PRELIMINARY SITE ASSESSMENT

SR 1100 (BRAWLEY SCHOOL ROAD) IMPROVEMENTS TIP NO. R-3833C, WBS NO. 34554.2.4

NCDOT PARCEL NO. 46 OWNER: RUSHER OIL CO. 108 BRAWLEY SCHOOL ROAD MOORESVILLE, IREDELL COUNTY, NORTH CAROLINA

PREPARED FOR: NORTH CAROLINA DEPARTMENT OF TRANSPORTATION C/O STANTEC 801 JONES FRANKLIN ROAD SUITE 300 RALEIGH NORTH CAROLINA 27606-3394

PREPARED BY: FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513

PROJECT NUMBER: G18063.02 OCTOBER 27, 2019

October 27, 2019

Mr. A. Dean Sarvis PE Stantec 801 Jones Franklin Road, Suite 300 Raleigh, North Carolina 27606-3394

Re: Preliminary Site Assessment SR 1100 (Brawley School Road) Improvements TIP No. R-3833C, WBS No. 34554.2.4 NCDOT Parcel No. 46 Owner: Rusher Oil Co. 108 Brawley School Road Mooresville, Iredell County, North Carolina

Dear: Mr. Sarvis:

Falcon is pleased to present the following Preliminary Site Assessment in support of the above-mentioned Project. Specifically, Falcon sampled soil in proximity to the project limits on this parcel in general accordance with the approved scope of work. This parcel is an active gas station with two known USTs. Soils requiring remediation or special handling during construction were not identified. Areas of elevated conductivity that did not correspond to buried utilities and which may indicate coal ash were not identified on this parcel

Falcon recommends if drums, additional USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

Please review this report and advise us if you have any questions or concerns. We appreciate this opportunity to provide services to you and look forward to partnering with you on future projects. If you have any questions, please give Falcon a call at (919) 871-0800.

Sincerely, FALCON ENGINEERING, INC.

histophen Bughant

Christopher J. Burkhardt Environmental Services Manager

Jeremy R. Hamm, PE Geotechnical Services Manager

TABLE OF CONTENTS

SECTION 1: INTRODUCTION	5
1.1 DESCRIPTION	5
1.2 SCOPE OF WORK	5
SECTION 2: HISTORY	6
2.1 PARCEL USAGE	
2.2 FACILITY IDENTIFICATION NU	MBER
2.3 GROUNDWATER INCIDENT N	JMBER
SECTION 3: SITE OBSERVATIONS	7
3.1 GROUNDWATER MONITORING	G WELLS7
3.2 ACTIVE USTS	7
3.3 FEATURES APPARENT BEYO	ND ROW/EASEMENT7
SECTION 4: METHODOLOGY	8
4.1 GEOPHYSICS	
4.2 BORINGS	9
4.3 SAMPLE PROTOCOL	
SECTION 5: RESULTS	11
5.1 GEOPHYSICS	
5.2 SAMPLE DATA	
	JATES
TABLE NO. 2 PID READINGS	
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS TABLE NO. 4 SOIL OBSERVATIO	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS TABLE NO. 4 SOIL OBSERVATIONS 5.4 QUANTITIES CALCULATIONS	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS TABLE NO. 4 SOIL OBSERVATIONS 5.4 QUANTITIES CALCULATIONS SECTION 6: CONCLUSIONS	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS TABLE NO. 4 SOIL OBSERVATIONS 5.4 QUANTITIES CALCULATIONS SECTION 6: CONCLUSIONS 6.1 INTERPRETATION OF RESULT	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS TABLE NO. 4 SOIL OBSERVATIONS 5.4 QUANTITIES CALCULATIONS SECTION 6: CONCLUSIONS 6.1 INTERPRETATION OF RESULT 6.2 GEOPHYSICS	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS TABLE NO. 4 SOIL OBSERVATIONS 5.4 QUANTITIES CALCULATIONS SECTION 6: CONCLUSIONS 6.1 INTERPRETATION OF RESULT 6.2 GEOPHYSICS 6.3 SAMPLING	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS TABLE NO. 4 SOIL OBSERVATIONS 5.4 QUANTITIES CALCULATIONS SECTION 6: CONCLUSIONS 6.1 INTERPRETATION OF RESULT 6.2 GEOPHYSICS 6.3 SAMPLING 6.4 QUANTITIES	13 F SOIL SAMPLING RESULTS
TABLE NO. 2 PID READINGS TABLE NO. 3 SUMMARY OF UV 5.3 SAMPLE OBSERVATIONS TABLE NO. 4 SOIL OBSERVATIONS 5.4 QUANTITIES CALCULATIONS . SECTION 6: CONCLUSIONS 6.1 INTERPRETATION OF RESULT 6.2 GEOPHYSICS 6.3 SAMPLING 6.4 QUANTITIES SECTION 7: RECOMMENDATIONS	13 F SOIL SAMPLING RESULTS 14 14 14 15 15 15 15 16 16 16 16 16 16 16 16

LIST OF FIGURES AND ATTACHMENTS

VICINITY MAP USGS TOPOGRAPHIC MAP PARCEL LOCATION MAP BORING LOCATION MAP SITE PHOTOGRAPHS LABORATORY RESULTS GEOPHYSICAL SURVEY BRAWLEY SCHOOL ROAD COAL ASH STRUCTURAL FILL PERMIT BRAWLEY SCHOOL ROAD COAL ASH STRUCTURAL FILL MAP

SECTION 1: INTRODUCTION

1.1 DESCRIPTION

Falcon Engineering, Inc. (Falcon) has completed a Preliminary Site Assessment of NCDOT TIP No. R-3833C Parcel No. 46. Parcel No. 46 is addressed as 108 Brawley School Road, Mooresville, Iredell County, North Carolina. NCDOT is proposing to improve SR 1100 (Brawley School Road) from SR 1116 (Talbert Road) to 1,000' east of US 21, including improvements to a number of intersecting roads and driveways throughout this corridor. The limits of the assessment are between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). Boring locations were placed in the vicinity of proposed excavations for drainage features, utilities, and roadway/ditch cuts to determine if soils requiring remediation or special handling were present where excavation was planned to take place.

1.2 SCOPE OF WORK

Falcon's scope of work included coordination of; public and private utility location near the proposed borings, geophysical surveys, collecting soil samples with a geoprobe, and laboratory analysis. Samples were analyzed for petroleum via UVF technology.

SECTION 2: HISTORY

2.1 PARCEL USAGE

Falcon performed a Phase I Environmental Site Assessment (ESA) for R-3833C under Project No G18063.01 dated March 2019. The ESA identified this parcel as a Recognized Environmental Condition (REC) based on the parcel's history as an active gas station. The UST database lists one 10,000-gallon and one 20,000-gallon UST registered to Rushco at this address. A UST pit and vent pipes were observed adjacent to the north edge of the existing pavement for Brawley School Road and south of the metal canopy that covers the dispensers. This facility is not in a database that reports spills or releases.

This facility was also identified as part of the permitted Brawley School Road Coal Ash Structural Fill site. Falcon reviewed available information from The North Carolina Department of Environmental Quality (NCDEQ) Mooresville Regional Office. The State file contained an Acknowledgment and Consent form dated February 27, 1995. This form documents the landowner's (at the time) consent to the use of coal combustion by-products as structural fill and estimates the volume of coal combustion by-products at 100,000 tons. The State file also included a Structural Fill Notification from Duke Power Company dated February 28, 1995. The Notification states; *"The proposed project will utilize approximately 60,000 cubic yards of fly ash in a structural fill application to develop the property for marketing. The property is located at the intersection of US highway 21 and State Road 1100 (Brawley School Road) in Iredell County."* A Map of the limits of the permitted site was included in the state file. The map indicates this parcel is within the limits of the fill site. However, the exact amount of coal ash used and where it was placed within the limits of the fill site is unknown. This parcel is considered a REC based on the potential to disturb coal ash during construction as well as the potential for an unknown or unreported release from the on-site USTs.

2.2 FACILITY IDENTIFICATION NUMBER

Facility Identification Number 00-0-0000036623 was identified for this parcel.

2.3 GROUNDWATER INCIDENT NUMBER

A Groundwater Incident Number was not identified for this parcel.

SECTION 3: SITE OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

Groundwater monitoring wells (MWs) were not observed on this parcel.

3.2 ACTIVE USTS

Active USTs were observed within the project limits at this parcel. This parcel is listed in the UST Database under Rushco Food Store, Rushco Market #17, and Rushco 17. The database lists one 10,000-gallon and one 20,000-gallon UST registered to the facility. A UST pit and vent pipes were observed adjacent to the north edge of the existing pavement for Brawley School Road and south of the metal canopy that covers the dispensers.

3.3 FEATURES APPARENT BEYOND ROW/EASEMENT

Additional USTs, monitoring wells, remediation systems, or hydraulic lifts were not observed within the project limits.

SECTION 4: METHODOLOGY

4.1 GEOPHYSICS

Pyramid Geophysical Services (Pyramid) was subcontracted to perform a geophysical survey of the assessment area. The assessment area consists of the property frontage between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). The survey was used to locate private utility lines, as well as possible indications of USTs, and/or their pits.

The geophysical investigation for metallic USTs consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings.

GPR data was acquired across select EM anomalies (where identified), using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Pyramid marked their findings on the surface with paint. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and to obtain adequate coverage.

Pyramid also utilized electromagnetic geophysical methods to delineate the horizontal extents of suspected coal combustion by-product (ash) at the subject property. Specifically, Pyramid utilized a Geonics EM31-MK1 (EM31) ground conductivity meter which measures apparent ground conductivity and metal detection down to a maximum depth of 17 feet below ground surface. The EM31 instrument was coupled to a Trimble AG-114 GPS unit to record the position of the EM data to sub-meter accuracy during the survey.

The EM31 method determines electrical properties of the earth materials by inducing electromagnetic currents in the ground and measuring the secondary magnetic field produced by these currents. An alternating current is generated in the transmitter coil located at one end of the instrument. The secondary magnetic field, which is produced by currents through the earth, induces a corresponding alternating current in the receiver coil located at the opposite end of the instrument. The instrument runs at an operating frequency of 9.8 kilohertz (kHz).

After compensating for the primary field, which can be computed from the relative positions and orientations of both coils, the magnitude and relative phase of the secondary field are measured. These measurements are then converted to components of in-phase and 90 degrees out-of-phase (quadrature) with the transmitted field. The out-of-phase or quadrature component, using certain simple assumptions, is converted to a measurement of apparent ground conductivity in millisiemens per meter (mS/m). These conductivity values can be used to

infer changes related to anomalous subsurface deposits such as coal ash. The in-phase component responds to high conductive areas (above 100 mS/m) or to areas containing metallic objects and debris and the values are expressed in terms of relative units or parts per thousand. Therefore, the in-phase data can be used to identify areas that may contain buried metallic material across areas recording lower conductivity values.

A series of transects were performed using the EM31 instrument generally spaced 10 feet apart and extending typically parallel to the direction of Brawley School Road. Subsequent to the initial data collection, Pyramid collected additional reconnaissance EM data along transects at a coarser spacing in the north-central portion of the survey area. Following the field survey, data were downloaded and processed using TrackMaker31 EM processing software, and a contour map of conductivity was generated using Surfer 16.0 contouring software (see Figure 2). Copies of the full Geophysical Reports for the metallic USTs as well as the report for suspected coal ash is included in the Attachments.

4.2 BORINGS

Regional Probing was subcontracted to advance soil borings using direct push technology. Regional Probing used a truck mounted Geoprobe® 5410 unit mounted on an off-road modified Ford F350 Diesel 4x4. The unit has auger-capabilities and is equipped with a GH-42 soil-probing hammer, with 21,700 pounds of down force and 28,900 pounds of retraction force. The unit has an on-board tank for decontaminating the geoprobe rods before advancing the probe at each sample location.

4.3 SAMPLE PROTOCOL

Prior to initiating sample collection Falcon contacted NC One Call and requested public utility locations be marked around the proposed sample locations. Sampling was in general accordance with the NC Department of Environmental Quality (DEQ) Division of Waste Management's (DWM) "Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases" (March 1, 2007 Version Change 9 – February 1, 2019) guidance document. Sampling strategy was derived based upon the project scope and objectives as outlined above. Red Lab, LLC was selected to perform the UVF laboratory analytical analysis. Appropriate sterile containers were received by Falcon from Red Lab prior to beginning the fieldwork. The containers were labeled appropriately.

A Minirae 3000 photoionization detector (PID) was used to field screen samples for volatile organics to determine if a release had occurred. The instrument was calibrated per manufacturer instructions prior to use. Falcon staff bagged composite soil samples of each boring in approximately two-foot sections. Representative samples were placed in a sealed plastic bag for approximately 10 minutes to allow soil hydrocarbons to reach equilibrium within the headspace prior to scanning with the PID. One sample per boring was collected from the depth of the proposed cut or from the section above the depth of cut with the highest PID reading.

To avoid cross contamination, a new unused pair of non-powdered nitrile gloves was worn while extracting each sample. Samples were placed in the appropriate laboratory provided containers. The labels on each container were then completed so that each provided the date and time of sampling, method of analysis, sample collector, preservative used and sampling location identification. Samples were placed in an ice filled cooler and transported to the lab. Appropriate chain-of-custody procedures, including the completion of necessary forms, were followed.

SECTION 5: RESULTS

5.1 GEOPHYSICS

The underground storage tank (UST) geophysical investigation was performed on August 11 and 12, 2019 to investigate for the presence of unknown, metallic USTs beneath the survey area. The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of thirteen EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. Two known USTs were present just south of the pump islands; these known USTs were investigated with GPR to verify their sizes and orientations. The sizes and orientations of the USTs were confirmed with GPR and are, from west to east, as follows: The westernmost UST (Known UST #1) measured approximately 24.5 feet long by 12 feet wide and the easternmost UST (Known UST #2) measured approximately 26.5 feet long by 13 feet wide.

GPR was also performed across an area containing significant metallic interference associated with vehicles and the pump islands on the site. No additional significant buried structures were identified. Collectively, the geophysical data recorded evidence of two known USTs within the geophysical survey area at Parcel No. 46. Evidence of unknown USTs was not recorded.

The suspected coal ash geophysical investigation was performed prior to the metallic UST investigation. A contour map of the EM31 quadrature results (conductivity) is presented on Page 11 of the Attached Geophysical Report. It was expected that the presence of buried ash would result in a significant increase in ground conductivity relative to the surrounding native soil. The contour map shows a wide range of conductivity values across the various parcels investigated within the larger R-3833C Study Area.

Pyramid analyzed the locations of buried metal utility lines using the MicroStation files provided by NCDOT. These metal utility lines can result in conductivity increases that are unrelated to geologic conditions. The metal utility lines have been extracted from the MicroStation file and overlain on the conductivity results for reference. The majority of the metal utility lines are running parallel to the roadways in the road shoulders, and clearly show linear increases in conductivity at the locations of the utilities.

Review of the collective conductivity results indicate that background soil conditions are generally represented by conductivity values ranging from approximately 5 to 30 mS/m. Negative conductivity values are typically indicative of surface metal objects such as signs, light poles, vehicles, and other objects. These features can generally be ignored for the purposes of analyzing possible buried coal ash.

Specific to coal ash, Pyramid examined areas where conductivity values increased to approximately 30 mS/m and higher. Analysis of the locations of buried metal utilities indicate that the majority of the zones where elevated conductivity was observed correlate to the locations of utilities. Areas of elevated conductivity that did not correspond to buried utilities and which may indicate coal ash were not identified on this parcel.

5.2 SAMPLE DATA

Falcon and our subcontractor advanced seven borings (B-01 through B-07) to the proposed excavation depth of the drainage features, utilities, or roadway/ditch cut being assessed. Groundwater was not observed. Please see the Boring Location Plan in the attachments for a visual depiction of the boring locations. The coordinates (latitude and longitude) that correspond to the boring locations are shown below in Table No. 1 Boring Coordinates.

Boring	Latitude	Longitude
B-01	35.579193	-80.8413846
B-02	35.5791856	-80.841287
B-03	35.5791983	-80.8410928
B-04	35.5791938	-80.8408796
B-05	35.5791881	-80.8404893
B-06	35.5792834	-80.8403851
B-07	35.5795235	-80.8402856

TABLE NO. 1 BORING COORDINATES

The PID screening results are presented in Table No. 2 PID Readings. Borings were field screened with a PID for evidence of volatile organics in sections as indicated in Table No. 2. Falcon selected soil samples based on the field screening results and the needs of the project. Red Lab analyzed the selected samples and their full analytical report is attached. The results of the laboratory analysis are shown in Table No. 3 Summary of UVF Soil Sampling Results.

Petroleum hydrocarbons above State Action Levels were not detected in the samples.

Boring	Depth BGS*	PID**
	0-2	1.4
	2-4	1.8
B-01	4-6	1.8
B-01	6-8	1.9
	8-10	1.9
	10-11.2	2.1
	0-2	2.4
B-02	2-4	1.5
	4-6	2.4
	0-2.5	1.9
B 02	2.5-5	2.1
B-03	5-7.5	2.3
	7.5-10	2.9
	0-2.5	1.7
D 04	2.5-5	1.7
B-04	5-7.5	1.7
	7.5-10	1.8
	0-2	1.0
B-05	2-4	1.3
	4-6	2.6
	0-2	1.4
B-06	2-4	1.8
	4-6	1.8
B-07	0-2.5	1.5
D-07	2.5-5	1.5

TABLE NO. 2 PID READINGS

*BGS = Depth below ground surface in feet **PID readings are in parts per million Samples shown in **bold** were selected for analysis

Sample	BTEX	GRO	DRO	TPH	Total	16			Ratios		HC
ID	(C6 - C9)	(C5 - C10)	(C10 - C35)	(C5 - C35)	Aromatics (C10-C35)	EPA PAHs	BaP	% light	% mid	% heavy	Fingerprint Match
B-01	26.9	<0.67	<0.67	0.67	0.67	0.32	< 0.22	< 0.027	0	63.2	36.8
B-02	14.5	< 0.36	< 0.36	0.36	0.36	0.23	< 0.12	< 0.015	0	24.8	75.2
B-03	15.2	<0.76	0.46	7.9	8.4	0.71	<0.12	< 0.015	92.1	6.9	1
B-04	14.3	< 0.36	< 0.36	6.9	6.9	0.39	<0.11	< 0.014	0	75.7	24.3
B-05	15.3	< 0.38	< 0.38	8.5	8.5	4.1	0.43	< 0.015	0	72.5	27.5
B-06	16.7	<0.42	<0.42	0.42	0.42	0.22	< 0.13	< 0.017	0	55.3	44.7
B- 07	18.1	<0.45	< 0.45	3.5	3.5	1.7	0.18	< 0.018	0	70.5	29.5

TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS

Results reported in mg/kg (milligrams per kilogram)

5.3 SAMPLE OBSERVATIONS

Obvious visual indications of a release (stained soils, odors, or oily sheen) or suspect coal ash was not observed.

Table No. 4 Soil Observations lists visual soil observations of color and texture.

Sample ID	Depth	Color	Soil Type		
	0.0-2.0	Brown Red	Silty Clay (A-7) w/ trace Rock Frags		
	2.0-4.0	Brown Red	Slightly Sandy Silty Clay (A-6)		
B-01	4.0-6.0	Brown Red	Sandy Clayey Silt (A-4) w/ trace Mica		
	6.0-8.0	Brown Red	Sandy Clayey Silt (A-4) w/ trace Mica		
	10.0-12.0	Red Brown	Silty Clay (A-7) w/ trace Mica		
	0.0-2.0	Brown Red	Silty Clay (A-7) w/ trace Mica		
B-02	2.0-4.0	Brown Red	Clayey Silt (A-7) w/ trace Mica		
	4.0-6.0	Red Brown	Sandy Clayey Silt (A-4) w/ trace Mica		
	0.0-2.5	Red Brown	Silty Clay (A-7) w/ trace Mica		
B-03	2.5-5.0	Red Brown	Clayey Silt (A-5) w/ trace Mica		
D-03	5.0-7.5	Red Brown	Sandy Clayey Silt (A-4) w/ trace Mica		
	7.5-10.0	Brown Red	Sandy Clayey Silt (A-4) w/ trace Mica		
	0.0-2.5	Brown Red	Silty Clay (A-7)		
D 04	2.5-5.0	Red Brown	Clayey Silt (A-5)		
B-04	5.0-7.5	Red Brown	Sandy Clayey Silt (A-4) w/ trace Mica		
	7.5-10.0	Brown Red	Sandy Clayey Silt (A-4) w/ trace Mica		
	0.0-2.0	Brown	Silty Clay (A-7) w/ trace Rock Frags		
B-05	2.0-4.0	Brown	Clayey Silt (A-5) w/ trace Rock Frags		
	4.0-6.0	Brown Red	Sandy Clayey Silt (A-4) w/ trace Mica		
	0.0-2.0	Brown	Silty Clay (A-7) w/ trace Organics		
B-06	2.0-4.0	Brown	Clayey Silt (A-5) w/ trace Mica		
	4.0-6.0	Red	Sandy Clayey Silt (A-5) w/ trace Mica		
B-07	0.0-2.5	Brown Red	Sandy Silty Clay (A-6) w/ trace Rock Frags		
D-07	2.5-5.0	Red	Sandy Clayey Silt (A-4) w/ trace Rock Frags		

TABLE NO. 4 SOIL OBSERVATIONS

Depth is in feet below ground surface

5.4 QUANTITIES CALCULATIONS

Soils requiring quantity calculations were not identified.

SECTION 6: CONCLUSIONS

6.1 INTERPRETATION OF RESULTS

This Preliminary Site Assessment was performed to evaluate the soils in proximity to the project limits on this parcel for the presence of petroleum hydrocarbons and suspect coal ash. The findings are as follows:

- Soil sampling completed on the parcel did not identify contaminants in the soil sampled at levels requiring remediation.
- > Geophysical conductivity testing did not identify suspect coal ash on the parcel.

6.2 GEOPHYSICS

The geophysical data recorded evidence of two known USTs within the geophysical survey area at Parcel No. 46. Evidence of unknown USTs was not recorded. Falcon does not anticipate USTs will be encountered within the project limits on this parcel during construction. Areas of elevated conductivity that did not correspond to buried utilities and which may indicate coal ash were not identified on this parcel.

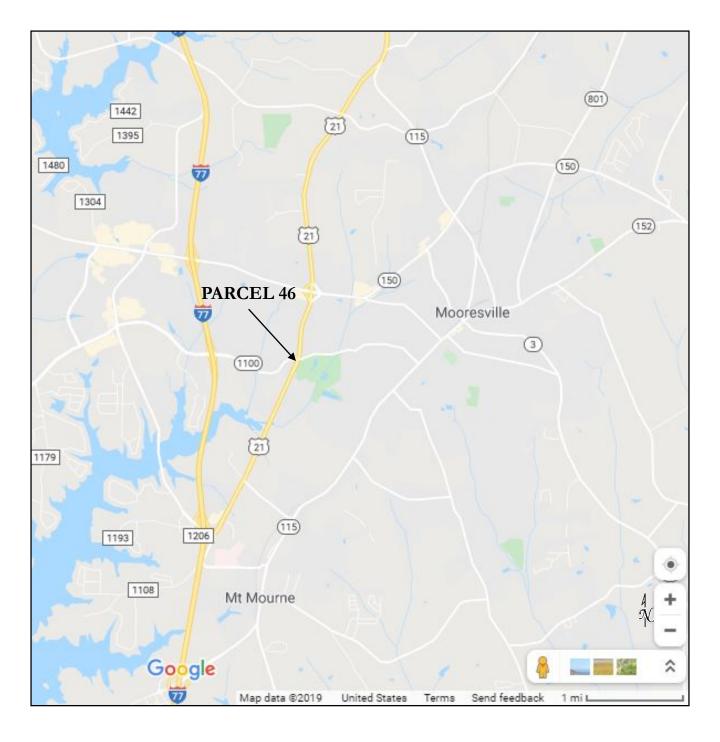
6.3 SAMPLING

Sampling results did not identify contaminants in the soil which require remediation in the areas sampled. Based on past project experience, Falcon does not anticipate soil remediation or special handling and disposal will be required during construction on this parcel.

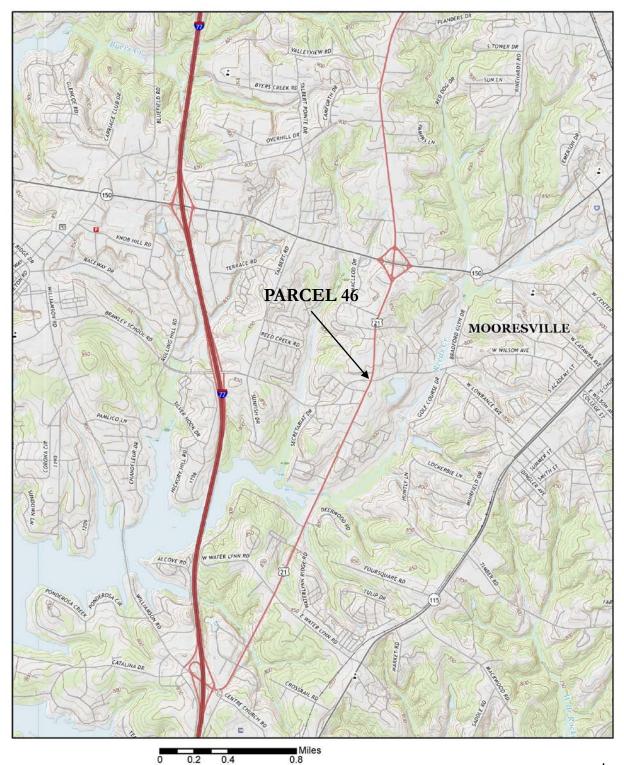
6.4 QUANTITIES

Soils requiring quantities calculations were not identified.

SECTION 7: RECOMMENDATIONS

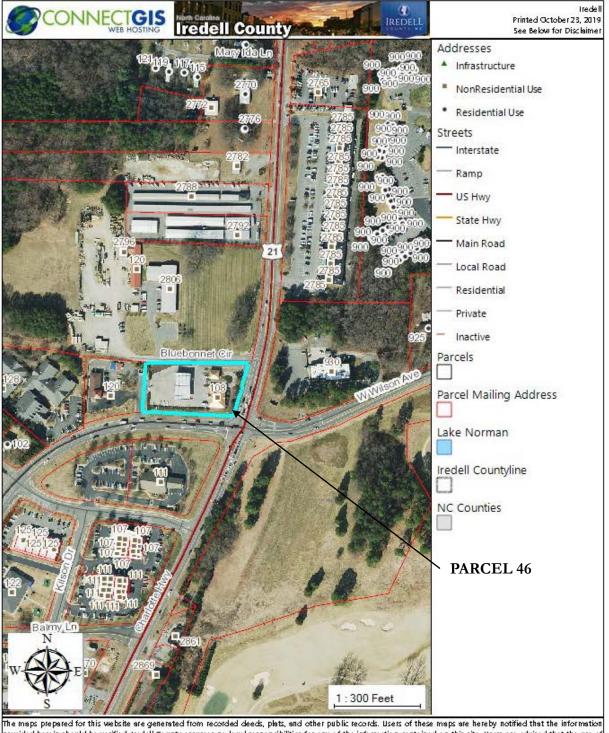

7.1 ADDITIONAL SAMPLING

Contaminants above the Industrial / Commercial Soil Cleanup Levels were not identified; therefore, additional assessment is not warranted at this time. Falcon recommends if drums, additional USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

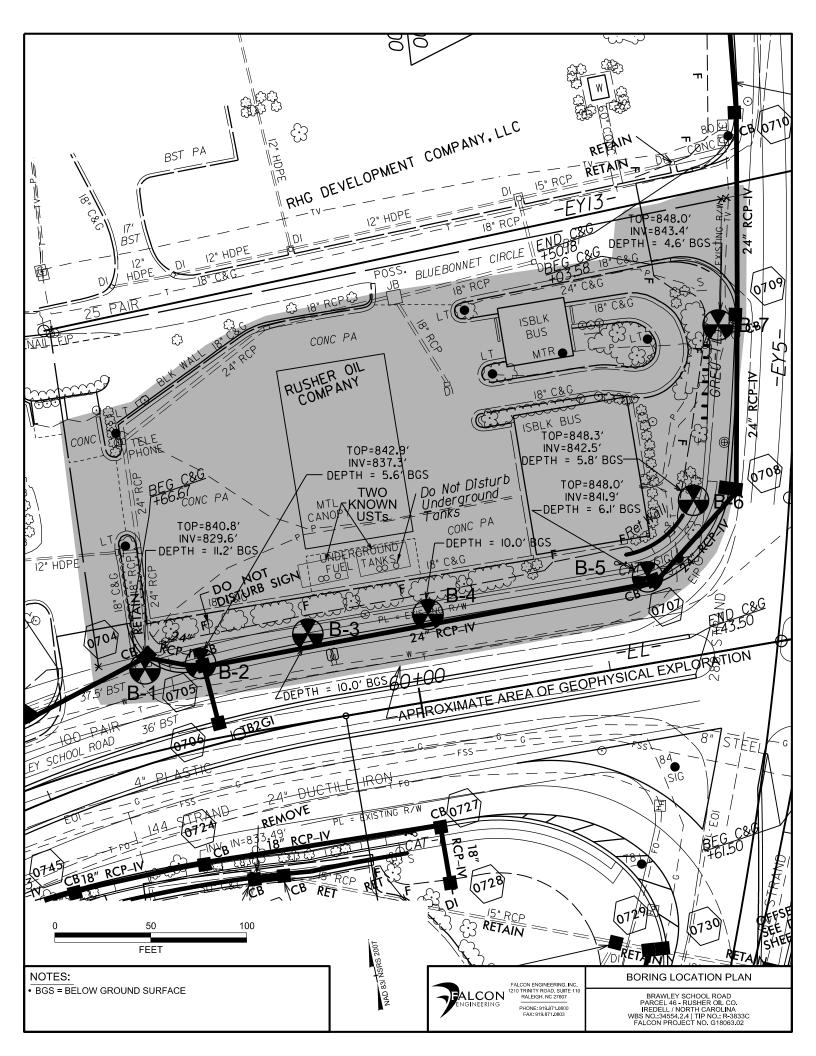

7.2 SPECIAL HANDLING OF IMPACTED SOIL

Soils requiring special handling were not identified. If suspect contaminated soils are encountered during construction Falcon and the NCDOT GeoEnvironmental Group should be contacted for proper handling instructions.

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 46 Vicinity Map


Project No.: G18063.02 Date: October 2019 Source: Google Maps NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 46 Topographic Map

Project No.: G18063.02Date:October 2019Source:"Mooresville, NC" 2016 USGS Topographic Map


NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 46 Location Map

The maps prepared for this website are generated from recorded deeds, plats, and other public records. Users of these maps are hereby notified that the information provided herein should be verified. Iredell County assumes no legal responsibilities for any of the information contained on this site. Users are advised that the use of any of this information is at their own risk. All maps on this site were prepared using a 1000 **%**™ Grid based upon the North Carolina State Plane Coordinate System from the 1983 North American Datum. The delinquent real property tax overlay is updated monthly. The information presented is not intended to be used or relied upon as official notice of tax liens. For additional information regarding delinquent taxes, contact the Iredell County Tax Collector's Office.

Project No.: G18063.02 Date: October 2019 Source: Iredell County GIS Website

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 46 Site Photographs

Photograph No. 1: General view of the Rushco UST Pit and Vent Pipes.

Photograph No. 2: General view of Boring B-01.

Photograph No. 3: General view of Boring B-02.

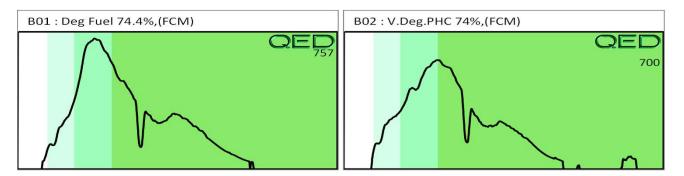
Photograph No. 4: General view of Boring B-03.

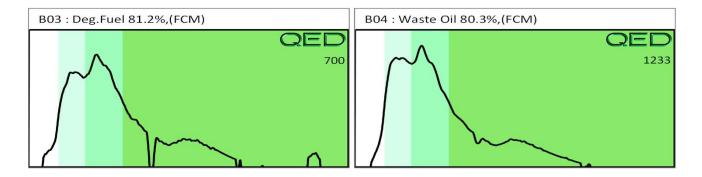
Photograph No. 5: General view of Boring B-04.

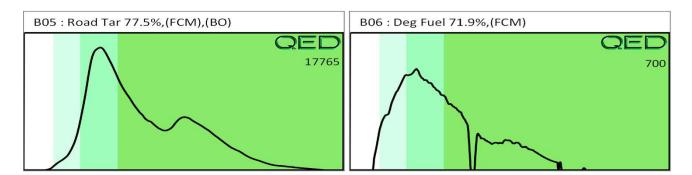
Photograph No. 6: General view of Boring B-05.

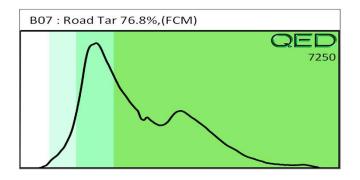
NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 46 Site Photographs

Photograph No. 7: General view of Boring B-06.




Photograph No. 8: General view of Boring B-07.


Q	ED												<u>QROS</u>
				Hydroca	irbon An	alysis Re	sults						
Client: Address:	FALCON 1210 TRINITY RD SUITE 110 CARY, NC 27513								Sar Sample Sampl		acted		10/14 - 10/15/2019 10/14 - 10/15/2019 Wednesday, October 16, 2019
Contact:	C. Burkhardt									Ор	erator		Harry Wooten
Project:	G18063									-			
-													U0090
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP	q	% Ratios	;	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
s	B01	26.9	<0.67	<0.67	0.67	0.67	0.32	<0.22	<0.027	0	63.2	36.8	Deg Fuel 74.4%,(FCM)
s	B02	14.5	<0.36	<0.36	0.36	0.36	0.23	<0.12	<0.015	0	24.8	75.2	V.Deg.PHC 74%,(FCM)
S	B03	15.2	<0.76	0.46	7.9	8.4	0.71	<0.12	<0.015	92.1	6.9	1	Deg.Fuel 81.2%,(FCM)
S	B04	14.3	<0.36	<0.36	6.9	6.9	0.39	<0.11	<0.014	0	75.7	24.3	Waste Oil 80.3%,(FCM)
s	B05	15.3	<0.38	<0.38	8.5	8.5	4.1	0.43	<0.015	0	72.5	27.5	Road Tar 77.5%,(FCM),(BO)
S	B06	16.7	<0.42	<0.42	0.42	0.42	0.22	<0.13	<0.017	0	55.3	44.7	Deg Fuel 71.9%,(FCM)
S	B07	18.1	<0.45	<0.45	3.5	3.5	1.7	0.18	<0.018	0	70.5	29.5	Road Tar 76.8%,(FCM)
	Initia	l Calibrator	QC check	OK					Final FC	CM QC	Check	OK	101.1
Abbreviatior B = Blank D	on values in mg/kg for soil samples and m is :- FCM = Results calculated using Fun rift : (SBS)/(LBS) = Site Specific or Librar timated aromatic carbon number proporti	damental Calibr y Background S	ation Mode : ubtraction a	% = confiden	ice of hydroca t : (BO) = Bac	irbon identifica kground Orga	tion : (PFM) =	Poor Finger (OCR) = O	print Match :	: (T) = Tu inge : (M	urbid : (P) = Parti	iculate detected


QED Hydrocarbon Fingerprints

Project: G18063

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 46 NCDOT PROJECT R-3833C

108 BRAWLEY SCHOOL ROAD, MOORESVILLE, NC

September 6, 2019

Report prepared for:

Christopher J. Burkhardt, PWS Falcon Engineers 1210 Trinity Rd. #110 Raleigh, NC 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Doug Canavello

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

GEOPHYSICAL INVESTIGATION REPORT Parcel 46 - 108 Brawley School Road Mooresville, Iredell County, North Carolina

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	2
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	5
Summary & Conclusions	
Limitations	

Figures

Appendices

Appendix A - GPR Transect Images

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	
EM	
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	Right-of-Way
UST	• •

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 46, located at 108 Brawley School Road in Mooresville, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-3833C). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from August 11-12, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of thirteen EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. Two known USTs were present just south of the pump islands; these known USTs were investigated with GPR to verify their sizes and orientations. The sizes and orientations of the USTs were confirmed with GPR and are, from west to east, as follows: The westernmost UST (Known UST #1) was approximately 24.5 feet long by 12 feet wide and the easternmost UST (Known UST #2) was approximately 26.5 feet long by 13 feet wide.

GPR was also performed across an area containing significant metallic interference associated with vehicles and the pump islands on the site. No additional significant buried structures were identified. Collectively, the geophysical data <u>recorded evidence of two</u> <u>known USTs within the geophysical survey area at Parcel 46</u>. No evidence of unknown USTs was recorded.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 46, located at 108 Brawley School Road in Mooresville, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-3833C). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from August 11-12, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included an active gas station surrounded by concrete, grass, and asphalt surfaces. Two known USTs were observed within the geophysical survey area during the investigation, just south of the pump islands. The area underneath the canopy, where the pump islands are located, was investigated with GPR only, as the canopy interfered with the GPS antenna utilized by the EM instrument. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be

detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on August 12, 2019, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 controller equipped with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

	Geophysical Surveys for on NCI	Underground Stora OOT Projects	ge Tanks
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphal/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Vehicles	\checkmark
2	Drop Inlets	
3	Gate	
4	Vehicles/Pump Islands	\checkmark
5	Drop Inlets	
6	Sign	
7	Manhole	
8	Vehicles	✓
9	Building	
10	Known Utility	✓
11	Two Known USTs/Vent Pipes/ Reinforced Concrete	4
12	Signs	
13	Hydrant	

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including vehicles, drop inlets, a gate, pump islands, signs, a manhole, a building, two known USTs, vent pipes, and a hydrant. EM Anomalies 1, 4, and 8 were associated with vehicles, as well as pump islands (EM Anomaly 4), and were investigated with GPR to confirm that the interference caused by these surface features did not obscure any significant buried structures such as USTs. EM anomaly 10 was in the location of a known utility and was investigated to confirm that the anomaly was a result of this utility. EM Anomaly 11 was associated with two known USTs, and their vent pipes, and were investigated with GPR to confirm the sizes and orientations of the USTs.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as select transect images. All of the transect images are included in **Appendix A**. A total of twenty-two formal GPR transects were performed at the site.

GPR Transects 1-12 were performed in a grid-like fashion across EM Anomaly 4. These transects showed discrete hyperbolic anomalies consistent with buried pipes (i.e., utilities and supply lines) but did not show evidence of more significant structures such as USTs.

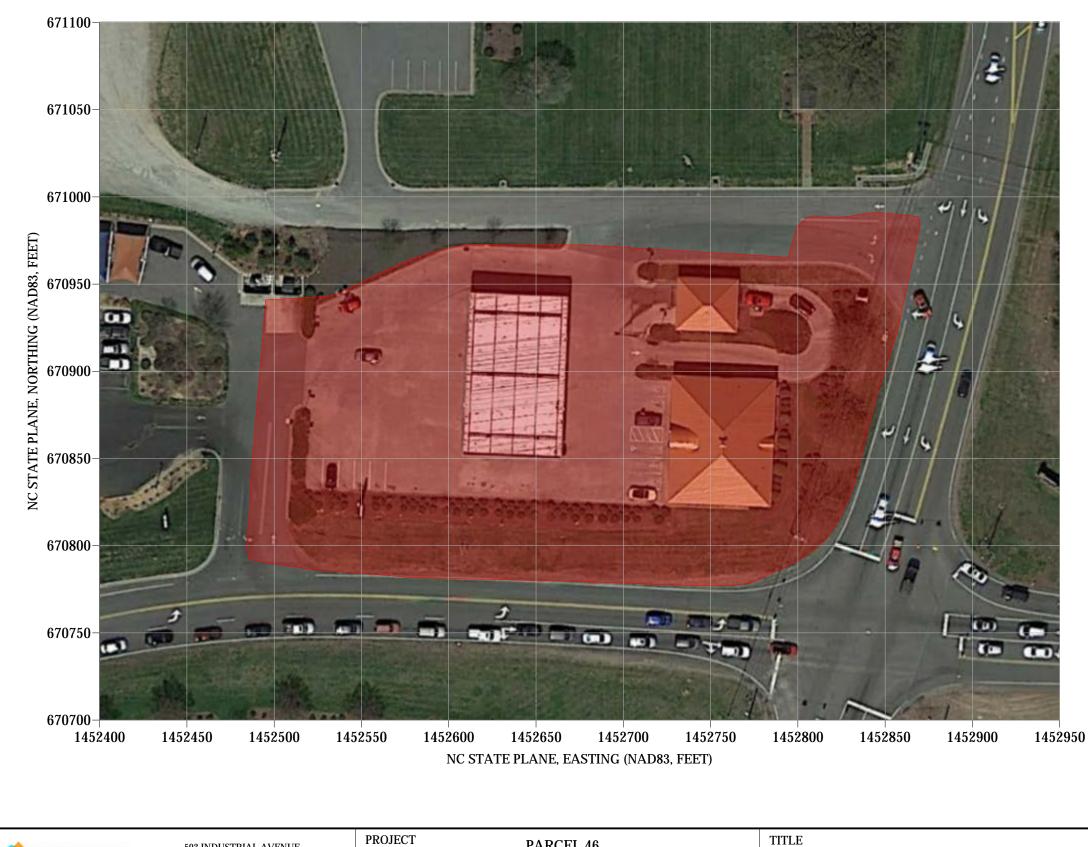
GPR Transect 13 was performed across EM Anomaly 10 and confirmed the presence of a known buried utility and that the EM anomaly observed in this area is a result of this known utility.

GPR Transects 14-21 were performed across areas associated with vehicle interference (EM Anomalies 1 and 8). Some of these transects showed small, discrete hyperbolic anomalies consistent with potential utilities or small buried debris. None of these transects showed any evidence of more significant structures such as USTs.

GPR Transect 22 was performed across the width of one of the known USTs (Known UST #2) at the site (EM Anomaly 11). This transect showed a large, high-amplitude hyperbolic anomaly consistent with the width of a UST. A second transect was performed across the width of the other known (Known UST #1), but the file was corrupted and is not included in this report. The sizes and orientations of the USTs were confirmed with GPR and are, from west to east, as follows: The westernmost UST (Known UST #1) was approximately 24.5 feet long by 12 feet wide and the easternmost UST (Known UST #2) was approximately 26.5 feet long by 13 feet wide. **Figure 4** provides the locations and sizes of the two known USTs overlain on an aerial, along with ground-level photographs. This transect also confirmed the presence of reinforcement within the concrete slab.

Collectively, the geophysical data <u>recorded evidence of two known USTs within the survey</u> <u>area at Parcel 46</u>. No evidence of unknown USTs was recorded. **Figure 5** provides an overlay of the metal detection results and the locations of the two known USTs on the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS


Pyramid's evaluation of the EM61 and GPR data collected at Parcel 46 in Mooresville, North Carolina, provides the following summary and conclusions:

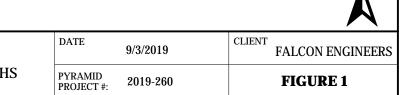
- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- Two known USTs were present just south of the pump islands; these known USTs were investigated with GPR to verify their sizes and orientations.
- The sizes and orientations of the USTs were confirmed with GPR and are, from west to east, as follows: The westernmost UST (Known UST #1) was approximately 24.5 feet long by 12 feet wide and the easternmost UST (Known UST #2) was approximately 26.5 feet long by 13 feet wide.
- GPR was also performed across an area containing significant metallic interference associated with, a known buried utility, vehicles, and the pump islands on the site. No additional significant buried structures were identified.
- Collectively, the geophysical data <u>recorded evidence of two known USTs within</u> <u>the geophysical survey area at Parcel 46</u>. No evidence of unknown USTs was recorded.

LIMITATIONS

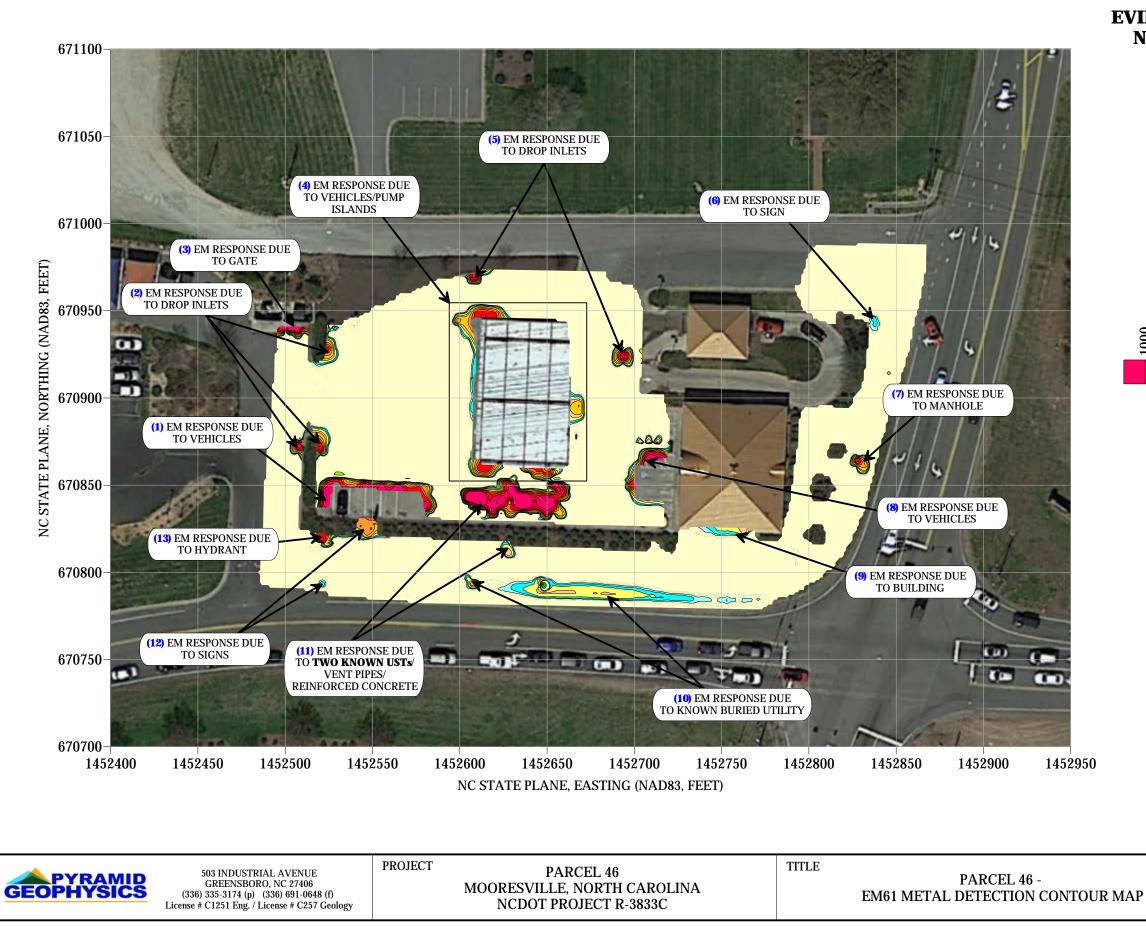
Geophysical surveys have been performed and this report was prepared for Falcon Engineers in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PARCEL 46 MOORESVILLE, NORTH CAROLINA NCDOT PROJECT R-3833C


PARCEL 46 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

View of Survey Area (Facing Approximately North)



View of Survey Area (Facing Approximately West)

Ν

EM61 METAL DETECTION RESULTS

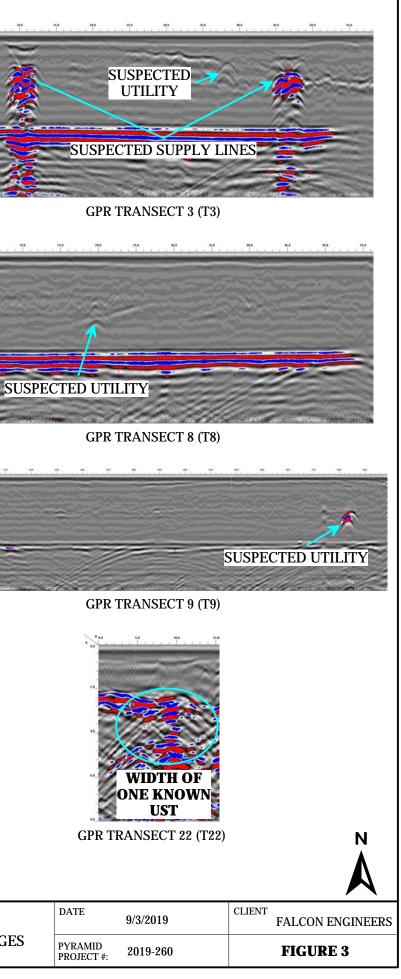
EVIDENCE OF TWO KNOWN USTs OBSERVED. NO EVIDENCE OF UNKNOWN METALLIC USTs WAS OBSERVED

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on August 11, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 controller equipped with a 350 MHz antenna on August 12, 2019.

EM61 Metal Detection Response (millivolts)

750	500	400	300	200	150	100	75	60	50	40	30	-	-100	Ä	Ä	-500

0

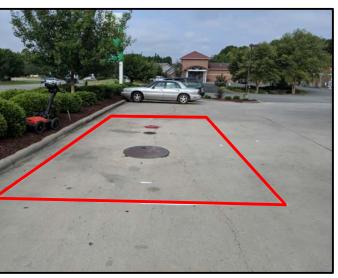

DATE	9/3/2019	CLIENT FALCON ENGINEERS
PYRAMID PROJECT #:	2019-260	FIGURE 2

LOCATIONS OF GPR TRANSECTS

GEOPHYSICS (33

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology PARCEL 46 MOORESVILLE, NORTH CAROLINA NCDOT PROJECT R-3833C PARCEL 46 -GPR TRANSECT LOCATIONS AND SELECT IMAGES

LOCATIONS OF TWO KNOWN USTs

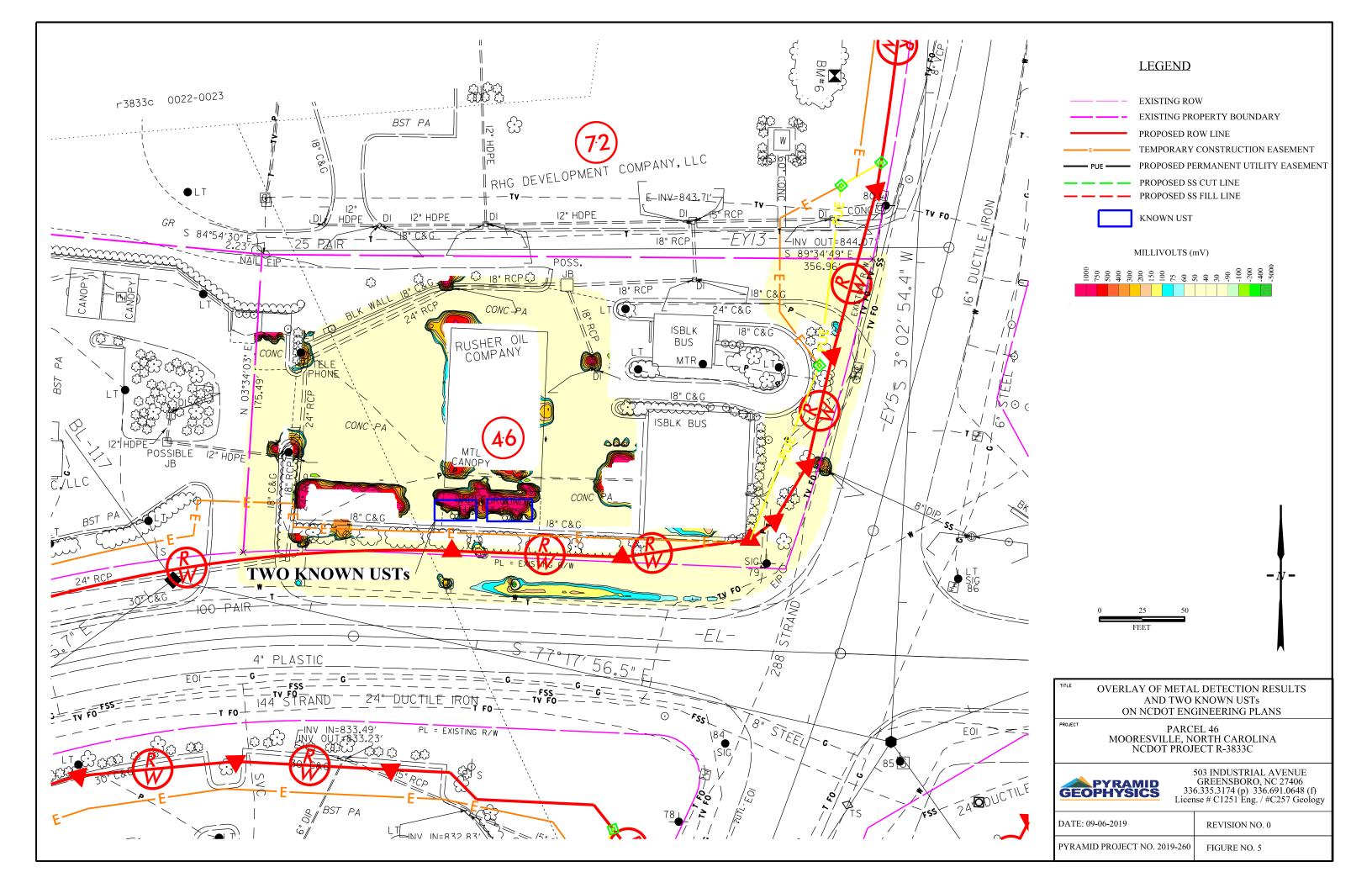

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

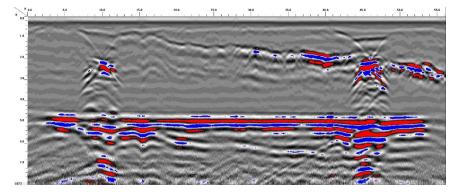
PROJECT B (f) MOOH Coology

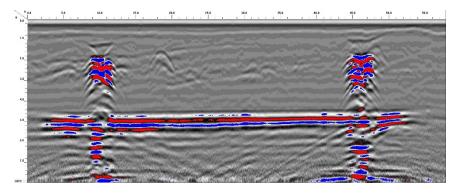
PARCEL 46 MOORESVILLE, NORTH CAROLINA NCDOT PROJECT R-3833C

PARCEL 46 - LOCATIONS AND SIZES OF TWO KNOWN USTs

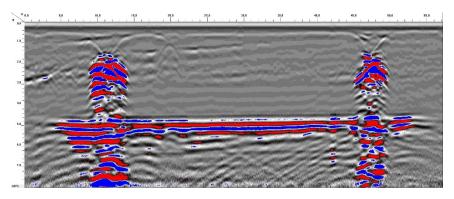
TITLE


View of Known UST #1 Facing Approximately West

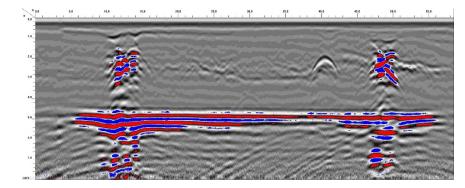

View of Known UST #2 Facing Approximately East

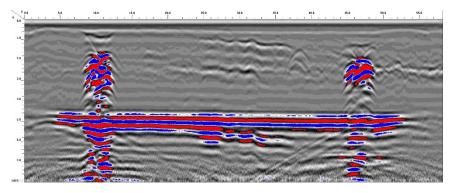

DATE	9/3/2019	CLIENT FALCON ENGINEERS
PYRAMID PROJECT #:	2019-260	FIGURE 4

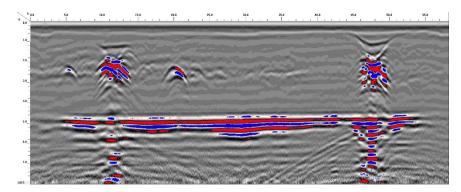
Ν

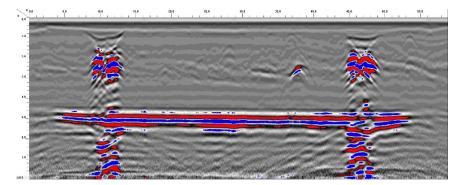


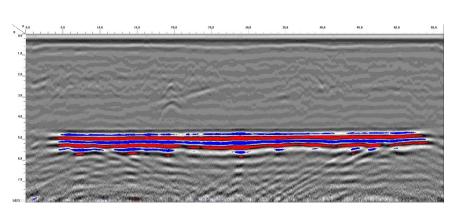
Appendix A – GPR Transect Images

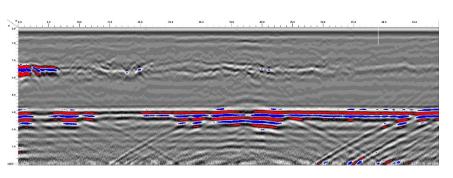


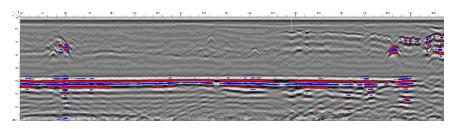

GPR TRANSECT 4

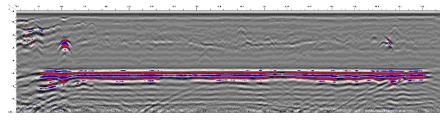


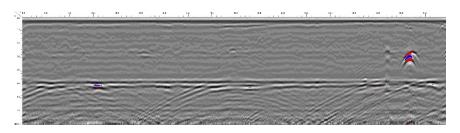


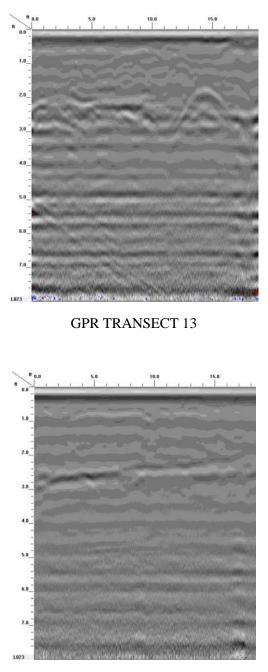

GPR TRANSECT 5

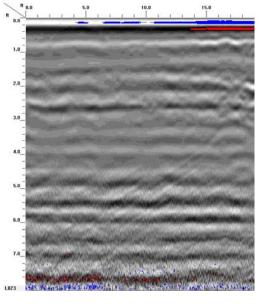

GPR TRANSECT 3

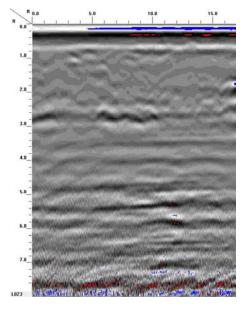


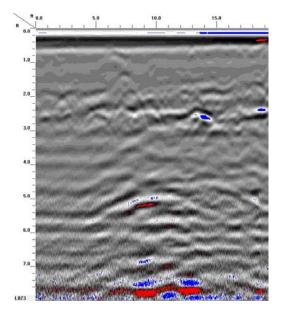

GPR TRANSECT 8

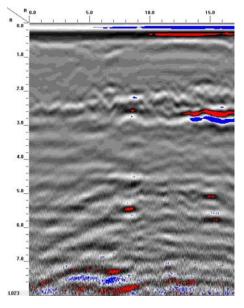

GPR TRANSECT 9

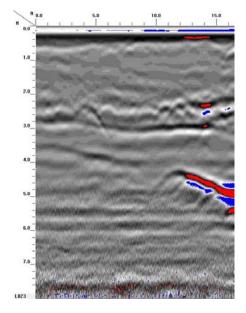


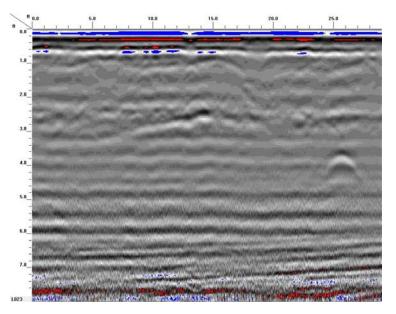

GPR TRANSECT 10

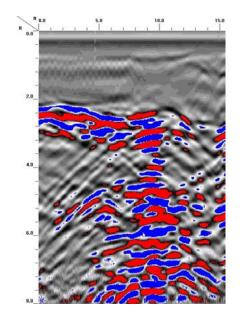

GPR TRANSECT 11






GPR TRANSECT 15




GPR TRANSECT 18

GPR TRANSECT 19

Duke Project As Listed On The NC Solid Waste Section's List of All Coal Ash Structural Fills:

Iredell; Brawley School Road; Duke Power (L Evans); Duke Power; Marlo Corporation; March, 1995; May 1, 1995;

DUKE POWER

March 31, 1997

William Hocutt North Carolina Department of Environment, Health and Natural Resources Solid Waste Section P.O. Box 27687 Raleigh, NC 27611-7687

SUBJECT: Structural Fill Closure Requirement Record Number: 006021

Mr. Hocutt:

In accordance with Section .1706(d) of the Solid Waste Management Rules for the Beneficial Use of Coal Combustion By-Products, please find attached "Closure Certifications" for all of the coal ash structural fill projects conducted by Duke Power Company as listed on the NC Solid Waste Section's "List of All Coal Ash Structural Fills". In addition, a copy of the "Recordation Statement" for each project is also included. Please note that the "Recordation Statement" is a requirement of the land owner and is being provided by Duke Power as a courtesy/service to the land owner.

The information attached will supersede the closure certifications previously submitted on January 2, 1997. Therefore, the previously submitted closure information should be deleted from your file(s) and replaced with the attached.

If you have any questions concerning these documents, please contact me at 704-875-5956.

Janya, Eas

L. D. Evans, CHMM Scientist Environmental Division - Waste Management

LDE/E03972

Attachments

December 12, 1995

Re: Certificate of Compliance

This document shall serve as notice that property owned by Floyd Greene and William Grigg, located on Brawley School Road (known as the Brawley School Road Retail Site) has been developed with coal ash provided by Duke Power Company.

Whereas, this document is provided as evidence of compliance with all the requirements of Solid Waste Regulation Section 1700 and specifically to meet Section 1706 Closure of Structural Fill Facilities, part (d).

Robert D. Davis, P.E. N.C. #10067 111111111111

ORTH CARO "Thing the second second SEAL 10057 2----CAT D. DANIS 12-13-95

P.O. Box 471851 • Charlotte, NC 28247-1851 • (704) 544-2223

NORSK CAROLARA

INCOMPT

Ń

1120

ā

BX0973P60667

FELED IRECELL COUNTY SEFEB-2 ANIII 13

000139

ERENCA D. EELL

ACCHARTER THE PROPERTY AND COMPARING

The undersigned, Marie Corporation, a North Carolina comporation, and Nonticello-Jefferson Corp., a North Carolina Componation, in accordance with the provisions of N.C.G.S 130A-294 and 15A MCAC 13B.1703, acknowledge that they are the centers of the real property located in Davidson Township, Iredell County, North Carolina, and more specifically described on Schedule A attached hereto.

The undersigned further acknowledge and consent to the use of coal combustion by-products as structural fill on the real property described on Schedule A. The volume of coal combustion by-products placed on this property is estimated to be 102,575 tong.

The undersigned further agree to record this document as required by 15A MCAC 138.1707.

IN WITNESS WHEREOF, Marlo Corporation has caused this instrument to be signed in its corporate name by its President and attested by its Secretary with its corporate seal to be hereunto affined, and Monticello-Jefferson Corp. has caused this instrument to be signed in its corporate name by its President and attested by its Secretary with its corporate seal to be hereunto affined, this $\frac{\partial \Omega^{n,d}}{\partial \partial \theta}$ of $\int \Omega A_{110}M_{110}^{-1}$, 1996.

clause

SEAL)

NARLO CORPORATION

NONTICELLO-JEFFERGON CORF.

<u>Ölle</u>

State Balance and

م ا ز

State of North Carolina Department of Environment, Health and Natural Resources Division of Solid Waste Management

James B. Hunt, Jr., Governor Jonathan B. Howes, Secretary William L. Meyer, Director

March 3, 1995

Mr. Larry D. Evans, Scientist Electric System Support Duke Power Company 13339 Hagers Ferry Road Huntersville, NC 28078-7929

Coal Fly Ash Structural Fill at Brawley School Road Near Subject: Mooresville, NC in Iredell County Scheduled to Begin in Early March, 1995.

We are in receipt of your February 28, 1995 proposal for constructing the subject structural fill beginning as soon as possible and planned for completion by May 1, 1995. The information submitted satisfies the requirements for coal ash The. structural fill activities as set forth in Solid Waste Management Rules 15A NCAC 13B Section .1700 concerning beneficial use of coal combustion by-products.

We appreciate the additional information supplied by you to Bill Hocutt on March 3, 1995 about the french drain shown on your construction drawing. Our concern was that this might involve a perennial stream. That would have at least required additional separation of the fly ash from the stream. We are satisfied with the five feet of earthen cover since you state that any water at that location would arise from precipitation run-off and that the specified five feet cover was for the entire length of the french drain. You further stated that this did not involve ground water flowing through the site.

(over)

P.O. Box 27687, Raleigh, North Carolina 27611-7687 Telephone 919-733-4996 FAX 919-715-3605 An Equal Opportunity Affirmative Action Employer

50% recycled/ 10% post-consumer paper

As previously agreed to between Duke Power and the Solid Waste Management Division, Duke Power is accepting the responsibility of informing the landowner(s) of their responsibility should any groundwater contamination occur due to this structural fill activity.

Sincerely,

Colle. ames James C. Coffe

Permitting Branch Supervisor Solid Waste Section

cc: Julian Foscue Anthony Foster Bill Hocutt John P. Nerison, P.E. Larry S. Harper

;

.00

Duke Power Company Electric System Support 13339 Hagers Ferry Road Huntersville, NC 28078-7929

DUKE POWER

February 28, 1995

William Hocutt
North Carolina Department of Environment,
 Health and Natural Resources
Solid Waste Section
401 Oberline Road
Suite 150
Raleigh, N. C. 27605

SUBJECT: Structural Fill Notification Brawley School Road Property Marlo Corporation & Grigg Investment File: GS-707.02 (Fossil)

Mr. Hocutt:

In accordance with Section .1706 of the Solid Waste Management Rules (Requirements For Beneficial Use Of Coal Combustion By-Products), please find attached the required written notification for the referenced structural fill project. Included in the notification are construction plans required for coal combustion by-products applications greater than 10,000 cubic yards.

If you have any questions concerning the notification, please contact me at 704-875-5956.

any D. Was

L. D. Evans, Scientist Environmental Protection - Waste Management

LDE/D029519

Attachments

STRUCTURAL FILL NOTIFICATION

Duke Power Company Brawley School Road Property Marlo Corporation & Grigg Investment

The proposed project will utilize approximately 60,000 cubic yards of fly ash in a structural fill application to develop the property for marketing. The property is located at the intersection of US highway 21 and State Road 1100 (Brawley School Road) in Iredell County as indicated on the attached USGS map (Mooresville Quanrangle, North Carolina - 7.5 minute series). The project is scheduled to commence as soon as possible and to be completed on May 1, 1995. The fly ash will be supplied from Duke Power's Marshall Steam Station located on Highway 150 in eastern Catawba County at the following address:

Duke Power Company Marshall Steam Station PO Box 210 Terrell, N.C. 28682

Larry Evans will serve as the Generator Contact and can be contacted at:

Larry Evans Duke Power Company 13339 Hagers Ferry Road (MG03A5) Huntersville, N.C. 28078-7929 Phone: 704-875-5956

The following documents are attached:

- Signed statement of acknowledgement and consent from property owner
- TCLP data and certification
- USGS Topographic map showing location of project
- Construction Plans

I certify that the TCLP analysis is representative of the fly ash to be used for this project.

.

Larry D. Wang

Larry D. Evans

HAZARDOUS WASTE SAMPLE RESULTS APPLIED SCIENCE CENTER

STATION • Marshall Marshall U-1 ash Leach SAMPLE ID. : 9402095 LAB.SERV. #: (MA) (MA) (MA) (MA) (MA) (MA) (MA) (MA) TCLP Leach

ANALYSIS	l RESU	т. Т.П			• •••• · 1
AG:	< 0.20	. mg/l	5.0	mg/l	
BA:	0.47	mg/l	100	mg/l	
CD:	< 0.03	mg/l	1.0	mg/1	
CR:	0.77	mg/1	5.0	mg/1	-
PB:	~ 1.0	mg/1	5.0	mg/1	-
AS:	1 × 0.10	mg/l	5.0	mg/l	-
SE:	1 0.27	mg/l	1.0	mg/l	-
HG:	<0.001	mg/1	0.2	mg/1	-
NI:	I NR	mg/1	134	mg/l	-
TL:	INR	mg/l	130	mg/l	-
<pre>% ASH:</pre>	INR	%	NO LI	MIT	-
BTU:	INR	BTU/1b	NO LI	MIT	-
TOT. S	I NR	% wt.	NO LI	MIT	-
TOT. CL	INR	% wt.	NO LI	MIT	
FLASH PT.	INR	Deg. F	< 140	Deg. F	
pH:	I NR	Value	<2.0	or >12.5	-
% WATER	$I \sim R$	% wt.	NO LI	MIT	-
	BA: CD: CR: PB: AS: SE: HG: NI: TL: % ASH: BTU: TOT. S TOT. CL FLASH PT. pH:	AG: $ < 0.20$ BA: 0.47 CD: $ < 0.03$ CR: 0.77 PB: $ < 1.0$ AS: $ < 0.10$ SE: 0.27 HG: $ < 0.001$ NI: NR TL: NR BTU: NR TOT. S I NR TOT. NR TOT. NR TOT. NR TOT. NR PH: NR	AG: $< 0.20 \text{ mg/l}$ BA: 0.47 mg/l CD: $< 0.03 \text{ mg/l}$ CR: 0.77 mg/l PB: $< 1.0 \text{ mg/l}$ PB: $< 1.0 \text{ mg/l}$ AS: $< 0.77 \text{ mg/l}$ SE: 0.77 mg/l MS: $< 0.77 \text{ mg/l}$ SE: 0.27 mg/l MS: $< 0.27 \text{ mg/l}$ MG: 0.27 mg/l MG: $NR \text{ mg/l}$ MR mg/l TDI: $NR \text{ mg/l}$ TOT. $S \text{ NR \text{ MR mg/l}$ TOT. $NR \text{ NR \text{ Wt.}$ TOT. $NR \text{ NR \text{ Value}$ PH: $NR Value$ <td>AG: $$ < 0.20 mg/l $$ 5.0 BA: 0.47 mg/l 100 CD: < 0.03 mg/l 1.0 CR: 0.77 mg/l 5.0 PB: < 1.0 mg/l 5.0 PB: < 1.0 mg/l 5.0 AS: < 0.77 mg/l 5.0 SE: 0.27 mg/l 1.0 HG: < 0.27 mg/l 1.0 HG: < 0.27 mg/l 1.0 NI: NR mg/l 1.34 TL: NR mg/l 1.34 TL: NR NR NO LI BTU: NR R NO LI TOT. S NR 8 wt. NO LI<!--</td--><td>AG: $$ $< O.20$ mg/l $$ $S.0$ mg/l BA: $$ $O.47$ mg/l $$ 100 mg/l CD: $$ $< O.03$ mg/l $$ 100 mg/l CD: $$ $< O.03$ mg/l $$ 1.0 mg/l CR: $$ $O.77$ mg/l $$ 5.0 mg/l PB: $$ $< I.0$ mg/l $$ 5.0 mg/l PB: $$ $< I.0$ mg/l $$ 5.0 mg/l AS: $$ $< O.10$ mg/l $$ 5.0 mg/l AS: $$ $< O.10$ mg/l $$ 0.2 mg/l SE: $$ $O.27$ mg/l $$ 1.0 mg/l HG: $$ $< C.000/$ mg/l $$ 0.2 mg/l NI: $$ NR mg/l $$ 130 mg/l TL: $$ NR 8 NO</td></td>	AG: $ $ < 0.20 mg/l $ $ 5.0 BA: 0.47 mg/l 100 CD: < 0.03 mg/l 1.0 CR: 0.77 mg/l 5.0 PB: < 1.0 mg/l 5.0 PB: < 1.0 mg/l 5.0 AS: < 0.77 mg/l 5.0 SE: 0.27 mg/l 1.0 HG: < 0.27 mg/l 1.0 HG: < 0.27 mg/l 1.0 NI: NR mg/l 1.34 TL: NR mg/l 1.34 TL: NR NR NO LI BTU: NR R NO LI TOT. S NR 8 wt. NO LI </td <td>AG: $$ $< O.20$ mg/l $$ $S.0$ mg/l BA: $$ $O.47$ mg/l $$ 100 mg/l CD: $$ $< O.03$ mg/l $$ 100 mg/l CD: $$ $< O.03$ mg/l $$ 1.0 mg/l CR: $$ $O.77$ mg/l $$ 5.0 mg/l PB: $$ $< I.0$ mg/l $$ 5.0 mg/l PB: $$ $< I.0$ mg/l $$ 5.0 mg/l AS: $$ $< O.10$ mg/l $$ 5.0 mg/l AS: $$ $< O.10$ mg/l $$ 0.2 mg/l SE: $$ $O.27$ mg/l $$ 1.0 mg/l HG: $$ $< C.000/$ mg/l $$ 0.2 mg/l NI: $$ NR mg/l $$ 130 mg/l TL: $$ NR 8 NO</td>	AG: $ $ $< O.20$ mg/l $ $ $S.0$ mg/l BA: $ $ $O.47$ mg/l $ $ 100 mg/l CD: $ $ $< O.03$ mg/l $ $ 100 mg/l CD: $ $ $< O.03$ mg/l $ $ 1.0 mg/l CR: $ $ $O.77$ mg/l $ $ 5.0 mg/l PB: $ $ $< I.0$ mg/l $ $ 5.0 mg/l PB: $ $ $< I.0$ mg/l $ $ 5.0 mg/l AS: $ $ $< O.10$ mg/l $ $ 5.0 mg/l AS: $ $ $< O.10$ mg/l $ $ 0.2 mg/l SE: $ $ $O.27$ mg/l $ $ 1.0 mg/l HG: $ $ $< C.000/$ mg/l $ $ 0.2 mg/l NI: $ $ NR mg/l $ $ 130 mg/l TL: $ $ NR 8 NO

N/R: NOT REQUESTED.

* EXCEEDS RCRA LIMITS.

NORTH CAROLINA

IREDELL COUNTY

ACKNOWLEDGMENT AND CONSENT

The undersigned, Marlo Corporation, a North Carolina corporation, and William G. Grigg and wife, Jacqulinn O. Grigg, in accordance with the provisions of N.C.G.S 130A-294 and 15A NCAC 13B.1703, acknowledge that they are the owners of the real property located in Davidson Township, Iredell County, North Carolina, and more specifically described on Schedule A attached hereto.

The undersigned further acknowledge and consent to the use of coal combustion by-products as structural fill on the real property described on Schedule A. The volume of coal combustion by-products placed on this property is estimated to be 100,000 tons.

The undersigned further agree to record this document as required by 15A NCAC 13B.1707.

IN WITNESS WHEREOF, said individual parties have hereunto set their hand and said corporate party has caused this instrument to be signed in its corporate name by its President and attested with its corporate seal, this 27^{-4} day of February 1995.

MARLO CORPORATION

President

(CORPORATE SEAL)

P02

NORTH CAROLINA, IREDELL COUNTY.
I, Marcia K. Jong, a Notary Public of the County and State aforesaid, certify that <u>Aenuley</u> D. <u>Robinson</u> personally
came before me this day and acknowledged that She is Secretary of
Marlo Corporation, a North Carolina corporation, and that by authority duly
given and as the act of the corporation, the foregoing instrument was signed
in its name by its President, sealed with its corporate seal and
attested by <u>huv</u> as its Secretary. Witness my hand and
attested by hw as its Secretary. Witness my hand and official stamp or seal, this 27 day of $hway$ 1995.
đ
Marcia K. Ing
I larcia A. C. Ing
Notary Public d

My Commission Expires:

11.1.-98

NORTH CAROLINA, IREDELL COUNTY.

I, <u>Marcia K. Ling</u>, a Notary Public of the County and State aforesaid, certify that William G. Grigg and wife, Jacquiinn O. Grigg, personally appeared before me this day and acknowledged the execution of the foregoing instrument. Witness my hand and official stamp or seal, this <u>27</u>^W day of <u>Luruary</u> 1995.

Marcia K. Jong

My Commission Expires:

11-6-98

William G. Grigg AL) 0:08 (SEAL) Jacqui inn 0. Grigg

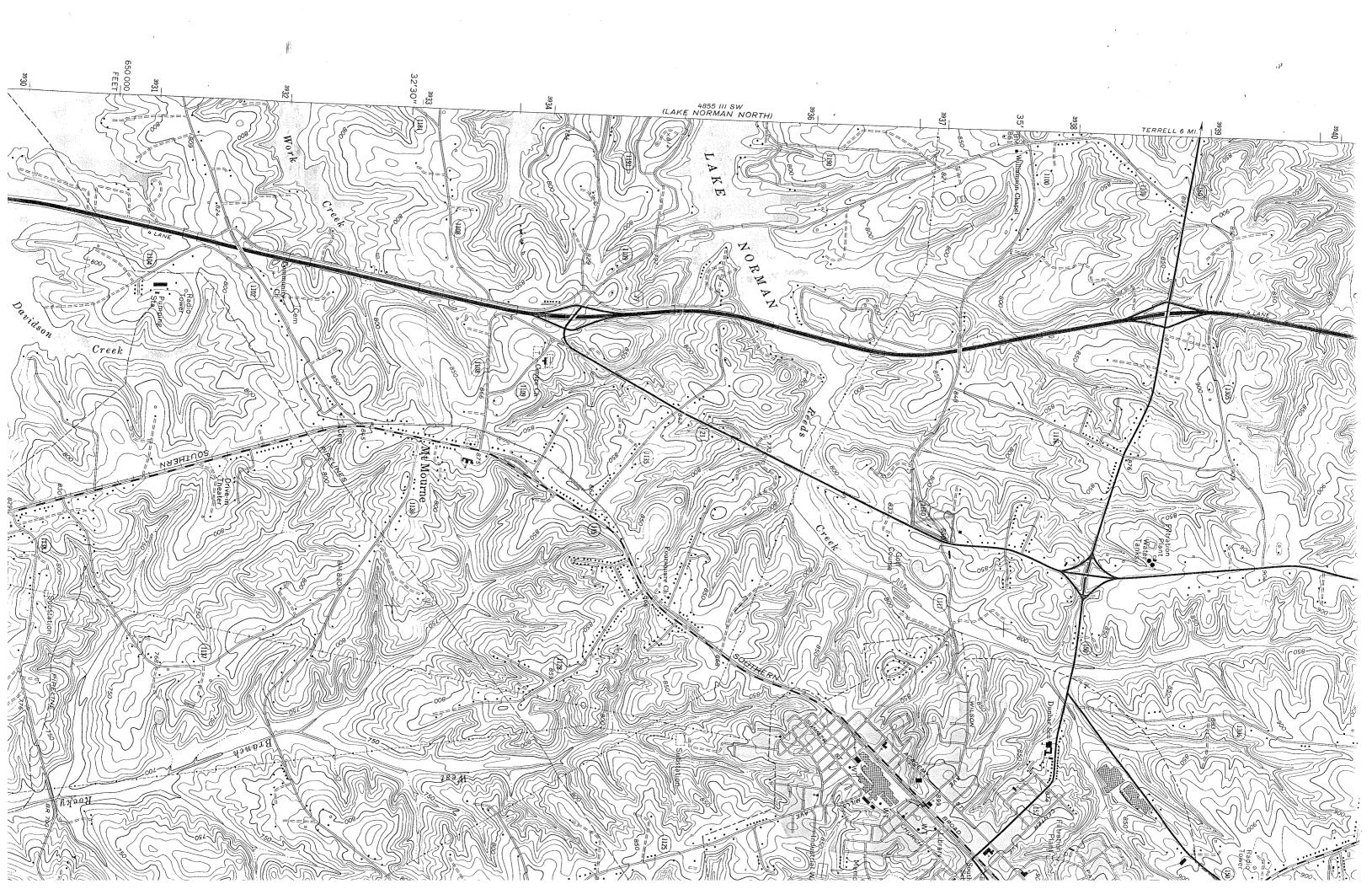
Schodulo A

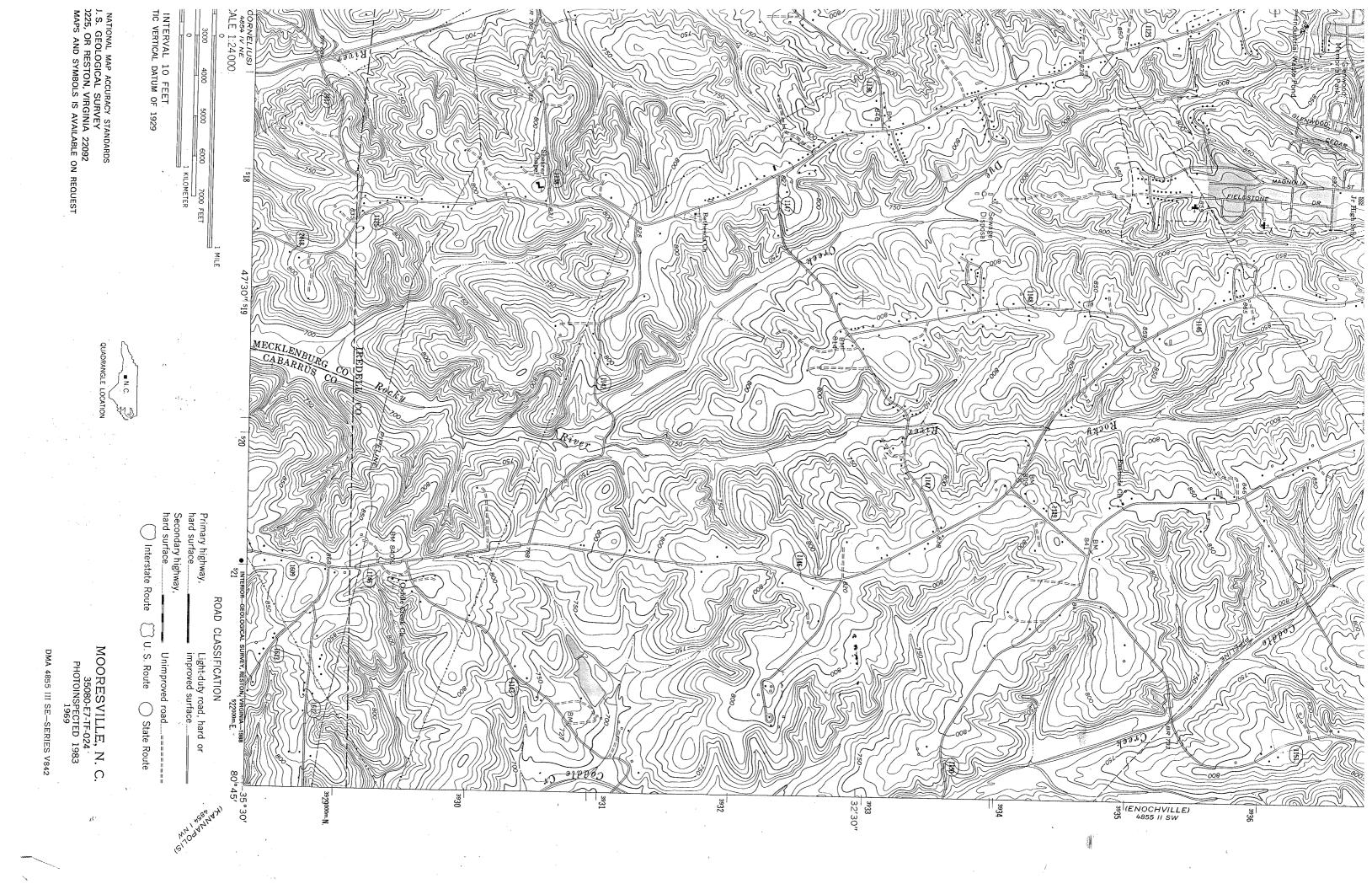
and a state of the second of

TRACT CHEI

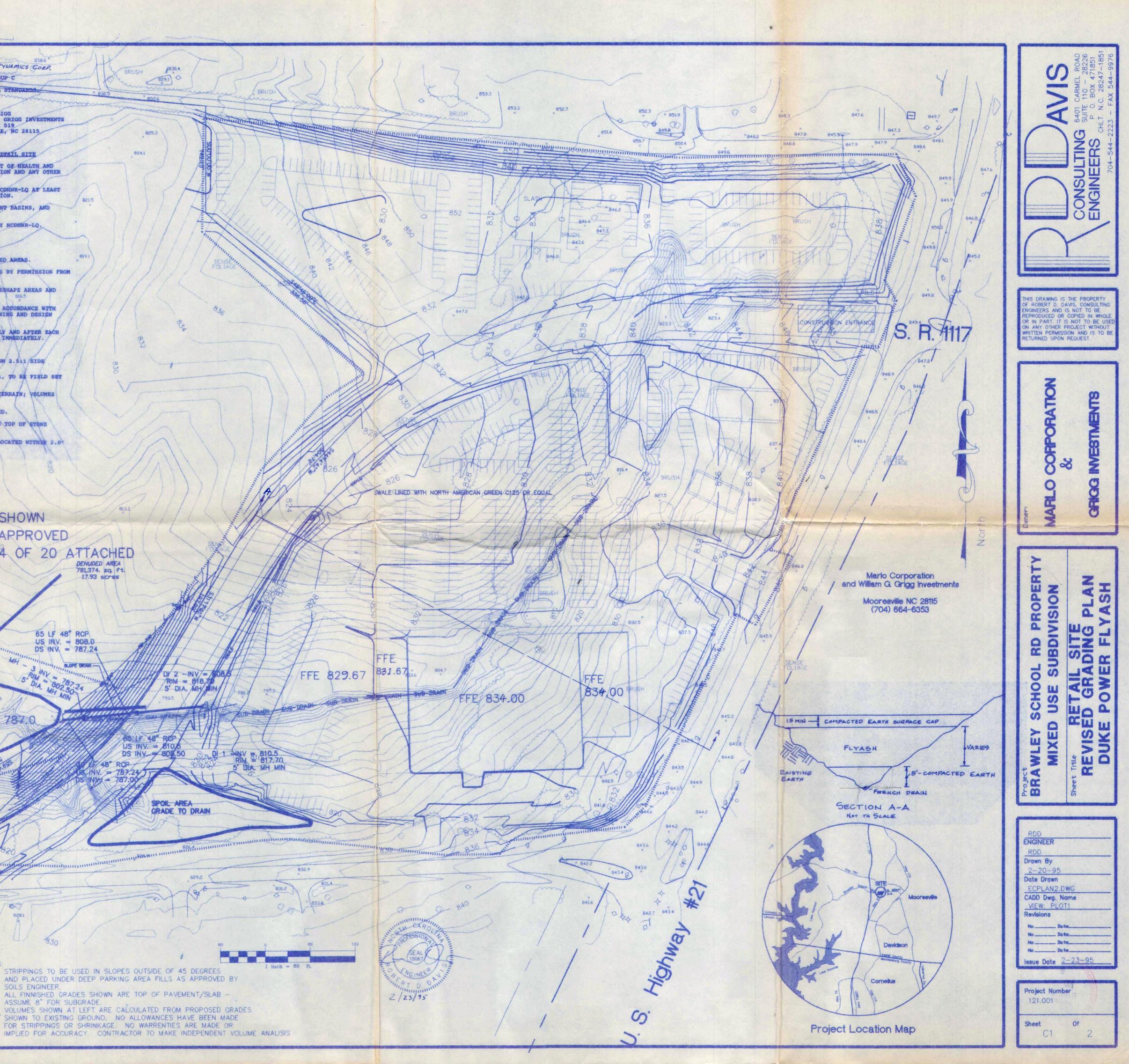
BEGINPING at an existing iron pin in the line of judith A. Latteve, the northamut corner of first Church of the Hazarome of Mooresville, H.C., inc. as described in Beed Book 682, page 70, Iredell County Registry; thence with the line of Lattave North 84 deg. 33 min. 13 sec. Nest <u>1,708.29</u> feet to a point in the center of a creek, Lattave corner; thence with Center of creek South 19 deg.12 min. 37 sec. Vest 7.27 feet to a point in said creek; thence North 84 deg. 47 min. 23 sec. Nest 197.89 feet to an iron pin, Harry B. Hager corner; thence with Mary B. Hager line South 05 deg. 42 min. 37 sec. Vest 957 feet to a point in center of State Road No. 1100, Mary B. Mager corner; thence with center of State Road No. 1100 South 49 deg. 48 min. 12 sec. East 90.52 feet to a point in center of bridge on State Road No. 1100; thence South 55 deg. 25 min. 29 sec. East 122.26 feet to a neil in centur of State Road No. 1100; thence South 60 deg. 34 min. 11 sec. East 60 feet to an all in center of State And No. 1100; thence South 67 deg. 29 win. 23 sec. East 50.68 feet to an iron pin at the south edge of parement on State Road No. 1100; thence South 60 deg. 27 min. 52 sec. East 255.24 feet to an iron pin on the north side of State Road No. 1100, Craver corner; thence with Graver line Borth 57 deg. 36 min. 11 sec. East 325.38 feet to an iron pin on the north side of State Road No. 1100, Craver corner; thence with Craver line Borth 57 deg. 47 min. 32 sec. East 458.70 feet to an iron pin on the north side of State Road No. 1100, Craver corner; thence with Craver line South 79 deg. 47 min. 32 sec. East 458.70 feet to an iron pin, Craver corner; thence North 76 deg. 12 min. 28 sec. East 301.13 feet to en iron pin in line of first Church of the Nazarome of Mooresville, H. C., Inc., Craver corner; thence with church 1ine North 63 deg. 22 min. 39 sec. East 110 feet to an existing iron pin. Church corner ithence Korth 03 deg. 47 min. 32 sec. East 107.54 feet to the point of Beginning, containing 43.046 acres, more or less.

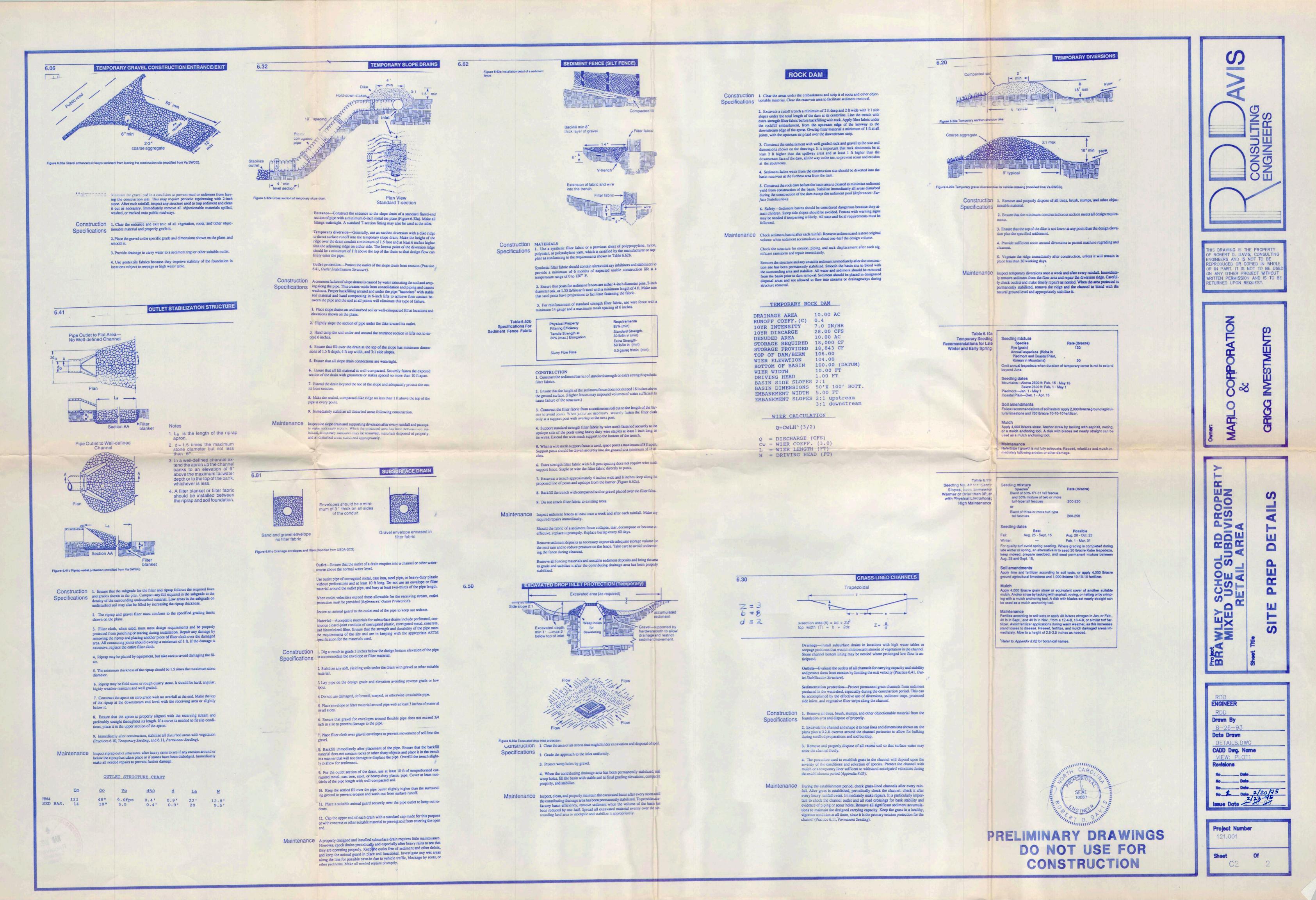
TRACT THOI


BEGINWING at an existing iron pin in the western line of First Church of the Mazarone of Mooresville, Inc., the southeast corner of Miriam Hobbs Cooke et al (formerly Edith M. Hobbs) corner; thence with the line of the First Church of the Mazarone of Mooresville, Inc. South 03 deg. 22 min. 39 sec. Mest 165 feet passing over a concrete monument in the west edge of the right of way of U. S. Highway No. 21 to a point in the paved portion of M. C. State Road Mo. 1100 (Brawley School Road); thence with the pavement for State Road Mo. 2100 South 87 deg. 35 min. 41 sec. Vest 300.31 feet to a p.k. nail in pavement for State Road No. 1100; thence continuing with pavement for State Road Mo. 1100 South 87 deg. 52 min. 22 sec. Mest 461.37 feet to a p.k. nail in the pavement for State Road No. 1100; thence continuing with the pavement in State Road No. 1100 South 87 deg. 48 min. 47 sec. West 535.71 feet to a point in the pavement for State Road No. 1100; thence with the line of Miriam Nobbs Cooke, et al North 57 deg. 36 min. 11 sec. East 150.09 feet to an iron pin, a corner of Miriam Hobbs Cooke, et al; thence continuing with Miriam Nobbs Cooke, et al North 57 deg. 48 min. 28 sec. East 458.70 feet to an iron pin, a corner of Miriam Hobbs Cooke, et al; thence continuing with Miriam Hobbs Cooke, et al line Morth 71 deg. 43 min. 28 sec. East 458.70 feet to an iron pin, a corner of Miriam Hobbs Cooke, et al; thence continuing with Miriam Hobbs Cooke, et al line South 73 deg. 47 min. 28 sec. East 458.70 feet to an iron pin, a corner of Miriam Hobbs Cooke, et al; thence with line of Miriam Hobbs Cooke, et al line South 73 deg. 17 min. 28 sec. East 458.70 feet to an iron pin, a corner of Miriam Hobbs Cooke, et al; thence with line of Miriam Hobbs Cooke, et al line South 78 deg. 18 min. 28 sec. East 458.70 feet to an iron pin, a corner of Miriam Hobbs Cooke, et al; thence with line of Miriam Hobbs Cooke, et al line South 78 deg. 18 min. 28 sec. East 458.70 feet to the beginning corner, containing 3.582 ecres, more or less.


TRACT THREE

SEGINALWE at a point marked by a concrete monument, which monument marks the northwesternmest corner of the fifty-third tract described in the deed to Burlington Industries, Inc. from Mooresville Mills deted April 16, 1955, and being recorded in Deed Book 259, page 408, at seq., in the effice of the Register of Deeds of Iradell County, Murth Carolines and running from said Margin of land sened by Hobbs 944.50 feet to an iron pin in the center of the road, floyd Harwell's corner in the original line; thence Morth 70 degrees 49 minutes 40 seconds East 74 feet, more or less, to a point in the centerline of U. S. Highway Bo. 21; thence northerly along the centerline of U. S. Highway No. 21, 1,000 feet, more or lass, to a point on the northern margin of the original fifth-third tract as described in said deeds ; thence South 89 degrees is minutes 40 seconds West along the northern margin of the original rifty-third tract 404 feet, more or less, to the point and place of beginning.


. .


.

			1 1
17	GENERAL NOTES	info	~ 1
7	1) THE PROPOSED PROJECT IS LOCATED ON 1. TOPOGRAPHIC SURVEY FURNISHED BY ARE DYNAMICS COLP.	-	ALBRI
	THE MOORESVILLE SIDE ON USGS MAP. THE PROJECT WILL ALLOW THE PROPERTY TO BE MARKETED. 3. ALL CONSTRUCTION TO MEET STATE AND LOCAL STANDARDS.		- 1pm
18.7	2) START CONSTRUCTION: MARCH 1, 1995 COMPLETE CONSTRUCTION: MAY 1, 1995 3) APPROXIMATELY 50,000 CY'S OF FLY ASH 4. OWNER/DEVELOPERS:	in	* 832.5
×	ARE MEEDED TO COMPLETE THE PROJECT. 4) COAL COMBUSTION BY PRODUCT GENERATOR: MARLO CORPORATION WILLIAM G. GRIGG INVESTMEN	ITS	1
9.9	9 P.O. BOX 1144 MARSHALL STEAM STATION 9 PROS 2 BOX 210 PROS 210		
$\left(\right)$	TERRELD, N.C. 28682 LARRY D. EVANS	-	
	5) FLY ASH SHALL BE PLACED IN 12" MAXIMUM 1. OBTAIN PLAN APPROVAL FROM N.C. DEPARTMENT OF HEALTH AND		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7	6) FLY ASH SHALL BE PLACED AT OR NEAR OPTIMUM MOISTURE CONTENT AND COMPACTED TO 95% OF THE APPLICABLE PERMITS.		1
~	STANDARD PROCTOR. 7) FIELD DENSITY TESTS SHALL BE TAKEN FOR EACH 2. HOLD A PRECONSTRUCTION CONFERENCE WITH NCDHNR-LQ AT LEAS ONCE A WEEK PRIOR TO BEGINNING CONSTRUCTION.	T	821.5
1	8) HAUL TRUCKS SHALL BE COVERED DURING TRANSPORT TO PREVENT FLY ASH FROM BLOWING OUT ON THE HIGHWAY AND CREATING & NUISANCE. (THE CONTRACTOR) 3. CLEAR ONLY AS REQUIRED TO INSTALL SEDIMENT BASINS, AND	\sim	()
	SHALL BE RESPONSIBLE FOR CLEANING UP ANY SPILLAGE. 4. HAVE EROSION CONTROL DEVICES INSPECTED BY NCDHNR-LQ.		
	AS INDICATED ON RETAIL SHEETS. 10) THE ASH SEDIMENTATION POND IS SIZED PER THE REQUIREMENTS OF THE N.C. EROSION CONTROL MANUAL. 6. GRADE ACCORDING TO CONTRACT DOCUMENTS.		2 11
	OUTLET PROTECTION IS PROVED SUCH THAT ZERO DISCHARGE OF FLY ASH PARTICLES FROM THE SITE 7. GRASS OR OTHERWISE STABILIZE ALL DISTURSED AREAS.	-	(8191)
	OCCURS. SPECIFIC GRAVITY OF FLY ASH PARTICLES IS 2.55. 11) AT CLOSURE, THE SEDIMENTATION POND SHALL BE EMPTIED B. REMOVE ALL OR ANY EROSION CONTROL DEVICES BY PERMISSION NCDHNR-LQ.	FROM	1/1/1
/	OF WATER, FILLED WITH COMPACTED ASH, COVERED WITH 9. AFTER REMOVAL OF EACH AND ALL DEVICES, RESHAPE AREAS AND SOTL AND GRASSES. 816.5	1	11/1
	12) PLACEMENT OF ASH IS IN ACCORDANCE WITH N.C. SOLID WASTE REGULATIONS SECTION 1700 "REQUIREMENTS FOR BENEFICIAL USE OF COAL COMBUSTION BY PRODUCTS". 10. ALL EROSION CONTROL MEASURES SHALL BE IN ACCORDANCE WITH NCDHNR-LQ "EROSION SEDIMENT CONTROL PLANNING AND DESIGN	1	MHI
	13) COAL COMBUSTION BY-PRODUCTS USED AS A STRUCTURAL MANUAL", LATEST EDITION.		////
	A. WITCHIN SO HORIZONIAL THEI CONSIDERATION OF THE RAINFALL. NEEDED REPAIRS ARE TO BE MADE IMMEDIATELY.	1	111
	THE U.S. CORPS OF ENGINEERS ISSUES A PERMIT OR WAIVER FOR THE FILL: OR WAIVER FOR THE FILL: DIMENSIONS SHOWN FOR BASIN /1 ARE BASED ON 2.511 SIDE	1	0
	BANK OF A PERENNIAL STREAM OR OTHER SURFACE WATER BODY: 2. ELEVATIONS AND EXACT LOCATION ON BASIN #1, TO BE FIELD SU	fr /	30 .
	WATER TABLE: 3. SHAPES OF BASINS MAY BE MODIFIED TO FIT TERRAIN; VOLUMES		
	D. WITHIN 100 HORIZONTAL FEET OF ANY SOURCE OF SHALL HOLD. DRINKING WATER, SUCH AS A WELL, SPRING OR OTHER GROUNDWATER SOURCE OF DRINKING WATER: 4. ALL DESIGN PARAMETERS ARE TO BE MAINTAINED.	$\left(\right)$	
	E. WITHIN A AREA SUBJECT TO A ONE-HUNDRED YEAR FLOOD, UNLESS IT CAN BE DEMONSTRATED TO THE 5. REMOVE SILT IN BASIN #1 WHEN SILT REACHES TOP OF STONE	1	
	FROM INUNDATION, AND WASHOUT, AND THE FLOW OF 6. ANTI-SEEP COLLARS IN BASIN #1 NOT TO BE LOCATED WITHEN 2.	01	
	OF THE FLOOD PLAIN WILL NOT BE SIGNIFICANTLY	1	\sim
	F. WITHIN 25 FEET OF ANY PROPERTY BOUNDARY: G. WITHIN 25 FEET OF A BEDROCK OUTCROP.		1
		X	210
1			813.2
	SEDIMENT BASIN TO BE AS SHOWN	~	5AI
	ON RESIDENTIAL PLANS AS APPROVE		11
	BY NCDEHNR-LQ - SEE SHEETS 3&4 OF 20	A	PTACHED
		/	DENUDED AREA 781.374. sq. ft.
	DRAINAGE AREAT	/	DENUDED AREA
	1.337,1350, sq. Ft.	/	DENUDED AREA 781.374. sq. ft.
1	1337,1350, SQ. Ft. 30,69 adgres	/	DENUDED AREA 781.374. sq. ft.
1	EMERGENCY EMERGENCY EDILLWAY 65 LF	48	DENUDED AREA 781,374. sq. ft. 17.93 acres
1 1	EMERGENCY EMERGENCY EDILLWAY 65 LF	48	DENUDED AREA 781,374. sq. ft. 17.93 acres
1 1 1 /	L337,135, sq. Ft. SDE9 addres SPILLWAY SPILLWAY SPILLWAY SPILLWAY SPILLWAY SPILLWAY SPILLWAY	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0
	L337,135, sq. Ft. SDE9 addres SPILLWAY SPILLWAY SPILLWAY SPILLWAY SPILLWAY SPILLWAY SPILLWAY	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0
1 1 1 1 1 /	LISIT/155, sq. Rt. SUBS adres MERGENCY SPILLWAY SPILLWAY 1862 7859 x 1853 x 1855 x 185	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0
	ABSJ TB2D TB2J TB2D	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0
	HARGENCY SPILLWAY SPI	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 DRAM
1 1 1 1 1 2	ABAS AS A	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 DRAN 24 CRAN
	ABAS AS A	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 TRAN
	Alt 30,59 dtres MERGENCY SPILLWAY 1852 7853 1852 7853 1852 7853 1852 7853 1852 7853 1853 POND AREA SEDMENT BASH & T 1913 1915 1	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 DRAN 24 CRAN
	ABAS AS A	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 DRAN 24 CRAN
	Alistricito de la construcción d	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 DRAN 24 CRAN
	Alistricito de la construcción d	48" V. = -	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 DRAN 24 CRAN
	List Jist, so, Ft, SIGO deres FMERGENCY FREE FILL WAY Res2 7859 7853 785 785 785 785 785 785 785 785	48" = 10" 10" 10" 10" 10" 10" 10" 10" 10" 10"	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 087.24
	List Jist, so, Ft, SIGO deres FMERGENCY FREE FILL WAY Res2 7859 7853 785 785 785 785 785 785 785 785	48" = 10" 10" 10" 10" 10" 10" 10" 10" 10" 10"	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 DRAN 24 CRAN
	List Jist, so, Ft, SIGO deres FMERGENCY FREE FILL WAY Res2 7859 7853 785 785 785 785 785 785 785 785	48" = 10" 10" 10" 10" 10" 10" 10" 10" 10" 10"	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 087.24
	Lisz Jus Pre- SPILLWAY Res Scher UT and Fill 193 Res	48" = 10" 10" 10" 10" 10" 10" 10" 10" 10" 10"	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 087.24
	137,1350, 92, 92 30,69 cdgres	48" = 10" 10" 10" 10" 10" 10" 10" 10" 10" 10"	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 087.24
	137.1350, sq. °F. 30.65 cgress 444 50 km 50 km	48" = 10" 10" 10" 10" 10" 10" 10" 10" 10" 10"	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 087.24
	137,1350, 92, 92 30,69 cdgres	48" = 10" 10" 10" 10" 10" 10" 10" 10" 10" 10"	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 087.24
	The second secon		DENUDED AREA 781,374. sq. ft. -17.93 acres 808.0 87.24 08 08 08 08 08 08 08 08 08 08 08 08 08
	ALLAGES OF THE SCHOOL BOOK OF THE STREPTS TO	48 = BE UNDER	DENUDED AREA 781,374. sq. ft. -17.93 acres RCP 308.0 87.24 087.24
	ALL FINANCES LINESS TO SUBJECT	HE UNDER GRAD R SUB	SED IN SLOPES DEP PARKING ES SHOWN ARE GRADE.
	HERE DECIDENCE TOTAL TOTAL TOTAL DECIDENCE TOTAL TOTAL TOTAL DECIDENCE TOTAL TOTAL TOTAL DECIDENCE TOTAL TOTAL	48 AB AB AB AB AB AB AB AB AB AB	SED IN SLOPES DEP PARKING SED IN SLOPES DEP PARKING
	HER VALUE TOTAL TO	HE UNDER GRAD R SUB N AT STING S OR	SED IN SLOPES DEP PARKING SED IN SLOPES DE SHOWN ARE GRADE. LEFT ARE CALC

Ŧ

PRELIMINARY SITE ASSESSMENT

SR 1100 (BRAWLEY SCHOOL ROAD) IMPROVEMENTS TIP NO. R-3833C, WBS NO. 34554.2.4

NCDOT PARCEL NO. 68 OWNER: MARATHEA GROUP, LLC 2785 CHARLOTTE HIGHWAY MOORESVILLE, IREDELL COUNTY, NORTH CAROLINA

PREPARED FOR: NORTH CAROLINA DEPARTMENT OF TRANSPORTATION C/O STANTEC 801 JONES FRANKLIN ROAD SUITE 300 RALEIGH NORTH CAROLINA 27606-3394

PREPARED BY: FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513

PROJECT NUMBER: G18063.02 OCTOBER 27, 2019

October 27, 2019

Mr. A. Dean Sarvis PE Stantec 801 Jones Franklin Road, Suite 300 Raleigh, North Carolina 27606-3394

Re: Preliminary Site Assessment SR 1100 (Brawley School Road) Improvements TIP No. R-3833C, WBS No. 34554.2.4 NCDOT Parcel No. 68 Owner: Marathea Group, LLC 2785 Charlotte Highway Mooresville, Iredell County, North Carolina

Dear: Mr. Sarvis:

Falcon is pleased to present the following Preliminary Site Assessment in support of the above-mentioned Project. Specifically, Falcon sampled soil in proximity to the project limits on this parcel in general accordance with the approved scope of work. Soils requiring remediation or special handling during construction were not identified.

Falcon recommends if drums, USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

Please review this report and advise us if you have any questions or concerns. We appreciate this opportunity to provide services to you and look forward to partnering with you on future projects. If you have any questions, please give Falcon a call at (919) 871-0800.

Sincerely, **FALCON ENGINEERING, INC.**

histophen But hard

Christopher J. Burkhardt Environmental Services Manager

1/mk

Jeremy R. Hamm, PE Geotechnical Services Manager

TABLE OF CONTENTS

SECTION	1: INTRODUCTION	5
	1.1 DESCRIPTION	5
	1.2 SCOPE OF WORK	5
SECTION	2: HISTORY	5
	2.1 PARCEL USAGE	3
	2.2 FACILITY IDENTIFICATION NUMBER	3
	2.3 GROUNDWATER INCIDENT NUMBER	3
SECTION	3: SITE OBSERVATIONS	7
	3.1 GROUNDWATER MONITORING WELLS	7
	3.2 ACTIVE USTS	7
	3.3 FEATURES APPARENT BEYOND ROW/EASEMENT	7
SECTION	4: METHODOLOGY	3
	4.1 GEOPHYSICS	3
	4.2 BORINGS	3
	4.3 SAMPLE PROTOCOL	3
SECTION	5: RESULTS)
SECTION	5: RESULTS	-
SECTION	5.1 GEOPHYSICS))
SECTION	5.1 GEOPHYSICS)) 0
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 1)) 0 1
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11	2 2 0 1
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11	2 2 0 1 1 1
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 12 TABLE NO. 3 SOIL OBSERVATIONS 14 5.4 QUANTITIES CALCULATIONS 14	2 2 2 0 1 1 1 1
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 12 6: CONCLUSIONS 12	 D D<
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12	2 0 1 1 1 2 2
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12	2 0 1 1 1 2 2
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12 6.3 SAMPLING 12	2 0 1 1 1 2 2 2
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12 6.3 SAMPLING 12 6.4 QUANTITIES 12	2 0 1 1 1 2 2 2 2
SECTION	5.1 GEOPHYSICS. 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12 6.3 SAMPLING 12 6.4 QUANTITIES 12 7: RECOMMENDATIONS 13	2 0 1 1 1 2 2 2 3
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12 6.3 SAMPLING 12 6.4 QUANTITIES 12	2 0 1 1 1 2 2 2 3 3

LIST OF FIGURES AND ATTACHMENTS

VICINITY MAP USGS TOPOGRAPHIC MAP PARCEL LOCATION MAP BORING LOCATION MAP SITE PHOTOGRAPHS LABORATORY RESULTS GEOPHYSICAL SURVEY DIVISION OF WASTE MANAGEMENT (DWM) INSPECTION REPORT DWM RECORD OF CONVERSATION

SECTION 1: INTRODUCTION

1.1 DESCRIPTION

Falcon Engineering, Inc. (Falcon) has completed a Preliminary Site Assessment of NCDOT TIP No. R-3833C Parcel No. 68. Parcel No. 68 is addressed as 2785 Charlotte Highway, Mooresville, Iredell County, North Carolina. NCDOT is proposing to improve SR 1100 (Brawley School Road) from SR 1116 (Talbert Road) to 1,000' east of US 21, including improvements to a number of intersecting roads and driveways throughout this corridor. The limits of the assessment are between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). Boring locations were placed in the vicinity of proposed excavations for drainage features, utilities, and roadway/ditch cuts to determine if soils requiring remediation or special handling were present where excavation is planned to take place.

1.2 SCOPE OF WORK

Falcon's scope of work included coordination of; public and private utility location near the proposed borings, geophysical surveys, collecting soil samples with a geoprobe, and laboratory analysis. Samples were analyzed for volatile organic compounds (VOCs) using traditional methods.

SECTION 2: HISTORY

2.1 PARCEL USAGE

Falcon performed a Phase I Environmental Site Assessment (ESA) for R-3833C under Project No. G18063.01 dated March 2019. The ESA identified this parcel as a Recognized Environmental Condition (REC) based on the parcel's history as a dry-cleaner. U.S. \$2.50 Cleaners was observed at this address during our site visit. This facility performs onsite dry-cleaning and has been in operation for 17 years according to The Real Yellow Pages website. The strip mall the cleaners is in was constructed in 1998. U.S. \$2.50 Cleaners is not in a database that reports spills or releases. However; this facility is considered a REC based on its use as a dry-cleaner and the potential for an undiscovered or unreported release.

2.2 FACILITY IDENTIFICATION NUMBER

Facility Identification Number 490002C was identified for this parcel.

2.3 GROUNDWATER INCIDENT NUMBER

A Groundwater Incident Number was not identified for this parcel.

SECTION 3: SITE OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

Groundwater monitoring wells (MWs) were not observed on this parcel.

3.2 ACTIVE USTS

Active USTs were not observed within the project limits or registered at this parcel.

3.3 FEATURES APPARENT BEYOND ROW/EASEMENT

USTs, monitoring wells, remediation systems, or hydraulic lifts were not observed within the project limits.

SECTION 4: METHODOLOGY

4.1 GEOPHYSICS

Pyramid Geophysical Services (Pyramid) was subcontracted to perform a geophysical survey of the assessment area. The assessment area consists of the property frontage between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). The survey was used to locate private utility lines, as well as possible indications of USTs, and/or their pits.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings.

GPR data was acquired across select EM anomalies (where identified), using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Pyramid marked their findings on the surface with paint. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and to obtain adequate coverage. A copy of the full Geophysical Report is included in the Attachments.

4.2 BORINGS

Regional Probing was subcontracted to advance soil borings using direct push technology. Regional Probing used a truck mounted Geoprobe® 5410 unit mounted on an off-road modified Ford F350 Diesel 4x4. The unit has auger-capabilities and is equipped with a GH-42 soil-probing hammer, with 21,700 pounds of down force and 28,900 pounds of retraction force. The unit has an on-board tank for decontaminating the geoprobe rods before advancing the probe at each sample location.

4.3 SAMPLE PROTOCOL

Prior to initiating sample collection Falcon contacted NC One Call and requested public utility locations be marked around the proposed sample locations. Sampling was in general accordance with the NC Department of Environmental Quality (DEQ) Division of Waste Management's (DWM) "Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases" (March 1, 2007 Version Change 9 – February 1, 2019) guidance document. Sampling strategy was derived based upon the project scope and objectives as outlined above. Pace Analytical (North Carolina Field Services Certification #: 5342) was selected to perform the volatile organic compound analytical analysis. Appropriate sterile containers were received by Falcon from Pace Analytical prior to beginning the fieldwork. The containers were labeled appropriately.

A Minirae 3000 photoionization detector (PID) was used to field screen samples for volatile organics to determine if a release had occurred. The instrument was calibrated per manufacturer instructions prior to use. Falcon staff bagged composite soil samples of each boring in approximately two-foot sections. Representative samples were placed in a sealed plastic bag for approximately 10 minutes to allow soil hydrocarbons to reach equilibrium within the headspace prior to scanning with the PID. One sample per boring was collected from the depth of the proposed cut or from the section above the depth of cut with the highest PID reading.

To avoid cross contamination, a new unused pair of non-powdered nitrile gloves was worn while extracting each sample. Samples were placed in the appropriate laboratory provided containers. The labels on each container were then completed so that each provided the date and time of sampling, method of analysis, sample collector, preservative used and sampling location identification. Samples were placed in an ice filled cooler and transported to the lab. Appropriate chain-of-custody procedures, including the completion of necessary forms, were followed.

SECTION 5: RESULTS

5.1 GEOPHYSICS

The geophysical investigation was performed on August 11 and 12, 2019 to investigate for the presence of unknown, metallic underground storage tanks (USTs) beneath the surface. The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of nine EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across areas containing significant metallic interference associated with vehicles, a reinforced concrete pipe, and known buried utility lines. No additional significant buried structures were identified. Collectively, the geophysical data did not record evidence of metallic USTs within the survey area at Parcel No. 68.

5.2 SAMPLE DATA

Falcon and our subcontractor advanced two borings (B-08, B-09) to the proposed excavation depth of the drainage features, utilities, or roadway/ditch cut being assessed. Groundwater was not observed. Please see the Boring Location Plan in the attachments for a visual depiction of the boring locations. The coordinates (latitude and longitude) that correspond to the boring locations are shown below in Table No. 1 Boring Coordinates.

Boring	Latitude	Longitude
B-08	35.5815919	-80.8397319
B-09	35.5811946	-80.8397533

TABLE NO. 1	BORING	COORDINATES
-------------	--------	-------------

The PID screening results are presented in Table No. 2 PID Readings. Borings were field screened with a PID for evidence of volatile organics in sections as indicated in Table No. 2. Falcon selected soil samples based on the field screening results and the needs of the project. Pace Analytical analyzed the selected samples and their full analytical report is attached.

Contaminants above detection levels were not reported in the samples.

Boring	Depth BGS*	PID**
	0-2	1.6
	2-4	2.1
B-08	4-6	2.6
	6-8	2.3
	8-10	2.6
	0-2.5	2.2
B-09	2.5-5	1.8
B-09	5-7.5	1.6
	7.5-10	1.9

TABLE NO. 2 PID READINGS

*BGS = Depth below ground surface in feet

**PID readings are in parts per million

Samples shown in **bold** were selected for analysis

5.3 SAMPLE OBSERVATIONS

Obvious visual indications of a release (stained soils, odors, or oily sheen) were not observed. Table No. 3 Soil Observations lists visual soil observations of color and texture.

Sample ID	Depth	Color	Soil Type
	0-2	Red	Silty Clay (A-7) w/ trace Organics
B-08	2-4	Red Brown	Clayey Silt (A-5) w/ trace Mica
D-08	4-6	Red	Sandy Clayey Silt (A-4) w/ trace Mica
	6-10	Red Brown	Sandy Clayey Silt (A-4) w/ trace Mica
	0-2	Red	Silty Clay (A-7) w/ trace Organics
B-09	2-4	Red Brown	Sandy Clayey Silt (A-4) w/ trace Mica & Rock Frags
D-09	4-6	Red	Sandy Clayey Silt (A-4) w/ trace Mica
	6-10	Red	Sandy Clayey Silt (A-4) w/ trace Mica

TABLE NO. 3 SOIL OBSERVATIONS

Depth is in feet below ground surface

5.4 QUANTITIES CALCULATIONS

Soils requiring quantity calculations were not identified.

SECTION 6: CONCLUSIONS

6.1 INTERPRETATION OF RESULTS

This Preliminary Site Assessment was performed to evaluate the soils in proximity to the project limits on this parcel for the presence of VOCs. The findings are as follows:

Soil sampling completed on the parcel did not identify contaminants in the soil sampled at levels requiring remediation.

6.2 GEOPHYSICS

The geophysical data did not record evidence of metallic USTs within the survey area at Parcel No. 68. Falcon does not anticipate USTs will be encountered within the project limits on this parcel during construction.

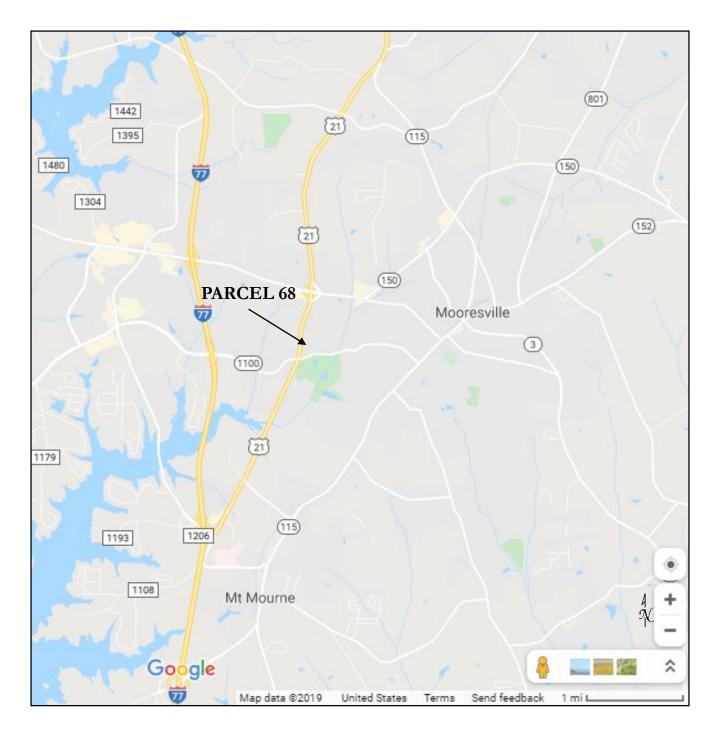
6.3 SAMPLING

Sampling results did not identify contaminants in the soil which require remediation in the areas sampled. Based on past project experience, Falcon does not anticipate soil remediation or special handling and disposal will be required during construction on this parcel.

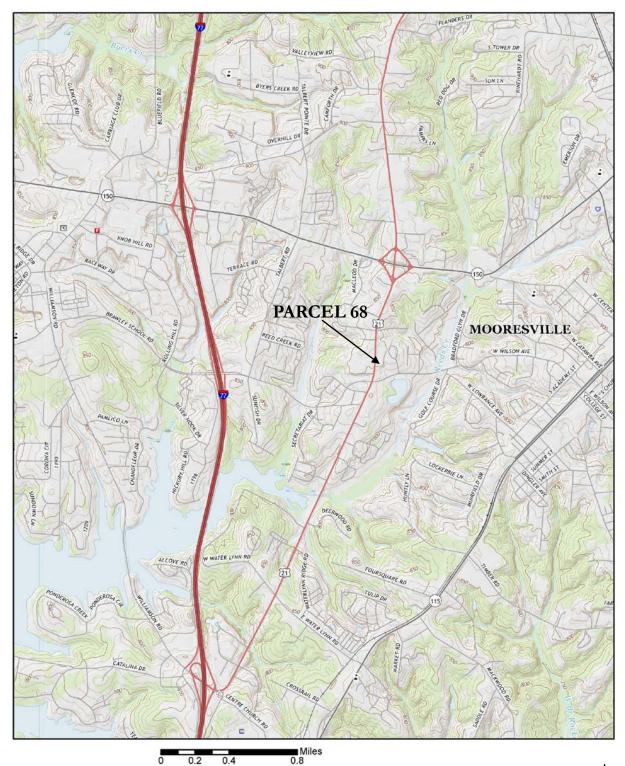
6.4 QUANTITIES

Soils requiring quantities calculations were not identified.

SECTION 7: RECOMMENDATIONS


7.1 ADDITIONAL SAMPLING

Contaminants above the Industrial / Commercial Soil Cleanup Levels were not identified; therefore, additional assessment is not warranted at this time. Falcon recommends if drums, USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.


7.2 SPECIAL HANDLING OF IMPACTED SOIL

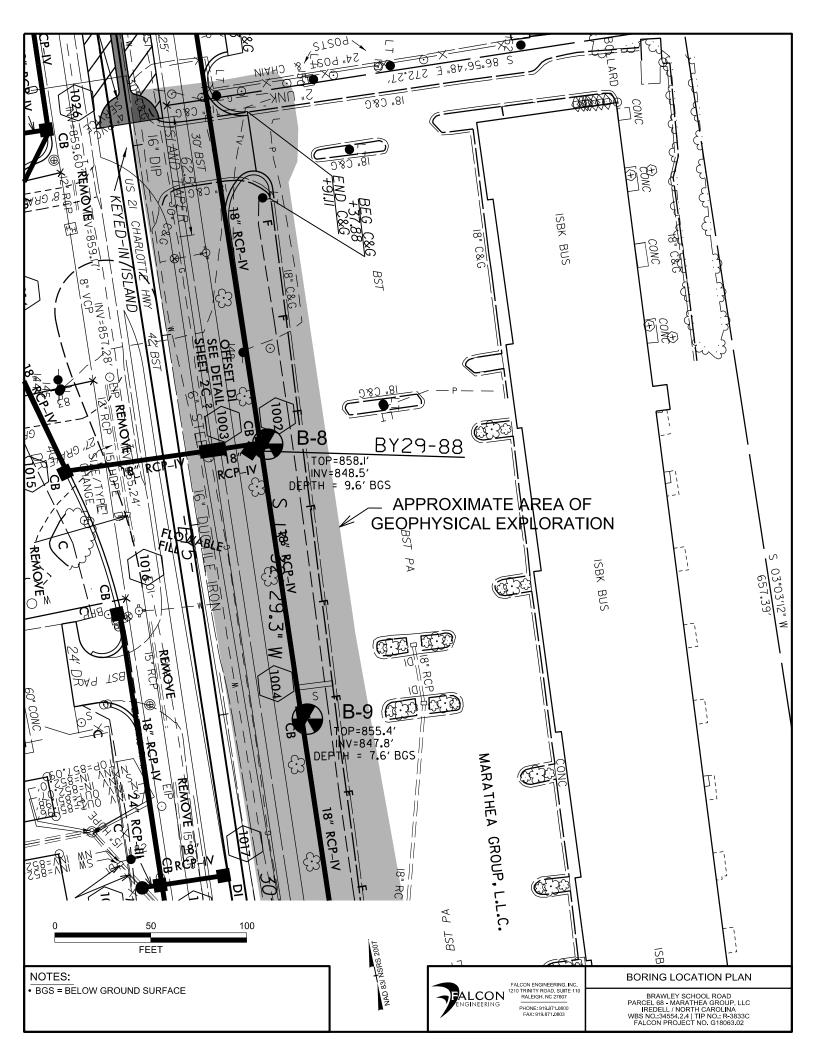
Soils requiring special handling were not identified. If suspect contaminated soils are encountered during construction Falcon and the NCDOT GeoEnvironmental Group should be contacted for proper handling instructions.

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 68 Vicinity Map

Project No.: G18063.02 Date: October 2019 Source: Google Maps NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 68 Topographic Map



Project No.: G18063.02Date:October 2019Source:"Mooresville, NC" 2016 USGS Topographic Map


NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 68 Location Map

The maps prepared for this website are generated from recorded deeds, plats, and other public records. Users of these maps are hereby notified that the information provided herein should be verified. Iredell County assumes no legal responsibilities for any of the information contained on this site. Users are advised that the use of any of this information is at their own risk. All maps on this site were prepared using a 1000 Ser and the north Carolina State Plane Coordinate System from the 1983 North American Datum. The delinquent real property tax overlay is updated monthly. The information presented is not intended to be used or relied upon as official notice of tax liens. For additional information regarding delinquent taxes, contact the Iredell County Tax Collector's Office.

Project No.: G18063.02 Date: October 2019 Source: Iredell County GIS Website

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 68 Site Photographs

Photograph No. 1: General view of Boring B-08.

Photograph No. 2: General view of Boring B-09.

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

October 21, 2019

Christopher Burkhardt Falcon Engineering 1210 Trinity Road Suite 110 Cary, NC 27513

RE: Project: G18063 Pace Project No.: 92449737

Dear Christopher Burkhardt:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tyrick Hooks

Tyriek Hooks tyriek.hooks@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Christopher Burkhardt, Falcon Engineering

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: G18063 Pace Project No.: 92449737

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE ANALYTE COUNT

Project: G18063 Pace Project No.: 92449737

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92449737001	B08	EPA 8260D	CL	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92449737002	B09	EPA 8260D	CL	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

Project: G18063

Pace Project No.: 92449737

-

Sample: B08	Lab ID: 924	49737001	Collected: 10/15/	19 10:49	9 Received: 10)/15/19 16:39 N	Matrix: Solid	
Results reported on a "dry weight"	" basis and are adj	usted for p	percent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Mether	nod: EPA 82	260D Preparation M	ethod: E	PA 5035A			
Acetone	ND	ug/kg	114	1	10/18/19 12:39	10/18/19 15:12	67-64-1	
Benzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	71-43-2	
Bromobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	108-86-1	
Bromochloromethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	74-97-5	
Bromodichloromethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	75-27-4	
Bromoform	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	75-25-2	
Bromomethane	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	74-83-9	
2-Butanone (MEK)	ND	ug/kg	114	1	10/18/19 12:39	10/18/19 15:12	78-93-3	
n-Butylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	104-51-8	
sec-Butylbenzene	ND	ug/kg	5.7	1		10/18/19 15:12		
tert-Butylbenzene	ND	ug/kg	5.7	1		10/18/19 15:12		
Carbon tetrachloride	ND	ug/kg	5.7	1		10/18/19 15:12		
Chlorobenzene	ND	ug/kg	5.7	1		10/18/19 15:12		
Chloroethane	ND	ug/kg	11.4	1		10/18/19 15:12		
Chloroform	ND	ug/kg	5.7	1		10/18/19 15:12		
Chloromethane	ND	ug/kg	11.4	1		10/18/19 15:12		
2-Chlorotoluene	ND	ug/kg	5.7	1		10/18/19 15:12		
4-Chlorotoluene	ND	ug/kg	5.7	1		10/18/19 15:12		
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.7	1		10/18/19 15:12		
Dibromochloromethane	ND	ug/kg	5.7	1		10/18/19 15:12		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.7	1		10/18/19 15:12		
Dibromomethane	ND	ug/kg	5.7	1		10/18/19 15:12		
1,2-Dichlorobenzene	ND	ug/kg ug/kg	5.7	1		10/18/19 15:12		
1,3-Dichlorobenzene	ND	ug/kg ug/kg	5.7	1		10/18/19 15:12		
1,4-Dichlorobenzene	ND	ug/kg	5.7	1		10/18/19 15:12		
Dichlorodifluoromethane	ND		11.4	1		10/18/19 15:12		
1,1-Dichloroethane	ND	ug/kg	5.7	1		10/18/19 15:12		
		ug/kg	5.7					
1,2-Dichloroethane	ND	ug/kg		1		10/18/19 15:12		
1,1-Dichloroethene	ND	ug/kg	5.7	1		10/18/19 15:12		
cis-1,2-Dichloroethene	ND	ug/kg	5.7	1		10/18/19 15:12		
trans-1,2-Dichloroethene	ND	ug/kg	5.7	1		10/18/19 15:12		
1,2-Dichloropropane	ND	ug/kg	5.7	1		10/18/19 15:12		
1,3-Dichloropropane	ND	ug/kg	5.7	1		10/18/19 15:12		
2,2-Dichloropropane	ND	ug/kg	5.7	1		10/18/19 15:12		
1,1-Dichloropropene	ND	ug/kg	5.7	1		10/18/19 15:12		
cis-1,3-Dichloropropene	ND	ug/kg	5.7	1		10/18/19 15:12		
trans-1,3-Dichloropropene	ND	ug/kg	5.7	1		10/18/19 15:12		
Diisopropyl ether	ND	ug/kg	5.7	1		10/18/19 15:12		
Ethylbenzene	ND	ug/kg	5.7	1		10/18/19 15:12		
Hexachloro-1,3-butadiene	ND	ug/kg	5.7	1		10/18/19 15:12		
2-Hexanone	ND	ug/kg	57.1	1		10/18/19 15:12		
Isopropylbenzene (Cumene)	ND	ug/kg	5.7	1		10/18/19 15:12		
p-Isopropyltoluene	ND	ug/kg	5.7	1		10/18/19 15:12		
Methylene Chloride	ND	ug/kg	22.9	1		10/18/19 15:12		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	57.1	1	10/18/19 12:39	10/18/19 15:12	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	1634-04-4	

Project: G18063

Pace Project No.: 92449737

Sample: B08	Lab ID: 924	49737001	Collected: 10/15/1	9 10:49	Received: 10	/15/19 16:39	/latrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	ions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 82	60D Preparation Me	ethod: E	PA 5035A			
Naphthalene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	91-20-3	
n-Propylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	103-65-1	
Styrene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	79-34-5	
Tetrachloroethene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	127-18-4	
Toluene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	79-00-5	
Trichloroethene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	108-67-8	
Vinyl acetate	ND	ug/kg	57.1	1	10/18/19 12:39	10/18/19 15:12	108-05-4	L1,v1
Vinyl chloride	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	75-01-4	
Xylene (Total)	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	1330-20-7	
m&p-Xylene	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	179601-23-1	
o-Xylene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	95-47-6	
Surrogates								
Toluene-d8 (S)	103	%	70-130	1	10/18/19 12:39	10/18/19 15:12	2037-26-5	
4-Bromofluorobenzene (S)	101	%	70-130	1	10/18/19 12:39	10/18/19 15:12	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	70-132	1	10/18/19 12:39	10/18/19 15:12	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	14.2	%	0.10	1		10/17/19 13:29		

 Sample:
 B09
 Lab ID:
 92449737002
 Collected:
 10/15/19
 10:21
 Received:
 10/15/19
 16:39
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 8260E	Preparation Me	ethod: E	EPA 5035A			
Acetone	ND	ug/kg	104	1	10/18/19 12:39	10/18/19 15:37	67-64-1	
Benzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	71-43-2	
Bromobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-86-1	
Bromochloromethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	74-97-5	
Bromodichloromethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	75-27-4	
Bromoform	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	75-25-2	
Bromomethane	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	74-83-9	
2-Butanone (MEK)	ND	ug/kg	104	1	10/18/19 12:39	10/18/19 15:37	78-93-3	
n-Butylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	104-51-8	
sec-Butylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	135-98-8	

REPORT OF LABORATORY ANALYSIS

Project: G18063

Pace Project No.: 92449737

Sample: B09	Lab ID: 924	49737002	Collected: 10/15/	19 10:21	Received: 10	/15/19 16:39 N	Aatrix: Solid	
Results reported on a "dry weight"	basis and are adj	iusted for p	ercent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260D Preparation Me	ethod: E	PA 5035A			
tert-Butylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	98-06-6	
Carbon tetrachloride	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	56-23-5	
Chlorobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-90-7	
Chloroethane	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	75-00-3	
Chloroform	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	67-66-3	
Chloromethane	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	74-87-3	
2-Chlorotoluene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	95-49-8	
4-Chlorotoluene	ND	ug/kg	5.2	1		10/18/19 15:37		
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.2	1		10/18/19 15:37		
Dibromochloromethane	ND	ug/kg	5.2	1		10/18/19 15:37		
1,2-Dibromoethane (EDB)	ND	ug/kg	5.2	1		10/18/19 15:37		
Dibromomethane	ND	ug/kg	5.2	1		10/18/19 15:37		
1,2-Dichlorobenzene	ND	ug/kg	5.2	1		10/18/19 15:37		
1,3-Dichlorobenzene	ND	ug/kg	5.2	1		10/18/19 15:37		
1,4-Dichlorobenzene	ND	ug/kg	5.2	1		10/18/19 15:37		
Dichlorodifluoromethane	ND	ug/kg	10.4	1		10/18/19 15:37		
1,1-Dichloroethane	ND	ug/kg	5.2	1		10/18/19 15:37		
1,2-Dichloroethane	ND	ug/kg	5.2	1		10/18/19 15:37		
1,1-Dichloroethene	ND	ug/kg	5.2	1		10/18/19 15:37		
cis-1,2-Dichloroethene	ND	ug/kg ug/kg	5.2	1		10/18/19 15:37		
trans-1,2-Dichloroethene	ND	ug/kg	5.2	1		10/18/19 15:37		
1,2-Dichloropropane	ND	ug/kg	5.2	1		10/18/19 15:37		
1,3-Dichloropropane	ND	ug/kg	5.2	1		10/18/19 15:37		
	ND		5.2	1		10/18/19 15:37		
2,2-Dichloropropane	ND	ug/kg	5.2	1		10/18/19 15:37		
1,1-Dichloropropene	ND	ug/kg	5.2	1		10/18/19 15:37		
cis-1,3-Dichloropropene		ug/kg	5.2					
trans-1,3-Dichloropropene	ND	ug/kg		1		10/18/19 15:37		
Diisopropyl ether	ND	ug/kg	5.2	1		10/18/19 15:37		
Ethylbenzene	ND	ug/kg	5.2	1		10/18/19 15:37		
Hexachloro-1,3-butadiene	ND	ug/kg	5.2	1		10/18/19 15:37		
2-Hexanone	ND	ug/kg	52.2	1		10/18/19 15:37		
Isopropylbenzene (Cumene)	ND	ug/kg	5.2	1		10/18/19 15:37		
p-lsopropyltoluene	ND	ug/kg	5.2	1		10/18/19 15:37		
Methylene Chloride	ND	ug/kg	20.9	1		10/18/19 15:37		
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	52.2	1		10/18/19 15:37		
Methyl-tert-butyl ether	ND	ug/kg	5.2	1		10/18/19 15:37		
Naphthalene	ND	ug/kg	5.2	1		10/18/19 15:37		
n-Propylbenzene	ND	ug/kg	5.2	1		10/18/19 15:37		
Styrene	ND	ug/kg	5.2	1		10/18/19 15:37		
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.2	1		10/18/19 15:37		
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.2	1		10/18/19 15:37		
Tetrachloroethene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	127-18-4	
Toluene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	87-61-6	
1,2,4-Trichlorobenzene		ug/kg	5.2	1	10/18/10 12:30	10/18/19 15:37	120-82-1	
	ND	uy/ky	J.2		10/10/19 12.39	10/10/19 15.57	120 02 1	

Project: G18063

Pace Project No.: 92449737

Sample: B09	Lab ID: 924	49737002	Collected: 10/15/1	9 10:21	Received: 10	/15/19 16:39	/latrix: Solid	
Results reported on a "dry weight" l	basis and are adj	iusted for p	ercent moisture, sa	mple si	ze and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	hod: EPA 82	60D Preparation Me	thod: E	PA 5035A			
1,1,2-Trichloroethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	79-00-5	
Trichloroethene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-67-8	
Vinyl acetate	ND	ug/kg	52.2	1	10/18/19 12:39	10/18/19 15:37	108-05-4	L1,v1
Vinyl chloride	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	75-01-4	
Xylene (Total)	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	1330-20-7	
m&p-Xylene	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	179601-23-1	
o-Xylene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	95-47-6	
Surrogates								
Toluene-d8 (S)	110	%	70-130	1	10/18/19 12:39	10/18/19 15:37	2037-26-5	
4-Bromofluorobenzene (S)	104	%	70-130	1	10/18/19 12:39	10/18/19 15:37	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-132	1	10/18/19 12:39	10/18/19 15:37	17060-07-0	
Percent Moisture	Analytical Mether	hod: ASTM I	02974-87					
Percent Moisture	13.9	%	0.10	1		10/17/19 13:30		

Project: G18063

Pace Project No.: 92449737

QC Batch Method:

QC Batch: 504508

504508 EPA 5035A Analysis Method: Analysis Description:

Matrix: Solid

EPA 8260D 8260D MSV 5035A Volatile Organics

Associated Lab Samples: 92449737001, 92449737002

METHOD BLANK: 2711188

Associated Lab Samples: 92449737001, 92449737002

Parameter	Units	Blank Result	Reporting Limit	Apolyzod	Qualifiers
				Analyzed	
,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	10/18/19 14:48	
,1,1-Trichloroethane	ug/kg	ND	5.0	10/18/19 14:48	
,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1,2-Trichloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1-Dichloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1-Dichloroethene	ug/kg	ND	5.0	10/18/19 14:48	
1-Dichloropropene	ug/kg	ND	5.0	10/18/19 14:48	
2,3-Trichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
2,3-Trichloropropane	ug/kg	ND	5.0	10/18/19 14:48	
2,4-Trichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
2,4-Trimethylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
2-Dibromo-3-chloropropane	ug/kg	ND	5.0	10/18/19 14:48	
2-Dibromoethane (EDB)	ug/kg	ND	5.0	10/18/19 14:48	
2-Dichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
2-Dichloroethane	ug/kg	ND	5.0	10/18/19 14:48	
2-Dichloropropane	ug/kg	ND	5.0	10/18/19 14:48	
3,5-Trimethylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
3-Dichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
3-Dichloropropane	ug/kg	ND	5.0	10/18/19 14:48	
4-Dichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
2-Dichloropropane	ug/kg	ND	5.0	10/18/19 14:48	
Butanone (MEK)	ug/kg	ND	100	10/18/19 14:48	
Chlorotoluene	ug/kg	ND	5.0	10/18/19 14:48	
Hexanone	ug/kg	ND	50.0	10/18/19 14:48	
Chlorotoluene	ug/kg	ND	5.0	10/18/19 14:48	
Methyl-2-pentanone (MIBK)	ug/kg	ND	50.0	10/18/19 14:48	
etone	ug/kg	ND	100	10/18/19 14:48	
enzene	ug/kg	ND	5.0	10/18/19 14:48	
omobenzene	ug/kg	ND	5.0	10/18/19 14:48	
omochloromethane	ug/kg	ND	5.0	10/18/19 14:48	
omodichloromethane	ug/kg	ND	5.0	10/18/19 14:48	
romoform	ug/kg	ND	5.0	10/18/19 14:48	
omomethane	ug/kg	ND	10.0	10/18/19 14:48	
arbon tetrachloride	ug/kg	ND	5.0	10/18/19 14:48	
hlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
hloroethane	ug/kg	ND	10.0	10/18/19 14:48	
hloroform	ug/kg	ND	5.0	10/18/19 14:48	
hloromethane	ug/kg	ND	10.0	10/18/19 14:48	
s-1,2-Dichloroethene	ug/kg	ND	5.0	10/18/19 14:48	
s-1,3-Dichloropropene	ug/kg	ND	5.0	10/18/19 14:48	
ibromochloromethane	ug/kg	ND	5.0	10/18/19 14:48	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

Associated Lab Samples: 92449737001, 92449737002 Parameter Units Result Limit Analyzed Qualifiers Dibromomethane ug/kg ND 5.0 10/18/19 14:48 Qualifiers Disopropyl ether ug/kg ND 5.0 10/18/19 14:48 Ethylbenzene ug/kg ND 5.0 10/18/19 14:48 Ethylbenzene ug/kg ND 5.0 10/18/19 14:48 Ethylbenzene ug/kg ND 5.0 10/18/19 14:48 Isopropylbenzene (Cumene) ug/kg ND 5.0 10/18/19 14:48 Methylere Chloride ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 5.0 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 Methylenzene ug/kg ND<	METHOD BLANK: 2711188	}	Matrix:	Solid		
Dibromomethane ug/kg ND 5.0 10/18/19 14:48 Dichlorodffluoromethane ug/kg ND 10.0 10/18/19 14:48 Disopropyl ether ug/kg ND 5.0 10/18/19 14:48 Ethylbenzene ug/kg ND 5.0 10/18/19 14:48 Hexachloro-1,3-butadiene ug/kg ND 5.0 10/18/19 14:48 Isopropylbenzene (Cumene) ug/kg ND 5.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 N=-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48	Associated Lab Samples:	92449737001, 92449737002	Blank	Reporting		
Dichlorodifluoromethane ug/kg ND 10.0 10/18/19 14:48 Disopropyl ether ug/kg ND 5.0 10/18/19 14:48 Ethylbenzene ug/kg ND 5.0 10/18/19 14:48 Hexachloro-1,3-butadiene ug/kg ND 5.0 10/18/19 14:48 Isopropylbenzene (Cumene) ug/kg ND 5.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methyl-terb-butyl ether ug/kg ND 5.0 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Styrene	Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diisoproyl ether ug/kg ND 5.0 10/18/19 14:48 Ethylbenzene ug/kg ND 5.0 10/18/19 14:48 Hexachloro-1,3-butadiene ug/kg ND 5.0 10/18/19 14:48 Isopropylbenzene (Cumene) ug/kg ND 5.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 styrene ug/kg ND 5.0 10/18/19 14:48 Styrene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/1	Dibromomethane	ug/kg	ND	5.0	10/18/19 14:48	
Ethylbenzene ug/kg ND 5.0 10/18/19 14:48 Hexachloro-1,3-butadiene ug/kg ND 5.0 10/18/19 14:48 Isopropylbenzene (Cumene) ug/kg ND 5.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 2.0. 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 styrene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 <td>Dichlorodifluoromethane</td> <td>ug/kg</td> <td>ND</td> <td>10.0</td> <td>10/18/19 14:48</td> <td></td>	Dichlorodifluoromethane	ug/kg	ND	10.0	10/18/19 14:48	
Hexachloro-1,3-butadiene ug/kg ND 5.0 10/18/19 14:48 Isopropylbenzene (Cumene) ug/kg ND 5.0 10/18/19 14:48 m&p-Xylene ug/kg ND 5.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 5.0 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene	Diisopropyl ether	ug/kg	ND	5.0	10/18/19 14:48	
Isopropylbenzene (Currene) ug/kg ND 5.0 10/18/19 14:48 m&p-Xylene ug/kg ND 10.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 20.0 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Styrene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,3-Dichloropropene ug/kg ND 5	Ethylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
m&p-Xylene ug/kg ND 10.0 10/18/19 14:48 Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 20.0 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Styrene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroethene ug/kg ND 5.0 10/18/19 14:48 Trichloroethene ug/kg N	Hexachloro-1,3-butadiene	ug/kg	ND	5.0	10/18/19 14:48	
Methyl-tert-butyl ether ug/kg ND 5.0 10/18/19 14:48 Methylene Chloride ug/kg ND 20.0 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,3-Dichloropropene <td< td=""><td>Isopropylbenzene (Cumene)</td><td>ug/kg</td><td>ND</td><td>5.0</td><td>10/18/19 14:48</td><td></td></td<>	Isopropylbenzene (Cumene)	ug/kg	ND	5.0	10/18/19 14:48	
Methylene Chloride ug/kg ND 20.0 10/18/19 14:48 n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 p-Isopropyltoluene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 styrene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroptopene ug/kg ND 5.0 10/18/19 14:48 Trichloroftueromethane ug/kg ND 5.0 10/18/19 14:48 Vinyl acetate ug/kg ND 5.0 <td>m&p-Xylene</td> <td>ug/kg</td> <td>ND</td> <td>10.0</td> <td>10/18/19 14:48</td> <td></td>	m&p-Xylene	ug/kg	ND	10.0	10/18/19 14:48	
n-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,3-Dichloropropene ug/kg ND 5.0 10/18/19 14:48 Trichlorofluoromethane	Methyl-tert-butyl ether	ug/kg	ND	5.0	10/18/19 14:48	
n-Propylbenzene ug/kg ND 5.0 10/18/19 14:48 Naphthalene ug/kg ND 5.0 10/18/19 14:48 o-Xylene ug/kg ND 5.0 10/18/19 14:48 p-lsopropyltoluene ug/kg ND 5.0 10/18/19 14:48 sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Styrene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/19 14:48 Toluene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,3-Dichloropropene ug/kg ND 5.0 10/18/19 14:48 Trichloroethene ug/kg ND 5.0 10/18/19 14:48 Vinyl acetate ug/kg ND 5.0 10/18/19 14:48 Vinyl chloride ug/kg ND 5.0 10/18/19 14:48 Xylene (Total) ug/kg ND 10.0 <	Methylene Chloride	ug/kg	ND	20.0	10/18/19 14:48	
Naphthaleneug/kgND5.010/18/19 14:48o-Xyleneug/kgND5.010/18/19 14:48p-lsopropyltolueneug/kgND5.010/18/19 14:48sec-Butylbenzeneug/kgND5.010/18/19 14:48Styreneug/kgND5.010/18/19 14:48tert-Butylbenzeneug/kgND5.010/18/19 14:48Tetrachloroetheneug/kgND5.010/18/19 14:48Tolueneug/kgND5.010/18/19 14:48trans-1,2-Dichloroetheneug/kgND5.010/18/19 14:48trans-1,3-Dichloropropeneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Vinyl acetateug/kgND5.010/18/19 14:48Vinyl acetateug/kgND5.010/18/19 14:48Xylene (Total)ug/kgND10.010/18/19 14:481,2-Dichloroethane-d4 (S)%9770-13210/18/19 14:484-Bromofluorobenzene (S)%10170-13010/18/19 14:48	n-Butylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
o-Xyleneug/kgND5.010/18/1914:48p-lsopropyltolueneug/kgND5.010/18/1914:48sec-Butylbenzeneug/kgND5.010/18/1914:48Styreneug/kgND5.010/18/1914:48tert-Butylbenzeneug/kgND5.010/18/1914:48tert-Butylbenzeneug/kgND5.010/18/1914:48Tetrachloroetheneug/kgND5.010/18/1914:48Tolueneug/kgND5.010/18/1914:48trans-1,2-Dichloroetheneug/kgND5.010/18/1914:48trans-1,3-Dichloropropeneug/kgND5.010/18/1914:48Trichloroftheneug/kgND5.010/18/1914:48Vinyl acetateug/kgND5.010/18/1914:48Vinyl chlorideug/kgND50.010/18/1914:48Xylene (Total)ug/kgND50.010/18/1914:481,2-Dichloroethane-d4 (S)%9770-13210/18/1914:484-Bromofluorobenzene (S)%10170-13010/18/1914:48	n-Propylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
p-Isopropyltolueneug/kgND5.010/18/19 14:48sec-Butylbenzeneug/kgND5.010/18/19 14:48Styreneug/kgND5.010/18/19 14:48tert-Butylbenzeneug/kgND5.010/18/19 14:48Tetrachloroetheneug/kgND5.010/18/19 14:48Tolueneug/kgND5.010/18/19 14:48trans-1,2-Dichloroetheneug/kgND5.010/18/19 14:48trans-1,3-Dichloropropeneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Vinyl acetateug/kgND5.010/18/19 14:48Vinyl chlorideug/kgND50.010/18/19 14:48Xylene (Total)ug/kgND10.010/18/19 14:484-Bromofluorobenzene (S)%10170-13010/18/19 14:48	Naphthalene	ug/kg	ND	5.0	10/18/19 14:48	
sec-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Styrene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/19 14:48 Toluene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,3-Dichloropropene ug/kg ND 5.0 10/18/19 14:48 Trichloroethene ug/kg ND 5.0 10/18/19 14:48 Trichloroethene ug/kg ND 5.0 10/18/19 14:48 Vinyl acetate ug/kg ND 5.0 10/18/19 14:48 Vinyl chloride ug/kg ND 50.0 10/18/19 14:48 Xylene (Total) ug/kg ND 10.0 10/18/19 14:48 1,2-Dichloroethane-d4 (S) % 97 70-132 10/18/19 14:48 4-Bromofluorobenzene (S) % 101	o-Xylene	ug/kg	ND	5.0	10/18/19 14:48	
Styreneug/kgND5.010/18/19 14:48tert-Butylbenzeneug/kgND5.010/18/19 14:48Tetrachloroetheneug/kgND5.010/18/19 14:48Tolueneug/kgND5.010/18/19 14:48trans-1,2-Dichloroetheneug/kgND5.010/18/19 14:48trans-1,3-Dichloropropeneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Trichlorofluoromethaneug/kgND5.010/18/19 14:48Vinyl acetateug/kgND5.010/18/19 14:48Vinyl chlorideug/kgND10.010/18/19 14:48Xylene (Total)ug/kgND10.010/18/19 14:481,2-Dichloroethane-d4 (S)%9770-13210/18/19 14:484-Bromofluorobenzene (S)%10170-13010/18/19 14:48	p-Isopropyltoluene	ug/kg	ND	5.0	10/18/19 14:48	
tert-Butylbenzene ug/kg ND 5.0 10/18/19 14:48 Tetrachloroethene ug/kg ND 5.0 10/18/19 14:48 Toluene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,2-Dichloroethene ug/kg ND 5.0 10/18/19 14:48 trans-1,3-Dichloropropene ug/kg ND 5.0 10/18/19 14:48 Trichloroethene ug/kg ND 5.0 10/18/19 14:48 Trichlorofluoromethane ug/kg ND 5.0 10/18/19 14:48 Vinyl acetate ug/kg ND 5.0 10/18/19 14:48 v1 Vinyl chloride ug/kg ND 50.0 10/18/19 14:48 v1 Vinyl chloride ug/kg ND 10.0 10/18/19 14:48 v1 Xylene (Total) ug/kg ND 10.0 10/18/19 14:48 1,2-Dichloroethane-d4 (S) % 97 70-132 10/18/19 14:48 4-Bromofluorobenzene (S) % 101 70-130 10/18/19 14:48 10/18/19 14:48	sec-Butylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
Tetrachloroetheneug/kgND5.010/18/19 14:48Tolueneug/kgND5.010/18/19 14:48trans-1,2-Dichloroetheneug/kgND5.010/18/19 14:48trans-1,3-Dichloropropeneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Trichlorofluoromethaneug/kgND5.010/18/19 14:48Vinyl acetateug/kgND50.010/18/19 14:48Vinyl chlorideug/kgND10.010/18/19 14:48Xylene (Total)ug/kgND10.010/18/19 14:484-Bromofluorobenzene (S)%9770-13210/18/19 14:48	Styrene	ug/kg	ND	5.0	10/18/19 14:48	
Tolueneug/kgND5.010/18/19 14:48trans-1,2-Dichloroetheneug/kgND5.010/18/19 14:48trans-1,3-Dichloropropeneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Trichlorofluoromethaneug/kgND5.010/18/19 14:48Vinyl acetateug/kgND5.010/18/19 14:48Vinyl chlorideug/kgND50.010/18/19 14:48Xylene (Total)ug/kgND10.010/18/19 14:481,2-Dichloroethane-d4 (S)%9770-13210/18/19 14:484-Bromofluorobenzene (S)%10170-13010/18/19 14:48	tert-Butylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
trans-1,2-Dichloroetheneug/kgND5.010/18/19 14:48trans-1,3-Dichloropropeneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Trichlorofluoromethaneug/kgND5.010/18/19 14:48Vinyl acetateug/kgND5.010/18/19 14:48Vinyl chlorideug/kgND50.010/18/19 14:48Xylene (Total)ug/kgND10.010/18/19 14:481,2-Dichloroethane-d4 (S)%9770-13210/18/19 14:484-Bromofluorobenzene (S)%10170-13010/18/19 14:48	Tetrachloroethene	ug/kg	ND	5.0	10/18/19 14:48	
trans-1,3-Dichloropropeneug/kgND5.010/18/19 14:48Trichloroetheneug/kgND5.010/18/19 14:48Trichlorofluoromethaneug/kgND5.010/18/19 14:48Vinyl acetateug/kgND50.010/18/19 14:48Vinyl chlorideug/kgND50.010/18/19 14:48Xylene (Total)ug/kgND10.010/18/19 14:481,2-Dichloroethane-d4 (S)%9770-13210/18/19 14:484-Bromofluorobenzene (S)%10170-13010/18/19 14:48	Toluene	ug/kg	ND	5.0	10/18/19 14:48	
Trichloroetheneug/kgND5.010/18/1914:48Trichlorofluoromethaneug/kgND5.010/18/1914:48Vinyl acetateug/kgND50.010/18/1914:48v1Vinyl chlorideug/kgND10.010/18/1914:48Xylene (Total)ug/kgND10.010/18/1914:481,2-Dichloroethane-d4 (S)%9770-13210/18/1914:484-Bromofluorobenzene (S)%10170-13010/18/1914:48	trans-1,2-Dichloroethene	ug/kg	ND	5.0	10/18/19 14:48	
Trichlorofluoromethane ug/kg ND 5.0 10/18/19 14:48 Vinyl acetate ug/kg ND 50.0 10/18/19 14:48 v1 Vinyl acetate ug/kg ND 50.0 10/18/19 14:48 v1 Vinyl chloride ug/kg ND 10.0 10/18/19 14:48 Xylene (Total) ug/kg ND 10.0 10/18/19 14:48 1,2-Dichloroethane-d4 (S) % 97 70-132 10/18/19 14:48 4-Bromofluorobenzene (S) % 101 70-130 10/18/19 14:48	trans-1,3-Dichloropropene	ug/kg	ND	5.0	10/18/19 14:48	
Vinyl acetate ug/kg ND 50.0 10/18/19 14:48 v1 Vinyl chloride ug/kg ND 10.0 10/18/19 14:48 Xylene (Total) ug/kg ND 10.0 10/18/19 14:48 1,2-Dichloroethane-d4 (S) % 97 70-132 10/18/19 14:48 4-Bromofluorobenzene (S) % 101 70-130 10/18/19 14:48	Trichloroethene	ug/kg	ND	5.0	10/18/19 14:48	
Vinyl chlorideug/kgND10.010/18/1914:48Xylene (Total)ug/kgND10.010/18/1914:481,2-Dichloroethane-d4 (S)%9770-13210/18/1914:484-Bromofluorobenzene (S)%10170-13010/18/1914:48	Trichlorofluoromethane	ug/kg	ND	5.0	10/18/19 14:48	
Xylene (Total)ug/kgND10.010/18/1914:481,2-Dichloroethane-d4 (S)%9770-13210/18/1914:484-Bromofluorobenzene (S)%10170-13010/18/1914:48	Vinyl acetate	ug/kg	ND	50.0	10/18/19 14:48	v1
1,2-Dichloroethane-d4 (S)%9770-13210/18/1914:484-Bromofluorobenzene (S)%10170-13010/18/1914:48	Vinyl chloride	ug/kg	ND	10.0	10/18/19 14:48	
4-Bromofluorobenzene (S) % 101 70-130 10/18/19 14:48	Xylene (Total)	ug/kg	ND	10.0	10/18/19 14:48	
	1,2-Dichloroethane-d4 (S)	%	97	70-132	10/18/19 14:48	
	4-Bromofluorobenzene (S)	%	101	70-130	10/18/19 14:48	
	Toluene-d8 (S)	%	111	70-130	10/18/19 14:48	

LABORATORY CONTROL SAMPLE: 2711189

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	50	53.7	107	70-130	
1,1,1-Trichloroethane	ug/kg	50	52.5	105	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	50	50.6	101	55-130	
1,1,2-Trichloroethane	ug/kg	50	52.1	104	70-130	
1,1-Dichloroethane	ug/kg	50	53.0	106	68-130	
1,1-Dichloroethene	ug/kg	50	56.2	112	70-130	
1,1-Dichloropropene	ug/kg	50	49.3	99	70-130	
1,2,3-Trichlorobenzene	ug/kg	50	53.7	107	70-130	
1,2,3-Trichloropropane	ug/kg	50	55.4	111	70-130	
1,2,4-Trichlorobenzene	ug/kg	50	53.3	107	70-130	
1,2,4-Trimethylbenzene	ug/kg	50	51.3	103	69-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

LABORATORY CONTROL SAMPLE: 2711189

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers		
						Quaimers		
1,2-Dibromo-3-chloropropane	ug/kg	50	55.0	110	57-141			
1,2-Dibromoethane (EDB)	ug/kg	50	55.0	110	70-130			
1,2-Dichlorobenzene	ug/kg	50	50.5	101	70-130			
1,2-Dichloroethane	ug/kg	50	54.9	110	70-130			
1,2-Dichloropropane	ug/kg	50	51.4	103	70-130			
1,3,5-Trimethylbenzene	ug/kg	50	52.3	105	70-130			
1,3-Dichlorobenzene	ug/kg	50	50.3	101	70-130			
1,3-Dichloropropane	ug/kg	50	55.4	111	70-130			
I,4-Dichlorobenzene	ug/kg	50	50.3	101	70-130			
2,2-Dichloropropane	ug/kg	50	55.5	111	70-130			
P-Butanone (MEK)	ug/kg	100	112	112	60-130			
-Chlorotoluene	ug/kg	50	51.0	102	70-130			
-Hexanone	ug/kg	100	119	119	70-132			
-Chlorotoluene	ug/kg	50	52.3	105	70-130			
-Methyl-2-pentanone (MIBK)	ug/kg	100	116	116	69-130			
Acetone	ug/kg	100	117	117	49-148			
enzene	ug/kg	50	54.8	110	70-130			
romobenzene	ug/kg	50	50.2	100	70-130			
romochloromethane	ug/kg	50	50.5	101	70-130			
romodichloromethane	ug/kg	50	55.3	111	70-130			
omoform	ug/kg	50	52.7	105	68-136			
omomethane	ug/kg	50	53.1	106	60-140			
arbon tetrachloride	ug/kg	50	51.2	102	70-130			
lorobenzene	ug/kg	50	49.8	102	70-130			
hloroethane	ug/kg	50 50	49.0 56.4	113	51-147			
hloroform	ug/kg	50 50	46.9	94	70-130			
		50 50	40.9 58.2	116	48-130			
hloromethane	ug/kg							
s-1,2-Dichloroethene	ug/kg	50	52.3	105	70-130			
s-1,3-Dichloropropene	ug/kg	50	55.2	110	70-130			
bromochloromethane	ug/kg	50	54.0	108	70-130			
ibromomethane	ug/kg	50	52.3	105	70-130			
ichlorodifluoromethane	ug/kg	50	61.1	122	49-130			
iisopropyl ether	ug/kg	50	55.6	111	66-130			
thylbenzene	ug/kg	50	51.7	103	70-130			
exachloro-1,3-butadiene	ug/kg	50	52.6	105	70-130			
opropylbenzene (Cumene)	ug/kg	50	51.0	102	70-130			
&p-Xylene	ug/kg	100	103	103	70-130			
lethyl-tert-butyl ether	ug/kg	50	53.1	106	70-130			
ethylene Chloride	ug/kg	50	48.8	98	50-137			
Butylbenzene	ug/kg	50	52.4	105	70-130			
Propylbenzene	ug/kg	50	52.6	105	70-130			
aphthalene	ug/kg	50	52.2	104	70-131			
Xylene	ug/kg	50	50.1	100	70-130			
Isopropyltoluene	ug/kg	50	50.9	102	70-130			
ec-Butylbenzene	ug/kg	50	51.2	102	70-130			
Styrene	ug/kg	50	48.5	97	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

LABORATORY CONTROL SAMPLE: 2711189

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Tetrachloroethene	ug/kg	50	52.8	106	56-130	
Toluene	ug/kg	50	51.5	103	70-130	
rans-1,2-Dichloroethene	ug/kg	50	52.5	105	70-130	
rans-1,3-Dichloropropene	ug/kg	50	57.1	114	70-130	
richloroethene	ug/kg	50	51.8	104	70-141	
richlorofluoromethane	ug/kg	50	57.0	114	67-130	
nyl acetate	ug/kg	100	149	149	10-136	L1,v1
nyl chloride	ug/kg	50	58.2	116	67-130	
lene (Total)	ug/kg	150	154	102	70-130	
2-Dichloroethane-d4 (S)	%			104	70-132	
Bromofluorobenzene (S)	%			102	70-130	
oluene-d8 (S)	%			102	70-130	

MATRIX SPIKE SAMPLE:	2712535						
		92449737002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	22.2	22.2	100	52-133	
1,1,1-Trichloroethane	ug/kg	ND	22.2	26.1	117	49-137	
1,1,2,2-Tetrachloroethane	ug/kg	ND	22.2	22.2	100	39-150	
1,1,2-Trichloroethane	ug/kg	ND	22.2	23.3	105	48-140	
1,1-Dichloroethane	ug/kg	ND	22.2	24.9	112	46-135	
1,1-Dichloroethene	ug/kg	ND	22.2	28.1	126	38-149	
1,1-Dichloropropene	ug/kg	ND	22.2	24.5	110	41-140	
1,2,3-Trichlorobenzene	ug/kg	ND	22.2	21.6	97	10-158	
1,2,3-Trichloropropane	ug/kg	ND	22.2	23.6	106	33-157	
1,2,4-Trichlorobenzene	ug/kg	ND	22.2	21.3	96	10-155	
1,2,4-Trimethylbenzene	ug/kg	ND	22.2	22.0	99	24-154	
1,2-Dibromo-3-chloropropane	ug/kg	ND	22.2	24.5	110	33-158	
1,2-Dibromoethane (EDB)	ug/kg	ND	22.2	22.8	103	40-136	
1,2-Dichlorobenzene	ug/kg	ND	22.2	21.5	97	27-146	
1,2-Dichloroethane	ug/kg	ND	22.2	24.4	110	49-140	
1,2-Dichloropropane	ug/kg	ND	22.2	24.4	110	44-143	
1,3,5-Trimethylbenzene	ug/kg	ND	22.2	22.6	102	40-144	
1,3-Dichlorobenzene	ug/kg	ND	22.2	21.6	97	33-140	
1,3-Dichloropropane	ug/kg	ND	22.2	23.1	104	47-147	
1,4-Dichlorobenzene	ug/kg	ND	22.2	21.5	97	35-139	
2,2-Dichloropropane	ug/kg	ND	22.2	25.7	116	41-140	
2-Butanone (MEK)	ug/kg	ND	44.4	45.2J	102	10-181	
2-Chlorotoluene	ug/kg	ND	22.2	22.6	102	38-147	
2-Hexanone	ug/kg	ND	44.4	45.2J	102	18-169	
4-Chlorotoluene	ug/kg	ND	22.2	22.4	101	36-145	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	44.4	47.2J	106	16-175	
Acetone	ug/kg	ND	44.4	64J	129	10-200	
Benzene	ug/kg	ND	22.2	25.4	114	46-136	
Bromobenzene	ug/kg	ND	22.2	22.6	102	38-149	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

MATRIX SPIKE SAMPLE:	2712535						
		92449737002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromochloromethane	ug/kg	ND	22.2	24.8	112	44-142	
Bromodichloromethane	ug/kg	ND	22.2	24.8	111	41-140	
Bromoform	ug/kg	ND	22.2	22.9	103	34-145	
Bromomethane	ug/kg	ND	22.2	23.2	104	14-162	
Carbon tetrachloride	ug/kg	ND	22.2	27.4	123	44-141	
Chlorobenzene	ug/kg	ND	22.2	22.6	102	39-141	
Chloroethane	ug/kg	ND	22.2	34.7	156	10-182	
Chloroform	ug/kg	ND	22.2	25.6	115	45-140	
Chloromethane	ug/kg	ND	22.2	28.1	126	19-149	
cis-1,2-Dichloroethene	ug/kg	ND	22.2	24.9	112	38-150	
cis-1,3-Dichloropropene	ug/kg	ND	22.2	25.3	114	30-144	
Dibromochloromethane	ug/kg	ND	22.2	21.7	98	36-145	
Dibromomethane	ug/kg	ND	22.2	23.8	107	41-145	
Dichlorodifluoromethane	ug/kg	ND	22.2	30.8	138	16-146	
Diisopropyl ether	ug/kg	ND	22.2	23.6	106	41-143	
Ethylbenzene	ug/kg	ND	22.2	23.5	106	35-144	
Hexachloro-1,3-butadiene	ug/kg	ND	22.2	22.9	103	10-160	
Isopropylbenzene (Cumene)	ug/kg	ND	22.2	22.9	103	30-152	
m&p-Xylene	ug/kg	ND	44.4	46.6	105	33-145	
Methyl-tert-butyl ether	ug/kg	ND	22.2	22.7	102	49-140	
Methylene Chloride	ug/kg	ND	22.2	23.3	105	10-174	
n-Butylbenzene	ug/kg	ND	22.2	22.6	102	10-160	
n-Propylbenzene	ug/kg	ND	22.2	23.5	106	24-159	
Naphthalene	ug/kg	ND	22.2	20.3	91	10-171	
o-Xylene	ug/kg	ND	22.2	22.9	103	31-150	
p-Isopropyltoluene	ug/kg	ND	22.2	22.9	103	21-154	
sec-Butylbenzene	ug/kg	ND	22.2	23.7	107	19-159	
Styrene	ug/kg	ND	22.2	21.3	96	15-152	
tert-Butylbenzene	ug/kg	ND	22.2	20.9	94	31-141	
Tetrachloroethene	ug/kg	ND	22.2	23.4	105	19-141	
Toluene	ug/kg	ND	22.2	24.4	110	31-146	
trans-1,2-Dichloroethene	ug/kg	ND	22.2	25.4	114	28-157	
trans-1,3-Dichloropropene	ug/kg	ND	22.2	23.4	106	25-146	
Trichloroethene	ug/kg	ND	22.2	24.6	111	34-149	
Trichlorofluoromethane	ug/kg	ND	22.2	29.4	132	10-167	
Vinyl acetate	ug/kg	ND	44.4	57.7	130	10-200	
Vinyl chloride	ug/kg	ND	22.2	28.2	127	36-155	
Xylene (Total)	ug/kg	ND	66.7	69.5	104	29-148	
1,2-Dichloroethane-d4 (S)	%				109	70-132	
4-Bromofluorobenzene (S)	%				97	70-130	
Toluene-d8 (S)	%				101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

SAMPLE DUPLICATE: 2712534

Parameter	Units	92449737001 Result	Dup Result	RPD	Qualifier
1,1,1,2-Tetrachloroethane	ug/kg	— — — — — — — — — — — — — — — — — — —			
1,1,1-Trichloroethane	ug/kg	ND	ND		
1,1,2,2-Tetrachloroethane	ug/kg	ND	ND		
1,1,2-Trichloroethane	ug/kg	ND	ND		
1,1-Dichloroethane	ug/kg	ND	ND		
1,1-Dichloroethene	ug/kg	ND	ND		
1,1-Dichloropropene	ug/kg	ND	ND		
1,2,3-Trichlorobenzene	ug/kg	ND	ND		
1,2,3-Trichloropropane	ug/kg	ND	ND		
1,2,4-Trichlorobenzene	ug/kg	ND	ND		
1,2,4-Trimethylbenzene	ug/kg	ND	ND		
1,2-Dibromo-3-chloropropane	ug/kg	ND	ND		
1,2-Dibromoethane (EDB)	ug/kg	ND	ND		
1,2-Dichlorobenzene	ug/kg	ND	ND		
1,2-Dichloroethane	ug/kg	ND	ND		
1,2-Dichloropropane	ug/kg	ND	ND		
1,3,5-Trimethylbenzene	ug/kg	ND	ND		
1,3-Dichlorobenzene	ug/kg	ND	ND		
1,3-Dichloropropane	ug/kg	ND	ND		
1,4-Dichlorobenzene	ug/kg	ND	ND		
2,2-Dichloropropane	ug/kg	ND	ND		
2-Butanone (MEK)	ug/kg	ND	ND		
2-Chlorotoluene	ug/kg	ND	ND		
2-Hexanone		ND	ND		
4-Chlorotoluene	ug/kg ug/kg	ND	ND		
		ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		
Acetone Benzene	ug/kg	ND			
	ug/kg	ND	ND ND		
Bromobenzene	ug/kg	ND			
Bromochloromethane	ug/kg	ND	ND		
Bromodichloromethane	ug/kg	ND	ND		
Bromoform	ug/kg	ND	ND		
Bromomethane	ug/kg		ND		
Carbon tetrachloride	ug/kg	ND	ND		
Chlorobenzene	ug/kg	ND	ND		
Chloroethane	ug/kg	ND	ND		
Chloroform	ug/kg	ND	ND		
Chloromethane	ug/kg	ND	ND		
cis-1,2-Dichloroethene	ug/kg	ND	ND		
cis-1,3-Dichloropropene	ug/kg	ND	ND		
Dibromochloromethane	ug/kg	ND	ND		
Dibromomethane	ug/kg	ND	ND		
Dichlorodifluoromethane	ug/kg	ND	ND		
Diisopropyl ether	ug/kg	ND	ND		
Ethylbenzene	ug/kg	ND	ND		
Hexachloro-1,3-butadiene	ug/kg	ND	ND		
Isopropylbenzene (Cumene)	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

_

Project: G18063 Pace Project No.: 92449737

SAMPLE DUPLICATE: 2712534

		92449737001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
m&p-Xylene	ug/kg		ND		
Methyl-tert-butyl ether	ug/kg	ND	ND		
Methylene Chloride	ug/kg	ND	ND		
n-Butylbenzene	ug/kg	ND	ND		
n-Propylbenzene	ug/kg	ND	ND		
Naphthalene	ug/kg	ND	ND		
o-Xylene	ug/kg	ND	ND		
p-Isopropyltoluene	ug/kg	ND	ND		
sec-Butylbenzene	ug/kg	ND	ND		
Styrene	ug/kg	ND	ND		
tert-Butylbenzene	ug/kg	ND	ND		
Tetrachloroethene	ug/kg	ND	ND		
Toluene	ug/kg	ND	ND		
trans-1,2-Dichloroethene	ug/kg	ND	ND		
trans-1,3-Dichloropropene	ug/kg	ND	ND		
Trichloroethene	ug/kg	ND	ND		
Trichlorofluoromethane	ug/kg	ND	ND		
Vinyl acetate	ug/kg	ND	ND		
Vinyl chloride	ug/kg	ND	ND		
Xylene (Total)	ug/kg	ND	ND		
1,2-Dichloroethane-d4 (S)	%	108	100		
4-Bromofluorobenzene (S)	%	101	99		
Toluene-d8 (S)	%	103	108		

.

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	G18063							
Pace Project No .:	92449737							
QC Batch:	504241		Analysis Meth	od:	ASTM D2974	-87		
QC Batch Method:	ASTM D2974-87		Analysis Desc	t Moisture				
Associated Lab Sar	mples: 92449737	001, 92449737002						
SAMPLE DUPLICA	TE: 2709812							
			92449529001	Dup				
Parar	neter	Units	Result	Result	RPD		Qualifiers	
Percent Moisture		%	25.1	25	.5	1		
SAMPLE DUPLICA	TE: 2709813							
			92449810001	Dup				
Parar	neter	Units	Result	Result	RPD		Qualifiers	
Percent Moisture		%	12.2	12	.8	4		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G18063 Pace Project No.: 92449737

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:G18063Pace Project No.:92449737

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92449737001 92449737002	B08 B09	EPA 5035A EPA 5035A	504508 504508	EPA 8260D EPA 8260D	504512 504512
92449737001 92449737002	B08 B09	ASTM D2974-87 ASTM D2974-87	504241 504241		

737 Notes 1			llab Project Manager:	** Preservative Types: (1) 'nitric acid, (2) sulfuric acid, (3) hydrochlorid acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (8) ammonium sulfate,) Wetter /C	Lab Sample Receipt Checklist: Custody Seals Present/Intact Y N NA	Custody Signatures Present LAT NA Collector Signature Present LAT NA Bottlee That	Correct Bottles Sufficient Volume Samples Received on Ice W. NA	۵.	resent e	cips:	Lab Sample #// Comments: のパレル・ソロアシア		Cost.					Lab Sample Temperature Info:	Temp Blank Received: Y N NA Them ID#: 417 005 Cooler 1 Temp Upon Receipt 61 oC	Cooler 1 Therm Corr. Factor: 0.1 Cooler 1 Corrected Temp: 6.0			Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page:
W0#:92449737			a del	 hydrochloric acid te, (9) hexane, (A)) Other DI (1	588	CO Sa Sa	VO US Sa	2055 2055 2055	3 4	4							N N/A	79	Courier Pace Courier	MITIL LAB USE ONLY			
ю: #		137	Type **	ulfuric acid, (3 lium thiosulfa	preserved, (O														hours): Y	2409979			Table #: Acctnum:	Template. Prelogin:	PM: PB:
AB USE OF		924497	Container Preservative Type **	: Types: (1) nitric acid, (2) su 7) sodium bisulfate, (8) sod	hydroxide, (D) TSP, (U) Unp Analyses			24. <i>111</i> 1.											SHORT HOLDS PRESENT (<72 hours):		Samples received via: FEDEX UPS Client	Date/Time:	lo/15/19 1639	Date/Time:	Date/Time:
			0 7 0	** Preservative (6) methanol, ((C) ammonium	542	wnj¢	รศ	IBF (4)	214D C	97	8	Z	X					SHOR	Lab Tr	Sampl	Δ		<u> </u>	
Request Document			100	total concerginees		Time Zone Collected:	Compliance Monitoring?		Immediately Packed on Ice:			Res # of Ctms							Wet Blue Dry None		reened (<500 cpm): Y N NA	Received by/Company: (Siggature)	Jahn Har	Received b%/Company: (Signature)	Received by/Company: (Signature)
CHAIN-OF-CUSTODY Analytical Request	s a LEGAL DOCUMENT -	Billing Information: SAME	2	Email To: Cbur Khu	Site Collection Info/Address:	State: County/City			10-18-19	Jay []5 Day	(DW), Ground Water (G ssue (TS), Bioassay (B), V	Collected (or Composite Start)	IOISIG INUG	_					Type of Ice Used:	Packing Material Used	Radchem sample(s) screened (<500 cpm):		distig 1634	Date/Tiĥe:	Date/Time: F
OF-CUS	of-Custody i						;#0	er#:	ate Require	[] Same Day [] Next E Day 📷 3 Day [] 4 Day (Excedite Charges Apply)	king Water Air (AR), Tis	Comp / Grab	J	J		5			e Hazards:			Dat	110	Dat	Dat
CHAIN-	Chain-c		TY RUS	Y NC 27	ai 12		Sitte/Facility ID #:	Purchase Order #: Quote #:	Turnaround Date Required	8	x below): Drint L), Wipe (WP),	Matrix *	75	25			*	°.	itions / Possible			ture) 1	1, LU	ture)	ture)
5	Face Analytical	COMPANY: FAICON	Address: 1210-TRINITY RUSTID	REPORT TO CARY N	Copy To:	Customer Project Name/Number:	Phone: 9197300061 Email:	Collected By (print):	Collected By (signature):	Sample Disposal: Dispose as appropriate []Return [] Arcthive: [] Hold:	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID	500	209					Customer Remarks / Special Conditions / Possible Hazards:	9 6		Relinquished by/Companyl (Signature	FAICON Philod	Relinquished by/Company: (Agnat Ba Ba	Retaquished by/Company: (Signature) o

or List Pace Workorder Number or Here	r LAB USE ONLY	Lab Project Manager:	1. (4) sodium hydroxide. (5) zinc acetate, ascorbic acid. (8) ammonium sulfate, いれていい	Lab Profile/Line:	b sample kecelpt Checklist:	ures Present LVN ature Present LVN	Bottles Intact Lev NA Correct Bottles Lev NA Sufficient Volume	U	esent Y	Lead Acetate Strips:	Lab Sample # / Comments:				Lab Sample Temperature Info:	Temp Blank Received: Y N NA Therm ID#: 917005 Cooler 1 Temp Upon Receipt 6100	Cooler 1 Therm Corr. Factor: 0 t oC Cooler 1 Corrected Temp: 0 oC	Comments:	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page: YES / NOof:
LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here	ALL SHADED AREAS are for LAB USE ONLY	Container Preservative Type ** Lab P	reservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochlon nethanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexan mmonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other	Analyses Lab P					P/40 C	972	8				SHORT HOLDS PRESENT (<72 hours): Y N/A	Lab Tracking #: 2409979	Samples received via: FEDEX UPS Client Courier Pace Courier	Date/Time: MTJL LAB USE ONLY (\$\overline{0}/15/1ct] 16.39	Date/Time: Acctnum: Template: Prelogin:	Date/Time: PM: PB: PB:
CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields	Billing Information: SAME		Email To: Chur Khare to the lawerginess	State: Countv/City: Time Zone Collected:	/ MOONSUN & []PT[]MT[]CT DET	Compliance Monitoring? [] Yes 🐼 No	DW PWS ID #: DW Location Code:	0-18-19 @ Yes [] No	Field Filtered (if applicable): [] Yes [] No Analysis: 8 266	DW), Ground Water (GW), Wastewater (WW), ue (TS), Bioassay (B), Vapor (V), Other (OT)	Collected (or Composite End Res # of Composite Start) Composite Start	4 1040	101519 1021 6		Type of Ice Used: Wet Blue Dry None	Packing Material Used:	Radchem sample(s) screened (<500 cpm): Y N NA	Time: 1639 Received by/Company: (Signature)	Time: Received b%/Company: (Signature)	Time: Received by/Company: (Signature)
Pace Analytical Chain-of-Custody is	FAICON	IOTRINITY RUSTIN	REPORT TO CARY NC 275/3 E COPY TO: S S COPY TO: S		C718063	Phone: Q19730000 Site/Facility ID #: Email:	Collected By (print): Purchase Order #:	Collected By (signature): Turnaround Date Required:	Sample Disposal: Rush: Rush: Dispose as appropriate [] Return [] Same Day [] Next Day I Archive: [] 2 Day [] 4 Day [] 5 Day [] Hold: [] Hold: [] Kepedite Charges Apply]	Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)	Customer Sample ID Matrix * Grab	27 Ct 1	57 61 1		Customer Remarks / Special Conditions / Possible Hazards: 1	P		Relinquished by/Company (Signature)		Reloquished by/Company: (Signature) Date/Time: 61

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 68 NCDOT PROJECT R-3833C

2785 CHARLOTTE HIGHWAY, MOORESVILLE, NC

September 6, 2019

Report prepared for:

Christopher J. Burkhardt, PWS Falcon Engineers 1210 Trinity Rd. #110 Raleigh, NC 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Doug Canavello

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

GEOPHYSICAL INVESTIGATION REPORT Parcel 68 - 2785 Charlotte Highway Mooresville, Iredell County, North Carolina

Table of Contents

Executive Summary	.1
Introduction	
Field Methodology	.2
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	.4
Summary & Conclusions	
Limitations	

Figures

Figure 1 – Parcel 68 – Geophysical Survey Boundaries and Site Photographs
Figure 2 – Parcel 68 – EM61 Results Contour Map
Figure 3 – Parcel 68 – GPR Transect Locations and Images
Figure 4 – Parcel 68 – Overlay of Metal Detection Results on NCDOT Engineering Plans

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	
EM	
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	Right-of-Way
UST	• •

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 68, located at 2785 Charlotte Highway in Mooresville, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-3833C). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from August 11-12, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of nine EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across areas containing significant metallic interference associated with vehicles, a reinforced concrete pipe, and known buried utility lines. No additional significant buried structures were identified. Collectively, the geophysical data <u>did not record any evidence of metallic USTs within the survey area at Parcel 68</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 68, located at 2785 Charlotte Highway in Mooresville, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-3833C). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from August 11-12, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a strip mall surrounded by concrete, grass, and asphalt surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on August 12, 2019, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 controller with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tar	nks
on NCDOT Projects	

High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphall/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Known Buried Utilities	\checkmark
2	Vehicles	\checkmark
3	Light Pole	
4	Hydrant	
5	Sign	
6	Vehicles	\checkmark
7	Drop Inlet	
8	Reinforced Concrete Pipe	\checkmark
9	Utilities	

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including vehicles, a light pole, a hydrant, a sign, a drop inlet, a reinforced concrete pipe, and utilities. EM Anomaly 1 was in the location of known buried utilities and was investigated to confirm that the anomaly was a result of these utilities. EM Anomalies 2 and 6 were associated with vehicles at the site and were investigated with GPR to confirm that the metallic interference associated with these vehicles did not obscure any significant buried structures such as USTs. EM Anomaly 8 was in the location of a suspected reinforced concrete pipe and was investigated with GPR to confirm that the reinforced concrete pipe and was investigated with GPR to confirm that the anomaly as a result of the reinforced concrete pipe.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as the transect images. A total of four formal GPR transects were performed at the site.

GPR Transects 1 and 2 were performed across EM Anomalies 8 and 1, respectively. These transects confirmed the presence of a reinforced concrete pipe and known buried utilities and verified that the EM anomaly observed in this area is a result of this known utility.

GPR Transects 3 and 4 were performed across EM Anomalies 6 and 2, respectively. These transects confirmed that the metallic interference caused by the vehicles at the site did not obscure any significant buried structures such as USTs.

Collectively, the geophysical data <u>did not record any evidence of metallic USTs within the</u> <u>survey area at Parcel 68</u>. **Figure 4** provides an overlay of the metal detection results on the NCDOT MicroStation engineering plans for reference.

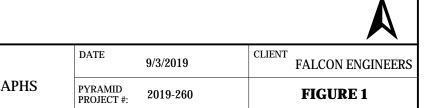
SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 68 in Mooresville, North Carolina, provides the following summary and conclusions:

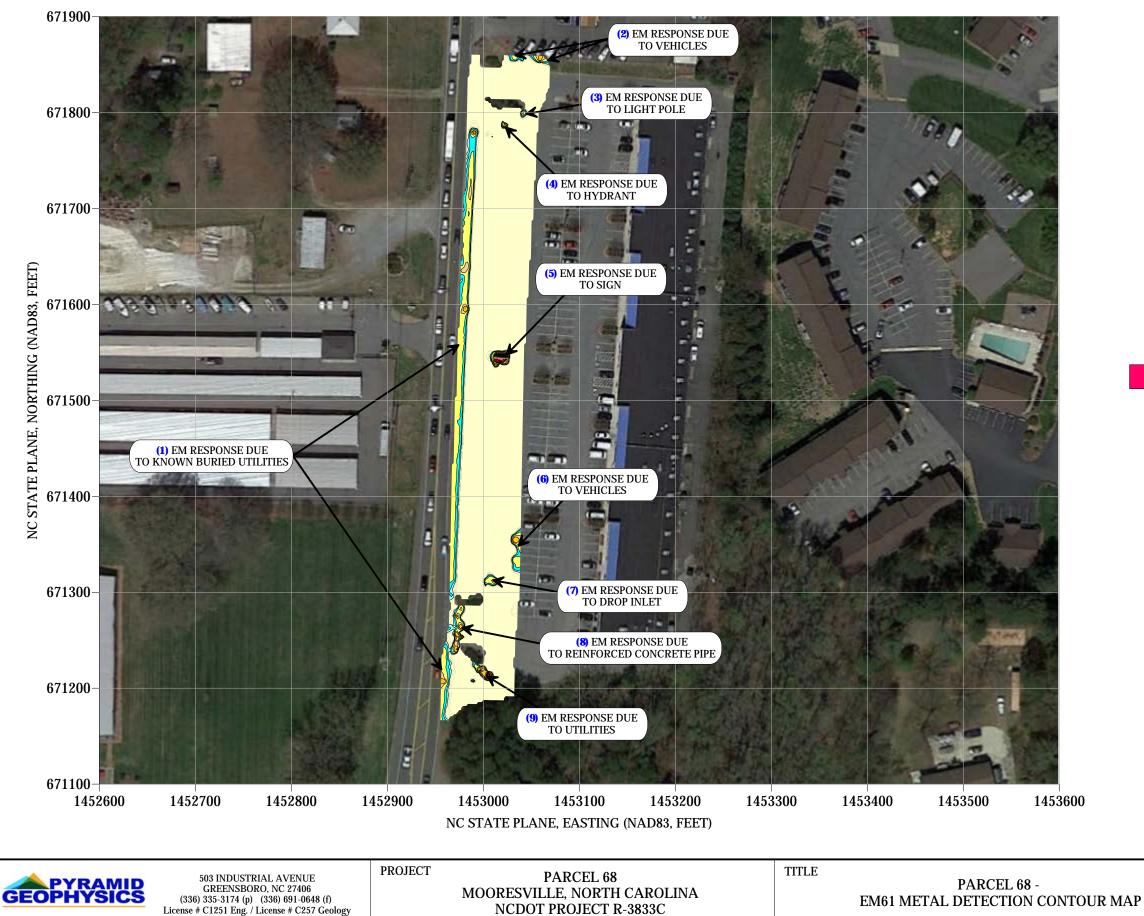
- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across areas containing significant metallic interference associated with vehicles, a reinforced concrete pipe, and known buried utility lines. No additional significant buried structures were identified.
- Collectively, the geophysical data <u>did not record any evidence of metallic USTs</u> within the survey area at Parcel 68.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Falcon Engineers in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.


APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately South)



View of Survey Area (Facing Approximately North)

Ν

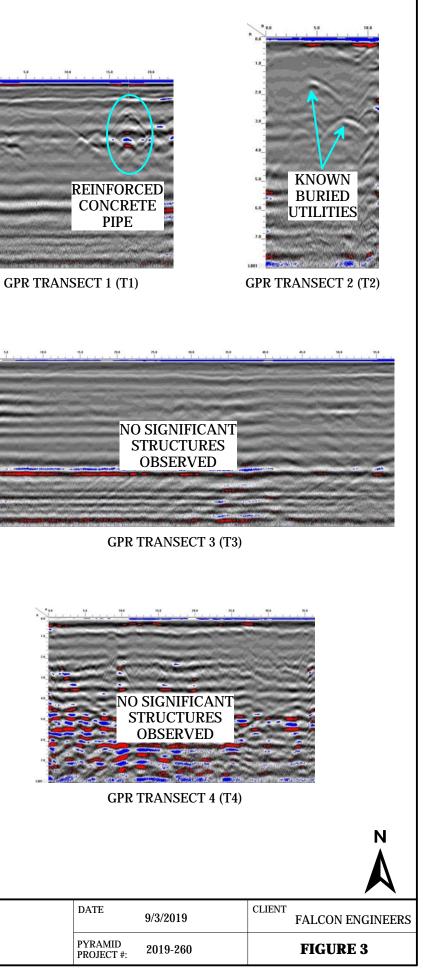
EM61 METAL DETECTION RESULTS

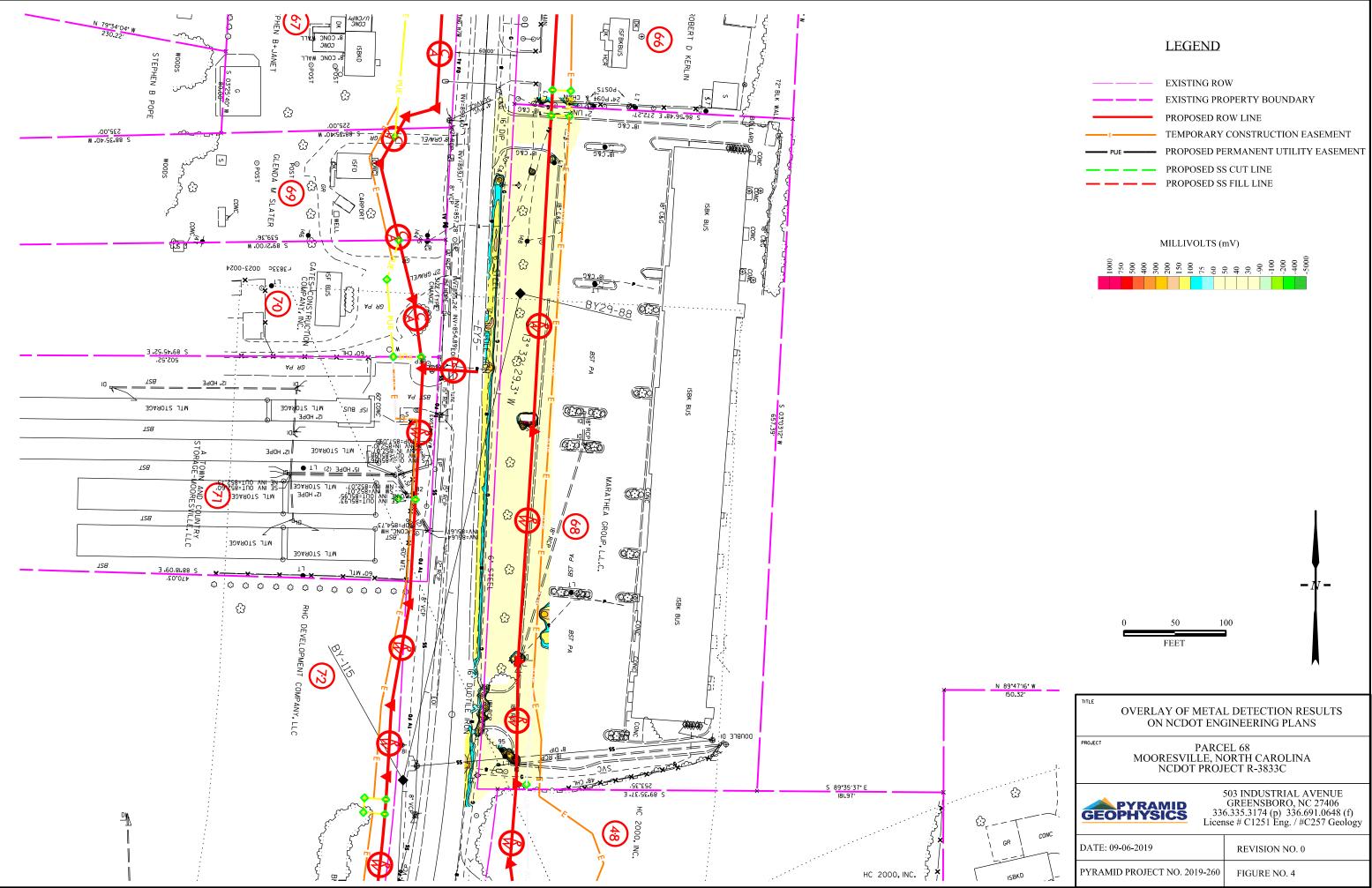
NO EVIDENCE OF METALLIC USTs WAS OBSERVED.

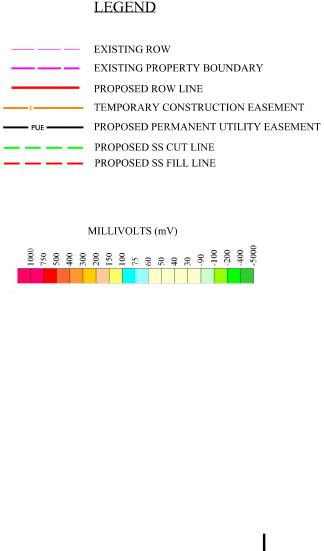
The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on August 11, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 controller equipped with a 350 MHz HS antenna on August 12, 2019.


EM61 Metal Detection Response (millivolts)

1000	750	500	400	300	200	150	100	75	60	50	40	30	-90	-100	-200	-400	-5000	


DATE	9/3/2019	CLIENT FALCON ENGINEERS
PYRAMID PROJECT #:	2019-260	FIGURE 2


LOCATIONS OF GPR TRANSECTS



NCDOT PROJECT R-3833C

GPR TRANSECT LOCATIONS AND IMAGES

	IVISION OF WASTE MA eanup Act (DSCA) Compl	Facility IdentificationU.S. 2.50 CleanersFacility ID: 490002CEPA Generator ID: CESQGCounty/FIPS: Iredell/097DSCA Cleanup ID:	
	Facility Data		Compliance Data
U.S. 2.50 Cleaners			Inspection Date: 6/14/2018
2785 Charlotte Hwy, Ste 1	1		Time In: 08:00 AM Time Out: 08:55 AM
Mooresville NC 28117			Inspectors: Aram Kim, Rachel Clarke
Lat: 35.581111 Long: -			Operating Status: OO/Operating
SIC: 7216 / Dry Cleaning			Compliance Codes: In Violation of MMP
	ning and Laundry Services (except Coin-Operated)	Action Code: 01/Inspection
Date of Facility Establish	nment: 1/1/2000		
	Contact Data		Classification Data
Facility Contact	Facility Owner	Property Owner	Service Type: Full Service (Active)
Paul Lee	Paul Lee	Marathea Group LLC	Solvent: Perchloroethylene
2785 Charlotte Hwy, Ste	2785 Charlotte Hwy, Ste	P.O. Box 26104	System: Dry-to-Dry
11	11	Winston Salem, NC	Installation Date: 2000
Mooresville, NC 28117	Mooresville, NC 28117	27114	Installation Category: New
(704) 799-0059	(704) 799-0059		Consumption Category: Small
	(704) 818-7615		HW Generator Status: CESQG
Inspector's Signature:	Aram Kim	Comments: <i>NOV/NRE will be issued.</i>	
Date of Signature: 6/14/18	3		

(I) **DIRECTIONS:** From the Mooresville Regional Office at 610 East Center Avenue in Mooresville, go west on East Center Avenue. Turn left onto S. Broad St./ NC-115. Turn right onto W. Wilson Ave. Turn right onto Charlotte Hwy / US-21. The dry cleaning facility is located on the right at 2785 Charlotte Hwy, in the Marathea Shopping Center.

(II) FACILITY HISTORY: U.S. 2.50 Cleaners was established in 2000 by Paul Lee. Mr. Lee sold the business to Mr. Nam Cho in 2007, who operated the plant until 2009 when he left the country. Mr. Lee took over the business again after Mr. Cho left. Mr. Lee owned another facility called U.S. 2.50 Cleaners, located at 7558 Hwy. 73, #101, in Denver, NC. This was a full service plant until Mr. Lee shut down the machine and operated the facility as a drop-off/pick-up store until it was closed permanently.

Solvent History:						
Solvent	Dates Used					
Perchloroethylene	2000 to Present					

Previous Inspections:

Date	Visit Type	Violation Type(s)	Worst Violation(s)	Action(s) Taken	Response Due	Received Date	Inspector
8/31/2016	Inspection	MMP, NESHAP	Improper maintenance of WWTU, NESHAP Procedural Violations, NESHAP Recordkeeping Violations, No WWTU records	NOVNRE sent on 10/4/2016	10/25/2016	N/A or Not Rec'd	Aram Kim

8/31/2016	Inspection	MMP, NESHAP	Improper maintenance of WWTU, NESHAP Procedural Violations, NESHAP Recordkeeping Violations, No WWTU records	CHKLST sent on 8/31/2016	None	N/A or Not Rec'd	Aram Kim
12/8/2015	Inspection	MMP, NESHAP	Discharging vacuum pump condensate into floor drain, NESHAP Procedural Violations, NESHAP	NOV sent on 12/10/2015 CHKLST	1/8/2016 None	1/12/2016 N/A or	Aram Kim
			Recordkeeping Violations	sent on 12/8/2015		Not Rec'd	
2/25/2014	Inspection	MMP, NESHAP	NESHAP Procedural Violations & Recordkeeping Violations, No WWTU records	CHKLST sent on 2/25/2014	3/18/2014	3/24/2014	Alicia Roh
6/7/2011	Initial Inspection	MMP, NESHAP	No spill cont. (waste, wwtu), No records on site	CHKLST sent on 6/7/2011 NOVNRE sent on	6/21/2011 9/21/2011	6/20/2011 9/23/2011	Jason Gill
2/19/2008	Outreach Training Visit	MMP, NESHAP	No spill cont. (waste drum, wwtu), No records on site	8/31/2011 CAL sent on 2/25/2008	3/17/2008	N/A or Not Rec'd	Alicia Roh

Complaints: None

DSCA Sampling: None

(III) FACILITY CLASSIFICATION:

NESHAP INSTALLATION CATEGORY – New: U.S. 2.50 Cleaners utilizes a 4th Generation dry-to-dry dry cleaning machine that was installed in 2000. Since the dry cleaning machine was installed after December 9, 1991, the dry cleaning machine is classified as a 'New' machine installation.

	Dry Cleaning Equipment Summary								
No	Type of	Gen	Manufacturer	Model #	Serial #	Mfr	Install	Solvent Used	Observed
	Machine		(Mfr)			Date	Date		Operating?
1	Dry-to-	4th	Firbimatic	Axial 50-	139F00106	2000	2000	Perchloroethylene	yes
	Dry			plus					

Dry Cleaning	Equipment Summary
--------------	-------------------

NESHAP SOURCE CATEGORY - SMALL: U.S. 2.50 Cleaners is classified as a Small Area Source because it purchased less than 140 gallons of perc during the previous 12-month period. Based on a review of the receipts for the past year, U.S. 2.50 Cleaners purchased 30 gallons of perc from Phenix Supply Company in the last 12 months.

HAZARDOUS WASTE GENERATOR CATEGORY - CESQG: U.S. 2.50 Cleaners is classified as a Conditionally Exempt Small Quantity Generator (CESQG) because the facility has routinely generated less than 220 pounds of waste per month during the past 12 months, and stores less than 2,200 pounds of hazardous waste on site. U.S. 2.50 Cleaners has contracted with Safety Kleen (EPA ID# TXR000050930) to transport the facility-generated hazardous waste to a licensed Treatment Storage or Disposal (TSD) facility. The most recent hazardous waste generated was transported to Safety Kleen in Charlotte, NC (EPA ID# NCD079060059). Three years of hazardous waste manifests were not on site and available for review. The last waste pickup occurred on September 21, 2012, when a total of 450 pounds of hazardous waste were transported off site (Liquid & Filters waste). One partially full 15-gallon drum of hazardous waste was observed on site at the time of the inspection (approx. 80 lbs). The facility utilizes an onsite wastewater treatment unit (WWTU) to dispose of facility-generated contact water.

(IV) INSPECTION SUMMARY: On June 14, 2018, Aram Kim and Rachel Clarke, Compliance Inspectors, with the North Carolina Division of Waste Management, Dry Cleaning Solvent Cleanup Act (DSCA) Program conducted a Compliance Inspection at U.S. 2.50 Cleaners. The inspectors met with Mr. Paul Lee, store owner, who provided the inspectors access to the facility's equipment and available records.

The facility continues to use the same dry cleaning machine that was observed during previous inspections. Mr. Lee stated that the machine is operated only 2-3 loads per week, and wet-cleans mostly. Mr. Lee said that he usually operates the machine on Tuesday and Wednesday, but he does not have specific schedule to operate the machine. The machine was observed in operation at the time of the inspection. No vapor leaks were discovered with the inspector's halogen leak detector. Mr. Lee showed his halogen detector that he uses at least once a month for required leak detection inspections. Separator water was collected in a container that was stored within the machine spill pan. About a cup of separator water was observed and Mr. Lee estimated that about 0.5 gallon or less separator water is generated per month.

The vacuum pump is located in the boiler room. No pump condensate was observed at the time of the inspection and Mr. Lee said that almost nothing comes out from the vacuum pump.

Facility generated contact water is treated in the onsite wastewater treatment unit (WWTU) manufactured by Galaxy. The WWTU is stored within spill containment and the misting nozzle is mounted on the rear exterior wall of the facility. Mr. Lee stated that he changes the filters on the WWTU every 12 months. However, the inspector observed the date of filter change, 9/15/16, on the secondary filter of the Galaxy mister and asked Mr. Lee if he changed filters on the WWTU after 9/15/16. Mr. Lee said that he does not recall if he did change filter after 9/15/16 or not. Ms. Kim told the owner to go ahead and change filters on the WWTU since 9/15/16 could be the most recent filter change which was over a year ago. The operation manual was kept on site. The misting nozzles were mounted on the exterior wall of the building in a visible location. Ms. Kim recommended Mr. Lee to not operate the WWTU until he changes the filters.

The hazardous waste drum (15-gallon, about 2/3 full) is stored next to the dry cleaning machine without spill containment. The inspector told the owner that any drums containing liquid waste should be stored within adequate spill containment. Mr. Lee apologized said that he will ask his son to help moving the waste drum onto spill containment as soon as possible. The only type of spotting agent used on site is POG. No spotting agents containing PCE or TCE are used on site.

Five years of perc purchase receipts were kept on site available for review. However, the owner was not able to locate the waste disposal manifest. Ms. Kim told the owner to contact his waste hauler to obtain the waste pickup records. The inspectors reminded Mr. Lee that three years of waste disposal manifests should be maintained on site. DSCA Compliance Calendars were maintained on site with required recordkeeping completed.

Emergency spill cleanup material was stored on site. Emergency information form was completed and posted on site.

The following is a summary of U.S. 2.50 Cleaners' compliance with respect to the DSCA Required Minimum Management Practices provided in 15A NCAC 02S.0202, National Emission Standards for Hazardous Air Pollutants (NESHAP) found in 40 CFR Part 63 Subpart M and Resource Conservation, and Recovery Act (RCRA) referenced in 40 CFR part 261.5 and 262.

MMP VIOLATIONS - 15A NCAC 02S.0202

- 1. Wastewater treatment equipment was not operated in accordance with the manufacturer's specifications, which allowed water containing dry-cleaning solvent to be discharged into the environment.
- 2. A complete three year history of dry-cleaning solvent waste disposal invoices was not made available to the Department.

- 3. Spill containment was not installed under and around the waste solvent storage containers.
- 4. Emergency spill clean-up materials were not available at the time of the inspection.

NESHAP VIOLATIONS - 40 CFR Part 63 Subpart M

None

RCRA VIOLATIONS - Hazardous Waste Regulations: 40 CFR Part 262.34

None

(V) CONCLUSIONS: Based on observations documented by the DSCA Inspectors during the June 14, 2018 inspection, U.S. 2.50 Cleaners is currently in violation of the following regulations:

MMPs - 15A NCAC 02S.0202

- (b)(1) Failure to prevent solvent waste from discharging into the environment. [15 NCAC 0202 (b)(1)].
- (b)(1) Failure to maintain complete and current invoices for waste disposal [15A NCAC 02S.0202(b)(1)]. Waste manifests are required to be kept on site for three years and available for review.
- (b)(2) Failure to maintain spill containment under and around the waste solvent storage area by January 1, 2002 [15 NCAC 0202 (b)(2)]. Spill containment shall have a volumetric capacity of 110 percent of the largest vessel, tank, or container within the spill containment area and shall be capable of preventing the release of the applicable dry cleaning solvent beyond the spill containment area for a period of at least 72 hours.

(b)(2) Failure to maintain emergency absorbent spill cleanup materials on site. [15 NCAC 0202 (b)(2)].

NESHAP - 40 CFR Part 63 Subpart M

None

RCRA- Hazardous Waste Regulations: 40 CFR Part 261 - 262

None

(VI) ENFORCEMENT HISTORY (Penalties): None

(VII) **RECOMMENDATIONS:** A DSCA Compliance Program Checklist (#02697) was issued to Mr. Paul Lee, owner of U.S. 2.50 Cleaners, indicating the compliance issues to be addressed. A Notice of Violation (NOV)/Notice of Recommendation for Enforcement (NRE) will be issued to Mr. Paul Lee for the violations observed during the inspection. DSCA Supervisors will determine if enforcement and civil penalties are warranted after reviewing a written response from U.S. 2.50 Cleaners. A follow-up inspection should be conducted by June 14, 2019 to confirm compliance.

Christopher Burkhardt

From:	Chapman, Al <al.chapman@ncdenr.gov></al.chapman@ncdenr.gov>
Sent:	Monday, December 10, 2018 7:48 AM
То:	Christopher Burkhardt
Subject:	RE: [External] Request for File Review: 2.50 Cleaners 2785 Charlotte Highway
Attachments:	20180614US250Clnrs_RPT.pdf

Mr. Burkhardt,

This dry-cleaner facility has not been identified as a possible solvent release site to date. The facility has been inspected by DSCA Compliance Group from 2010 to 2018. See the attached latest compliance inspection report Dated June 14, 2018. This inspection report does not mean that a release has or has not occurred, just no information has been submitted to NCDEQ that a release has occurred. Let me know if you need additional information.

Al Chapman

Al Chapman, P.G. (NC & GA) Hydrogeologist – Project Manager North Carolina Department of Environmental Quality 919.707.8602 (Office) 919.707.8368 (Fax) Al.Chapman@ncdenr.gov

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Christopher Burkhardt <cburkhardt@falconengineers.com>
Sent: Friday, December 07, 2018 4:20 PM
To: Chapman, Al <al.chapman@ncdenr.gov>
Subject: [External] Request for File Review: 2.50 Cleaners 2785 Charlotte Highway

CAUTION: External email. Do not click links or open attachments unless verified. Send all suspicious email as an attachment to <u>Report Spam.</u>

Good Afternoon Al,

I am trying to find out more information about a delisted Cleaners located at 2785 Charlotte Highway Mooresville. It is not mapped in the GIS database or a database that reports spills the only information I have on it is below. DOT is considering roadway improvements near this address and I am wondering if there has ever been a release or even active on-site cleaning (perhaps it was a coin operated laundry and not a dry cleaners?).

Any info you can provide would be helpful thanks.

U.S. 2.50 Cleaners 2785 Charlotte Hwy, Ste 11 Mooresville NC Facility ID: 490002C File Type: List of Drycleaner Compliance Inspection Visits During 2016 County: Iredell Original Source: DRYC Record Date: 31-DEC-2016 Registry ID: 110016687110 FIPS Code: 37097 Program Acronyms: AIRS/AFS, NC-FITS

Christopher J. Burkhardt, PWS Environmental Services Manager

Falcon Engineers 919-730-0064 <u>cburkhardt@falconengineers.com</u> <u>www.falconengineers.com</u>

PRELIMINARY SITE ASSESSMENT

SR 1100 (BRAWLEY SCHOOL ROAD) IMPROVEMENTS TIP NO. R-3833C, WBS NO. 34554.2.4

NCDOT PARCEL NO. 72 OWNER: RHG DEVELOPMENT CO., LLC 2806 CHARLOTTE HIGHWAY MOORESVILLE, IREDELL COUNTY, NORTH CAROLINA

PREPARED FOR: NORTH CAROLINA DEPARTMENT OF TRANSPORTATION C/O STANTEC 801 JONES FRANKLIN ROAD SUITE 300 RALEIGH NORTH CAROLINA 27606-3394

PREPARED BY: FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513

PROJECT NUMBER: G18063.02 OCTOBER 27, 2019

October 27, 2019

Mr. A. Dean Sarvis PE Stantec 801 Jones Franklin Road, Suite 300 Raleigh, North Carolina 27606-3394

Re: Preliminary Site Assessment SR 1100 (Brawley School Road) Improvements TIP No. R-3833C, WBS No. 34554.2.4 Parcel No. 72 Owner: RHG Development Co., LLC 2806 Charlotte Highway Mooresville, Iredell County, North Carolina

Dear: Mr. Sarvis:

Falcon is pleased to present the following Preliminary Site Assessment in support of the above-mentioned Project. Specifically, Falcon sampled soil in proximity to the project limits on this parcel in general accordance with the approved scope of work. Soils requiring remediation or special handling during construction were not identified.

Falcon recommends if drums, USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

Please review this report and advise us if you have any questions or concerns. We appreciate this opportunity to provide services to you and look forward to partnering with you on future projects. If you have any questions, please give Falcon a call at (919) 871-0800.

Sincerely, **FALCON ENGINEERING, INC.**

ristopten Buthart

Christopher J. Burkhardt Environmental Services Manager

Imk

Jeremy R. Hamm, PE Geotechnical Services Manager

TABLE OF CONTENTS

SECTION	1: INTRODUCTION	5
	1.1 DESCRIPTION	5
	1.2 SCOPE OF WORK	5
SECTION	2: HISTORY	5
	2.1 PARCEL USAGE	5
	2.2 FACILITY IDENTIFICATION NUMBER	5
	2.3 GROUNDWATER INCIDENT NUMBER	5
SECTION	3: SITE OBSERVATIONS	7
	3.1 GROUNDWATER MONITORING WELLS	7
	3.2 ACTIVE USTS	7
	3.3 FEATURES APPARENT BEYOND ROW/EASEMENT	7
SECTION	4: METHODOLOGY	3
	4.1 GEOPHYSICS	3
	4.2 BORINGS	3
	4.3 SAMPLE PROTOCOL	3
SECTION	5: RESULTS	
SECTION	5. RESULTS)
SECTION	5.1 GEOPHYSICS	
SECTION)
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10)))
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11)))
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11)) 1
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 5.3 SAMPLE OBSERVATIONS 11)) 1 1
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12)) 1 1 2
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12 5.4 QUANTITIES CALCULATIONS 12)) 1 1 2 2
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12 5.4 QUANTITIES CALCULATIONS 12 6: CONCLUSIONS 13)) 1 1 2 2 3
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12 5.4 QUANTITIES CALCULATIONS 12 6: CONCLUSIONS 13 6.1 INTERPRETATION OF RESULTS 13)) 1 1 2 2 3
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12 5.4 QUANTITIES CALCULATIONS 12 6: CONCLUSIONS 13 6.1 INTERPRETATION OF RESULTS 13 6.2 GEOPHYSICS 13)) 1 1 2 2 3 3 3
	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12 5.4 QUANTITIES CALCULATIONS 12 6: CONCLUSIONS 13 6.1 INTERPRETATION OF RESULTS 13 6.2 GEOPHYSICS 13 6.3 SAMPLING 13)) 1 1 2 3 3 3 3
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 TABLE NO. 4 SOIL OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12 5.4 QUANTITIES CALCULATIONS 12 6: CONCLUSIONS 13 6.1 INTERPRETATION OF RESULTS 13 6.2 GEOPHYSICS 13 6.3 SAMPLING 13 6.4 QUANTITIES 13	
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12 5.4 QUANTITIES CALCULATIONS 12 6: CONCLUSIONS 13 6.1 INTERPRETATION OF RESULTS 13 6.2 GEOPHYSICS 13 6.3 SAMPLING 13 6.4 QUANTITIES 13 7: RECOMMENDATIONS 14))))))))))))))))))))))))))))))))))))))
SECTION	5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS 11 TABLE NO. 4 SOIL OBSERVATIONS 11 TABLE NO. 4 SOIL OBSERVATIONS 12 5.4 QUANTITIES CALCULATIONS 12 6: CONCLUSIONS 13 6.1 INTERPRETATION OF RESULTS 13 6.2 GEOPHYSICS 13 6.3 SAMPLING 13 6.4 QUANTITIES 13))))))))))))))))))))))))))))))))))))))

LIST OF FIGURES AND ATTACHMENTS

VICINITY MAP USGS TOPOGRAPHIC MAP PARCEL LOCATION MAP BORING LOCATION MAP SITE PHOTOGRAPHS LABORATORY RESULTS GEOPHYSICAL SURVEY

SECTION 1: INTRODUCTION

1.1 DESCRIPTION

Falcon Engineering, Inc. (Falcon) has completed a Preliminary Site Assessment of NCDOT TIP No. R-3833C Parcel No. 72. Parcel No. 72 is addressed as 2806 Charlotte Highway, Mooresville, Iredell County, North Carolina. NCDOT is proposing to improve SR 1100 (Brawley School Road) from SR 1116 (Talbert Road) to 1,000' east of US 21, including improvements to a number of intersecting roads and driveways throughout this corridor. The limits of the assessment are between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). Boring locations were placed in the vicinity of proposed excavations for drainage features, utilities, and roadway/ditch cuts to determine if soils requiring remediation or special handling were present where excavation is planned to take place.

1.2 SCOPE OF WORK

Falcon's scope of work included coordination of; public and private utility location near the proposed borings, geophysical surveys, collecting soil samples with a geoprobe, and laboratory analysis. Samples were analyzed for petroleum via UVF technology.

SECTION 2: HISTORY

2.1 PARCEL USAGE

Gates Construction Company was observed at this parcel. Falcon performed a Phase I Environmental Site Assessment (ESA) for R-3833C under Project No. G18063.01 dated March 2019. The ESA identified Gates Construction Company as a recognized environmental condition based on the unknown location of five registered USTs at this address and the potential of an unknown or unreported release.

The UST database reports five USTs registered to this facility. Three are reported as removed while two are reported as being temporarily closed.

- > One 8,000-gallon diesel UST installed in 1971 and removed in 1993.
- > One 12,000-gallon diesel UST installed in 1971 and removed in 1993.
- > One 1,000-gallon gasoline, gas-mix UST installed in 1971 and removed in 1993.
- > Two 4,000-gallon diesel USTs installed in 1974 and listed as temporarily closed without a date.

This facility is not listed in a database that reports spills or releases and the USTs were reported out of use before current regulatory practices; therefore, the State does not have an incident file or a closure report documenting soil sampling for evidence of a release during removal. A review of historic aerial photographs did not identify suspect USTs or dispenser locations. Falcon spoke with the current owner Robert Gates. Mr. Gates had no knowledge of USTs or their possible locations on the property.

2.2 FACILITY IDENTIFICATION NUMBER

Facility Identification Number 00-0-0000017970 was identified for this parcel.

2.3 GROUNDWATER INCIDENT NUMBER

A Groundwater Incident Number was not identified for this parcel.

SECTION 3: SITE OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

Groundwater monitoring wells (MWs) were not observed on this parcel.

3.2 ACTIVE USTS

Active USTs were not observed within the project limits at this parcel.

3.3 FEATURES APPARENT BEYOND ROW/EASEMENT

USTs, monitoring wells, remediation systems, or hydraulic lifts were not observed within the project limits. However, access to the building was not available. Therefore; USTs and hydraulic lifts on this parcel cannot be ruled out.

SECTION 4: METHODOLOGY

4.1 GEOPHYSICS

Pyramid Geophysical Services (Pyramid) was subcontracted to perform a geophysical survey of the assessment area. The assessment area consists of the property frontage between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). The survey was used to locate private utility lines, as well as possible indications of USTs, and/or their pits.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings.

GPR data was acquired across select EM anomalies (where identified), using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Pyramid marked their findings on the surface with paint. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and to obtain adequate coverage. A copy of the full Geophysical Report is included in the Attachments.

4.2 BORINGS

Regional Probing was subcontracted to advance soil borings using direct push technology. Regional Probing used a truck mounted Geoprobe® 5410 unit mounted on an off-road modified Ford F350 Diesel 4x4. The unit has auger-capabilities and is equipped with a GH-42 soil-probing hammer, with 21,700 pounds of down force and 28,900 pounds of retraction force. The unit has an on-board tank for decontaminating the geoprobe rods before advancing the probe at each sample location.

4.3 SAMPLE PROTOCOL

Prior to initiating sample collection Falcon contacted NC One Call and requested public utility locations be marked around the proposed sample locations. Sampling was in general accordance with the NC Department of Environmental Quality (DEQ) Division of Waste Management's (DWM) "Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases" (March 1, 2007 Version Change 9 – February 1, 2019) guidance document. Sampling strategy was derived based upon the project scope and objectives as outlined above. Red Lab, LLC was selected to perform the UVF laboratory analytical analysis. Appropriate sterile containers were received by Falcon from Red Lab prior to beginning the fieldwork. The containers were labeled appropriately.

A Minirae 3000 photoionization detector (PID) was used to field screen samples for volatile organics to determine if a release had occurred. The instrument was calibrated per manufacturer instructions prior to use. Falcon staff bagged composite soil samples of each boring in approximately two-foot sections. Representative samples were placed in a sealed plastic bag for approximately 10 minutes to allow soil hydrocarbons to reach equilibrium within the headspace prior to scanning with the PID. One sample per boring was collected from the depth of the proposed cut or from the section above the depth of cut with the highest PID reading.

To avoid cross contamination, a new unused pair of non-powdered nitrile gloves was worn while extracting each sample. Samples were placed in the appropriate laboratory provided containers. The labels on each container were then completed so that each provided the date and time of sampling, method of analysis, sample collector, preservative used and sampling location identification. Samples were placed in an ice filled cooler and transported to the lab. Appropriate chain-of-custody procedures, including the completion of necessary forms, were followed.

SECTION 5: RESULTS

5.1 GEOPHYSICS

The geophysical investigation was performed on August 11, 2019 to investigate for the presence of unknown, metallic underground storage tanks (USTs) beneath the surface. The geophysical investigation consisted of an electromagnetic (EM) induction-metal detection survey. A total of three EM anomalies were identified. The EM anomalies were directly attributed to visible cultural features at the ground surface; therefore, a GPR survey was not required. The geophysical data did not record evidence of metallic USTs within the survey area at Parcel No. 72.

5.2 SAMPLE DATA

Falcon and our subcontractor advanced four borings (B-10, B-11, B-12, and B-13) to the proposed excavation depth of the drainage features, utilities, or roadway/ditch cut being assessed. Groundwater was not observed. Please see the Boring Location Plan in the attachments for a visual depiction of the boring locations. The coordinates (latitude and longitude) that correspond to the boring locations are shown below in Table No. 1 Boring Coordinates.

Boring	Latitude	Longitude
B-10	35.580778	-80.8400627
B-11	35.5804653	-80.8401371
B-12	35.5801652	-80.8401592
B-13	35.5798275	-80.8402209

TABLE NO. 1 BORING COORDINATES

The PID screening results are presented in Table No. 2 PID Readings. Borings were field screened with a PID for evidence of volatile organics in sections as indicated in Table No. 2. Falcon selected soil samples based on the field screening results and the needs of the project. Red Lab analyzed the selected samples and their full analytical report is attached. The results of the laboratory analysis are summarized in Table No. 3 Summary of UVF Soil Sampling Results.

Petroleum hydrocarbons above State Action Levels were not detected in the samples.

Boring	Depth BGS*	PID**
D 10	0-2	0.9
B-10	2-4	0.6
B-11	0-2	0.9
D-11	2-4	0.6
B-12	0-2	0.3
D 12	0-2	0.5
B-13	2-4	0.5

TABLE NO. 2 PID READINGS

*BGS = Depth below ground surface in feet

**PID readings are in parts per million

Samples shown in **bold** were selected for analysis

•	BTEX	GRO	DRO	TPH	Total	16			Ratios		HC
Sample ID	(C6 - C9)	(C5 - C10)	(C10 - C35)	(C5 - C35)	Aromatics (C10-C35)	EPA PAHs	BaP	% light	% mid	% heavy	Fingerprint Match
B-10	<0.43	<0.43	6.2	6.2	0.38	<0.14	< 0.017	0	100	0	Deg.Hydr.Oil 63%,(FCM)
B-11	<0.46	<0.46	<0.46	<0.46	< 0.09	< 0.15	< 0.018	0	0	0	PHC not detected
B-12	<0.49	<0.49	<0.49	<0.49	<0.1	<0.16	< 0.02	0	0	0	PHC not detected
B-13	<0.49	<0.49	0.49	0.49	0.35	<0.16	< 0.02	0	25.5	74.5	V.Deg.PHC 75.8%,(FCM)

TABLE NO. 3 SUMMARY OF UVF SOIL SAMPLING RESULTS

Results reported in mg/kg (milligrams per kilogram)

5.3 SAMPLE OBSERVATIONS

Obvious visual indications of a release (stained soils, odors, or oily sheen) were not observed. Table No. 4 Soil Observations lists visual soil observations of color and texture.

Sample ID	Depth	Color	Soil Type
B-10	0-2	Brown	Silty Clay (A-7) w/ trace Rock Frags
D-10	2-4	Brown Red	Sandy Clayey Silt (A-4) w/ trace Mica
B-11	0-2	Red	Silty Clay (A-7) w/ trace Mica & Organics
D-11	2-4	Red	Sandy Clayey Silt (A-4) w/ trace Mica
B-12	0-2	Red	Silty Clay (A-7) w/ trace Mica & Organics
B-13	0-2	Red	Silty Clay (A-7) w/ trace Organics
D-13	2-4	Red Brown	Sandy Clayey Silt (A-4) w/ trace Mica

TABLE NO. 4 SOIL OBSERVATIONS

Depth is in feet below ground surface

5.4 QUANTITIES CALCULATIONS

Soils requiring quantity calculations were not identified.

SECTION 6: CONCLUSIONS

6.1 INTERPRETATION OF RESULTS

This Preliminary Site Assessment was performed to evaluate the soils in proximity to the project limits on this parcel for the presence of petroleum hydrocarbons. The findings are as follows:

Soil sampling completed on the parcel did not identify contaminants in the soil sampled at levels requiring remediation.

6.2 GEOPHYSICS

The geophysical data did not record evidence of metallic USTs within the survey area at Parcel No. 72. Falcon does not anticipate USTs will be encountered within the project limits on this parcel during construction.

6.3 SAMPLING

Sampling results did not identify contaminants in the soil which require remediation in the areas sampled. Based on past project experience, Falcon does not anticipate soil remediation or special handling and disposal will be required during construction on this parcel.

6.4 QUANTITIES

Soils requiring quantities calculations were not identified.

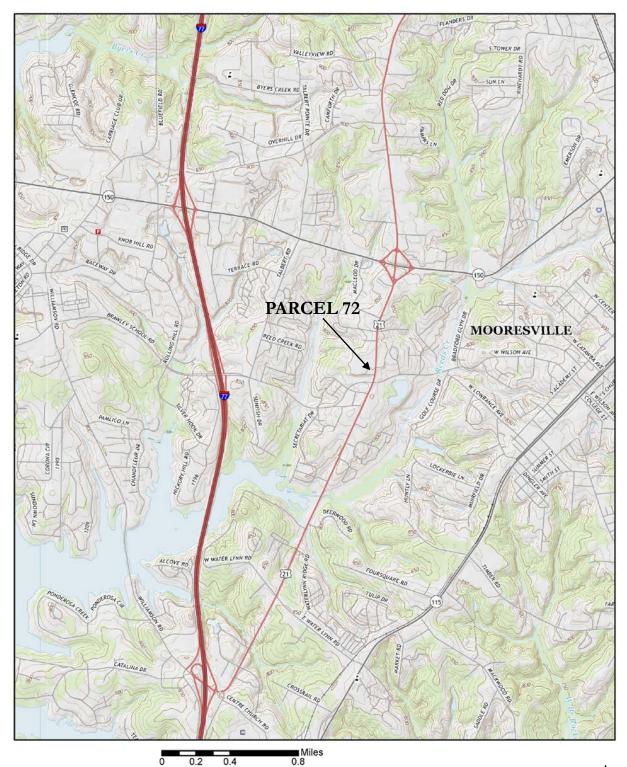
SECTION 7: RECOMMENDATIONS

7.1 ADDITIONAL SAMPLING

Contaminants above the Industrial / Commercial Soil Cleanup Levels were not identified; therefore, additional assessment is not warranted at this time. Falcon recommends if drums, USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

7.2 SPECIAL HANDLING OF IMPACTED SOIL

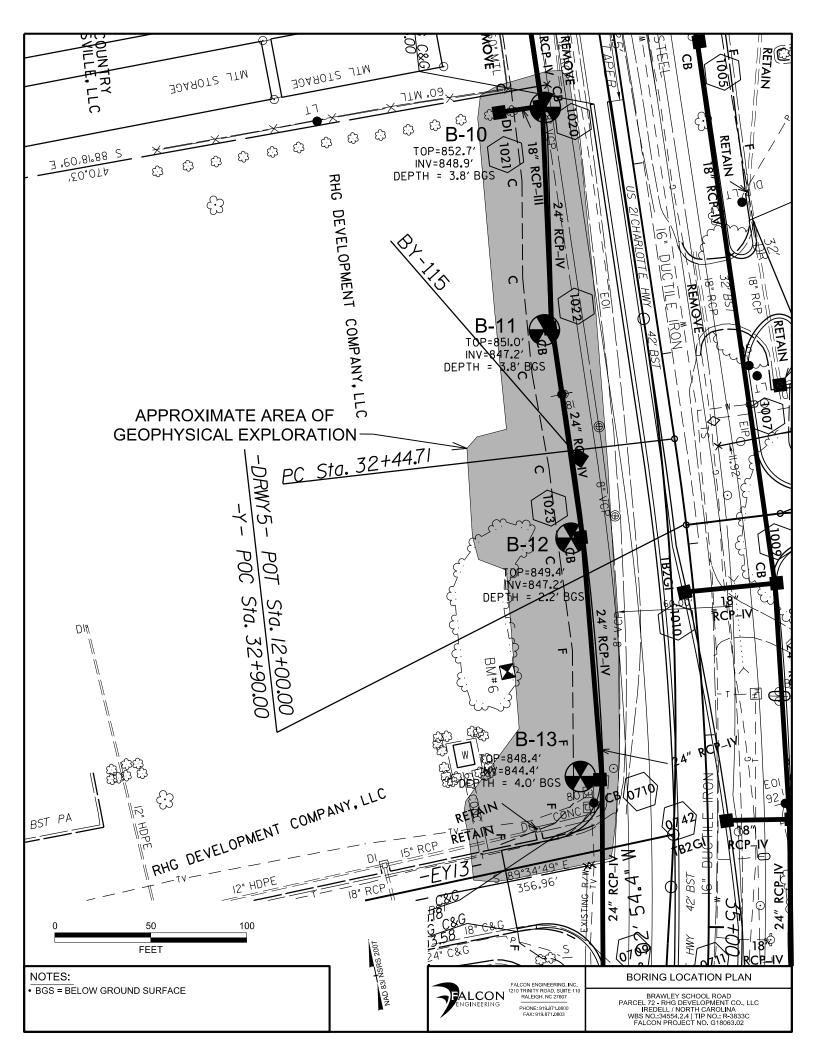
Soils requiring special handling were not identified. If suspect contaminated soils are encountered during construction Falcon and the NCDOT GeoEnvironmental Group should be contacted for proper handling instructions.


NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 72 Vicinity Map

Project No.: G18063.02 Date: October 2019 Source: Google Maps

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 72 Topographic Map

Project No.: G18063.02Date:October 2019Source:"Mooresville, NC" 2016 USGS Topographic Map


NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 72 Location Map

The maps prepared for this website are generated from recorded deeds, plats, and other public records. Users of these maps are hereby notified that the information provided herein should be verified. Iredell County assumes no legal responsibilities for any of the information contained on this site. Users are advised that the use of any of this information is at their own risk. All maps on this site were prepared using a 1000 Set \mathbb{P}^{2} Grid based upon the North Carolina State Plane Coordinate System from the 1983 North. American Datum. The delinquent real property tax overlay is updated monthly. The information presented is not intended to be used or relied upon as official notice of tax liens. For additional information generation gedeing delinquent taxes, contact the Iredell County Tax Collector's Office.

Project No.: G18063.02 Date: October 2019 Source: Iredell County GIS Website

Photograph No. 1: General view of Boring B-10.

Photograph No. 2: General view of Boring B-11.

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 72 Site Photographs

Photograph No. 3: General view of Boring B-11.

Photograph No. 4: General view of Boring B-12.

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 72 NCDOT PROJECT R-3833C

2806 CHARLOTTE HIGHWAY, MOORESVILLE, NC

September 6, 2019

Report prepared for:

Christopher J. Burkhardt, PWS Falcon Engineers 1210 Trinity Rd. #110 Raleigh, NC 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Doug Canavello

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

Table of Contents

Executive Summary	1
Introduction	
Field Methodology	
Discussion of Results	
Discussion of EM Results	
Summary & Conclusions	
Limitations	

Figures

Figure 1 – Parcel 72 – Geophysical Survey Boundaries and Site Photographs
Figure 2 – Parcel 72 – EM61 Results Contour Map
Figure 3 – Parcel 72 – Overlay of Metal Detection Results on NCDOT Engineering Plans

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	
EM	
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	Right-of-Way
UST	• •

EXECUTIVE SUMMARY

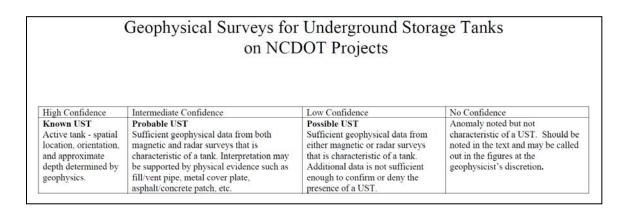
Project Description: Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 72, located at 2806 Charlotte Highway in Mooresville, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-3833C). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted on August 11, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of an electromagnetic (EM) induction-metal detection survey. A total of three EM anomalies were identified. All of the EM anomalies were directly attributed to visible cultural features at the ground surface; therefore, a GPR survey was not required. The geophysical data <u>did not record any</u> <u>evidence of metallic USTs within the survey area at Parcel 72</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 72, located at 2806 Charlotte Highway in Mooresville, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-3833C). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted on August 11, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a grass lot. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.


FIELD METHODOLOGY

The geophysical investigation consisted of an electromagnetic (EM) induction-metal detection survey. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were not required due to all EM anomalies being directly attributed to visible cultural features at the ground surface (See *Discussion of Results* section below).

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Fence	
2	Manholes	
3	Drop Inlet	

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

All of the EM anomalies were directly attributed to visible cultural features at the ground surface, including a fence, manholes, and a drop inlet. Therefore, a GPR survey was not required.

The geophysical data <u>did not record any evidence of metallic USTs within the survey area</u> <u>at Parcel 72</u>. **Figure 3** provides an overlay of the metal detection results on the NCDOT MicroStation engineering plans for reference.

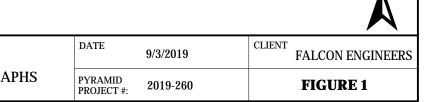
SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 data collected at Parcel 72 in Mooresville, North Carolina, provides the following summary and conclusions:

- The EM61 survey provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- All of the EM anomalies were directly attributed to visible cultural features at the ground surface; therefore, a GPR survey was not required.
- The geophysical data <u>did not record any evidence of metallic USTs within the</u> <u>survey area at Parcel 72</u>.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Falcon Engineers in accordance with generally accepted guidelines for EM61 surveys. It is generally recognized that the results of the EM61 surveys are non-unique and may not represent actual subsurface conditions. The EM61 results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.


APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately North)

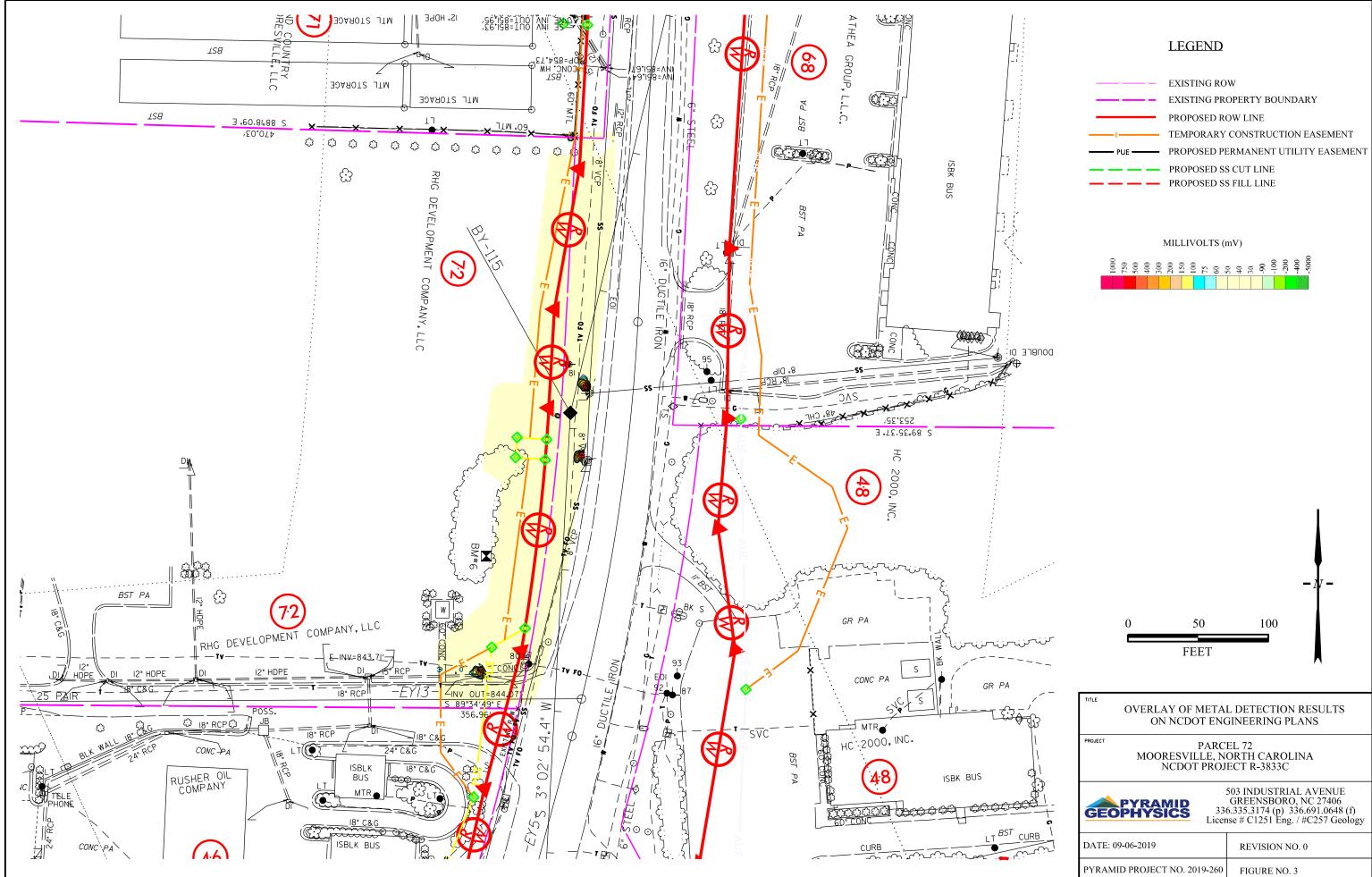
View of Survey Area (Facing Approximately North)

Ν

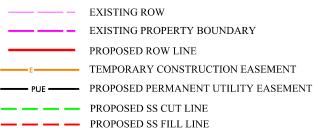
EM61 METAL DETECTION RESULTS

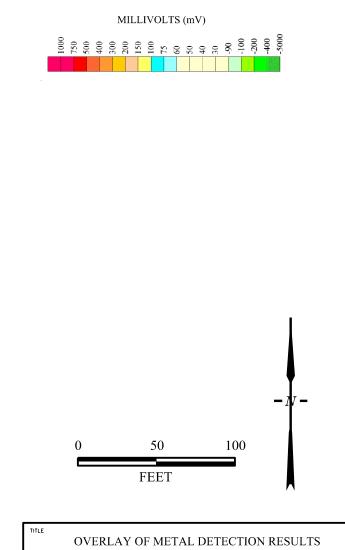
NO EVIDENCE OF METALLIC USTs WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on August 11, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were not required as all of the EM anomalies were associated with features at the ground surface.

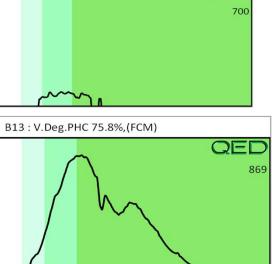

EM61 Metal Detection Response (millivolts)

1000	750	500	400	300	200	150	100	75	09	50	40	30	-90	-100	-200	-500(




 $\overline{}$

DATE	9/3/2019	CLIENT FALCON ENGINEERS
PYRAMID PROJECT #:	2019-260	FIGURE 2



Q	ED												QROS
				Hydroca	irbon An	alysis Re	esults						
	FALCON 1210 TRINITY RD SUITE 110 CARY, NC 27513								Sa Sampl Sampl	es ext			10/14 - 10/15/2019 10/14 - 10/15/2019 Wednesday, October 16, 2019
Contact:	C. Burkhardt									Ор	erator		Harry Wooten
Project:	G18063												
													U00904
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	BaP		% Ratios	i	HC Fingerprint Match
							(0.00000			C5 - C10	C10 - C18	C18	
s	B10	17.2	<0.43	<0.43	6.2	6.2	0.38	<0.14	<0.017	0	100	0	Deg.Hydr.Oil 63%,(FCM)
S	B11	18.5	<0.46	<0.46	<0.46	<0.46	<0.09	<0.15	<0.018	0	0		PHC not detected
S	B12	19.8	<0.49	<0.49	<0.49	<0.49	<0.1	<0.16	<0.02	0	0	0	PHC not detected
S	B13	19.5	<0.49	<0.49	0.49	0.49	0.35	<0.16	<0.02	0	25.5	74.5	V.Deg.PHC 75.8%,(FCM)
	Initial	Calibrator	QC check	OK					Final F	CM QC	Check	OK	·
Abbreviatior B = Blank D	n values in mg/kg for soil samples and mg, is :- FCM = Results calculated using Funda rift : (SBS)/(LBS) = Site Specific or Library I timated aromatic carbon number proportion	mental Calibr Background S	ation Mode : Subtraction a	% = confider pplied to resul	ice of hydroca t : (BO) = Bac	rbon identifica kground Orga	ation : (PFM) =	Poor Finger (OCR) = O	print Match :	: (T) = T inge : (N	urbid : (P) = Parti	iculate detected

QED Hydrocarbon Fingerprints

Project: G18063

B10 : Deg.Hydr.Oil 63%,(FCM) B11 : PHC not detected QED 700 B12 : PHC not detected B13 : V.Deg.PHC 75.8%,(FCM) QED 700

Wednesday, October 16, 2019

QED