PRELIMINARY SITE ASSESSMENT

SR 1100 (BRAWLEY SCHOOL ROAD) IMPROVEMENTS TIP NO. R-3833C, WBS NO. 34554.2.4

NCDOT PARCEL NO. 68 OWNER: MARATHEA GROUP, LLC 2785 CHARLOTTE HIGHWAY MOORESVILLE, IREDELL COUNTY, NORTH CAROLINA

PREPARED FOR: NORTH CAROLINA DEPARTMENT OF TRANSPORTATION C/O STANTEC 801 JONES FRANKLIN ROAD SUITE 300 RALEIGH NORTH CAROLINA 27606-3394

PREPARED BY: FALCON ENGINEERING, INC. 1210 TRINITY ROAD, SUITE 110 CARY, NC 27513

PROJECT NUMBER: G18063.02 OCTOBER 27, 2019

October 27, 2019

Mr. A. Dean Sarvis PE Stantec 801 Jones Franklin Road, Suite 300 Raleigh, North Carolina 27606-3394

Re: Preliminary Site Assessment SR 1100 (Brawley School Road) Improvements TIP No. R-3833C, WBS No. 34554.2.4 NCDOT Parcel No. 68 Owner: Marathea Group, LLC 2785 Charlotte Highway Mooresville, Iredell County, North Carolina

Dear: Mr. Sarvis:

Falcon is pleased to present the following Preliminary Site Assessment in support of the above-mentioned Project. Specifically, Falcon sampled soil in proximity to the project limits on this parcel in general accordance with the approved scope of work. Soils requiring remediation or special handling during construction were not identified.

Falcon recommends if drums, USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

Please review this report and advise us if you have any questions or concerns. We appreciate this opportunity to provide services to you and look forward to partnering with you on future projects. If you have any questions, please give Falcon a call at (919) 871-0800.

Sincerely, **FALCON ENGINEERING, INC.**

histophen But have

Christopher J. Burkhardt Environmental Services Manager

1/mk

Jeremy R. Hamm, PE Geotechnical Services Manager

TABLE OF CONTENTS

SECTION	1: INTRODUCTION	;
	1.1 DESCRIPTION	5
	1.2 SCOPE OF WORK	5
SECTION	2: HISTORY6	5
	2.1 PARCEL USAGE	3
	2.2 FACILITY IDENTIFICATION NUMBER	3
	2.3 GROUNDWATER INCIDENT NUMBER	3
SECTION	3: SITE OBSERVATIONS	•
	3.1 GROUNDWATER MONITORING WELLS	7
	3.2 ACTIVE USTS	7
	3.3 FEATURES APPARENT BEYOND ROW/EASEMENT	7
SECTION	4: METHODOLOGY	3
	4.1 GEOPHYSICS	3
	4.2 BORINGS	3
	4.3 SAMPLE PROTOCOL	3
SECTION	5: RESULTS10)
SECTION	5: RESULTS 10 5.1 GEOPHYSICS 10)
SECTION	5: RESULTS)
SECTION	5: RESULTS)))
SECTION	5: RESULTS))))
SECTION	5: RESULTS	
SECTION	5: RESULTS	
SECTION	5: RESULTS. 10 5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11	
SECTION	5: RESULTS. 10 5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12	
SECTION	5: RESULTS. 10 5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12	
SECTION	5: RESULTS. 10 5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 11 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12 0.2 OLUER INTERPRETATION OF RESULTS 12	
SECTION	5: RESULTS. 10 5.1 GEOPHYSICS. 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES. 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12 6.3 SAMPLING 12 0.4 OLIANTITIES OF 12	
SECTION	5: RESULTS. 10 5.1 GEOPHYSICS 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES 10 TABLE NO. 2 PID READINGS 11 5.3 SAMPLE OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 11 6.1 INTERPRETATION OF RESULTS 12 6.3 SAMPLING 12 6.4 QUANTITIES 12	
SECTION	5: RESULTS. 10 5.1 GEOPHYSICS. 10 5.2 SAMPLE DATA 10 TABLE NO. 1 BORING COORDINATES. 10 TABLE NO. 2 PID READINGS. 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 5.4 QUANTITIES CALCULATIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12 6.3 SAMPLING 12 6.4 QUANTITIES 12 7: RECOMMENDATIONS 13	
SECTION	5: RESULTS. 10 5.1 GEOPHYSICS. 10 5.2 SAMPLE DATA. 10 TABLE NO. 1 BORING COORDINATES. 10 TABLE NO. 2 PID READINGS. 11 5.3 SAMPLE OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 TABLE NO. 3 SOIL OBSERVATIONS 11 6: CONCLUSIONS 11 6: CONCLUSIONS 12 6.1 INTERPRETATION OF RESULTS 12 6.2 GEOPHYSICS 12 6.3 SAMPLING 12 6.4 QUANTITIES 12 7: RECOMMENDATIONS 13 7.1 ADDITIONAL SAMPLING 13	

LIST OF FIGURES AND ATTACHMENTS

VICINITY MAP USGS TOPOGRAPHIC MAP PARCEL LOCATION MAP BORING LOCATION MAP SITE PHOTOGRAPHS LABORATORY RESULTS GEOPHYSICAL SURVEY DIVISION OF WASTE MANAGEMENT (DWM) INSPECTION REPORT DWM RECORD OF CONVERSATION

SECTION 1: INTRODUCTION

1.1 DESCRIPTION

Falcon Engineering, Inc. (Falcon) has completed a Preliminary Site Assessment of NCDOT TIP No. R-3833C Parcel No. 68. Parcel No. 68 is addressed as 2785 Charlotte Highway, Mooresville, Iredell County, North Carolina. NCDOT is proposing to improve SR 1100 (Brawley School Road) from SR 1116 (Talbert Road) to 1,000' east of US 21, including improvements to a number of intersecting roads and driveways throughout this corridor. The limits of the assessment are between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). Boring locations were placed in the vicinity of proposed excavations for drainage features, utilities, and roadway/ditch cuts to determine if soils requiring remediation or special handling were present where excavation is planned to take place.

1.2 SCOPE OF WORK

Falcon's scope of work included coordination of; public and private utility location near the proposed borings, geophysical surveys, collecting soil samples with a geoprobe, and laboratory analysis. Samples were analyzed for volatile organic compounds (VOCs) using traditional methods.

SECTION 2: HISTORY

2.1 PARCEL USAGE

Falcon performed a Phase I Environmental Site Assessment (ESA) for R-3833C under Project No. G18063.01 dated March 2019. The ESA identified this parcel as a Recognized Environmental Condition (REC) based on the parcel's history as a dry-cleaner. U.S. \$2.50 Cleaners was observed at this address during our site visit. This facility performs onsite dry-cleaning and has been in operation for 17 years according to The Real Yellow Pages website. The strip mall the cleaners is in was constructed in 1998. U.S. \$2.50 Cleaners is not in a database that reports spills or releases. However; this facility is considered a REC based on its use as a dry-cleaner and the potential for an undiscovered or unreported release.

2.2 FACILITY IDENTIFICATION NUMBER

Facility Identification Number 490002C was identified for this parcel.

2.3 GROUNDWATER INCIDENT NUMBER

A Groundwater Incident Number was not identified for this parcel.

SECTION 3: SITE OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

Groundwater monitoring wells (MWs) were not observed on this parcel.

3.2 ACTIVE USTS

Active USTs were not observed within the project limits or registered at this parcel.

3.3 FEATURES APPARENT BEYOND ROW/EASEMENT

USTs, monitoring wells, remediation systems, or hydraulic lifts were not observed within the project limits.

SECTION 4: METHODOLOGY

4.1 GEOPHYSICS

Pyramid Geophysical Services (Pyramid) was subcontracted to perform a geophysical survey of the assessment area. The assessment area consists of the property frontage between the existing edge of NCDOT maintained pavement (within the existing NCDOT ROW) where accessible, and the proposed NCDOT ROW and/or easement (whichever boundary represents the largest area). The survey was used to locate private utility lines, as well as possible indications of USTs, and/or their pits.

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is georeferenced and can be overlain on aerial photographs and CADD drawings.

GPR data was acquired across select EM anomalies (where identified), using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Pyramid marked their findings on the surface with paint. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and to obtain adequate coverage. A copy of the full Geophysical Report is included in the Attachments.

4.2 BORINGS

Regional Probing was subcontracted to advance soil borings using direct push technology. Regional Probing used a truck mounted Geoprobe® 5410 unit mounted on an off-road modified Ford F350 Diesel 4x4. The unit has auger-capabilities and is equipped with a GH-42 soil-probing hammer, with 21,700 pounds of down force and 28,900 pounds of retraction force. The unit has an on-board tank for decontaminating the geoprobe rods before advancing the probe at each sample location.

4.3 SAMPLE PROTOCOL

Prior to initiating sample collection Falcon contacted NC One Call and requested public utility locations be marked around the proposed sample locations. Sampling was in general accordance with the NC Department of Environmental Quality (DEQ) Division of Waste Management's (DWM) "Guidelines for Site Checks, Tank Closure, and Initial Response and Abatement for UST Releases" (March 1, 2007 Version Change 9 – February 1, 2019) guidance document. Sampling strategy was derived based upon the project scope and objectives as outlined above. Pace Analytical (North Carolina Field Services Certification #: 5342) was selected to perform the volatile organic compound analytical analysis. Appropriate sterile containers were received by Falcon from Pace Analytical prior to beginning the fieldwork. The containers were labeled appropriately.

A Minirae 3000 photoionization detector (PID) was used to field screen samples for volatile organics to determine if a release had occurred. The instrument was calibrated per manufacturer instructions prior to use. Falcon staff bagged composite soil samples of each boring in approximately two-foot sections. Representative samples were placed in a sealed plastic bag for approximately 10 minutes to allow soil hydrocarbons to reach equilibrium within the headspace prior to scanning with the PID. One sample per boring was collected from the depth of the proposed cut or from the section above the depth of cut with the highest PID reading.

To avoid cross contamination, a new unused pair of non-powdered nitrile gloves was worn while extracting each sample. Samples were placed in the appropriate laboratory provided containers. The labels on each container were then completed so that each provided the date and time of sampling, method of analysis, sample collector, preservative used and sampling location identification. Samples were placed in an ice filled cooler and transported to the lab. Appropriate chain-of-custody procedures, including the completion of necessary forms, were followed.

SECTION 5: RESULTS

5.1 GEOPHYSICS

The geophysical investigation was performed on August 11 and 12, 2019 to investigate for the presence of unknown, metallic underground storage tanks (USTs) beneath the surface. The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of nine EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across areas containing significant metallic interference associated with vehicles, a reinforced concrete pipe, and known buried utility lines. No additional significant buried structures were identified. Collectively, the geophysical data did not record evidence of metallic USTs within the survey area at Parcel No. 68.

5.2 SAMPLE DATA

Falcon and our subcontractor advanced two borings (B-08, B-09) to the proposed excavation depth of the drainage features, utilities, or roadway/ditch cut being assessed. Groundwater was not observed. Please see the Boring Location Plan in the attachments for a visual depiction of the boring locations. The coordinates (latitude and longitude) that correspond to the boring locations are shown below in Table No. 1 Boring Coordinates.

Boring	Latitude	Longitude
B-08	35.5815919	-80.8397319
B-09	35.5811946	-80.8397533

TABLE NO. 1 BORING COORDINATES

The PID screening results are presented in Table No. 2 PID Readings. Borings were field screened with a PID for evidence of volatile organics in sections as indicated in Table No. 2. Falcon selected soil samples based on the field screening results and the needs of the project. Pace Analytical analyzed the selected samples and their full analytical report is attached.

Contaminants above detection levels were not reported in the samples.

Boring	Depth BGS*	PID**
	0-2	1.6
	2-4	2.1
B-08	4-6	2.6
	6-8	2.3
	8-10	2.6
	0-2.5	2.2
P 00	2.5-5	1.8
D-09	5-7.5	1.6
	7.5-10	1.9

TABLE NO. 2 PID READINGS

*BGS = Depth below ground surface in feet

**PID readings are in parts per million

Samples shown in **bold** were selected for analysis

5.3 SAMPLE OBSERVATIONS

Obvious visual indications of a release (stained soils, odors, or oily sheen) were not observed. Table No. 3 Soil Observations lists visual soil observations of color and texture.

Sample ID	Depth	Color	Soil Type
	0-2	Red	Silty Clay (A-7) w/ trace Organics
B 08	2-4	Red Brown	Clayey Silt (A-5) w/ trace Mica
D-00	4-6	Red	Sandy Clayey Silt (A-4) w/ trace Mica
	6-10	Red Brown	Sandy Clayey Silt (A-4) w/ trace Mica
	0-2	Red	Silty Clay (A-7) w/ trace Organics
B 00	2-4	Red Brown	Sandy Clayey Silt (A-4) w/ trace Mica & Rock Frags
D-09	4-6	Red	Sandy Clayey Silt (A-4) w/ trace Mica
	6-10	Red	Sandy Clayey Silt (A-4) w/ trace Mica

TABLE NO. 3 SOIL OBSERVATIONS

Depth is in feet below ground surface

5.4 QUANTITIES CALCULATIONS

Soils requiring quantity calculations were not identified.

SECTION 6: CONCLUSIONS

6.1 INTERPRETATION OF RESULTS

This Preliminary Site Assessment was performed to evaluate the soils in proximity to the project limits on this parcel for the presence of VOCs. The findings are as follows:

Soil sampling completed on the parcel did not identify contaminants in the soil sampled at levels requiring remediation.

6.2 GEOPHYSICS

The geophysical data did not record evidence of metallic USTs within the survey area at Parcel No. 68. Falcon does not anticipate USTs will be encountered within the project limits on this parcel during construction.

6.3 SAMPLING

Sampling results did not identify contaminants in the soil which require remediation in the areas sampled. Based on past project experience, Falcon does not anticipate soil remediation or special handling and disposal will be required during construction on this parcel.

6.4 QUANTITIES

Soils requiring quantities calculations were not identified.

SECTION 7: RECOMMENDATIONS

7.1 ADDITIONAL SAMPLING

Contaminants above the Industrial / Commercial Soil Cleanup Levels were not identified; therefore, additional assessment is not warranted at this time. Falcon recommends if drums, USTs, above ground storage tanks (ASTs), petroleum odors or sheen are observed during any excavation associated with any property involved in the project that all work in the vicinity stop until further assessment takes place. Further assessment can include but is not limited to; sampling the soil and groundwater, excavation, and proper handling and disposal of contaminated soils and groundwater.

7.2 SPECIAL HANDLING OF IMPACTED SOIL

Soils requiring special handling were not identified. If suspect contaminated soils are encountered during construction Falcon and the NCDOT GeoEnvironmental Group should be contacted for proper handling instructions.

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 68 Vicinity Map

Project No.: G18063.02 Date: October 2019 Source: Google Maps

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 68 Topographic Map

Project No.: G18063.02Date:October 2019Source:"Mooresville, NC" 2016 USGS Topographic Map

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 68 Location Map

The maps prepared for this website are generated from recorded deeds, plats, and other public records. Users of these maps are hereby notified that the information provided herein should be verified. Iredell County assumes no legal responsibilities for any of the information contained on this site. Users are advised that the use of any of this information is at their own risk. All maps on this site were prepared using a 1000%[™] Grid based upon the North Carolina State Plane Coordinate System from the 1983 North. American Datum. The delinquent real property tax overlay is updated monthly. The information presented is not intended to be used or relied upon as official notice of tax liens. For additional information regarding delinquent taxes, contact the Iredell County Tax Collector's Office.

Project No.: G18063.02 Date: October 2019 Source: Iredell County GIS Website

NCDOT R-3833C (SR 1100 Improvements) Preliminary Site Assessment Parcel 68 Site Photographs

Photograph No. 1: General view of Boring B-08.

Photograph No. 2: General view of Boring B-09.

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

October 21, 2019

Christopher Burkhardt Falcon Engineering 1210 Trinity Road Suite 110 Cary, NC 27513

RE: Project: G18063 Pace Project No.: 92449737

Dear Christopher Burkhardt:

Enclosed are the analytical results for sample(s) received by the laboratory on October 15, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tyrick Hooks

Tyriek Hooks tyriek.hooks@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Christopher Burkhardt, Falcon Engineering

Pace Analytical Services, LLC 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: G18063 Pace Project No.: 92449737

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE ANALYTE COUNT

Project: G18063 Pace Project No.: 92449737

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92449737001	B08	EPA 8260D	CL	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92449737002	B09	EPA 8260D	CL	70	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

Project: G18063

Pace Project No.: 92449737

_

-

Sample: B08	Lab ID: 924	49737001	Collected: 10/15/1	9 10:49	9 Received: 10	/15/19 16:39 N	latrix: Solid	
Results reported on a "dry weight"	" basis and are adj	justed for pe	rcent moisture, sa	imple s	size and any dilu	tions.		. .
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Met	hod: EPA 826	0D Preparation Me	ethod: E	EPA 5035A			
Acetone	ND	ug/kg	114	1	10/18/19 12:39	10/18/19 15:12	67-64-1	
Benzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	71-43-2	
Bromobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	108-86-1	
Bromochloromethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	74-97-5	
Bromodichloromethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	75-27-4	
Bromoform	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	75-25-2	
Bromomethane	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	74-83-9	
2-Butanone (MEK)	ND	ug/kg	114	1	10/18/19 12:39	10/18/19 15:12	78-93-3	
n-Butylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	104-51-8	
sec-Butylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	135-98-8	
tert-Butylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	98-06-6	
Carbon tetrachloride	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	56-23-5	
Chlorobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	108-90-7	
Chloroethane	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	75-00-3	
Chloroform	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	67-66-3	
Chloromethane	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	74-87-3	
2-Chlorotoluene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	95-49-8	
4-Chlorotoluene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	96-12-8	
Dibromochloromethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	106-93-4	
Dibromomethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	75-71-8	
1,1-Dichloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	75-34-3	
1,2-Dichloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	107-06-2	
1,1-Dichloroethene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	156-59-2	
trans-1.2-Dichloroethene	ND	ua/ka	5.7	1	10/18/19 12:39	10/18/19 15:12	156-60-5	
1,2-Dichloropropane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	78-87-5	
1.3-Dichloropropane	ND	ua/ka	5.7	1	10/18/19 12:39	10/18/19 15:12	142-28-9	
2.2-Dichloropropane	ND	ua/ka	5.7	1	10/18/19 12:39	10/18/19 15:12	594-20-7	
1.1-Dichloropropene	ND	ua/ka	5.7	1	10/18/19 12:39	10/18/19 15:12	563-58-6	
cis-1.3-Dichloropropene	ND	ua/ka	5.7	1	10/18/19 12:39	10/18/19 15:12	10061-01-5	
trans-1.3-Dichloropropene	ND	ua/ka	5.7	1	10/18/19 12:39	10/18/19 15:12	10061-02-6	
Diisopropyl ether	ND	ua/ka	5.7	1	10/18/19 12:39	10/18/19 15:12	108-20-3	
Ethylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	100-41-4	
Hexachloro-1.3-butadiene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	87-68-3	
2-Hexanone	ND	ug/ka	57 1	1	10/18/19 12:39	10/18/19 15:12	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/ka	57	1	10/18/19 12:39	10/18/19 15:12	98-82-8	
p-lsopropyltoluene	ND	ug/kg	57	1	10/18/19 12:39	10/18/19 15 12	99-87-6	
Methylene Chloride	ND	ug/ka	22 9	1	10/18/19 12:30	10/18/19 15 12	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	57 1	1	10/18/19 12:30	10/18/19 15 12	108-10-1	
Methyl-tert-butyl ether	ND	ug/ka	57	1	10/18/19 12:39	10/18/19 15:12	1634-04-4	
		~ 9' ' 9	0.1					

Project: G18063

Pace Project No.: 92449737

Sample: B08	Lab ID: 924	49737001 Co	llected: 10/15/1	9 10:4	9 Received: 10	/15/19 16:39 N	latrix: Solid	
Results reported on a "dry weight"	" basis and are adj	iusted for perce	ent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Mether	hod: EPA 8260D	Preparation Me	ethod: E	EPA 5035A			
Naphthalene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	91-20-3	
n-Propylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	103-65-1	
Styrene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	79-34-5	
Tetrachloroethene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	127-18-4	
Toluene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	120-82-1	
1,1,1-Trichloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	71-55-6	
1,1,2-Trichloroethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	79-00-5	
Trichloroethene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	108-67-8	
Vinyl acetate	ND	ug/kg	57.1	1	10/18/19 12:39	10/18/19 15:12	108-05-4	L1,v1
Vinyl chloride	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	75-01-4	
Xylene (Total)	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	1330-20-7	
m&p-Xylene	ND	ug/kg	11.4	1	10/18/19 12:39	10/18/19 15:12	179601-23-1	
o-Xylene	ND	ug/kg	5.7	1	10/18/19 12:39	10/18/19 15:12	95-47-6	
Surrogates								
Toluene-d8 (S)	103	%	70-130	1	10/18/19 12:39	10/18/19 15:12	2037-26-5	
4-Bromofluorobenzene (S)	101	%	70-130	1	10/18/19 12:39	10/18/19 15:12	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	70-132	1	10/18/19 12:39	10/18/19 15:12	17060-07-0	
Percent Moisture	Analytical Mether	hod: ASTM D297	74-87					
Percent Moisture	14.2	%	0.10	1		10/17/19 13:29		

 Sample:
 B09
 Lab ID:
 92449737002
 Collected:
 10/15/19
 10:21
 Received:
 10/15/19
 16:39
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 8260D	Preparation Me	thod: E	EPA 5035A			
Acetone	ND	ug/kg	104	1	10/18/19 12:39	10/18/19 15:37	67-64-1	
Benzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	71-43-2	
Bromobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-86-1	
Bromochloromethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	74-97-5	
Bromodichloromethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	75-27-4	
Bromoform	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	75-25-2	
Bromomethane	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	74-83-9	
2-Butanone (MEK)	ND	ug/kg	104	1	10/18/19 12:39	10/18/19 15:37	78-93-3	
n-Butylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	104-51-8	
sec-Butylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	135-98-8	

REPORT OF LABORATORY ANALYSIS

Project: G18063

Pace Project No.: 92449737

Sample: B09	Lab ID: 924	49737002	Collected: 10/15/1	9 10:2	1 Received: 10	/15/19 16:39 N	latrix: Solid	
Results reported on a "dry weight"	" basis and are adj	iusted for pe	rcent moisture, sa	mple s	size and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 826	0D Preparation Me	ethod: E	EPA 5035A			
tert-Butylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	98-06-6	
Carbon tetrachloride	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	56-23-5	
Chlorobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-90-7	
Chloroethane	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	75-00-3	
Chloroform	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	67-66-3	
Chloromethane	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	74-87-3	
2-Chlorotoluene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	95-49-8	
4-Chlorotoluene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	96-12-8	
Dibromochloromethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	106-93-4	
Dibromomethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	74-95-3	
1,2-Dichlorobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	95-50-1	
1,3-Dichlorobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	541-73-1	
1,4-Dichlorobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	106-46-7	
Dichlorodifluoromethane	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	75-71-8	
1,1-Dichloroethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	75-34-3	
1,2-Dichloroethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	107-06-2	
1,1-Dichloroethene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	75-35-4	
cis-1,2-Dichloroethene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	156-60-5	
1,2-Dichloropropane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	78-87-5	
1,3-Dichloropropane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	142-28-9	
2,2-Dichloropropane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	594-20-7	
1,1-Dichloropropene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	563-58-6	
cis-1,3-Dichloropropene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	10061-02-6	
Diisopropyl ether	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-20-3	
Ethylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	87-68-3	
2-Hexanone	ND	ug/kg	52.2	1	10/18/19 12:39	10/18/19 15:37	591-78-6	
Isopropylbenzene (Cumene)	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	98-82-8	
p-Isopropyltoluene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	99-87-6	
Methylene Chloride	ND	ug/kg	20.9	1	10/18/19 12:39	10/18/19 15:37	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/kg	52.2	1	10/18/19 12:39	10/18/19 15:37	108-10-1	
Methyl-tert-butyl ether	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	1634-04-4	
Naphthalene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	91-20-3	
n-Propylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	103-65-1	
Styrene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	100-42-5	
1,1,1,2- letrachloroethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	630-20-6	
1,1,2,2-letrachioroethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	19-34-5	
Tetrachloroethene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	127-18-4	
	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-88-3	
1,2,3-Irichlorobenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	87-61-6	
	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	120-82-1	
1,1,1-Irichloroethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	11-55-6	

Project: G18063

Pace Project No.: 92449737

Sample: B09	Lab ID: 924	49737002	Collected: 10/15/1	9 10:21	Received: 10	/15/19 16:39 N	latrix: Solid	
Results reported on a "dry weight"	' basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D/5035A Volatile Organics	Analytical Meth	nod: EPA 82	260D Preparation Me	ethod: E	PA 5035A			
1,1,2-Trichloroethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	79-00-5	
Trichloroethene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	79-01-6	
Trichlorofluoromethane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	75-69-4	
1,2,3-Trichloropropane	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	108-67-8	
Vinyl acetate	ND	ug/kg	52.2	1	10/18/19 12:39	10/18/19 15:37	108-05-4	L1,v1
Vinyl chloride	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	75-01-4	
Xylene (Total)	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	1330-20-7	
m&p-Xylene	ND	ug/kg	10.4	1	10/18/19 12:39	10/18/19 15:37	179601-23-1	
o-Xylene	ND	ug/kg	5.2	1	10/18/19 12:39	10/18/19 15:37	95-47-6	
Surrogates								
Toluene-d8 (S)	110	%	70-130	1	10/18/19 12:39	10/18/19 15:37	2037-26-5	
4-Bromofluorobenzene (S)	104	%	70-130	1	10/18/19 12:39	10/18/19 15:37	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-132	1	10/18/19 12:39	10/18/19 15:37	17060-07-0	
Percent Moisture	Analytical Meth	nod: ASTM	D2974-87					
Percent Moisture	13.9	%	0.10	1		10/17/19 13:30		

Project: G18063

Pace Project No.: 92449737

QC Batch Method:

QC Batch: 504508

204208 EPA 5035A Analysis Method: Analysis Description:

Matrix: Solid

EPA 8260D 8260D MSV 5035A Volatile Organics

Associated Lab Samples: 92449737001, 92449737002

METHOD BLANK: 2711188

Associated Lab Samples: 92449737001, 92449737002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1,1,1-Trichloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1,1,2,2-Tetrachloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1,1,2-Trichloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1,1-Dichloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1,1-Dichloroethene	ug/kg	ND	5.0	10/18/19 14:48	
1,1-Dichloropropene	ug/kg	ND	5.0	10/18/19 14:48	
1,2,3-Trichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
1,2,3-Trichloropropane	ug/kg	ND	5.0	10/18/19 14:48	
1,2,4-Trichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
1,2,4-Trimethylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
1,2-Dibromo-3-chloropropane	ug/kg	ND	5.0	10/18/19 14:48	
1,2-Dibromoethane (EDB)	ug/kg	ND	5.0	10/18/19 14:48	
1,2-Dichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
1,2-Dichloroethane	ug/kg	ND	5.0	10/18/19 14:48	
1,2-Dichloropropane	ug/kg	ND	5.0	10/18/19 14:48	
1,3,5-Trimethylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
1,3-Dichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
1,3-Dichloropropane	ug/kg	ND	5.0	10/18/19 14:48	
1,4-Dichlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
2,2-Dichloropropane	ug/kg	ND	5.0	10/18/19 14:48	
2-Butanone (MEK)	ug/kg	ND	100	10/18/19 14:48	
2-Chlorotoluene	ug/kg	ND	5.0	10/18/19 14:48	
2-Hexanone	ug/kg	ND	50.0	10/18/19 14:48	
1-Chlorotoluene	ug/kg	ND	5.0	10/18/19 14:48	
1-Methyl-2-pentanone (MIBK)	ug/kg	ND	50.0	10/18/19 14:48	
Acetone	ug/kg	ND	100	10/18/19 14:48	
Benzene	ug/kg	ND	5.0	10/18/19 14:48	
Bromobenzene	ug/kg	ND	5.0	10/18/19 14:48	
Bromochloromethane	ug/kg	ND	5.0	10/18/19 14:48	
Bromodichloromethane	ug/kg	ND	5.0	10/18/19 14:48	
Bromoform	ug/kg	ND	5.0	10/18/19 14:48	
Bromomethane	ug/kg	ND	10.0	10/18/19 14:48	
Carbon tetrachloride	ug/kg	ND	5.0	10/18/19 14:48	
Chlorobenzene	ug/kg	ND	5.0	10/18/19 14:48	
Chloroethane	ug/kg	ND	10.0	10/18/19 14:48	
Chloroform	ug/kg	ND	5.0	10/18/19 14:48	
Chloromethane	ug/kg	ND	10.0	10/18/19 14:48	
cis-1,2-Dichloroethene	ug/kg	ND	5.0	10/18/19 14:48	
cis-1,3-Dichloropropene	ug/kg	ND	5.0	10/18/19 14:48	
Dibromochloromethane	ug/kg	ND	5.0	10/18/19 14:48	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

METHOD BLANK: 271118	8	Matrix:	Solid		
Associated Lab Samples:	92449737001, 92449737002				
Parameter	Units	Blank Result	Reporting Limit	Analvzed	Qualifiers
Dibromomothano				10/18/10 14:48	
Disbloredifluoremethane	ug/kg		10.0	10/10/19 14.40	
	ug/kg		5.0	10/18/19 14.40	
Ethylbenzene	ug/kg		5.0	10/18/10 14:48	
Hevachloro-1 3-butadiene	ug/kg		5.0	10/18/10 14:48	
Isopropylbenzene (Cumene			5.0	10/18/10 14:48	
m&n-Xvlene	, ug/kg	ND	10.0	10/18/19 14:48	
Methyl-tert-butyl ether	ug/kg	ND	5.0	10/18/19 14:48	
Methylene Chloride	ug/kg	ND	20.0	10/18/19 14:48	
n-Butylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
n-Propylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
Naphthalene	ug/kg	ND	5.0	10/18/19 14:48	
o-Xylene	ug/kg	ND	5.0	10/18/19 14:48	
p-Isopropyltoluene	ug/kg	ND	5.0	10/18/19 14:48	
sec-Butylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
Styrene	ug/kg	ND	5.0	10/18/19 14:48	
tert-Butylbenzene	ug/kg	ND	5.0	10/18/19 14:48	
Tetrachloroethene	ug/kg	ND	5.0	10/18/19 14:48	
Toluene	ug/kg	ND	5.0	10/18/19 14:48	
trans-1,2-Dichloroethene	ug/kg	ND	5.0	10/18/19 14:48	
trans-1,3-Dichloropropene	ug/kg	ND	5.0	10/18/19 14:48	
Trichloroethene	ug/kg	ND	5.0	10/18/19 14:48	
Trichlorofluoromethane	ug/kg	ND	5.0	10/18/19 14:48	
Vinyl acetate	ug/kg	ND	50.0	10/18/19 14:48	v1
Vinyl chloride	ug/kg	ND	10.0	10/18/19 14:48	
Xylene (Total)	ug/kg	ND	10.0	10/18/19 14:48	
1,2-Dichloroethane-d4 (S)	%	97	70-132	10/18/19 14:48	
4-Bromofluorobenzene (S)	%	101	70-130	10/18/19 14:48	
Toluene-d8 (S)	%	111	70-130	10/18/19 14:48	

LABORATORY CONTROL SAMPLE: 2711189

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	50	53.7	107	70-130	
1,1,1-Trichloroethane	ug/kg	50	52.5	105	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	50	50.6	101	55-130	
1,1,2-Trichloroethane	ug/kg	50	52.1	104	70-130	
1,1-Dichloroethane	ug/kg	50	53.0	106	68-130	
1,1-Dichloroethene	ug/kg	50	56.2	112	70-130	
1,1-Dichloropropene	ug/kg	50	49.3	99	70-130	
1,2,3-Trichlorobenzene	ug/kg	50	53.7	107	70-130	
1,2,3-Trichloropropane	ug/kg	50	55.4	111	70-130	
1,2,4-Trichlorobenzene	ug/kg	50	53.3	107	70-130	
1,2,4-Trimethylbenzene	ug/kg	50	51.3	103	69-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

LABORATORY CONTROL SAMPLE: 2711189

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.2-Dibromo-3-chloropropane	ua/ka		55.0	110	57-141	
1.2-Dibromoethane (EDB)	ua/ka	50	55.0	110	70-130	
1.2-Dichlorobenzene	ua/ka	50	50.5	101	70-130	
1.2-Dichloroethane	ua/ka	50	54.9	110	70-130	
1.2-Dichloropropane	ug/kg	50	51.4	103	70-130	
1.3.5-Trimethylbenzene	ua/ka	50	52.3	105	70-130	
1.3-Dichlorobenzene	ua/ka	50	50.3	101	70-130	
1.3-Dichloropropane	ua/ka	50	55.4	111	70-130	
1.4-Dichlorobenzene	ug/kg	50	50.3	101	70-130	
2.2-Dichloropropane	ua/ka	50	55.5	111	70-130	
2-Butanone (MEK)	ua/ka	100	112	112	60-130	
2-Chlorotoluene	ug/kg	50	51.0	102	70-130	
2-Hexanone	ug/kg	100	119	119	70-132	
4-Chlorotoluene	ug/kg	.50	52.3	105	70-130	
4-Methyl-2-pentanone (MIBK)	ug/ka	100	116	116	69-130	
Acetone	ug/ka	100	117	117	49-148	
Benzene	ug/kg	50	54.8	110	70-130	
Bromobenzene	ug/kg	50	50.2	100	70-130	
Bromochloromethane	ug/kg	50	50.5	100	70-130	
Bromodichloromethane	ug/kg	50	55.3	101	70-130	
Bromoform	ug/kg	50	52.7	105	68-136	
Bromomethane	ug/kg	50	53.1	106	60-140	
Carbon tetrachloride	ug/kg	50	51.2	100	70-130	
Chlorobenzene	ug/kg	50	49.8	102	70-130	
Chloroethane	ug/kg	50	56.4	100	51-147	
Chloroform	ug/kg	50	46.9	94	70-130	
Chloromethane	ug/kg	50	58.2	116	48-130	
cis-1 2-Dichloroethene	ug/kg	50	52.3	105	70-130	
cis-1 3-Dichloropropene	ug/kg	50	55.2	100	70-130	
Dibromochloromethane	ug/kg	50	54.0	108	70-130	
Dibromomethane	ug/ka	50	52.3	105	70-130	
Dichlorodifluoromethane	ug/kg	50	61 1	122	49-130	
Diisopropyl ether	ug/kg	50	55.6	111	66-130	
Ethylbenzene	ug/kg	50	51 7	103	70-130	
Hexachloro-1.3-butadiene	ug/ka	50	52.6	105	70-130	
Isopropylbenzene (Cumene)	ug/ka	50	51.0	102	70-130	
m&p-Xvlene	ug/kg	100	103	103	70-130	
Methyl-tert-butyl ether	ug/ka	50	53.1	106	70-130	
Methylene Chloride	ug/kg	50	48.8	98	50-137	
n-Butylbenzene	ug/kg	50	52.4	105	70-130	
n-Propylbenzene	ug/ka	50	52.6	105	70-130	
Naphthalene	ug/kg	50	52.0	104	70-131	
o-Xvlene	ug/kg	50	50 1	100	70-130	
n-Isopropyltoluene	ug/kg	50	50.1	102	70-130	
sec-Butylbenzene	ug/kg	50	51.2	102	70-130	
Styrene	ug/kg	50	48.5	97	70-130	
tert-Butylbenzene	ug/kg	50	45.5	97	69-130	
	uging	50	+0.0	51	00-100	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

LABORATORY CONTROL SAMPLE: 2711189

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Tetrachloroethene	ug/kg	50	52.8	106	56-130	
Toluene	ug/kg	50	51.5	103	70-130	
trans-1,2-Dichloroethene	ug/kg	50	52.5	105	70-130	
trans-1,3-Dichloropropene	ug/kg	50	57.1	114	70-130	
Trichloroethene	ug/kg	50	51.8	104	70-141	
Trichlorofluoromethane	ug/kg	50	57.0	114	67-130	
Vinyl acetate	ug/kg	100	149	149	10-136	L1,v1
Vinyl chloride	ug/kg	50	58.2	116	67-130	
Xylene (Total)	ug/kg	150	154	102	70-130	
1,2-Dichloroethane-d4 (S)	%			104	70-132	
4-Bromofluorobenzene (S)	%			102	70-130	
Toluene-d8 (S)	%			102	70-130	

MATRIX SPIKE SAMPLE:	2712535						
_		92449737002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	ND	22.2	22.2	100	52-133	
1,1,1-Trichloroethane	ug/kg	ND	22.2	26.1	117	49-137	
1,1,2,2-Tetrachloroethane	ug/kg	ND	22.2	22.2	100	39-150	
1,1,2-Trichloroethane	ug/kg	ND	22.2	23.3	105	48-140	
1,1-Dichloroethane	ug/kg	ND	22.2	24.9	112	46-135	
1,1-Dichloroethene	ug/kg	ND	22.2	28.1	126	38-149	
1,1-Dichloropropene	ug/kg	ND	22.2	24.5	110	41-140	
1,2,3-Trichlorobenzene	ug/kg	ND	22.2	21.6	97	10-158	
1,2,3-Trichloropropane	ug/kg	ND	22.2	23.6	106	33-157	
1,2,4-Trichlorobenzene	ug/kg	ND	22.2	21.3	96	10-155	
1,2,4-Trimethylbenzene	ug/kg	ND	22.2	22.0	99	24-154	
1,2-Dibromo-3-chloropropane	ug/kg	ND	22.2	24.5	110	33-158	
1,2-Dibromoethane (EDB)	ug/kg	ND	22.2	22.8	103	40-136	
1,2-Dichlorobenzene	ug/kg	ND	22.2	21.5	97	27-146	
1,2-Dichloroethane	ug/kg	ND	22.2	24.4	110	49-140	
1,2-Dichloropropane	ug/kg	ND	22.2	24.4	110	44-143	
1,3,5-Trimethylbenzene	ug/kg	ND	22.2	22.6	102	40-144	
1,3-Dichlorobenzene	ug/kg	ND	22.2	21.6	97	33-140	
1,3-Dichloropropane	ug/kg	ND	22.2	23.1	104	47-147	
1,4-Dichlorobenzene	ug/kg	ND	22.2	21.5	97	35-139	
2,2-Dichloropropane	ug/kg	ND	22.2	25.7	116	41-140	
2-Butanone (MEK)	ug/kg	ND	44.4	45.2J	102	10-181	
2-Chlorotoluene	ug/kg	ND	22.2	22.6	102	38-147	
2-Hexanone	ug/kg	ND	44.4	45.2J	102	18-169	
4-Chlorotoluene	ug/kg	ND	22.2	22.4	101	36-145	
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	44.4	47.2J	106	16-175	
Acetone	ug/kg	ND	44.4	64J	129	10-200	
Benzene	ug/kg	ND	22.2	25.4	114	46-136	
Bromobenzene	ug/kg	ND	22.2	22.6	102	38-149	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

MATRIX SPIKE SAMPLE:	2712535						
		92449737002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Bromochloromethane	ug/kg	ND	22.2	24.8	112	44-142	
Bromodichloromethane	ug/kg	ND	22.2	24.8	111	41-140	
Bromoform	ug/kg	ND	22.2	22.9	103	34-145	
Bromomethane	ug/kg	ND	22.2	23.2	104	14-162	
Carbon tetrachloride	ug/kg	ND	22.2	27.4	123	44-141	
Chlorobenzene	ug/kg	ND	22.2	22.6	102	39-141	
Chloroethane	ug/kg	ND	22.2	34.7	156	10-182	
Chloroform	ug/kg	ND	22.2	25.6	115	45-140	
Chloromethane	ug/kg	ND	22.2	28.1	126	19-149	
cis-1,2-Dichloroethene	ug/kg	ND	22.2	24.9	112	38-150	
cis-1,3-Dichloropropene	ug/kg	ND	22.2	25.3	114	30-144	
Dibromochloromethane	ug/kg	ND	22.2	21.7	98	36-145	
Dibromomethane	ug/kg	ND	22.2	23.8	107	41-145	
Dichlorodifluoromethane	ug/kg	ND	22.2	30.8	138	16-146	
Diisopropyl ether	ug/kg	ND	22.2	23.6	106	41-143	
Ethylbenzene	ug/kg	ND	22.2	23.5	106	35-144	
Hexachloro-1,3-butadiene	ug/kg	ND	22.2	22.9	103	10-160	
Isopropylbenzene (Cumene)	ug/kg	ND	22.2	22.9	103	30-152	
m&p-Xylene	ug/kg	ND	44.4	46.6	105	33-145	
Methyl-tert-butyl ether	ug/kg	ND	22.2	22.7	102	49-140	
Methylene Chloride	ug/kg	ND	22.2	23.3	105	10-174	
n-Butylbenzene	ug/kg	ND	22.2	22.6	102	10-160	
n-Propylbenzene	ug/kg	ND	22.2	23.5	106	24-159	
Naphthalene	ug/kg	ND	22.2	20.3	91	10-171	
o-Xylene	ug/kg	ND	22.2	22.9	103	31-150	
p-Isopropyltoluene	ug/kg	ND	22.2	22.9	103	21-154	
sec-Butylbenzene	ug/kg	ND	22.2	23.7	107	19-159	
Styrene	ug/kg	ND	22.2	21.3	96	15-152	
tert-Butylbenzene	ug/kg	ND	22.2	20.9	94	31-141	
Tetrachloroethene	ug/kg	ND	22.2	23.4	105	19-141	
Toluene	ug/kg	ND	22.2	24.4	110	31-146	
trans-1,2-Dichloroethene	ug/kg	ND	22.2	25.4	114	28-157	
trans-1,3-Dichloropropene	ug/kg	ND	22.2	23.4	106	25-146	
Trichloroethene	ug/kg	ND	22.2	24.6	111	34-149	
Trichlorofluoromethane	ug/kg	ND	22.2	29.4	132	10-167	
Vinyl acetate	ug/kg	ND	44.4	57.7	130	10-200	
Vinyl chloride	ug/kg	ND	22.2	28.2	127	36-155	
Xylene (Total)	ug/kg	ND	66.7	69.5	104	29-148	
1,2-Dichloroethane-d4 (S)	%				109	70-132	
4-Bromofluorobenzene (S)	%				97	70-130	
Toluene-d8 (S)	%				101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: G18063 Pace Project No.: 92449737

SAMPLE DUPLICATE: 2712534

		92449737001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg		ND		
1,1,1-Trichloroethane	ug/kg	ND	ND		
1,1,2,2-Tetrachloroethane	ug/kg	ND	ND		
1,1,2-Trichloroethane	ug/kg	ND	ND		
1,1-Dichloroethane	ug/kg	ND	ND		
1,1-Dichloroethene	ug/kg	ND	ND		
1,1-Dichloropropene	ug/kg	ND	ND		
1,2,3-Trichlorobenzene	ug/kg	ND	ND		
1,2,3-Trichloropropane	ug/kg	ND	ND		
1,2,4-Trichlorobenzene	ug/kg	ND	ND		
1,2,4-Trimethylbenzene	ug/kg	ND	ND		
1.2-Dibromo-3-chloropropane	ug/kg	ND	ND		
1,2-Dibromoethane (EDB)	ug/kg	ND	ND		
1,2-Dichlorobenzene	ug/kg	ND	ND		
1,2-Dichloroethane	ug/kg	ND	ND		
1,2-Dichloropropane	ug/kg	ND	ND		
1.3.5-Trimethylbenzene	ua/ka	ND	ND		
1,3-Dichlorobenzene	ug/kg	ND	ND		
1.3-Dichloropropane	ua/ka	ND	ND		
1,4-Dichlorobenzene	ug/kg	ND	ND		
2,2-Dichloropropane	ug/kg	ND	ND		
2-Butanone (MEK)	ug/kg	ND	ND		
2-Chlorotoluene	ug/kg	ND	ND		
2-Hexanone	ua/ka	ND	ND		
4-Chlorotoluene	ug/kg	ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/kg	ND	ND		
Acetone	ug/kg	ND	ND		
Benzene	ug/kg	ND	ND		
Bromobenzene	ug/kg	ND	ND		
Bromochloromethane	ug/kg	ND	ND		
Bromodichloromethane	ug/kg	ND	ND		
Bromoform	ug/kg	ND	ND		
Bromomethane	ug/kg	ND	ND		
Carbon tetrachloride	ug/kg	ND	ND		
Chlorobenzene	ug/kg	ND	ND		
Chloroethane	ug/kg	ND	ND		
Chloroform	ug/kg	ND	ND		
Chloromethane	ug/kg	ND	ND		
cis-1,2-Dichloroethene	ug/kg	ND	ND		
cis-1,3-Dichloropropene	ug/kg	ND	ND		
Dibromochloromethane	ug/kg	ND	ND		
Dibromomethane	ug/kg	ND	ND		
Dichlorodifluoromethane	ug/kg	ND	ND		
Diisopropyl ether	ug/kg	ND	ND		
Ethylbenzene	ug/kg	ND	ND		
Hexachloro-1,3-butadiene	ug/kg	ND	ND		
Isopropylbenzene (Cumene)	ug/kg	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

_

Project: G18063 Pace Project No.: 92449737

SAMPLE DUPLICATE: 2712534

		92449737001	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
m&p-Xylene	ug/kg	ND	ND		
Methyl-tert-butyl ether	ug/kg	ND	ND		
Methylene Chloride	ug/kg	ND	ND		
n-Butylbenzene	ug/kg	ND	ND		
n-Propylbenzene	ug/kg	ND	ND		
Naphthalene	ug/kg	ND	ND		
o-Xylene	ug/kg	ND	ND		
p-Isopropyltoluene	ug/kg	ND	ND		
sec-Butylbenzene	ug/kg	ND	ND		
Styrene	ug/kg	ND	ND		
tert-Butylbenzene	ug/kg	ND	ND		
Tetrachloroethene	ug/kg	ND	ND		
Toluene	ug/kg	ND	ND		
trans-1,2-Dichloroethene	ug/kg	ND	ND		
trans-1,3-Dichloropropene	ug/kg	ND	ND		
Trichloroethene	ug/kg	ND	ND		
Trichlorofluoromethane	ug/kg	ND	ND		
Vinyl acetate	ug/kg	ND	ND		
Vinyl chloride	ug/kg	ND	ND		
Xylene (Total)	ug/kg	ND	ND		
1,2-Dichloroethane-d4 (S)	%	108	100		
4-Bromofluorobenzene (S)	%	101	99		
Toluene-d8 (S)	%	103	108		

.

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	G18063								
Pace Project No.:	92449737								
QC Batch:	504241		Analysis Meth	od:	ASTM D2974-	-87			
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Pe	ercent Mo	oisture		
Associated Lab Sar	mples: 9244973700	1, 92449737002							
SAMPLE DUPLICA	TE: 2709812								
			92449529001	Dup					
Paran	neter	Units	Result	Result	RPD	C	Jualifiers		
Percent Moisture		%	25.1	25	.5	1		-	
SAMPLE DUPLICA	TE: 2709813								
			92449810001	Dup					
Paran	neter	Units	Result	Result	RPD	C	Jualifiers		
Percent Moisture		%	12.2	12		4		-	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: G18063 Pace Project No.: 92449737

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- v1 The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:G18063Pace Project No.:92449737

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92449737001 92449737002	B08 B09	EPA 5035A EPA 5035A	504508 504508	EPA 8260D EPA 8260D	504512 504512
92449737001 92449737002	B08 B09	ASTM D2974-87 ASTM D2974-87	504241 504241		

737			roject Manager:), (4) sodium hydroxide, (5) zinc acetate, ascorbic <u>acld</u> , (8) ammonium sulfate,	user to contract the second	b Sample Receipt Checklist:	stody Signatures Present LFN NA Llector Signature Present LFN NA thea futact	fficient Volume	A - Headspace Acceptable Y N WAY DA Regulated Solls Y N WAY moles in Holding Time (YN NA	sidual Chlorine Present Y N W Strips: mple pH Acceptable Y N W Strips:	ad Acetate Strips:	b Sample # / comments: (D/ 1,	ようようとようけ	55 15))						Lab Sample Temperature Info:	Temp Blank Received: Y. N. NA Therm ID#: <u>417,005</u> Cooler 1 Temp Upon Receipt <u>6</u> i oC	Cooler 1 Therm Corr. Factor: 0.0	Comments:		Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page:
24497			adel) hydrochloric acid te, (9) hexane, (A)	Other DI (5 P	588	o S S S S S	VO US Sa	205 50 50 50 50 50 50 50 50 50 50 50 50 5	5 1 1	4									N N/A	79	Pace Courie	L LAB USE ONLY			
4:0,4		737	Type **	sulfuric acid, (3 dium thiosulfa	npreserved, (O																hours): Y	4099	t Courier	FLW	Table #: Acrtnum	Template: Prelogin:	PM: PB:
		92449	ontainer Preservative	<pre>ypes: (1) nitric acid, (2) s sodium bisulfate, (8) so</pre>	ydroxide, (D) TSP, (U) Ur Analwees																HOLDS PRESENT. (<72	cking #: 2,	s received via: 5X UPS Clien	e/Time·	115/19 1639	te/Time:	te/Time:
FA			0 10	* Preservative T	c) ammonium h	510	vnj¢	57	IPY 741	214D C	97	8										Lab Tra	Samples	Dat	- (0	Dat	Dat
ument	fields			ngineers in	icon (ected:] CT 🐞 ET	87 		n lce:	able):	ŋ.	Res # of Cl Ctns		20							/ None		Y N NA	- (Signaturo)	Har	: (Signature)	: (Signature)
Request Doc	mplete all relevent			itela (une) Si	Time Zone Colle [] PT[] MT [Ipliance Monitorin Yes 🐼 No	PWS ID #: Location Code:	iediately Packed or Yes [] No	I Filtered (if application of the second of	, Wastewater (WW or (V), Other (OT)	Composite End	ate Time		**						Blue Dn		:ned (<500 cpm):	ined hydromany	allow ,	eived bý/Company	eived by/Company
Analytical F	DOCUMENT - Col	ormation:		bur Khan	ction Info/Addres	County/City:		MQ	8-19 W	ay [] 5 Day Ana	und Water (GW), Bioassay (B), Vap	cted (or site Start) C	Time	1021							ice Used:	Material Used:	n sample(s) scree	~ Par	1631 3	Reo	Rec
CUSTODY	tody is a LEGAL	Billing Info	0	S Email To:	Site Coller	State: NC/	1	10 1 1 1	aquired; 10-14	ay [] Next D Day [] 4 Day te Charges Apply)	/ater (DW), Gro R), Tissue (TS), F	mp / Colle rab Compo	To Date	ICIAL L		à.	5	_	-		rds: Type of	Packing	Radchen	Date/fime.	Idistig	Date/Time:	Date/Time:
CHAIN-OF-	Chain-of-Cus	½ -	PL STIN	NC 2751		.* *	e/Facility ID #:	rchase Order #: lote #:	rnaround Date Re	Ish: []Same Di []2 Day 20 131 (Expedit	elow): Drinking V Nipe (WP), Air (A	Matrix * G	10	310						•	is / Possible Haza	7			0a	_	2
	Face Analytical	COMPANY: FAICON	1210-721N17	Report To CALY	Copy To:	Customer Project Name/Number:	Phone: 919730 0061 St	Collected By (print): Pu	Collected By (signature): Tu	Sample Disposal: Sample Disposal: Ru Dispose as appropriate [] Return [] Archive:	* Matrix Codes (Insert in Matrix box bi Product (P), Soil/Solid (SL), Oil (OL), V	Customer Sample ID	200	0000							Customer Remarks / Special Condition			Compared by (Compared (Circuit)	FAICON Phylor	Relinquished by/Company: Agnature Bo G	Retaquished by/Company: (Signature o

r List Pace Workorder Number or Here	LAB USE ONLY	roject Manager:	(4) sodium hydroxide. (5) zinc acetate, scorbic acid, (8) ammonium sulfate, いたすという	rofile/Line:	Sample Receipt Checklist:	stody seals Present intact 7 N NA stody Signatures Present LV NA lector Signature Present LV NA	rrect Bottles W. NA ficient Volume	A Regulated Solids Y N UN	ptes in Holding Time V N VA Strips: Strips: Strips:	d Acetate Strips:	ose owri: Sample # / Comments:		2 3 3	SY 30		Lab Sample Temperature Info:	Temp Blank Received: Y N NA Therm ID#: 9/1/005 Cooler 1 Temp Upon Receipt 6/1 oC	Cooler 1 Therm Corr. Factor: 0.1 oC Cooler 1 Corrected Temp: 0.0 oC	Comments:	Trip Blank Received: Y N NA HCL MeOH TSP Other	Non Conformance(s): Page:
LAB USE ONLY- Affix Workorder/Login Label Here or MTJL Log-in Number H	ALL SHADED AREAS are for	Container Preservative Type ** Lab Pr	 Preservative Types: (1) intric acid, (2) sulfuric acid, (3) hydrochloric acid, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) a (C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other 	Analyses Lab Pr	Str	100 Con		10 v	P/40 (S Lab					SHORT HOLDS PRESENT (<72 hours): Y N N/A	Lab Tracking #: 2409979	Samples received via: FEDEX UPS Client Courier Pace Courier	Date/Time: MTJL LAB USE ONLY	Date/Time: Template: Prelocin:	Date/Time: PM: PB: PB:
Y Analytical Request Document AL DOCUMENT - Complete all relevent fields	Information:		" Pour Khard telast avergineers	Countrolling	MODISUN INTE SOILE CONCECTED	Compliance Monitoring? [] Yes 🐼 No	DW PWS ID #: DW Location Code:	R-19 Threediately Packed on Ice:	Eledd Filtered (if applicable): Pay [] Yes [] No Y [] 5 Day Analysis: 8266	round Water (GW), Wastewater (WW), , Bioassay (B), Vapor (V), Other (OT)	lected (or Composite End Res # of Consiste Start)	Time Date Time	9 10-21			Ice Used: Wet Blue Dry None	, Material Used:	m sample(s) screened (<500 cpm): Y N NA	1639 Received by/Company: (Signature)	Received b//Company: (Signature)	Received by/Company: (Signature)
N-OF-CUSTOD	Billing	STIN	75B Email	Ctato.	SC	ID #:	der #:	Date Required:	Same Day [] Nex	nking Water (DW), G), Air (AR), Tissue (TS	Comp / Co Grab Com	1 International Plate				e Hazards: Type o	Packin	Radche	Date/Time:	Date/Time:	Date/Time:
Pace Analytical CHAII	COMPANY: FAICON	Address: 1210-TRINITY Rd:	REPORT TO'CE CARY NC 2 COPY TO:	Customer Droiect Name/Number-	CTROCK ANTERNATION.	Phone: 919730000 Site/Facility Email:	Collected By (print): Purchase Or C DU RKHARON Quote #:	Collected By (signature): Turnaround	Sample Disposal: Rush: Control of the state	* Matrix Codes (Insert in Matrix box below): Dri Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP)	Customer Sample ID Matrix *	1.5 1.5	200			Customer Remarks / Special Conditions / Possible			Relinquished by/Companyi (Signature)	Religquished by/Company: (Signature) a	Relequished by/Company: (Signature) 6

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2019-260)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 68 NCDOT PROJECT R-3833C

2785 CHARLOTTE HIGHWAY, MOORESVILLE, NC

September 6, 2019

Report prepared for:

Christopher J. Burkhardt, PWS Falcon Engineers 1210 Trinity Rd. #110 Raleigh, NC 27607

Prepared by:

Eric C. Cross, P.G. NC License #2181

Doug Canavello

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

503 INDUSTRIAL AVENUE, GREENSBORO, NC 27406 P: 336.335.3174 F: 336.691.0648 C257: GEOLOGY C1251: ENGINEERING

GEOPHYSICAL INVESTIGATION REPORT Parcel 68 - 2785 Charlotte Highway Mooresville, Iredell County, North Carolina

Table of Contents

Executive Summary	.1
Introduction	.2
Field Methodology	.2
Discussion of Results	.3
Discussion of EM Results	.3
Discussion of GPR Results	.4
Summary & Conclusions	.5
Limitations	.5

Figures

Figure 1 – Parcel 68 – Geophysical Survey Boundaries and Site Photographs
Figure 2 – Parcel 68 – EM61 Results Contour Map
Figure 3 – Parcel 68 – GPR Transect Locations and Images
Figure 4 – Parcel 68 – Overlay of Metal Detection Results on NCDOT Engineering Plans

LIST OF ACRONYMS

DFDual Frequency	
EMElectromagnetic	
GPRGround Penetrating Radar	
GPSGlobal Positioning System	
NCDOTNorth Carolina Department of Transportati	on
ROWRight-of-Way	
USTUnderground Storage Tank	

EXECUTIVE SUMMARY

Project Description: Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 68, located at 2785 Charlotte Highway in Mooresville, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-3833C). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from August 11-12, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of nine EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface. GPR was performed across areas containing significant metallic interference associated with vehicles, a reinforced concrete pipe, and known buried utility lines. No additional significant buried structures were identified. Collectively, the geophysical data <u>did not record any evidence of metallic USTs within the survey area at Parcel 68</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Falcon Engineers at Parcel 68, located at 2785 Charlotte Highway in Mooresville, NC. The survey was part of an NCDOT Right-of-Way (ROW) investigation (NCDOT Project R-3833C). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from August 11-12, 2019, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a strip mall surrounded by concrete, grass, and asphalt surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61-MK2 (EM61) metal detector integrated with a Geode External GPS/GLONASS receiver. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on August 12, 2019, using a Geophysical Survey Systems, Inc. (GSSI) SIR 4000 controller with a 350 MHz HS antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

Geophysical Surveys for Underground Storage Tank	S
on NCDOT Projects	

High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphal/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST. Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Known Buried Utilities	\checkmark
2	Vehicles	\checkmark
3	Light Pole	
4	Hydrant	
5	Sign	
6	Vehicles	✓
7	Drop Inlet	
8	Reinforced Concrete Pipe	\checkmark
9	Utilities	

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including vehicles, a light pole, a hydrant, a sign, a drop inlet, a reinforced concrete pipe, and utilities. EM Anomaly 1 was in the location of known buried utilities and was investigated to confirm that the anomaly was a result of these utilities. EM Anomalies 2 and 6 were associated with vehicles at the site and were investigated with GPR to confirm that the metallic interference associated with these vehicles did not obscure any significant buried structures such as USTs. EM Anomaly 8 was in the location of a suspected reinforced concrete pipe and was investigated with GPR to confirm that the reinforced concrete pipe and was investigated with GPR to confirm that the anomaly as a result of the reinforced concrete pipe.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property as well as the transect images. A total of four formal GPR transects were performed at the site.

GPR Transects 1 and 2 were performed across EM Anomalies 8 and 1, respectively. These transects confirmed the presence of a reinforced concrete pipe and known buried utilities and verified that the EM anomaly observed in this area is a result of this known utility.

GPR Transects 3 and 4 were performed across EM Anomalies 6 and 2, respectively. These transects confirmed that the metallic interference caused by the vehicles at the site did not obscure any significant buried structures such as USTs.

Collectively, the geophysical data <u>did not record any evidence of metallic USTs within the</u> <u>survey area at Parcel 68</u>. **Figure 4** provides an overlay of the metal detection results on the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 68 in Mooresville, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface.
- GPR was performed across areas containing significant metallic interference associated with vehicles, a reinforced concrete pipe, and known buried utility lines. No additional significant buried structures were identified.
- Collectively, the geophysical data <u>did not record any evidence of metallic USTs</u> within the survey area at Parcel 68.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Falcon Engineers in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately South)

View of Survey Area (Facing Approximately North)

Ν

EM61 METAL DETECTION RESULTS

NO EVIDENCE OF METALLIC USTs WAS OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM data were collected on August 11, 2019, using a Geonics EM61-MK2 instrument. Verification GPR data were collected using a GSSI SIR 4000 controller equipped with a 350 MHz HS antenna on August 12, 2019.

EM61 Metal Detection Response (millivolts)

IUUU	750	500	400	300	200	150	100	75	60	50	40	30	-90	-100	-200	-400	-5000

DATE	9/3/2019	CLIENT FALCON ENGINEERS
PYRAMID PROJECT #:	2019-260	FIGURE 2

LOCATIONS OF GPR TRANSECTS

GPR TRANSECT LOCATIONS AND IMAGES

503 INDUSTRIAL AVENUE GREENSBORO, NC 27406 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

MOORESVILLE, NORTH CAROLINA NCDOT PROJECT R-3833C

NORTH CAROLINA D Dry Cleaning Solvent Cle Inspection Report Date: 6/14/2018	IVISION OF WASTE MA eanup Act (DSCA) Compli	Facility Identification U.S. 2.50 Cleaners Facility ID: 490002C EPA Generator ID: CESQG County/FIPS: Iredell/097 DSCA Cleanup ID:			
	Facility Data		Compliance Data		
U.S. 2.50 Cleaners			Inspection Date: 6/14/2018		
2785 Charlotte Hwy, Ste 1	1		Time In: 08:00 AM Time Out: 08:55 AM		
Mooresville NC 28117			Inspectors: Aram Kim, Rachel Clarke		
Lat: 35.581111 Long: -	80.839444		Operating Status: OO/Operating		
SIC: 7216 / Dry Cleaning	Plants, Except Rugs	Compliance Codes: In Violation of MMP			
NAICS: 81232/ Dry Clean	ning and Laundry Services (except Coin-Operated) Action Code: 01/Inspection			
Date of Facility Establish	ment: 1/1/2000				
	Contact Data		Classification Data		
Facility Contact	Facility Owner	Property Owner	Service Type: Full Service (Active)		
Paul Lee	Paul Lee	Marathea Group LLC	Solvent: Perchloroethylene		
2785 Charlotte Hwy, Ste	2785 Charlotte Hwy, Ste	P.O. Box 26104	System: Dry-to-Dry		
11	11	Winston Salem, NC	Installation Date: 2000		
Mooresville, NC 28117	Mooresville, NC 28117	27114	Installation Category: New		
(704) 799-0059	(704) 799-0059		Consumption Category: Small		
	(704) 818-7615		HW Generator Status: CESQG		
Inspector's Signature:	Aram Kim	Comments: <i>NOV/NRE will be issued.</i>			
	,				

(I) **DIRECTIONS:** From the Mooresville Regional Office at 610 East Center Avenue in Mooresville, go west on East Center Avenue. Turn left onto S. Broad St./ NC-115. Turn right onto W. Wilson Ave. Turn right onto Charlotte Hwy / US-21. The dry cleaning facility is located on the right at 2785 Charlotte Hwy, in the Marathea Shopping Center.

(II) FACILITY HISTORY: U.S. 2.50 Cleaners was established in 2000 by Paul Lee. Mr. Lee sold the business to Mr. Nam Cho in 2007, who operated the plant until 2009 when he left the country. Mr. Lee took over the business again after Mr. Cho left. Mr. Lee owned another facility called U.S. 2.50 Cleaners, located at 7558 Hwy. 73, #101, in Denver, NC. This was a full service plant until Mr. Lee shut down the machine and operated the facility as a drop-off/pick-up store until it was closed permanently.

Solvent History:							
Solvent	Dates Used						
Perchloroethylene	2000 to Present						

Previous Inspections:

Date	Visit Type	Violation Type(s)	Worst Violation(s)	Action(s) Taken	Response Due	Received Date	Inspector
8/31/2016	Inspection	MMP,	Improper maintenance	NOVNRE	10/25/2016	N/A or	Aram
		NESHAP	of WWTU, NESHAP	sent on		Not Rec'd	Kim
			Procedural Violations,	10/4/2016			
			NESHAP				
			Recordkeeping				
			Violations, No				
			WWTU records				

8/31/2016	Inspection	MMP, NESHAP	Improper maintenance of WWTU, NESHAP Procedural Violations, NESHAP Recordkeeping Violations, No WWTU records	CHKLST sent on 8/31/2016	None	N/A or Not Rec'd	Aram Kim
12/8/2015	Inspection	MMP, NESHAP	Discharging vacuum pump condensate into floor drain, NESHAP Procedural Violations, NESHAP Recordkeeping	NOV sent on 12/10/2015 CHKLST sent on 12/8/2015	1/8/2016 None	1/12/2016 N/A or Not Rec'd	Aram Kim
2/25/2014	Inspection	MMP, NESHAP	Violations NESHAP Procedural Violations & Recordkeeping Violations, No WWTU records	CHKLST sent on 2/25/2014	3/18/2014	3/24/2014	Alicia Roh
6/7/2011	Initial Inspection	MMP, NESHAP	No spill cont. (waste, wwtu), No records on site	CHKLST sent on 6/7/2011 NOVNRE sent on 8/31/2011	6/21/2011 9/21/2011	6/20/2011 9/23/2011	Jason Gill
2/19/2008	Outreach Training Visit	MMP, NESHAP	No spill cont. (waste drum, wwtu), No records on site	CAL sent on 2/25/2008	3/17/2008	N/A or Not Rec'd	Alicia Roh

Complaints: None

DSCA Sampling: None

(III) FACILITY CLASSIFICATION:

NESHAP INSTALLATION CATEGORY – New: U.S. 2.50 Cleaners utilizes a 4th Generation dry-to-dry dry cleaning machine that was installed in 2000. Since the dry cleaning machine was installed after December 9, 1991, the dry cleaning machine is classified as a 'New' machine installation.

Dry Cleaning Equipment Summary										
No	Type of Machine	Gen	Manufacturer (Mfr)	Model #	Serial #	Mfr Date	Install Date	Solvent Used	Observed Operating?	
1	Dry-to-	4th	Firbimatic	Axial 50-	139F00106	2000	2000	Perchloroethylene	yes	
	Dry			plus						

Dry Cleaning	g Equipmen	t Summary
--------------	------------	-----------

NESHAP SOURCE CATEGORY - SMALL: U.S. 2.50 Cleaners is classified as a Small Area Source because it purchased less than 140 gallons of perc during the previous 12-month period. Based on a review of the receipts for the past year, U.S. 2.50 Cleaners purchased 30 gallons of perc from Phenix Supply Company in the last 12 months.

HAZARDOUS WASTE GENERATOR CATEGORY - CESQG: U.S. 2.50 Cleaners is classified as a Conditionally Exempt Small Quantity Generator (CESQG) because the facility has routinely generated less than 220 pounds of waste per month during the past 12 months, and stores less than 2,200 pounds of hazardous waste on site. U.S. 2.50 Cleaners has contracted with Safety Kleen (EPA ID# TXR000050930) to transport the facility-generated hazardous waste to a licensed Treatment Storage or Disposal (TSD) facility. The most recent hazardous waste generated was transported to Safety Kleen in Charlotte, NC (EPA ID# NCD079060059). Three years of hazardous waste manifests were not on site and available for review. The last waste pickup occurred on September 21, 2012, when a total of 450 pounds of hazardous waste were transported off site (Liquid & Filters waste). One partially full 15-gallon drum of hazardous waste was observed on site at the time of the inspection (approx. 80 lbs). The facility utilizes an onsite wastewater treatment unit (WWTU) to dispose of facility-generated contact water.

(IV) INSPECTION SUMMARY: On June 14, 2018, Aram Kim and Rachel Clarke, Compliance Inspectors, with the North Carolina Division of Waste Management, Dry Cleaning Solvent Cleanup Act (DSCA) Program conducted a Compliance Inspection at U.S. 2.50 Cleaners. The inspectors met with Mr. Paul Lee, store owner, who provided the inspectors access to the facility's equipment and available records.

The facility continues to use the same dry cleaning machine that was observed during previous inspections. Mr. Lee stated that the machine is operated only 2-3 loads per week, and wet-cleans mostly. Mr. Lee said that he usually operates the machine on Tuesday and Wednesday, but he does not have specific schedule to operate the machine. The machine was observed in operation at the time of the inspection. No vapor leaks were discovered with the inspector's halogen leak detector. Mr. Lee showed his halogen detector that he uses at least once a month for required leak detection inspections. Separator water was collected in a container that was stored within the machine spill pan. About a cup of separator water was observed and Mr. Lee estimated that about 0.5 gallon or less separator water is generated per month.

The vacuum pump is located in the boiler room. No pump condensate was observed at the time of the inspection and Mr. Lee said that almost nothing comes out from the vacuum pump.

Facility generated contact water is treated in the onsite wastewater treatment unit (WWTU) manufactured by Galaxy. The WWTU is stored within spill containment and the misting nozzle is mounted on the rear exterior wall of the facility. Mr. Lee stated that he changes the filters on the WWTU every 12 months. However, the inspector observed the date of filter change, 9/15/16, on the secondary filter of the Galaxy mister and asked Mr. Lee if he changed filters on the WWTU after 9/15/16. Mr. Lee said that he does not recall if he did change filter after 9/15/16 or not. Ms. Kim told the owner to go ahead and change filters on the WWTU since 9/15/16 could be the most recent filter change which was over a year ago. The operation manual was kept on site. The misting nozzles were mounted on the exterior wall of the building in a visible location. Ms. Kim recommended Mr. Lee to not operate the WWTU until he changes the filters.

The hazardous waste drum (15-gallon, about 2/3 full) is stored next to the dry cleaning machine without spill containment. The inspector told the owner that any drums containing liquid waste should be stored within adequate spill containment. Mr. Lee apologized said that he will ask his son to help moving the waste drum onto spill containment as soon as possible. The only type of spotting agent used on site is POG. No spotting agents containing PCE or TCE are used on site.

Five years of perc purchase receipts were kept on site available for review. However, the owner was not able to locate the waste disposal manifest. Ms. Kim told the owner to contact his waste hauler to obtain the waste pickup records. The inspectors reminded Mr. Lee that three years of waste disposal manifests should be maintained on site. DSCA Compliance Calendars were maintained on site with required recordkeeping completed.

Emergency spill cleanup material was stored on site. Emergency information form was completed and posted on site.

The following is a summary of U.S. 2.50 Cleaners' compliance with respect to the DSCA Required Minimum Management Practices provided in 15A NCAC 02S.0202, National Emission Standards for Hazardous Air Pollutants (NESHAP) found in 40 CFR Part 63 Subpart M and Resource Conservation, and Recovery Act (RCRA) referenced in 40 CFR part 261.5 and 262.

MMP VIOLATIONS - 15A NCAC 02S.0202

- 1. Wastewater treatment equipment was not operated in accordance with the manufacturer's specifications, which allowed water containing dry-cleaning solvent to be discharged into the environment.
- 2. A complete three year history of dry-cleaning solvent waste disposal invoices was not made available to the Department.

- 3. Spill containment was not installed under and around the waste solvent storage containers.
- 4. Emergency spill clean-up materials were not available at the time of the inspection.

NESHAP VIOLATIONS - 40 CFR Part 63 Subpart M

None

RCRA VIOLATIONS - Hazardous Waste Regulations: 40 CFR Part 262.34

None

(V) CONCLUSIONS: Based on observations documented by the DSCA Inspectors during the June 14, 2018 inspection, U.S. 2.50 Cleaners is currently in violation of the following regulations:

MMPs - 15A NCAC 02S.0202

- (b)(1) Failure to prevent solvent waste from discharging into the environment. [15 NCAC 0202 (b)(1)].
- (b)(1) Failure to maintain complete and current invoices for waste disposal [15A NCAC 02S.0202(b)(1)]. Waste manifests are required to be kept on site for three years and available for review.
- (b)(2) Failure to maintain spill containment under and around the waste solvent storage area by January 1, 2002 [15 NCAC 0202 (b)(2)]. Spill containment shall have a volumetric capacity of 110 percent of the largest vessel, tank, or container within the spill containment area and shall be capable of preventing the release of the applicable dry cleaning solvent beyond the spill containment area for a period of at least 72 hours.

(b)(2) Failure to maintain emergency absorbent spill cleanup materials on site. [15 NCAC 0202 (b)(2)].

NESHAP - 40 CFR Part 63 Subpart M

None

RCRA- Hazardous Waste Regulations: 40 CFR Part 261 - 262

None

(VI) ENFORCEMENT HISTORY (Penalties): None

(VII) **RECOMMENDATIONS:** A DSCA Compliance Program Checklist (#02697) was issued to Mr. Paul Lee, owner of U.S. 2.50 Cleaners, indicating the compliance issues to be addressed. A Notice of Violation (NOV)/Notice of Recommendation for Enforcement (NRE) will be issued to Mr. Paul Lee for the violations observed during the inspection. DSCA Supervisors will determine if enforcement and civil penalties are warranted after reviewing a written response from U.S. 2.50 Cleaners. A follow-up inspection should be conducted by June 14, 2019 to confirm compliance.

Christopher Burkhardt

From:	Chapman, Al <al.chapman@ncdenr.gov></al.chapman@ncdenr.gov>
Sent:	Monday, December 10, 2018 7:48 AM
То:	Christopher Burkhardt
Subject:	RE: [External] Request for File Review: 2.50 Cleaners 2785 Charlotte Highway
Attachments:	20180614US250Clnrs_RPT.pdf

Mr. Burkhardt,

This dry-cleaner facility has not been identified as a possible solvent release site to date. The facility has been inspected by DSCA Compliance Group from 2010 to 2018. See the attached latest compliance inspection report Dated June 14, 2018. This inspection report does not mean that a release has or has not occurred, just no information has been submitted to NCDEQ that a release has occurred. Let me know if you need additional information.

Al Chapman

Al Chapman, P.G. (NC & GA) Hydrogeologist – Project Manager North Carolina Department of Environmental Quality 919.707.8602 (Office) 919.707.8368 (Fax) Al.Chapman@ncdenr.gov

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Christopher Burkhardt <cburkhardt@falconengineers.com>
Sent: Friday, December 07, 2018 4:20 PM
To: Chapman, Al <al.chapman@ncdenr.gov>
Subject: [External] Request for File Review: 2.50 Cleaners 2785 Charlotte Highway

CAUTION: External email. Do not click links or open attachments unless verified. Send all suspicious email as an attachment to <u>Report Spam.</u>

Good Afternoon Al,

I am trying to find out more information about a delisted Cleaners located at 2785 Charlotte Highway Mooresville. It is not mapped in the GIS database or a database that reports spills the only information I have on it is below. DOT is considering roadway improvements near this address and I am wondering if there has ever been a release or even active on-site cleaning (perhaps it was a coin operated laundry and not a dry cleaners?).

Any info you can provide would be helpful thanks.

U.S. 2.50 Cleaners 2785 Charlotte Hwy, Ste 11 Mooresville NC Facility ID: 490002C File Type: List of Drycleaner Compliance Inspection Visits During 2016 County: Iredell Original Source: DRYC Record Date: 31-DEC-2016 Registry ID: 110016687110 FIPS Code: 37097 Program Acronyms: AIRS/AFS, NC-FITS

Christopher J. Burkhardt, PWS Environmental Services Manager

Falcon Engineers 919-730-0064 <u>cburkhardt@falconengineers.com</u> <u>www.falconengineers.com</u>