85	48-126			
Pentachlorophenol	44		10	ug/L ug/L	50.0	2.1 U	89	51-135			
Phenanthrene	46		10	ug/L	50.0	2.6 U	92	42-130			
Phenol	29		10	ug/L	50.0	1.7 U	58	19-78			
Pyrene	48		10	ug/L	50.0	3.5 U	95	44-137			
Pyridine	4.2	J	10	ug/L	50.0	2.2 U	8	34-54			
2,4,6-Tribromophenol	110			ug/L	100		113	10-179			
2-Fluorobiphenyl	41			ug/L	50.0		81	10-149			
2-Fluorophenol	68			ug/L	100		68	10-110			
Nitrobenzene-d5	41			ug/L	50.0		81	10-149			

Semivolatile Organic Compounds by GCMS - Quality Control

Batch 9G29005 - EPA 3510C_MS - Continued

Matrix Spike	(9G29005-MS1) Continued		Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 16:39									
Source: CC12	631-02											
Analyte	Resu	lt Fla	a POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	Notes	
Phenol-d5	65			ug/L	100		65	10-88				
Terphenyl-d14	50			ug/L	50.0		100	10-188				

Matrix Spike Dup (9G29005-MSD1)

Prepared: 07/29/2019 09:40 Analyzed: 07/29/2019 17:08

Source:	CC12631-02
---------	------------

3001CC. CC12031 02											
<u>Analyte</u>	<u>Result</u>	Flag	POL	<u>Units</u>	Spike Level	Source <u>Result</u>	%REC	%REC <u>Limits</u>	RPD	RPD <u>Limit</u>	<u>Notes</u>
1,2,4-Trichlorobenzene	35		10	ug/L	50.0	2.5 U	70	27-90	5	43	
1,4-Dichlorobenzene	32		10	ug/L	50.0	2.4 U	64	23-84	1	39	
2,4-Dinitrotoluene	45		10	ug/L	50.0	2.6 U	91	67-132	5	17	
2-Chlorophenol	37		10	ug/L	50.0	2.2 U	74	40-109	3	22	
4-Chloro-3-methylphenol	42		10	ug/L	50.0	2.4 U	84	58-121	7	22	
4-Nitrophenol	36		10	ug/L	50.0	2.8 U	72	33-105	35	27	QM-11
Acenaphthene	42		10	ug/L	50.0	2.7 U	84	39-125	6	25	
N-Nitroso-di-n-propylamine	39		10	ug/L	50.0	2.3 U	79	48-126	7	23	
Pentachlorophenol	41		10	ug/L	50.0	2.1 U	82	51-135	8	11	
Phenol	24		10	ug/L	50.0	1.7 U	48	19-78	18	18	
Pyrene	46		10	ug/L	50.0	3.5 U	92	44-137	3	24	
2,4,6-Tribromophenol	94			ug/L	100		94	10-179			
2-Fluorobiphenyl	<i>39</i>			ug/L	50.0		<i>79</i>	10-149			
2-Fluorophenol	56			ug/L	100		56	10-110			
Nitrobenzene-d5	39			ug/L	50.0		<i>78</i>	10-149			
Phenol-d5	48			ug/L	100		48	10-88			
Terphenyl-d14	44			ug/L	50.0		89	10-188			

FLAGS/NOTES AND DEFINITIONS

- **B** The analyte was detected in the associated method blank.
- **D** The sample was analyzed at dilution.
- The reported value is between the laboratory method detection limit (MDL) and the laboratory method reporting limit (MRL), adjusted for actual sample preparation data and moisture content, where applicable.
- **U** The analyte was analyzed for but not detected to the level shown, adjusted for actual sample preparation data and moisture content, where applicable.
- **E** The concentration indicated for this analyte is an estimated value above the calibration range of the instrument. This value is considered an estimate.
- MRL Method Reporting Limit. The MRL is roughly equivalent to the practical quantitation limit (PQL) and is based on the low point of the calibration curve, when applicable, sample preparation factor, dilution factor, and, in the case of soil samples, moisture content.
- **PQL** PQL: Practical Quantitation Limit. The PQL presented is the laboratory MRL.
- **N** The analysis indicates the presence of an analyte for which there is presumptive evidence (85% or greater confidence) to make a "tentative identification".
- **P** Greater than 25% concentration difference was observed between the primary and secondary GC column. The lower concentration is reported.
- [CALC] Calculated analyte MDL/MRL reported to the highest reporting limit of the component analyses.
- **QL-02** The associated laboratory control sample exhibited high bias; since the result is ND, there is no impact.
- **QM-07** The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- **QM-11** Precision between duplicate matrix spikes of the same sample was outside acceptance limits.
- **QV-01** The associated continuing calibration verification standard exhibited high bias; since the result is ND, there is no impact.
- **QV-02** The associated continuing calibration verification standard exhibited low bias; the reported result should be considered to be a minimum estimate.

ENVIRONMENTAL CONSERVATION LABORATORIES CHAIN-OF-CUSTODY RECORD

www.encolabs.com

10775 Central Port Dr. Orlando, FL 32824 (407) 826-5314 Fax (407) 850-6945

4810 Executive Park Court, Suite 111 Jacksonville, FL 32216-6069 (904) 296-3007 Fax (904) 296-6210 102-A Woodwinds Industrial Ct. Cary, NC 27511 (919) 467-3090 Fax (919) 467-3515

Page _ l_ of _ l_

Client Name Duncklee & Dunham, PC (D	T TOOO/p	Project Number 2019127							Requested Turnaround						
Address		Project Name/I	Desc												Times
511 Keisler Drive, Suite 102	C.	Old Bro	ogden Fan	ms II Site		-									Note : Rush requests subject to acceptance by the facility
Cary, NC 27518	PO # / Billing Info) # / Billing Info										Standard
(919) 858-9898 Fax		Reporting Cont Alec D	^{tact} ziwanowsk	8260D				-					Expedited		
Sampler(s) Name, Affiliation (Print) Afec Dzwunowski, Dunck	ice of Dunhan	Billing Contact Rick K	olb		8270E	V							Due//		
Sampler(s) Signature	Signature Site Location		Location / Time Zone												Lab Workorder CC12467
					Company steel			Prese	ervation (See Codes	(Combin	e as necessa	ary)		0012401
Item # Sample ID (Field Identification)	Collection Date	Collection Time	Comp / Grab	Matrix (see codes)	Total # of Containers				-						Sample Comments
TW-I	7/26/19	1145	G	GW	4	X	X								
				GW	4	X	X	P	>			k†			
Trip Blank				WA	- 2	X	D								
			THE OWNER.									+0			
						1									
ASSESSED AND ASSESSED AND ASSESSED ASSESSEDANCE ASSESSED ASSESSEDA					201 202										
Selection of the last	The state of	15 15				-							AL		
										2					
										Co	1	-			A SECURITION OF THE SECURITIES OF THE SECURITION OF THE SECURITIES OF THE SECURITION
Sample Kit Prepared By	DateFime	Relinquis	ed By			< Tota	al # of C		ers	Received	By	_	15	71	/ Det/Time/
RY	Date Time	A	ue &	2-	-16	_	7/2	6/19		-		4	1	3	2/2d 19 1605
Compents/Special Reporting Requirements		Relinguist	ned By				Date/Tin	ie	2	Received	By		-		Date/Time
		Relinquish	ned By				Date/Tim	ne		Deceived	Ву				Date/Time
		Cooler#s	& Temps on Rece	eipt						10	10		Co	ondition Upo	on Receipt
		D	LUE						1	4.	8.6			/ Ac	cceptable Unacceptable

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

ROY COOPER
GOVERNOR

JAMES H. TROGDON, III
SECRETARY

December 6, 2018

MEMORANDUM TO: John Williams, PE

Project Manager

RK&K — DocuSigned by:

FROM: Craig Haden

GeoEnvironmental Project Manager

Craig Haden

GeoEnvironmental Section Geotechnical Engineering Unit

TIP NO: I-5972 WBS: 44989.1.1 COUNTY: JOHNSTON

DIVISION 4

DESCRIPTION: I-95 at US 70 Business

SUBJECT: GeoEnvironmental Phase I Report

The GeoEnvironmental Section of the Geotechnical Engineering Unit performed a Phase I field investigation on December 5, 2018 for the above referenced project to identify geoenvironmental sites of concern. The purpose of this report is to document sites of concern within the project study area that are or may be contaminated. These sites of concern should be included in the environmental planning document in an effort to assist the project stakeholders in reducing or avoiding impacts to these sites. Sites of concern may include, but are not limited to, underground storage tank (UST) sites, dry cleaning facilities, hazardous waste sites, regulated landfills and unregulated dumpsites.

Findings

Six (6) sites of concern were identified within the proposed study area. We anticipate low monetary and scheduling impacts resulting from these sites. See the following table and figure for details.

Please note that discovery of additional sites not recorded by regulatory agencies and not reasonably discernible during the project reconnaissance may occur. The GeoEnvironmental Section should be notified immediately after discovery of such sites so their potential impact(s) may be assessed.

If there are questions regarding the geoenvironmental issues, please contact me, at (919) 707-6871.

cc:

Mailing Address: NC DEPARTMENT OF TRANSPORTATION GEOTECHNICAL ENGINEERING UNIT 1589 MAIL SERVICE CENTER RALEIGH, NC 27699-1589 Telephone: (919) 707-6850 Customer Service: 1-877-368-4968 Location: 1020 BIRCH RIDGE DRIVE RALEIGH, NC 27610

Website: www.ncdot.gov

GeoEnvironmental Phase I Report T.I.P.#: I-5972

Page 2 of 9

John Pilipchuk, LG, PE, State Geotechnical Engineer

Brian Hanks, PE, State Structures Engineer

Dale Burton, PE, PLS, State Locations and Surveys Engineer

Carl Barclay, PE, State Utilities Manager

Corey McLamb, PE, Division Construction Engineer

Matt Clarke, PE, Division Project Development Engineer

Lloyd Johnston, Division Right of Way Agent

Chris Kreider, PE, Geotechnical Regional Manager

Neil Roberson, LG, Regional Geological Engineer

Tracy Clark, ROW Unit, Negotiations, Asst. State Negotiator-East

row-notify@ncdot.gov

roadwaydesign@ncdot.gov

hydraulics_notify@ncdot.gov

(01) Property Name: Speedway # 6960

1669 E. Market St Smithfield, NC 27577

Facility ID: 00-0-000036566 Incident Type/Number: N/A **Property Owner:**

Wilcohess LLC 539 S. Main St Findlay, OH 45840

UST Owner:

Speedway LLC 500 Speedway Dr Enon, OH 45323

Anticipated Impacts: Low

This site currently operates as a convenience store/gas station. It is located on the northwest quadrant of E. Market St and Outlet Center Dr. According to the UST section registry there are three (3) USTs currently in use. No monitoring wells were observed during the site investigation.

(02) Property Name:

Sheetz # 511 1700 E. Market St Smithfield, NC 27577

Facility ID: 00-0-000038092 Incident Type/Number: N/A **Property Owner:**

PTM LP 5700 Sixth Ave Altoona, PA 16602

UST Owner:

Sheetz Inc 5700 Sixth Ave Altoona, PA 16602

Anticipated Impacts: Low

This Site Currently operates as a convenience store/gas station. It is located on the southeast quadrant of E. Market St (US 70 Bus) and Towne Centre Pl. According to the UST section registry there are four (4) USTs currently in use. No monitoring wells were observed during the site investigation.

(03) Property Name:

Panera Bread 1716 E. Market St Smithfield, NC 27577

Facility ID: 00-0-0000023565

Incident Type/Number: 23206, 42077

Property Owner:

Smith NC POOH, LLC 101 W 55th St New York, NY 10019

UST Owner:

Sunoco Inc

3801 West ChesterPike Newtown Square, PA 19073

Anticipated Impacts: Low

This site is currently a Panera Bread Restaurant, there is also an Arby's Restaurant on the adjoining parcel. It is the former location of Sunoco # 0614-3788. It is located on the southwest quadrant of E. Market St (US 70 Bus) and the I-95 south bound on Ramp. According to the UST section registry six (6) USTs were removed in August 2017. The site has since been redeveloped as the Panera Bread and Arby's restaurants. Incident #'s 23206 and 42077 are associated with the former facility (Incident #'s are for the same incident) and were closed out in 2002. No monitoring wells were observed during the site investigation

(04) Property Name:

Vacant Lot (B&S Texaco) SE Quadrant E. Market (US 70 Bus) and I-95 exit ramp Smithfield, NC 27577

Facility ID: 00-0-000030057 Incident Type/Number: 11797

Property Owner:

Old Brogden Farms II, LLC 6317 Bayswater Trl Raleigh, NC 27612

UST Owner:

Tommy Jarrett PO Drawer 8

Goldsboro, NC 27533

Anticipated Impacts: Low

This site is currently a vacant lot. It is located on the south side of E. Market St (US 70 Bus) at the I-95 north bound exit. It is the former location of B&S Texaco. According to the UST section registry six (6) USTs were removed in 1994. Incident # 11797 is associated with this facility and was closed out in 2012. The property was fenced off during the site investigation. One (1) abandoned monitoring well was observed on the outside of the fence on the service Rd.

(05) Property Name:

Trisha's Café 911 Mallard Rd Smithfield, NC 27577

Facility ID: 00-0-000014912 Incident Type/Number: 10973 **Property Owner:**

Mark Ryan PO Box 2458 Smithfield, NC 27577

UST Owner:

Fitchett Investments, Inc

PO Box 1407 Dunn, NC 28334

Anticipated Impacts: Low

This site appeared to be vacant at the time of the site investigation. It is located on the east side of Mallard Rd approximately 370 feet south of the I-95 exit. It is the former location of the Sun Towel Shop. According to the UST section registry four (4) USTs were removed in 1992. Incident # 10973 is associated with this facility and was closed out in 1993. No monitoring wells were observed during the site investigation.

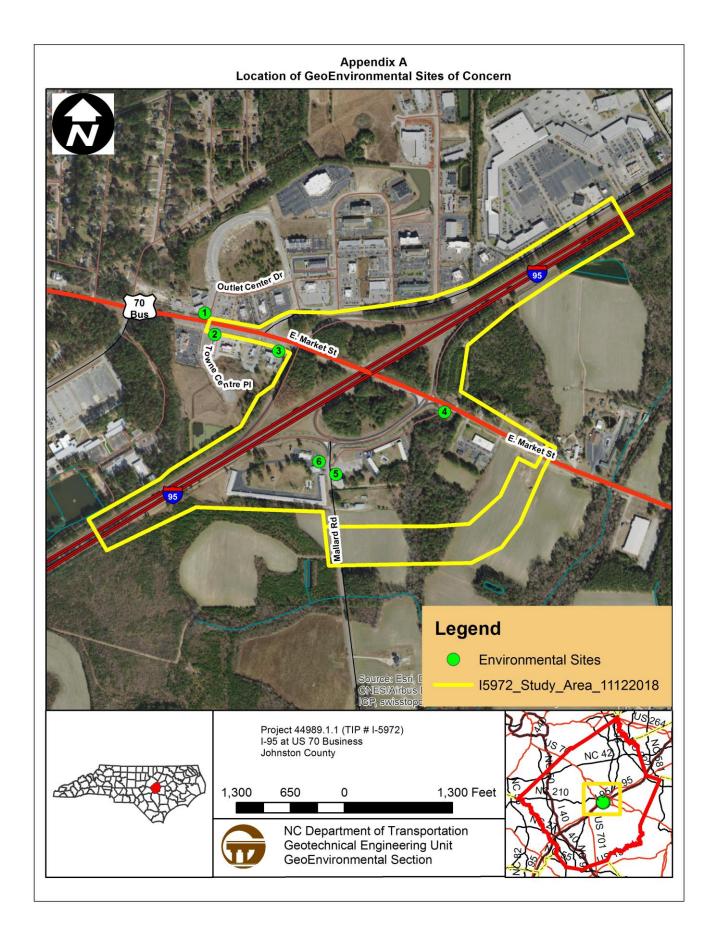
(06) Property Name:

Village Motor Lodge 198 Mallard Rd Smithfield, NC 27577

Facility ID: 00-0-000029939 **Incident Type/Number:** 11409

Property Owner:

Danbar Limited Partnership PO Box 1333 Smithfield, NC 27577


UST Owner:

Village Motor Lodge 198 Mallard Rd Smithfield, NC 27577

Anticipated Impacts: Low

This site currently operates as the Village Motor Lodge. It is located on the west side of Mallard Rd at the I -95 exit. According to the UST section Two (2) USTs were removed in 1993. Incident # 11409 is associated with this facility and was closed out in 2006. One (1) monitoring well was observed behind the vacant restaurant. According to the incident database this well was installed in the UST basin and no contaminants were identified.

