

May 31, 2018

Kleinfelder File No. 20183507.001A

Mr. Gordon Box, LG North Carolina Department of Transportation 1589 Mail Service Center Raleigh, North Carolina 27699-1589

Subject: Preliminary Site Assessment Report

Parcel 114, Edna M. Dickens

WBS Element No. 38887.1.1, TIP No. R-3830

NC 42 from US 421 to SR 1579 (Main Street) in Sanford and

along SR 1579 from NC 42 to SR 1538 (Buckhorn Avenue) in Broadway

Lee County, North Carolina

Dear Mr. Box:

Kleinfelder is pleased to provide its report detailing the activities conducted as part of the preliminary site assessment for the subject project.

Kleinfelder appreciates the opportunity to be of service to you. Should you have questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely,

KLEINFELDER, INC.

Joseph C. Hollinger Staff Professional II

Michael J Burns, LG Program Manager

JCH/MJB:cas

PRELIMINARY SITE ASSESSMENT REPORT PARCEL 114, EDNA M. DICKENS PIN 9672-13-1884 1831 BROADWAY ROAD SANFORD, LEE COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 38887.1.1 STATE PROJECT R-3830 NC42 FROM US 421 TO SR 1579 (MAIN STREET) IN SANFORD AND ALONG SR 1579 FROM NC 42 TO SR 1538 (BUCKHORN AVENUE) IN BROADWAY

KLEINFELDER PROJECT NO. 20183507.001A

MAY 31, 2018

Copyright 2018 Kleinfelder All Rights Reserved

ONLY THE CLIENT OR ITS DESIGNATED REPRESENTATIVES MAY USE THIS DOCUMENT AND ONLY FOR THE SPECIFIC PROJECT FOR WHICH THIS REPORT WAS PREPARED.

A Report Prepared for:

Gordon Box, LG North Carolina Department of Transportation 1589 Mail Service Center Raleigh, North Carolina 27699-1589

PRELIMINARY SITE ASSESSMENT REPORT PARCEL 114, EDNA M. DICKENS PIN 9672-13-1884 1831 BROADWAY ROAD SANFORD, LEE COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 38887.1.1 STATE PROJECT R-3830 NC 42 FROM US 421 TO SR 1579 (MAIN STREET) IN SANFORD AND ALONG SR 1579 FROM NC 42 TO SR 1538 (BUCKHORN AVENUE) IN BROADWAY

Prepared by:

Joseph C. Hollinger

Environmental Scientist

ough C Hollinger

Reviewed by:

Michael J. Burns, PG

Environmental Program Manager

KLEINFELDER

3200 Gateway Centre Blvd. | Suite 100 Raleigh, North Carolina 27560 P | 919.755.5011

May 31, 2018

Kleinfelder Project No. 20183507.001A

PRELIMINARY SITE ASSESSMENT

Site Name and Location:

Parcel 114

1831 Broadway Road

Sanford, Lee County, North Carolina

Latitude and Longitude:

35.463827°N, -79.096863°W

County PIN

9672-13-1884

Facility ID Number:

0-02683

LUST ID Number:

14425

State Project No.:

R-3830

NCDOT Project No.:

NCDOT WBS Element 38887.1.1

Description:

NC 42 from US 421 to SR 1579 (Main Street) in Sanford and along SR 1579 from NC 42 to SR

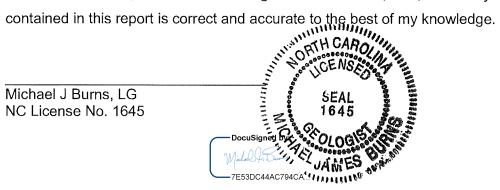
1538 (Buckhorn Avenue) in Broadway

Date of Report:

May 31,2018

Consultant:

Kleinfelder, Inc.


3200 Gateway Center Boulevard | Suite 100

Morrisville, North Carolina 27560 Corporate Geology License No. C-521

Corporate Licensure for Engineering F-1312

SEAL AND SIGNATURE OF CERTIFYING LICENSED GEOLOGIST

I, Michael J Burns, a Licensed Geologist for Kleinfelder, Inc., do certify that the information

TABLE OF CONTENTS

1	INTR	ODUCTION	. 1
	1.1 1.2	SITE DESCRIPTION	
2	HISTO	ORY	. 3
	2.1 2.2 2.3	PARCEL USAGEFACILITY ID NUMBERSGROUNDWATER INCIDENT NUMBERS	. 3
3	OBSE	ERVATIONS	. 5
	3.1 3.2 3.3	GROUNDWATER MONITORING WELLS	. 5
4	METH	10DS	. 6
	4.1 4.2 4.3 4.4 4.5 4.6	PROPERTY OWNER CONTACTS HEALTH AND SAFETY GEOPHYSICAL INVESTIGATION SOIL ASSESSMENT SOIL ANALYSIS GROUNDWATER ANALYSIS	. 6 . 6 . 6
5	RESU	JLTS	10
	5.1 5.2 5.3 5.4 5.5	GEOPHYSICAL INVESTIGATIONSOIL SAMPLING DATASAMPLE OBSERVATIONSQUANTITY CALCULATIONSGROUNDWATER ANALYTICAL RESULTS	10 11 11
6	CON	CLUSIONS	12
7	RECO	OMMENDATIONS	13
8	LIMIT	TATIONS	14

TABLES

- 1 Soil Sample Screening Results
- 2 Soil Sample Analytical Summary
- 3 Temporary Monitoring Well Construction Information
- 4 Groundwater Analytical Results

FIGURES

- 1 Site Location Map
- 2 Soil Boring Locations
- 3 Monitoring Well Locations
- 4 Soil Sample Analytical Results
- 5 Groundwater Analytical Results

APPENDICES

- A Site Photographs B NCDEQ Reports
- C Geophysical Survey Report
- D Boring Logs
- E Analytical Reports and Graphs

PRELIMINARY SITE ASSESSMENT REPORT PARCEL 114, EDNA M. DICKENS PIN 9672-13-1884 1831 BROADWAY ROAD SANFORD, LEE COUNTY, NORTH CAROLINA

NCDOT WBS ELEMENT 38887.1.1 STATE PROJECT R-3830 NC 42 FROM US 421 TO SR 1579 (MAIN STREET) IN SANFORD AND ALONG SR 1579 FROM NC 42 TO SR 1538 (BUCKHORN AVENUE) IN BROADWAY

1 INTRODUCTION

Kleinfelder, Inc. (Kleinfelder) has prepared this Preliminary Site Assessment (PSA) report to document assessment activities performed within the proposed/existing right of way (ROW) and/or temporary construction easement on Parcel 114 (the assessment area is hereafter referred to as the "Project Study Area"). Parcel 114 is currently occupied by a vacant gasoline service station, adjoining the intersection of Broadway Road and Avents Ferry Road in Sanford, Lee County, North Carolina (Figure 1).

Based on information provided in Kleinfelder's September 2014 Hazardous Material Investigation Report and information provided by the North Carolina Department of Transportation (NCDOT), the parcel is the site of a former gasoline service station (First and Last Stop Broadway) with a former underground storage tank (UST) registration (Facility ID# 0-02683). The parcel is also the location of a leaking underground storage tank (LUST) incident with ID #14425. As such, the purpose of the PSA was to evaluate whether USTs or contaminated soil/groundwater are present in the Project Study Area that may result in increased project costs and future liability if acquired by the NCDOT.

1.1 SITE DESCRIPTION

Parcel 114 is owned by Edna M. Dickens and has a street address of 1831 Broadway Road. Parcel 114 is bounded by a pond and an automotive garage to the north; agricultural land to the west; Avents Ferry Road to the east, beyond which are residential properties; and Broadway Road to the south, beyond which is wooded land and wetlands. The parcel is currently the location of a vacant structure, formerly utilized as a gasoline service station. A piped stream appears to be present on the parcel to the west of the onsite structure, flowing from the pond in the north to the wetlands to the south. Photographs of the Project Study Area are provided in Appendix A.

1.2 SCOPE OF WORK

Kleinfelder conducted this PSA in accordance with the NCDOT's January 12, 2018, Request for Technical and Cost Proposal (RFP) and Kleinfelder's January 24, 2018, Technical and Cost Proposal. The NCDOT granted Notice to Proceed for the project on February 1, 2018.

2 HISTORY

2.1 PARCEL USAGE

The September 2014 Hazardous Materials Report included information about environmental databases searched and historical review information for Parcel 114. The parcel was indicated to be the location of a former gasoline service station denoted First and Last Stop. The structure and petroleum dispensers were present in during the 2014 reconnaissance; however, the Parcel was unused. The gasoline service station previously maintained 3 gasoline USTs (1 8,000-gallon, and 2, 4,000-gallon) and is the listed location of leaking UST (LUST) incident #14425. There were no other environmental database listings identified for Parcel 114 that would suggest the presence of contaminated soil or groundwater.

Kleinfelder conducted additional historical research to determine whether additional environmental listings were identified since 2014 for Parcel 1144. The following are the results of the additional research:

- Kleinfelder searched the registered UST database, maintained by the North Carolina Department of Environmental Quality (NCDEQ). The parcel was identified as the former Pantry #115, with facility ID #0-02683.
- Kleinfelder searched the LUST database, maintained by the NCDEQ. The parcel is identified in the LUST database as the location of incident ID #14425. Kleinfelder obtained the UST Closure Report for the incident from the NCDEQ.
- Based on a review of aerial photographs and site observations, there does not appear to have been a significant change in the use of the parcel since the hazardous materials assessment conduced in 2014.

2.2 FACILITY ID NUMBERS

Kleinfelder reviewed the NCDEQ UST database for Parcel 114. The parcel previously maintained 1 8,000-gallon gasoline USTs and 2 4,000-gallon gasoline USTs of single-walled steel construction, which were installed in 1964 and closed by removal in 1993. No active USTs appear to be listed for the Parcel.

2.3 GROUNDWATER INCIDENT NUMBERS

Parcel 114 was listed as the location of a LUST incident with ID# 14445. Kleinfelder obtained the file for this incident from the NCDEQ. Reports prepared for this incident are included in Appendix B. According to the acquired reports, soil and groundwater contamination was identified in 1993 when 1, 8,000-gallon and 2, 4,000-gallon gasoline USTs were removed from the parcel, as well as a 550-gallon heating oil UST. 181.5 tons of contaminated soil was excavated at the time of UST closure. Soil and groundwater contamination was identified primarily to the south of the onsite structure.

In 2002, approximately 340 tons of contaminated soils were removed from the Parcel in the area to the south of the structure. Soils were removed to a depth of seven to eight feet, where a clay layer was encountered. Confirmation samples indicated no soil contamination above the soil-to-water MSCCs or residential cleanup levels.

A total of nine shallow monitoring wells and one deep monitoring well previously existed on the parcel, including two located across the road to the south, just north of a wetland. Groundwater sampling events appear to have occurred periodically between 1996 and 2003. Benzene, ethylbenzene, and naphthalene in excess of the NC 2L Standards were detected. In 2003, the site was re-ranked low risk after a nearby water supply well was abandoned. The incident was closed out with a Land Use Restriction (LUR) for groundwater and the onsite monitoring wells were abandoned.

The Parcel was also listed in the LUST database as the location of incident #15977; however, a review of this listing identified it to be a duplicate listing incident #14425. There were no other database LUST or IHSB) listings identified for Parcel 114 that indicated known soil or groundwater incidents.

3 OBSERVATIONS

3.1 GROUNDWATER MONITORING WELLS

No groundwater monitoring wells were observed within the Project Study Area during the multiple site visits conducted as part of the PSA. According to NCDEQ reports, monitoring well were previously present on the parcel but have been abandoned.

3.2 ACTIVE USTS

No active USTs were observed within the Project Study Area during the multiple site visits conducted as part of the PSA.

3.3 OTHER FEATURES APPARENT BEYOND PROJECT STUDY AREA

A former dispenser island is located approximately 5 feet to the north of the Project Study Area along Broadway Road. According to NCDEQ reports, these were gasoline dispensers. A 550-gallon aboveground storage tank (AST) and dispenser is located to the west of the onsite structure, approximately 20 feet to the north of the Project Study Area. According to the NCDEQ reports, this was formerly utilized for kerosene.

No other features were observed beyond the Project Study Area that indicated evidence of potential contamination on Parcel 114.

4 METHODS

4.1 PROPERTY OWNER CONTACTS

As part of Kleinfelder's scope of work, the listed property owner was contacted about the work schedule for the field work and the type of work being performed. The owner requested that the work be performed on a Thursday. The owner did not express any other concerns or special conditions associated with the work being performed.

4.2 HEALTH AND SAFETY

Prior to commencing the field work, Kleinfelder personnel developed a Site-Specific Health and Safety Plan (HASP) covering activities to be performed. The site specific HASP was discussed with all Kleinfelder personnel involved with the project and at a daily onsite "tail gate" safety meetings with subcontractors and sub consultants. In addition to the HASP, Kleinfelder utilized its comprehensive Corporate Health and Safety Program, targeted to address those specific and critical tasks that involve Kleinfelder personnel and subcontractors. The Loss Prevention System (LPS™), a behavior-based program, is Kleinfelder's company-wide safety system implemented and embraced by all levels of the company.

4.3 GEOPHYSICAL INVESTIGATION

Pyramid Environmental & Engineering, P.C (Pyramid) conducted a geophysical investigation in the Project Study Area between February 12 through 21, 2018. Pyramid utilized electromagnetic (EM) induction technology and ground penetrating radar (GPR) to locate potential geophysical anomalies and potential USTs within the Project Study Area.

A copy of the Pyramid Geophysical Investigation Report, detailing the field methodology, is included in Appendix C. The EM and GPR surveys did not detect USTs or unknown geophysical anomalies within the Project Study Area.

4.4 SOIL ASSESSMENT

The scope of work for the soil assessment was to evaluate the presence of soil contamination within the Project Study Area. The soil borings were planned to be advanced to maximum depths of 10 feet below the ground surface unless groundwater was encountered. Field screening using a Flame ionization detector (FID) was to be conducted at 1 foot intervals beginning at 0 foot to 1

foot. The soil sample with the highest FID reading above background or the sample from the deepest proposed cut would be selected for on-site laboratory analyses.

Prior to the drilling activities, public utilities were marked by NC One Call and private utilities were marked by Pyramid.

Kleinfelder subcontracted Quantex, Inc. (Quantex) to perform the drilling onsite on March 20, 2018. Prior to the initial boring and after each subsequent boring, the sampling equipment was decontaminated. Quantex advanced a total of seven soil borings (SS1 through SS7) by hand auger to 3 feet below the ground surface (bgs) and by direct-push technology from 3 feet to boring termination (10 feet bgs) at locations specified by Kleinfelder. The soil boring locations were identified in the field using a GPS. The soil boring locations are shown on Figure 2. The borings were located within the proposed public utility easement along Broadway Road and Avents Ferry Road. Soil samples were collected by hand auger and driving Macro Core™ samplers in 5 foot intervals. Each soil core was cut open and the soil samples were classified and the soil divided into 1-foot sections. Soil observed were not consistent across the parcel, and is likely related to the removal of the USTs and contaminated soils associated with the former gasoline service station. Each 1-foot section was screened in the field using a FID. The FID readings are summarized in Table 1. Copies of the boring logs are included in Appendix D.

Soil borings SS1, SS2, SS3, SS4, and SS5 were installed in the Project Study Area along the southern parcel boundary. Soils in this area appear to have been disturbed. According to NCDEQ reports the areas where SS4 and SS5 were installed are within the limits of the 2002 soil excavation. In the disturbed areas soils were determined to be silty sand and coarse grained sand and groundwater was encountered between 5 and 6 feet below existing grade.

Soil borings SS6 and SS7 were installed to the north and east of the onsite structure. Soils were determined to be primarily coarse grained sand in the top 1 to 3 feet with an underlying sandy clay, and did not appear to be disturbed. Groundwater was not encountered in the borings installed off of Avents Ferry Road at the termination depth of 10 feet bgs.

4.5 SOIL ANALYSIS

The FID readings from the top 5 feet in soil borings SS1, SS2, SS6, and SS7 were noted to be low. Based on the FID data, samples were collected at the depth of the highest FID readings

and/or above the water table. Based on onsite laboratory results additional samples from SS6 were selected for analysis FID data and samples selected for analysis are detailed in Table 1.

The FID reading from soil boring SS3, SS4, and SS5 were noted to be slightly elevated. Based on the FID data, samples were collected at the depth of the highest FID readings and/or above the water table. Based on onsite laboratory results additional samples from SS6 were selected for analysis FID data and samples selected for analysis are detailed in Table 1.

The samples were analyzed by Kleinfelder utilizing ultraviolet fluorescence (UVF) methodology to provide real-time analytical results of Total Petroleum Hydrocarbons (TPH), Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and benzene, toluene, ethylbenzene, and total xylenes (BTEX). The UVF method was selected because of the use of petroleum products on Parcel 114 in the past. The UVF analysis also provided data regarding Environmental Protection Agency 16 total Polycyclic Aromatic Hydrocarbons (PAHs), and Benzo(a)pyrene (BaP).

Based on a review of analytical data, Kleinfelder returned to the parcel on April 20, 2018 to advance an additional four soil borings to a maximum depth of 3 feet in the vicinity of SS6. Kleinfelder advanced soil borings to the north (SS8), east (SS9), south (SS10), and west (SS11). Samples were collected from 2 and 3 feet bgs, placed in laboratory prepared containers and submitted under proper chain of custody to Pace Analytical in Huntersville, North Carolina for analysis for TPH DRO.

4.6 GROUNDWATER ANALYSIS

Groundwater was encountered at between 5 and 6 feet in soil borings SS1, SS2, SS3, SS4, and, SS5. Soil from within the water table in borings SS2, SS3, SS4, and SS5 was noted to have strong petroleum odors. Soil from within the water table was screened with the FID and reading were noted to be elevated.

Based on observed conditions and a review of the NCDEQ reports of the former LUST incident on the Site, Kleinfelder converted soil boring SS2 into temporary monitoring well TMW-1. SS2 was located closest to the area of maximum cut and had the highest FID reading within the water table. Kleinfelder also converted soil boring SS4 into temporary monitoring well TMW-2, since SS4 was located in an area where groundwater contamination had historically been the highest.

Both wells were installed to a total depth of 10 feet bgs, with screen form 5 to 10 feet and a PVC riser from 5 feet to ground surface. Each well was purged and sampled using a new, disposable 1-inch polyethylene bailer. Samples were collected in laboratory prepared containers and submitted under chain of custody to Pace Analytical in Huntersville, North Carolina for analysis by EPA Method 6200B for volatile organic compounds, and EPA Method 625 for semi-volatile organic compounds (SVOCs).

Once samples were collected the wells were pulled and the soil borings filled in with bentonite chips to the ground surface.

5 RESULTS

5.1 GEOPHYSICAL INVESTIGATION

Pyramid concluded that the EM and GPR investigation did not identify any evidence of unknown metallic UST(s) or unknown geophysical anomalies within the project study area.

5.2 SOIL SAMPLING DATA

UVF analysis of soil samples indicated levels of TPH DRO in soil samples below the state action limit of 100 mg/kg in soil samples SS1-2 [1.2 milligrams per kilogram (mg/kg)], SS1-4-5 (2.1 mg/kg), SS2-3 (4.8 mg/kg), SS2-4-5 (0.73 mg/kg), SS3-3 (0.26 mg/kg), SS3-4-5 (1.6 mg/kg), SS4-1 (3.6 mg/kg), SS4-4-5 (11 mg/kg), SS5-2 (15.7 mg/kg), and SS5-4-5 (11.5 mg/kg). UVF analysis indicated levels of TPH DRO in soil samples in excess of the NCDEQ action limit of 100 mg/kg in SS6-1 (172.5 (mg/kg) and SS6-2 (104.6 mg/kg).

Soil samples collected on April 20 from 2 and 3 feet bgs in soil borings SS8, SS10, and SS11, and the soil sample from 3 feet in SS9 did not contain TPH DRO in excess of the method detection limit. A DRO of 6.7 mg/kg was reported in SS9-2.

UVF analysis of soil samples indicated levels of TPH GRO in soil samples below the state action limit of 50 mg/kg in soil samples SS1-2 (3.2 mg/kg) and SS7-9 (5.8 mg/kg).

UVF analysis of the soil samples indicated levels of total BTEX in soil samples SS1-2 (3.2 mg/kg).

UVF analysis of the soil samples indicated levels of total PAHs in soil sample SS1-1 (0.03 mg/kg), SS1-4-5 (0.06 mg/kg), SS2-3 (0.26 mg/kg), SS2-4-5 (0.04 mg/kg), SS3-4-5 (0.03 mg/kg), SS4-1 (0.06 mg/kg), SS4-4-5 (0.22 mg/kg), SS5-2 (0.86 mg/kg), SS5-4-5 (0.59 mg/kg), SS6-1 (0.75 (mg/kg)), and SS6-2 (0.43 mg/kg).

UVF analysis of the soil samples did not detect BaP in any of the sample analyzed.

Based on analytical results, shallow petroleum impacted soils (1 to 2 feet) were identified on the parcel in the vicinity of SS6. The UVF analysis indicated a strong match for waste oil. The source of the potential waste oil is unknown. A summary of the analytical results are provided on Table 2 and on Figure 4. The laboratory report and graphs are included in Appendix E.

KLEINFELDER Bright People. Right Solutions.

5.3 SAMPLE OBSERVATIONS

Soils were observed for any obvious evidence of contamination. Staining was noted in samples from 1 and 2 feet in SS6, but no petroleum odor was noted. No obvious evidence of soil contamination was noted in other borings on the parcel.

5.4 QUANTITY CALCULATIONS

Petroleum impacted soils that may require additional assessment or remediation were detected within the Project Study Area along Avents Ferry Road.

The impacted area appears to be approximately 8 feet wide by 10 feet long. Using a uniform depth of 2 feet (from approximately 0.5 to 2.5 feet bgs), the volume of DRO contaminated soil that may be encountered in the vicinity of SS6 is about 6 cubic yards.

5.5 GROUNDWATER ANALYTICAL RESULTS

Analytical results from TMW-1 identified benzene contamination above the NC 2L Standards. Benzene was detected at 1.4 parts per billion (ppb), above the NC 2L Standard of 1.0 ppb.

Analytical results from TMW-2 identified benzene (3.8 ppb), 1,2-Dichloroethane (0.41 ppb), and naphthalene (63.9 ppb) above the NC 2L Standard. Benzo(a)pyrene (8.8 ppb) was identified above both the NC 2L Standard and the Gross Contamination Levels (GCLs).

Complete Analytical results are included in Table 4. The Pace Analytical Laboratory Report is included in Appendix E.

6 CONCLUSIONS

Based on results of the EM/GPR survey, soil assessment and field observations, Kleinfelder has reached the following conclusions:

- The GPR and EM investigation did not identify any features determined to be potential USTs or unknown geophysical anomalies within the Project Study Area.
- Historical research indicated that the parcel previously maintained 1 8,000-gallon and 2 4,000-gallon gasoline USTs, as well as a 550-gallon heating oil UST. A release was discovered during UST removal in 1993.
- The parcel is the location of LUST incident #14425. Approximately 360 tons of contaminated soils were removed from the Parcel in 2002. The incident was closed out in 2003 with a LUR for groundwater.
- Field observations of Parcel 114, beyond the Project Study Area identified structures and features associated with the former use of the Parcel as a gasoline service station.
 Dispenser islands and a 550-gallon kerosene UST remain present on the Parcel beyond the Project Study Area. The Parcel is not currently utilized for a specific purpose.
- Based on laboratory analytical results, an area of DRO impacted soils was detected within the Project Study Area. Onsite laboratory analysis indicated that the contamination profile matches waste oil. Up to seven cubic yards of contaminated soils may be present between 0.5 and 2.5 feet.
- Groundwater was encountered in 5 soil borings between 5 and 6 feet bgs.
- Petroleum contamination above the NC 2L Standard was identified in 2 temporary monitoring wells installed in the Project Study Area.

7 RECOMMENDATIONS

Based on results of this Preliminary Site Assessment, Kleinfelder recommends that construction workers be made aware of the contaminated soils and groundwater within the Project Study Area on Parcel 114 in Sanford, Lee County, North Carolina. If encountered during construction, special handling of the soils and groundwater would be necessary.

8 LIMITATIONS

Kleinfelder's work will be performed in a manner consistent with that level of care and skill ordinarily exercised by other members of its profession practicing in the same locality, under similar conditions and at the date the services are provided. Kleinfelder's conclusions, opinions and recommendations will be based on a limited number of observations and data. It is possible that conditions could vary between or beyond the data evaluated. Kleinfelder makes no guarantee or warranty, express or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. It should be recognized that definition and evaluation of geologic and environmental conditions are a difficult and inexact science. Judgments leading to conclusions and recommendations are generally made with incomplete knowledge of the subsurface conditions present due to the limitations of data from field studies. Although risk can never be eliminated, more-detailed and extensive studies yield more information, which may help understand and manage the level of risk. Since detailed study and analysis involves greater expense, Kleinfelder's clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies, including subsurface studies or field tests, should be performed to reduce uncertainties. Acceptance of this report will indicate that NCDOT has reviewed the document and determined that it does not need or want a greater level of service than provided.

During the course of the performance of Kleinfelder's services, hazardous materials may have been discovered. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury that results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials. Nothing contained in this report should be construed or interpreted as requiring Kleinfelder to assume the status of an owner, operator, or generator, or person who arranges for disposal, transport, storage or treatment of hazardous materials within the meaning of any governmental statute, regulation or order. NCDOT is solely responsible for directing notification of all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials observed at the project site, either before or during performance of

Kleinfelder's services. NCDOT is responsible for directing all arrangements to lawfully store, treat, recycle, dispose, or otherwise handle hazardous materials, including cuttings and samples resulting from Kleinfelder's services.

TABLES

Table 1: Soil Sample Screening Results

Date	Sample ID	Depth (ft)	FID Reading	Notes
240	Campio ib	1	1.60	Analyzed by UVF
		2	0.81	
		3	0.93	
		4	1.39	Analyzed by UVF
0/00/0040	D 0000 D444 004	5	1.72	Analyzed by UVF
3/20/2018	R-3830-P114-SS1	6		j
		7		
		8	NA	Wet
		9		
		10		
		1	1.48	
		2	4.97	
		3	8.98	Analyzed by UVF
3/20/2018	R-3830-P114-SS2	4-5	3.07	Analyzed by UVF
3/20/2016	11-3030-1 114-332	6-10 1100.00 1 14.40	Wet	
		2		
		3	19.56	Analyzed by UVF
3/20/2018	D 0000 D444 000	4-5	39.08	Analyzed by UVF
3/20/2010	R-3830-P114-SS3	6-10	31.86	Wet
		1	20.78	Analyzed by UVF
		2	14.08	
		3	6.72	
3/20/2018	R-3830-P114-SS4	4-5	6.34	Analyzed by UVF
3/20/2018	11-3030-1 114-334	6-10	514.00	Wet

¹⁾ FID = Flame Ionization Detector2) FID readings in parts per million (ppm)

Table 1 (continued): Soil Sample Screening Results

Date	: Soil Sample Screenin Sample ID	Depth (ft)	FID Reading	Notes
Date	Gampie ib	1 1	NA NA	140103
		2	10.92	Analyzed by UVF
		3	6.89	,a., _ = a. a., = a.
0/00/00/10	D 0000 D444 000	4-5	10.99	Analyzed by UVF
3/20/2018	R-3830-P114-SS5	6-10	94.81	Wet
		1	1.81	Analyzed by UVF
		2	2.57	Analyzed by UVF
		3	2.29	Analyzed by UVF
		4	2.57	
3/20/2018	R-3830-P114-SS6	5	1.73	
3/20/2010	K-3030-F114-330	6	2.36	
		7	2.63	
		8	1.53	
		9	2.15	
		10	3.58	Analyzed by UVF
		1	3.01	
		2	2.70	Analyzed by UVF
		3	2.63	
		4	2.50	
3/20/2018	R-3830-P114-SS7	5	2.71	Analyzed by UVF
3/20/2010	K-3030-F114-331	6	2.01	
		7	2.20	
		8	2.91	
		9	3.02	Analyzed by UVF
		10	2.39	
		1	0.2	
4/20/2018	R-3830-P114-SS8	2	1.2	Analyzed by DRO
		3	0.3	Analyzed by DRO
		1	0.2	
4/20/2018	R-3830-P114-SS9	2	1.4	Analyzed by DRO
		3	0.2	Analyzed by DRO
		1	1.0	
4/20/2018	R-3830-P114SS10	2	0.7	Analyzed by DRO
		3	0.2	Analyzed by DRO
		1	1.2	
4/20/2018	R-3830-P114-SS11	2	0.9	Analyzed by DRO
		3	0.6	Analyzed by DRO

¹⁾ FID = Flame Ionization Detector

²⁾ FID readings in parts per million (ppm)

TABLE 2: Soil Sample Analytical Summary

Parameter		Analytical Results											Comparison					
		Soil Sample Results										Criteria						
Sample ID	SS1	SS1	SS2	SS2	SS3	SS3	SS4	SS4	SS5	SS5	SS6	SS6	SS6	SS6	SS7	SS7	SS7	
FID Reading (ppm)	0.81	1.56	8.98	3.07	19.56	39.08	20.78	6.34	10.92	10.99	1.81	2.57	2.29	3.58	2.70	2.71	3.02	State Action
Collection Depth (ft bgs)	2	4-5	3	4-5	3	4-5	1	4-5	2	4-5	1	2	3	10	2	5	9	Limit
Collection Date	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	3/20/18	
UVF Method																		
Total Petroleum Hydrocarbons	4.4	2.1	4.8	0.73	0.26	1.6	3.6	11	15.7	11.5	172.5	104.6	<0.56	<0.57	<0.58	< 0.63	5.8	
Diesel Range Organics	1.2	2.1	4.8	0.73	0.26	1.6	3.6	11	15.7	11.5	172.5	104.6	<0.04	<0.05	<0.05	<0.05	<0.06	100
Gasoline Range Organics	3.2	< 0.49	<0.57	< 0.73	<0.72	<0.56	< 0.63	< 0.63	<0.61	<0.55	< 0.63	<0.61	<0.56	<0.57	<0.58	< 0.63	5.8	50
BaP	< 0.012	<0.01	<0.011	<0.015	<0.014	<0.011	<0.013	<0.013	0.066	<0.014	<0.013	<0.012	<0.011	<0.011	<0.012	<0.013	<0.014	
16 EPA PAHs	0.03	0.06	0.26	0.04	<0.03	0.03	0.06	0.22	0.86	0.59	0.75	0.43	<0.02	<0.02	<0.02	<0.03	< 0.03	-
Total Aromatics (C10-C35)	0.85	1.2	4.8	0.72	0.14	0.48	1.3	5	15.6	11.4	14.4	8.1	<0.11	<0.11	<0.12	<0.13	<0.14	
Total BTEX	3.2	<0.49	<0.57	<0.73	<0.72	<0.56	< 0.63	<0.63	<0.61	<0.55	<0.63	<0.61	<0.56	<0.57	<0.58	< 0.63	<0.7	-

- 1) Results displayed in milligram per kilogram (mg/kg)
- 2) ft bgs = Feet below ground surface
- 3) Bold = Above Laboratory Detection Limit
- 4) UVF = Ultraviolet Flouresence
- 5) BaP = Benzo(a)pyrene
- 6) EPA = Environmental Protection Agency
- 7) PAHs = Polycyclic Aromatic Hydrocarbons
- 8) BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes
- 9) Shaded values exceed the NCDEQ Action Limit
- 10) FID = Flame Ionization Detector

TABLE 2 (continued): Soil Sample Analytical Summary

Parameter		Analytical Results									
		Soil Sample Results									
Sample ID	SS8	SS8	SS9	SS9	SS10	SS10	SS11	SS11	State		
FID Reading (ppm)	1.2	0.3	1.4	0.2	0.7	0.2	0.9	0.6	Action		
Collection Depth (ft bgs)	2	3	2	3	2	3	2	3	Limit		
Collection Date	4/20/18	4/20/18	4/20/18	4/20/18	4/20/18	4/20/18	4/20/18	4/20/18	LIIIII		
DRO											
Diesel Range Organics	<5.4	<5.8	6.7	<5.4	<4.8.3	<5.5	<5.0	<5.2	100		

- 1) Results displayed in milligram per kilogram (mg/kg)
- 2) ft bgs = Feet below ground surface
- 3) Bold = Above Laboratory Detection Limit
- 4) UVF = Ultraviolet Flouresence
- 5) BaP = Benzo(a)pyrene
- 6) EPA = Environmental Protection Agency
- 7) PAHs = Polycyclic Aromatic Hydrocarbons
- 8) BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes
- 9) Shaded values exceed the NCDEQ Action Limit
- 10) FID = Flame Ionization Detector

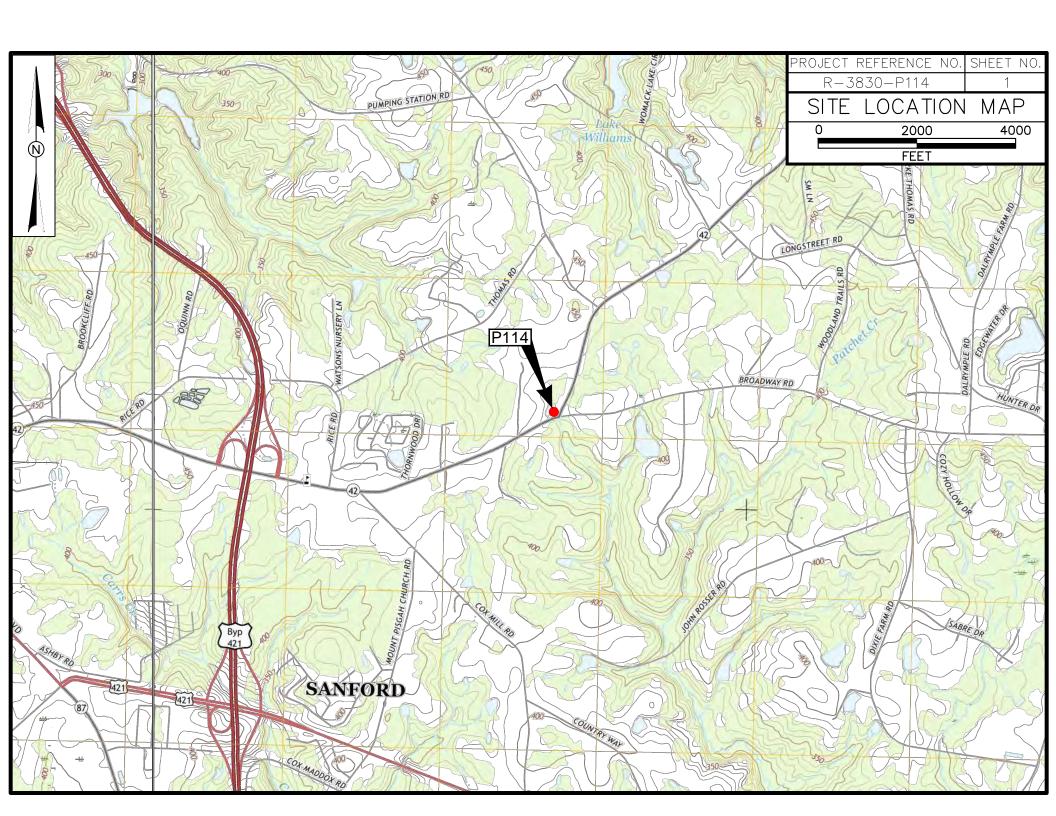
Table 3: Monitoring Well Constuction and Groundwater Elevation Data

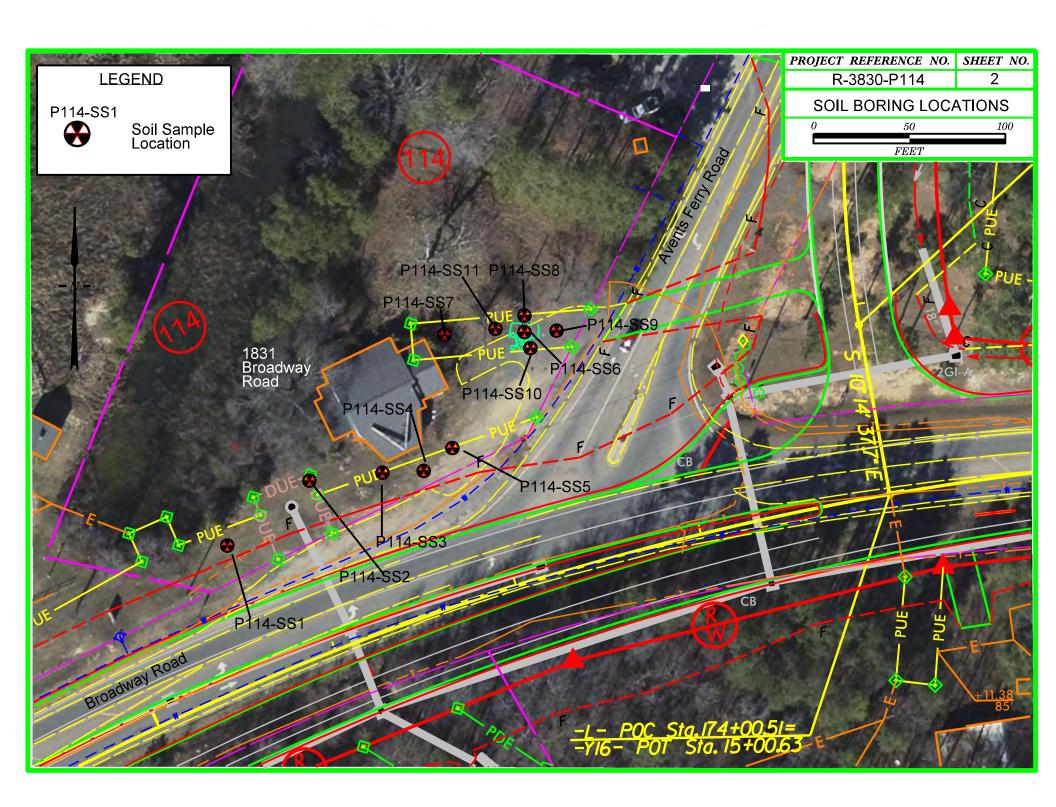
Well No.	Date Installed	Total Depth Drilled (feet,bgs)*	Diameter (inches)	Screen Interval Depth	Groundwater Elevation (feet)	Date Abandoned
TMW-1	3/20/2018	10	1	5-10	5.5	3/20/2018
TMW-2	3/20/2018	10	1	5-10	6.5	3/20/2018

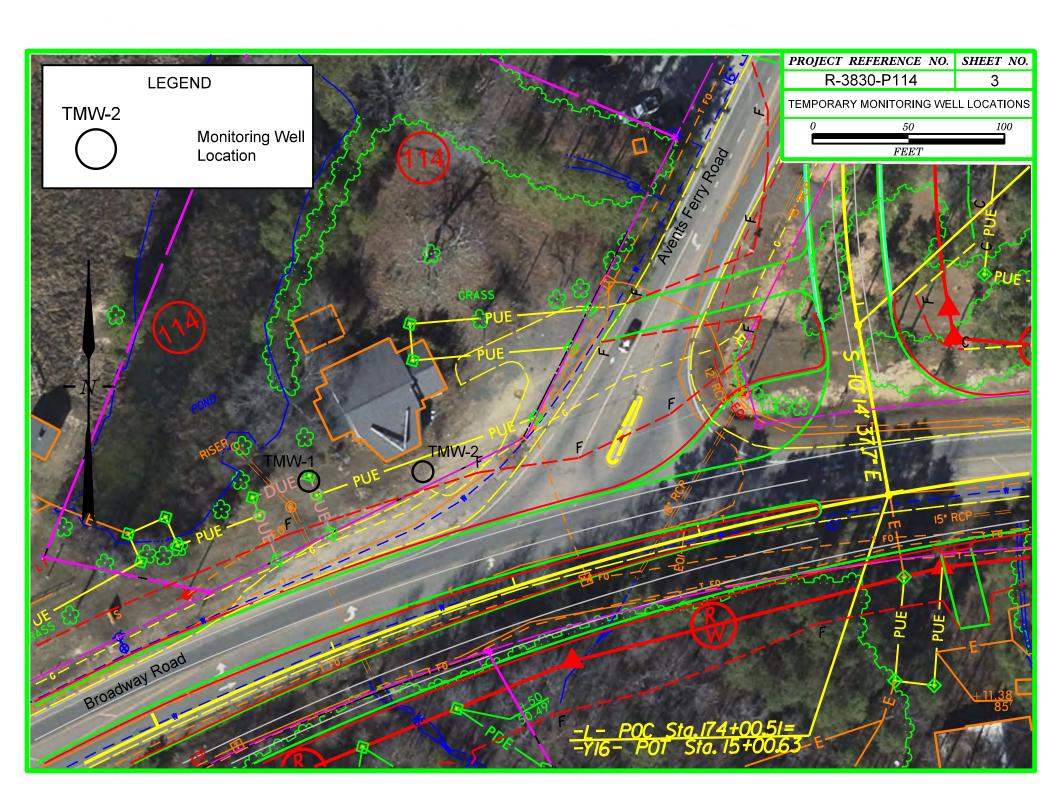
- 1) Temporary Monitoring Wells were abandoned with bentonite chips2) bgs = below ground surface

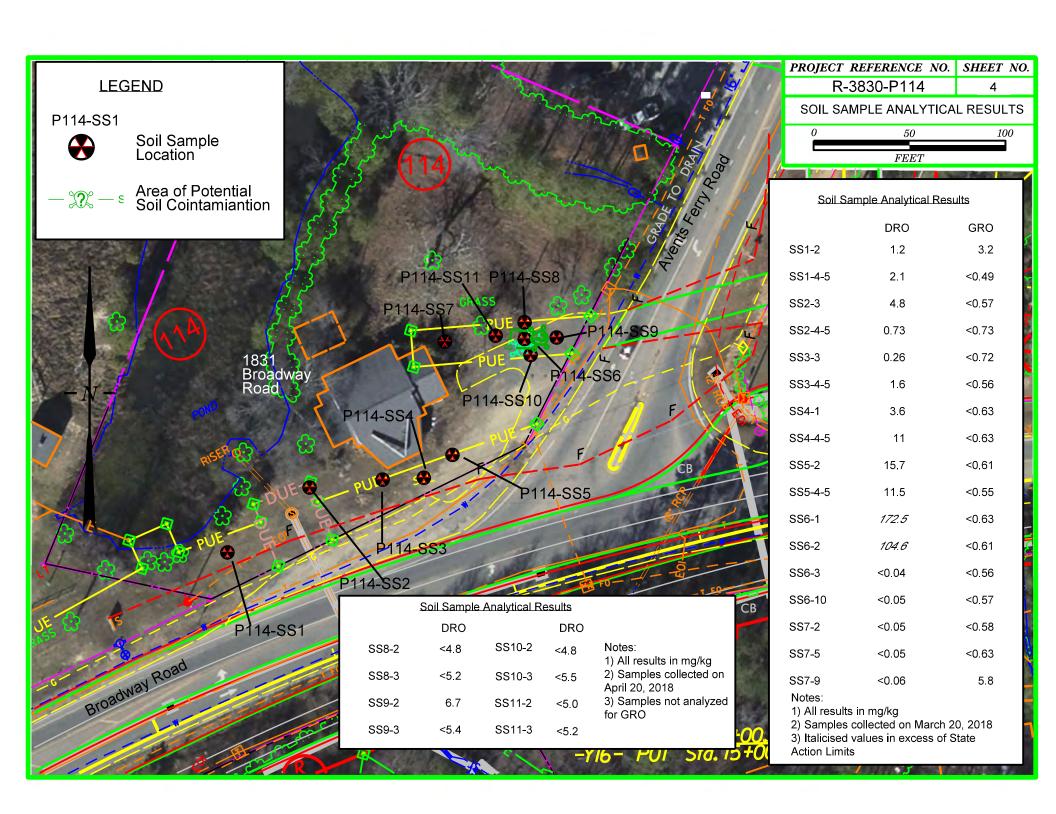
Table 4: Groundwater Analytical Results

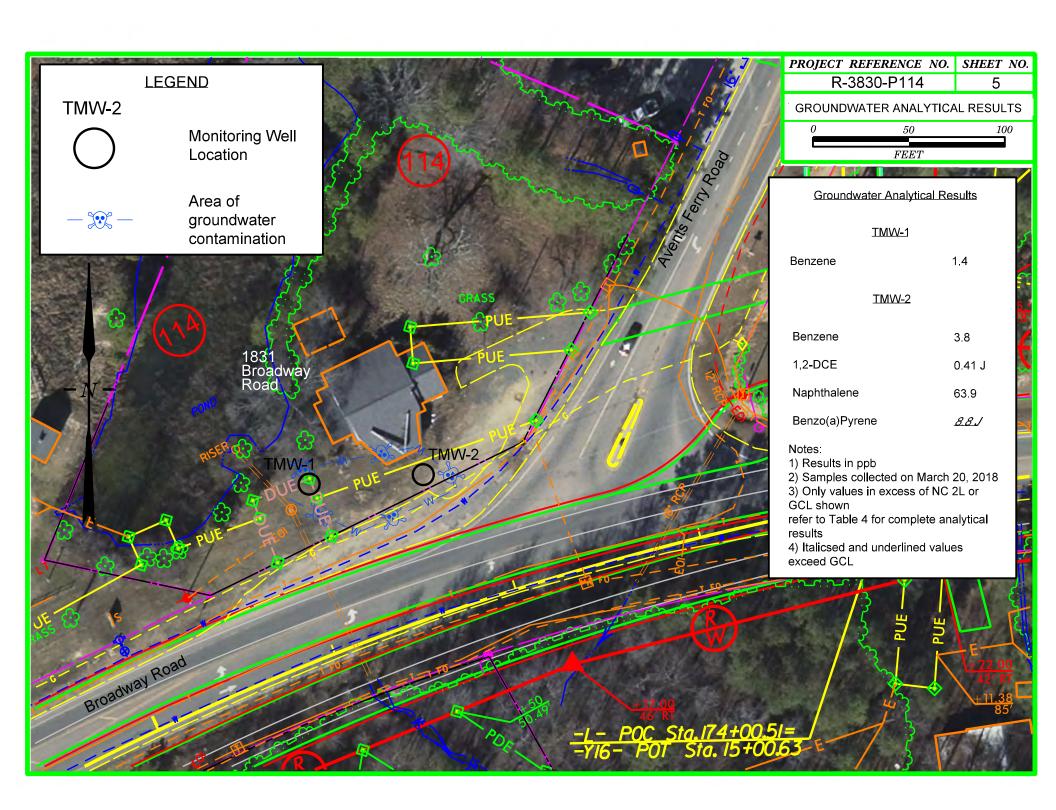
Sample ID	TMW-1	TMW-2	NC 2L	GCLs							
Collection Date	3/20/2018	3/20/2018	INC 2L	GCLS							
6200B	200B										
Benzene	1.4	3.8	1	5000							
n-Butylbenzene	4.1	<0.25	70	6900							
sec-Butylbenzene	2.4	<0.25	70	8500							
tert-Butylbenzene	0.99	3	70	15000							
1,2-Dichloroethane	<0.25	0.41 J	0.4	400							
Ethylbenzene	4.0	53.4	600	84500							
Isopropylbenzene	5.1	26.4	70	25000							
Naphthalene	3.7	34.6	6	6000							
n-Propylbenzene	10.6	51	70	30000							
Toluene	1.9	3.3	600	260000							
Methyl tert butyl ether	8.1	3.7	20	20000							
1,2,4-Trimethylbenzene	<0.25	1.4	400	28500							
Total Xylenes	4.22	8.7	500	85500							
625											
Benzo(a)pyrene	<3.0	<u>8.8 J</u>	0.005	0.81							
Naphthalene	<3.4	63.9	6	6000							


- 1) Results in parts per billion (ppb)
- 2) J = Estimated concentration between laboratory reporting limit and method detection limit
- 3) Bolded values above laboratory detection limit
- 4) Bolded and shaded values exceed NC 2L Standard
- 5) Bolded, shaded, underlined and itaclised values exceed the GCL
- 6) J = Estimated concentration between laboratory reporting limit and laboratory detection lmit.
- 7) NC 2L = NC 2L Standard
- 8) GCL = Gross Contamination Levels




FIGURES


STATE OF NORTH CAROLINA, DIVISION OF HIGHWAYS CONVENTIONAL PLAN SHEET SYMBOLS


BOUNDARIES AND PROPERTY		Note: Not to S	cale *S	S.U.E. = Subsurface Utility Engineering		WATER:	
itate Line ————————————————————————————————————						Water Manhole	
County Line		RAILROADS:				Water Meter —	
ownship Line				Orchard —		Water Valve	. ⊗
City Line ————————————————————————————————————		Standard Gauge ————————————————————————————————————		Vineyard —	Vineyard	Water Hydrant —	•
Reservation Line ————————————————————————————————————			O WLEPOST 35	·	VII.630 0	U/G Water Line LOS B (S.U.E*)	
Property Line —————		Switch	SWITCH	EXISTING STRUCTURES:		U/G Water Line LOS C (S.U.E*)	
ixisting Iron Pin ——————————————————————————————————	<u> </u>	RR Abandoned		MAJOR:		U/G Water Line LOS D (S.U.E*)	
Property Corner		RR Dismantled		Bridge, Tunnel or Box Culvert ————————————————————————————————————		Above Ground Water Line	A/G Water
Property Monument		RIGHT OF WAY:		Bridge Wing Wall, Head Wall and End Wall –) conc ## (Above Ground Water Line	
Parcel/Sequence Number		Baseline Control Point	•	MINOR:		TV: TV Pedestal ————————————————————————————————————	- C
existing Fence Line		Existing Right of Way Marker ————	Δ		CONC HW	TV Tower —	
Proposed Woven Wire Fence		Existing Right of Way Line		Pipe Culvert —			_
Proposed Chain Link Fence		Proposed Right of Way Line ————		Footbridge	≺	U/G TV Cable Hand Hole	
Proposed Barbed Wire Fence		Proposed Right of Way Line with		Drainage Box: Catch Basin, DI or JB ———	СВ	U/G TV Cable LOS B (S.U.E.*)	
		Iron Pin and Cap Marker		Paved Ditch Gutter ————		U/G TV Cable LOS C (S.U.E.*)	
ixisting Wetland Boundary		Proposed Right of Way Line with Concrete or Granite RW Marker		Storm Sewer Manhole —		U/G TV Cable LOS D (S.U.E.*)	
Proposed Wetland Boundary		Proposed Control of Access Line with		Storm Sewer		U/G Fiber Optic Cable LOS B (S.U.E.*)	
existing Endangered Animal Boundary		Concrete C/A Marker				U/G Fiber Optic Cable LOS C (S.U.E.*)	1¥ F0
existing Endangered Plant Boundary		Existing Control of Access	— -(<u>\$</u>) —	UTILITIES:		U/G Fiber Optic Cable LOS D (S.U.E.*)	
existing Historic Property Boundary		Proposed Control of Access ————		POWER:		GAS:	
Known Contamination Area: Soil ————		Existing Easement Line —————	——E——	Existing Power Pole ————	•	Gas Valve	. 🔷
Potential Contamination Area: Soil		Proposed Temporary Construction Easement -	Е	Proposed Power Pole	Ģ	Gas Meter	
Known Contamination Area: Water	— -≫.——≫	Proposed Temporary Drainage Easement ——		Existing Joint Use Pole ————	- <u>+</u> -	U/G Gas Line LOS B (S.U.E.*)	· ·
Potential Contamination Area: Water ——	-x $-x$	Proposed Permanent Drainage Easement —		Proposed Joint Use Pole ————	-	U/G Gas Line LOS C (S.U.E.*)	
Contaminated Site: Known or Potential 🗨	- x x	Proposed Permanent Drainage / Utility Easement		Power Manhole ————	®		
BUILDINGS AND OTHER CUL	TURE:	Proposed Permanent Utility Easement ———		Power Line Tower —————	\boxtimes	U/G Gas Line LOS D (S.U.E.*)	A/G Gas
Gas Pump Vent or U/G Tank Cap ———	 •	· · · · · · · · · · · · · · · · · · ·		Power Transformer ————	M	Above Ground Gas Line	
Sign —		Proposed Temporary Utility Easement ———		U/G Power Cable Hand Hole ————		SANITARY SEWER:	
Well —	•	Proposed Aerial Utility Easement ————	AUE	H_Frame Pole —————	•	Sanitary Sewer Manhole	
Small Mine		Proposed Permanent Easement with	♦	U/G Power Line LOS B (S.U.E.*)		Sanitary Sewer Cleanout ————————————————————————————————————	
Foundation —		Iron Pin and Cap Marker	•	U/G Power Line LOS C (S.U.E.*)		U/G Sanitary Sewer Line —————	
Area Outline —	_ —	ROADS AND RELATED FEATURE		U/G Power Line LOS D (S.U.E.*)		Above Ground Sanitary Sewer —	A/G Sanitary Sever
		Existing Edge of Pavement —		GO TOWER LINE LOS D (3.0.L.)		SS Forced Main Line LOS B (S.U.E.*)	rss
Cemetery ————————————————————————————————————	_	Existing Curb		TELEPHONE:		SS Forced Main Line LOS C (S.U.E.*)	
Building —	_ - -	Proposed Slope Stakes Cut ————		Existing Telephone Pole ————	-•-	SS Forced Main Line LOS D (S.U.E.*)	
School ———————————————————————————————————	— ф	Proposed Slope Stakes Fill ————	<u>F</u>	Proposed Telephone Pole ————	-0 -	00 / 01000 / Main 2010 200 2 (01012)	
Church —	— <u>4</u> 5	Proposed Curb Ramp ————	(R)	Telephone Manhole	o	MISCELLANEOUS:	
Dam —		Existing Metal Guardrail —————		Telephone Pedestal	•	Utility Pole —————	
HYDROLOGY:		Proposed Guardrail ————	_ 	Telephone Cell Tower	I.	Utility Pole with Base —————	. п
Stream or Body of Water ——————		Existing Cable Guiderail ————		U/G Telephone Cable Hand Hole ———	Fig.	Utility Located Object —	_
Hydro, Pool or Reservoir ——————	— <u></u>	Proposed Cable Guiderail	<u> </u>	•		Utility Traffic Signal Box —	
Iurisdictional Stream		Equality Symbol —————	•	U/G Telephone Cable LOS B (S.U.E.*)		Utility Unknown U/G Line LOS B (S.U.E.*)	
Buffer Zone 1		Pavement Removal ————		U/G Telephone Cable LOS C (S.U.E.*)		U/G Tank; Water, Gas, Oil	
Buffer Zone 2 ———————————————————————————————————		VEGETATION:		U/G Telephone Cable LOS D (S.U.E.*)			
Flow Arrow ———————————————————————————————————		Single Tree	습	U/G Telephone Conduit LOS B (S.U.E.*) ——		Underground Storage Tank, Approx. Loc. —	
Disappearing Stream ——————————		Single Shrub		U/G Telephone Conduit LOS C (S.U.E.*)——		A/G Tank; Water, Gas, Oil ———————————————————————————————————	
Spring ————		Hedge —	0	U/G Telephone Conduit LOS D (S.U.E.*)		Geoenvironmental Boring	•
Wetland ——————	<u>*</u>	•		U/G Fiber Optics Cable LOS B (S.U.E.*) ——	1 ro—	U/G Test Hole LOS A (S.U.E.*)	_
Proposed Lateral, Tail, Head Ditch ————	_ =====================================	Woods Line		U/G Fiber Optics Cable LOS C (S.U.E.*)——		Abandoned According to Utility Records ——	- AATUR
False Sump ————————————————————————————————————	- ← ′′′′			U/G Fiber Optics Cable LOS D (S.U.E.*)——	ro	End of Information ————————————————————————————————————	E.O.I.

APPENDIX A SITE PHOTOGRAPHS

View of Project Study Area.

View of kerosene AST and dispenser.

Original in Color

Page

PROJECT NO.:	201835071
DRAWN:	April 2018
DRAWN BY:	JCH
CHECKED BY:	MB
FILE NAME:	

SITE PHOTOGRAPHS

R-3830-P114 1831 Broadway Road Sanford Lee County, NC Photo

1

View of drilling activties.

View of drilling activties.

Original in Color

PROJECT NO.:	201835071
DRAWN:	April 2018
DRAWN BY:	JCH
CHECKED BY:	MB
FILE NAME:	

SITE PHOTOGRAPHS

Photo Page

R-3830-P114 1831 Broadway Road Sanford Lee County, NC 2

APPENDIX B NCDEQ REPORTS

GROUNDWATER MONITORING REPORT First & Last Stop Convenience Store 1831 Broadway Road Sanford, North Carolina **NCDWM Incident 14425** EAI Project 40610

> Latitude: 79° 06' 00" W Longitude: 35° 27' 40" N

Prepared by:

Environmental Scientist

W. Michael Joyce, M.M., P.E

Senior Engineer

Submitted to:

Ms. Ann Zimmerman North Carolina Department of Environment and Natural Resources

Division of Waste Management **UST Section** Raleigh Regional Office 1628 Mail Service Center Raleigh, North Carolina 27699-1628

On Behalf of:

Ms. Edna Rosser 2513 John Rosser Road Sanford, North Carolina 27330

Submitted by:

Environmental Aspecs, Inc. of North Carolina

4805 Green Road, Suite 103

Raleigh, North Carolina 27616 Phone: (919) 850-0780

Fax: (919) 850-0015

October 7, 2003

ENVIRONMENTAL ASPECS, INC. of North Carolina

Environmental Consulting, Testing & Inspection Services

•Asbestos •Hazardous Waste •Industrial Hygiene

October 7, 2003

Ms. Ann Zimmerman
North Carolina Department of Environment
and Natural Resources
Division of Waste Management
UST Section
Raleigh Regional Office
1628 Mail Service Center
Raleigh, North Carolina 27699-1628

Re: Groundwater Monitoring Report

Former First and Last Stop Convenience Store

1831 Broadway Road Sanford, Lee County, North Carolina NCDWM Incident 14425

Site Rank: *High Risk* EAI Project 40610

Dear Ms. Zimmerman:

Please find the attached Groundwater Monitoring Report for the latest sampling event conducted at the above referenced site on July 23, 2003. Field activities addressed in this groundwater monitoring report include groundwater elevation data and laboratory analytical results obtained from groundwater samples. The Groundwater Monitoring Report for the above referenced property was performed in accordance with North Carolina Administrative Code Title 15A, Subchapter 2L.

On behalf of our client, we would like to thank you for your assistance in working towards closure of this incident. If you have any questions concerning this project, please contact EAI at (919) 850-0780.

Sincerely,

cc:

ENVIRONMENTAL ASPECS INC.

Munney

OF NORTH CAROLINA

Amanda J. McKenney

Environmental Scientist

W. Michael Joyce, M.M., P.E.

Senior Engineer

Ms. Edna Rosser

P.O. Box 28210, Raleigh, North Carolina 27611-8210

EAI Project File

EXECUTIVE SUMMARY

Environmental Aspecs, Inc. of North Carolina (EAI) was retained by Ms. Edna Rosser to provide environmental consulting services in connection with the removal of underground storage tanks (USTs) and subsequent assessment for the former First and Last Stop Convenience Store site located at 1831 Broadway Road (North Carolina Highway 42) in Sanford, Lee County, North Carolina. A UST Closure Report was submitted by Patterson Exploration Services in December 1993, and a Comprehensive Site Assessment was submitted by EAI in December 1995. A Corrective Action Plan was submitted in July 1996.

Remediation activities to date include the removal of 167 tons of contaminated soil to a depth of 6 feet from the gasoline UST area. 15 tons of contaminated soils were removed from the heating oil UST area. The receptor survey conducted for the CSA identified the on-site water supply well, which was not in use. This well was abandoned on April 6, 1999. Monitoring wells MW-8, MW-9, and MW-10 were abandoned on August 3, 2000 as part of a DOT highway-widening project. Monitoring well MW-11 was also abandoned because it was located near a septic drainfield and Ms. Rosser needed to obtain a Certificate of Occupancy from the Lee County Health Department.

On May 22, 2002, EAI supervised the abandonment of monitoring well MW-1, as it had been damaged by DOT equipment. EAI also supervised the installation of monitoring wells MW-1A, MW-8A, and MW-9A in relatively the same locations of abandoned wells MW-1, MW-8, and MW-9.

EAI supervised the excavation of approximately 340 tons of contaminated soils from the site from July 9 through 11, 2002. During excavation activities, EAI observed a clayey sand layer from 5 to 10 feet, below which a clay layer was encountered. Groundwater was perched on top of this clay layer. EAI submitted a Soil Cleanup Report on August 12, 2002 detailing excavation activities and providing recommendations for site closure. However based on the results of a groundwater sampling event conducted on July 2, 2002, benzene, ethylbenzene, and naphthalene were detected in site monitoring wells above the NCAC 2L Standards, indicating the continued presence of groundwater contamination onsite.

On April 8, 2003, EAI conducted an Updated Receptor Survey as well as mailed out water supply well questionnaires to property owners within a thousand-foot radius of the release area. EAI identified one well used for drinking purposes located approximately 800 feet southeast of the release area on the property of Mr. Wilbur Smith (1902 Broadway Road). One well, reportedly used for irrigation purposes only, is located approximately 1,000 feet north of the release area on the property of Mr. George Watson. Two additional wells, which are reportedly not used, are also located within 1,000 feet. One well, located approximately 280 feet southwest of the subject site, is on the property of Mr. William Frank Lee. The second well, located approximately 500 feet northeast of the release area, is on the property of Mr. Robert C. Thomas. Mr. Smith stated that he will not agree to have his well abandoned; Mr. Lee will agree to have his well abandoned if the trust fund agrees to pay all associated costs; and neither Mr. Thomas nor Mr. Watson indicated whether or not they would be willing to have their wells abandoned, but did not confirm that they are connected to and drinking off of the City of Sanford water supply.

On July 23, 2003, EAI conducted a groundwater gauging and sampling event. Based on liquid level data in the monitoring wells, the general direction of shallow groundwater flow across the site is toward the southeast. Lead was the only compound detected at concentrations above the NCAC-2L Groundwater Quality Standards in two of seven onsite monitoring wells. The highest concentration of lead detected was 43 ng/l in the groundwater sample from monitoring well MW-2. Lead, ethylbenzene, and MTBE were detected below NCAC 2L Standards in three additional onsite monitoring wells. EAI also sampled the water supply well located on Mr. Wilbur Smith's property (WSW-1) as part of the June 2003 groundwater sampling event. No contaminants of concern were present in WSW-1 above the laboratory detection limits.

Based on the results of the July 2003 groundwater sampling event, petroleum contamination still exists in onsite monitoring wells above NCAC 2L Standards in the form of lead. EAI recommends continued sampling of the onsite monitoring wells on a semi-annual basis or until all contaminants fall below NCAC 2L Standards. EAI also recommends annual sampling of water supply well WSW-1. The next semi-annual groundwater monitoring event is tentatively scheduled for January 2004, pending DWM approval.

TABLE OF CONTENTS

	la de la companya de
	ARYi
1. INTRODUCTION	AND BACKGROUND
2. SITE HYRDOGE	OLOGY
3. GROUNDWATE	R SAMPLING RESULTS
3.1 Sampling	Procedures
3.2 Groundwa	ater Analytical Results
4. EXTENT AND D	ISTRIBUTION OF CONTAMINANTS
5. CONCLUSIONS	AND RECOMMENDATIONS
TABLES	
Table 1	Historical Groundwater Elevation Data
Table 2	Summary of Groundwater Analytical Results (July 23, 2003)
Table 3	Historical Summary of Groundwater Analytical Data
FIGURES	
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Elevation Contour Map
	Lead Isoconcentration Contour Map
Figure 4	Leau 15000110011111011 Contour Frap
APPENDIX	Laboratory Analytical Reports and Chain of Custody

Page 1

1. INTRODUCTION AND BACKGROUND

Environmental Aspecs, Inc. of North Carolina (EAI) was retained by Ms. Edna Rosser to perform environmental consulting services for the former First and Last Stop Convenience Store site located at 1831 Broadway Road (State Road 1579) in Sanford, Lee County, North Carolina (Figure 1). Releases from gasoline and kerosene underground storage tanks (USTs) have previously been documented at this site. This site is currently an inactive convenience store location (Figure 2).

A UST Closure Report was submitted to the North Carolina Division of Environmental Management (NCDEM) in December 1993 by Patterson Exploration Services. 167 tons of contaminated soils were removed to a depth of 6 feet from the gasoline UST area and 15 tons of contaminated soils were removed from the heating oil UST area. EAI then assisted Ms. Edna Rosser with the subsequent soil and groundwater assessment for the First and Last Stop Convenience Store site. A Comprehensive Site Assessment (CSA) was submitted by EAI in December 1995. A Corrective Action Plan (CAP) was submitted in July 1996. A Soil Cleanup Plan and a Receptor Survey were submitted in June 1999 which estimated that 336 tons of contaminated soils remained onsite. Previous groundwater monitoring reports were submitted in April 1995, August 1995, September 1995, March 1996, July 1996, January 1999, and August 2000.

EAI has conducted an updated receptor survey of the area within 1000 feet of the subject site. There are six water supply wells located on properties within a 1000 foot radius of the subject site; however, groundwater has been determined to be flowing to the south-southeast, away from the identified wells. A seventh abandoned dug well was identified approximately 280 feet southwest of the subject site. The subject site is currently connected to city water. Surface water bodies in the immediate vicinity of the subject property include a pond located approximately 60 feet to the west. The pond and the drain system may be discharge points for the shallow

Page 2

groundwater aquifer system. This pond drains into a small creek through a drain pipe, which surfaces approximately 60 feet south of the subject property.

Monitoring wells MW-8, MW-9, and MW-10 were abandoned on August 3, 2000 as part of a DOT highway widening project. MW-11 was also abandoned because it was located near or in the vicinity of a septic drain field as Ms. Rosser attempted to obtain a Certificate of Occupancy from the Lee County Health Department.

On May 22, 2002, EAI supervised the abandonment of monitoring well MW-1, as it had been damaged by DOT equipment. EAI also supervised the installation of monitoring wells MW-1A, MW-8A, and MW-9A in relatively the same locations of abandoned wells MW-1, MW-8, and MW-9.

A recent groundwater sampling event was conducted on July 23, 2003 to monitor the extent and migration of dissolved phase petroleum hydrocarbon compounds in shallow groundwater. This groundwater monitoring report includes groundwater elevation data, a contoured plot of groundwater elevations indicating the direction of shallow groundwater flow, an isoconcentration contour map for lead, and copies of the laboratory data.

2. SITE HYDROGEOLOGY

A total of fourteen Type II shallow groundwater monitoring wells and one Type III monitoring well have been installed in order to evaluate groundwater flow and quality on this site. Monitoring wells MW-1 and MW-8 through MW-11 were abandoned due to DOT highway widening activities. MW-1A, MW-8A, and MW-9A were re-installed to replace MW-1, MW-8, and MW-9. Eight of the nine remaining Type II wells were sampled during this event. Monitoring well MW-7 was not sampled during this sampling event because the monitoring well is buried or lost.

Page 3

The depth to groundwater was measured in monitoring wells MW-1A through MW-9A, with the exception of MW-7 on July 23, 2003 using an Interface Probe. The top of casing elevation for each monitoring well was measured during a site survey performed on July 6, 1994. Elevations were assigned to the top casing of each well based on a temporary benchmark, located on the island at the intersection of Highway 42 and Broadway Road. The elevation of the benchmark was determined to be at 438.7 feet. The monitoring well elevations (with the exception of MW-7) were re-measured on July 2, 2002 to include newly installed wells MW-1A, MW-8A, and MW-9A. Groundwater elevation and monitoring well construction data are provided in Table 1.

A groundwater elevation contour map, based on the depth to water in the Type II shallow groundwater monitoring wells on July 23, 2003, is provided as Figure 3. The latest groundwater elevation data indicates that the direction of shallow groundwater flow across the site is toward the southeast, across Broadway Road.

GROUNDWATER SAMPLING RESULTS 3.

Sampling Procedures 3.1

Activities performed during the sampling events included collecting liquid-level data and groundwater samples from onsite monitoring wells. Groundwater samples were collected from eight existing Type II monitoring wells. Each monitoring well was gauged with an Interface Probe to determine the current depth to water and the presence of liquid-phase hydrocarbons (LPH). The probe was decontaminated prior to gauging each well. Groundwater samples were also collected from the water supply well located on the property of Mr. Wilbur Smith (WSW-1). The well was allowed to run for ten minutes prior to sample collection.

Prior to sample collection, each monitoring well was purged of a minimum of three well volumes of water or purged to dryness twice utilizing a dedicated polyethylene bailer. The wells were

then allowed sufficient time to recharge prior to groundwater sample collection. Groundwater samples were collected from the monitoring wells utilizing dedicated bailers for each well. The samples were placed in labeled laboratory supplied containers, placed on ice, and delivered by overnight courier to Analytics in Richmond, Virginia, a North Carolina certified laboratory. Groundwater samples were analyzed for volatile organic compounds using EPA Methods 601 and 602, polynuclear aromatic hydrocarbons (PAHs) by EPA Method 610, and for total lead by EPA Standard Method 3030C.

3.2 Groundwater Analytical Results

LPH was not detected in any monitoring wells. Based on the latest groundwater analytical results, lead is the only compound present at concentrations above the North Carolina Administrative code Title 15A, Subchapter 2L, Groundwater Quality Standards (NCAC 2L) in 2 of the 9 wells sampled.

Lead was detected at concentrations above the NCAC-2L standard of 15 ng/l in the groundwater samples obtained from monitoring wells MW-2 (43 ug/l) and MW-6 (28 ng/l).

Ethylbenzene was detected below the 2L Standard of 29 ug/l in MW-3 (5.29 ug/l) and MW-4 (25.7 ug/l). Lead was detected below the Standard in the groundwater samples obtained from monitoring wells MW-3 (8 ug/l), MW-4 (9 ug/l), and MW-8A (6 ug/l). Methyl-tertiary butyl ether (MTBE) was detected in MW-4 (5.14 ug/l) at a concentration below the NCAC 2L Standard of 200 ug/l.

Groundwater analytical results are summarized in *Table 2*. Historical groundwater analytical results are summarized in *Table 3*. A copy of the laboratory analytical report and chain of custody is included in the *Appendix* of this report.

4. EXTENT AND DISTRIBUTION OF CONTAMINANTS

Based on the laboratory results from the July 23, 2003 sampling event, a contoured isoconcentration map was prepared for lead and is included as *Figure 4*. The horizontal extent of the contaminant plume appears to be defined and localized onsite. The concentrations of benzene, ethylbenzene, and naphthalene have remained fairly consistent since January 1999, but have decreased significantly since sampling began in April 1995 when the benzene plume was located across Broadway Road.

5. CONCLUSIONS AND RECOMMENDATIONS

Groundwater quality at this site has been impacted by a release of petroleum constituents into the shallow groundwater. Based on the latest sampling event conducted on July 23, 2003, concentrations in excess of the NCAC-2L Groundwater Quality Standard for lead are present in two of the groundwater monitoring wells at this site.

Based on the results of the July 2003 groundwater sampling event, petroleum contamination still exists in onsite monitoring wells above NCAC 2L Standards in the form of lead. EAI recommends continued sampling of the onsite monitoring wells on a semi-annual basis or until all contaminants fall below NCAC 2L Standards. EAI also recommends annual sampling of water supply well WSW-1. The next semi-annual groundwater monitoring event is tentatively scheduled for January 2004, pending DWM approval.

TABLES

Table 1 Historical Groundwater Elevation Data

Former First and Last Stop Convenience Store EAI Project 40610 NCDWM Incident 14425

Page 1 of 2

	Date	Installation	Total Depth	Screened	Top of Casing	_	Groundwater
Well ID	Measured	Date	(feet)	Interval	Elevation	Groundwater	Elevation
			(1000)	(feet)	(feet)	(feet)	(feet)
		1		Abandoned	T		
	7/5/01					3.04	478.26
	8/1/00					4.72	476.58
MW-1	1/12/99	4/21/95	18	13 to 18	481.3	2.95	478.35
	7/1/96				,, -,	3.74	477.56
	3/27/96					2.3	479
MW-1A	7/23/03					2.33	479.21
	7/2/02	5/22/02	20	5 to 20	481.54	5.2	476.34
	7/23/03					4.61	476.44
	7/2/02				481.05	6.15	474.9
	7/5/01					NM	NA
	8/1/00					5.93	474.74
MW-2	1/12/99	4/21/95	11.5	1.5 to 11.5	480.67	5.34	475.33
	7/1/96					5.2	475.47
	3/27/96					4.81	475.86
	9/28/95					4.67	476
	7/23/03					4.17	476.93
	7/2/02				481.1	5.82	475.28
•	7/5/01		•••			4.61	476.14
	8/1/00					5.58	475.17
MW-3	1/12/99	4/21/95	12	2 to 12	480.75	5.03	475.72
	7/1/96					5.05	475.7
	3/27/96					4.37	476.38
	9/28/95					4.97	475.78
	7/23/03					4.04	477.20
	7/2/02				481.24	5.9	475.34
	7/5/01					4.66	476.27
	8/1/00					5.52	475.41
MW-4	1/12/99	4/21/95	12	2 to 12	480.93	5.09	475.84
	7/1/96			•		5.23	475.7
	3/27/96					4.45	476.48
	9/28/95					5.09	475.84
	7/23/03					4.07	476.73
	7/2/02					5.3	475.5
	7/5/01					4.26	476.54
	8/1/00					3.87	476.93
MW-5A	1/12/99	9/27/95	15	5 to 15	480.8	4.15	476.65
	7/1/96					4.62	476.18
	3/27/96					3.83	476.97
<u> </u>	9/28/95					4.14	476.66
	7/23/03					6.79	474.24
	7/2/02				481.03	7.23	473.8
	7/5/01					6.95	473.68
	8/1/00					7.17	473.46
MW-6	1/12/99	8/29/95	13	3 to 13	480.63	7.04	475.54
	7/1/96					6.93	473.7
	3/27/96					6.82	473.81
l •	9/28/95				1	6.95	473.68

Table 1 Historical Groundwater Elevation Data

Former First and Last Stop Convenience Store EAI Project 40610 NCDWM Incident 14425

Page 2 of 2

				Screened	Top of Casing	Depth to	Groundwater
Well ID	Date	Installation	Total Depth	Interval	Elevation	Groundwater	Elevation
Well ID	Measured	Date	(feet)				
	7/23/03			(feet)	(feet)	(feet) NM	(feet) NM
	7/2/02						
	7/5/01					6.2	475.53
	8/1/00				 	4.97	476.76
MW-7	1/12/99	8/29/95	13	3 to 13	481.73	5.83 5.28	475.9
101 00 - 7	7/1/96	0/29/93	13	3 to 13	461./3	5.54	476.45
,	3/27/96				<u> </u>		476.19
	9/28/95					4.75	476.98
	3120193	l				5.56	476.17
	9/1/00			Abandoned	1		r
	8/1/00			i 		4.46	474.25
MW-8	1/12/99	9/20/05	10		450.51	4.67	474.04
MW-8	7/1/96	8/29/95	13	3 to 13	478.71	5.24	473.47
	3/27/96					4.72	473.99
	9/28/95					4.86	473.85
) (TV 0.4	7/23/03					1.52	472.88
MW-8A	7/2/02	5/22/02	15	2.5 to 15	474.4	1.62	472.78
				Abandoned			
	8/1/00					3.7	474.72
	1/12/99					3.98	474.44
MW-9	7/1/96	8/29/95	13	3 to 13	478.42	4.31	474.11
	3/27/96					3.67	474.75
	9/28/95					3.69	474.73
	7/23/03					0.4	474.31
MW-9A	7/2/02	5/22/02	15	2.5 to 15	474.71	1.05	473.66
				Abandoned			
	8/1/00					4.35	475.76
	1/12/99					NM	NA
MW-10	7/1/96	8/29/95	17	2 to 17	480.11	4.97	475.14
	3/27/96					4.35	475.76
	9/28/95					4.44	475.67
				Abandoned			
	8/1/00					4.44	476.47
	1/12/99				· · · · · · · · · · · · · · · · · · ·	4.21	476.7
MW-11	7/1/96	9/27/95	15	5 to 15	480.91	4.63	476.28
	3/27/96			· · · · · · · · · · · · · · · · · · ·		3.84	477.07
	9/28/95		1			5.05	475.86
	7/23/03					2.10	478.81
	8/1/00					3.37	477.54
	1/12/99				<u> </u>	2.58	478.33
DW-1	7/1/96	4/21/95	35	25 to 35	480.91	3.34	477.57
	3/27/96				400,71	1.9	479.01
	9/28/95					2.88	478.03
RW-1	7/5/01				NM	2.96	NA
Notos:	113101				IAIAI	۷,۶۵	. NA

Notes:

- 1. All elevations are relative to a temporary bench mark located on the island at the intersection of Highway 42 and Broadway Road with an elevation of 483.47 ft.
- 2. NM = Not measured.
- 3. NA = Not Applicable.
- 4. MW-2, 3, 4, & 6 were re-surveyed on July 2, 2002.

Table 2
Groundwater Analytical Results
July 23, 2003
First Last Stop Convenience Store
EAI Project 40610
NCDWM Incident 14425

Mell	Date	Benzene	Ethylbenzene	Toluene	Total	Naphthalene	Lead	IPE	MTBE
Number	Sampled	(l/gn)	(l/gn)	(l/gn)	Xylenes	(l/gu)	(l/gn)	(l/gn)	(l/gn)
					(ug/I)				
NCAC-2L Standard	Standard	-	29	1000	530	21	15	02	200
MW-1A	MW-1A 07/23/03	<1	\$	\$	<15	<20	\$	<10	< <u>\$</u>
MW-2	07/23/03	! >	\$	\$	<15	<20	43	<10	\$
MW-3	07/23/03	.	5.29	\$	<15	<20	8	<10	\$
MW-4	07/23/03	-	25.7	\$	<15	<20	6	<10	5.14
MW-5A	07/23/03	I>	\$	\$	<15	<20	Ş	<10	<5
9-MM	02/23/03	I>	\$>	Ą	<15	<20	28	<10	\$
MW-7	07/23/03	SN	SN	SN	NS	NS	SN	SN	NS
MW-8A	07/23/03	[>	\$>	<5	<15	<20	9	<10	\$
MW-9A	07/23/03	[>	\$>	<5	<15	<20	\$	<10	\$
DW-1	SN	SN	SN	NS	NS	SN	SN	SN	NS
RW-1	SN	SN	SN	NS	NS	SN	SN	SN	NS
WSW-1	02/23/03	[>	\$>	\$	<15	<20	\$	<10	Ş

Notes:

Concentrations in bold print exceed NCAC 2L Groundwater Quality Standards.

NS = Not Sampled (MW-10 has been destroyed or covered by construction equipment.)

NA = Not Analyzed

WSW-1 located on the property of Mr. Wilbur Thomas at 1910 Broadway Road

Table 3 Historical Summary of Groundwater Analytical Results Page 1 of 3

Former First and Last Stop Convenience Store EAI Project 40610 NCDWM Incident 14425

Well ID	Date Sampled	Benzene (ug/l)	Ethylbenzene (ug/l)	Toluene (ug/l)	Total Xylenes (ug/l)	Naphthalene (ug/l)	MTBE (ug/l)	Lead (ug/l)
NCAC 2L Standards		1	2 9	1000	530	21	200	15
	7/\$/01	<1	<5	<5	<15	<5	<5	40
	8/1/00	<1	<5	<5	<15	<5	<5	10
	01/12/99	<1	<5	<5	<15	<5	<5	<5
	7/1/96	<1	<1	1.04	<1	<2	<5	<10
MW-1	3/27/96	<1	<1	<1	<1	<5	<5 <5	<3 <5
	9/27/95	<0.5	<1	<1	<1	<10	< <u>\$</u>	<5 <5
	8/1/95	<0.5	<1 <1	<1 <1	<1 <2	<10 <10	<5	<10
	4/21/95	<0.5	<5	<5	<15	<20	<5	<5
MW-1A	7/23/03 7/2/02	<1 <1	<5	<u><3</u> <5	<15	<20	<5	<5
IVI W-IA	<u> </u>	<1	<5	<5	<15	<20	<5	43
	7/23/03 7/2/02	14.4	106	2.9	35.5	82	24.5	<5
	7/5/01	NS	NS	NS	NS	NS	NS NS	NS
	8/1/00	10.1	124	12	21.7	106	38.8	9
	01/12/99	25	230	25	35.8	10	<5	6
	7/1/96	63.3	307	57.1	65.4	<2	<5	21
MW-2	3/27/96	65.9	352	27.2	99.7	60.2	<5	18
	9/27/95	71.3	260	9.1	255	55.4	<5	42
	8/1/95	<0.5	152	21.7	96.9	43.2	<5	44
	4/21/95	104	434	89.1	631	82. 9	<5	56
	7/23/03	<1	5.29	<5	<15	<20	<5	8
	7/2/02	<1	<5	<5	<15	<20	<5	<5
	7/5/01	<1	<5	<5	<15	<5	<5	5
	8/1/00	<1	<5	<5	<15	<5	<5	3
	01/12/99	11	102	<5	52	<5	<5	8
	7/1/96	21.2	29.8	4.33	11.6	124	<5	<10
MW-3	3/27/96	19.4	20.5	4.9	9.5	<5	<5	<3
	9/27/95	8.3	22.5	1.4	15.3	<10	<5	<5
	8/1/95	<0.5	9.1	1.8	11.3	<10	<5	<5
	4/21/95	17.2	100	14.8	123	28.9	<5	7
	7/23/03	<1	25.7	<5	<15	<20	5.14	9
	7/2/02	6.18	31.4	<5	<15	<20	36.8	6
	7/5/01	3.28	75,3	<5	13.4	<20	20.4	5
	8/1/00	8.06	72.4	<5	19.4	31.1	19.2	7
	1/12/99	<1 12.2	70.2	<5	<15	10	<5 <5	8
N637-4	7/1/96	13.3	70.3	6.25	109	19.4		<10
MW-4	3/27/96 9/27/95	16.3 193	60.2 127	<1 82.6	71.8	18.4 <10	<5 <5	23 39
	8/1/95		79.4	82.6 15.2	317 92.9	32.4	<5	7
	4/21/95	30.8 43. 9	67.9	8.6	126	14.8	<5	45
MW-5 ⁽¹⁾	8/1/95	<0.5	<1	<1	<1	<10	<5	<5

Table 3 Historical Summary of Groundwater Analytical Results Page 2 of 3

Former First and Last Stop Convenience Store EAI Project 40610

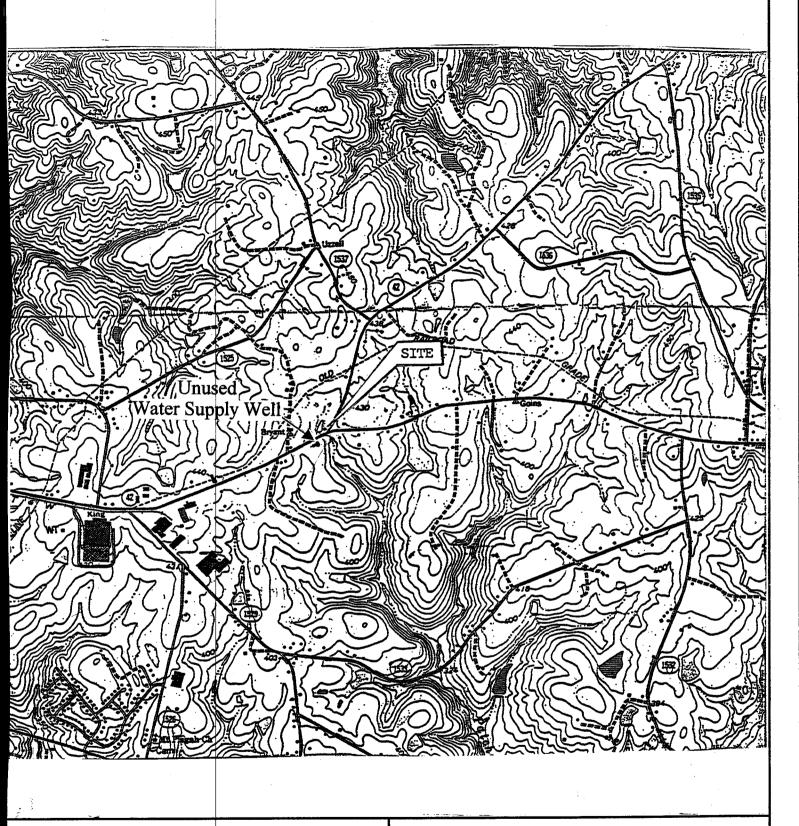
NCDWM Incident 14425

Well ID	Date Sampled	Benzene (ug/l)	Ethylbenzene (ug/l)	Toluene (ug/l)	Total Xylenes (ug/l)	Naphthalene (ug/l)	MTBE (ug/l)	Lead (ug/l)
NCAC 2L Standards		1	29	1000	530	21	200	15
	7/23/03	<1	<5	~ 5	<15	<20	<5	<5
	7/2/02	<1	<5	<5	<15	<20	<5	<5
	7/5/01	<1	<5	<5	<15	<5	<5	<5
	8/1/00	<1	<5	<5	<15	<5	<5	7
	01/12/99	<1	<5	<5	<15	<5	<5	7
MW-5A	7/1/96	<1	<1	1.04	<1	<2	<5	27
	3/27/96	<1	<1	<1	<1	<5	<5	14
	9/27/95	< 0.5	<1	<1	<1	<10	<5	<5
	7/23/03	<1	<5	<5	<15	<20	<5	28
	7/2/02	<1	<5	<5	<15	<20	<5	<5
	7/5/01	<1	<5	<5	<15	<5	<5	41
MW-5A MW-7 MW-8A	8/1/00	<1	<5	<5	<15	<5	<5	6
	01/12/99	<1	<5	<5	<15	<5	<5	13
MW-6	7/1/96	<1	<1	1.01	<1	<2	<5	33
	3/27/96	<1	<1	<1	<1	<5	<5	46
	9/27/95	<0.5	<1	<1	<1	<10	<5	92
	8/29/95	<0.5	<1	<1	<1	<10	<5	71
	7/23/03	NS	NS	NS	NS	NS	NS	NS
	7/2/02	<1	<5	<5	<15	<20	26.6	<5
	7/5/01	<1	<5	<5	<15	<5	9.64	136
	8/1/00	<1	<5	<5	<15	<5	28.9	5
	01/12/99	<1	<5	<5	<15	<5	<5	15
MW-7	7/1/96	<1	<1	<1	<1	<2	<5	12
	3/27/96	<1	<1	<1	<1	<5	<5	11
	9/27/95	<0.5	<1	<1	<1	<10	<5	33
Standards 7 7 8 9 7 7 8 9 7 7 8 9 7 8 9 8 7 MW-6 3 9 8 7 MW-8A MW-8A MW-8A MW-8A MW-9A MW-9(2) 3 9 8 7 MW-9A	8/29/95	<0.5	<1	<1	<1	<10	<5	24 6 %
MW-8 A	7/23/03 7/2/02	<1 <1	<5 <5	<5 <5	<15 <15	<20 <20	<5 <5	<5
14144-071	7/5/01	NS	NS	NS	NS	NS	NS	NS
	8/1/00	<1	<5	<5	<15	<5	<5	3
	01/12/99	<1	<5	<5	<15	<5	<5	20
MW-8 ⁽²⁾	7/1/96	<1	<1	1.02	<1	<2	<5	80
2.2.7	3/27/96	<1	<1	<1	<1	<5	<5	7
	9/27/95	<0.5	<1	<1	<1	<10	<5	71
	8/29/95	<0.5	<1	<1	<1	<10	<5	88
	7/23/03	<1	<5	<5	<15	<20	<5	<5
MW-9A	7/2/02	<1	<5	<5	<15	<20	<5	<5
	7/5/01	NS	NS	NS	NS	NS	NS	NS
	8/1/00	<1	<5	<5	<15	<5	<5	49
(2)	01/12/99	<1	<5	<5	<15	<5	<5	17
MW-9 ⁽²⁾	7/1/96	10.2	16.3	<1	8.32	4.48	<5	46
	3/27/96	<1	<1	<1	<1	<5	<5	263
	9/27/95	1.6	6.9	<1	<1	<10	<5	236
	8/29/95	5. 7	18.7	<1	<1	<10	<5	166

Table 3 Historical Summary of Groundwater Analytical Results Page 3 o. 3

Former First and Last Stop Convenience Store EAI Project 40610

NCDWM Incident 14425


Well ID	Date Sampled	Benzene (ug/l)	Ethylbenzene (ug/l)	Toluene (ug/l)	Total Xylenes (ug/l)	Naphthalene (ug/l)	MTBE (ug/l)	Lead (ug/l)
NCAC 2L Standards		1	29	1000	530	21	200	15
	7/23/03	NS	NS	NS	NS	NS	NS	NS
	7/2/03	NS	NS	NS	NS	NS	NS	NS
	7/5/01	NS	NS	NS	NS	NS	NS	NS
	8/1/00	<1	<5	<5	<15	<5	<5	119
	7/1/96	<1	<1	<1	<1	<2	<5	49
MW-10 ⁽²⁾	3/27/96	<1	<1	<1	<1	<5	<5	7
	9/27/95	< 0.5	<1	~!	<1	<10	<5	91
	8/29/95	< 0.5	<1	<1	<1	<10	<5	6
	7/23/03	NS	NS	NS	NS	NS	NS	NS
	7/2/02	NS	NS	NS	NS	NS	NS	NS
	7/5/01	NS	NS	NS	NS	NS	NS	NS
	8/1/00	<1	<5	<5	<15	<5	<5	3
	01/12/99	<1	<5	<5	<15	<5	<5	14
MW-11 ⁽²⁾	7/1/96	<1	<1	<1	<1	<2	<5	17
	3/27/96	<1	<1	<1	<1	<5	<5	80
	9/27/95	< 0.5	<1	<1	<1	<10	<5	238
	7/23/03	NS	NS	NS	NS	NS	NS	NS
	7/2/02	NS	NS	NS	NS	NS	NS	NS
	7/5/01	NS	NS	NS	NS	NS	NS	NS
	8/1/00	<1	<5	<5	<15	<5	<5	6
	01/12/99	<1	<5	<5	<15	<5	<5	<5
	7/1/96	<1	<1	<1	<1	<2	<5	<10
DW-1	3/27/96	<1	<1	<1	<1	<5	<5	<3
	9/27/95	< 0.5	<1	<1	<1	<10	<5	<5
	8/1/95	< 0.5	<1	<1	<1	<10	<5	<5
	4/21/95	< 0.5	<1	<1	<2	<10	<5	<5
RW-1	7/23/03	NS	NS	NS	NS	NS	NS	NS
	7/2/02	NS	NS	NS	NS	NS	NS	NS
	7/5/01	<1	<5	<5	<15	<5	<5	8
WSW-1	7/23/03	<1	<5	<5	<15	<20	<5	<5

Notes:

- 1. Concentrations in **bold** print exceed NCAC 2L Groundwater Quality Standards.
- 2. (1) Monitoring well MW-5 was removed on September 27, 1995 and replaced with MW-5A.
- 3. (2) Monitoring wells MW-8, MW-9, MW-10, and MW-11 were abandoned on 8/3/00.
- 4. IPE was present in monitoring well MW-2 (13.7 ug/l) during the 7/2/02 sampling event below the NCAC 2L Standard.

FIGURES

Topographic Site Map

Former First and Last Stop Convenience Store S.R. 1579 (Broadway Road) & N.C. 42 Sanford, Lee County, North Carolina

Scale: 1"=2000'

SOURCE:

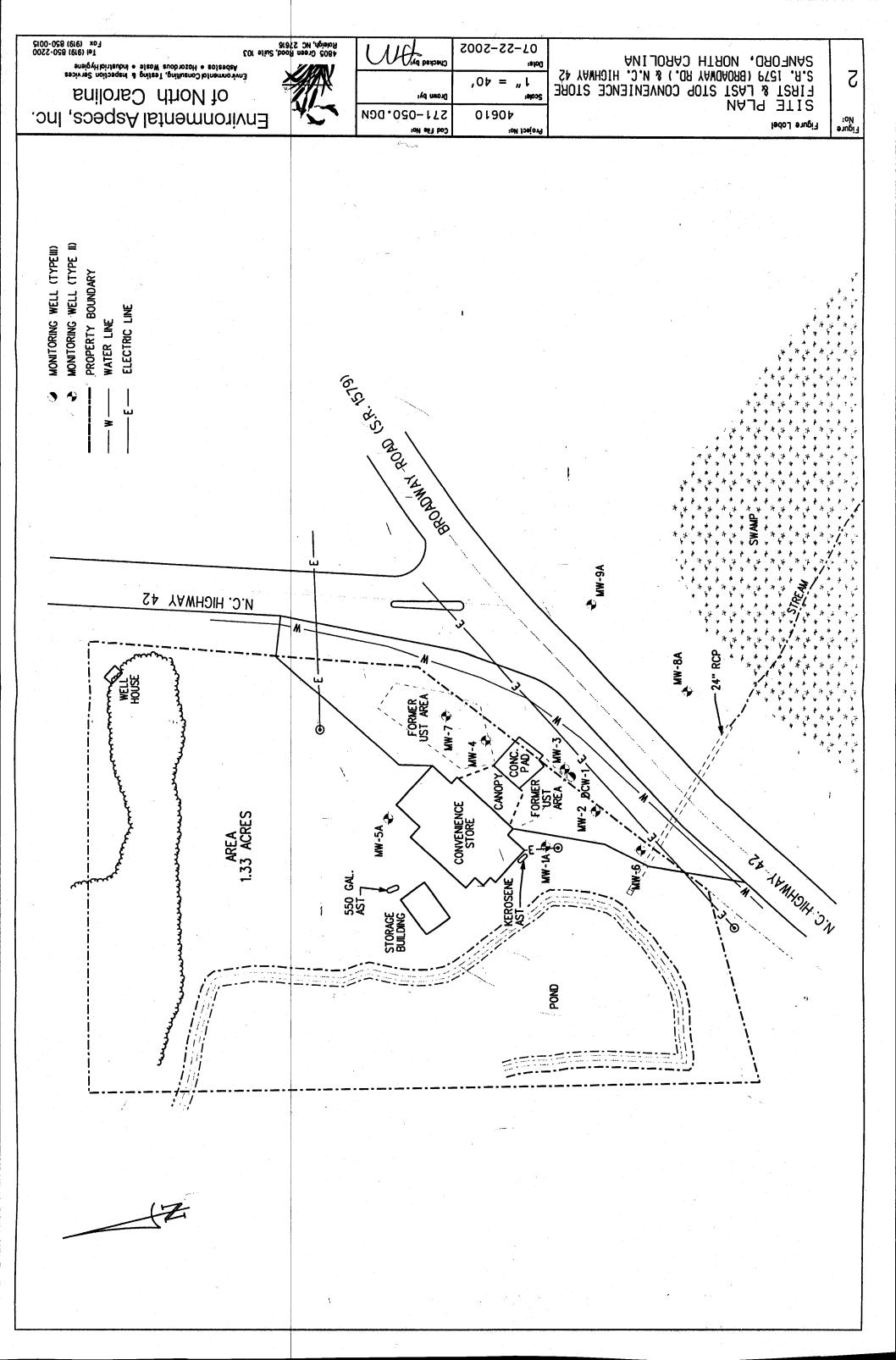
Broadway, NC USGS Map

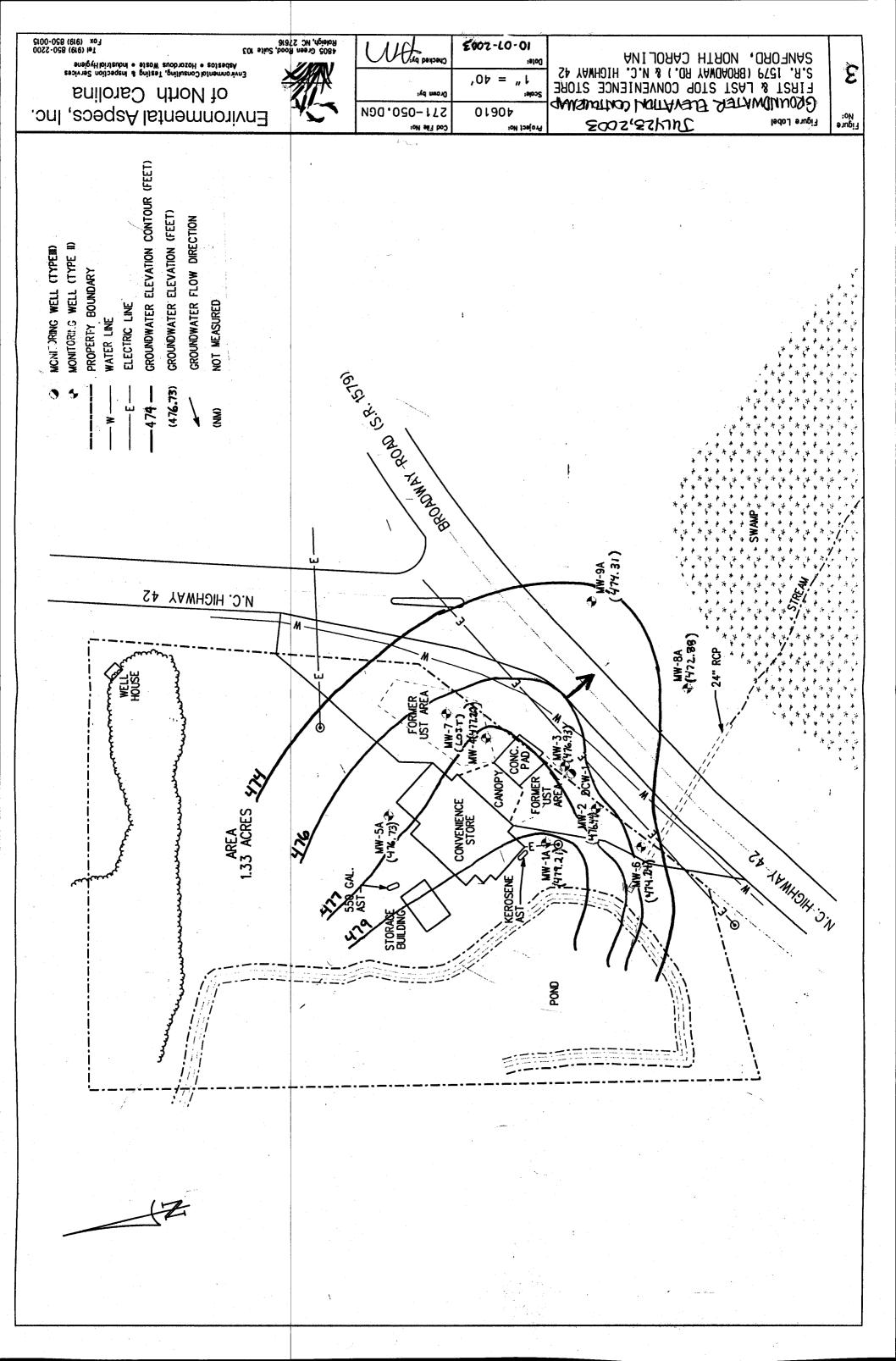
Checked by:

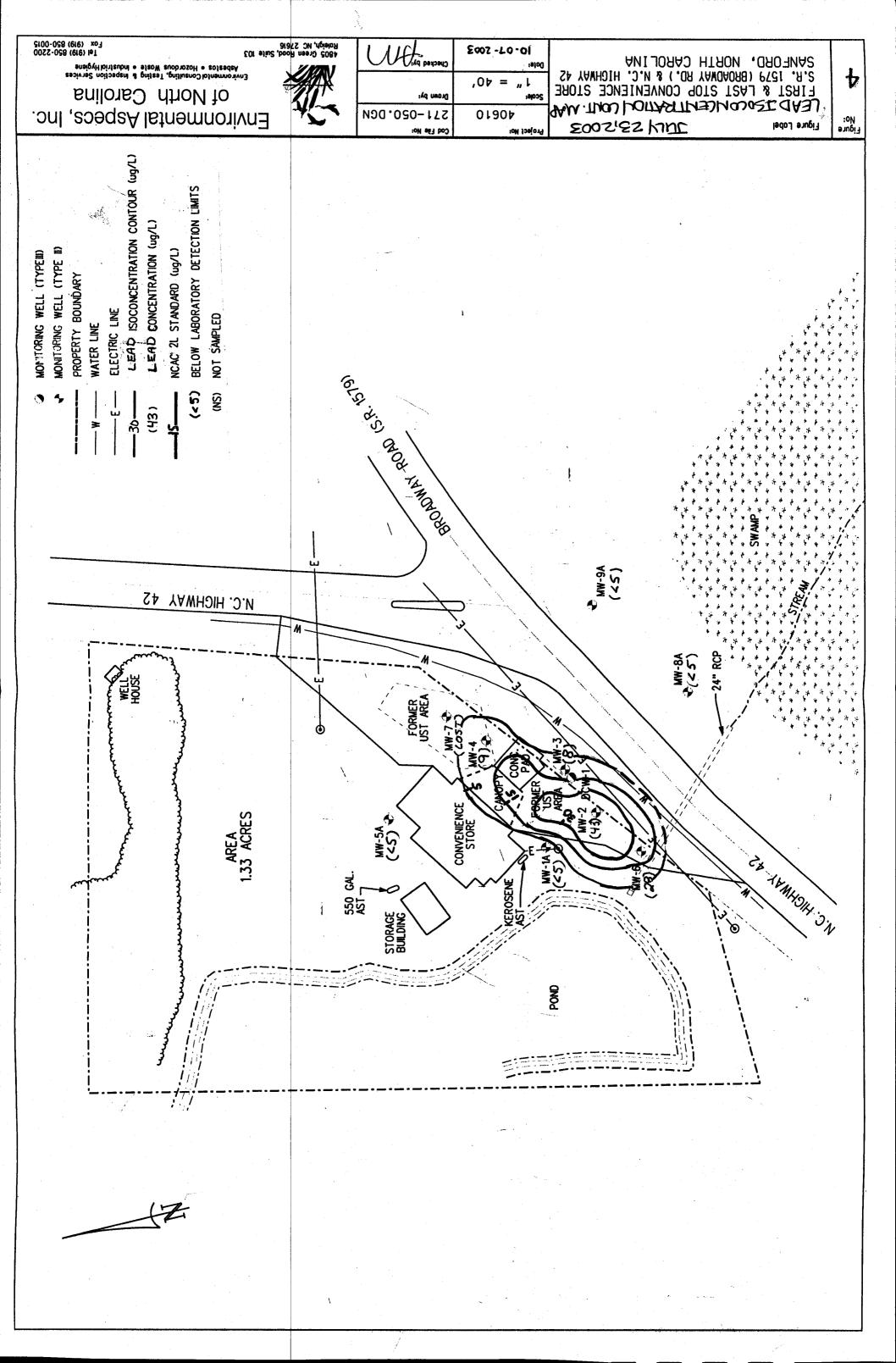
ajm

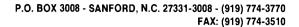
Environmental Aspecs, Inc. of North Carolina

Environmental Consulting, Testing & Inspection Services Asbestos Hazardous Waste Industrial Hygiene


4805 Green Road, Suite 103 Raleigh, North Carolina 27616 Tel (919) 850-2200 Fax (919) 850-0015


July 18, 2002


Project No: 40610


Drawing No:

1

RECEIVED

JIII 2 1 1994

DEHNR-RAL RO

July 19, 1994

Mr. Nile Testerman
NCDEHNR
Groundwater Section
Divison of Environmental Management
3800 Barrett Drive
Raleigh, North Carolina 27609

RE: Soil Borings, Monitoring Well Installation, and Associated Sample Collection and Analyses of Soil and Water Samples After the Removal of Three Underground Storage Tanks at the First and Last Stop Located at 1831 Broadway Road in Broadway, North Carolina.

PXS Job No. 061794

Dear Mr. Testerman:

As per our telephone conversation and based on your recommendations, Patterson Exploration Services (PXS) visited the above referenced site on June 23, 1994, to conduct soil sampling and install a monitoring well in an effort to determine the extent of soil contamination and to determine if groundwater at the site had been impacted from a release from underground storage tanks removed in December of 1993.

Boring B-1 was conducted adjacent to, down gradient and west of the previous location of a 4,000 gallon gasoline tank, which was previously associated with contaminated soil (see map for location). The boring was conducted to 18 feet below ground surface and soil samples were collected at 5', 7.5', 10' and 15'. The samples were analyzed using EPA Methods 5030/8000 and 3550/8000. All soil samples from boring B-1 showed concentrations below state action levels.

Boring B-2 was conducted at the same site where soil sample SS-3 was previously collected. It was drilled to a depth of 10 feet, at which point one sample was taken. Soil sample SS-3, collected after tank removal, showed a concentration of 446 ppm using EPA Method 5030/8000 (see closure report to Nile Testerman dated December 29, 1993). Laboratory analyses results of the soil sample collected from boring B-2 at 10 feet showed concentrations of below detectable limits for EPA Methods 5030/8000 and 3550/8000.

Page 2 Mr. Nile Testerman July 19, 1994

Boring B-3 was conducted to 19 feet below ground surface and soil samples were collected from 5', 10', 14' and 19'. Soil sample B3SS#1-5' showed concentrations of 784.4 ppm for EPA 5030/8000 and 3075.8 ppm using EPA Method 3550/8000. Soil sample B3SS#2-10 showed concentrations of 17.2 ppm using EPA Method 5030/8000 and 29.8 ppm using EPA Method 3550/8000. Soil sample B3SS#3-14 showed concentrations of 13.9 ppm using EPA Method 5030/8000 and below detectable limits using EPA Method 3550/8000, while, soil sample B3SS#3-19 showed below detectable limits for both methods.

Boring B-4 was conducted to 14 feet below ground surface and soil samples were collected at 5', 10' and 14'. The soil sample collected at 5 feet below ground surface (B4SS#1-5) showed concentrations of 112.9 ppm using EPA Method 5030/8000 and 561.6 ppm using EPA Method 3550/8000. The other two soil samples collected from boring B-4 at 10 feet and 14 feet show concentrations below state action levels.

Boring B-5 was conducted west of the previous 4,000 gallon gasoline tank location to 10 feet in depth and soil samples were collected at 5 and 10 feet below ground surface. The soil sample collected from B-5 at 5 feet showed a concentration of 23.4 ppm using EPA Method 5030/8000 and 32 ppm using EPA Method 3550/8000. The soil sample collected at 10 feet from boring B-5 showed concentrations of below detectable limits for both methods.

Boring B-6 was conducted south of boring B-3 between Broadway Road and the previous 4,000 gallon gasoline tank location to a depth of 14 feet and soil samples were collected at 5', 10' and 14'. None of the soil samples collected from boring B-6 showed concentrations above state action levels for either method. Borings B-7 and B-8 were conducted east of the pump island between the pump island and the previous locations of the 4,000 gasoline and 8,000 gasoline tanks. Soil samples collected from borings B-7 and B-8 at 5', 10' and 14' showed concentrations below state action levels for EPA Methods 5030/8000 and 3550/8000.

Based on laboratory analyses results of soil samples collected from the borings conducted on June 23, 1994, soil contamination is limited to within 5 to 10 feet of the ground surface and to the area around the pump island and previous location of the 4,000 gallon gasoline tank located west of the pump island. A canopy is located directly in the front of the store, therefore, soil borings were not conducted in this area.

Page 3 Mr. Nile Testerman July 19, 1994

Soil borings B-2 through B-8 were conducted using pre-cleaned solid stem augers. The augers were cleaned and decontaminated using high steam between each boring. All soil samples were collected using disposable latex gloves into EPA approved sample on ice and taken to the laboratory under chain of custody.

Boring B-1 was conducted using 4 1/4-inch I.D. hollow stem augers and a monitoring well was subsequently installed in the boring. The monitoring well was constructed with 2-inch I.D. flush joint, threaded, Schedule 40, PVC screen and riser casing. The PVC screen and riser casings were pre-cleaned prior to installation. Clean, new disposable latex gloves were worn when lowering the screen and riser casing into the borehole.

Washed silica sand was poured into the annulus between the boring and the screen to one foot above the top of the screen. A one foot thick bentonite seal was constructed above the sand filter pack by pouring bentonite pellets into the annular space. Distilled water was added to the borehole at ten minute intervals to aid in hydration of the bentonite seal.

The remaining annular space was tremie grouted from the bottom up with neat cement. A locking cap was installed on the well. The well head was completed with a surface mount well head protector.

The well was developed by bailing the appropriate number of well volumes as per EPA protocol (3 to 5 well volumes). New disposable, teflon, pre-cleaned bailers were used to bail the well and obtain the water sample. The groundwater sample was collected and placed into pre-cleaned 40 ml screw capped vials with teflon septa. The vials were filled so as to eliminate any air bubbles. The samples were transferred on ice to the laboratory.

A water sample was collected from the monitoring well on June 27, 1994, and was analyzed using EPA Methods 5030/601, 602 MODIFIED and 3020/7421. No constituents above state water quality standards were found in the water sample collected from the monitoring well installed on June 23, 1994.

We have enclosed a map showing the soil boring and well locations. We have also enclosed laboratory analyses results of the soil and water samples along with a well construction record and diagram of the monitoring well.

Page 4
Mr. Nile Testerman
July 19, 1994

If you have questions, please don't hesitate to call. Sincerely,

R. Dennis Holder, Geologist Environmental Division Manager

O. F. Patterson, III, PG, CPG PATTERSON EXPLORATION SERVICES

rdh.061794

PXS RESEARCH LABORATORIES

ANALYTICAL RESULTS

Site: First and Last Stop	PXS#: 061794
Location: Broadway Road, Sa	nford, N. C.
Client: Edna Rosser	
Collected By: Dennis Holder	Date Received: 6/23/94
Date Collected: 6/23/94	Date Extracted: 6/28/94 - 6/29/94
Matrix: Soil	Analysis Date: 7/9/94
Analysis Performed By: Dway	ne Phillips

PXS Lab ID#	Field ID#	Method #	Analysis Performed	Concentration mg/kg	Det. Limit mg/kg
603794	B1 SS#1-5'	5030/8000 3550/8000	TPHG TPHD	5.6 BDL	2.0 5.0
603894	B1 SS#2-7.5'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
603994	B1 SS#3-10'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
604094	B1 SS#4-15'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
604194	B2 SS#1-10'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
604294	B3 SS#1-5'	5030/8000 3550/8000	TPHG TPHD	784.4) 3075.8	2.0 5.0
604394	B3 SS#2-10'	5030/8000 3550/8000	TPHG TPHD	17.2 29.8	2.0 5.0
BDL = Below Detection l	Limits ND = Not Detected				

Page 2 Analytical Results PXS# 061794

PXS Lab ID#	Field ID#	Method #	Analysis Performed	Concentration mg/kg	Det. Limit mg/kg
604494	B3 SS#3-14'	5030/8000 3550/8000	TPHG TPHD	13.9 BDL	2.0 5.0
604594	B3 SS#4-19'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
604694	B4 SS#1-5'	5030/8000 3550/8000	TPHG TPHD	112.9 561.6	2.0 5.0
604794A	B4 SS#2-10'	5030/8000 3550/8000	TPHG TPHD	BDL 5.0	2.0 5.0
604794B	B4 SS#3-14'	5030/8000 3550/8000	TPHG TPHD	1.5 32.0	2.0 5.0
604894	B5 SS#1-5'	5030/8000 3550/8000	TPHG TPHD	23.4 32.0	2.0 5.0
604994	B5 SS#2-10'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
605094	B6 SS#1-5'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
605194	B6 SS#2-10'	5030/8000 3550/8000	TPHG TPHD	BDL 12.2	2.0 5.0
605294	B6 SS#3-14'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
605394	B7 SS#1-5'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
605494	B7 SS#2-10'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
605594	B7 SS#3-14'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0
605694	B8 SS#1-5'	5030/8000 3550/8000	TPHG TPHD	5.4 6.1	2.0 5.0
605794	B8 SS#2-10'	5030/8000 3550/8000	TPHG TPHD	2.7 38.4	2.0 5.0
605894	B8 SS#3-14'	5030/8000 3550/8000	TPHG TPHD	BDL BDL	2.0 5.0

#25554 061794

PXS RESEARCH LABORATORIES CHAIN OF CUSTODY RECORD

Environmental Samples & Hazardous Materials

Type of Sample:		Solid Waste_		
	Surface Water	Soil		
	Waste Water	Sludge		
	Hazardous Waste	Other		
Site: First	and Last Stop			
		20ad, Sanford		
Client Name: E	tna Rosser			
Client Address:			Telephone:	
Collector's Name	R. Dennis He	140	Telephone:	
		Time Sampled: 9:00	-1:30	
Field Information	/Sample Description/Pre	eservative Used:		
ANalyze S	oil Samples no	ing EA Metho	ds 3550/8000	
and So	30/8000 -	ing EAT Metho	.ce_(
Field Sample No.	/BISS#1-5)(13\$SS#2-7.5)	X3155#3-10)(BISS#4-15)((B255#1-10)(B355#1-5)	
(B355#2-10)(B355#	3-14)(3355#4-19)(84	SS#1-5YB4SS#2-10XB4SS#	3-14) (BSSS#1-5)(BSSS#2+0)	
(B655#1-5\B655# B855#1-10) [B8	2-10) (3655#3-14) (37	SS#1-5) (B.7SS#2-10)(B):	55#3-14)(8855#1-5)	
CHAIN OF POSSESSION				
	ature	Title	Inclusive Dates	
1. P. Dennis Ho	- Oe	Geologia	6-23-94	
2. Varies Ger		Lab te	6/23/94	
3. Along pre 4	mich	Chemix	16/23-7/14	
Results Reported By: Signat		Months Title	7/15/9/ Date	
· /	.		2	

COMPREHENSIVE SITE ASSESSMENT and QUARTERLY MONITORING REPORT for April & August 1995

Pro 19**9**

First and Last Stop Convenience Store
Edna Rosser Site
SR 1579 (Broadway Rd.) NC Highway 42
Sanford, Lee County, North Carolina

EAI Job No. 50-954-4610

Prepared for:

Edna Rosser Sanford, North Carolina

Prepared by:
Adam R. Newman
ENVIRONMENTAL ASPECS, INC.
OF NORTH CAROLINA
PO Box 20107

Raleigh, North Carolina

December 1, 1995

EXECUTIVE SUMMARY

The First and Last Stop Convenience Store is located at the northwest conter of the intersection of SR 1579 (Broadway Road) and NC Highway 42 in Sanford, North Carolina. Petroleum was dispensed from the subject site for approximately 41 years from one 8,000 gallon and one two 4,000 gallon gasoline underground storage tanks (USTs), one 550 gallon heating oil UST, and one 550 gallon kerosene aboveground storage tank (AST). The two 4,000 gallon and the 8,000 gallon USTs were removed from the above referenced site from December 13, 1993 through December 16, 1993. A Closure Assessment Report was released by Patterson Exploration Services of Sanford, North Carolina, on December 29, 1993. The 550 gallon heating oil UST was removed from the site on August 29, 1995 under the direction of Environmental Aspecs, Inc. of North Carolina. Information on the heating oil tank closure is included in this site assessment. All storage tanks removed from the property belonged to the current owner of the subject property, Edna Rosser of Sanford, North Carolina.

The release was discovered during the closure of the gasoline USTs by personnel from Patterson Exploration Services. The tank pits were excavated to a depth not recorded in the Closure Assessment Report. The soil excavated around the USTs were placed back into the tank pits. The diesel contamination present in the soil is from a surface spill some time before the closure of the USTs. Approximately 181.5 tons of contaminated soil including about 15 tons of soil from the closure of the 550 gallon heating oil UST were removed from the site on August 29 and 30, 1995.

The subject site and adjacent sites are all supplied by public water. There have been no reported groundwater incidents within a half mile of the subject site. The population of Lee County is over 37,000. The land usage in the vicinity of the site is residential, farming, and small business. There is a pond on the west side of the site that drains into a small creek south of the subject site via a drain pipe that has the potential of being a migratory pathway for petroleum contaminants.

Approximately 10 cubic yards of contaminated soils still remain in the ground. The maximum soil contamination level observed is 240 ppm of Total Petroleum Hydrocarbons as gasoline and 3,075.8 ppm as diesel. The groundwater contamination plume has an egg shape with an impacted area of approximately 2,500 square feet. The maximum contamination levels are Benzene at 104 ppb, Ethylbenzene at 434 ppb, Toluene at 89.1 ppb, Xylenes at 631 ppb, Bis (2-ethylhexyl) phthalate at 15.7 ppb, Naphthalene at 89.2 ppb, 1,2 Dichloroethane at 2.6 ppb, and Lead at 238 ppb. The concentrations of Benzene, Ethylbenzene, Xylenes, Bis (2-ethylhexyl) phthalate, Naphthalene, and Lead are above NCDEM 2L Regulatory Limits.

Based on this Comprehensive Site Assessment (CSA), quarterly groundwater monitoring will continue to determine if remediation systems would be necessary. Prior to installation of any system, a Corrective Action Plan will be completed to determine the economical and technical feasibility of the remediation systems.

Quarterly groundwater monitoring data for samples collected in April and August 1995 are included with this Comprehensive Site Assessment.

TABLE OF CONTENTS

1.0	INTR	ODUCTION			
2.0	SITE	HISTORY AND SOURCE CHARACTERIZATION			
	2.1	Record Review			
	2.2	Release Incidents and Environmental Investigation			
	2.3	Corrective Actions			
3.0	POTENTIAL RECEPTORS AND MIGRATORY				
	3.1	Adjacent Sites and On-Site Utilities			
	3.2	Potential Off-Site Sources			
		3.2.1 Federal			
		3.2.2 State			
	3.3	Estimated Contaminant Migration Rates			
4.0	SOIL	S INVESTIGATION			
	4.1	Geographic Setting			
	4.2	Geology			
	4.3	Soils			
	4.4	Soils Investigation			
5.0	GROU	UNDWATER INVESTIGATION 8			
	5.1	Monitoring Well Placement and Design 8			
	5.2	Groundwater Contamination Plume			
	5.4	Quarterly Monitoring Reports			
		5.4.1 Quarterly Groundwater Monitoring Event No. 1 (April 21, 1995)			
		5.4.2 Ouarterly Groundwater Monitoring Event No. 2			
	5.5	5.4.2 Quarterly Groundwater Monitoring Event No. 2			
6.0	RECO	RECOMMENDATIONS			
7.0	REFE	RENCES			
8.0	DRAWINGS				
9.0	TABL	TABLES			

LIST OF APPENDICES

Appendix A	Site Sensitivity Evaluation (SSE)
Appendix B	Well Construction Diagrams
Appendix C	Survey Data
Appendix D	Laboratory Results/Chain of Custody
Appendix E	Standard Operating Procedure
Appendix F	Soil Disposal Manifests
Appendix G	Monitoring Well Field Data Sheets

COMPREHENSIVE SITE ASSESSMENT

First and Last Stop Convenience Store EAI Job No. 50-954-4610

1.0 INTRODUCTION

Environmental Aspecs, Inc. of North Carolina (EAI) has conducted a Comprehensive Site Assessment at the First and Last Stop Convenience Store in Sanford, Lee County, North Carolina. This assessment was requested by Ms. Edna M. Rosser. All work was done in accordance with EAI's Proposal No. 4331064 dated July 28, 1994.

The intent of this investigation is to sufficiently characterize the cause, significance and extent of groundwater and soil contamination such that a Corrective Action Plan (CAP) can be developed. Our investigation included but was not limited to the following services:

- A. We reviewed ownership history documents to establish current and past uses. This effort centered around determining when potentially hazardous materials were stored and distributed on the site.
- B. We investigated the surrounding area for potential receptors and contributors of the contamination.
- C. We performed monitoring well installation, soil borings and laboratory analysis to determine the extent of both the soil and groundwater contaminant plumes.
- D. We performed monitoring well testing to determine the aquifer characteristics and possible contamination migration.

The subject site is at the intersection of SR 1579 (Broadway Rd.) and NC Highway 42 in Sanford, North Carolina. The site location and site base plan are located in Section 8.0, Drawings 2 and 5.

2.0 SITE HISTORY AND SOURCE CHARACTERIZATION

2.1 Record Review

The subject site containing the former USTs consists of approximately a one acre lot which is currently owned by Edna M. Rosser (formerly Edna M. Dickens). She has owned the property since June 4, 1951 with her husband Phil M. Dickens when it was granted to them

by S.S. and Annie F. Thomas. The lot was part of a 53 acre tract owned by S.S. and Annie F. Thomas since 1937. The property was mostly wooded until it was purchased by Phil and Edna M. Dickens who operated a retail gasoline facility and convenience store since the 1950's.

2.2 Release Incidents and Environmental Investigation

As recorded in the Tank Closure Report submitted to the State from Patterson Exploration Services, two 4,000 gallon and one 8,000 gallon gasoline USTs were removed from the subject site on December 13, 1993 through December 16, 1993. One UST was located near the west side of the fuel pumps and two USTs were located near the southeast corner of the store. According to the Tank Closure Report from Patterson Exploration Services, petroleum odors and staining in the soil was noted during the time of the closure. The soil excavated around the tanks during the removal was placed back into the excavation.

After further environmental investigation of the soil and the groundwater by Patterson Exploration Services, EAI was contracted by Edna M. Rosser in December of 1994. Under the supervision of EAI, a 550 gallon heating oil UST was removed from the subject site on August 29, 1995. This UST was located near the northeast corner of the store and was not used for retail. Approximately 15 tons of contaminated soil was removed from this location and sent to a facility for bioremediation. The site map with approximate locations of the USTs is in Section 8.0, Drawing 7.

2.3 Corrective Actions

Initial corrective actions include stopping the release and removing the immediate contaminant source by permanent closure of the USTs. The removal of the secondary source was by excavation of contaminated soils on August 29 and August 30, 1995. The somewhat rectangular excavation of the gasoline and diesel contaminated soil between the fuel pump islands was approximately 31 feet long and 17 feet wide and was excavated to a final depth of six feet below the surface grade which was the approximate water table depth at that time. The contaminated soil in the area of the former 550 gallon heating oil UST was excavated on the same day as the gasoline and diesel contaminated soil. This excavation was also rectangular in shape and was approximately 12 feet long, 8 feet wide, and 6 feet below the surface grade. Approximately 181.52 tons of petroleum contaminated soil was removed from the site including the 15 tons removed from around the heating oil UST.

During June of 1994, Patterson Exploration Services conducted several soil borings and installed one monitoring well. After EAI was contracted by Edna Rosser, EAI completed the

soil and groundwater investigation that was started by Patterson Exploration Services to delineate the soil and groundwater plumes.

3.0 POTENTIAL RECEPTORS AND MIGRATORY PATHWAYS

3.1 Adjacent Sites and On-Site Utilities

The subject site is located in a residential/business area. The adjacent property to the northeast is owned by Kenneth H. Cotton. The property to the west of the subject site is owned by A.K. Griffin, Jr. The subject site is bordered to the south by NC Highway 42 and properties owned by Wilbur F. Thomas and William L. Oldham. The subject site is also bordered to the east by NC Highway 42 and William K. Welch. See Drawing 4 for the adjacent property map.

There is one supply well near the northeast corner of Edna Rosser's property. It is currently not in use and Edna Rosser plans for the store to be hooked up to municipal water when it is reopened. All adjacent properties with buildings are served by municipal water and other utilities but are linked to private septic systems.

There is a drainage system that carries water from the pond on the west side of the subject site to a small tributary across NC Highway 42 to the south. There is also standing water on both sides of this tributary near the road. This drainage system for the pond is a potential migratory pathway if present contamination reaches it. Contaminant levels above the 2L Regulatory Limits are less than 25 feet from the drainage system. Recent water level data indicates groundwater flow to be moving toward this drainage system.

There are several subsurface utilities on the subject site. These are all located away from the present contamination and therefore are not presumed to be migratory pathways. The present contamination is partly in the DOT Right of Way south of Edna Rosser's property. Based on the estimates of this CSA, the contamination will reach the swamp and creek at levels greater than 2L Regulatory Limits in 3 to 5 years or less. This contamination will proceed to migrate off-site if corrective actions are not taken.

Page 4

3.2 Potential Off-Site Sources

The files of the Federal and State agencies have been reviewed for potential off-site sources in Nash County within one-half mile of the First and Last Stop Convenience Store. Information reviewed did not reveal any potential off-site source contributing to the site contamination.

3.2.1 Federal: The United States Environmental Protection Agency (USEPA) Region IV, Superfund Branch.

There were no facilities listed on the Environmental Protection Agency USEPA CERCLA or the North Carolina National Priority List within one-half mile of the subject site.

3.2.2 State: North Carolina Department of Environment, Health and Natural Resources.

a. UST Registration

There are no facilities with registered USTs adjacent to the subject site

b. Incident List

There are no incidents within ½ mile of the subject site registered with the NCDEM.

3.3 Estimated Contaminant Migration Rates

The estimated contaminant migration rate is based on the chemical properties that affect the rate of transport and degradation of the chemical compounds. The main chemical property that affects the rate of migration is the attraction of the chemical to soil particles. The KoC value shown in the following table is a measure of the tendency of the chemical to be adsorbed to the soil particles. The greater the KoC value, the stronger the chemical is adsorbed and the lower the mobility, or rate of movement. Ethylbenzene, Xylene and Toluene have a steep gradient as they migrate away from the contaminant source due to their low mobility. Laboratory results indicate that the contaminants have migrated into the DOT Right of Way to the south of the property.

TABLE 1

Fate and Transport Characteristics of Hydrocarbon Compounds

COMPOUND	SOLUBILITY AT 20° C (mg/L)	VAPOR PRESSURE¹ (Torr)	KoC²
Benzene	1,780	75.0	50
Toluene	515	22.0	339
Xylene-M	175	5.0	-
Xylene-O	162	6.0	255
Xylene-P	198	6.5	-
Ethylbenzene	152	7.0	565
Tetraethyl Lead	0.08	0.2	4900
Naphthalene	31.1	1.0	976

¹ at 20 degrees C.

The degradation of hydrocarbon compounds may vary greatly according to the amount of oxygen in the environment. The ranges of half-lives of the contaminant chemicals is included in the table on the next page.

²KoC is a measure of the tendency for organic chemicals to be adsorbed to the soil. The higher the KoC value for each compound, the lower the mobility and the higher the adsorption.

TABLE 2

Ranges of Degradation Half-lives for the Hydrocarbon Contaminants Found in the Contaminant Plume (These half-life estimates apply to degradation rates in a given environment at the outer limits of a contaminant plume)

	SOIL		GROUNDWATER		
COMPOUND	LOW AEROBIC	HIGH ANAEROBIC	LOW AEROBIC	HIGH ANAEROBIC	
Benzene	5 days	16 days	10 days	720 days	
Ethylbenzene	3 days	10 days	6 days	228 days	
Toluene	12 hours	24 hours	12 hours	24 hours	
Xylenes	7 days	28 days	7 days	l year	
Naphthalene	16.6 days	48 days	12 hours	258 days	

4.0 SOILS INVESTIGATION

4.1 Geographic Setting

The subject site is located in the northeast part of Sanford in Lee County, North Carolina. It is located on the northwest corner of NC Highway 42 and SR 1579 (Broadway Rd.). The site is on nearly level rural land and partly modified by the construction of streets and building construction.

4.2 Geology

Lee County is in the Piedmont Plateau and the Upper Coastal Plain physiographic provinces. The site is located on a nearly level alluvial terraces of the Upper Little River System and thin remnants of the Middendorf formation of the Cretaceous Period.. There is a small man-made pond on the site which drains into a small tributary which eventually empties into the Upper Little River. The bedrock underlying the soil consists of phyllites and schists of Eastern Slate Belt metamorphics.

[Reference: Geologic Map of North Carolina. The North Carolina Geologic Survey]

4.3 Soils

According to the Soil Survey of Lee County, North Carolina, the soils in the area are nearly level to sloping, well drained soils that have a sandy subsurface and a loamy subsoil. Field borings indicate a brown to gray silty sand to approximately 5 feet below the surface. Beneath the sandy surface layer is a white to brown silt layer to a depth of approximately 23 feet overlying tan sand. Geologic Cross-Section maps can be found in Drawings 18, 19 and 20.

The soil at the site is classified as Durham series loamy sand (DuB) which are deep, well drained soils formed in materials weathered from Eastern Slate Belt metamorphic phyllites and schists. Permeability of Durham loamy sand is moderate (0.6 inches to 2.0 inches per hour). Runoff is high due to the paved lot and streets. The seasonal high water table is approximately at a 4 foot depth. Typically, Durham loamy sand has a yellowish-brown loamy, sand surface layer about 10 inches thick. A pale-brown loamy sand then extends to a depth of fifteen inches. The upper section of the subsoil is a brownish-yellow sandy clay loam, the middle section is a dark-brown sandy clay loam, and the lower section is a red sandy clay and a sandy clay loam. This subsoil extends to a depth of 56 inches. Beneath this soil to a depth of 70 inches is mottled yellowish-brown, white, strong brown and reddish-yellow saprolite. The soils on the subject site consist of deeper alluvial materials than typical for Durham soils.*

[Reference: | Soil Survey of Lee County, North Carolina. Soil Conservation service, USDA 1989, PP.1, 13, 49, 100].

4.4 Soils Investigation

During UST removal activities monitored by Patterson Exploration Services on December 16, 1993, contamination was detected in soils collected from beneath the USTs. The contaminant level was detected in a range of below the detection limit (BDL) to 868 parts per million (ppm) of Total Petroleum Hydrocarbons (TPH) as gasoline and BDL to 2,174 ppm as diesel. The removal of the 550 gallon heating oil UST was monitored by Environmental Aspecs, Inc. on August 29, 1995 contamination was also detected in the soil sample collected beneath the UST. The contaminant level was detected at BDL for gasoline and 2563 ppm for diesel type fuels. See Table 3 in Section 9.0 for analytical data of soil samples collected beneath USTs. See Drawing 7 for sample locations.

The diesel contamination present in the soil was from a surface spill some time before the closure of the USTs.

^{*}These soils are more like the (FuB) Fuquay loamy sand mapped on adjoining areas to the site.

Several soil samples were collected by hand augering, split spoon sampling during monitoring well sampling and grab sampling during soil excavation. Soil samples were screened in the field utilizing an organic vapor meter. All samples were collected in accordance with the North Carolina Division of Environmental Management sampling methods utilizing clean stainless steel utensils. The samples were placed in laboratory clean jars with Teflon lined lids and placed in an insulated cooler with ice for transportation to a North Carolina licensed laboratory for analysis of TPH as gasoline and diesel. A Chain-of -Custody was maintained from the time of sampling through analysis. Sample locations can be found in Section 8.0, Drawing 7.

Several soil samples analyzed had results above SSE (Appendix D) value of 80 ppm for TPH gasoline and 320 ppm for TPH diesel. A soil isoconcentration contour map is located in Section 8.0, Drawings 8, 9, 12, 13, 14 and 15. Soil analytical results can be found in Table 4 of Section 9.0 and in Appendix E.

Approximately 181.5 tons of contaminated soil was excavated and removed from the site on August 29 and 30, 1995 including approximately 15 tons of contaminated soil removed from around the heating oil UST. There still remains a small amount of contaminated soil above the SSE level of 80 ppm for TPH as gasoline. This soil amounts to approximately 5 cubic yards in the vicinity of MW-2. EAI avoided excavating soil near the Type II monitoring well to avoid damage to it. See Section 8.0, Drawing 16 for a map of the extent of existing contaminated soils.

5.0 GROUNDWATER INVESTIGATION

5.1 Monitoring Well Placement and Design

A total of twelve monitoring wells exist on the subject site (See Section 8.0, Drawing 17). One initial monitoring well, MW-1 was installed by Patterson Exploration Services (PES) on June 24, 1994 to determine if the groundwater had been impacted. When sample results indicated that the groundwater in that location had not been impacted, PES did not proceed to further investigate the groundwater.

After EAI was contracted by Edna Rosser, it was noticed that the groundwater was impacted from the depth of contamination found from the soil borings performed by PES. It seems that PES expected groundwater to be at a 15 foot depth and flow to be into the pond to the northwest. EAI installed four more Type II shallow monitoring wells at a range of depths

from 11.5 feet to 14 feet and one Type III deep well at a depth of 35 feet. These wells were installed on April 3rd and April 4th, 1995.

Analytical results and groundwater level data of these six wells indicated petroleum groundwater contamination to be flowing toward the south/southwest. The contamination was still not defined and therefore a monitoring well permit had to be submitted to the DEM for permission to drill monitoring wells in the NCDOT Right-of-Way on the south side of NC Highway 42.

On August 21, 1995 through August 23, 1995 five Type II monitoring wells (MW-6-MW-10) at depths ranging from 13 feet to 17 feet were installed to delineate the contaminant plume. Three of these wells were installed off-site in the NCDOT Right-of Way.

On August 29,1995 monitoring well MW-5 was removed during the closure of the 550 gallon heating oil UST. Soil below the UST was contaminated, and therefore a replacement for MW-5, MW-5A, was installed in the area of the former UST to test if it had impacted the groundwater. MW-5A and another well to the northeast of MW-5A (MW-11) were installed at 15 foot depths on August 27, 1995.

All wells were constructed with Schedule 40 PVC with No. 2 sand pack around the screened section. Hydrated bentonite then cement were utilized as a seal. The monitoring wells are secured with a locked top inside a bolt down water tight cover labeled "monitoring well do not fill" set in concrete. Well construction records and diagrams are included in Appendix C.

The wells were placed in order to determine both groundwater gradient and migration of the contaminant plume. Wells MW-2, MW-3, and MW-4 are placed close to the source of the contamination near the pump islands. DW-1 was also placed close to the source but can only allow water sampling at depth from 25 to 35 feet to determine the vertical extent of contamination. MW-5A was placed in the heating oil UST location to determine an impact from the UST. Wells MW-1, MW-6, MW-7, MW-8, MW-9, MW-10 and MW-11 were placed to determine the horizontal extent. See the Existing Monitoring Wells Map in Section 8.0, Drawing 17.

5.2 Groundwater Contamination Plume

Groundwater samples from all monitoring wells collected on September 27, 1995 were analyzed for lead, purgeable halocarbons and aromatics using EPA Test Methods 3030C, 601/602, and for base and neutral components of semivolitales. The monitoring wells MW-1, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, and DW-1 appear to be unaffected by the petroleum contamination. Monitoring wells MW-2, 3, and 4 all contained contamination in the groundwater in excess of 2L Standards. MW-2 contained 71.3 ppb of Benzene, 260 ppb Ethylbenzene, 9.1 ppb Toluene, 255 ppb Xylenes, and 55.4 ppb Naphthalene. MW-3 contained 8.3 ppb Benzene, 22.5 ppb Ethylbenzene, 1.4 ppb Toluene, and 15.3 ppb Xylenes. MW-4 contained 193 ppb Benzene, 127 ppb Ethylbenzene, 82.6 ppb Toluene, and 317 ppb Xylenes. Table 5 in Section 9.0 summarizes the dissolved contaminants found in the groundwater.

Lead was also found in the groundwater above 2L Regulatory Limits in all wells except for MW-1 and MW-3. These concentrations of lead that were detected do not follow groundwater flow patterns from the site's pollution source. The lead found in the groundwater samples is believed to be due to localized geology.

Other compounds were detected in the GC/MS Library Search in monitoring wells MW-1, MW-2, MW-4, MW-7 and MW-8. The listing of the most prominent peaks and their match qualities for each well is in Appendix E.

Drawings 26 through 34 in Section 8.0 detail the contaminant isoconcentration contours for Benzene, Ethylbenzene and Naphthalene. A groundwater contour map is presented in Section 8.0, Drawing 25. These were determined by plotting the laboratory results on the well locations and interpolating. The contaminant plume extends from MW-4 past MW-2 and flows toward the southwest. The plume has an egg shape with an area of approximately 2,500 square feet (85 feet long and 30 feet wide). Analytical results indicate that the groundwater contains concentrations greater than 2L Regulatory Action Limits for Benzene, Ethylbenzene, Naphthalene, and Lead.

5.3 Aquifer Characteristics and Contaminant Migration

The shallow aquifer is in poorly sorted silty alluvial material with an estimated Hydraulic Conductivity (K) of 5 feet/day. The lower coarser aquifer is well sorted sand of either a alluvial terrace or the Middendorf formation of the Cretaceous Period. The estimated K of the lower coarser formation is 50 to 130 feet/day. The estimate of velocity of the upper aquifer is 0.89 to 1.5 feet/day with an average of 1.05 feet/day. See Table 6 for calculations for linear velocity.

Based on the laboratory analysis of the groundwater samples, only the upper silty aquifer is impacted by the release of petroleum product from the subject site. The contaminant plume flow is to the southwest across State Highway NC 42 toward the drain pipe that empties water from the pond to the creek and swamp to the south of the site. The release had entered the right of way for the highway and the area around MW-9 across the NC 42. The levels at MW-9 are below 2L Regulatory Limits, but the plume migration will likely impact the low land swamp to the south of NC 42 in 2 to 5 years or less. The outlet of groundwater along the foot of the fill back of the south side of NC 42 is the most likely surface water outlet for the shallow aquifer containing the contaminant plume. The beginning of the swamp is approximately 35 to 50 feet south of the release and 10 to 15 feet south of MW-9.

In Table 7 Contaminant Concentration Ratios (CCR) were calculated in MW-2, MW-3, MW-4, and MW-9. The CCR is an indirect estimate of the rate of change and flow of contaminant plume. The more uniform the contamination ratios from the source to the down gradient wells, the younger the contamination plume. This is due to the fact that the different chemical components of the plume have not separated significantly due to the different migration and breakdown rates. See Tables 1 and 2 for estimates of the KoC and half life of the chemicals found in this release. The CCR's of Ethylbenzene/Toluene for MW-2 and MW-3 in the area of the release are the same as MW-9 indicate the time since the main release is likely less than 5 to 10 years, indicating a rate of 3 to 10 feet/year or less. The CCR's for MW-4 are different indicating that it is associated with the main contaminant flow of the release.

Based on a history of over forty years of operation as a service station facility, it is difficult to establish a time of the release. The release estimate, based on Contaminant Concentration Ratios (CCRs), is likely recent and migrating at a rate of 3 to 5 feet/year based on a release within the past ten years.

5.4 Quarterly Monitoring Reports

Before all monitoring wells were installed on the subject site, EAI sampled the groundwater quarterly to determine the approximate location of contamination and direction of groundwater flow. The first sampling event involved wells MW-1 through MW-5 and DW-1 collected on April 21, 1995. The second sampling event involved wells MW-1 through MW-10 and DW-1 that were sampled on August 1 and August 29, 1995. The third sampling event involved all monitoring wells on the site that were sampled on September 27, 1995. Results of this sampling event are summarized in Section 5.3.

5.4.1 Quarterly Groundwater Monitoring Event No. 1 (April 21, 1995)

Monitoring wells MW-1, MW-5, and DW-1 appear to be unaffected by the petroleum Monitoring wells MW-2, MW-3 and MW-4 all contained contamination. groundwater contamination in excess of 2L Regulatory Limits. MW-2 was contaminated with 104 ppb of Benzene, 434 ppb Ethylbenzene, 89.1 ppb Toluene, 631 ppb Xylenes, and 89.2 ppb Naphthalene. MW-3 contained 17.2 ppb Benzene, 100 ppb of Ethylbenzene, 14.8 ppb Toluene, 123 ppb Xylenes, and 28.9 ppb Naphthalene. MW-4 contained 43.9 ppb of Benzene, 67.9 Ethylbenzene, 8.6 ppb Toluene, 126 ppb Xylenes, and 14.8 ppb Naphthalene. Lead was detected above the 2L Regulatory Limit in wells MW-2 and MW-4. Groundwater elevation data collected on April 21, 1995 determine groundwater flow to be towards the southwest. A Total BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) Isoconcentration Map and Naphthalene Isoconcentration Map are presented in Section 8.0, Drawings 21 and 22. A summary of the laboratory results can be found in Section 9.0 Table 5.

5.4.2 Quarterly Groundwater Monitoring Event No. 2 (August 1 and August 29, 1995)

Monitoring wells MW-1, MW-5, MW-7, MW-8, MW-10, and DW-4 appear to be unaffected by petroleum contamination. MW-2 contained 152 ppb of Ethylbenzene, 21.7 ppb Toluene, 96.9 ppb Xylenes, 15.7 ppb Bis (2-ethylhexyl) phthalate, and 43.2 ppb Naphthalene. MW-3 contained 9.1 ppb of Ethylbenzene, 1.8 ppb Toluene, and 11.8 ppb Xylenes. MW-4 contained 2.6 ppb of 1,2-Dichloroethene, 30.8 ppb Benzene, 79.4 ppb Ethylbenzene, 15.2 ppb Toluene, 92.9 ppb Xylenes, and 32.4 ppb Naphthalene. MW-6 contained 3.8 ppb Xylenes. MW-8 contained 10.4 ppb Bis (2-ethylhexyl) phthalate. MW-9 contained 5.7 ppb of Toluene and 18.7 ppb of Xylenes. Lead was detected above the 2L Regulatory Limit in MW-2, MW-6, MW-7, MW-8 and MW-9. Groundwater elevation data collected on August 1, 1995 indicates groundwater flow to be toward the southwest. Total BETX and Naphthalene Isoconcentration Maps are located in Section 8.0, Drawings 23 and 24. A summary of the laboratory results can be found in Section 9.0, Table 5.

5.5 Physical and Chemical Characteristics of Primary Contaminants

Benzene is a carcinogen and can cause central nervous system depression, skin irritation, and bone depression. It is less dense than water and floats upon the surface. Toluene affects the central nervous system, liver, kidneys, and skin. It has a specific gravity of 0.87 and therefore will float on water. Ethylbenzene is an irritant of the eyes, mucous membranes, respiratory tract and skin and can also cause central nervous system problems. It is lighter than water and will float. Xylenes may cause headache, dizziness and respiratory tract irritation. These are also lighter than water and will float. Naphthalene is an irritant of the eyes, head, stomach, and bladder. It is not very soluble in water.

Compounds of Lead affect the cardio-vascular system, the central nervous system, kidneys and eyes. Tetraethyl Lead is heavier than water but has high KoC values (see Table A). Tetraethyl Lead is also relatively insoluble in water (see Table A). Because of this, these compounds are not likely to sink or migrate away from the contaminate source.

6.0 RECOMMENDATIONS

The subject property has been estimated to contain approximately 5 cubic yards of soil contamination above SSE limits. This extends from a depth of 2 feet to a depth of 6 feet. This is a potential for contaminant migration through infiltration. The groundwater is contaminated with Benzene, Ethylbenzene, Naphthalene, and Lead above 2L Regulatory Limits. The plume is estimated to occupy an area of approximately 2,500 square feet. Quarterly monitoring will continue to determine if a Corrective Action Plan (CAP) is necessary for the site. Calculations for aeration, air sparging, and bioremediation will be analyzed to determine which would be the most effective and feasible method. Prior to the initiation of the CAP, the site should continue quarterly monitoring.

7.0 REFERENCES

- Geologic Map of North Carolina. The North Carolina Geologic Survey, 1985. 1.
- Letter to Nile Testerman of NCDEHNR-DEM from Patterson Exploration Services dated 2. December 29, 1993 regarding UST closure at First and Last Stop Convenience Store.
- Letter to Nile Testerman of NCDEHNR-DEM regarding soil borings and monitoring well 3. installation at First and Last Stop Convenience Store.
- Handbook of Environment Fate and Exposure Data for Organic Chemicals. Howard, Philip 4. H. Lewis Publishers, 1989

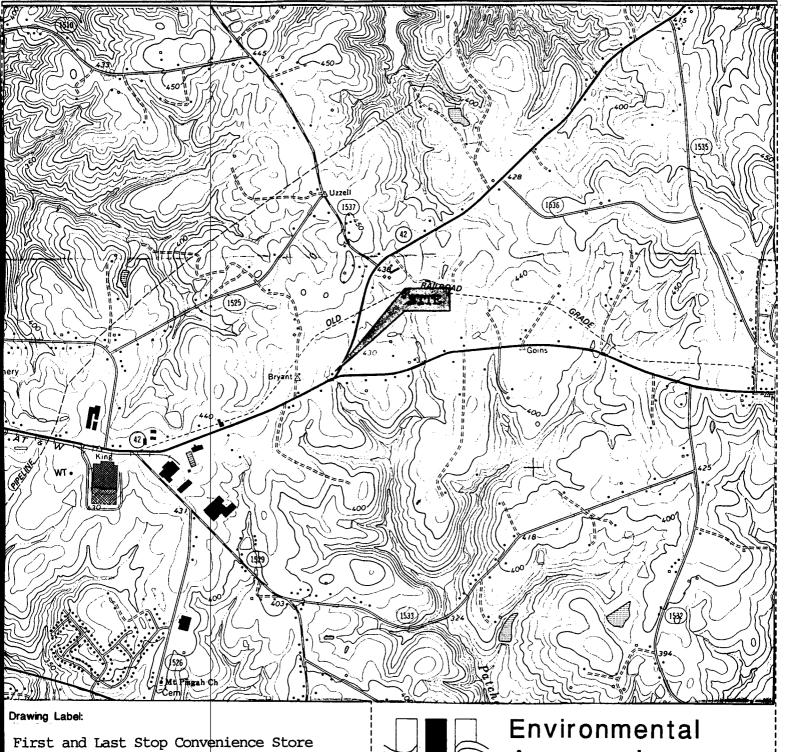
Soil Survey of Lee County, North Carolina, Soil Conservation Service, USDA, 1989. 5.

Adam R. Newman

Environmental Scientist

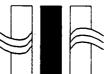
Frank A. Doos Senior Geologist Frank A. Doonan.

The work performed in the preparation of this report was done by or under the direction of a Professional Engineer and/or a Professional Geologist.


Environmental Aspecs, Inc. of North Carolina was incorporated on May 6, 1964 to practice engineering and other professional services and, as such, is exempt from the Professional Corporation Act under G.S. 55 B

David B. Wells Division Manager R. Wells

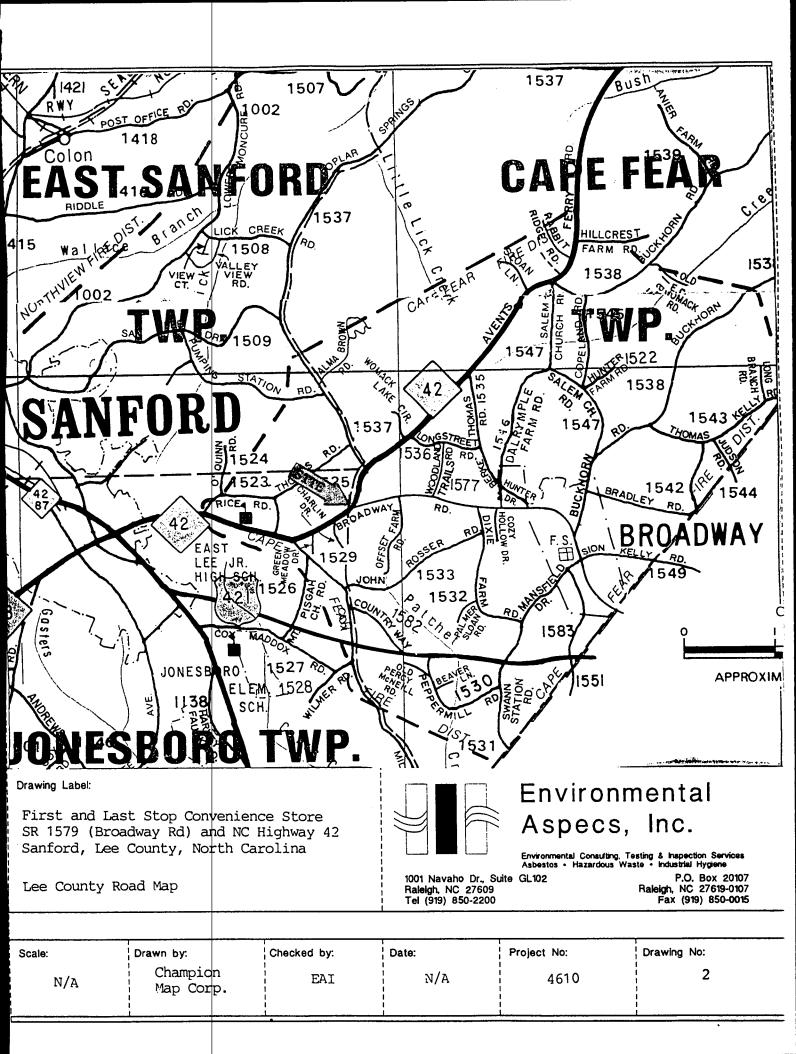
ARN/FAD/Isa

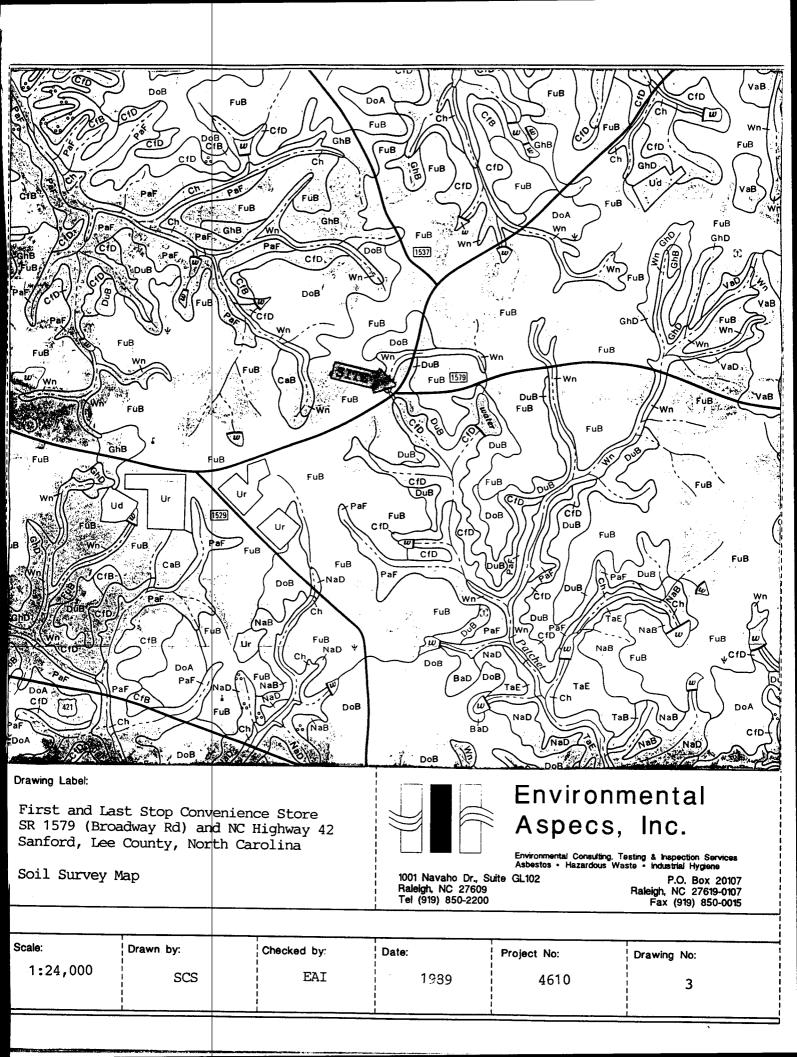

8.0 DRAWINGS

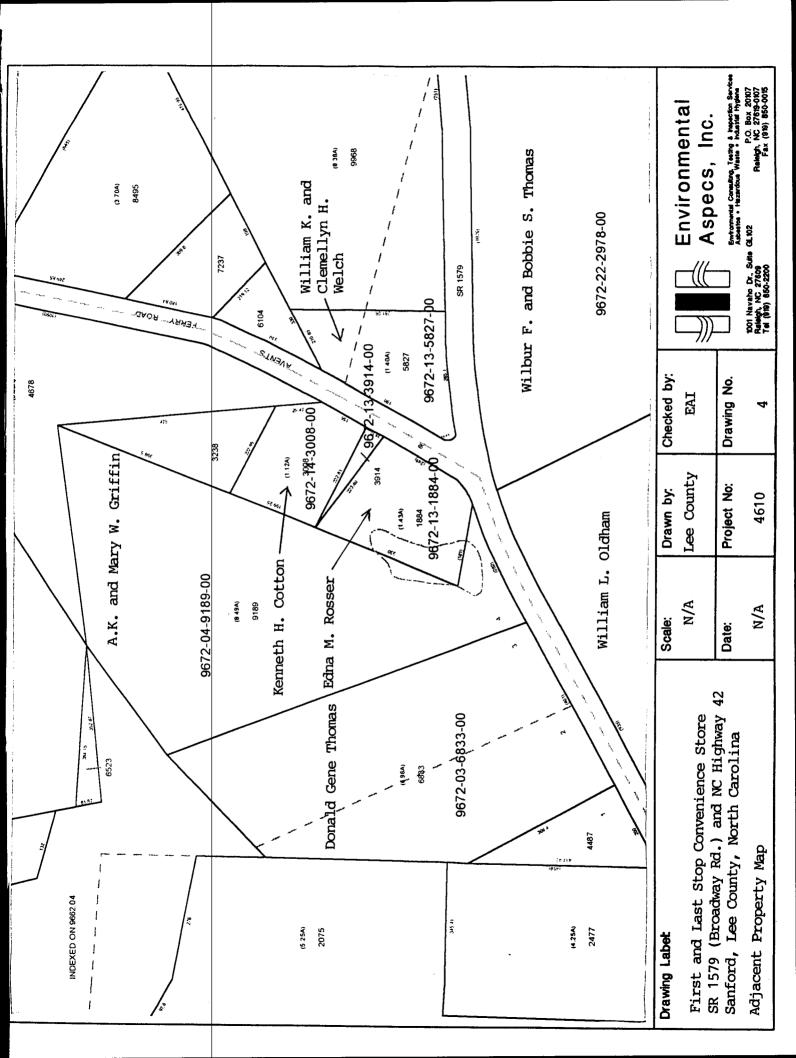
- 1. USGS Topographic Map
- 2. Lee County Road Map
- 3. Soil Survey Map
- 4. Adjacent Property Map
- 5. Site Map
- 6. Site Utilities Map
- 7. Soil Boring Map
- 8. TPH Gasoline Isoconcentration Map
- 9. TPH Diesel Soil Isoconcentration Map
- 10. Soil Excavation Map 8/29/95 8/30/95
- 11. Excavation Cross-Section Transect Map
- 12. TPH Gasoline Soil Cross-Section A-B
- 13. TPH Gasoline Soil Cross-Section C-D
- 14. TPH Diesel Soil Cross-Section A-B
- 15. TPH Diesel Soil Cross-Section C-D
- 16. Existing Soil Contamination Map
- 17. Existing Monitoring Wells Map
- 18. Geological Cross-Section Transect Map
- 19. Geological Cross-Section A-B
- 20. Geological Cross-Section C-D
- 21. Total BTEX Isoconcentration Map 4/21/95
- 22. Naphthalene Isoconcentration Map 4/21/95
- 23. Total BTEX Isoconcentration Map 8/95
- 24. Naphthalene Isoconcentration Map 8/95
- 25. Groundwater Contour Map 9/27/95
- 26. Benzene Isoconcentration Map 9/27/95
- 27. Benzene Isoconcentration Cross-Section A-B
- 28. Benzene Isoconcentration Cross Section C-D
- 29. Ethylbenzene Isoconcentration Map 9/27/95
- 30. Ethylbenzene Isoconcentration Cross-Section A-B
- 31. Ethylbenzene Isoconcentration Cross-Section C-D
- 32. Napthalene Isoconcentration Map 9/27/95
- 33. Napthalene Isoconcentration Cross-Section A-B
- 34. Napthalene Isoconcentration Cross Section C-D

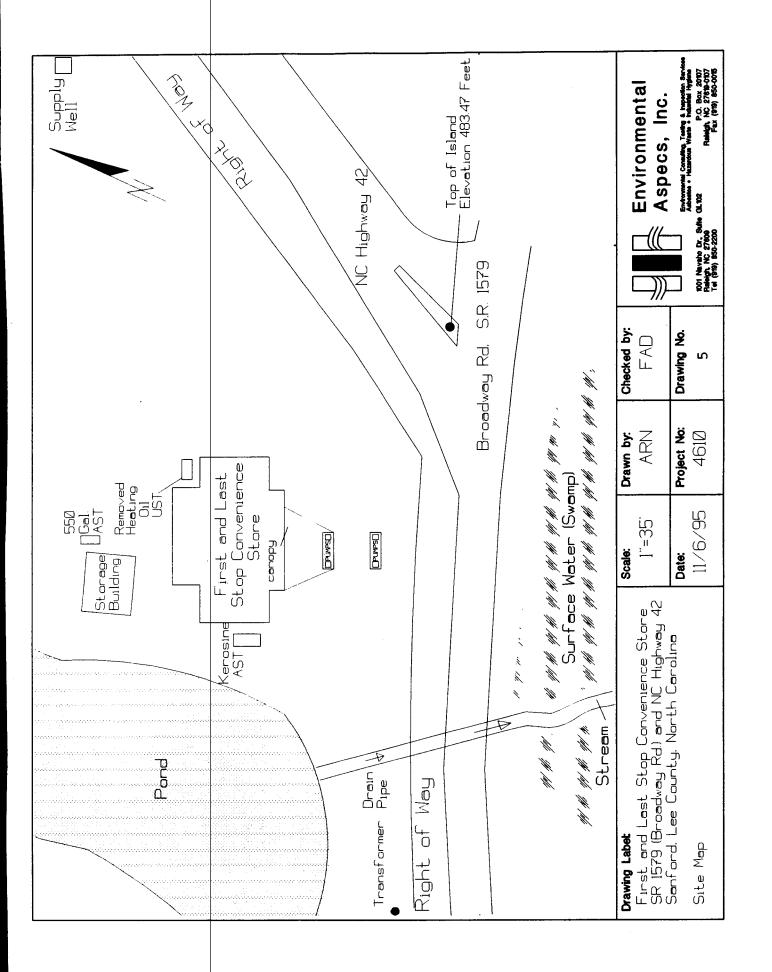
SR 1579 (Broadway Rd.) and NC Highway 42 Sanford, Lee County, North Carolina

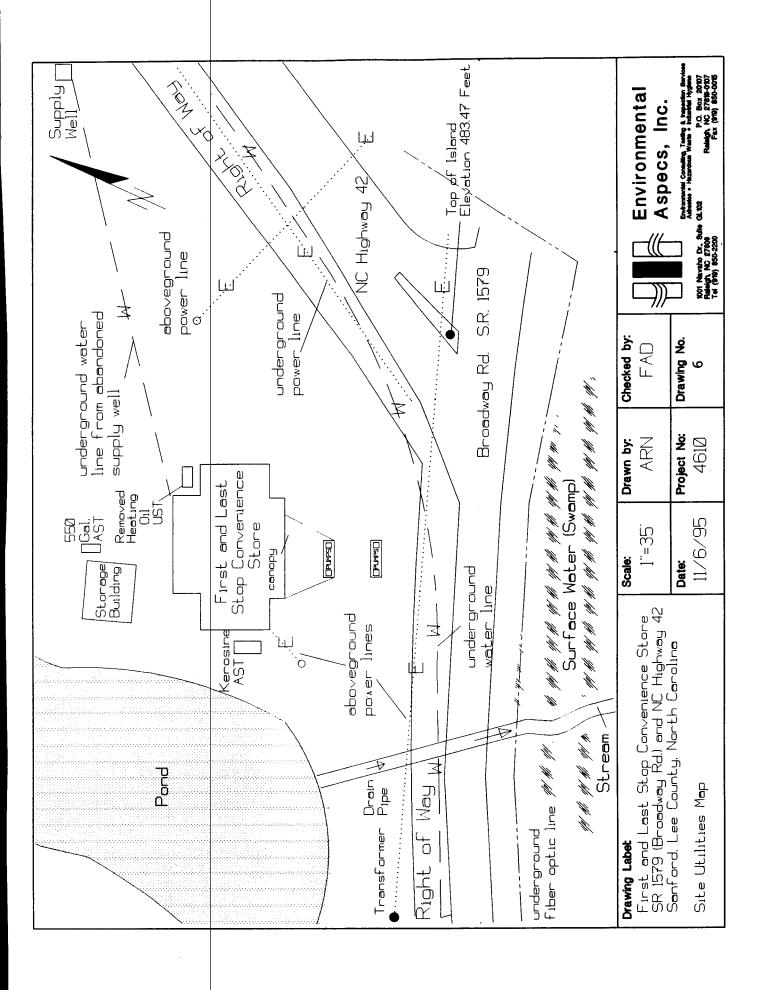
USGS Topographic Map

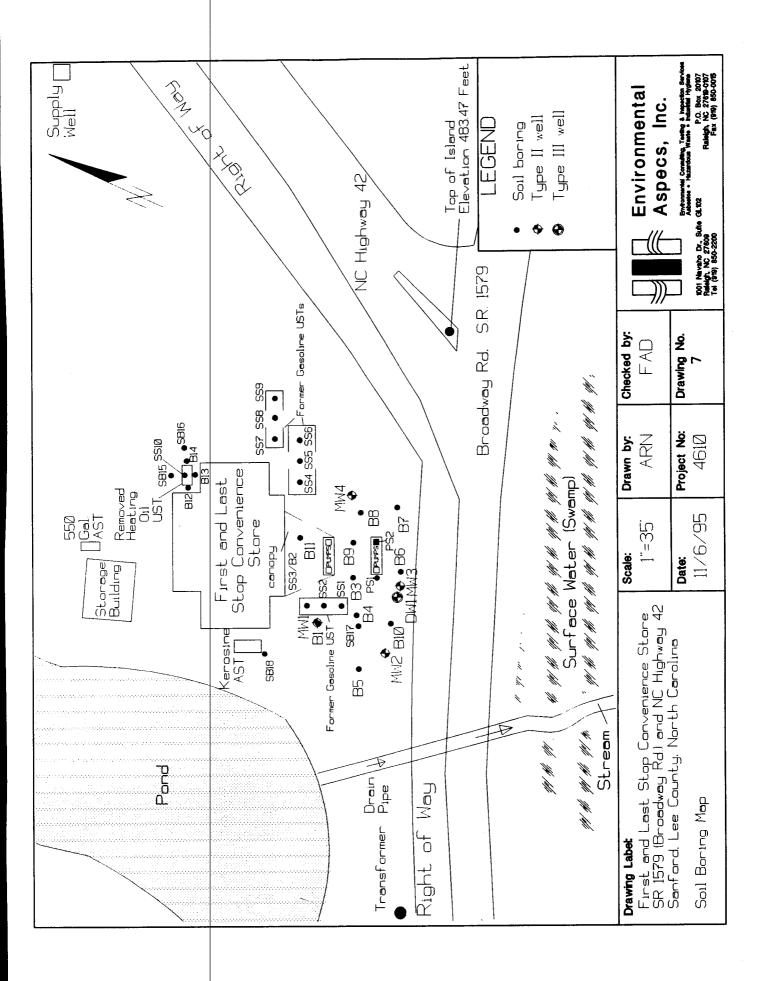


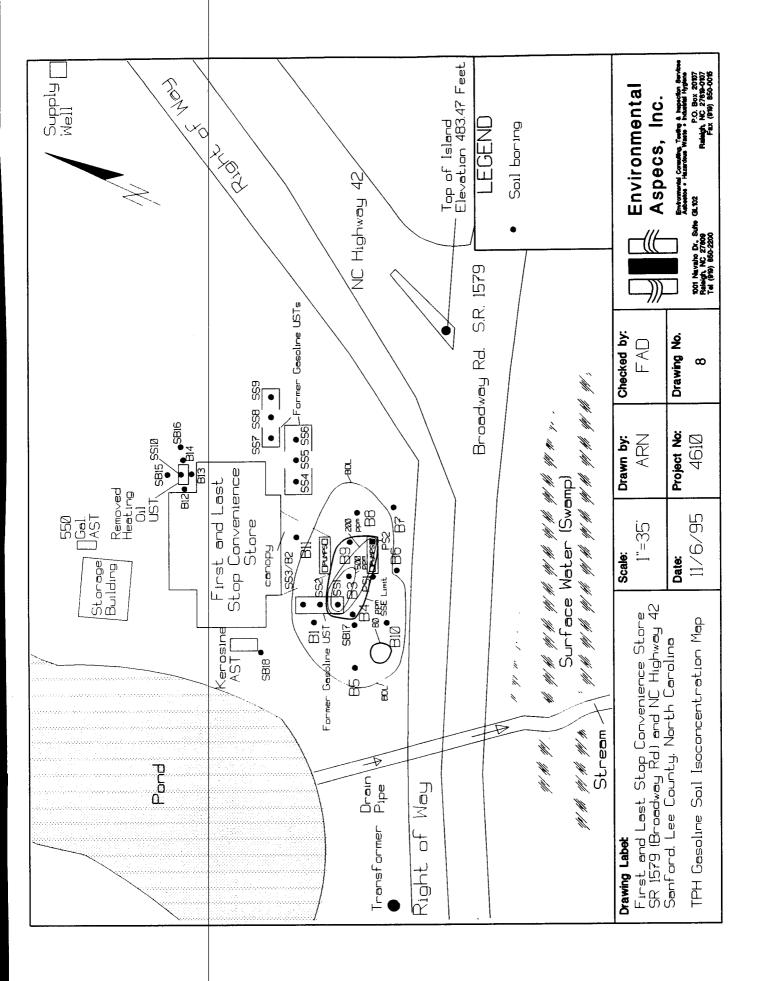

Aspecs, Inc.

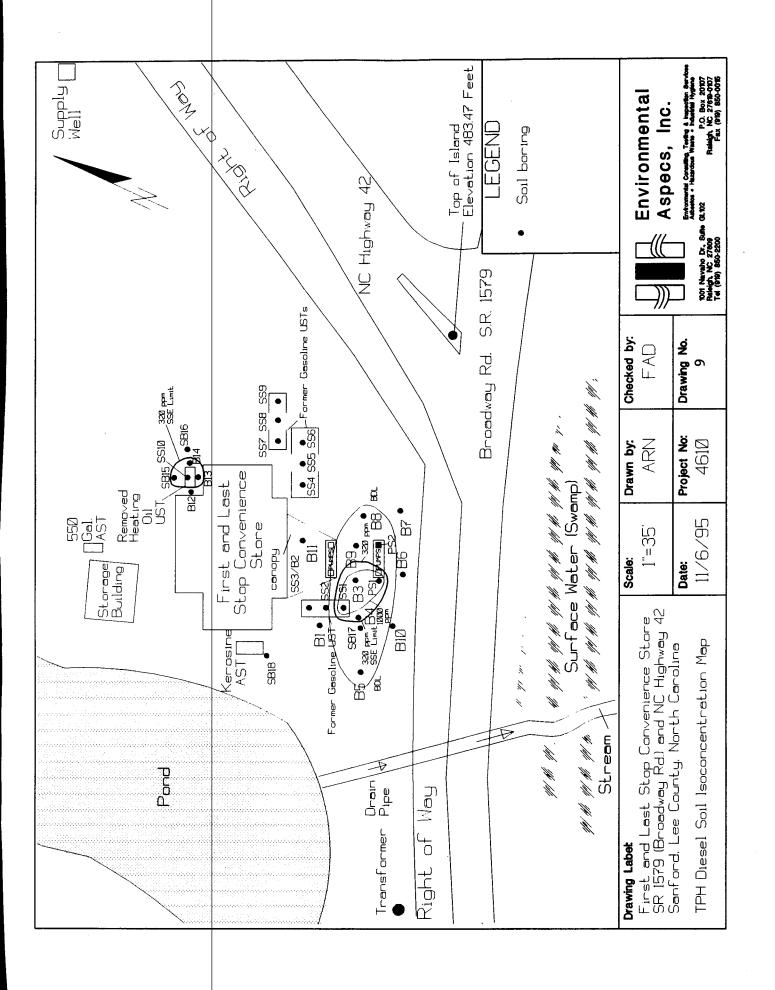

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

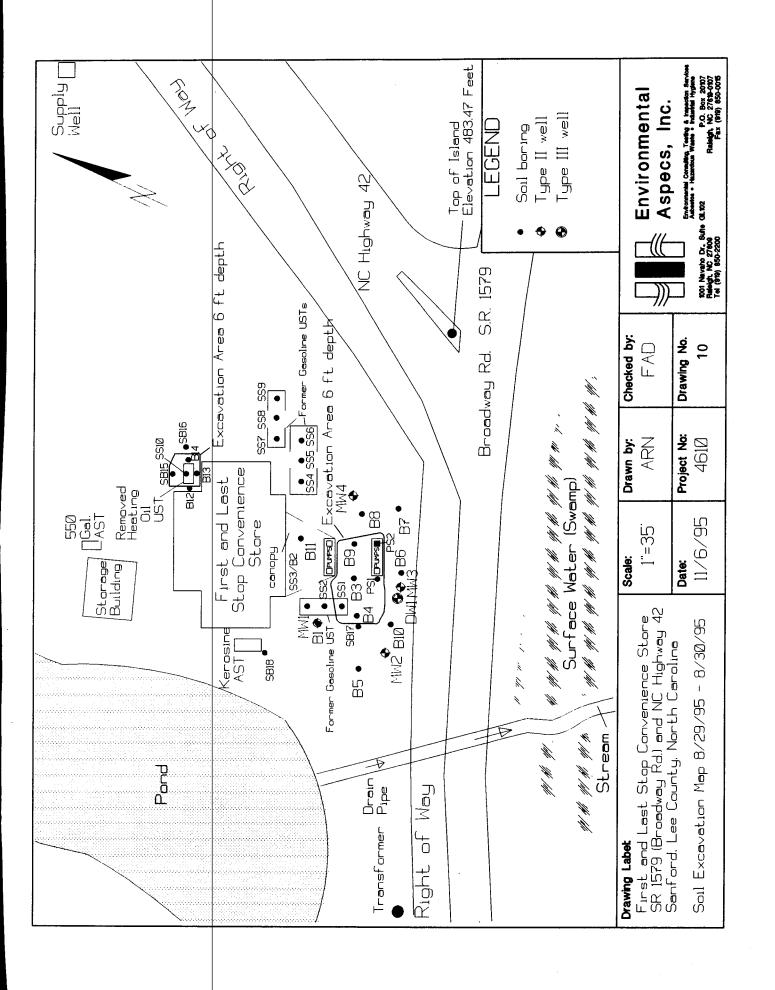

1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

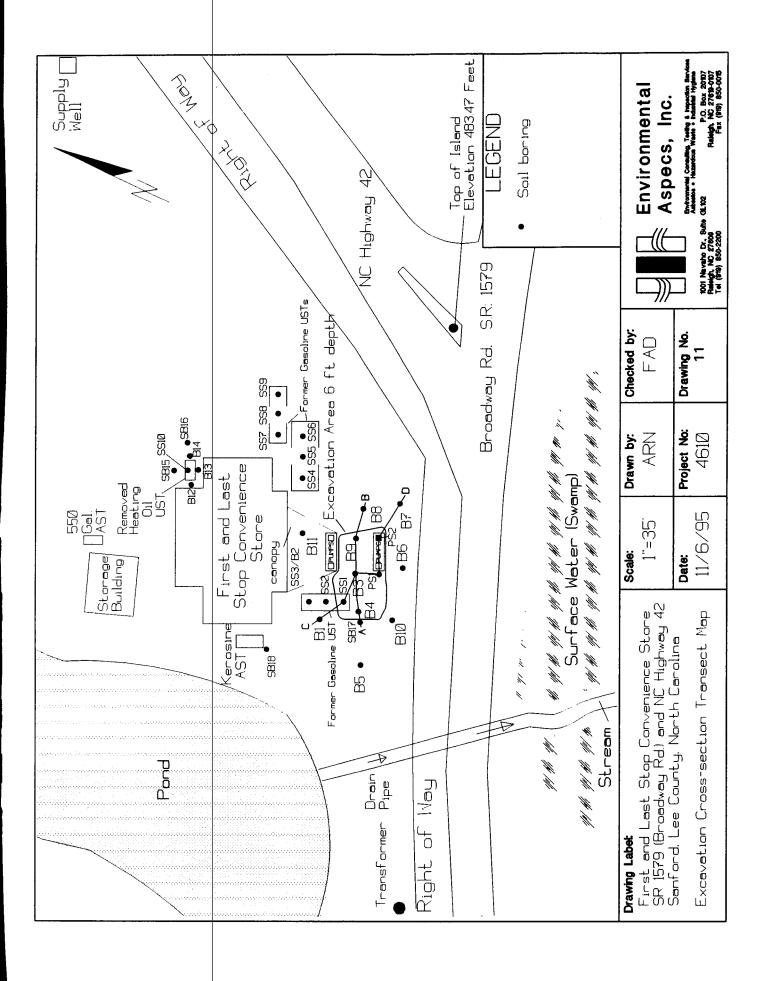

Scale:	Drawn by:	Checked by:	Date:	Project No:	Drawing No:
1:24,000	USGS	EAI	1981	4610	1
] 				

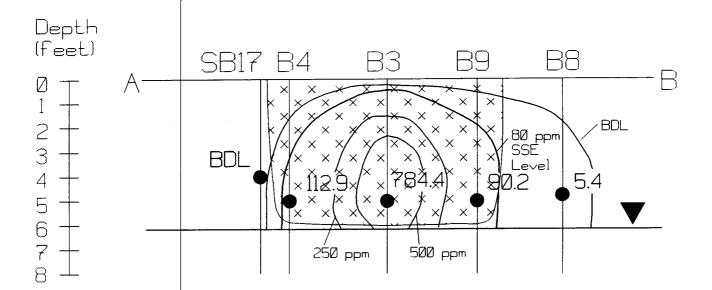






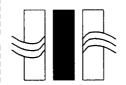






Samples analyzed via EPA Method 5030 - TPH gasoline ppm

BDL Below Detection Limit

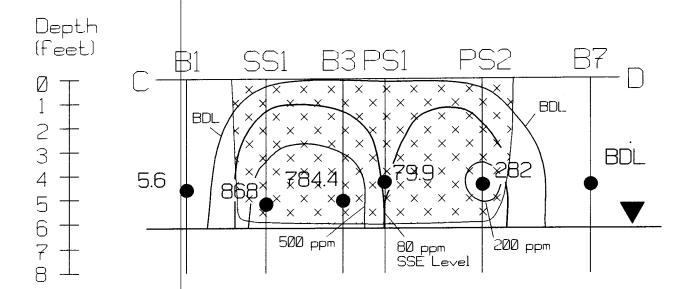

 $\begin{pmatrix} \times & \times \\ \times & \times \end{pmatrix}$ Excavated Material

Approximate static water level when soil was excavated August 29 & 30. 1995

Drawing Label:

First and Last Stop Convenience Store SR 1579 (Broadway Road) and NC Hwy. 42 Sanford. Lee County. North Carolina

TPH Gasoline Soil Cross-section A-B



Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

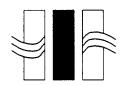
1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale:	Drawn by:	Checked by:	Date:	Project No:	Drawing No:
H 1"=15" V 1"=4"	ARN	FAD	10/2/95	50-944-4610	12

Samples analyzed via EPA Method 5030 - TPH gasoline ppm

BDL Below Detection Limit

 \times \times \times \times

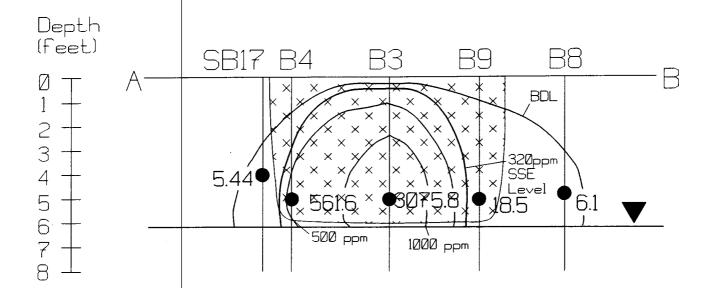

Excavated Material

Approximate static water level when soil was excavated August 29 & 30, 1995

Drawing Label:

First and Last Stop Convenience Store SR 1579 (Broadway Road) and NC Hwy. 42 Sanford. Lee County. North Carolina

TPH Gasoline Soil Cross-section C-D



Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

1001 Navaho Dr., Suite GL102 Raieigh, NC 27609 Tel (919) 850-2200

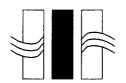
Scale:	Drawn by:	Checked by:	Date:	Project No:	Drawing No:
H 1"=15" V 1"=4"	ARN	FAD	10/2/95	50-944-4610	13

Samples analyzed via EPA Method 3550 - TPH diesel ppm

BDL Below Detection Limit

 \times \times \times

Excavated Material

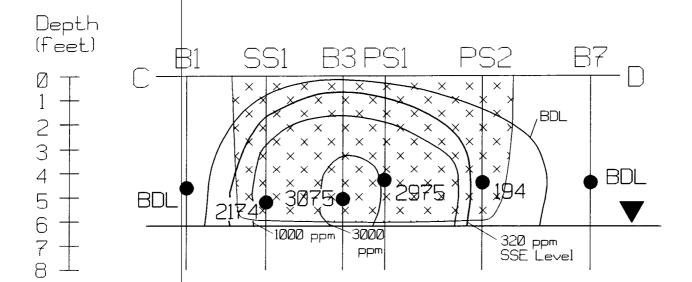


Approximate static water level when soil was excavated August 29 & 30, 1995

Drawing Label:

First and Last Stop Convenience Store SR 1579 (Broadway Road) and NC Hwy. 42 Sanford. Lee County. North Carolina

TPH Diesel Soil Cross-section A-B



Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

1001 Navaho Dr., Suite GiL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale:	Drawn by:	Checked by:	Date:	Project No:	Drawing No:
H 1"=15" V 1"=4"	ARN	FAD	10/2/95	50-944-4610	14

Samples analyzed via EPA Method 3550 - TPH diesel ppm

BDL Below Detection Limit

 \times \times \times

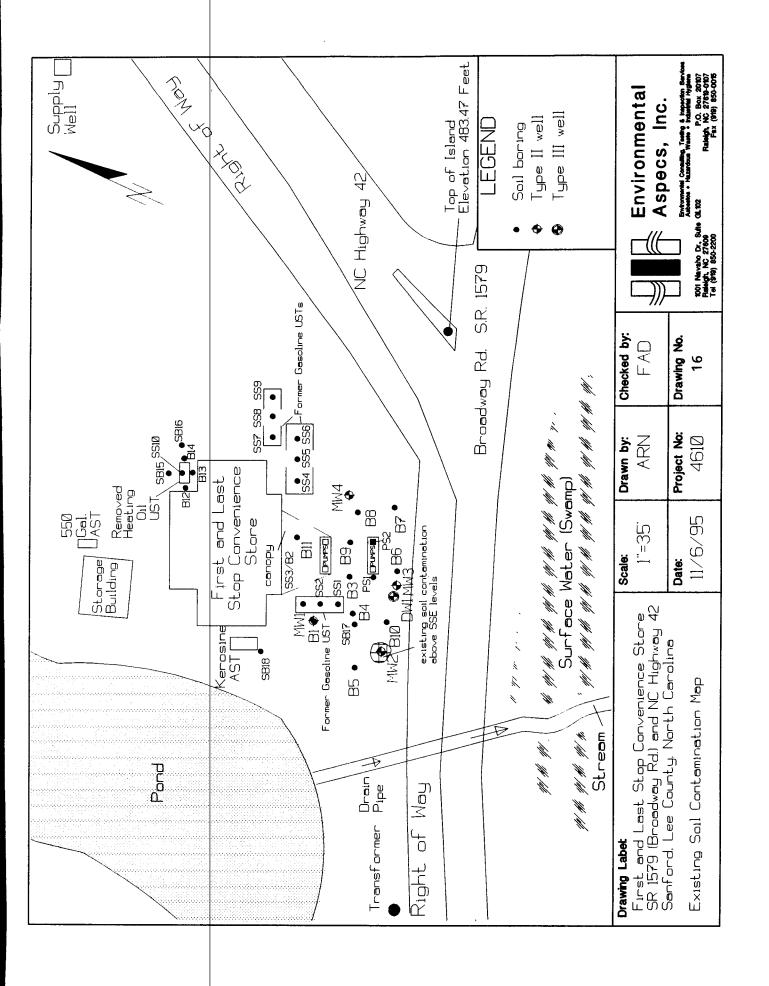
Excavated Material

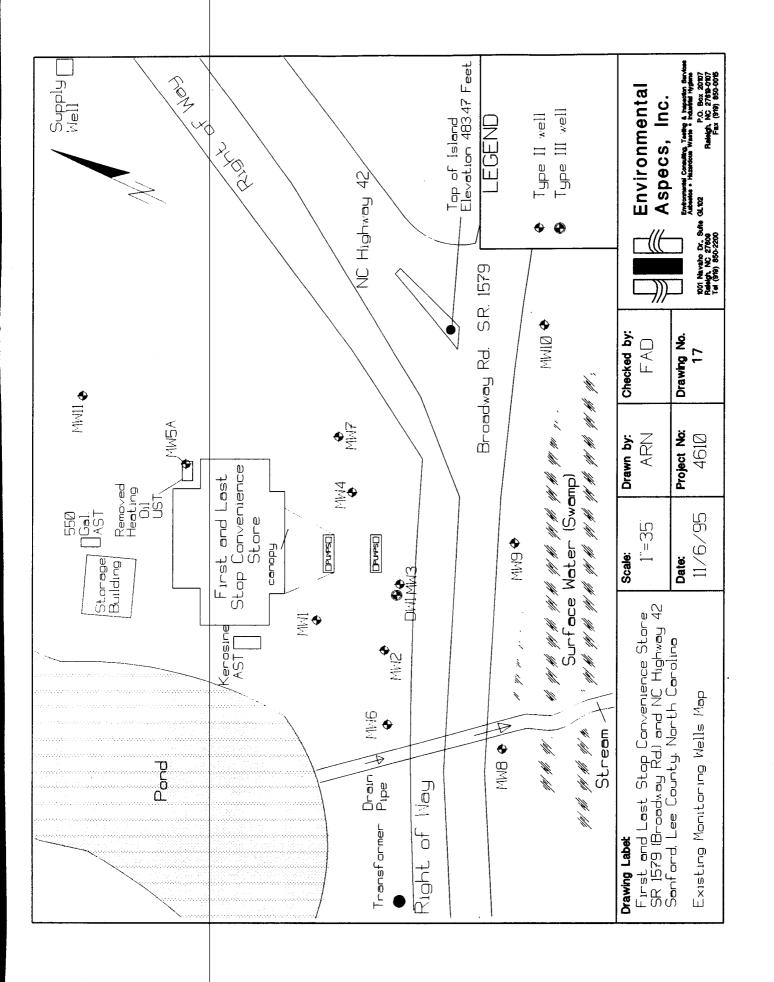
Approximate static water level when soil was excavated August 29 & 30, 1995

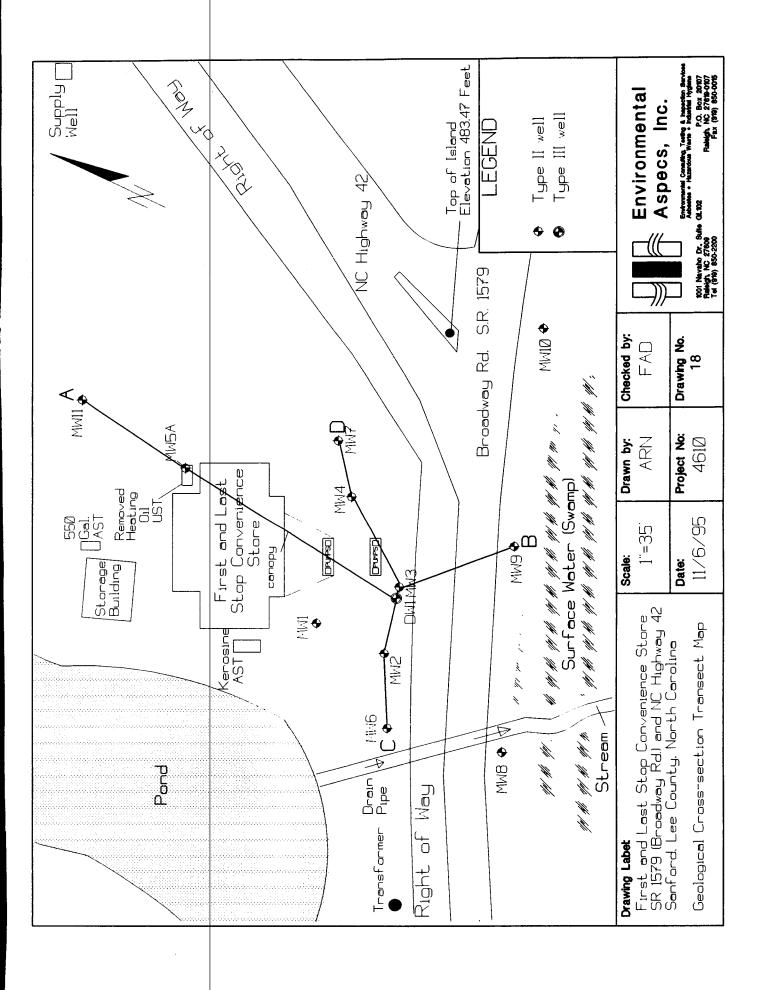
Drawing Label:

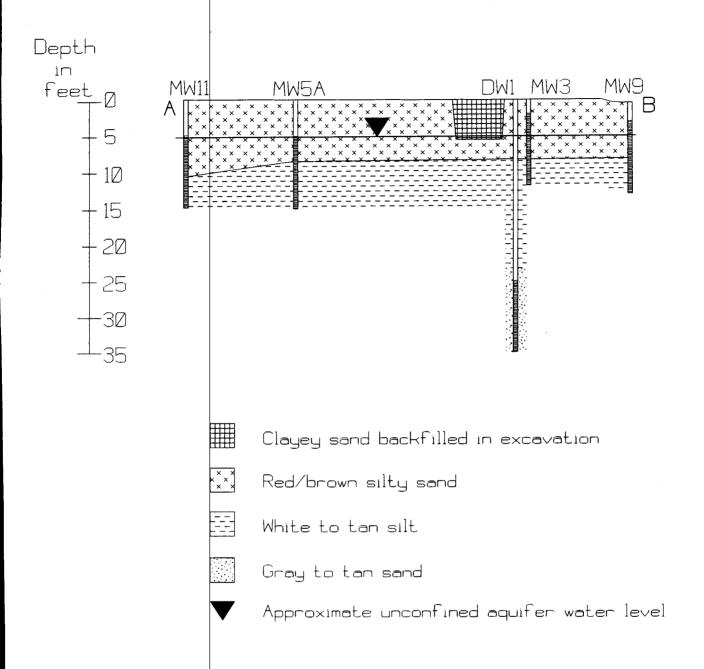
First and Last Stop Convenience Store SR 1579 (Broadway Road) and NC Hwy. 42 Sanford. Lee County. North Carolina

TPH Diesel Soil Cross-section C-D

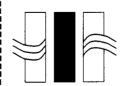



Environmental Aspecs, Inc.


Environmental Consulting, Testing & Inspection Services Asbestos - Hazardous Waste - Industrial Hygiene


1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

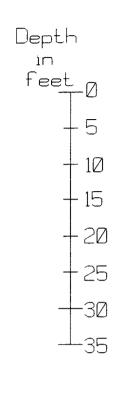
Scale:	Drawn by:	 	Checked by:	Date:	Project No:	Drawing No:
H 1"=15" V 1"=4"	ARN		FAD	10/2/95	50-944-4610	15

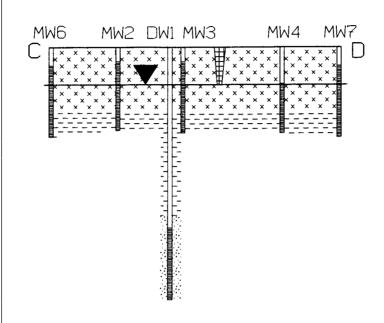


Drawing Label:

First and Last Stop Convenience Store SR 1579 (Broadway Rd.) and NC Highway 42 Sanford. Lee County, North Carolina

Geological Cross-section A-B




Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

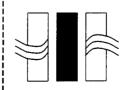
1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale:	Drawn by:	Che	ecked by:	Date:	Project No:	Drawing No:
H 1"=40"	ARN		FAD	10/9/95	461Ø	19

Clayey sand backfilled in excavation

×××) Red/brown silty sand

White to tan silt

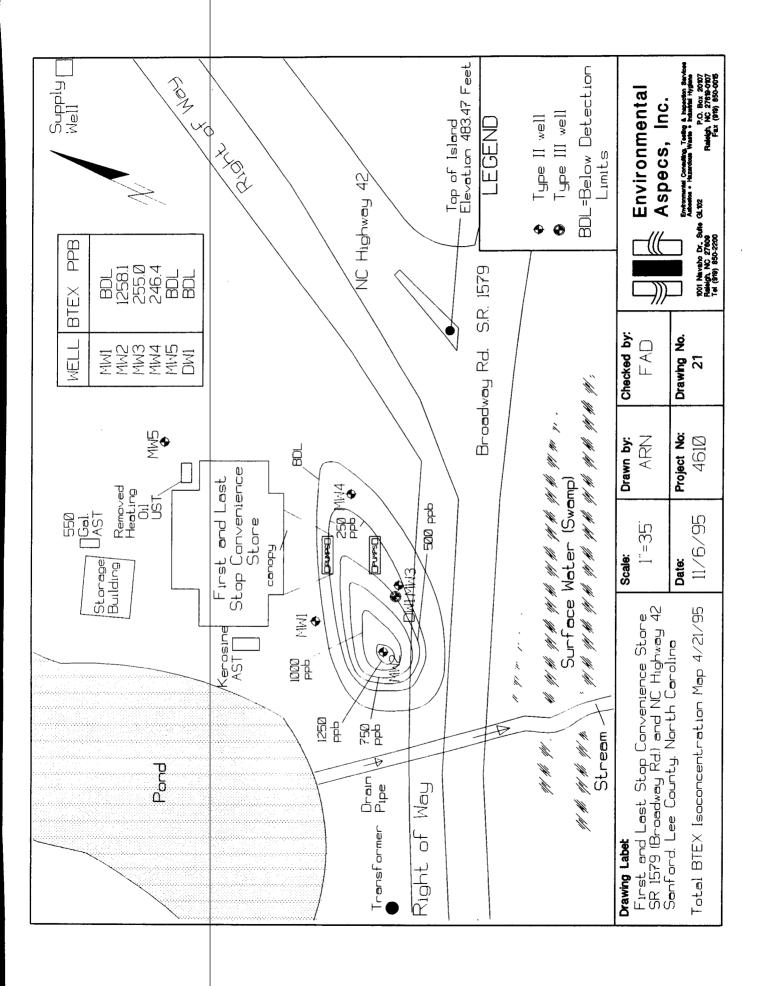

Gray to tan sand

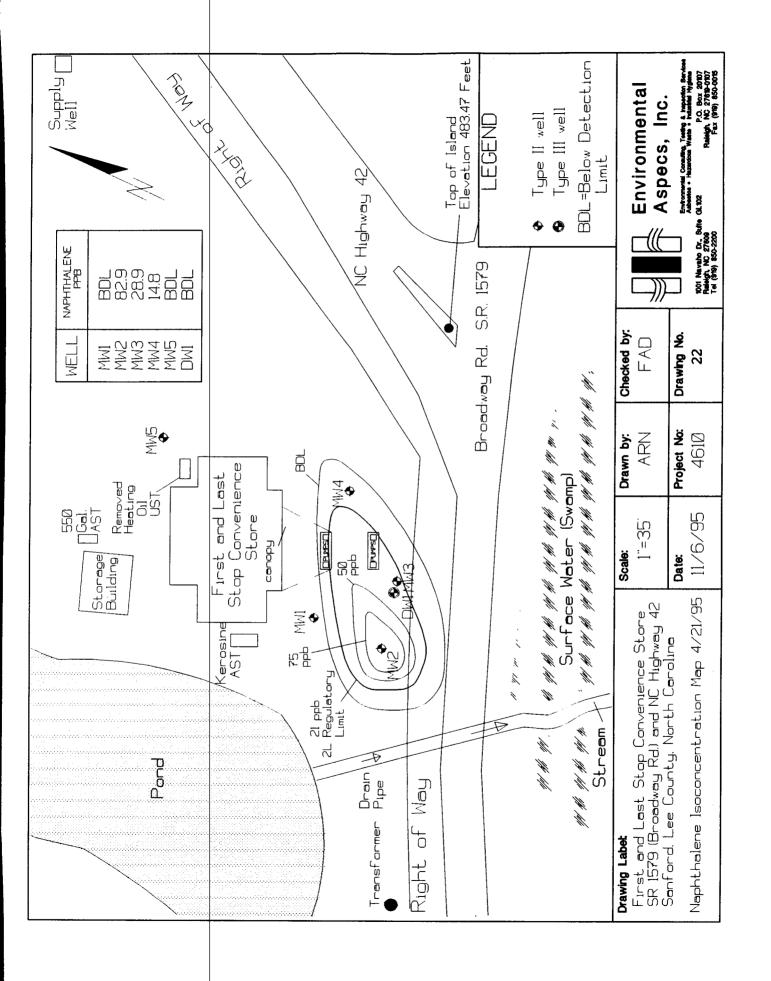
Approximate unconfined aquifer water level

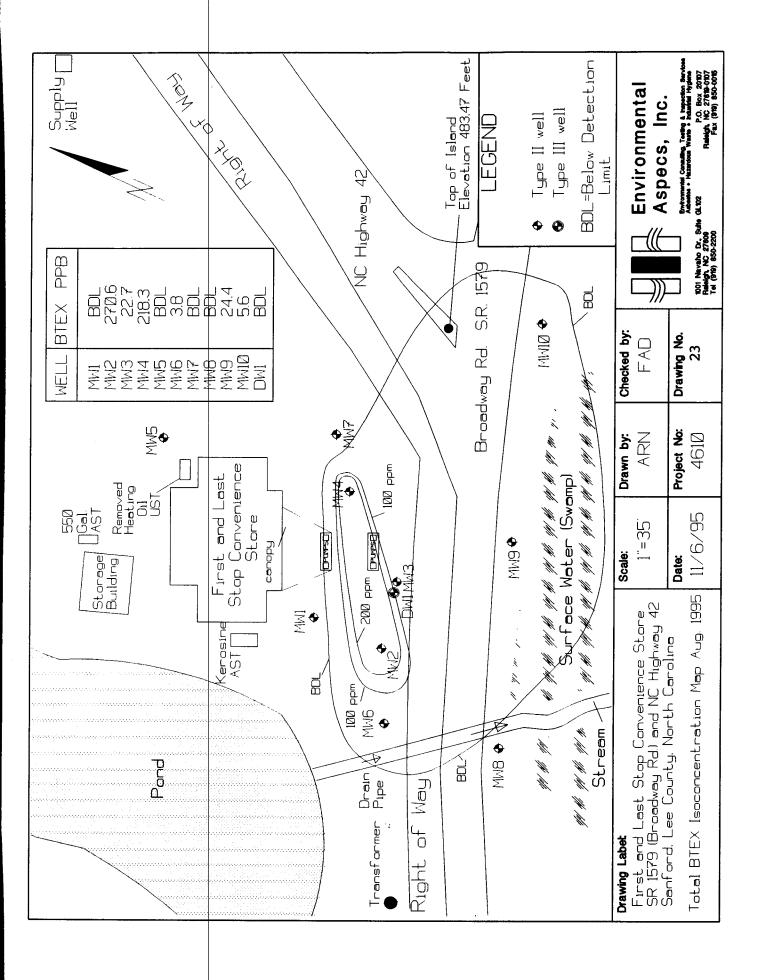
Drawing Labet

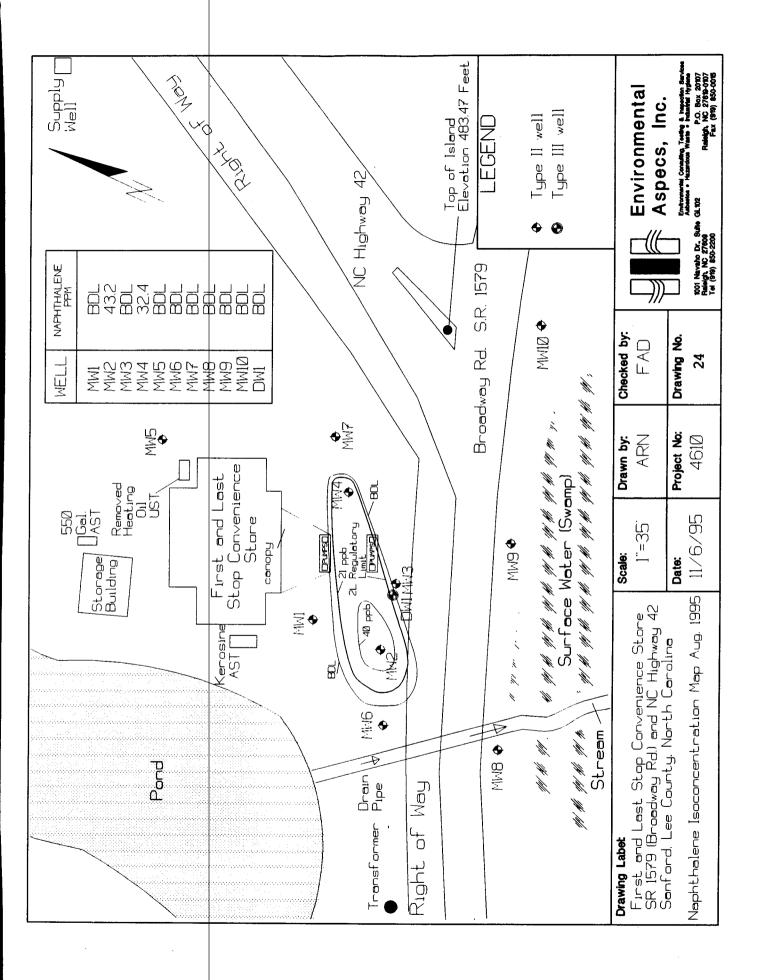
First and Last Stop Convenience Store SR 1579 (Broadway Rd.) and NC Highway 42 Sanford. Lee County. North Carolina

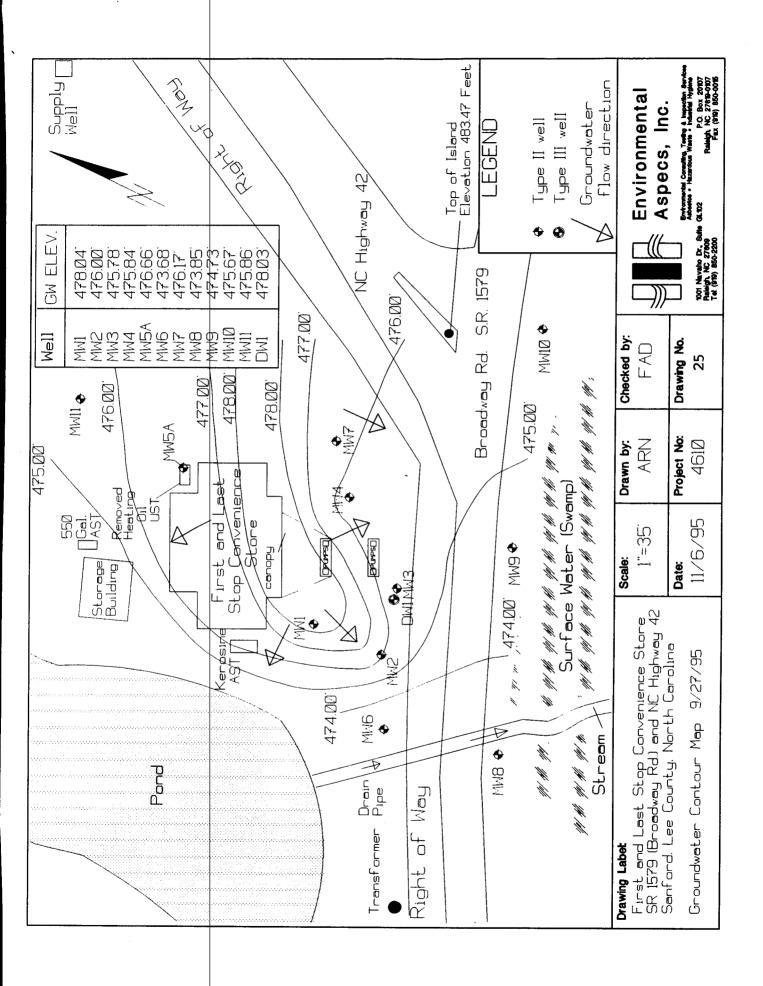
Geological Cross-section C-D

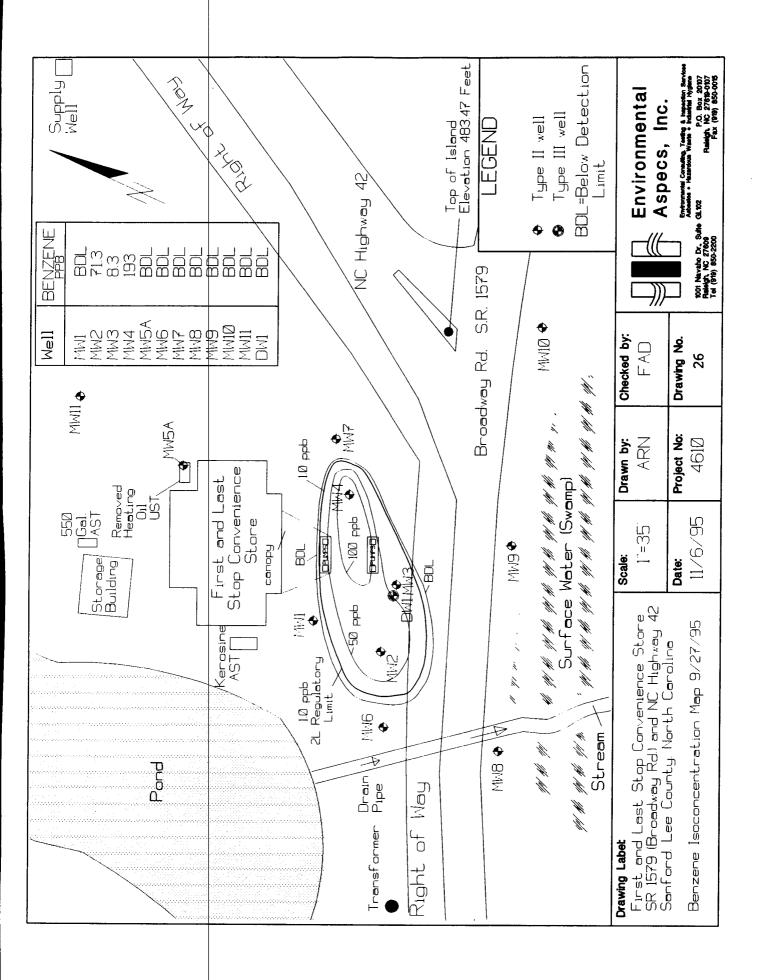


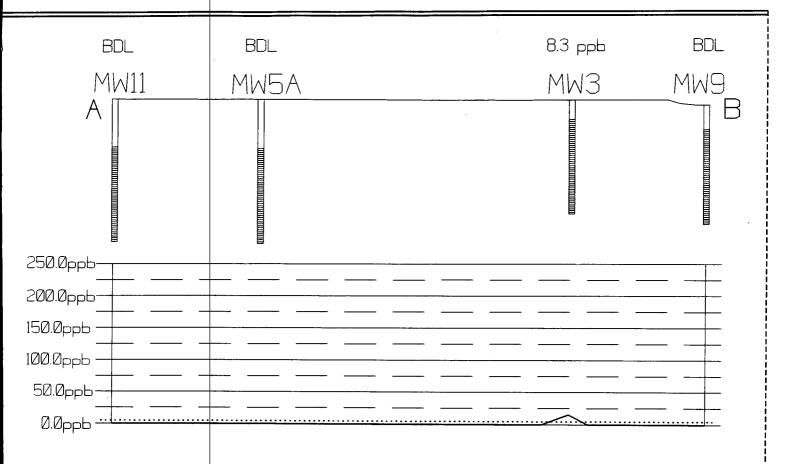

Environmental Aspecs, Inc.


Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene


1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200


Scale:	Drawn by:	Checked by:	Date:	Project No:	Drawing No:
H 1"=4Ø"	ARN	FAD	10/9/95	4610	20
		ļ		!	





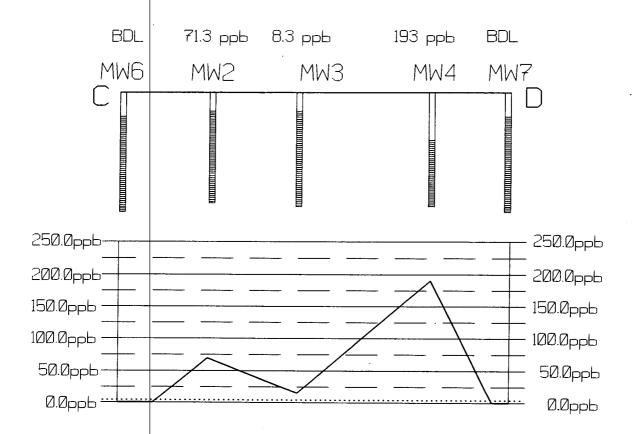
Total thickness of the contaminant portrayed represents the concentration of that contaminant in each well in parts per billion (ppb).

The purpose of this diagram is to graphically represent the contaminant concentrations in each well, not to delineate the plume vertically.

Drawing Label:

First and Last Stop Convenience Store SR 1579 (Broadway Rd.) and NC Highway 42 Sanford, Lee County. North Carolina

Benzene Isoconcentration Cross-section

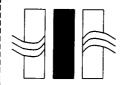


Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale: H 1"=25"	Drawn by:	Checked by:	Date:	Project No:	Drawing No:
V 1"=1Ø"	ARN	FAD	11/6/95	50-944-4610	27

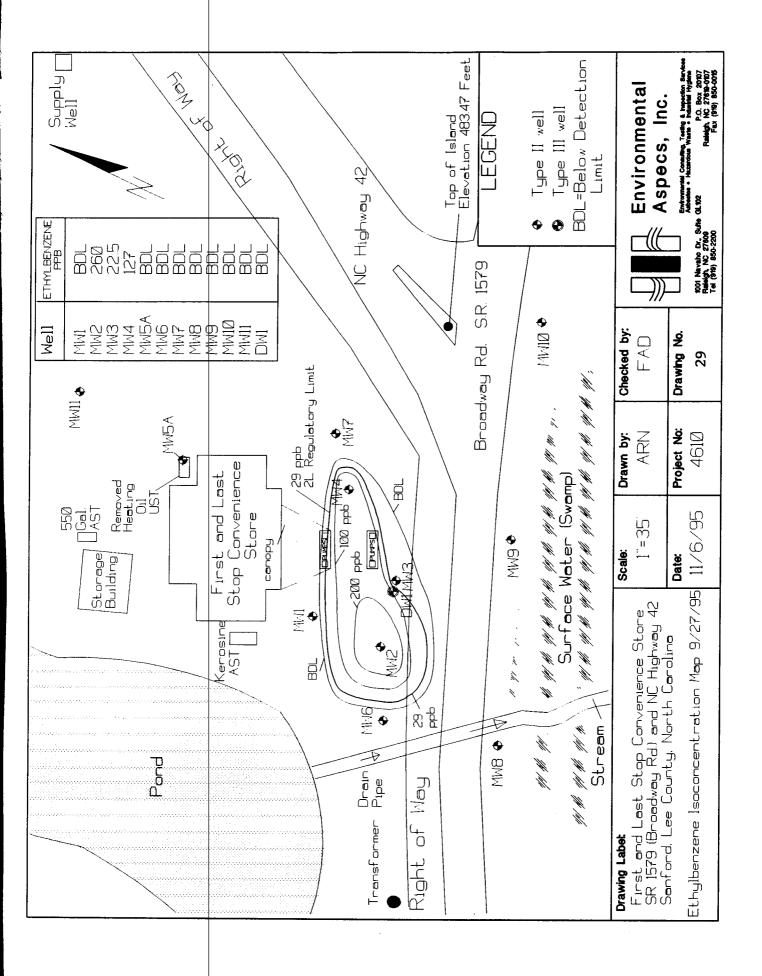

Total thickness of the contaminant portrayed represents the concentration of that contaminant in each well in parts per billion (ppb).

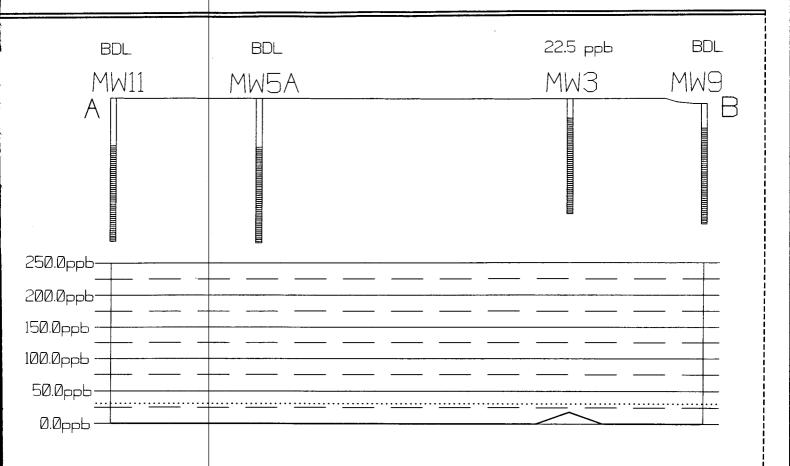
The purpose of this diagram is to graphically represent the contaminant concentrations in each well, not to delineate the plume vertically.

Drawing Labet

First and Last Stop Convenience Store SR 1579 (Broadway Rd.) and NC Highway 42 Sanford. Lee County, North Carolina

Benzene Isoconcentration Cross-section

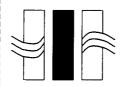



Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale:	Drawn by:	Checked by:	Date:	Project No:	Drawing No:	
H 1"=25" V 1"=10"	ARN	FAD	11/6/95	50-944-4610	28	

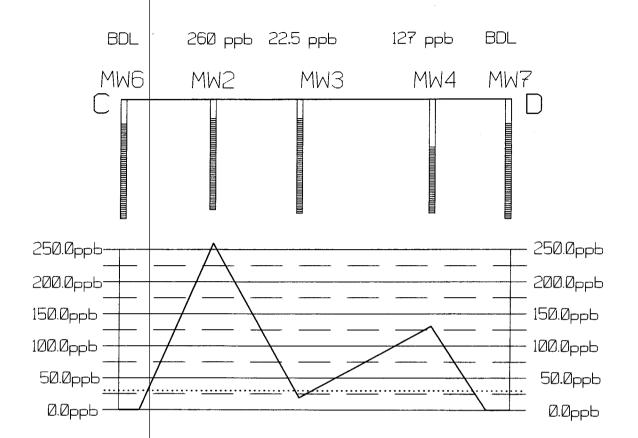

Total thickness of the contaminant portrayed represents the concentration of that contaminant in each well in parts per billion (ppb).

The purpose of this diagram is to graphically represent the contaminant concentrations in each well, not to delineate the plume vertically.

Drawing Labet

First and Last Stop Convenience Store SR 1579 (Broadway Rd.) and NC Highway 42 Sanford. Lee County, North Carolina

Ethylbenzene Isoconcentration Cross-section

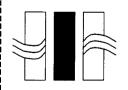


Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale: H 1"=25	Drawn by:		Checked by:	Date:	Project No:	Drawing No:
V 1"=1Ø"	AŔN	 	FAD	11/6/95	50-944-4610	30

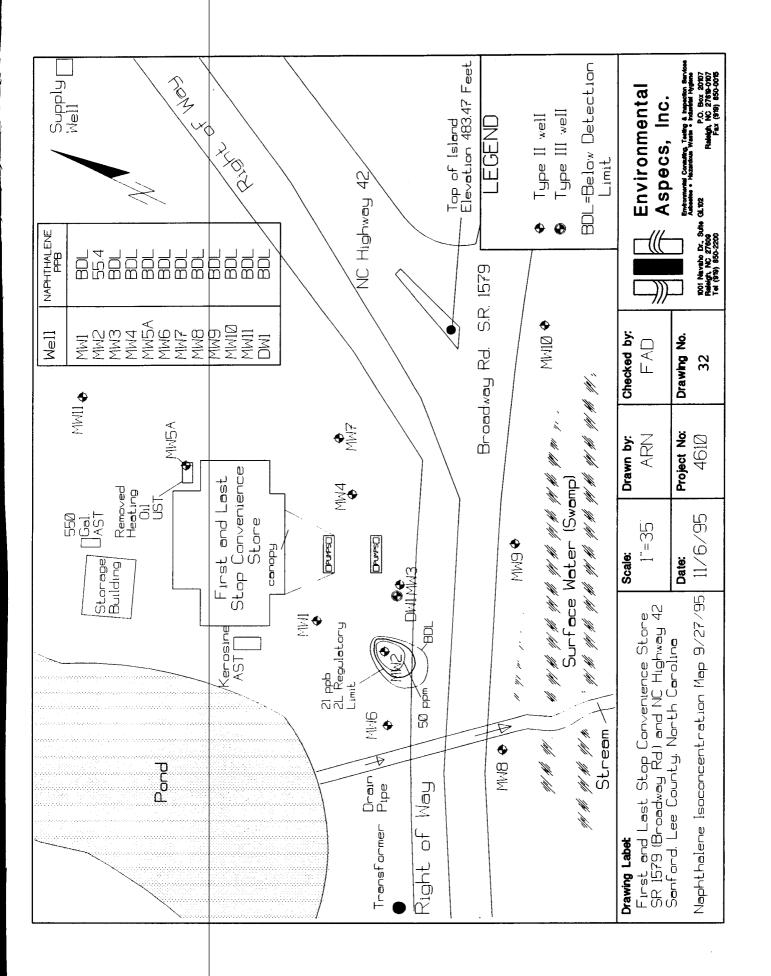

Total thickness of the contaminant portrayed represents the concentration of that contaminant in each well in parts per billion (ppb).

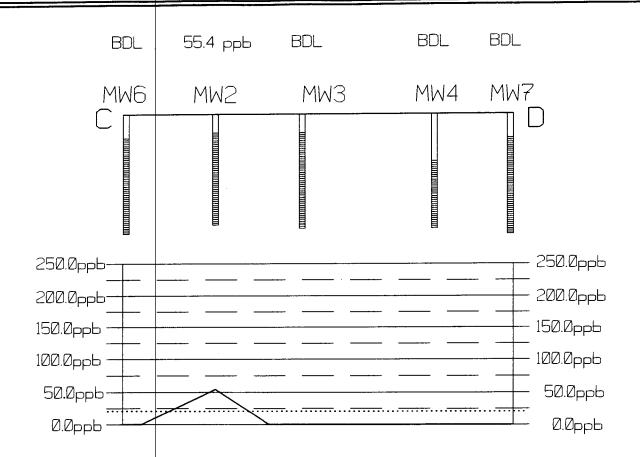
The purpose of this diagram is to graphically represent the contaminant concentrations in each well, not to delineate the plume vertically.

Drawing Label:

First and Last Stop Convenience Store SR 1579 (Broadway Rd.) and NC Highway 42 Sanford. Lee County. North Carolina

Ethylbenzene Isoconcentration Cross-section

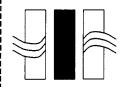



Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale:	Drawn by:	Checked by:	Date:	Project No:	Drawing No:
H 1"=25" V 1"=10"	ARN	FAD	11/6/95	50-944-4610	31

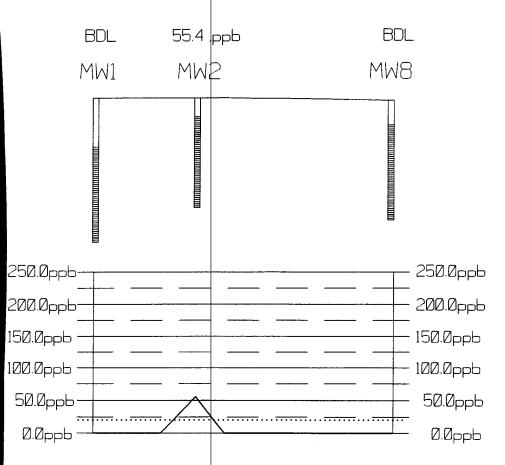

Total thickness of the contaminant portrayed represents the concentration of that contaminant in each well in parts per billion (ppb).

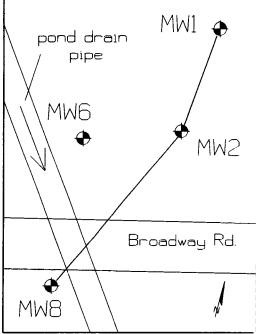
The purpose of this diagram is to graphically represent the contaminant concentrations in each well, not to delineate the plume vertically.

Drawing Label:

First and Last Stop Convenience Store SR 1579 (Broadway Rd.) and NC Highway 42 Sanford. Lee County. North Carolina

Naphthalene Isoconcentration Cross-section

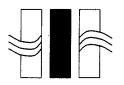



Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

1001 Navaho Dr., Suite GiL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale:	Drawn by:		Checked by:	Date:	Project No:	Drawing No:
H 1"=25" V 1"=10"	ARN	 	FAD	11/6/95	50-944-4610	33


Total thickness of the contaminant portrayed represents the concentration of that contaminant in each well in parts per billion (ppb).

The purpose of this diagram is to graphically represent the contaminant concentrations in each well, not to delineate the plume vertically.

Drawing Labet

First and Last Stop Convenience Store BR 1579 (Broadway Rd.) and NC Highway 42 Banford. Lee County, North Carolina

Naphthalene Isoconcentration Cross-section

Environmental Aspecs, Inc.

Environmental Consulting, Testing & Inspection Services Asbestos • Hazardous Waste • Industrial Hygiene

1001 Navaho Dr., Suite GL102 Raleigh, NC 27609 Tel (919) 850-2200

Scale:	Drawn by:	Checked by:	Date:	Project No:	Drawing No:
H 1"=25" V 1"=10"	ARN	FAD	11/6/95	50-944-4610	34

APPENDIX C GEOPHYSICAL SURVEY REPORT

PYRAMID GEOPHYSICAL SERVICES (PROJECT 2018-041)

GEOPHYSICAL SURVEY

METALLIC UST INVESTIGATION: PARCEL 114 NCDOT PROJECT R-3830 (38887.1.1)

1831 BROADWAY RD., SANFORD, NC MARCH 30, 2018

Report prepared for: Michael Burns, P.G.

Kleinfelder

3200 Gateway Centre Blvd., Suite 100

Morrisville, NC 27560

Prepared by:

Eric C. Cross, P.G. NC License #2181

Reviewed by:

Douglas A. Canavello, P.G. NC License #1066

GEOPHYSICAL INVESTIGATION REPORT

Parcel 114 – 1831 Broadway Rd. Sanford, Lee County, North Carolina

Table of Contents

Executive Summary	1
Introduction	2
Field Methodology	2
Discussion of Results	
Discussion of EM Results	
Discussion of GPR Results	4
Summary & Conclusions	
Limitations	

Figures

- Figure 1 Parcel 114 Geophysical Survey Boundaries and Site Photographs
- Figure 2 Parcel 114 EM61 Results Contour Map
- Figure 3 Parcel 114 GPR Transect Locations and Images
- Figure 4 Overlay of Geophysical Survey Boundaries on NCDOT Engineering Plans

LIST OF ACRONYMS

CADD	Computer Assisted Drafting and Design
DF	Dual Frequency
EM	Electromagnetic
GPR	Ground Penetrating Radar
GPS	Global Positioning System
NCDOT	North Carolina Department of Transportation
ROW	
UST	Underground Storage Tank

Project Description: Pyramid Environmental conducted a geophysical investigation for Kleinfelder at Parcel 114, located at 1831 Broadway Rd., in Sanford, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-3830). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from February 16-22, 2018, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

Geophysical Results: The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. A total of three EM anomalies were identified. The majority of the EM anomalies were directly attributed to visible cultural features. GPR was performed in the vicinity of a buried manhole and verified that no other buried structures were located in that area. Collectively, the geophysical data <u>did not record any evidence of metallic USTs at Parcel 114</u>.

INTRODUCTION

Pyramid Environmental conducted a geophysical investigation for Kleinfelder at Parcel 114, located at 1831 Broadway Rd., in Broadway, NC. The survey was part of a North Carolina Department of Transportation (NCDOT) Right-of-Way (ROW) investigation (NCDOT Project R-3830). The survey was designed to extend from the existing edge of pavement into the proposed ROW and/or easements, whichever distance was greater. Conducted from February 16-22, 2018, the geophysical investigation was performed to determine if unknown, metallic underground storage tanks (USTs) were present beneath the survey area.

The site included a vacant commercial building surrounded by dirt, gravel, and grass surfaces. An aerial photograph showing the survey area boundaries and ground-level photographs are shown in **Figure 1**.

FIELD METHODOLOGY

The geophysical investigation consisted of electromagnetic (EM) induction-metal detection and ground penetrating radar (GPR) surveys. Pyramid collected the EM data using a Geonics EM61 metal detector integrated with a Trimble AG-114 GPS antenna. The integrated GPS system allows the location of the instrument to be recorded in real-time during data collection, resulting in an EM data set that is geo-referenced and can be overlain on aerial photographs and CADD drawings. A boundary grid was established around the perimeter of the site with marks every 10 feet to maintain orientation of the instrument throughout the survey and assure complete coverage of the area.

According to the instrument specifications, the EM61 can detect a metal drum down to a maximum depth of approximately 8 feet. Smaller objects (1-foot or less in size) can be detected to a maximum depth of 4 to 5 feet. The EM61 data were digitally collected at approximately 0.8-foot intervals along north-south trending or east-west trending, generally parallel survey lines, spaced five feet apart. The data were downloaded to a

computer and reviewed in the field and office using the Geonics NAV61 and Surfer for Windows Version 15.0 software programs.

GPR data were acquired across select EM anomalies on February 22, 2018, using a Geophysical Survey Systems, Inc. (GSSI) UtilityScan DF unit equipped with a dual frequency 300/800 MHz antenna. Data were collected both in reconnaissance fashion as well as along formal transect lines across EM features. The GPR data were viewed in real-time using a vertical scan of 512 samples, at a rate of 48 scans per second. GPR data were viewed down to a maximum depth of approximately 6 feet, based on dielectric constants calculated by the DF unit in the field during the reconnaissance scans. GPR transects across specific anomalies were saved to the hard drive of the DF unit for post-processing and figure generation.

Pyramid's classifications of USTs for the purposes of this report are based directly on the geophysical UST ratings provided by the NCDOT. These ratings are as follows:

	Geophysical Surveys for on NCI	Underground Stora OOT Projects	ge Tanks
High Confidence	Intermediate Confidence	Low Confidence	No Confidence
Known UST Active tank - spatial location, orientation, and approximate depth determined by geophysics.	Probable UST Sufficient geophysical data from both magnetic and radar surveys that is characteristic of a tank. Interpretation may be supported by physical evidence such as fill/vent pipe, metal cover plate, asphalt/concrete patch, etc.	Possible UST Sufficient geophysical data from either magnetic or radar surveys that is characteristic of a tank. Additional data is not sufficient enough to confirm or deny the presence of a UST.	Anomaly noted but not characteristic of a UST_Should be noted in the text and may be called out in the figures at the geophysicist's discretion.

DISCUSSION OF RESULTS

Discussion of EM Results

A contour plot of the EM61 results obtained across the survey area at the property is presented in **Figure 2**. Each EM anomaly is numbered for reference in the figure. The following table presents the list of EM anomalies and the cause of the metallic response, if known:

LIST OF METALLIC ANOMALIES IDENTIFIED BY EM SURVEY

Metallic Anomaly #	Cause of Anomaly	Investigated with GPR
1	Manhole	Ø
2	Water Line/Utility	
3	Vehicle	

The majority of the EM anomalies were directly attributed to visible cultural features at the ground surface, including a vehicle, a manhole, and a known water line. GPR was performed around the manhole to verify no other structures were located in its vicinity.

Discussion of GPR Results

Figure 3 presents the locations of the formal GPR transects performed at the property, as well as the transect images. A total of two formal GPR transects were performed at the property. These transects were performed across Anomaly 1 and confirmed the presence of a manhole at that location. No other buried structures were observed.

Collectively, the geophysical data <u>did not record any evidence of metallic USTs at Parcel 114</u>. **Figure 4** provides an overlay of the geophysical survey onto the NCDOT MicroStation engineering plans for reference.

SUMMARY & CONCLUSIONS

Pyramid's evaluation of the EM61 and GPR data collected at Parcel 114 in Sanford, North Carolina, provides the following summary and conclusions:

- The EM61 and GPR surveys provided reliable results for the detection of metallic USTs within the accessible portions of the geophysical survey area.
- The majority of the EM features were directly attributed to visible cultural features.
- GPR was performed in the vicinity of a buried manhole and verified that no other buried structures were located in that area.

• Collectively, the geophysical data <u>did not record any evidence of metallic USTs at</u>
Parcel 114.

LIMITATIONS

Geophysical surveys have been performed and this report was prepared for Kleinfelder in accordance with generally accepted guidelines for EM61 and GPR surveys. It is generally recognized that the results of the EM61 and GPR surveys are non-unique and may not represent actual subsurface conditions. The EM61 and GPR results obtained for this project have not conclusively determined the definitive presence or absence of metallic USTs, but the evidence collected is sufficient to result in the conclusions made in this report. Additionally, it should be understood that areas containing extensive vegetation, reinforced concrete, or other restrictions to the accessibility of the geophysical instruments could not be fully investigated.

NÎ

APPROXIMATE BOUNDARIES OF GEOPHYSICAL SURVEY AREA

View of Survey Area (Facing Approximately West)

View of Survey Area (Facing Approximately West)

TITLE

PARCEL 114 - GEOPHYSICAL SURVEY BOUNDARIES AND SITE PHOTOGRAPHS

PROJECT

PARCEL 114 SANFORD, NORTH CAROLINA NCDOT PROJECT R-3830

503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

DATE	2/22/2018	CLIENT	KLEINFELDER
PYRAMID PROJECT #:	2018-041		FIGURE 1

EM61 METAL DETECTION RESULTS

NUMBERS IN BLUE (x) CORRESPOND TO EM ANOMALY TABLE IN REPORT

NO EVIDENCE OF UNKNOWN METALLIC USTs OBSERVED.

The contour plot shows the differential results of the EM61 instrument in millivolts (mV). The differential results focus on larger metallic objects such as USTs and drums. The EM61 data were collected on February 16, 2018, using a Geonics EM61 instrument. Verification GPR data were collected using a GSSI UtilityScan DF instrument with a dual frequency 300/800 MHz antenna on February 22, 2018.

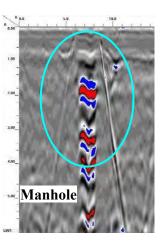
EM61 Metal Detection Response (millivolts)

TITLE

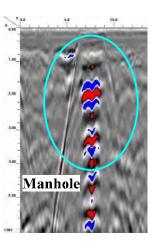
PARCEL 114 - EM61 METAL DETECTION CONTOUR MAP

PROJECT

PARCEL 114 SANFORD, NORTH CAROLINA NCDOT PROJECT R-3830



503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology


DATE	2/22/2018	CLIENT KLEINFELDER
PYRAMID PROJECT #:	2018-041	FIGURE 2

LOCATIONS OF GPR TRANSECTS

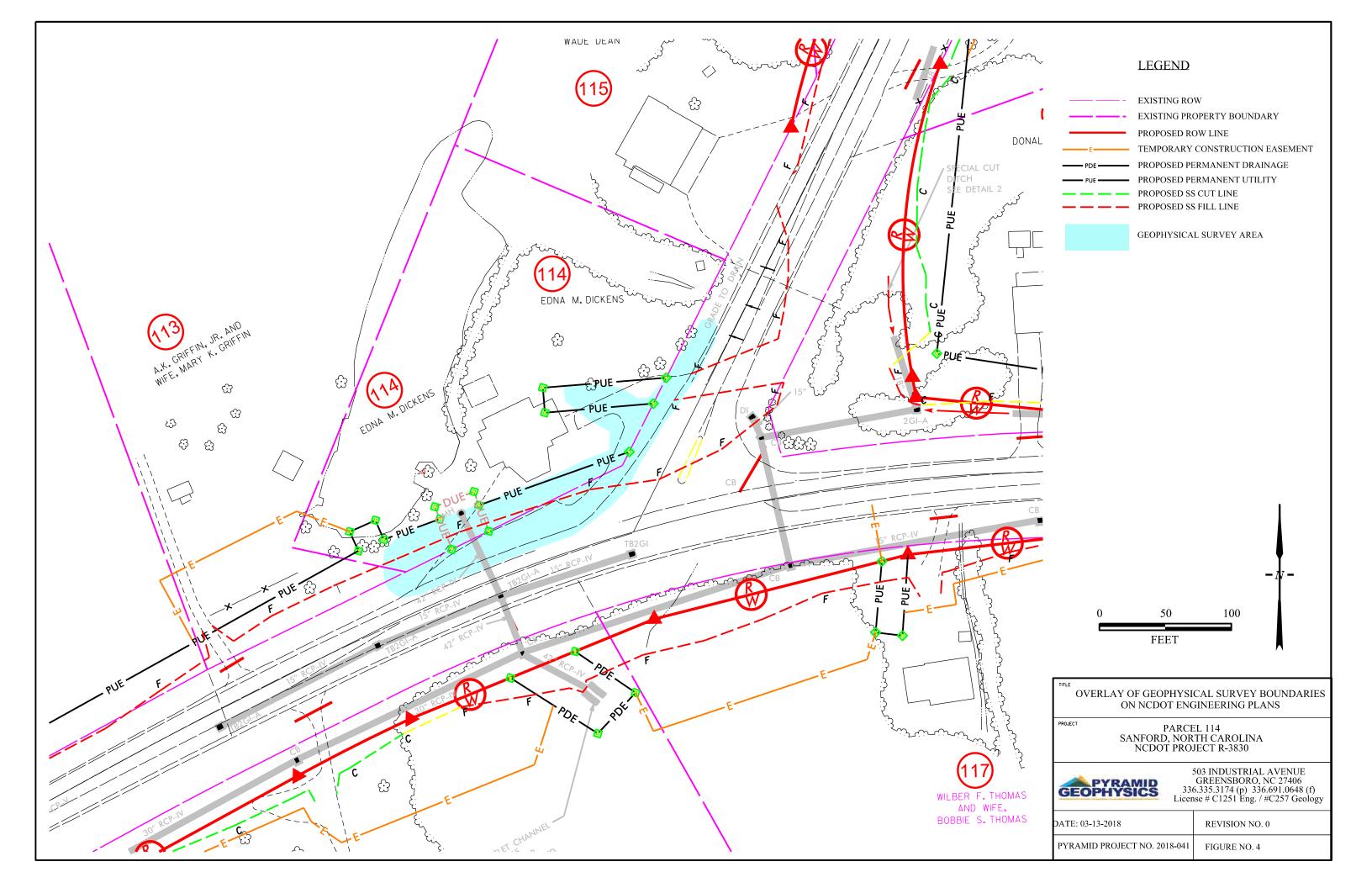
GPR TRANSECT 1 (T1)

GPR TRANSECT 2 (T2)

ΝÎ

TITLE

PARCEL 114 - GPR TRANSECT LOCATIONS AND IMAGES


PROJECT

PARCEL 114 SANFORD, NORTH CAROLINA NCDOT PROJECT R-3830

503 INDUSTRIAL AVENUE GREENSBORO, NC 27460 (336) 335-3174 (p) (336) 691-0648 (f) License # C1251 Eng. / License # C257 Geology

PYRAMID PROJECT #:	2018-041	FIGURE	3	
DATE	3/7/2018	CLIENT KLEINFEI	KLEINFELDER	

APPENDIX D BORING LOGS

Date Begin - End: 3/20/2018 **Drilling Company:** Quantex **BORING LOG P114-SS1 Drill Crew:** Logged By: J. Hollinger JD Barker Hor.-Vert. Datum: Not Available **Drilling Equipment:** 6620DT GeoProbe Plunge: -90 degrees **Drilling Method:** See Drilling Method Column Weather: Cloudy **Bore Diameter:** 2 in. O.D. FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number **Drilling Method** Northing: 623684.5460 Easting: 1971078.3930 Surface Condition: Grass Graphical Log Sample Type Depth (feet) Lithologic Description **TOPSOIL** Silty SAND: tan 1 (UVF) 100% 1.60 Hand Auger 2 100% 0.81 3 100% 0.93 4 (UVF) 100% 1.39 Silty SAND: brown 5 (UVF) 100% 1.72 Silty SAND: brown, wet ∇ Direct Push Sleeves 6 100% NA SAND: coarse-grained, tan, wet 10 The borehole was terminated at approximately 10 ft. below ground surface. surface during drilling.

GENERAL NOTES:
The boring was backfilled with bentonite chips on March 20, 2018. 15 PROJECT NO.: 20183507 **BORING LOG P114-SS1** DRAWN BY: JCH KLEINFELDER CHECKED BY: MJB R-3830 Bright People. Right Solutions. WBS 38887.1.1 DATE: 4/18/2018 Sanford, NC REVISED:

The borehole was terminated at approximately 10 ft. below ground surface.

GROUNDWATER LEVEL INFORMATION:

☑ Groundwater was observed at approximately 5 ft. below ground surface during drilling.

▼ Groundwater was observed at approximately 6.5 ft. below ground surface after drilling completion.

GENERAL NOTES:
The boring was backfilled with bentonite chips on March 20, 2018.

BORING LOG P114-SS2

KLEINFELDER Bright People. Right Solutions.

PROJECT NO.: 20183507

DRAWN BY: JCH

CHECKED BY: DATE: 4/18/2018

MJB

REVISED:

BORING LOG P114-SS2

R-3830 WBS 38887.1.1 Sanford, NC

15

JD Barker

6620DT GeoProbe

See Drilling Method Column

2 in. O.D.

FIELD EXPLORATION

		TIZED EXCEPTION						
	Depth (feet)	Drilling Method	Sample Type	Sample Number	Recovery (NR=No Recovery)	PID / FID (ppmv)	Graphical Log	Northing: 623722.3505 Easting: 1971159.3387 Surface Condition: Grass Lithologic Description
							NI,	TOPSOIL
- - -	_	ler		1	100%	14.40		Clayey SILT: orange
		Hand Auger		2	100%	13.80	Ш	
	-	꾸	H				Ш	
	_			3 (UVF)	100%	19.56	Ш	
	_			4-5 (UVF)	100%	39.08		
	5-							
∇		s						Clayey SAND: brown, odor, wet, Hydrocarbon odor
-		eve		6-10	100%	31.86		
	٦	J Sle						
		Push						
-		Direct Push Sleeves						
	-							Sandy CLAY: white, moist
	-							
	10							
								CDOLINDWATED LEVEL INFORMATION:

The borehole was terminated at approximately 10 ft. below ground surface.

GROUNDWATER LEVEL INFORMATION:

☑ Groundwater was observed at approximately 5.5 ft. below ground surface during drilling.

GENERAL NOTES:

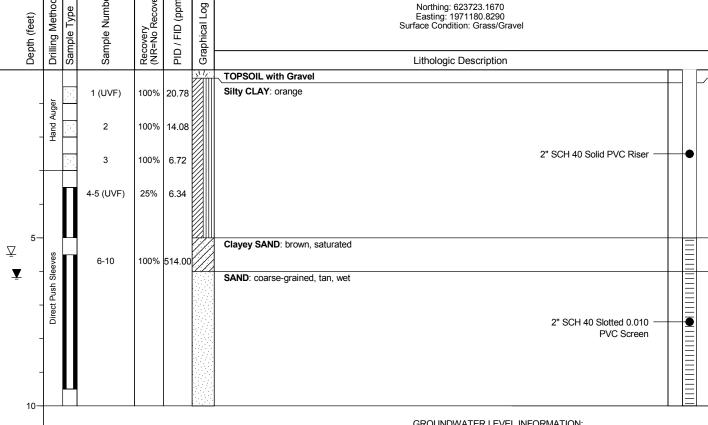
The boring was backfilled with bentonite chips on March 20, 2018.

KLEINFELDER Bright People. Right Solutions.

PROJECT NO.: 20183507 DRAWN BY: JCH

CHECKED BY:

REVISED:


DATE: 4/18/2018

MJB

BORING LOG P114-SS3

R-3830 WBS 38887.1.1 Sanford, NC

15

The borehole was terminated at approximately 10 ft. below ground surface.

surface during drilling.

BORING LOG P114-SS4

▼ Groundwater was observed at approximately 6 ft. below ground surface at the end of drilling. GENERAL NOTES: The boring was backfilled with bentonite chips on March 20, 2018.

PROJECT NO.: 20183507

DRAWN BY: JCH

CHECKED BY:

DATE: 4/18/2018 REVISED:

MJB

BORING LOG P114-SS4

R-3830 WBS 38887.1.1 Sanford, NC

15

Date Begin - End: 3/20/2018 **Drilling Company:** Quantex **BORING LOG P114-SS5 Drill Crew:** Logged By: J. Hollinger JD Barker Hor.-Vert. Datum: Not Available **Drilling Equipment:** 6620DT GeoProbe Plunge: -90 degrees **Drilling Method:** See Drilling Method Column Weather: Cloudy **Bore Diameter:** 2 in. O.D. FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number **Drilling Method** Northing: 623735.3860 Easting: 1971195.8120 Surface Condition: Grass Graphical Log Sample Type Depth (feet) Lithologic Description **TOPSOIL GRAVEL** 1 100% NA Hand Auger 2 (UVF) 100% 10.92 3 100% 6.89 Silty SAND: coarse-grained, brown and tan, wet at 5.5 feet 4-5 (UVF) 25% 10.99 ∇ Direct Push Sleeves 6-10 100% 94.81 Sandy CLAY: gray 10 The borehole was terminated at approximately 10 ft. below ground surface. surface during drilling.

<u>GENERAL NOTES:</u>
The boring was backfilled with bentonite chips on March 20, 2018. 15 PROJECT NO.: 20183507 **BORING LOG P114-SS5** DRAWN BY: JCH KLEINFELDER CHECKED BY: MJB R-3830 Bright People. Right Solutions. WBS 38887.1.1 DATE: 4/18/2018 Sanford, NC REVISED:

100%

2.57

2 (UVF)

GROUNDWATER LEVEL INFORMATION: Groundwater was not observed during drilling or after completion.

GENERAL NOTES:
The boring was backfilled with excavated material on March 20, 2018.

BORING LOG P114-SS6

KLEINFELDER Bright People. Right Solutions.

PROJECT NO.: 20183507

DRAWN BY: JCH

CHECKED BY: MJB DATE: 4/18/2018

REVISED:

BORING LOG P114-SS6

R-3830 WBS 38887.1.1 Sanford, NC

15

Date Begin - End: 3/20/2018 **Drilling Company:** Quantex **BORING LOG P114-SS7 Drill Crew:** Logged By: J. Hollinger JD Barker Hor.-Vert. Datum: Not Available **Drilling Equipment:** 6620DT GeoProbe Plunge: -90 degrees **Drilling Method:** See Drilling Method Column Weather: Cloudy **Bore Diameter:** 2 in. O.D. FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number **Drilling Method** Northing: 623794.4320 Easting: 1971191.6580 Surface Condition: Grass Graphical Log Sample Type Depth (feet) Lithologic Description **TOPSOIL** SAND: coarse-grained, tan, dry to moist 1 100% 3.01 Hand Auger 2 (UVF) 100% 2.70 3 100% 2.63 Sandy CLAY: red/brown 4 100% 2.50 5 (UVF) 100% 2.71 Direct Push Sleeves 6 100% 2.01 7 100% 2.20 8 100% 2.91 9 (UVF) 100% 3.02 10 100% 2.39 10 GROUNDWATER LEVEL INFORMATION: Groundwater was not observed during drilling or after completion. The borehole was terminated at approximately 10 ft. below ground surface. GENERAL NOTES:
The boring was backfilled with excavated material on March 20, 2018. 15 PROJECT NO.: 20183507 **BORING LOG P114-SS7** DRAWN BY: JCH KLEINFELDER CHECKED BY: MJB R-3830 Bright People. Right Solutions. WBS 38887.1.1 DATE: 4/18/2018 Sanford, NC REVISED:

Date Begin - End: 4/20/2018 **Drilling Company:** Kleinfelder **BORING LOG P114-SS8 Drill Crew:** Logged By: J. Hollinger J. Hollinger Hor.-Vert. Datum: Not Available **Drilling Equipment:** Hand Auger Plunge: -90 degrees **Drilling Method:** See Drilling Method Column Weather: Cloudy **Bore Diameter:** 2 in. O.D. FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number **Drilling Method** Northing: 623804.4445 Easting: 1971233.2645 Surface Condition: Grass Graphical Log Sample Type Depth (feet) Lithologic Description **TOPSOIL** SAND: coarse-grained, tan, dry 1 100% 0.2 Hand Auger 2 (DRO) 100% 1.2 Clayey SAND: red/orange, dry 3 (DRO) 100% 0.3 GROUNDWATER LEVEL INFORMATION:
Groundwater was not observed during drilling or after completion. The borehole was terminated at approximately 3 ft. below ground surface. GENERAL NOTES: The boring was backfilled with excavated material on April 20, 2018. 10-15 PROJECT NO.: 20183507 **BORING LOG P114-SS8** DRAWN BY: JCH KLEINFELDER CHECKED BY: MJB R-3830 Bright People. Right Solutions. WBS 38887.1.1 DATE: 4/18/2018

REVISED:

Sanford, NC

4/20/2018

J. Hollinger

Not Available

-90 degrees

CLOUDY

Kleinfelder

J. Hollinger

Drilling Equipment:

Hand Auger See Drilling Method Column

Drilling Method: Bore Diameter:

2 in. O.D.

		FIELD EXPLORATION						
Depth (feet)	Drilling Method	Sample Type	Sample Number	Recovery (NR=No Recovery)	PID / FID (ppmv)	Graphical Log	Northing: 623796.5013 Easting: 1971249.9911 Surface Condition: Gravel	
Del	<u>=</u>	Sar	Sar	Reg (NF	믑	Gra	Lithologic Description	
							GRAVEL	
-	Hand Auger		1	100%	0.2		Clayey SAND: gray, dry	
			2 (DRO)	100%	1.4		Clayey SAND: red/orange, dry	
			3 (DRO)	100%	0.2			

The borehole was terminated at approximately 3 ft. below ground surface.

GROUNDWATER LEVEL INFORMATION:
Groundwater was not observed during drilling or after completion.
GENERAL NOTES:
The boring was backfilled with excavated material on April 20, 2018.

BORING LOG P114-SS9

OFFICE FILTER: RALEIGH

10-

15-

gINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2017.GLB [KLF_ENVIRONMENTAL LOG] PROJECT NUMBER: 20183507.001A gINT FILE: KIf_gint_master_2017

KLEINFELDER Bright People. Right Solutions.

PROJECT NO.: 20183507 DRAWN BY: JCH

CHECKED BY:

REVISED:

MJB DATE: 4/23/2018 **BORING LOG P114-SS9**

R-3830 WBS 38887.1.1 Sanford, NC

Date Begin - End: 4/20/2018 **Drilling Company:** Kleinfelder **BORING LOG P114-SS10 Drill Crew:** Logged By: J. Hollinger J. Hollinger Hor.-Vert. Datum: Not Available **Drilling Equipment:** Hand Auger Plunge: -90 degrees **Drilling Method:** See Drilling Method Column Weather: **CLOUDY Bore Diameter:** 2 in. O.D. FIELD EXPLORATION Recovery (NR=No Recovery) PID / FID (ppmv) Sample Number **Drilling Method** Northing: 623787.3941 Easting: 1971236.3720 Surface Condition: Gravel Graphical Log Sample Type Depth (feet) Lithologic Description **GRAVEL** SAND: coarse-grained, tan, dry 1 100% 1.0 Hand Auger 2 (DRO) 100% 0.7 Clayey SAND: red/orange, moist 3 (DRO) 100% 0.2 GROUNDWATER LEVEL INFORMATION:
Groundwater was not observed during drilling or after completion. The borehole was terminated at approximately 3 ft. below ground surface. GENERAL NOTES: The boring was backfilled with excavated material on April 20, 2018. 10-15 PROJECT NO.: 20183507 **BORING LOG P114-SS10** DRAWN BY: JCH KLEINFELDER CHECKED BY: MJB R-3830 Bright People. Right Solutions. WBS 38887.1.1 DATE: 4/23/2018

REVISED:

Sanford, NC

afilli	Date Begin - End: 4/20/2018 Logged By: J. Hollinger							Drilling Company:	Kleinfelder		BORIN	G LOG P114-SS11
	Logged I	Ву:		J. Hol	linger			Drill Crew:	J. Hollinger			
D .	HorVer	t. Da	atum	: Not A	vailabl	е		Drilling Equipment:	Hand Auger	<u>r</u>		
4 Γ Σ	Plunge:			-90 de	egrees			Drilling Method:	See Drilling M	ethod Column		
0.5.0	Weather	:		CLOL	JDY			Bore Diameter:	2 in. O.D.			
2010								FIE	ELD EXPLORATI	ION		
12/40		_		ē	ery)	2						
	£	thoc	be/	q Er	SCOV6	ppm	Log			Northing: 623797.4600 Easting: 1971218.1677		
-	(fee	g Me	e T	<u>e</u> Z	ery lo Re		ical			Surface Condition: Grave	el	
_	Depth (feet)	Drilling Method	Sample Type	Sample Number	Recovery (NR=No Recovery)	PID / FID (ppmv)	Graphical Log				.,	
ł			S	σ	<u>κ</u> ε	<u> </u>	0	GRAVEL		Lithologic Description	<u> </u>	
				1	100%	1.2		SAND: coarse-grained, tan, o	dry			
	-	Auger										
	_	Hand Auger		2 (DRO)	100%	0.9	7.7					
		-		0 (DDO)	4000/			Clayey SAND: red/orange, d	ry			
	-			3 (DRO)	100%	0.6						
			The	horehole was	termina	ated at	annroy	ximately 3 ft. below ground surfac	۵	GROUNDWATER LEVI	EL INFORMATION: bserved during drilling or a	ofter completion
	-		1110	borchoic was	Cillinic	alcu al	арргол	Annately of it. below ground surface	· ·	GENERAL NOTES:	ed with excavated material	•
	5-									The borning was backline	sa with excavated material	011 April 20, 2010.
	Ü											
	-	-										
	-											
	_											
	-											
	10-	1										
	_											
	-	-										
<u>ח</u>												
i L	-											
	15-	-										
	-											
] - 	_											
TT												
NAA!	-											
4												
5	-	-										
DARL												
N AIN	1//							PROJECT NO.: 20°	183507	BORING LOG F	211 <u>4</u> -SS11	
			1	\				DRAWN BY:	JCH	DOMING LOG F	117-0011	
ان	1 4	-1	E	INF	F	, ,	75		мув			-
1 K	1 1	_		Bright Ped				tions		R-3830 WBS 3888		
	1		1	Jugut Fee	pie. r	igit	Joiul	DATE: 4/2	3/2018	WBS 3888 Sanford,		

REVISED:

APPENDIX E ANALYTICAL REPORT AND GRAPHS

Hydrocarbon Analysis Results

Client: Kleinfelder

Address: 3200 Gateway Centre Blvd Suite 100

Morrisville, NC

Samples taken Samples extracted Tuesday, March 20, 2018 Tuesday, March 20, 2018

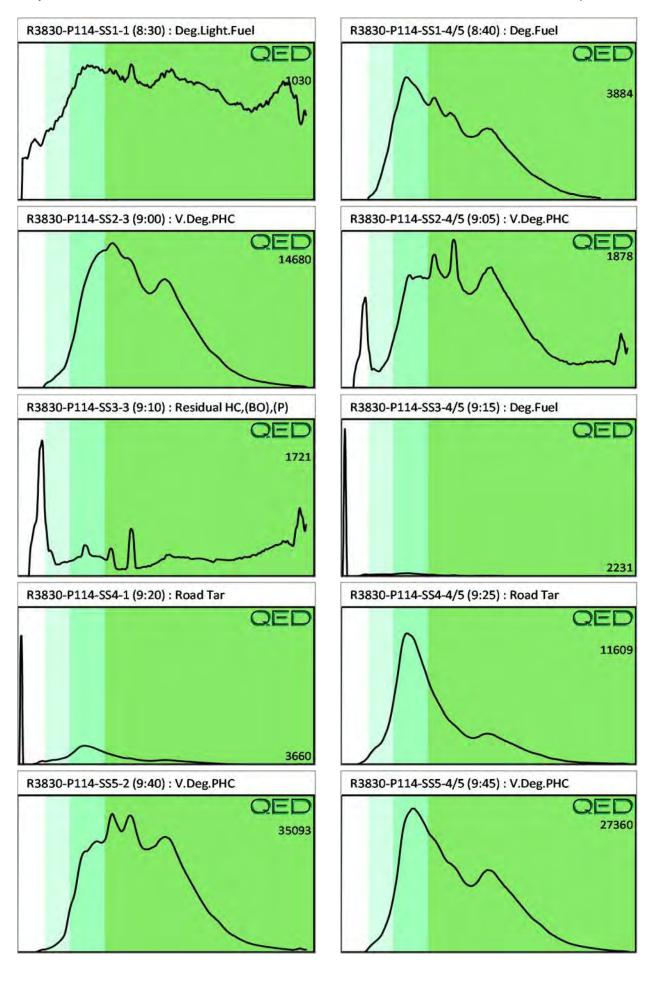
Samples analysed Tuesday, March 20, 2018

Contact: Michael Burns Operator J. Joseph Hodge

Project: R3830

													U00902
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	g,	% Ratios	5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
S	R3830-P114-SS1-1 (8:30)	23.0	3.2	3.2	1.2	4.4	0.85	0.03	<0.012	81.7	17.2	1	Deg.Light.Fuel 61.3%,(FCM),(BO),(OCR)
s	R3830-P114-SS1-4/5 (8:40)	19.5	<0.49	< 0.49	2.1	2.1	1.2	0.06	<0.01	0	91.2	8.1	Deg.Fuel 79.6%,(FCM)
s	R3830-P114-SS2-3 (9:00)	22.6	<0.57	<0.57	4.8	4.8	4.8	0.26	<0.011	0	87.2	11.7	V.Deg.PHC 72.5%,(FCM)
S	R3830-P114-SS2-4/5 (9:05)	29.2	< 0.73	< 0.73	0.73	0.73	0.72	0.04	<0.015	0	87.3	11.4	V.Deg.PHC 58.2%,(FCM),(BO),(P)
S	R3830-P114-SS3-3 (9:10)	28.9	<0.72	<0.72	0.26	0.26	0.14	<0.03	<0.014	0	94.7	4.7	Residual HC,(BO),(P)
S	R3830-P114-SS3-4/5 (9:15)	22.4	<0.56	<0.56	1.6	1.6	0.48	0.03	<0.011	0	98.8	1.1	Deg.Fuel 76.3%,(FCM),(OCR)
S	R3830-P114-SS4-1 (9:20)	25.0	<0.63	< 0.63	3.6	3.6	1.3	0.06	<0.013	0	95.5	4.2	Road Tar 83.5%,(FCM),(OCR)
s	R3830-P114-SS4-4/5 (9:25)	25.2	< 0.63	< 0.63	11	11	5	0.22	<0.013	0	96.1	3.7	Road Tar 92.5%,(FCM)
S	R3830-P114-SS5-2 (9:40)	24.3	<0.61	<0.61	15.7	15.7	15.6	0.86	0.066	0	85.1	13.8	V.Deg.PHC 71.2%,(FCM),(BO)
S	R3830-P114-SS5-4/5 (9:45)	21.8	<0.55	<0.55	11.5	11.5	11.4	0.59	<0.014	0	91.7	7.7	V.Deg.PHC 92%,(FCM)
	Initial Ca	alibrator (QC check	OK					Final FC	CM QC	Check	OK	104.5 %

Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only.

Data generated by HC-1 Analyser

Project: R3830 Tuesday, March 20, 2018

Hydrocarbon Analysis Results

Client: Kleinfelder Address: 3200 Gateway Centre Blvd Suite 100

Morrisville, NC

Samples taken Samples extracted Samples analysed

Final FCM QC Check OK

Tuesday, March 20, 2018 Tuesday, March 20, 2018

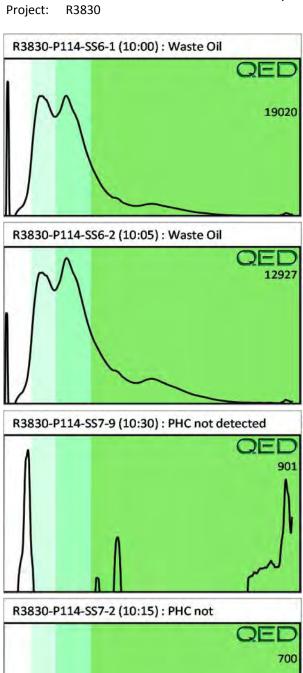
99.7 %

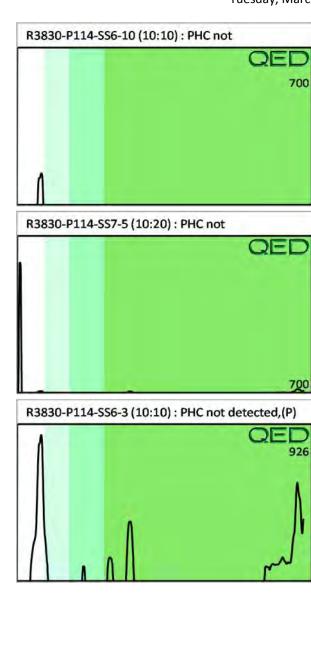
Tuesday, March 20, 2018

Contact: Michael Burns J. Joseph Hodge Operator

Project: R3830

													U00902
Matrix	Sample ID	Dilution used	BTEX (C6 - C9)	GRO (C5 - C10)	DRO (C10 - C35)	TPH (C5 - C35)	Total Aromatics (C10-C35)	16 EPA PAHs	ВаР	Ċ	% Ratios	5	HC Fingerprint Match
										C5 - C10	C10 - C18	C18	
s	R3830-P114-SS6-1 (10:00)	25.2	<0.63	<0.63	172.5	172.5	14.4	0.75	<0.013	0	99.5	0.4	Waste Oil 78.8%,(FCM),(BO)
s	R3830-P114-SS6-10 (10:10)	22.8	<0.57	<0.57	< 0.05	<0.57	<0.11	<0.02	<0.011	0	0	0	PHC not detected,(OCR)
S	R3830-P114-SS6-2 (10:05)	24.3	<0.61	<0.61	104.6	104.6	8.1	0.43	<0.012	0	98.8	1.1	Waste Oil 81.2%,(FCM)
S	R3830-P114-SS7-5 (10:20)	25.0	<0.63	< 0.63	<0.05	< 0.63	<0.13	<0.03	<0.013	0	0	0	PHC not detected,(OCR)
S	R3830-P114-SS7-9 (10:30)	28.0	<0.7	5.8	<0.06	5.8	<0.14	<0.03	<0.014	100	0	0	PHC not detected
S	R3830-P114-SS6-3 (10:10)	22.2	<0.56	<0.56	<0.04	< 0.56	<0.11	<0.02	<0.011	0	0	0	PHC not detected,(P)
S	R3830-P114-SS7-2 (10:15)	23.2	<0.58	<0.58	<0.05	<0.58	<0.12	<0.02	<0.012	0	0	0	PHC not detected,(OCR)
	1.333.1.0	a litta wa kasa wa	00.4	OK					Final FC	20.4.00	Clarati	OK	00.7.0/


Concentration values in mg/kg for soil samples and mg/L for water samples. Soil values uncorrected for moisture or stone content. Fingerprints provide a tentative hydrocarbon identification.


Abbreviations :- FCM = Results calculated using Fundamental Calibration Mode : % = confidence of hydrocarbon identification : (PFM) = Poor Fingerprint Match : (T) = Turbid : (P) = Particulate detected

B = Blank Drift : (SBS)/(LBS) = Site Specific or Library Background Subtraction applied to result : (BO) = Background Organics detected : (OCR) = Outside cal range : (M) = Modifed Result.

% Ratios estimated aromatic carbon number proportions: HC = Hydrocarbon: PHC = Petroleum HC: FP = Fingerprint only. Data generated by HC-1 Analyser

Initial Calibrator QC check

March 28, 2018

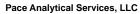
Chemical Testing Engineer NCDOT Materials & Tests Unit 1801 Blue Ridge Road Raleigh, NC 27607

RE: Project: R3830 WBS 38887.1.1 Pace Project No.: 92377782

Dear Chemical Engineer:

Enclosed are the analytical results for sample(s) received by the laboratory on March 21, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

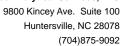
Taylor Ezell taylor.ezell@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Michael Burns, Kleinfelder Chris Hollinger, Kleinfelder

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092


CERTIFICATIONS

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92377782001	R3830-P114-TMW-1	Water	03/20/18 10:50	03/21/18 13:15
92377782002	R3830-P114-TMW-2	Water	03/20/18 11:00	03/21/18 13:15

SAMPLE ANALYTE COUNT

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92377782001	R3830-P114-TMW-1	EPA 625	BPJ	58	PASI-C
		SM 6200B	SWB	63	PASI-C
92377782002	R3830-P114-TMW-2	EPA 625	BPJ	58	PASI-C
		SM 6200B	SWB	63	PASI-C

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Method: EPA 625 Description: 625 MSSV

Client: NCDOT East Central Date: March 28, 2018

General Information:

2 samples were analyzed for EPA 625. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 625 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 402940

L2: Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

- LCSD (Lab ID: 2235064)
 - 2,4,6-Trichlorophenol
 - 2-Nitrophenol
 - Pentachlorophenol

R1: RPD value was outside control limits.

- LCSD (Lab ID: 2235064)
 - 2,4-Dichlorophenol
 - 2-Chlorophenol
 - 2-Nitrophenol
 - Phenol

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Method: EPA 625 Description: 625 MSSV

Client: NCDOT East Central Date: March 28, 2018

Additional Comments:

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

PROJECT NARRATIVE

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Method: SM 6200B Description: 6200B MSV

Client: NCDOT East Central Date: March 28, 2018

General Information:

2 samples were analyzed for SM 6200B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

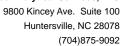
Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

Sample: R3830-P114-TMW-1	Lab ID:	92377782001	Collecte	d: 03/20/18	3 10:50	Received: 03/	21/18 13:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
625 MSSV	Analytical	Method: EPA 6	25 Prepara	ation Metho	d: EPA (625			
Acenaphthene	ND	ug/L	50.0	2.5	1	03/21/18 14:08	03/28/18 12:08	83-32-9	
Acenaphthylene	ND	ug/L	50.0	2.1	1	03/21/18 14:08	03/28/18 12:08	208-96-8	
Anthracene	ND	ug/L	50.0	1.4	1	03/21/18 14:08	03/28/18 12:08	120-12-7	
Benzo(a)anthracene	ND	ug/L	50.0	3.3	1	03/21/18 14:08	03/28/18 12:08	56-55-3	
Benzo(a)pyrene	ND	ug/L	50.0	3.0	1	03/21/18 14:08	03/28/18 12:08	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	50.0	2.8	1	03/21/18 14:08	03/28/18 12:08	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	50.0	3.8	1	03/21/18 14:08	03/28/18 12:08	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	50.0	4.3	1	03/21/18 14:08	03/28/18 12:08	207-08-9	
4-Bromophenylphenyl ether	ND	ug/L	50.0	8.2	1	03/21/18 14:08	03/28/18 12:08	101-55-3	
Butylbenzylphthalate	ND	ug/L	50.0	7.9	1	03/21/18 14:08	03/28/18 12:08	85-68-7	
4-Chloro-3-methylphenol	ND	ug/L	50.0	37.0	1	03/21/18 14:08	03/28/18 12:08	59-50-7	
ois(2-Chloroethoxy)methane	ND	ug/L	100	9.2	1	03/21/18 14:08	03/28/18 12:08	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/L	50.0	10.0	1	03/21/18 14:08	03/28/18 12:08	111-44-4	
2-Chloronaphthalene	ND	ug/L	50.0	9.8	1	03/21/18 14:08	03/28/18 12:08	91-58-7	
2-Chlorophenol	ND	ug/L	50.0	13.0	1	03/21/18 14:08	03/28/18 12:08	95-57-8	
4-Chlorophenylphenyl ether	ND	ug/L	50.0	8.7	1	03/21/18 14:08	03/28/18 12:08	7005-72-3	
Chrysene	ND	ug/L	50.0	2.1	1	03/21/18 14:08	03/28/18 12:08	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	50.0	5.5	1	03/21/18 14:08	03/28/18 12:08	53-70-3	
3,3'-Dichlorobenzidine	ND	ug/L	250	21.0	1	03/21/18 14:08	03/28/18 12:08	91-94-1	
2,4-Dichlorophenol	ND	ug/L	50.0	17.0	1	03/21/18 14:08	03/28/18 12:08	120-83-2	
Diethylphthalate	ND	ug/L	50.0	5.8	1	03/21/18 14:08	03/28/18 12:08	84-66-2	
2,4-Dimethylphenol	ND	ug/L	100	12.0	1	03/21/18 14:08	03/28/18 12:08		
Dimethylphthalate	ND	ug/L	50.0	7.6	1	03/21/18 14:08	03/28/18 12:08		
Di-n-butylphthalate	ND	ug/L	50.0	7.5	1	03/21/18 14:08	03/28/18 12:08		
4,6-Dinitro-2-methylphenol	ND	ug/L	200	26.0	1	03/21/18 14:08	03/28/18 12:08		
2,4-Dinitrophenol	ND	ug/L	500	90.0	1	03/21/18 14:08	03/28/18 12:08		
2,4-Dinitrotoluene	ND	ug/L	50.0	9.0	1	03/21/18 14:08	03/28/18 12:08		
2,6-Dinitrotoluene	ND	ug/L	50.0	9.8	1	03/21/18 14:08	03/28/18 12:08		
Di-n-octylphthalate	ND	ug/L	50.0	6.6	1	03/21/18 14:08	03/28/18 12:08		
pis(2-Ethylhexyl)phthalate	ND	ug/L	50.0	7.9	1	03/21/18 14:08	03/27/18 18:34		
Fluoranthene	ND	ug/L	50.0	2.1	1	03/21/18 14:08	03/28/18 12:08		
Fluorene	ND	ug/L	50.0	2.1	1	03/21/18 14:08	03/28/18 12:08		
Hexachloro-1,3-butadiene	ND	ug/L	50.0	9.4	1	03/21/18 14:08	03/28/18 12:08		
Hexachlorobenzene	ND	ug/L	50.0	7.2	1	03/21/18 14:08	03/28/18 12:08		
Hexachlorocyclopentadiene	ND	ug/L	100	8.8	1	03/21/18 14:08			
Hexachloroethane	ND	ug/L	50.0	11.0	1	03/21/18 14:08	03/28/18 12:08		
ndeno(1,2,3-cd)pyrene	ND	ug/L	50.0	2.9	1	03/21/18 14:08	03/28/18 12:08		
sophorone	ND	ug/L	100	8.9	1	03/21/18 14:08	03/28/18 12:08		
Naphthalene	ND	ug/L	50.0	3.4	1	03/21/18 14:08	03/28/18 12:08		
Nitrobenzene	ND ND	ug/L	50.0	11.0	1	03/21/18 14:08			
2-Nitrophenol	ND ND	ug/L	50.0	9.1	1	03/21/18 14:08	03/28/18 12:08		L2
4-Nitrophenol	ND ND	ug/L ug/L	50.0	41.0	1	03/21/18 14:08	03/28/18 12:08		
N-Nitrosodimethylamine	ND ND	ug/L ug/L	50.0	9.1	1	03/21/18 14:08			
•	ND ND		50.0	9.1	1	03/21/18 14:08			
N-Nitroso-di-n-propylamine	ND ND	ug/L ug/L	100	9.9 10.0	1	03/21/18 14:08 03/21/18 14:08	03/28/18 12:08 03/28/18 12:08		
N-Nitrosodiphenylamine									

(704)875-9092


ANALYTICAL RESULTS

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

Sample: R3830-P114-TMW-1	Lab ID: 9	92377782001	Collected	d: 03/20/18	10:50	Received: 03/	21/18 13:15 Ma	atrix: Water	
Б	5 . "	11.76	Report	MDI		5		0401	
Parameters	Results —	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
625 MSSV	Analytical N	Method: EPA 6	25 Prepara	tion Method	d: EPA (625			
Pentachlorophenol	ND	ug/L	100	46.0	1	03/21/18 14:08	03/28/18 12:08	87-86-5	L2
Phenanthrene	ND	ug/L	50.0	2.2	1	03/21/18 14:08	03/28/18 12:08	85-01-8	
Phenol	ND	ug/L	50.0	19.0	1	03/21/18 14:08	03/28/18 12:08	108-95-2	
Pyrene	ND	ug/L	50.0	1.9	1	03/21/18 14:08	03/28/18 12:08	129-00-0	
1,2,4-Trichlorobenzene	ND	ug/L	50.0	9.8	1	03/21/18 14:08	03/28/18 12:08	120-82-1	
2,4,6-Trichlorophenol	ND	ug/L	100	13.0	1	03/21/18 14:08	03/28/18 12:08	88-06-2	L2
Surrogates									
Nitrobenzene-d5 (S)	68	%	10-120		1	03/21/18 14:08	03/28/18 12:08	4165-60-0	
2-Fluorobiphenyl (S)	70	%	15-120		1	03/21/18 14:08	03/28/18 12:08	321-60-8	
Terphenyl-d14 (S)	58	%	11-131		1	03/21/18 14:08	03/28/18 12:08	1718-51-0	
Phenol-d6 (S)	51	%	10-120		1	03/21/18 14:08	03/28/18 12:08	13127-88-3	
2-Fluorophenol (S)	56	%	10-120		1	03/21/18 14:08	03/28/18 12:08	367-12-4	
2,4,6-Tribromophenol (S)	74	%	10-137		1	03/21/18 14:08	03/28/18 12:08	118-79-6	
6200B MSV	Analytical N	Method: SM 62	200B						
Benzene	1.4	ug/L	0.50	0.25	1		03/26/18 19:10	71-43-2	
Bromobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	108-86-1	
Bromochloromethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10	74-97-5	
Bromodichloromethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
Bromoform	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
Bromomethane	ND	ug/L	5.0	2.5	1		03/26/18 19:10		
n-Butylbenzene	4.1	ug/L	0.50	0.25	1		03/26/18 19:10		
sec-Butylbenzene	2.4	ug/L	0.50	0.25	1		03/26/18 19:10		
tert-Butylbenzene	0.99	ug/L	0.50	0.25	1		03/26/18 19:10		
Carbon tetrachloride	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
Chlorobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
Chloroethane	ND	ug/L	1.0	0.50	1		03/26/18 19:10		
Chloroform	ND	ug/L	0.50	0.25	1		03/26/18 19:10	67-66-3	
Chloromethane	ND	ug/L	1.0	0.50	1		03/26/18 19:10		
2-Chlorotoluene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
4-Chlorotoluene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.50	1		03/26/18 19:10		
Dibromochloromethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,2-Dibromoethane (EDB)	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
Dibromomethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,2-Dichlorobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,3-Dichlorobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,4-Dichlorobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
Dichlorodifluoromethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,1-Dichloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,2-Dichloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,1-Dichloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
cis-1,2-Dichloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
trans-1,2-Dichloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:10		
1,2-Dichloropropane	ND ND	ug/L ug/L	0.50	0.25	1		03/26/18 19:10		
1,3-Dichloropropane	ND ND	ug/L ug/L	0.50	0.25	1		03/26/18 19:10		

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

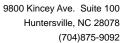
Sample: R3830-P114-TMW-1	Lab ID:	92377782001	Collecte	d: 03/20/18	3 10:50	Received: 03	3/21/18 13:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
6200B MSV	Analytical	Method: SM 62	200B						
2,2-Dichloropropane	ND	ug/L	0.50	0.25	1		03/26/18 19:10	594-20-7	
1,1-Dichloropropene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	10061-02-6	
Diisopropyl ether	ND	ug/L	0.50	0.25	1		03/26/18 19:10	108-20-3	
Ethylbenzene	4.0	ug/L	0.50	0.25	1		03/26/18 19:10	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	2.0	1.0	1		03/26/18 19:10	87-68-3	
Isopropylbenzene (Cumene)	5.1	ug/L	0.50	0.25	1		03/26/18 19:10	98-82-8	
Methylene Chloride	ND	ug/L	2.0	1.0	1		03/26/18 19:10	75-09-2	
Methyl-tert-butyl ether	8.1	ug/L	0.50	0.25	1		03/26/18 19:10	1634-04-4	
Naphthalene	3.7	ug/L	2.0	1.0	1		03/26/18 19:10	91-20-3	
n-Propylbenzene	10.6	ug/L	0.50	0.25	1		03/26/18 19:10	103-65-1	
Styrene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10	79-34-5	
Tetrachloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	127-18-4	
Toluene	1.9	ug/L	0.50	0.25	1		03/26/18 19:10	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1		03/26/18 19:10	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1		03/26/18 19:10	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:10	79-00-5	
Trichloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	0.50	1		03/26/18 19:10	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	0.50	0.25	1		03/26/18 19:10	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:10	108-67-8	
Vinyl chloride	ND	ug/L	1.0	0.50	1		03/26/18 19:10	75-01-4	
m&p-Xylene	3.6	ug/L	1.0	0.50	1		03/26/18 19:10	179601-23-1	
o-Xylene	0.62	ug/L	0.50	0.25	1		03/26/18 19:10	95-47-6	
Surrogates		Ü							
1,2-Dichloroethane-d4 (S)	98	%	70-130		1		03/26/18 19:10	17060-07-0	
4-Bromofluorobenzene (S)	99	%	70-130		1		03/26/18 19:10	460-00-4	
Toluene-d8 (S)	97	%	70-130		1		03/26/18 19:10	2037-26-5	

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

Sample: R3830-P114-TMW-2	Lab ID:	92377782002	Collecte	d: 03/20/18	11:00	Received: 03/	21/18 13:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
625 MSSV	Analytical	Method: EPA 6	25 Prepara	ation Method	d: EPA (625			
Acenaphthene	ND	ug/L	50.0	2.5	1	03/21/18 14:08	03/27/18 19:02	83-32-9	
Acenaphthylene	ND	ug/L	50.0	2.1	1	03/21/18 14:08	03/27/18 19:02	208-96-8	
Anthracene	ND	ug/L	50.0	1.4	1	03/21/18 14:08	03/27/18 19:02	120-12-7	
Benzo(a)anthracene	ND	ug/L	50.0	3.3	1	03/21/18 14:08	03/27/18 19:02	56-55-3	
Benzo(a)pyrene	8.8J	ug/L	50.0	3.0	1	03/21/18 14:08	03/27/18 19:02	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	50.0	2.8	1	03/21/18 14:08	03/27/18 19:02	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	50.0	3.8	1	03/21/18 14:08	03/27/18 19:02	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	50.0	4.3	1	03/21/18 14:08	03/27/18 19:02	207-08-9	
4-Bromophenylphenyl ether	ND	ug/L	50.0	8.2	1	03/21/18 14:08	03/27/18 19:02	101-55-3	
Butylbenzylphthalate	ND	ug/L	50.0	7.9	1	03/21/18 14:08	03/27/18 19:02	85-68-7	
1-Chloro-3-methylphenol	ND	ug/L	50.0	37.0	1	03/21/18 14:08	03/27/18 19:02	59-50-7	
ois(2-Chloroethoxy)methane	ND	ug/L	100	9.2	1	03/21/18 14:08	03/27/18 19:02	111-91-1	
ois(2-Chloroethyl) ether	ND	ug/L	50.0	10.0	1	03/21/18 14:08	03/27/18 19:02	111-44-4	
2-Chloronaphthalene	ND	ug/L	50.0	9.8	1	03/21/18 14:08	03/27/18 19:02		
2-Chlorophenol	ND	ug/L	50.0	13.0	1	03/21/18 14:08	03/27/18 19:02		
4-Chlorophenylphenyl ether	ND	ug/L	50.0	8.7	1	03/21/18 14:08	03/27/18 19:02		
Chrysene	ND	ug/L	50.0	2.1	1	03/21/18 14:08	03/27/18 19:02		
Dibenz(a,h)anthracene	ND	ug/L	50.0	5.5	1	03/21/18 14:08	03/27/18 19:02		
3,3'-Dichlorobenzidine	ND	ug/L	250	21.0	1	03/21/18 14:08	03/27/18 19:02		
2,4-Dichlorophenol	ND	ug/L	50.0	17.0	1	03/21/18 14:08	03/27/18 19:02		
Diethylphthalate	ND	ug/L	50.0	5.8	1	03/21/18 14:08			
2,4-Dimethylphenol	ND	ug/L	100	12.0	1	03/21/18 14:08	03/27/18 19:02		
Dimethylphthalate	ND	ug/L	50.0	7.6	1	03/21/18 14:08	03/27/18 19:02		
Di-n-butylphthalate	ND ND	ug/L	50.0	7.5	1	03/21/18 14:08	03/27/18 19:02		
	ND ND	_	200	26.0	1	03/21/18 14:08	03/27/18 19:02		
4,6-Dinitro-2-methylphenol	ND ND	ug/L	500	90.0	1	03/21/18 14:08	03/27/18 19:02		
2,4-Dinitrophenol		ug/L							
2,4-Dinitrotoluene	ND ND	ug/L	50.0	9.0 9.8	1	03/21/18 14:08	03/27/18 19:02 03/27/18 19:02		
2,6-Dinitrotoluene		ug/L	50.0		1	03/21/18 14:08			
Di-n-octylphthalate	ND	ug/L	50.0	6.6	1	03/21/18 14:08	03/27/18 19:02		
ois(2-Ethylhexyl)phthalate	ND	ug/L	50.0	7.9	1	03/21/18 14:08			
Fluoranthene 	ND	ug/L	50.0	2.1	1	03/21/18 14:08			
Fluorene	ND	ug/L	50.0	2.1	1	03/21/18 14:08	03/27/18 19:02		
Hexachloro-1,3-butadiene	ND	ug/L	50.0	9.4	1	03/21/18 14:08	03/27/18 19:02		
Hexachlorobenzene	ND	ug/L	50.0	7.2	1	03/21/18 14:08			
Hexachlorocyclopentadiene	ND	ug/L	100	8.8	1		03/27/18 19:02		
Hexachloroethane	ND	ug/L	50.0	11.0	1		03/27/18 19:02		
ndeno(1,2,3-cd)pyrene	ND	ug/L	50.0	2.9	1	03/21/18 14:08	03/27/18 19:02		
sophorone	ND	ug/L	100	8.9	1	03/21/18 14:08			
Naphthalene	63.9	ug/L	50.0	3.4	1		03/27/18 19:02		
Nitrobenzene	ND	ug/L	50.0	11.0	1		03/27/18 19:02		
2-Nitrophenol	ND	ug/L	50.0	9.1	1		03/27/18 19:02		L2
4-Nitrophenol	ND	ug/L	500	41.0	1	03/21/18 14:08			
N-Nitrosodimethylamine	ND	ug/L	50.0	9.1	1	03/21/18 14:08	03/27/18 19:02	62-75-9	
N-Nitroso-di-n-propylamine	ND	ug/L	50.0	9.9	1	03/21/18 14:08	03/27/18 19:02	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	100	10.0	1	03/21/18 14:08	03/27/18 19:02	86-30-6	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	50.0	9.5	1	03/21/18 14:08	03/27/18 19:02	108-60-1	



Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

Sample: R3830-P114-TMW-2	Lab ID:	92377782002	Collecte	d: 03/20/18	3 11:00	Received: 03/	21/18 13:15 Ma	atrix: Water	
	. .		Report					0.0	
Parameters	Results —	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
625 MSSV	Analytical I	Method: EPA 6	25 Prepara	ation Metho	d: EPA	625			
Pentachlorophenol	ND	ug/L	100	46.0	1	03/21/18 14:08	03/27/18 19:02	87-86-5	L2
Phenanthrene	ND	ug/L	50.0	2.2	1	03/21/18 14:08	03/27/18 19:02	85-01-8	
Phenol	ND	ug/L	50.0	19.0	1	03/21/18 14:08	03/27/18 19:02	108-95-2	
Pyrene	ND	ug/L	50.0	1.9	1	03/21/18 14:08	03/27/18 19:02	129-00-0	
1,2,4-Trichlorobenzene	ND	ug/L	50.0	9.8	1	03/21/18 14:08	03/27/18 19:02	120-82-1	
2,4,6-Trichlorophenol Surrogates	ND	ug/L	100	13.0	1	03/21/18 14:08	03/27/18 19:02	88-06-2	L2
Nitrobenzene-d5 (S)	74	%	10-120		1	03/21/18 14:08	03/27/18 19:02	4165-60-0	
2-Fluorobiphenyl (S)	79	%	15-120		1	03/21/18 14:08	03/27/18 19:02		
Terphenyl-d14 (S)	73	%	11-131		1	03/21/18 14:08	03/27/18 19:02		
Phenol-d6 (S)	63	%	10-120		1		03/27/18 19:02		
2-Fluorophenol (S)	69	% %	10-120		1		03/27/18 19:02		
2,4,6-Tribromophenol (S)	86	%	10-120		1		03/27/18 19:02		
, , ,					'	03/21/10 14.00	03/21/10 13:02	110 73 0	
6200B MSV		Method: SM 62							
Benzene	3.8	ug/L	0.50	0.25	1		03/26/18 19:26		
Bromobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	108-86-1	
Bromochloromethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26	74-97-5	
Bromodichloromethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26	75-27-4	
Bromoform	ND	ug/L	0.50	0.25	1		03/26/18 19:26	75-25-2	
Bromomethane	ND	ug/L	5.0	2.5	1		03/26/18 19:26	74-83-9	
n-Butylbenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	104-51-8	
sec-Butylbenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	135-98-8	
tert-Butylbenzene	3.0	ug/L	0.50	0.25	1		03/26/18 19:26	98-06-6	
Carbon tetrachloride	ND	ug/L	0.50	0.25	1		03/26/18 19:26	56-23-5	
Chlorobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	108-90-7	
Chloroethane	ND	ug/L	1.0	0.50	1		03/26/18 19:26	75-00-3	
Chloroform	ND	ug/L	0.50	0.25	1		03/26/18 19:26	67-66-3	
Chloromethane	ND	ug/L	1.0	0.50	1		03/26/18 19:26	74-87-3	
2-Chlorotoluene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	95-49-8	
4-Chlorotoluene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.50	1		03/26/18 19:26	96-12-8	
Dibromochloromethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	0.50	0.25	1		03/26/18 19:26	106-93-4	
Dibromomethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
1,3-Dichlorobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
1,4-Dichlorobenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
Dichlorodifluoromethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
1,1-Dichloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
1,2-Dichloroethane	0.41J	ug/L	0.50	0.25	1		03/26/18 19:26		
1,1-Dichloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
cis-1,2-Dichloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
trans-1,2-Dichloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
1,2-Dichloropropane	ND	ug/L	0.50	0.25	1		03/26/18 19:26		
1,3-Dichloropropane	ND	ug/L	0.50	0.25	1		03/26/18 19:26		

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

Sample: R3830-P114-TMW-2	Lab ID: 9	2377782002	Collected: 03/20/18 11:00			Received: 03/21/18 13:15 Matrix: Water				
			Report							
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6200B MSV	Analytical M	lethod: SM 62	200B							
2,2-Dichloropropane	ND	ug/L	0.50	0.25	1		03/26/18 19:26	594-20-7		
1,1-Dichloropropene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	563-58-6		
cis-1,3-Dichloropropene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	10061-01-5		
trans-1,3-Dichloropropene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	10061-02-6		
Diisopropyl ether	ND	ug/L	0.50	0.25	1		03/26/18 19:26	108-20-3		
Ethylbenzene	53.4	ug/L	0.50	0.25	1		03/26/18 19:26	100-41-4		
Hexachloro-1,3-butadiene	ND	ug/L	2.0	1.0	1		03/26/18 19:26	87-68-3		
Isopropylbenzene (Cumene)	26.4	ug/L	0.50	0.25	1		03/26/18 19:26	98-82-8		
Methylene Chloride	ND	ug/L	2.0	1.0	1		03/26/18 19:26	75-09-2		
Methyl-tert-butyl ether	3.7	ug/L	0.50	0.25	1		03/26/18 19:26	6 1634-04-4		
Naphthalene	34.6	ug/L	2.0	1.0	1		03/26/18 19:26	91-20-3		
n-Propylbenzene	51.0	ug/L	0.50	0.25	1		03/26/18 19:26	103-65-1		
Styrene	ND	ug/L	0.50	0.25	1		03/26/18 19:26	100-42-5		
1,1,2-Tetrachloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26	630-20-6		
1,1,2,2-Tetrachloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26			
Tetrachloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:26			
Toluene	3.3	ug/L	0.50	0.25	1		03/26/18 19:26	108-88-3		
1,2,3-Trichlorobenzene	ND	ug/L	2.0	1.0	1		03/26/18 19:26	87-61-6		
1,2,4-Trichlorobenzene	ND	ug/L	2.0	1.0	1		03/26/18 19:26	120-82-1		
1,1,1-Trichloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26	71-55-6		
1,1,2-Trichloroethane	ND	ug/L	0.50	0.25	1		03/26/18 19:26			
Trichloroethene	ND	ug/L	0.50	0.25	1		03/26/18 19:26			
Trichlorofluoromethane	ND	ug/L	1.0	0.50	1		03/26/18 19:26			
1,2,3-Trichloropropane	ND	ug/L	0.50	0.25	1		03/26/18 19:26			
1,2,4-Trimethylbenzene	1.4	ug/L	0.50	0.25	1		03/26/18 19:26			
1,3,5-Trimethylbenzene	ND	ug/L	0.50	0.25	1		03/26/18 19:26			
Vinyl chloride	ND	ug/L	1.0	0.50	1		03/26/18 19:26			
m&p-Xylene	7.2	ug/L	1.0	0.50	1			179601-23-1		
o-Xylene	1.5	ug/L	0.50	0.25	1		03/26/18 19:26			
Surrogates		g [,] -	0.00	0.20	•		23,23,			
1,2-Dichloroethane-d4 (S)	98	%	70-130		1		03/26/18 19:26	17060-07-0		
4-Bromofluorobenzene (S)	100	%	70-130		1		03/26/18 19:26			
Toluene-d8 (S)	101	%	70-130		1		03/26/18 19:26			

(704)875-9092

QUALITY CONTROL DATA

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

QC Batch: 403525 Analysis Method: SM 6200B
QC Batch Method: SM 6200B Analysis Description: 6200B MSV

Associated Lab Samples: 92377782001, 92377782002

METHOD BLANK: 2238529 Matrix: Water

Associated Lab Samples: 92377782001, 92377782002

,	,	Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,1,1-Trichloroethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,1,2,2-Tetrachloroethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,1,2-Trichloroethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,1-Dichloroethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,1-Dichloroethene	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,1-Dichloropropene	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,2,3-Trichlorobenzene	ug/L	ND	2.0	1.0	03/26/18 15:41	
1,2,3-Trichloropropane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,2,4-Trichlorobenzene	ug/L	ND	2.0	1.0	03/26/18 15:41	
1,2,4-Trimethylbenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,2-Dibromo-3-chloropropane	ug/L	ND	1.0	0.50	03/26/18 15:41	
1,2-Dibromoethane (EDB)	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,2-Dichlorobenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,2-Dichloroethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,2-Dichloropropane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,3,5-Trimethylbenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,3-Dichlorobenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,3-Dichloropropane	ug/L	ND	0.50	0.25	03/26/18 15:41	
1,4-Dichlorobenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
2,2-Dichloropropane	ug/L	ND	0.50	0.25	03/26/18 15:41	
2-Chlorotoluene	ug/L	ND	0.50	0.25	03/26/18 15:41	
4-Chlorotoluene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Benzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Bromobenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Bromochloromethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
Bromodichloromethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
Bromoform	ug/L	ND	0.50	0.25	03/26/18 15:41	
Bromomethane	ug/L	ND	5.0	2.5	03/26/18 15:41	
Carbon tetrachloride	ug/L	ND	0.50	0.25	03/26/18 15:41	
Chlorobenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Chloroethane	ug/L	ND	1.0	0.50	03/26/18 15:41	
Chloroform	ug/L	ND	0.50	0.25	03/26/18 15:41	
Chloromethane	ug/L	ND	1.0	0.50	03/26/18 15:41	
cis-1,2-Dichloroethene	ug/L	ND	0.50	0.25	03/26/18 15:41	
cis-1,3-Dichloropropene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Dibromochloromethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
Dibromomethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
Dichlorodifluoromethane	ug/L	ND	0.50	0.25	03/26/18 15:41	
Diisopropyl ether	ug/L	ND	0.50	0.25	03/26/18 15:41	
Ethylbenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

METHOD BLANK: 2238529 Matrix: Water

Associated Lab Samples: 92377782001, 92377782002

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	ug/L	ND	2.0	1.0	03/26/18 15:41	
Isopropylbenzene (Cumene)	ug/L	ND	0.50	0.25	03/26/18 15:41	
m&p-Xylene	ug/L	ND	1.0	0.50	03/26/18 15:41	
Methyl-tert-butyl ether	ug/L	ND	0.50	0.25	03/26/18 15:41	
Methylene Chloride	ug/L	ND	2.0	1.0	03/26/18 15:41	
n-Butylbenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
n-Propylbenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Naphthalene	ug/L	ND	2.0	1.0	03/26/18 15:41	
o-Xylene	ug/L	ND	0.50	0.25	03/26/18 15:41	
sec-Butylbenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Styrene	ug/L	ND	0.50	0.25	03/26/18 15:41	
tert-Butylbenzene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Tetrachloroethene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Toluene	ug/L	ND	0.50	0.25	03/26/18 15:41	
trans-1,2-Dichloroethene	ug/L	ND	0.50	0.25	03/26/18 15:41	
trans-1,3-Dichloropropene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Trichloroethene	ug/L	ND	0.50	0.25	03/26/18 15:41	
Trichlorofluoromethane	ug/L	ND	1.0	0.50	03/26/18 15:41	
Vinyl chloride	ug/L	ND	1.0	0.50	03/26/18 15:41	
1,2-Dichloroethane-d4 (S)	%	97	70-130		03/26/18 15:41	
4-Bromofluorobenzene (S)	%	97	70-130		03/26/18 15:41	
Toluene-d8 (S)	%	100	70-130		03/26/18 15:41	

LABORATORY CONTROL SAMPLE:	2238530					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.5	101	60-140	
1,1,1-Trichloroethane	ug/L	50	49.7	99	60-140	
1,1,2,2-Tetrachloroethane	ug/L	50	49.2	98	60-140	
1,1,2-Trichloroethane	ug/L	50	48.7	97	60-140	
1,1-Dichloroethane	ug/L	50	48.0	96	60-140	
1,1-Dichloroethene	ug/L	50	53.4	107	60-140	
1,1-Dichloropropene	ug/L	50	52.9	106	60-140	
1,2,3-Trichlorobenzene	ug/L	50	50.4	101	60-140	
1,2,3-Trichloropropane	ug/L	50	49.0	98	60-140	
1,2,4-Trichlorobenzene	ug/L	50	51.1	102	60-140	
1,2,4-Trimethylbenzene	ug/L	50	48.2	96	60-140	
1,2-Dibromo-3-chloropropane	ug/L	50	48.3	97	60-140	
1,2-Dibromoethane (EDB)	ug/L	50	50.1	100	60-140	
1,2-Dichlorobenzene	ug/L	50	50.1	100	60-140	
1,2-Dichloroethane	ug/L	50	47.0	94	60-140	
1,2-Dichloropropane	ug/L	50	50.6	101	60-140	
1,3,5-Trimethylbenzene	ug/L	50	48.5	97	60-140	
1,3-Dichlorobenzene	ug/L	50	50.0	100	60-140	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

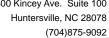
Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

_ABORATORY CONTROL SAMPLE	E: 2238530	_				
	11.2	Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
,3-Dichloropropane	ug/L	50	50.6	101	60-140	
,4-Dichlorobenzene	ug/L	50	49.2	98	60-140	
2,2-Dichloropropane	ug/L	50	49.3	99	60-140	
2-Chlorotoluene	ug/L	50	48.3	97	60-140	
-Chlorotoluene	ug/L	50	48.5	97	60-140	
Benzene	ug/L	50	47.3	95	60-140	
romobenzene	ug/L	50	50.7	101	60-140	
romochloromethane	ug/L	50	54.6	109	60-140	
romodichloromethane	ug/L	50	47.2	94	60-140	
romoform	ug/L	50	50.7	101	60-140	
romomethane	ug/L	50	41.9	84	60-140	
Carbon tetrachloride	ug/L	50	50.5	101	60-140	
chlorobenzene	ug/L	50	50.2	100	60-140	
Chloroethane	ug/L	50	39.0	78	60-140	
Chloroform	ug/L	50	50.8	102	60-140	
Chloromethane	ug/L	50	39.4	79	60-140	
is-1,2-Dichloroethene	ug/L	50	51.7	103	60-140	
s-1,3-Dichloropropene	ug/L	50	50.3	101	60-140	
ibromochloromethane	ug/L	50	51.0	102	60-140	
ibromomethane	ug/L	50	52.8	106	60-140	
ichlorodifluoromethane	ug/L	50	48.3	97	60-140	
iisopropyl ether	ug/L	50	47.5	95	60-140	
thylbenzene	ug/L	50	48.9	98	60-140	
lexachloro-1,3-butadiene	ug/L	50	51.8	104	60-140	
sopropylbenzene (Cumene)	ug/L	50	50.4	101	60-140	
n&p-Xylene	ug/L	100	99.4	99	60-140	
lethyl-tert-butyl ether	ug/L	50	46.5	93	60-140	
lethylene Chloride	ug/L	50	50.7	101	60-140	
-Butylbenzene	ug/L	50	49.4	99	60-140	
-Propylbenzene	ug/L	50	50.2	100	60-140	
laphthalene	ug/L	50	49.1	98	60-140	
-Xylene	ug/L	50	49.9	100	60-140	
ec-Butylbenzene	ug/L	50	49.3	99	60-140	
ityrene	ug/L	50	50.1	100	60-140	
ert-Butylbenzene	ug/L	50	43.3	87	60-140	
etrachloroethene	ug/L	50	45.4	91	60-140	
oluene	ug/L	50	51.4	103	60-140	
ans-1,2-Dichloroethene	ug/L	50	51.7	103	60-140	
ans-1,3-Dichloropropene	ug/L	50	49.5	99	60-140	
richloroethene	ug/L	50	49.3	99	60-140	
richlorofluoromethane	ug/L	50	47.6	95	60-140	
'inyl chloride	ug/L	50	52.9	106	60-140	
,2-Dichloroethane-d4 (S)	%	30	02.0	99	70-130	
-Bromofluorobenzene (S)	%			99	70-130	
oluene-d8 (S)	%			97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

	9.	2377642001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	21.0	20.6	105	103	60-140	2	30	
1,1,1-Trichloroethane	ug/L	ND	20	20	21.0	20.4	105	102	60-140	3	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	19.8	19.7	99	99	60-140	1	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	21.1	19.6	105	98	60-140	7	30	
I,1-Dichloroethane	ug/L	ND	20	20	20.1	19.2	101	96	60-140	5	30	
,1-Dichloroethene	ug/L	ND	20	20	22.6	21.4	113	107	60-140	5	30	
1,1-Dichloropropene	ug/L	ND	20	20	21.9	21.1	110	105	60-140	4	30	
,2,3-Trichlorobenzene	ug/L	ND	20	20	19.2	19.1	96	95	60-140	1	30	
,2,3-Trichloropropane	ug/L	ND	20	20	20.1	20.4	101	102	60-140	1	30	
,2,4-Trichlorobenzene	ug/L	ND	20	20	20.5	19.5	102	98	60-140	5	30	
,2,4-Trimethylbenzene	ug/L	ND	20	20	20.9	20.0	104	100	60-140	4	30	
,2-Dibromo-3-	ug/L	ND	20	20	20.2	19.7	101	98	60-140	2	30	
chloropropane	_											
,2-Dibromoethane (EDB)	ug/L	ND	20	20	20.7	20.4	104	102	60-140	2	30	
,2-Dichlorobenzene	ug/L	ND	20	20	21.1	20.1	105	100	60-140	5	30	
,2-Dichloroethane	ug/L	ND	20	20	18.9	18.4	95	92	60-140	3	30	
,2-Dichloropropane	ug/L	ND	20	20	21.3	20.7	107	103	60-140	3	30	
,3,5-Trimethylbenzene	ug/L	ND	20	20	20.7	19.3	103	97	60-140	7	30	
,3-Dichlorobenzene	ug/L	ND	20	20	21.1	20.2	105	101	60-140	4	30	
,3-Dichloropropane	ug/L	ND	20	20	21.8	21.1	109	106	60-140	3	30	
,4-Dichlorobenzene	ug/L	ND	20	20	20.8	19.6	104	98	60-140	6	30	
2,2-Dichloropropane	ug/L	ND	20	20	20.3	19.7	102	98	60-140	3	30	
2-Chlorotoluene	ug/L	ND	20	20	20.5	19.8	102	99	60-140	3	30	
l-Chlorotoluene	ug/L	ND	20	20	20.6	19.9	103	99	60-140	4	30	
Benzene	ug/L	ND	20	20	20.0	19.4	100	97	60-140	3	30	
Bromobenzene	ug/L	ND	20	20	21.5	20.8	108	104	60-140	4	30	
Bromochloromethane	ug/L	ND	20	20	21.2	21.2	106	106	60-140	0	30	
Bromodichloromethane	ug/L	ND	20	20	20.0	18.7	100	94	60-140	7	30	
Bromoform	ug/L	ND	20	20	20.1	19.6	101	98	60-140	2	30	
Bromomethane	ug/L	ND	20	20	18.1	17.4	91	87	60-140	4	30	
Carbon tetrachloride	ug/L	ND	20	20	22.3	21.5	112	108	60-140	4	30	
Chlorobenzene	ug/L	ND	20	20	21.8	20.9	109	105	60-140	4	30	
Chloroethane	ug/L	ND	20	20	19.2	18.2	96	91	60-140	5	30	
Chloroform	ug/L	ND	20	20	20.7	20.5	103	102	60-140	1	30	
Chloromethane	ug/L	ND	20	20	18.9	18.7	95	94	60-140	1	30	
is-1,2-Dichloroethene	ug/L	ND	20	20	21.3	21.1	107	105	60-140	1	30	
is-1,3-Dichloropropene	ug/L	ND	20	20	21.2	20.6	106	103	60-140	3	30	
Dibromochloromethane	ug/L	ND	20	20	20.8	20.4	104	102	60-140	2	30	
Dibromomethane	ug/L	ND	20	20	22.0	20.5	110	102	60-140	7	30	
Dichlorodifluoromethane	ug/L	ND	20	20	19.9	19.1	100	95	60-140		30	
Diisopropyl ether	ug/L	ND	20	20	19.3	19.2	97	96	60-140		30	
thylbenzene	ug/L	ND	20	20	21.2	20.6	106	103	60-140		30	
lexachloro-1,3-butadiene	ug/L	ND	20	20	21.5	19.8	107	99	60-140		30	
sopropylbenzene (Cumene)	ug/L	ND	20	20	21.4	20.7	107	103	60-140	3	30	
n&p-Xylene	ug/L	ND	40	40	43.2	41.3	108	103	60-140		30	
Methyl-tert-butyl ether	ug/L	ND	20	20	19.0	18.9	95	94	60-140	0	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 22388	MS	MSD	2238858							
	9	2377642001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Methylene Chloride	ug/L	ND ND	20	20	20.1	19.6	101	98	60-140	3	30	
n-Butylbenzene	ug/L	ND	20	20	20.5	19.3	102	97	60-140	6	30	
n-Propylbenzene	ug/L	ND	20	20	21.4	20.4	107	102	60-140	5	30	
Naphthalene	ug/L	ND	20	20	20.0	20.2	100	101	60-140	1	30	
o-Xylene	ug/L	ND	20	20	21.8	20.5	109	103	60-140	6	30	
sec-Butylbenzene	ug/L	ND	20	20	20.9	19.9	105	99	60-140	5	30	
Styrene	ug/L	ND	20	20	20.9	20.3	105	102	60-140	3	30	
ert-Butylbenzene	ug/L	ND	20	20	18.4	17.4	92	87	60-140	6	30	
Tetrachloroethene	ug/L	ND	20	20	19.3	18.9	96	95	60-140	2	30	
Toluene	ug/L	ND	20	20	22.6	21.5	113	108	60-140	5	30	
rans-1,2-Dichloroethene	ug/L	ND	20	20	21.6	20.9	108	104	60-140	3	30	
rans-1,3-Dichloropropene	ug/L	ND	20	20	20.6	20.0	103	100	60-140	3	30	
Trichloroethene	ug/L	ND	20	20	21.6	20.2	108	101	60-140	6	30	
Trichlorofluoromethane	ug/L	ND	20	20	21.0	20.0	105	100	60-140	5	30	
/inyl chloride	ug/L	ND	20	20	22.3	21.5	112	108	60-140	4	30	
1,2-Dichloroethane-d4 (S)	%						98	99	70-130			
1-Bromofluorobenzene (S)	%						98	99	70-130			
Toluene-d8 (S)	%						99	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

QC Batch: 402940 Analysis Method: EPA 625
QC Batch Method: EPA 625 Analysis Description: 625 MSS

Associated Lab Samples: 92377782001, 92377782002

METHOD BLANK: 2235062 Matrix: Water

Associated Lab Samples: 92377782001, 92377782002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
	_					Qualifiers
1,2,4-Trichlorobenzene	ug/L	ND	5.0	0.98	03/23/18 11:18	
2,2'-Oxybis(1-chloropropane)	ug/L	ND	5.0	0.95	03/23/18 11:18	
2,4,6-Trichlorophenol	ug/L	ND	10.0	1.3	03/23/18 11:18	
2,4-Dichlorophenol	ug/L	ND	5.0	1.7	03/23/18 11:18	
2,4-Dimethylphenol	ug/L	ND	10.0	1.2	03/23/18 11:18	
2,4-Dinitrophenol	ug/L	ND	50.0	9.0	03/23/18 11:18	
2,4-Dinitrotoluene	ug/L	ND	5.0	0.90	03/23/18 11:18	
2,6-Dinitrotoluene	ug/L	ND	5.0	0.98	03/23/18 11:18	
2-Chloronaphthalene	ug/L	ND	5.0	0.98	03/23/18 11:18	
2-Chlorophenol	ug/L	ND	5.0	1.3	03/23/18 11:18	
2-Nitrophenol	ug/L	ND	5.0	0.91	03/23/18 11:18	
3,3'-Dichlorobenzidine	ug/L	ND	25.0	2.1	03/23/18 11:18	
4,6-Dinitro-2-methylphenol	ug/L	ND	20.0	2.6	03/23/18 11:18	
4-Bromophenylphenyl ether	ug/L	ND	5.0	0.82	03/23/18 11:18	
4-Chloro-3-methylphenol	ug/L	ND	5.0	3.7	03/23/18 11:18	
4-Chlorophenylphenyl ether	ug/L	ND	5.0	0.87	03/23/18 11:18	
4-Nitrophenol	ug/L	ND	50.0	4.1	03/23/18 11:18	
Acenaphthene	ug/L	ND	5.0	0.25	03/23/18 11:18	
Acenaphthylene	ug/L	ND	5.0	0.21	03/23/18 11:18	
Anthracene	ug/L	ND	5.0	0.14	03/23/18 11:18	
Benzo(a)anthracene	ug/L	ND	5.0	0.33	03/23/18 11:18	
Benzo(a)pyrene	ug/L	ND	5.0	0.30	03/23/18 11:18	
Benzo(b)fluoranthene	ug/L	ND	5.0	0.28	03/23/18 11:18	
Benzo(g,h,i)perylene	ug/L	ND	5.0	0.38	03/23/18 11:18	
Benzo(k)fluoranthene	ug/L	ND	5.0	0.43	03/23/18 11:18	
bis(2-Chloroethoxy)methane	ug/L	ND	10.0	0.92	03/23/18 11:18	
bis(2-Chloroethyl) ether	ug/L	ND	5.0	1.0	03/23/18 11:18	
bis(2-Ethylhexyl)phthalate	ug/L	ND	5.0	0.79	03/23/18 11:18	
Butylbenzylphthalate	ug/L	ND	5.0	0.79	03/23/18 11:18	
Chrysene	ug/L	ND	5.0	0.21	03/23/18 11:18	
Di-n-butylphthalate	ug/L	ND	5.0	0.75	03/23/18 11:18	
Di-n-octylphthalate	ug/L	ND	5.0	0.66	03/23/18 11:18	
Dibenz(a,h)anthracene	ug/L	ND	5.0	0.55	03/23/18 11:18	
Diethylphthalate	ug/L	ND	5.0	0.58	03/23/18 11:18	
Dimethylphthalate	ug/L	ND	5.0	0.76	03/23/18 11:18	
Fluoranthene	ug/L	ND	5.0	0.70	03/23/18 11:18	
Fluorene	ug/L	ND	5.0	0.21	03/23/18 11:18	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	0.21	03/23/18 11:18	
Hexachlorobenzene	ug/L	ND ND	5.0	0.94	03/23/18 11:18	
Hexachlorocyclopentadiene	•	ND ND	10.0	0.72	03/23/18 11:18	
, ,	ug/L		5.0			
Hexachloroethane	ug/L	ND	5.0	1.1	03/23/18 11:18	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

METHOD BLANK: 2235062 Matrix: Water

Associated Lab Samples: 92377782001, 92377782002

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Indeno(1,2,3-cd)pyrene	ug/L	1.1J	5.0	0.29	03/23/18 11:18	
Isophorone	ug/L	ND	10.0	0.89	03/23/18 11:18	
N-Nitroso-di-n-propylamine	ug/L	ND	5.0	0.99	03/23/18 11:18	
N-Nitrosodimethylamine	ug/L	ND	5.0	0.91	03/23/18 11:18	
N-Nitrosodiphenylamine	ug/L	ND	10.0	1.0	03/23/18 11:18	
Naphthalene	ug/L	ND	5.0	0.34	03/23/18 11:18	
Nitrobenzene	ug/L	ND	5.0	1.1	03/23/18 11:18	
Pentachlorophenol	ug/L	ND	10.0	4.6	03/23/18 11:18	
Phenanthrene	ug/L	ND	5.0	0.22	03/23/18 11:18	
Phenol	ug/L	ND	5.0	1.9	03/23/18 11:18	
Pyrene	ug/L	ND	5.0	0.19	03/23/18 11:18	
2,4,6-Tribromophenol (S)	%	89	10-137		03/23/18 11:18	
2-Fluorobiphenyl (S)	%	79	15-120		03/23/18 11:18	
2-Fluorophenol (S)	%	42	10-120		03/23/18 11:18	
Nitrobenzene-d5 (S)	%	92	10-120		03/23/18 11:18	
Phenol-d6 (S)	%	27	10-120		03/23/18 11:18	
Terphenyl-d14 (S)	%	78	11-131		03/23/18 11:18	

LABORATORY CONTROL SAMPLE & LCSD:	2235063		22	35064						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter I	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1,2,4-Trichlorobenzene	ug/L	50	34.0	35.3	68	71	44-142	4	30	
2,2'-Oxybis(1-chloropropane)	ug/L	50	37.0	38.2	74	76	36-166	3	30	
2,4,6-Trichlorophenol	ug/L	50	47.0	5.2J	94	10	37-144		30	L2
2,4-Dichlorophenol	ug/L	50	46.3	13.6	93	27	1-191	109	30	R1
2,4-Dimethylphenol	ug/L	50	45.3	43.9	91	88	32-119	3	30	
2,4-Dinitrophenol	ug/L	250	226	ND	90	1	1-181		30	
	ug/L	50	49.0	47.0	98	94	39-139	4	30	
2,6-Dinitrotoluene	ug/L	50	51.9	51.9	104	104	50-158	0	30	
2-Chloronaphthalene	ug/L	50	42.3	39.7	85	79	60-118	6	30	
2-Chlorophenol	ug/L	50	41.3	16.3	83	33	23-134	87	30	R1
2-Nitrophenol	ug/L ug/L		57.2	14.1	114	28	29-182	121	30	L2,R1
3,3'-Dichlorobenzidine	ug/L	100	93.9	94.4	94	94	1-262	1	30	
4,6-Dinitro-2-methylphenol	ug/L	100	112	6.0J	112	6	1-181		30	
4-Bromophenylphenyl ether	ug/L	50	46.2	45.5	92	91	53-127	2	30	
4-Chloro-3-methylphenol	ug/L	100	95.7	75.6	96	76	22-147	23	30	
	ug/L	50	42.6	42.4	85	85	25-158	1	30	
4-Nitrophenol	ug/L	250	89.4	9.3J	36	4	1-132		30	
Acenaphthene	ug/L	50	44.7	44.6	89	89	47-145	0	30	
Acenaphthylene	ug/L	50	44.9	44.9	90	90	33-145	0	30	
	ug/L	50	48.1	49.1	96	98	1-166	2	30	
Benzo(a)anthracene	ug/L	50	46.6	46.6	93	93	33-143	0	30	
	ug/L	50	41.7	40.9	83	82	17-163	2	30	
	ug/L	50	40.2	38.9	80	78	24-159	3	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

LABORATORY CONTROL SAMPLE & LC	SD: 2235063		22	235064						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifier
Benzo(g,h,i)perylene	ug/L	50	42.0	42.6	84	85	1-219	1	30	
Benzo(k)fluoranthene	ug/L	50	39.8	39.4	80	79	11-162	1	30	
bis(2-Chloroethoxy)methane	ug/L	50	47.1	47.2	94	94	33-184	0	30	
bis(2-Chloroethyl) ether	ug/L	50	41.8	41.2	84	82	12-158	1	30	
bis(2-Ethylhexyl)phthalate	ug/L	50	58.9	57.2	118	114	8-158	3	30	
Butylbenzylphthalate	ug/L	50	57.0	59.0	114	118	1-152	4	30	
Chrysene	ug/L	50	45.1	45.9	90	92	17-168	2	30	
Di-n-butylphthalate	ug/L	50	48.7	51.4	97	103	1-118	5	30	
Di-n-octylphthalate	ug/L	50	68.9	63.6	138	127	4-146	8	30	
Dibenz(a,h)anthracene	ug/L	50	41.4	43.4	83	87	1-227	5	30	
Diethylphthalate	ug/L	50	46.2	46.0	92	92	1-114	1	30	
Dimethylphthalate	ug/L	50	45.8	45.9	92	92	1-112	0	30	
Fluoranthene	ug/L	50	42.6	48.8	85	98	26-137	14	30	
Fluorene	ug/L	50	45.6	45.2	91	90	59-121	1	30	
Hexachloro-1,3-butadiene	ug/L	50	30.0	31.1	60	62	24-116	3	30	
Hexachlorobenzene	ug/L	50	44.0	44.0	88	88	1-152	0	30	
Hexachlorocyclopentadiene	ug/L	50	34.6	31.2	69	62	25-150	11	30	
Hexachloroethane	ug/L	50	30.7	29.0	61	58	40-113	6	30	
Indeno(1,2,3-cd)pyrene	ug/L	50	43.5	43.7	87	87	1-171	0	30	
Isophorone	ug/L	50	46.1	43.0	92	86	21-196	7	30	
N-Nitroso-di-n-propylamine	ug/L	50	46.8	43.0	94	86	1-230	8	30	
N-Nitrosodimethylamine	ug/L	50	28.2	27.7	56	55	25-150	2	30	
N-Nitrosodiphenylamine	ug/L	50	49.3	49.2	99	98	25-150	0	30	
Naphthalene	ug/L	50	39.7	39.7	79	79	21-133	0	30	
Nitrobenzene	ug/L	50	45.8	42.4	92	85	35-180	8	30	
Pentachlorophenol	ug/L	100	73.2	6.6J	73	7	14-176		30 L	.2
Phenanthrene	ug/L	50	46.4	47.1	93	94	54-120	1	30	
Phenol	ug/L	50	15.5	10.5	31	21	5-112	38	30 F	₹1
Pyrene	ug/L	50	44.8	49.2	90	98	52-115	9	30	
2,4,6-Tribromophenol (S)	%				99	18	10-137			
2-Fluorobiphenyl (S)	%				85	80	15-120			
2-Fluorophenol (S)	%				48	10	10-120			
Nitrobenzene-d5 (S)	%				95	88	10-120			
Phenol-d6 (S)	%				33	22	10-120			
Terphenyl-d14 (S)	%				86	88	11-131			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

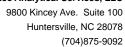
A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES


PASI-C Pace Analytical Services - Charlotte

ANALYTE QUALIFIERS

Date: 03/28/2018 12:50 PM

L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.

R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: R3830 WBS 38887.1.1

Pace Project No.: 92377782

Date: 03/28/2018 12:50 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92377782001 92377782002	R3830-P114-TMW-1 R3830-P114-TMW-2	EPA 625 EPA 625	402940 402940	EPA 625 EPA 625	403134 403134
92377782001 92377782002	R3830-P114-TMW-1 R3830-P114-TMW-2	SM 6200B SM 6200B	403525 403525		

Pace Analytical"

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018

Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden	Greenwood	Hunters	sville	Raleigh□ N	1echanicsville[
Sample Condition Upon Receipt Client Name:	lemfelder	Proje		923777	782
Courier: Fed Ex Commercial Pace	JUPS USPS Other:	Client	92377782		
Custody Seal Present? Yes	Seals Intact?	Ano	Date/initials P	erson Examining Conte	N 3/21/18
Packing Material: Bubble Wrap Thermometer: 92T036	Bubble Bags None Type of Ice:			Biological Tissue Fro	
Cooler Temp (°C): Correction Cooler Temp Corrected (°C): Correction USDA Regulated Soll (A)/A, water sample) Did samples originate in a quarantine zone within ti		-0.1	Samples out of has begun	ove freezing to 6°C femp criteria. Samples e from a foreign source (
Yes No	ne officed states. CA, NY, or SC (C	ineck maps/r	including Hawall and		X No
Chain of Custody Present?	, □(Yes) □No [□N/A 1.		micros/ Distriction (1)	
The state of the s	4	- 20 70			
Samples Arrived within Hold Time? Short Hold Time Analysis (<72 hr.)?		□N/A 2. □N/A 3.			
Rush Turn Around Time Requested?		□N/A 4.			
Sufficient Volume?	1 62	□N/A 5.			
Correct Containers Used? -Pace Containers Used?	The ON I	□n/a 6. □n/a			
Containers Intact?	ERVes ONO I	□N/A 7.			
Dissolved analysis: Samples Field Filtered?	□Yes □No ⅓	□N/A 8.			
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix:	100	□N/A 9.			
Headspace in VOA Vials (>5-6mm)?	□Yes □No 4	AN/A 10.			
Trip Blank Present?		□N/A 11.			
Trip Blank Custody Seals Present?	□Yes □No A	ĎN/A			
COMMENTS/SAMPLE DISCREPANCY				Field Data Requi	red?
		Lo	ot ID of split containe	ers:	
CLIENT NOTIFICATION/RESOLUTION					
Person contacted:		Date/Time:			
Project Manager SCURF Review:	(FE)	4	Date:	3/23	
Project Manager SRF Review:	TE	1	Date:	3/23	

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oll and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project WO#: 92377782

PM: PTE

Due Date: 03/28/18

CLIENT: 92-NCDOTEAST

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mt. Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP45-125 mL Plastic H2504 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4C! (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na25203 (N/A)	VG9U-40 mL VOA Una (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A - lab)	SP2T-250 mL Sterile Plastic (N/A - lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1					1	1	1	1		1	/		/	1	/	4								1				
2					/	1	1	/	Z	7	1		1	/	1	A								1	1			
3	1			M	/	/	1	/		77	/		1	1	1						F		П	/	1			ī
4	1				1	/	1	/			1		/	1	1	H								1	1			ī
5	1				/	/	1	/			/	100	/	/	/									/	1			
6	1				/	/	1	1			1		1	1	/						F			1	1			Ť
7	1	1			/	/	1	/			/		/	1	1			7		7	m			/	1	Ĭ		T
8	1			- 1	1	1	1	1		T	1		1	1	1									1	1			Ī
9	1				1	/	/	1		T	1		1	1	1									1	1			
10	1				/	1	/	1			1		1	1										1	1			
11	1				/	1	/	1					1		1									1	1			
12	1				1	1	1	1			1		1	1	1									1	1			

pH Adjustment Log for Preserved Samples								
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	12 3/21 8/20 000 12/2	DATE TIME ACCEPTED BY / AFFILIATION DATE TIME	K3630-P114-Tmw-2 WG 320 11:00 51	- 1 4 XX 300 000 300 1000 1000 1000 1000 1000	MATRIX CODE (See valid code SAMPLE TYPE (G=GRAB C=C SAMPLE TYPE (G=GRAB C=C SAMPLE TYPE (G=GRAB C=C Water Will SAMPLE TYPE (G=GRAB C=C Water Will SAMPLE TYPE (G=GRAB C=C WATER SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NaOH Na2S2Q3 Methanol Other Analysis Test (COOL) (SAMPLE TYPE (Y/N) ANALYSIS TEST (COOL) (SAMPLE TYPE (Y/N) WATER SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NaOH Na2S2Q3 Methanol Other Analysis Test (COOL) (SAMPLE TYPE (Y/N) WATER SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NaOH NaOH NaCH NaOH NaCH NaCH	DOE GOLLECTED COLLECTED) P114 Paca Profile #: 6017	WES 3887 / Page Project Toy or Ezell Site Location	NO DE CONTROL TO CONTROL Purchase Order No.: Processo Order No.: P	COMPANY NAME: NCDOT EUST CONTROL REGULATORY AGENCY	Report To: MIKE BOMS	Section A Required Client Information: Required Project Information: Section B Section C Required Project Information: Invoice Information:	www.misubbecom
eived on e (Y/N) stody ed Cooler (Y/N)	MY MA	SAMPLE CONDITIONS	00	T	Residual Chlorine (Y/N) Pace Project No./ Lab.l.D.		1		D WATER DRINKING WATER			_	

Important Note: By aigning this form you are accepting Pater's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

April 26, 2018

Chemical Testing Engineer NCDOT Materials & Tests Unit 1801 Blue Ridge Road Raleigh, NC 27607

RE: Project: R3038 WBS 38887.1.1 Pace Project No.: 92381913

Dear Chemical Engineer:

Enclosed are the analytical results for sample(s) received by the laboratory on April 23, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Taylor Ezell taylor.ezell@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Michael Burns, Kleinfelder Chris Hollinger, Kleinfelder

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

CERTIFICATIONS

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

Charlotte Certification IDs

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92381913001	R-3830-P114-SS8-2	Solid	04/20/18 07:00	04/23/18 09:58
92381913002	R-3830-P114-SS8-3	Solid	04/20/18 07:05	04/23/18 09:58
92381913003	R-3830-P114-SS9-2	Solid	04/20/18 07:15	04/23/18 09:58
92381913004	R-3830-P114-SS9-3	Solid	04/20/18 07:20	04/23/18 09:58
92381913005	R-3830-P114-SS10-2	Solid	04/20/18 07:30	04/23/18 09:58
92381913006	R-3830-P114-SS10-3	Solid	04/20/18 07:35	04/23/18 09:58
92381913007	R-3830-P114-SS11-2	Solid	04/20/18 07:50	04/23/18 09:58
92381913008	R-3830-P114-SS11-3	Solid	04/20/18 07:55	04/23/18 09:58

SAMPLE ANALYTE COUNT

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92381913001	R-3830-P114-SS8-2	EPA 8015 Modified	NU1	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92381913002	R-3830-P114-SS8-3	EPA 8015 Modified	NU1	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92381913003	R-3830-P114-SS9-2	EPA 8015 Modified	NU1	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92381913004	R-3830-P114-SS9-3	EPA 8015 Modified	NU1	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92381913005	R-3830-P114-SS10-2	EPA 8015 Modified	NU1	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92381913006	R-3830-P114-SS10-3	EPA 8015 Modified	NU1	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92381913007	R-3830-P114-SS11-2	EPA 8015 Modified	NU1	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C
92381913008	R-3830-P114-SS11-3	EPA 8015 Modified	NU1	2	PASI-C
		ASTM D2974-87	KDF	1	PASI-C

Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

Date: 04/26/2018 11:09 AM

Pace Project No.: 92381913									
Sample: R-3830-P114-SS8-2		92381913001		: 04/20/18				atrix: Solid	
Results reported on a "dry weigl	ht" basis and are	adjusted for	Report	isture, sar	nple si	ze and any diluti	ons.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA 8	3015 Modified	d Preparat	tion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) Surrogates	ND	mg/kg	5.4	4.8	1	04/24/18 16:38	04/25/18 12:10		
n-Pentacosane (S)	75	%	41-119		1	04/24/18 16:38	04/25/18 12:10	629-99-2	
Percent Moisture	Analytical	Method: ASTM	1 D2974-87						
Percent Moisture	7.8	%	0.10	0.10	1		04/24/18 09:53		
Sample: R-3830-P114-SS8-3	Lab ID:	92381913002	Collected	: 04/20/18	3 07:05	Received: 04/	23/18 09:58 M	atrix: Solid	
Results reported on a "dry weigl	ht" basis and are	adjusted for	•	isture, sar	nple si	ze and any diluti	ons.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA 8	3015 Modified	d Preparat	tion Me	thod: EPA 3546		•	
Diesel Range Organics(C10- C28) Surrogates	ND	mg/kg	5.8	5.2	1	04/24/18 16:38	04/25/18 16:41		
n-Pentacosane (S)	76	%	41-119		1	04/24/18 16:38	04/25/18 16:41	629-99-2	
Percent Moisture	Analytical	Method: ASTM	1 D2974-87						
Percent Moisture	13.7	%	0.10	0.10	1		04/24/18 09:53		
Sample: R-3830-P114-SS9-2	Lab ID:	92381913003	Collected	: 04/20/18	3 07:15	Received: 04/	23/18 09:58 M	atrix: Solid	
Results reported on a "dry weigl	ht" basis and are	adjusted for	•	isture, sar	nple si	ze and any diluti	ons.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA 8	3015 Modified	d Preparat	tion Me	thod: EPA 3546			
Diesel Range Organics(C10-C28)	6.7	mg/kg	5.8	5.2	1	04/24/18 16:38	04/25/18 16:41		
Surrogates n-Pentacosane (S)	50	%	41-119		1	04/24/18 16:38	04/25/18 16:41	629-99-2	
Percent Moisture	Analytical	Method: ASTM	1 D2974-87						
Percent Moisture	13.8	%	0.10	0.10	1		04/24/18 09:53		

ANALYTICAL RESULTS

Project: R3038 WBS 38887.1.1

Date: 04/26/2018 11:09 AM

Pace Project No.: 92381913									
Sample: R-3830-P114-SS9-3	Lab ID:	92381913004	Collected	d: 04/20/18	3 07:20	Received: 04/	23/18 09:58 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted for	-	oisture, sar	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA 8	3015 Modifie	ed Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10-C28) Surrogates	ND	mg/kg	6.0	5.4	1	04/24/18 16:38	04/25/18 12:10		
n-Pentacosane (S)	71	%	41-119		1	04/24/18 16:38	04/25/18 12:10	629-99-2	
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	15.3	%	0.10	0.10	1		04/25/18 10:08		
Sample: R-3830-P114-SS10-2	Lab ID:	92381913005	Collected	d: 04/20/18	3 07:30	Received: 04/	/23/18 09:58 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted for	-	oisture, sar	nple si	ze and any dilut	ions.		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA 8	3015 Modifie	ed Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10- C28) Surrogates	ND	mg/kg	5.3	4.8	1	04/24/18 16:38	04/25/18 17:05		
n-Pentacosane (S)	71	%	41-119		1	04/24/18 16:38	04/25/18 17:05	629-99-2	
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	6.6	%	0.10	0.10	1		04/25/18 10:08		
Sample: R-3830-P114-SS10-3	Lab ID:	92381913006	Collected	d: 04/20/18	3 07:35	Received: 04/	/23/18 09:58 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted for	percent mo	oisture, sar	nple si	ze and any diluti	ions.		
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8015 GCS THC-Diesel	Analytical	Method: EPA 8	3015 Modifie	ed Preparat	ion Me	thod: EPA 3546			
Diesel Range Organics(C10-C28)	ND	mg/kg	6.2	5.5	1	04/24/18 16:38	04/25/18 17:05		
Surrogates n-Pentacosane (S)	71	%	41-119		1	04/24/18 16:38	04/25/18 17:05	629-99-2	
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	18.3	%	0.10	0.10	1		04/25/18 10:08		

ANALYTICAL RESULTS

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

Date: 04/26/2018 11:09 AM

Diesel Range Organics(C10-C28) Surrogates n-Pentacosane (S) 72 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 8.6 % 0.10 0.10 1 04/24/18 16:38 04/25/18 10:08 Sample: R-3830-P114-SS11-3 Lab ID: 92381913008 Collected: 04/20/18 07:55 Received: 04/23/18 09:58 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 Diesel Range Organics(C10-C28) Surrogates n-Pentacosane (S) 68 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87	Sample: R-3830-P114-SS11-2	Lab ID:	92381913007	Collecte	d: 04/20/18	3 07:50	Received: 04/	23/18 09:58 Ma	atrix: Solid	
Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual	Results reported on a "dry weigh	t" basis and are	adjusted for	percent mo	oisture, sai	nple si	ze and any diluti	ons.		
### Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report Parameters Results Units Limit MDL DF Preparation Method: EPA 3546 Diesel Range Organics(C10- ND mg/kg 5.5 5.0 1 04/24/18 16:38 04/25/18 17:29 629-99-2 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture B.6 % 0.10 0.10 1 0.40 1 04/25/18 10:08 **Sample: R-3830-P114-SS11-3 Lab ID: 92381913008 Collected: 04/20/18 07:55 Received: 04/23/18 09:58 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual **8015 GCS THC-Diesel** Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 Diesel Range Organics(C10- ND mg/kg 5.8 5.2 1 04/24/18 16:38 04/25/18 17:29 629-99-2 **Percent Moisture** Analytical Method: ASTM D2974-87 **Percent Moisture** Analytical Method: ASTM D2974-87				Report						
Diesel Range Organics(C10- ND mg/kg 5.5 5.0 1 04/24/18 16:38 04/25/18 17:29 C28) Surrogates n-Pentacosane (S) 72 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 8.6 % 0.10 0.10 1 04/25/18 10:08 Sample: R-3830-P114-SS11-3 Lab ID: 92381913008 Collected: 04/20/18 07:55 Received: 04/23/18 09:58 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 Diesel Range Organics(C10- ND mg/kg 5.8 5.2 1 04/24/18 16:38 04/25/18 17:29 C28) Surrogates n-Pentacosane (S) 68 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
C28 Surrogates Surrogates Percent Moisture Analytical Method: ASTM D2974-87	8015 GCS THC-Diesel	Analytical	Method: EPA 8	015 Modifie	ed Prepara	tion Me	thod: EPA 3546			
n-Pentacosane (S) 72 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87 Percent Moisture 8.6 % 0.10 0.10 1 04/25/18 10:08 Sample: R-3830-P114-SS11-3 Lab ID: 92381913008 Collected: 04/20/18 07:55 Received: 04/23/18 09:58 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 Diesel Range Organics(C10- ND mg/kg 5.8 5.2 1 04/24/18 16:38 04/25/18 17:29 Surrogates n-Pentacosane (S) 68 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87	,	ND	mg/kg	5.5	5.0	1	04/24/18 16:38	04/25/18 17:29		
Percent Moisture 8.6 % 0.10 0.10 1 04/25/18 10:08	n-Pentacosane (S)	72	%	41-119		1	04/24/18 16:38	04/25/18 17:29	629-99-2	
Sample: R-3830-P114-SS11-3 Lab ID: 92381913008 Collected: 04/20/18 07:55 Received: 04/23/18 09:58 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.	Percent Moisture	Analytical	Method: ASTM	D2974-87						
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Report Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 Diesel Range Organics(C10- C28) Surrogates n-Pentacosane (S) 68 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87	Percent Moisture	8.6	%	0.10	0.10	1		04/25/18 10:08		
Parameters Results Units Report Limit MDL DF Prepared Analyzed CAS No. Qual 8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 Diesel Range Organics(C10-C28) ND mg/kg 5.8 5.2 1 04/24/18 16:38 04/25/18 17:29 04/25/18 17:29 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87	Sample: R-3830-P114-SS11-3	Lab ID:	92381913008	Collecte	d: 04/20/18	3 07:55	Received: 04/	23/18 09:58 Ma	atrix: Solid	
Parameters Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 Diesel Range Organics(C10-C28) ND mg/kg 5.8 5.2 1 04/24/18 16:38 04/25/18 17:29 04/25/18 17:29 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2	Results reported on a "dry weigh	t" basis and are	adjusted for	percent mo	oisture, sai	nple si	ze and any diluti	ons.		
8015 GCS THC-Diesel Analytical Method: EPA 8015 Modified Preparation Method: EPA 3546 Diesel Range Organics(C10- C28) Surrogates n-Pentacosane (S) Analytical Method: ASTM D2974-87 Analytical Method: ASTM D2974-87				Report			•			
Diesel Range Organics(C10- ND mg/kg 5.8 5.2 1 04/24/18 16:38 04/25/18 17:29 C28) Surrogates n-Pentacosane (S) 68 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87	Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
C28)	8015 GCS THC-Diesel	Analytical	Method: EPA 8	015 Modifie	ed Prepara	tion Me	thod: EPA 3546			
n-Pentacosane (S) 68 % 41-119 1 04/24/18 16:38 04/25/18 17:29 629-99-2 Percent Moisture Analytical Method: ASTM D2974-87	C28)	ND	mg/kg	5.8	5.2	1	04/24/18 16:38	04/25/18 17:29		
•	•	68	%	41-119		1	04/24/18 16:38	04/25/18 17:29	629-99-2	
Percent Moisture 11.8 % 0.10 0.10 1 04/25/18 10:08	` '									
	Percent Moisture	Analytical	Method: ASTM	D2974-87						

(704)875-9092

QUALITY CONTROL DATA

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

Date: 04/26/2018 11:09 AM

QC Batch: 407717 Analysis Method: EPA 8015 Modified
QC Batch Method: EPA 3546 Analysis Description: 8015 Solid GCSV

Associated Lab Samples: 92381913001, 92381913002, 92381913003, 92381913004, 92381913005, 92381913006, 92381913007,

92381913008

METHOD BLANK: 2262319 Matrix: Solid

Associated Lab Samples: 92381913 92381913	•	02, 92381913003, 9		92381913005, 9	2381913006,	92381913007,	
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyz	ed Qualifie	·s
Diesel Range Organics(C10-C28) n-Pentacosane (S)	mg/kg %	ND 70	5.0 41-119			14:34	
LABORATORY CONTROL SAMPLE:	2262320	Spike	LCS	LCS	% Rec		
Parameter	Units	Conc. F	Result	% Rec	Limits	Qualifiers	
Diesel Range Organics(C10-C28) n-Pentacosane (S)	mg/kg %	66.4	47.7	72 75	49-113 41-119		
MATRIX SPIKE SAMPLE:	2262321	92381910001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Diesel Range Organics(C10-C28) n-Pentacosane (S)	mg/kg %	N	ID 72.1	38.9	-	10-146 62 41-119	
SAMPLE DUPLICATE: 2262322							
Dorometer	Lloito	92381910002	Dup	DDD	Max	Qualificas	
Parameter	Units	Result	Result	RPD	RPD 	Qualifiers	_
Diesel Range Organics(C10-C28) n-Pentacosane (S)	mg/kg %	ND 70	NE 62		1	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

300 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: R3038 WBS 38887.1.1

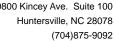
Pace Project No.: 92381913

QC Batch: 407531 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 92381913001, 92381913002, 92381913003

SAMPLE DUPLICATE: 2261266


92381794001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 22.0 % Percent Moisture 21.0 5 25

SAMPLE DUPLICATE: 2261267

Date: 04/26/2018 11:09 AM

		92381913003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	13.8	12.6	10	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

QC Batch: 407662 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 92381913004, 92381913005, 92381913006, 92381913007, 92381913008

SAMPLE DUPLICATE: 2261884

92381386001 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers % 17.3 Percent Moisture 17.2 0 25

SAMPLE DUPLICATE: 2261885

Date: 04/26/2018 11:09 AM

		92381795003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	21.6	22.8	5	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 04/26/2018 11:09 AM

PASI-C Pace Analytical Services - Charlotte

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: R3038 WBS 38887.1.1

Pace Project No.: 92381913

Date: 04/26/2018 11:09 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92381913001	R-3830-P114-SS8-2	EPA 3546	407717	EPA 8015 Modified	407807
92381913002	R-3830-P114-SS8-3	EPA 3546	407717	EPA 8015 Modified	407807
92381913003	R-3830-P114-SS9-2	EPA 3546	407717	EPA 8015 Modified	407807
92381913004	R-3830-P114-SS9-3	EPA 3546	407717	EPA 8015 Modified	407807
92381913005	R-3830-P114-SS10-2	EPA 3546	407717	EPA 8015 Modified	407807
92381913006	R-3830-P114-SS10-3	EPA 3546	407717	EPA 8015 Modified	407807
92381913007	R-3830-P114-SS11-2	EPA 3546	407717	EPA 8015 Modified	407807
92381913008	R-3830-P114-SS11-3	EPA 3546	407717	EPA 8015 Modified	407807
92381913001	R-3830-P114-SS8-2	ASTM D2974-87	407531		
92381913002	R-3830-P114-SS8-3	ASTM D2974-87	407531		
92381913003	R-3830-P114-SS9-2	ASTM D2974-87	407531		
92381913004	R-3830-P114-SS9-3	ASTM D2974-87	407662		
92381913005	R-3830-P114-SS10-2	ASTM D2974-87	407662		
92381913006	R-3830-P114-SS10-3	ASTM D2974-87	407662		
92381913007	R-3830-P114-SS11-2	ASTM D2974-87	407662		
92381913008	R-3830-P114-SS11-3	ASTM D2974-87	407662		

Pace Analytical **

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden	Greenwood _	Hunter	sville Raleigh Mechanicsville
Sample Condition Upon Receipt Courler: Commercial Client Name: Fed Ex Pace	COLUMN DUSPS DOTHER:	Proje Client	WO#: 92381913
Custody Seal Present? Yes No	Seals Intact? Yes	₽No	Date/Initials Person Examining Contents: W14-23-1
Sooler Temp Corrected (°C): 5 - 0		√Wet □Blue +0.1	Biological Tissue Frozen? Yes No N/A None Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun
oid samples originate in a quarantine zone withing Yes No		C (check maps)?	Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes
			Comments/Discrepancy:
Chain of Custody Present?	Yes No	□N/A 1.	
Samples Arrived within Hold Time?	Yes ONO	□N/A 2.	
Short Hold Time Analysis (<72 hr.)?	□Yes □No	□N/A 3.	
Rush Turn Around Time Requested?	□Yes □No	□N/A 4.	
Sufficient Volume?	Yes \Quantum No	□N/A 5.	
Correct Containers Used? -Pace Containers Used?	Yes No	□n/a 6. □n/a	
Containers Intact?	₽Yes □No	□N/A 7.	
Dissolved analysis: Samples Field Filtered?		N/A 8.	
Sample Labels Match COC?	Ves No	□N/A 9.	
-Includes Date/Time/ID/Analysis Matr	îx:		
Headspace in VOA Vials (>5-6mm)? Trip Blank Present?	Yes No	□N/A 10.	
	☐Yes ☐No	N/A 11.	
Trip Blank Custody Seals Present? COMMENTS/SAMPLE DISCREPANCY	∏Yes ∏No	ÆN/A	Field Data Required? Yes No
		Lo	t ID of split containers:
CLIENT NOTIFICATION/RESOLUTION			
Person contacted:		Date/Time:	
Project Manager SCURF Review:	E	·	Date: 4/24
Project Manager SRF Review:	(F)		Date: 4/24
	14		

Document Name: Sample Condition Upon Receipt(SCUR)

> Document No.: F-CAR-CS-033-Rev.06

Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oll and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project Due Date: 04/30/18

CLIENT: 92-Klein RA

ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1					/	1	1		j				1		1													
2					1	1	1		1		/		/	1	/									V				
3	1				1	1	1	1	1		1		1	1	1													
4	1				1	/	1	1	1		1		1	1	1	E								1	1			
5	1				/	/	/	1	1		/		/	1	1									1	1			
6	1				1	/	/	/	1				/	/	1									1	1			
7	1				1	/	/	1	1				/	/										1	1			
8	1				1	1	/	1	Ī		1		/	/	1			13						1	1			
9	1				/	/	/		1				/	/	1									1	1			
10	1				/		/				1		/	/										1	1		F-3	1
11	1				/	/	/				1		/	/	1									7	1	F		Ī
12	1				1	/	/				1		/	1	1	H								1				

		pH Ac	ljustment Log for Pres	erved Samples		200
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (I.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Pace Analytical www.pacelabs.com

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Waste Waller WW WIT Soll Soll Soll Soll Soll Soll Soll Sol	MATRIX COOLEGTED MATRIX COOLEGAN Water DW Water WWW Water DW Water Product of Preserval Salisolid St. Composite Composite Shorisan Salisolid St. Composite Composite Shorisan SARPLE TYPE (GEGRAB C=COMP) SARPLE TYPE (GE	MATISE COORDE Was water Was water Was water Was water Was water Other No.: Project Number: C-3830 - P114 Pand Project Number: C-3830 - P1144 Pand Project	Project Number: Passervatives Pa	Matrix Codes Matrix Codes Matrix Codes Marine Matrix Codes Marine Matrix Codes Marine Matrix Codes Marine Ma	Region for Marian Round for	- 1
Waster Water Water Waster Wast	MATRIX COOLS Water Water DW Water Water DW Wa	Project Name: Pr	Address: Project Name: C-38.30 -	Matrix Codes Ma	Matrix Codes Ma	10
Waste Water WW Works water WW WW Soldsold water WW WW Soldsold Sol	MATRIX COOLECTED Marie Waler DW Waler Power WW Waler PW	Matrix Codes Ma	Address: Properties Order No.: Properties Order N	Company Name: Company Name	Marin Codes Marin	Sie X
Wipo Other Water With Course Williams Course W	MATRIX COODE MATRIX COODE MATRIX COODE MATRIX COODE SolidSolid Solid SolidSolid Sol	Project Name: Project Name	Address:	Company Norms: Company Norms: Compa	Report To:	AFFILIA.
Waste Water WT Soll Soll Soll Soll Soll Soll Soll Sol	MATRIX CODE MATRIX CODE MATRIX CODE MATRIX CODE Soll/Solld Soll/Solld MATRIX CODE SAMPLE TYPE SAMPLE TYPE SAMPLE TEMP AT COLLECTION HOF CONTAINERS DATE TIME DATE DATE	Protection Project Name Projec	Address: C - FE Propert Number Propert Propert Number Propert N	Matrix Codes With Project Name: Name	Report To: M; Ke Burns Capy To: Chy To: Chris Rall Index Report To: M; Ke Burns Capy To: Chy To: Chris Rall Index Report To: M; Ke Burns Report To: Maller To: Maller To: Maller Report To: Maller To: Maller Report To: Maller R	
Waste Water WT Soll School Waste Water WT Soll Soll School Waste Water WT Soll	MATRIX COORE MATRIX COORE MATRIX COORE Matter DW Water WIT Product Water WIT Soll/Solld Soll/Soll/Solld Soll/Soll/Solld Soll/Soll/Solld Soll/Soll/Solld Soll/Soll/Solld Soll/Soll/Solld Soll/Soll/Solld Soll/Soll/Solld Soll/Soll/Solld Soll/Soll/Soll/Soll/Soll/Soll/Soll/Sol	Matrix Codes Ma	Address: Profect Name Profect N	Company Name: 2 7560 Company Name: 2 7560 Company Name: Composition: Composition	Report To. M.; K.C. BLATTE 2.756/D Company Name: Company Name: Address: Project Name: Proj	>
Waste Water WT WT Product Wipe Soll/Solld Code Soll/Soll/Solld Code Soll/Soll/Soll/Soll/Soll/Soll/Soll/Soll	MATRIX CODE MATRIX LOODE MATRIX LOODE MATRIX LOODE MATRIX CODE Mater Walter WIT Mater Walter WIT May Product MY Mop MY MY MY MY MY MY MY MY MY M	Project Number: Project Nu	MATRIX CODE: Matrix Codes Ma	Company Name: 27560 Matrix Codes Matrix C	Report To, M/KC BUTS Company Name: Company Name: Company Name: Company Name: Company Name: Address: Address: Address: Project Name: Reference: Re	\Diamond
Waste Water WT Soll/Solid Oil/Solid Oil/S	MATRIX CODE MATRIX CODE MATRIX CODE MATRIX CODE Soll/Solid OIT OTHER MATRIX CODE SAMPLE TYPE OTHER OTHER OTHER TIME DATE DATE DATE DATE DATE DATE DATE DATE TIME DATE DAT	Project Name: Project Name	Address: Profect Name Project Number Project Numbe	COPY TO: CLASS (VOT) MORE 27560 27560 27560 27560 27560 Address: Address: Project Name: Project Number: Poject Name: Project Number: Poject Number	Report To: M; Re M	X
Waste Water WT Soll/Solid Oil/Solid Oil/S	MATRIX CODE Waster Water Water Water Water Waster Water Product Waster Water Water WW Water Product Product Soll/Solid Arrivation MATRIX CODE SAMPLE TYPE SAMPLE TYPE SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol Other Analysis Test V/N Analysis Test	Project Name:	Address: Project Name:	Company Name: Company Name: Address: Project Number: C-36.30 - P 1 4 Matrix Cooles MATRIX COOLE Dinking water DW Water WIT Water WIT Froduct Soll/Solld Other Tissue	Report To: Mike Burs Tissue Time	X
Waste Water WT Soll/Solld Vipe Other Other SAMPLE TYPE SAMPLE TYPE SAMPLE TEMP AT COLLECTION HOP CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other Analysis Test Analysis Test	MATRIX CODE Dinking Water DW Water WT Waster WT Waster WT Water WT Waster DW WT Water WT WT Waster DW WT Water WT WT WASTER WT WT WASTER WT WASTER WT WT WT WASTER WT WT WASTER WT WT WT WASTER WT WT WT WASTER WT WT WT WASTER WT WT WT WT WASTER WT	Project Number:	Address: Project Number:	Company Name: Address: Address: Address: Address: Address: Address: Project Number: Project Num	Report To: MYR BUNS Capy To: Wis (BUTNOS) Company Name: Company Name: Company Name: Company Name: Company Name: Address: Project Number C-3830 - P114 Production: Project Number C-3830 - P114 Production: Project Number C-3830 - P114 Production: Reference order No.: Project Number C-3830 - P114 Production: Reference order No.: Project Number C-3830 - P114 Production: Reference order No.: Reference order No.: Reference order No.: Production: Reference order No.: Reference order N	X
Water Water WT Soll Solid Officer Of	MATRIX CODE Soll Solid Other Tissue OT SAMPLE TYPE DATE TIME AND AND TOF CONTAINERS TIME DATE DATE TIME DATE D	Procedure Project Number:	Address: Project Name:	Company Name: Capy To: C	Report To: M/RC BUTS Company Name: Company Name: Company Name: Company Name: Address: Project Number: C-3830 - P114 P	XD
Water Water WT Solid Solid Vipe Office State Valid code Office State Valid code SAMPLE TYPE (G=GRAB C=COMPOSITE ENDIGRAB TIME DATE TIME DATE TIME DATE TIME DATE TIME DATE TIME APPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃ HCI NaOH Na ₂ S ₂ O ₃ Methanol Other # Analysis Test #	MATRIX CODE Where Tissue OTHER SAMPLE TYPE WATE SAMPLE TEMP AT COLLECTION WHO SAMPLE TE	Project Number: C-3830 - P	Address: Project Name:	Company Name: Copy To: Child Company Name: Company Name: Address: Address: Project Name: C-3830 - F 14 Matrix Codes Mat	Report To: M; KC BUTS Copy To: Chris Dill mark Copy To: Chris Dill mark Company Name: Project Number: Polect Number: Polect Name: Project Number: Polect Number: P	1
Water Wilter WT Waste Water WT Wilson Water WT WILTER Solid Code Solid Code Solid Code SAMPLE TYPE (G=GRAB C=COMPOSITE ENDIGRAB ENDIGRA ENDIGORDA ENDIGRAB ENDIGORDA	MATRIX CODE (See valid codes to left) SAMPLE TYPE (G=GRAB C=COMP) Product Tissue Time SAMPLE TEMP AT COLLECTION # OF CONTAINERS Unpreserved H2SO4 HNO3 HCI NaOH Na2S2O3 Methanol Other Analysis Test Whatrix Codes COMPOSITE COMPOSITE COMPOSITE Preservatives Preservatives Y/NI Analysis Test V/NI Preservatives Y/NI Analysis Test V/NI	Procedure Project Number:	Address: Project Name:	Company Name: Company Name: Company Name: Company Name: Address: Project Name: Project Number: Propouncy: Propouncy:	Report To: M; KC BUTS Attention: Address: Attention: Address: Attention: Address: Project Number: Address: Project Number: Address:	1
	DDE to MP COLLECTED Preservatives	Reconstruction Project Name:	Address: Project Name: C-3630 - P114 Pace Profile #: Project Number: Project Numbe	Carre Capy To: Chris (VIII Man) Company Name: Address: Project Name: (C-3630 - 6114 Project Number: (C-3630 - 6114 Projec	Report To: Mike Burns Capy To: List Rull Manager 2.7560 Purchase Order No.: Project Number: R-3830 - F114 Project Number: R-3830 W \$5 3887. Pace Profile #: Project Number: R-3830 W \$5 3887. Pace Profile #: Matrix Cooles MATRIX LOODE: Self Rull Rull Rull Rull Rull Rull Rull Ru	
Req		Proper Name: R-3830 - FILL Proper Supplements: Proper Name: R-3830 - FILL Proper Name: Reserve Supplements: Purplements: P	IC 2756D Address: Purchase Order No.: Project Name: R-3630 - P114 Manager: Manager: Run Purchase Order No.:	Copy To: Chris (VIII mgs.) 27560 Purchase Order No.: Project Name: R-3830 - P114 Railwane: Rai	Report To: Mike Burns Capy To: Chris (VIII) Mayer Company Name: 27560 Purchase Order No.: Project Name: (C-3630 - P114 Ranger: Face Project Ranger: Full Full Face Project Ranger: Full Full Full Full Full Full Full Ful	
R-3830 WBS 38887.1, Paca Profile #: V	R-3830 WBS 38887.1/1 Page Profile # V	Elenfoldercom	1C 27560 Purchase Order No.:	27560 Purchase Order No.:	Report To: Mitte Burns Lewre Copy To: Chris /Bl/mgs- 27560 Purchase Order No.:	rese
Project Number: R-3830 - P114 Pace Project Register EZEZY Project Number: R-3830 WBS 38887. 1/1 Pace Profile #: Rec	Project Number: R-3830 WBS 38887.1.1 Pace Project FLY Leve BEEL		27560	27560 COPYTO: Chris Pallinger	GODY TO: Chris / BUTNS	

ITEM#

7 8 8 9 9 110 111

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007